WorldWideScience

Sample records for microwave radar system

  1. A Scanning Microwave Radar and Radiometer

    DEFF Research Database (Denmark)

    Skou, Niels

    1995-01-01

    The Scanning Microwave Radar and Radiometer (SMRR) is a line scanner featuring a combined radar and radiometer system operating around 35 and 94 GHz. The layout of the SMRR is shown. The 2 offset antenna parabolas scan in synchronism, the receiver antenna has the highest gain in order to ensure...

  2. Microwave Radiometer Systems, Design and Analysis

    DEFF Research Database (Denmark)

    Skou, Niels; Vine, David Le

    Two important microwave remote sensors are the radar and the radiometer. There have been a number of books written on various aspects of radar, but there have been only a few written on microwave radiometers, especially on subjects of how to design and build radiometer systems. This book, which...

  3. Using microwave Doppler radar in automated manufacturing applications

    Science.gov (United States)

    Smith, Gregory C.

    Since the beginning of the Industrial Revolution, manufacturers worldwide have used automation to improve productivity, gain market share, and meet growing or changing consumer demand for manufactured products. To stimulate further industrial productivity, manufacturers need more advanced automation technologies: "smart" part handling systems, automated assembly machines, CNC machine tools, and industrial robots that use new sensor technologies, advanced control systems, and intelligent decision-making algorithms to "see," "hear," "feel," and "think" at the levels needed to handle complex manufacturing tasks without human intervention. The investigator's dissertation offers three methods that could help make "smart" CNC machine tools and industrial robots possible: (1) A method for detecting acoustic emission using a microwave Doppler radar detector, (2) A method for detecting tool wear on a CNC lathe using a Doppler radar detector, and (3) An online non-contact method for detecting industrial robot position errors using a microwave Doppler radar motion detector. The dissertation studies indicate that microwave Doppler radar could be quite useful in automated manufacturing applications. In particular, the methods developed may help solve two difficult problems that hinder further progress in automating manufacturing processes: (1) Automating metal-cutting operations on CNC machine tools by providing a reliable non-contact method for detecting tool wear, and (2) Fully automating robotic manufacturing tasks by providing a reliable low-cost non-contact method for detecting on-line position errors. In addition, the studies offer a general non-contact method for detecting acoustic emission that may be useful in many other manufacturing and non-manufacturing areas, as well (e.g., monitoring and nondestructively testing structures, materials, manufacturing processes, and devices). By advancing the state of the art in manufacturing automation, the studies may help

  4. Measurement of the sea surface wind speed and direction by an airborne microwave radar altimeter

    Energy Technology Data Exchange (ETDEWEB)

    Nekrassov, A. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    2001-07-01

    A pilot needs operational information about wind over sea as well as wave height to provide safety of a hydroplane landing on water. Near-surface wind speed and direction can be obtained with an airborne microwave scatterometer, radar designed for measuring the scatter characteristics of a surface. Mostly narrow-beam antennas are applied for such wind measurement. Unfortunately, a microwave narrow-beam antenna has considerable size that hampers its placing on flying apparatus. In this connection, a possibility to apply a conventional airborne radar altimeter as a scatterometer with a nadir-looking wide-beam antenna in conjunction with Doppler filtering for recovering the wind vector over sea is discussed, and measuring algorithms of sea surface wind speed and direction are proposed. The obtained results can be used for creation of an airborne radar system for operational measurement of the sea roughness characteristics and for safe landing of a hydroplane on water. (orig.)

  5. Retrieval of Effective Correlation Length and Snow Water Equivalent from Radar and Passive Microwave Measurements

    Directory of Open Access Journals (Sweden)

    Juha Lemmetyinen

    2018-01-01

    Full Text Available Current methods for retrieving SWE (snow water equivalent from space rely on passive microwave sensors. Observations are limited by poor spatial resolution, ambiguities related to separation of snow microstructural properties from the total snow mass, and signal saturation when snow is deep (~>80 cm. The use of SAR (Synthetic Aperture Radar at suitable frequencies has been suggested as a potential observation method to overcome the coarse resolution of passive microwave sensors. Nevertheless, suitable sensors operating from space are, up to now, unavailable. Active microwave retrievals suffer, however, from the same difficulties as the passive case in separating impacts of scattering efficiency from those of snow mass. In this study, we explore the potential of applying active (radar and passive (radiometer microwave observations in tandem, by using a dataset of co-incident tower-based active and passive microwave observations and detailed in situ data from a test site in Northern Finland. The dataset spans four winter seasons with daily coverage. In order to quantify the temporal variability of snow microstructure, we derive an effective correlation length for the snowpack (treated as a single layer, which matches the simulated microwave response of a semi-empirical radiative transfer model to observations. This effective parameter is derived from radiometer and radar observations at different frequencies and frequency combinations (10.2, 13.3 and 16.7 GHz for radar; 10.65, 18.7 and 37 GHz for radiometer. Under dry snow conditions, correlations are found between the effective correlation length retrieved from active and passive measurements. Consequently, the derived effective correlation length from passive microwave observations is applied to parameterize the retrieval of SWE using radar, improving retrieval skill compared to a case with no prior knowledge of snow-scattering efficiency. The same concept can be applied to future radar

  6. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    This book is based on recent research work conducted by the authors dealing with the design and development of active and passive microwave components, integrated circuits and systems. It is divided into seven parts. In the first part comprising the first two chapters, alternative concepts...... amplifier architectures. In addition, distortion analysis and power combining techniques are considered. Another key element in most microwave systems is a signal generator. It forms the heart of all kinds of communication and radar systems. The fourth part of this book is dedicated to signal generators...... push currently available technologies to the limits. Some considerations to meet the growing requirements are provided in the fifth part of this book. The following part deals with circuits based on LTCC and MEMS technologies. The book concludes with chapters considering application of microwaves...

  7. On the Use of a 77 GHz Automotive Radar as a Microwave Rain Gauge

    Directory of Open Access Journals (Sweden)

    S. Bertoldo

    2018-02-01

    Full Text Available The European Telecommunications Standards Institute (ETSI defines the frequency band of 77 GHz (W-band as the one dedicated to automatic cruise control long-range radars. A car can be thought as a moving integrated weather sensor since it can provide meteorological information exploiting the sensors installed on board. This work presents the preliminary analysis of how a 77 GHz mini radar can be used as a short range microwave rain gauge. After the discussion of the Mie scattering formulation applied to a microwave rain gauge working in the W-band, the proposal of a new Z-R equation to be used for correct rain estimation is given. Atmospheric attenuation and absorption are estimated taking into account the ITU-T recommendations. Functional requirements in adapting automatic cruise control long-range radar to a microwave rain gauge are analyzed. The technical specifications are determined in order to meet the functional requirements.

  8. Effects upon health of occupational exposure to microwave radiation (radar)

    International Nuclear Information System (INIS)

    Robinette, C.D.; Silverman, C.; Jablon, S.

    1980-01-01

    The effects of occupational experience with microwave radiation (radar) on the health of US enlisted Naval personnel were studied in cohorts of approximately 20,000 men with maximum opportunity for exposure (electronic equipment repair) and 20,000 with minimum potential for exposure (equipment operation) who served during the Korean War period. Potential exposure was assessed in terms of occupational duties, length of time in occupation and power of equipment at the time of exposure. Actual exposure to members of each cohort could not be established. Mortality by cause of death, hospitalization during military service, later hospitalization in Veterans Administration (VA) facilities, and VA disability compensation were the health indexes studied, largely through the use of automated record systems. No adverse effects were detected in these indexes that could be attributed to potential microwave radiation exposures during the period 1950-1954. Functional and behavioral changes and ill-defined conditions, such as have been reported as microwave effects, could not be investigated in this study but subgroups of the living study population can be identified for expanded follow-up

  9. Cytogenetic monitoring of personnel occupationally exposed to microwave radiation of GEM radar

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, Vera; Gajski, Goran; Brumen, Vlatka

    2008-01-01

    In the present study we analyzed and followed-up on the DNA damaging effects of microwave radiation of GEM radar equipment within microwave field of 10 μW/cm 2 to 10 mW/cm 2 in personnel occupationally exposed to frequency range of 1.5 GHz to 10.9 GHz. The single cell gel electrophoresis (SCGE)/comet assay as a tool for the bio monitoring of individuals accidentally, environmentally or occupationally exposed to physical or chemical agents was used to evaluate possible genotoxic effect on peripheral human blood lymphocytes. The comet assay is a method that allows efficient determination of single strand breaks (SSB) and double-strand breaks (DSB), as well as alkali-labile sites in the DNA of single cells. The comet assay was carried out under alkaline conditions. We measured the baseline comet assay effect in whole blood samples. Parameter of the comet assay was studied in workers occupationally exposed to microwave radiation of GEM radar and in corresponding unexposed control subjects. It was found that in the subjects who were occupationally exposed to microwave radiation, the levels of DNA damage increased compare to control group and showed interindividual variations. As a measure of DNA damage tail length was used, calculated from the centre of the head and presented in micrometers (μm). Mean value of exposed group was 13.54±1.44 as opposed to control mean value that was 13.15±1.39. Differences between mean tail lengths were statistically significant (P<0.05, ANOVA). The results of this study indicate that individuals occupationally exposed to microwave frequency of GEM radar equipment may experience an increased genotoxic risk, emphasizing the importance of individual bio monitoring, limiting exposure and radiation safety programs. (author)

  10. Ground penetrating radar using a microwave radiated from laser-induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, H; Tanaka, K A [Graduate School of Engineering and Institute of Laser Engineering, Suita, Osaka University (Japan); Yamaura, M; Shimada, Y; Fujita, M [Institute for Laser Technology, Suita, Osaka (Japan)], E-mail: nakajima-h@ile.osaka-u.ac.jp

    2008-05-01

    A plasma column radiates a microwave to surroundings when generated with laser irradiation. Using such a microwave, we are able to survey underground objects and architectures from a remote place. In this paper, the microwave radiated from a plasma column induced by an intense laser ({approx} 10{sup 9} W/cm{sup 2}) were measured. Additionally, a proof test of this method was performed by searching an underground aluminum disk (26 cm in diameter, 1 cm in depth, and 1 m apart from a receiving antenna). As the result, the characteristics of the radiated microwave were clarified, and strong echoes corresponding to the edges of an aluminum disk were found. Based on these results, the feasibility of a ground penetrating radar was verified.

  11. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    Science.gov (United States)

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  12. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  13. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, A.S. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C.W.; Snider, J.B. [NOAA Environmental Technology Lab., Boulder, CO (United States); Lenshow, D.H.; Mayer, S.D. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  14. Simulation of recording the microwave holograms of complex objects by the near range radars

    Directory of Open Access Journals (Sweden)

    V. V. Razevig

    2014-01-01

    Full Text Available Radar is an object-detection technology that uses radio waves to determine the presence, range, altitude, direction, or speed of objects. In the recent time, there is an increasingly arising interest to the near range microwave imaging that allows detection of the shape and, in some cases, the inner structure of the investigated objects.For design engineering and efficiency evaluation of the cutting-edge radars as well as for testing the developed recovery algorithms a set of microwave holograms of various objects obtained under different conditions is needed. Microwave holograms cannot be obtained only on the basis of the experimental researches related to the measurements of electromagnetic scattering by the real objects since such experiments are time consuming and quite expensive. Therefore, to simulate electromagnetic scattering processes via objects examination is quite a challenge.This investigation goal is to develop a computer simulation method to record the microwave holograms of complex objects by the near range radars.To specify the shape of the investigated objects, Autodesk 3ds Max (3D computer graphics program for making 3D animations, models, and images is used. At a second stage the surface of the created object is described by a set of triangular facets. While calculating the reflected field, a final representation of the object as a set of point reflectors is used. Thus, the model of single scattering, is used without taking into consideration re-reflection and cross-influence of reflectors.Methods are also described to form the focused images of the microwave holograms that allow us to obtain a function describing object reflectivity, by which in most cases an object shape can be easily recognized.A comparison of computer-simulated holograms with experimental data proves the model adequacy.The model can be used to find a dependence of the plane resolution on used frequency, step of scanning, and distance to the object and a

  15. Cross-polarization microwave radar return at severe wind conditions: laboratory model and geophysical model function.

    Science.gov (United States)

    Troitskaya, Yuliya; Abramov, Victor; Ermoshkin, Alexey; Zuikova, Emma; Kazakov, Vassily; Sergeev, Daniil; Kandaurov, Alexandr

    2014-05-01

    Satellite remote sensing is one of the main techniques of monitoring severe weather conditions over the ocean. The principal difficulty of the existing algorithms of retrieving wind based on dependence of microwave backscattering cross-section on wind speed (Geophysical Model Function, GMF) is due to its saturation at winds exceeding 25 - 30 m/s. Recently analysis of dual- and quad-polarization C-band radar return measured from satellite Radarsat-2 suggested that the cross-polarized radar return has much higher sensitivity to the wind speed than co-polarized back scattering [1] and conserved sensitivity to wind speed at hurricane conditions [2]. Since complete collocation of these data was not possible and time difference in flight legs and SAR images acquisition was up to 3 hours, these two sets of data were compared in [2] only statistically. The main purpose of this paper is investigation of the functional dependence of cross-polarized radar cross-section on the wind speed in laboratory experiment. Since cross-polarized radar return is formed due to scattering at small-scale structures of the air-sea interface (short-crested waves, foam, sprays, etc), which are well reproduced in laboratory conditions, then the approach based on laboratory experiment on radar scattering of microwaves at the water surface under hurricane wind looks feasible. The experiments were performed in the Wind-wave flume located on top of the Large Thermostratified Tank of the Institute of Applied Physics, where the airflow was produced in the flume with the straight working part of 10 m and operating cross section 0.40?0.40 sq. m, the axis velocity can be varied from 5 to 25 m/s. Microwave measurements were carried out by a coherent Doppler X-band (3.2 cm) scatterometer with the consequent receive of linear polarizations. Experiments confirmed higher sensitivity to the wind speed of the cross-polarized radar return. Simultaneously parameters of the air flow in the turbulent boundary layer

  16. UAV-Borne Profiling Radar for Forest Research

    Directory of Open Access Journals (Sweden)

    Yuwei Chen

    2017-01-01

    Full Text Available Microwave Radar is an attractive solution for forest mapping and inventories because microwave signals penetrates into the forest canopy and the backscattering signal can provide information regarding the whole forest structure. Satellite-borne and airborne imaging radars have been used in forest resources mapping for many decades. However, their accuracy with respect to the main forest inventory attributes substantially varies depending on the wavelength and techniques used in the estimation. Systems providing canopy backscatter as a function of canopy height are, practically speaking, missing. Therefore, there is a need for a radar system that would enable the scientific community to better understand the radar backscatter response from the forest canopy. Consequently, we undertook a research study to develop an unmanned aerial vehicle (UAV-borne profiling (i.e., waveform radar that could be used to improve the understanding of the radar backscatter response for forestry mapping and inventories. A frequency modulation continuous waveform (FMCW profiling radar, termed FGI-Tomoradar, was introduced, designed and tested. One goal is the total weight of the whole system is less than 7 kg, including the radar system and georeferencing system, with centimetre-level positioning accuracy. Achieving this weight goal would enable the FGI-Tomoradar system to be installed on the Mini-UAV platform. The prototype system had all four linear polarization measuring capabilities, with bistatic configuration in Ku-band. In system performance tests in this study, FGI-Tomoradar was mounted on a manned helicopter together with a Riegl VQ-480-U laser scanner and tested in several flight campaigns performed at the Evo site, Finland. Airborne laser scanning data was simultaneously collected to investigate the differences and similarities of the outputs for the same target area for better understanding the penetration of the microwave signal into the forest canopy

  17. Recent antenna- and microwave systems designed at CSIR, DPSS for radar systems

    CSIR Research Space (South Africa)

    Botha, Louis

    2016-07-01

    Full Text Available We have decided to develop some common building blocks for use in radar system at the CSIR, DPSS. The reasons for doing this are: a) The cost of ad-hoc- developed RF subsystems (using connectorised components) is getting to be prohibitive as a...

  18. Assessment of complex microwaves occupational exposure in radar maintenance activity

    International Nuclear Information System (INIS)

    Danulescu, R.

    1996-01-01

    The modern of the society teas determined the increase of thousand times greater than the natural fond of the humankind exposure to a complex combination of electromagnetic man-made fields and radiations of extremely various strength and frequencies. A special contribution to this environmental change has had in the last decade the appearance and the explosive development of the microwaves generating appliances such as radars used in a great variety of military and civilian applications and which essentially contributes to the electromagnetic pollution. In the above mentioned content which firstly interests the occupational environment, it is necessary to improve the exposure limits, as well as, the emission standards, in order to better protect the human health and well-being. From this point of view, the estimation of the microwave occupational exposure risk constitutes, alongside the health status assessment, one of the priorities of the Occupational Health because the theoretical and practical problems related to the bioeffects of this kind of radiations are far to be clarified. Our study has been carried out in a factory where one performs research, production and especially maintenance of microwaves generating devices. (author)

  19. Review of Microwave Photonics Technique to Generate the Microwave Signal by Using Photonics Technology

    Science.gov (United States)

    Raghuwanshi, Sanjeev Kumar; Srivastav, Akash

    2017-12-01

    Microwave photonics system provides high bandwidth capabilities of fiber optic systems and also contains the ability to provide interconnect transmission properties, which are virtually independent of length. The low-loss wide bandwidth capability of optoelectronic systems makes them attractive for the transmission and processing of microwave signals, while the development of high-capacity optical communication systems has required the use of microwave techniques in optical transmitters and receivers. These two strands have led to the development of the research area of microwave photonics. So, we can considered microwave photonics as the field that studies the interaction between microwave and optical waves for applications such as communications, radars, sensors and instrumentations. In this paper we have thoroughly reviewed the microwave generation techniques by using photonics technology.

  20. Stepped-frequency radar sensors theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2016-01-01

    This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....

  1. Comparative of signal processing techniques for micro-Doppler signature extraction with automotive radar systems

    Science.gov (United States)

    Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.

    2014-05-01

    In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.

  2. Understanding radar systems

    CERN Document Server

    Kingsley, Simon

    1999-01-01

    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  3. Application of high power microwave vacuum electron devices

    International Nuclear Information System (INIS)

    Ding Yaogen; Liu Pukun; Zhang Zhaochuan; Wang Yong; Shen Bin

    2011-01-01

    High power microwave vacuum electron devices can work at high frequency, high peak and average power. They have been widely used in military and civil microwave electron systems, such as radar, communication,countermeasure, TV broadcast, particle accelerators, plasma heating devices of fusion, microwave sensing and microwave heating. In scientific research, high power microwave vacuum electron devices are used mainly on high energy particle accelerator and fusion research. The devices include high peak power klystron, CW and long pulse high power klystron, multi-beam klystron,and high power gyrotron. In national economy, high power microwave vacuum electron devices are used mainly on weather and navigation radar, medical and radiation accelerator, TV broadcast and communication system. The devices include high power pulse and CW klystron, extended interaction klystron, traveling wave tube (TWT), magnetron and induced output tube (IOT). The state of art, common technology problems and trends of high power microwave vacuum electron devices are introduced in this paper. (authors)

  4. Development of an ultra wide band microwave radar based footwear scanning system

    Science.gov (United States)

    Rezgui, Nacer Ddine; Bowring, Nicholas J.; Andrews, David A.; Harmer, Stuart W.; Southgate, Matthew J.; O'Reilly, Dean

    2013-10-01

    At airports, security screening can cause long delays. In order to speed up screening a solution to avoid passengers removing their shoes to have them X-ray scanned is required. To detect threats or contraband items hidden within the shoe, a method of screening using frequency swept signals between 15 to 40 GHz has been developed, where the scan is carried out whilst the shoes are being worn. Most footwear is transparent to microwaves to some extent in this band. The scans, data processing and interpretation of the 2D image of the cross section of the shoe are completed in a few seconds. Using safe low power UWB radar, scattered signals from the shoe can be observed which are caused by changes in material properties such as cavities, dielectric or metal objects concealed within the shoe. By moving the transmission horn along the length of the shoe a 2D image corresponding to a cross section through the footwear is built up, which can be interpreted by the user, or automatically, to reveal the presence of concealed threat within the shoe. A prototype system with a resolution of 6 mm or less has been developed and results obtained for a wide range of commonly worn footwear, some modified by the inclusion of concealed material. Clear differences between the measured images of modified and unmodified shoes are seen. Procedures for enhancing the image through electronic image synthesis techniques and image processing methods are discussed and preliminary performance data presented.

  5. The capacity of radar, crowdsourced personal weather stations and commercial microwave links to monitor small scale urban rainfall

    Science.gov (United States)

    Uijlenhoet, R.; de Vos, L. W.; Leijnse, H.; Overeem, A.; Raupach, T. H.; Berne, A.

    2017-12-01

    For the purpose of urban rainfall monitoring high resolution rainfall measurements are desirable. Typically C-band radar can provide rainfall intensities at km grid cells every 5 minutes. Opportunistic sensing with commercial microwave links yields rainfall intensities over link paths within cities. Additionally, recent developments have made it possible to obtain large amounts of urban in situ measurements from weather amateurs in near real-time. With a known high resolution simulated rainfall event the accuracy of these three techniques is evaluated, taking into account their respective existing layouts and sampling methods. Under ideal measurement conditions, the weather station networks proves to be most promising. For accurate estimation with radar, an appropriate choice for Z-R relationship is vital. Though both the microwave links and the weather station networks are quite dense, both techniques will underestimate rainfall if not at least one link path / station captures the high intensity rainfall peak. The accuracy of each technique improves when considering rainfall at larger scales, especially by increasing time intervals, with the steepest improvements found in microwave links.

  6. Combined TRMM Microwave Imager (TMI) and Precipitation Radar (PR) Gridded Orbital Data Set (G2B31) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — Combined TRMM Microwave Imager (TMI) and Precipitation Radar (PR) gridded orbital rainfall data, is a special product derived from the TRMM standard product (2B-31)...

  7. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  8. Radar sensing via a Micro-UAV-borne system

    Science.gov (United States)

    Catapano, Ilaria; Ludeno, Giovanni; Gennarelli, Gianluca; Soldovieri, Francesco; Rodi Vetrella, Amedeo; Fasano, Giancarmine

    2017-04-01

    In recent years, the miniaturization of flight control systems and payloads has contributed to a fast and widespread diffusion of micro-UAV (Unmanned Aircraft Vehicle). While micro-UAV can be a powerful tool in several civil applications such as environmental monitoring and surveillance, unleashing their full potential for societal benefits requires augmenting their sensing capability beyond the realm of active/passive optical sensors [1]. In this frame, radar systems are drawing attention since they allow performing missions in all-weather and day/night conditions and, thanks to the microwave ability to penetrate opaque media, they enable the detection and localization not only of surface objects but also of sub-surface/hidden targets. However, micro-UAV-borne radar imaging represents still a new frontier, since it is much more than a matter of technology miniaturization or payload installation, which can take advantage of the newly developed ultralight systems. Indeed, micro-UAV-borne radar imaging entails scientific challenges in terms of electromagnetic modeling and knowledge of flight dynamics and control. As a consequence, despite Synthetic Aperture Radar (SAR) imaging is a traditional remote sensing tool, its adaptation to micro-UAV is an open issue and so far only few case studies concerning the integration of SAR and UAV technologies have been reported worldwide [2]. In addition, only early results concerning subsurface imaging by means of an UAV-mounted radar are available [3]. As a contribution to radar imaging via autonomous micro-UAV, this communication presents a proof-of-concept experiment. This experiment represents the first step towards the development of a general methodological approach that exploits expertise about (sub-)surface imaging and aerospace systems with the aim to provide high-resolution images of the surveyed scene. In details, at the conference, we will present the results of a flight campaign carried out by using a single radar

  9. New Vacuum Electronic Devices for Radar

    Directory of Open Access Journals (Sweden)

    Hu Yinfu

    2016-08-01

    Full Text Available Vacuum Electronic Devices (VEDs which are considered as the heart of a radar system, play an important role in their development. VEDs and radar systems supplement and promote each other. Some new trends in VEDs have been observed with advancements in the simulation tools for designing VEDs, new materials, new fabrication techniques. Recently, the performance of VEDs has greatly improved. In addition, new devices have been invented, which have laid the foundation for the developments of radar detection technology. This study introduces the recent development trends and research results of VEDs from microwave and millimeter wave devices and power modules, integrated VEDs, terahertz VEDs, and high power VEDs.

  10. Venus Monitoring Camera (VMC/VEx) 1 micron emissivity and Magellan microwave properties of crater-related radar-dark parabolas and other terrains

    Science.gov (United States)

    Basilevsky, A. T.; Shalygina, O. S.; Bondarenko, N. V.; Shalygin, E. V.; Markiewicz, W. J.

    2017-09-01

    The aim of this work is a comparative study of several typical radar-dark parabolas, the neighboring plains and some other geologic units seen in the study areas which include craters Adivar, Bassi, Bathsheba, du Chatelet and Sitwell, at two depths scales: the upper several meters of the study object available through the Magellan-based microwave (at 12.6 cm wavelength) properties (microwave emissivity, Fresnel reflectivity, large-scale surface roughness, and radar cross-section), and the upper hundreds microns of the object characterized by the 1 micron emissivity resulted from the analysis of the near infra-red (NIR) irradiation of the night-side of the Venusian surface measured by the Venus Monitoring Camera (VMC) on-board of Venus Express (VEx).

  11. Photonics-Based Microwave Image-Reject Mixer

    Directory of Open Access Journals (Sweden)

    Dan Zhu

    2018-03-01

    Full Text Available Recent developments in photonics-based microwave image-reject mixers (IRMs are reviewed with an emphasis on the pre-filtering method, which applies an optical or electrical filter to remove the undesired image, and the phase cancellation method, which is realized by introducing an additional phase to the converted image and cancelling it through coherent combination without phase shift. Applications of photonics-based microwave IRM in electronic warfare, radar systems and satellite payloads are described. The inherent challenges of implementing photonics-based microwave IRM to meet specific requirements of the radio frequency (RF system are discussed. Developmental trends of the photonics-based microwave IRM are also discussed.

  12. Systems and Methods for Radar Data Communication

    Science.gov (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  13. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard

    2017-08-01

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  14. RF and microwave coupled-line circuits

    CERN Document Server

    Mongia, R K; Bhartia, P; Hong, J; Gupta, K C

    2007-01-01

    This extensively revised edition of the 1999 Artech House classic, RF and Microwave Coupled-Line Circuits, offers you a thoroughly up-to-date understanding of coupled line fundamentals, explaining their applications in designing microwave and millimeter-wave components used in today's communications, microwave, and radar systems. The Second Edition includes a wealth of new material, particularly relating to applications. You find brand new discussions on a novel simple design technique for multilayer coupled circuits, high pass filters using coupled lines, software packages used for filter des

  15. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H

    1988-01-01

    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  16. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    Science.gov (United States)

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm 2 , 0.08 m 2 RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  17. Development of a High-Throughput Microwave Imaging System for Concealed Weapons Detection

    Science.gov (United States)

    2016-07-15

    hardware. Index Terms—Microwave imaging, multistatic radar, Fast Fourier Transform (FFT). I. INTRODUCTION Near-field microwave imaging is a non- ionizing ...real-time microwave camera at 24 ghz,” IEEE Transactions on Antennas and Propagation , vol. 60, no. 2, pp. 1114– 1125, 2012. [2] E. C. Fear, X. Li, S. C...on Biomedical Engineering, vol. 49, no. 8, pp. 812–822, 2002. [3] D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter- wave

  18. Application of Microwave Remote Sensing to Dynamic Testing of Stay-Cables

    Directory of Open Access Journals (Sweden)

    Carmelo Gentile

    2009-12-01

    Full Text Available Recent advances in radar techniques and systems have favoured the development of microwave interferometers, suitable for the non-contact vibration monitoring of large structures. The paper addresses the application of microwave remote sensing to the measurement of the vibration response in the stay-cables of cable-stayed bridges. The reliability and accuracy of the proposed technique were investigated by comparing the natural frequencies (and the cable tensions predicted from natural frequencies identified from radar data and the corresponding quantities obtained using more conventional techniques. The investigation, carried out on the cables of two different cable-stayed bridges, clearly highlights: (a the accuracy of the results provided by the microwave remote sensing; (b the simplicity of use of the radar technique (especially when compared with conventional approaches and its effectiveness to simultaneously measuring the dynamic response of all the stay-cables of an array.

  19. Nanosecond radar system based on repetitive pulsed relativistic BWO

    International Nuclear Information System (INIS)

    Bunkin, B.V.; Gaponov-Grekhov, A.V.; Eltchaninov, A.S.; Zagulov, F.Ya.; Korovin, S.D.; Mesyats, G.A.; Osipov, M.L.; Otlivantchik, E.A.; Petelin, M.I.; Prokhorov, A.M.

    1993-01-01

    The paper presents the results of studies of a nanosecond radar system based on repetitive pulsed relativistic BWO. A pulsed power repetitive accelerator producing electron beams of electron energy 500-700 keV and current 5 kA in pulses of duraction 10 ns with a repetition rate of 100 pps is described. The results of experiments with a high-voltage gas-filled spark gap and a cold-cathode vacuum diode under the conditions of high repetition rates are given. Also presented are the results of studies of a relativistic BWO operating with a wavelength of 3 cm. It is shown that for a high-current beam electron energy of 500-700 keV, the BWO efficiency can reach 35%, the microwave power being 10 9 W. A superconducting solenoid creating a magnetic field of 30 kOe was used for the formation and transportation of the high-current electron beam. In conclusion, the outcome of tests of a nanosecond radar station based on a pulsed power repetitive accelerator and a relativistic BWO is reported

  20. Information-Aided Smart Schemes for Vehicle Flow Detection Enhancements of Traffic Microwave Radar Detectors

    Directory of Open Access Journals (Sweden)

    Tan-Jan Ho

    2016-07-01

    Full Text Available For satisfactory traffic management of an intelligent transport system, it is vital that traffic microwave radar detectors (TMRDs can provide real-time traffic information with high accuracy. In this study, we develop several information-aided smart schemes for traffic detection improvements of TMRDs in multiple-lane environments. Specifically, we select appropriate thresholds not only for removing noise from fast Fourier transforms (FFTs of regional lane contexts but also for reducing FFT side lobes within each lane. The resulting FFTs of reflected vehicle signals and those of clutter are distinguishable. We exploit FFT and lane-/or time stamp-related information for developing smart schemes, which mitigate adverse effects of lane-crossing FFT side lobes of a vehicle signal. As such, the proposed schemes can enhance the detection accuracy of both lane vehicle flow and directional traffic volume. On-site experimental results demonstrate the advantages and feasibility of the proposed methods, and suggest the best smart scheme.

  1. Evaluating a Radar-Based, Non Contact Streamflow Measurement System in the San Joaquin River at Vernalis, California

    Science.gov (United States)

    Cheng, Ralph T.; Gartner, Jeffrey W.; Mason, Jr., Robert R.; Costa, John E.; Plant, William J.; Spicer, Kurt R.; Haeni, F. Peter; Melcher, Nick B.; Keller, William C.; Hayes, Ken

    2004-01-01

    Accurate measurement of flow in the San Joaquin River at Vernalis, California, is vital to a wide range of Federal and State agencies, environmental interests, and water contractors. The U.S. Geological Survey uses a conventional stage-discharge rating technique to determine flows at Vernalis. Since the flood of January 1997, the channel has scoured and filled as much as 20 feet in some sections near the measurement site resulting in an unstable stage-discharge rating. In response to recent advances in measurement techniques and the need for more accurate measurement methods, the Geological Survey has undertaken a technology demonstration project to develop and deploy a radar-based streamflow measuring system on the bank of the San Joaquin River at Vernalis, California. The proposed flow-measurement system consists of a ground-penetrating radar system for mapping channel geometries, a microwave radar system for measuring surface velocities, and other necessary infrastructure. Cross-section information derived from ground penetrating radar provided depths similar to those measured by other instruments during the study. Likewise, surface-velocity patterns and magnitudes measured by the pulsed Doppler radar system are consistent with near surface current measurements derived from acoustic velocity instruments. Since the ratio of surface velocity to mean velocity falls to within a small range of theoretical value, using surface velocity as an index velocity to compute river discharge is feasable. Ultimately, the non-contact radar system may be used to make continuous, near-real-time flow measurements during high and medium flows. This report documents the data collected between April 14, 2002 and May 17, 2002 for the purposes of testing this radar based system. Further analyses of the data collected during this field effort will lead to further development and improvement of the system.

  2. Passive and active RF-microwave circuits course and exercises with solutions

    CERN Document Server

    Jarry, Pierre

    2015-01-01

    Microwave and radiofrequency (RF) circuits play an important role in communication systems. Due to the proliferation of radar, satellite, and mobile wireless systems, there is a need for design methods that can satisfy the ever increasing demand for accuracy, reliability, and fast development times. This book explores the principal elements for receiving and emitting signals between Earth stations, satellites, and RF (mobile phones) in four parts; the theory and realization of couplers, computation and realization of microwave and RF filters, amplifiers and microwave and RF oscillators. Pas

  3. Compact Microwave Fourier Spectrum Analyzer

    Science.gov (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  4. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric

    2001-01-01

    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  5. Penn State Radar Systems: Implementation and Observations

    Science.gov (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.

    2014-12-01

    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  6. A Directional Antenna in a Matching Liquid for Microwave Radar Imaging

    Directory of Open Access Journals (Sweden)

    Saeed I. Latif

    2015-01-01

    Full Text Available The detailed design equations and antenna parameters for a directional antenna for breast imaging are presented in this paper. The antenna was designed so that it could be immersed in canola oil to achieve efficient coupling of the electromagnetic energy to the breast tissue. Ridges were used in the horn antenna to increase the operating bandwidth. The antenna has an exponentially tapered section for impedance matching. The double-ridged horn antenna has a wideband performance from 1.5 GHz to 5 GHz (3.75 GHz or 110% of impedance bandwidth, which is suitable for breast microwave radar imaging. The fabricated antenna was tested and compared with simulated results, and similar bandwidths were obtained. Experiments were conducted on breast phantoms using these antennas, to detect a simulated breast lesion. The reconstructed image from the experiments shows distinguishable tumor responses indicating promising results for successful breast cancer detection.

  7. The lidar dark band: An oddity of the radar bright band analogy

    Energy Technology Data Exchange (ETDEWEB)

    Sassen, K. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-04-01

    Although much has sbeen learned from independent radar and lidar studies of atmospheric precipitations, occasionally supported by aircraft profiling, what has been lacking is combined optical, microwave, and insitu observations of the melting layer. Fortunately, the rainshowers on April 21, 1994, during the Remote Cloud Sensing intensive obervations Period (RCSIOP) at the Southern Great Plains Cloud and radiation Testbed (CART) site provided an opportunity for coordinated dual-wavelength University of Utah Polarization Diversity Lidar, University of Massachusetts Cloud Profiling Radar System Doppler Radar, and the University of North Dakota Citation aircraft measurements.

  8. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    Science.gov (United States)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  9. Nearshore Processes, Currents and Directional Wave Spectra Monitoring Using Coherent and Non-coherent Imaging Radars

    Science.gov (United States)

    Trizna, D.; Hathaway, K.

    2007-05-01

    acceptable quality were assured for most weather conditions on a diurnal basis using a modest tower height. A new coherent microwave radar has recently been developed by ISR and preliminary testing was conducted in the spring of 2007. The radar is based on the Quadrapus four-channel transceiver card, mixed up to microwave frequencies for pulse transmission and back down to base-band for reception. We use frequency-modulated pulse compression methods to obtain 3-m spatial resolution. A standard marine radar pedestal is used to house the microwave components, and rotating radar PPI images similar to marine radar images are obtained. Many of the methods used for the marine radar system have been transferred to the coherent imaging radar. New processing methods applied to the coherent data allow summing of radial velocity images to map mean currents in the near shore zone, such as rip currents. A pair of such radars operating with a few hundred meter separation can be used to map vector currents continuously in the near shore zone and in harbors on a timely basis. Results of preliminary testing of the system will be presented.

  10. Use of radars to monitor stream discharge by noncontact methods

    Science.gov (United States)

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.

    2006-01-01

    Conventional measurements of river flows are costly, time‐consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground‐penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross‐sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground‐penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods

  11. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.

    2016-07-01

    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  12. On-Chip Microwave Quantum Hall Circulator

    Directory of Open Access Journals (Sweden)

    A. C. Mahoney

    2017-01-01

    Full Text Available Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, “slow-light” response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330  μm diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  13. The diurnal pattern of microwave backscattering by wheat

    International Nuclear Information System (INIS)

    Brisco, B.; Brown, R.J.; Koehler, J.A.; Sofko, G.J.; McKibben, M.J.

    1990-01-01

    A truck-mounted Ku-, C-, and L-band scatterometer system was used to obtain diurnal multiparameter radar backscatter measurements of wheat in August 1987 and June and July 1988. Concurrent field measurements of plant and soil moisture content were made in support of the radar data. Analyses of these data demonstrate the sensitivity of the microwave signals to the daily movement of water in the soil/plant system. The dependence of frequency, incidence angle, and polarization are discussed in relationship to the diurnal and seasonal changes in the soil and plant water content. The results are used to identify potential agronomic applications and future research requirements. (author)

  14. A Synthesizable Multicore Platform for Microwave Imaging

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; Karlsson, Sven

    2014-01-01

    Active microwave imaging techniques such as radar and tomography are used in a wide range of medical, industrial, scientific, and military applications. Microwave imaging devices emit radio waves and process their reflections to reconstruct an image. However, data processing remains a challenge...

  15. Radar meteor rates and solar activity

    International Nuclear Information System (INIS)

    Prikryl, P.

    1983-01-01

    The short-term variation of diurnal radar meteor rates with solar activity represented by solar microwave flux Fsub(10.7), and sunspots relative number Rsub(z), is investigated. Applying the superposed-epoch analysis to the observational material of radar meteor rates from Christchurch (1960-61 and 1963-65), a decrease in the recorded radar rates is found during days of enhanced solar activity. No effect of geomagnetic activity similar to the one reported for the Swedish and Canadian radar meteor data was found by the author in the Christchurch data. A possible explanation of the absence of the geomagnetic effect on radar meteor rates from New Zealand due to a lower echo ceiling height of the Christchurch radar is suggested. The variation of the atmospheric parameters as a possible cause of the observed variation in radar meteor rates is also discussed. (author)

  16. Progress in coherent laser radar

    Science.gov (United States)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  17. Advances in microwaves 4

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 4 covers some innovations in the devices and applications of microwaves. This volume contains three chapters and begins with a discussion of the application of microwave phasers and time delay elements as beam steering elements in array radars. The next chapter provides first an overview of the technical aspects and different types of millimeter waveguides, followed by a survey of their application to railroads. The last chapter examines the general mode of conversion properties of nonuniform waveguides, such as waveguide tapers, using converted Maxwell's equatio

  18. Radar Observations of Convective Systems from a High-Altitude Aircraft

    Science.gov (United States)

    Heymsfield, G.; Geerts, B.; Tian, L.

    1999-01-01

    . Both TEFLUN-A and B were amply supported by surface data, in particular a dense raingauge network, a polarization radar, wind profilers, a mobile radiosonde system, a cloud physics aircraft penetrating the overflown storms, and a network of 10 cm Doppler radars(WSR-88D). This presentation will show some preliminary comparisons between TRMM, EDOP, and WSR-88D reflectivity fields in the case of an MCS, a hurricane, and less organized convection in central Florida. A validation of TRMM reflectivity is important, because TRMM's primary objective is to estimate the rainfall climatology with 35 degrees of the equator. Rainfall is estimated from the radar reflectivity, as well from TRMM's Microwave Imager, which measures at 10.7, 19.4, 21.3, 37, and 85.5 GHz over a broader swath (78 km). While the experiments lasted about three months the cumulative period of near simultaneous observations of storms by ground-based, airborne and space borne radars is only about an hour long. Therefore the comparison is case-study-based, not climatological. We will highlight fundamental differences in the typical reflectivity profiles in stratiform regions of MCS's, Florida convection and hurricanes and will explain why Z-R relationships based on ground-based radar data for convective systems over land should be different from those for hurricanes. These catastrophically intense rainfall from hurricane Georges in Hispaniola and from Mitch in Honduras highlights the importance of accurate Z-R relationships, It will be shown that a Z-R relationship that uses the entire reflectivity profile (rather than just a 1 level) works much better in a variety of cases, making an adjustment of the constants for different precipitation system categories redundant.

  19. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    Science.gov (United States)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  20. Knitted radar absorbing materials (RAM) based on nickel–cobalt magnetic materials

    International Nuclear Information System (INIS)

    Teber, Ahmet; Unver, Ibrahim; Kavas, Huseyin; Aktas, Bekir; Bansal, Rajeev

    2016-01-01

    There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, K_u, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under −20 dB return loss over a moderate bandwidth). - Graphical abstract: Here, we added the graphical abstract that provides summary the contents of the article in a concise pictorial form. - Highlights: • Flexible lightweight, thin, reconfigurable radar absorbing materials are proposed. • Polyacrylonitrile (PAN) fabrics are coated with nickel, cobalt magnetic materials. • The coating times affects microwave constitutive parameters and absorption. • Microwave absorption measurements were done via transmission line technique. • Microwave absorption is due to dielectric losses rather than magnetic losses.

  1. Knitted radar absorbing materials (RAM) based on nickel–cobalt magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Teber, Ahmet, E-mail: aht10003@engr.uconn.edu [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269 (United States); Unver, Ibrahim, E-mail: iunver@gtu.edu.tr [Department of Physics, Gebze Technical University, Kocaeli 41400 (Turkey); Kavas, Huseyin, E-mail: huseyin.kavas@medeniyet.edu.tr [Department of Physics, Istanbul Medeniyet University, Istanbul 34000 (Turkey); Aktas, Bekir, E-mail: aktas@gtu.edu.tr [Department of Physics, Gebze Technical University, Kocaeli 41400 (Turkey); Bansal, Rajeev, E-mail: rajeev@engr.uconn.edu [Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2016-05-15

    There has been a long-standing interest in the development of flexible, lightweight, thin, and reconfigurable radar absorbing materials (RAM) for military applications such as camouflaging ground-based hardware against airborne radar observation. The use of polymeric Polyacrylonitrile (PAN) fabrics as a host matrix for magnetic metal nano-particles (either at the yarn-stage or after weaving the fabric) for shielding and absorbing applications has been described in the literature. In our experimental investigation, the relative concentrations of Nickel and Cobalt as well as the coating time are varied with a view to optimizing the microwave absorption characteristics of the resulting PAN-based composite material in the radar-frequency bands (X, K{sub u}, and K). It is found that the PAN samples with the shortest coating time have the best return losses (under −20 dB return loss over a moderate bandwidth). - Graphical abstract: Here, we added the graphical abstract that provides summary the contents of the article in a concise pictorial form. - Highlights: • Flexible lightweight, thin, reconfigurable radar absorbing materials are proposed. • Polyacrylonitrile (PAN) fabrics are coated with nickel, cobalt magnetic materials. • The coating times affects microwave constitutive parameters and absorption. • Microwave absorption measurements were done via transmission line technique. • Microwave absorption is due to dielectric losses rather than magnetic losses.

  2. Multiscale comparison of GPM radar and passive microwave precipitation fields over oceans and land: effective resolution and global/regional/local diagnostics for improving retrieval algorithms

    Science.gov (United States)

    Guilloteau, C.; Foufoula-Georgiou, E.; Kummerow, C.; Kirstetter, P. E.

    2017-12-01

    A multiscale approach is used to compare precipitation fields retrieved from GMI using the last version of the GPROF algorithm (GPROF-2017) to the DPR fields all over the globe. Using a wavelet-based spectral analysis, which renders the multi-scale decompositions of the original fields independent of each other spatially and across scales, we quantitatively assess the various scales of variability of the retrieved fields, and thus define the spatially-variable "effective resolution" (ER) of the retrievals. Globally, a strong agreement is found between passive microwave and radar patterns at scales coarser than 80km. Over oceans the patterns match down to the 20km scale. Over land, comparison statistics are spatially heterogeneous. In most areas a strong discrepancy is observed between passive microwave and radar patterns at scales finer than 40-80km. The comparison is also supported by ground-based observations over the continental US derived from the NOAA/NSSL MRMS suite of products. While larger discrepancies over land than over oceans are classically explained by land complex surface emissivity perturbing the passive microwave retrieval, other factors are investigated here, such as intricate differences in the storm structure over oceans and land. Differences in term of statistical properties (PDF of intensities and spatial organization) of precipitation fields over land and oceans are assessed from radar data, as well as differences in the relation between the 89GHz brightness temperature and precipitation. Moreover, the multiscale approach allows quantifying the part of discrepancies caused by miss-match of the location of intense cells and instrument-related geometric effects. The objective is to diagnose shortcomings of current retrieval algorithms such that targeted improvements can be made to achieve over land the same retrieval performance as over oceans.

  3. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    Science.gov (United States)

    Hou, Arthur

    2012-01-01

    satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha- Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), and (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide next-generation precipitation products characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) intercalibrated microwave brightness temperatures from constellation radiometers within a consistent framework, and (3) unified precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory.

  4. Large power microwave nonlinear effects on multifunction amplifier chip for Ka-band T/R module of phased array radar

    Science.gov (United States)

    Guo, Guo; Gu, Ling; Wu, Ruowu; Xu, Xiong; Zhou, Taifu; Niu, Xinjian; Liu, Yinghui; Wang, Hui; Wei, Yanyu; Guo, Changyong

    2017-12-01

    Nonlinear effects of large power millimeter wave on critical chips for the T/R module of phased array radar is experimental studied and analyzed in this paper. A multifunction amplifier chip is selected for our experiments. A solid continuous wave (CW) source and a large power pulsed magnetron are both employed to generate the Ka-band microwave. The input-output characteristics, the degradation and destroy threshold of the chips are obtained through a series of experimental tests. At last, the results are given by figures and analyzed theoretically.

  5. Toward a Framework for Systematic Error Modeling of NASA Spaceborne Radar with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    Science.gov (United States)

    Kirstettier, Pierre-Emmanual; Honh, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Schwaller, M.; Petersen, W.; Amitai, E.

    2011-01-01

    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission.

  6. Microwave and millimeter-wave remote sensing for security applications

    CERN Document Server

    Nanzer, Jeffrey

    2012-01-01

    Microwave and millimeter-wave remote sensing techniques are fast becoming a necessity in many aspects of security as detection and classification of objects or intruders becomes more difficult. This groundbreaking resource offers you expert guidance in this burgeoning area. It provides you with a thorough treatment of the principles of microwave and millimeter-wave remote sensing for security applications, as well as practical coverage of the design of radiometer, radar, and imaging systems. You learn how to design active and passive sensors for intruder detection, concealed object detection,

  7. Dynamic Gesture Recognition with a Terahertz Radar Based on Range Profile Sequences and Doppler Signatures.

    Science.gov (United States)

    Zhou, Zhi; Cao, Zongjie; Pi, Yiming

    2017-12-21

    The frequency of terahertz radar ranges from 0.1 THz to 10 THz, which is higher than that of microwaves. Multi-modal signals, including high-resolution range profile (HRRP) and Doppler signatures, can be acquired by the terahertz radar system. These two kinds of information are commonly used in automatic target recognition; however, dynamic gesture recognition is rarely discussed in the terahertz regime. In this paper, a dynamic gesture recognition system using a terahertz radar is proposed, based on multi-modal signals. The HRRP sequences and Doppler signatures were first achieved from the radar echoes. Considering the electromagnetic scattering characteristics, a feature extraction model is designed using location parameter estimation of scattering centers. Dynamic Time Warping (DTW) extended to multi-modal signals is used to accomplish the classifications. Ten types of gesture signals, collected from a terahertz radar, are applied to validate the analysis and the recognition system. The results of the experiment indicate that the recognition rate reaches more than 91%. This research verifies the potential applications of dynamic gesture recognition using a terahertz radar.

  8. Biaxial Testing of High-Strength Fabric Improves Design of Inflatable Radar Domes

    Science.gov (United States)

    Krause, David L.; Bartolotta, Paul A.

    2001-01-01

    Large radar installations around the globe continuously watch the skies, unobtrusively providing security to the United States; these systems have been in active use for the past 50 years. Often situated in extreme environments, the radar dishes require shielding from the harsh elements. Air-inflated domes (over 100 ft in diameter) are one structure of choice for providing this essential protection. The radomes are constructed from highstrength fabric that is strong enough to withstand the inflation pressure, high winds, and other environmental loads, yet transparent to the microwave signal to allow precise radar mapping. This fabric is woven from glass fibers for high strength and embedded in a polytetrafluoroethylene resin matrix, akin to the nonstick coatings used on cookware.

  9. Developments in radar and remote-sensing methods for measuring and forecasting rainfall.

    Science.gov (United States)

    Collier, C G

    2002-07-15

    Over the last 25 years or so, weather-radar networks have become an integral part of operational meteorological observing systems. While measurements of rainfall made using radar systems have been used qualitatively by weather forecasters, and by some operational hydrologists, acceptance has been limited as a consequence of uncertainties in the quality of the data. Nevertheless, new algorithms for improving the accuracy of radar measurements of rainfall have been developed, including the potential to calibrate radars using the measurements of attenuation on microwave telecommunications links. Likewise, ways of assimilating these data into both meteorological and hydrological models are being developed. In this paper we review the current accuracy of radar estimates of rainfall, pointing out those approaches to the improvement of accuracy which are likely to be most successful operationally. Comment is made on the usefulness of satellite data for estimating rainfall in a flood-forecasting context. Finally, problems in coping with the error characteristics of all these data using both simple schemes and more complex four-dimensional variational analysis are being addressed, and are discussed briefly in this paper.

  10. Near-Space Microwave Radar Remote Sensing: Potentials and Challenge Analysis

    Directory of Open Access Journals (Sweden)

    Qicong Peng

    2010-03-01

    Full Text Available Near-space, defined as the region between 20 km and 100 km, offers many new capabilities that are not accessible to low earth orbit (LEO satellites and airplanes, because it is above storm and not constrained by either the orbital mechanics of satellites or the high fuel consumption of airplanes. By placing radar transmitter/receiver in near-space platforms, many functions that are currently performed with satellites or airplanes could be performed in a cheaper way. Inspired by these advantages, this paper introduces several near-space vehicle-based radar configurations, such as near-space passive bistatic radar and high-resolution wide-swath (HRWS synthetic aperture radar (SAR. Their potential applications, technical challenges and possible solutions are investigated. It is shown that near-space is a satisfactory solution to some specific remote sensing applications. Firstly, near-space passive bistatic radar using opportunistic illuminators offers a solution to persistent regional remote sensing, which is particularly interest for protecting homeland security or monitoring regional environment. Secondly, near-space provides an optimal solution to relative HRWS SAR imaging. Moreover, as motion compensation is a common technical challenge for the described radars, an active transponder-based motion compensation is also described.

  11. Proceedings of the COST 75 final seminar on advanced weather radar systems; Beitraege des Instituts zum COST 75 final seminar on advanced weather radar systems

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, R.; Flender, F.; Hagen, M.; Hoeller, H.; Keil, C.; Meischner, P.

    1998-07-01

    Across Europe more than 110 weather radars are in operation. More than 60 of them are Doppler radars and this number is increasing steadily. Doppler systems are becoming an operational standard. Most systems operate in C-band, with the exception of the Spanish radar network which is composed of S-band Doppler radars. Radar product composites are available for Scandinavia and Central Europe. National networks exist for the UK, France and Spain. Europe further is fortunate to have 8 polarimetric Doppler radars used mainly for research. In Italy some of those systems are used also for operational nowcasting applications for dedicated customers. The Chilbolton multiparameter Doppler radar operates at S-band. (orig.)

  12. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J

    1977-01-01

    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  13. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, Carmelo [Politecnico di Milano, Dept. of Architecture, Built environment and Construction engineering (ABC), Piazza Leonardo da Vinci 32, 20133 Milan (Italy); Luzi, Guido [Centre Tecnòlogic de Telecomunicacions de Catalunya (CTTC), Division of Geomatics, Av. Gauss, 7 E-08860 Castelldefels (Barcelona) (Spain)

    2014-05-27

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions, with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.

  14. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    International Nuclear Information System (INIS)

    Gentile, Carmelo; Luzi, Guido

    2014-01-01

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions, with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points

  15. Microwave energy transmission system for solar power station

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi

    1988-05-05

    This paper deals with a microwave wireless energy transmission system which will be required for a solar power station under investigation, particularly, it describes its foundation and future investigation. It is supposed that for realization of microwave wireless transmission techniques, it is most important to investigate the effect of strong microwave beams on a plasma environment, establish control techniques for microwave beams in which a retro-directive system is combined with a computer control system, and develop a semiconductor transmission module. Institute of Space and Astronautical Science (Japan) made an experiment on the effect of microwaves on ionospheric plasma by using an observatory rocket. The institute has planned to make an experiment on a microwave energy transmission system which is to be mounted to a small-scale space flyer unit in order to examine the control of microwave beams and 10 KW power transmission, in addition to investigation on the interaction of microwave energy beams with a plasma environment. (4 figs, 3 tabs, 20 refs)

  16. Study to investigate and evaluate means of optimizing the radar function. [systems engineering of pulse radar for the space shuttle

    Science.gov (United States)

    1975-01-01

    The investigations for a rendezvous radar system design and an integrated radar/communication system design are presented. Based on these investigations, system block diagrams are given and system parameters are optimized for the noncoherent pulse and coherent pulse Doppler radar modulation types. Both cooperative (transponder) and passive radar operation are examined including the optimization of the corresponding transponder design for the cooperative mode of operation.

  17. Comparing and Merging Observation Data from Ka-Band Cloud Radar, C-Band Frequency-Modulated Continuous Wave Radar and Ceilometer Systems

    Directory of Open Access Journals (Sweden)

    Liping Liu

    2017-12-01

    Full Text Available Field experiment in South China was undertaken to improve understanding of cloud and precipitation properties. Measurements of the vertical structures of non-precipitating and precipitating clouds were obtained using passive and active remote sensing equipment: a Ka-band cloud radar (CR system, a C-band frequency modulated continuous wave vertical pointing radar (CVPR, a microwave radiometer and a laser ceilometer (CEIL. CR plays a key role in high-level cloud observation, whereas CVPR is important for observing low- and mid-level clouds and heavy precipitation. CEIL helps us diminish the effects of “clear-sky” in the planetary boundary layer. The experiment took place in Longmen, Guangdong Province, China from May to September of 2016. This study focuses on evaluating the ability of the two radars to deliver consistent observation data and develops an algorithm to merge the CR, CVPR and CEIL data. Cloud echo base, thickness, frequency of observed cloud types and reflectivity vertical distributions are analyzed in the radar data. Comparisons between the collocated data sets show that reflectivity biases between the CR three operating modes are less than 2 dB. The averaged difference between CR and CVPR reflectivity can be reduced with attenuation correction to 3.57 dB from the original 4.82 dB. No systemic biases were observed between velocity data collected in the three CR modes and CVPR. The corrected CR reflectivity and velocity data were then merged with the CVPR data and CEIL data to fill in the gaps during the heavy precipitation periods and reduce the effects of Bragg scattering and fog on cloud observations in the boundary layer. Meanwhile, the merging of velocity data with different Nyquist velocities and resolutions diminishes velocity folding to provide fine-grain information about cloud and precipitation dynamics. The three daily periods in which low-level clouds tended to occur were at sunrise, noon and sunset and large

  18. The application of microwave photonic detection in quantum communication

    Science.gov (United States)

    Diao, Wenting; Zhuang, Yongyong; Song, Xuerui; Wang, Liujun; Duan, Chongdi

    2018-03-01

    Quantum communication has attracted much attention in recent years, provides an ultimate level of security, and uniquely it is one of the most likely practical quantum technologies at present. In order to realize global coverage of quantum communication networks, not only need the help of satellite to realize wide area quantum communication, need implementation of optical fiber system to realize city to city quantum communication, but also, it is necessary to implement end-to-end quantum communications intercity and wireless quantum communications that can be received by handheld devices. Because of the limitation of application of light in buildings, it needs quantum communication with microwave band to achieve quantum reception of wireless handheld devices. The single microwave photon energy is very low, it is difficult to directly detect, which become a difficulty in microwave quantum detection. This paper summarizes the mode of single microwave photon detection methods and the possibility of application in microwave quantum communication, and promotes the development of quantum communication in microwave band and quantum radar.

  19. Characterization of the range effect in synthetic aperture radar images of concrete specimens for width estimation

    Science.gov (United States)

    Alzeyadi, Ahmed; Yu, Tzuyang

    2018-03-01

    Nondestructive evaluation (NDE) is an indispensable approach for the sustainability of critical civil infrastructure systems such as bridges and buildings. Recently, microwave/radar sensors are widely used for assessing the condition of concrete structures. Among existing imaging techniques in microwave/radar sensors, synthetic aperture radar (SAR) imaging enables researchers to conduct surface and subsurface inspection of concrete structures in the range-cross-range representation of SAR images. The objective of this paper is to investigate the range effect of concrete specimens in SAR images at various ranges (15 cm, 50 cm, 75 cm, 100 cm, and 200 cm). One concrete panel specimen (water-to-cement ratio = 0.45) of 30-cm-by-30-cm-by-5-cm was manufactured and scanned by a 10 GHz SAR imaging radar sensor inside an anechoic chamber. Scatterers in SAR images representing two corners of the concrete panel were used to estimate the width of the panel. It was found that the range-dependent pattern of corner scatters can be used to predict the width of concrete panels. Also, the maximum SAR amplitude decreases when the range increases. An empirical model was also proposed for width estimation of concrete panels.

  20. High-power microwave LDMOS transistors for wireless data transmission technologies (Review)

    International Nuclear Information System (INIS)

    Kuznetsov, E. V.; Shemyakin, A. V.

    2010-01-01

    The fields of the application, structure, fabrication, and packaging technology of high-power microwave LDMOS transistors and the main advantages of these devices were analyzed. Basic physical parameters and some technology factors were matched for optimum device operation. Solid-state microwave electronics has been actively developed for the last 10-15 years. Simultaneously with improvement of old devices, new devices and structures are actively being adopted and developed and new semiconductor materials are being commercialized. Microwave LDMOS technology is in demand in such fields as avionics, civil and military radars, repeaters, base stations of cellular communication systems, television and broadcasting transmitters, and transceivers for high-speed wireless computer networks (promising Wi-Fi and Wi-Max standards).

  1. Microwave Frequency Multiplier

    Science.gov (United States)

    Velazco, J. E.

    2017-02-01

    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing

  2. Imaging of concrete specimens using inverse synthetic aperture radar

    International Nuclear Information System (INIS)

    Rhim, Hong C.; Buyukozturk, Oral

    2000-01-01

    Radar Measurement results of laboratory size concrete specimens are presented in this paper. The purpose of this research work is to study various aspects of the radar method in an effort to develop an improved radar system for nondestructive testing of concrete structures. The radar system used for the study is an Inverse Synthetic Aperture Radar (ISAR), which is capable of transmitting microwaves at three different frequency ranges of 2-3.4, 3.4-5.8, and 8-12 GHz. Radar measurement setup is such that the radar is locates 14.4 m away from a concrete target to satisfy a far-field criterion. The concrete target is rotated for 20 degrees during the measurements for the generation of two-dimensional (cross-range) imagery. Concrete targets used for the measurements have the dimensions of 305 mm (width)x305 mm (height)x92 mm (thickness) with different inside configurations. Comparisons are made for dry and wet specimens, specimens with and without inclusions. Each specimen is made to model various situations that a concrete structure can have in reality. Results show that center frequency, frequency bandwidth, and polarization of the incident wave have different effects on identifying the thickness or inclusions inside concrete specimens. Results also suggest that a certain combination of measurement parameters is suitable for a specific application area. Thus, measurement parameters can be optimized for a specific problem. The findings are presented and discussed in details in the paper. Signal processing schemes implemented for imaging of the specimens are also discussed

  3. Urban rainfall estimation employing commercial microwave links

    Science.gov (United States)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko; ten Veldhuis, Marie-claire

    2015-04-01

    Urban areas often lack rainfall information. To increase the number of rainfall observations in cities, microwave links from operational cellular telecommunication networks may be employed. Although this new potential source of rainfall information has been shown to be promising, its quality needs to be demonstrated more extensively. In the Rain Sense kickstart project of the Amsterdam Institute for Advanced Metropolitan Solutions (AMS), sensors and citizens are preparing Amsterdam for future weather. Part of this project is rainfall estimation using new measurement techniques. Innovative sensing techniques will be utilized such as rainfall estimation from microwave links, umbrellas for weather sensing, low-cost sensors at lamp posts and in drainage pipes for water level observation. These will be combined with information provided by citizens in an active way through smartphone apps and in a passive way through social media posts (Twitter, Flickr etc.). Sensor information will be integrated, visualized and made accessible to citizens to help raise citizen awareness of urban water management challenges and promote resilience by providing information on how citizens can contribute in addressing these. Moreover, citizens and businesses can benefit from reliable weather information in planning their social and commercial activities. In the end city-wide high-resolution rainfall maps will be derived, blending rainfall information from microwave links and weather radars. This information will be used for urban water management. This presentation focuses on rainfall estimation from commercial microwave links. Received signal levels from tens of microwave links within the Amsterdam region (roughly 1 million inhabitants) in the Netherlands are utilized to estimate rainfall with high spatial and temporal resolution. Rainfall maps will be presented and compared to a gauge-adjusted radar rainfall data set. Rainfall time series from gauge(s), radars and links will be compared.

  4. Design of microwave vitrification systems for radioactive waste

    International Nuclear Information System (INIS)

    White, T.L.; Wilson, C.T.; Schaick, C.R.; Bostick, W.D.

    1996-01-01

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of DOE radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915 MHz, 75 kW microwave vitrification system or 'microwave melter' is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge

  5. Photonic microwave signals with zeptosecond-level absolute timing noise

    Science.gov (United States)

    Xie, Xiaopeng; Bouchand, Romain; Nicolodi, Daniele; Giunta, Michele; Hänsel, Wolfgang; Lezius, Matthias; Joshi, Abhay; Datta, Shubhashish; Alexandre, Christophe; Lours, Michel; Tremblin, Pierre-Alain; Santarelli, Giorgio; Holzwarth, Ronald; Le Coq, Yann

    2017-01-01

    Photonic synthesis of radiofrequency (RF) waveforms revived the quest for unrivalled microwave purity because of its ability to convey the benefits of optics to the microwave world. In this work, we perform a high-fidelity transfer of frequency stability between an optical reference and a microwave signal via a low-noise fibre-based frequency comb and cutting-edge photodetection techniques. We demonstrate the generation of the purest microwave signal with a fractional frequency stability below 6.5 × 10-16 at 1 s and a timing noise floor below 41 zs Hz-1/2 (phase noise below -173 dBc Hz-1 for a 12 GHz carrier). This outperforms existing sources and promises a new era for state-of-the-art microwave generation. The characterization is achieved through a heterodyne cross-correlation scheme with the lowermost detection noise. This unprecedented level of purity can impact domains such as radar systems, telecommunications and time-frequency metrology. The measurement methods developed here can benefit the characterization of a broad range of signals.

  6. Radar-to-Radar Interference Suppression for Distributed Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    2014-01-01

    Full Text Available Radar sensor networks, including bi- and multi-static radars, provide several operational advantages, like reduced vulnerability, good system flexibility and an increased radar cross-section. However, radar-to-radar interference suppression is a major problem in distributed radar sensor networks. In this paper, we present a cross-matched filtering-based radar-to-radar interference suppression algorithm. This algorithm first uses an iterative filtering algorithm to suppress the radar-to-radar interferences and, then, separately matched filtering for each radar. Besides the detailed algorithm derivation, extensive numerical simulation examples are performed with the down-chirp and up-chirp waveforms, partially overlapped or inverse chirp rate linearly frequency modulation (LFM waveforms and orthogonal frequency division multiplexing (ODFM chirp diverse waveforms. The effectiveness of the algorithm is verified by the simulation results.

  7. Design of microwave vitrification systems for radioactive waste

    International Nuclear Information System (INIS)

    White, T.L.; Wilson, C.T.; Schaich, C.R.; Bostick, T.L.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) is involved in the research and development of high-power microwave heating systems for the vitrification of Department of Energy (DOE) radioactive sludges. Design criteria for a continuous microwave vitrification system capable of processing a surrogate filtercake sludge representative of a typical waste-water treatment operation are discussed. A prototype 915-MHz, 75-kW microwave vitrification system or ''microwave melter'' is described along with some early experimental results that demonstrate a 4 to 1 volume reduction of a surrogate ORNL filtercake sludge

  8. Simulation of the trajectory of microwaves during passage of Mesoescale Convective System over Southern Brazil

    Science.gov (United States)

    Diniz, F. L.; Munchow, G. B.; Herdies, D. L.; Foster, P. R.

    2010-12-01

    When the eletromagnetic wave travels in the atmosphere from one medium to another with different density and/or composition suffers small changes in speed and direction of propagation. These changes are caused by the vertical variation of atmospheric refractive index. This causes different types of trajectory deviations, which can be called: normal refraction, sub-refraction, super-refraction and duct. The condition to create duct is satisfied when there is a especific vertical profile of refraction, in this case an eletromagnectic wave will oscillate in a layer of the atmosphere. Considering that this ducts condition can causes damage in the transmission and reception of microwave system equipment (e.g. telecomunications, global positioning, weather radars and satellites) and that in the Rio Grande do Sul, state of Brazil, there are two weather radars, this study present a simulation of the trajectory that would have an eletromagnetic wave. In this study was used soundings of the atmosphere to infer the vertical profile of refractive index during the passage of a Mesoescale Convective System on September 7, 2009. In the lack of this data a numerical simulation with nested grids using Weather Research & Forecasting Model was performed to infer this.

  9. Single Bit Radar Systems for Digital Integration

    OpenAIRE

    Bjørndal, Øystein

    2017-01-01

    Small, low cost, radar systems have exciting applications in monitoring and imaging for the industrial, healthcare and Internet of Things (IoT) sectors. We here explore, and show the feasibility of, several single bit square wave radar architectures; that benefits from the continuous improvement in digital technologies for system-on-chip digital integration. By analysis, simulation and measurements we explore novel and harmonic-rich continuous wave (CW), stepped-frequency CW (SFCW) and freque...

  10. Use of the SAR (Synthetic Aperture Radar) P band for detection of the Moche and Lambayeque canal networks in the Apurlec region, Perù

    Science.gov (United States)

    Ilaria Pannaccione Apa, Maria; Santovito, Maria Rosaria; Pica, Giulia; Catapano, Ilaria; Fornaro, Gianfranco; Lanari, Riccardo; Soldovieri, Francesco; Wester La Torre, Carlos; Fernandez Manayalle, Marco Antonio; Longo, Francesco; Facchinetti, Claudia; Formaro, Roberto

    2016-04-01

    In recent years, research attention has been devoted to the development of a new class of airborne radar systems using low frequency bands ranging from VHF/UHF to P and L ones. In this frame, the Italian Space Agency (ASI) has promoted the development of a new multi-mode and multi-band airborne radar system, which can be considered even a "proof-of-concept" for the next space-borne missions. In particular, in agreement with the ASI, the research consortium CO.RI.S.T.A. has in charge the design, development and flight validation of such a kind of system, which is the first airborne radar entirely built in Italy. The aim was to design and realize a radar system able to work in different modalities as: nadir-looking sounder at VHF band (163 MHz); side-looking imager (SAR) at P band with two channels at 450 MHz and 900 MHz. The P-band is a penetration radar. Exploiting penetration features of low frequency electromagnetic waves, dielectric discontinuities of observed scene due to inhomogeneous materials rise up and can be detected on the resulting image. Therefore buried objects or targets placed under vegetation may be detected. Penetration capabilities essentially depend on microwave frequency. Typically, penetration distance is inversely proportional to microwave frequency. The higher the frequency, the lower the penetration depth. Terrain characteristics affect penetration capabilities. Humidity acts as a shield to microwave penetration. Hence terrain with high water content are not good targets for P-band applicability. Science community, governments and space agencies have increased their interest about low frequency radar for their useful applicability in climatology, ecosystem monitoring, glaciology, archaeology. The combination of low frequency and high relative bandwidth of such a systems has a large applicability in both military and civilian applications, ranging from forestry applications, biomass measuring, archaeological and geological exploration

  11. A Tower-based Prototype VHF/UHF Radar for Subsurface Sensing: System Description and Data Inversion Results

    Science.gov (United States)

    Moghaddam, Mahta; Pierce, Leland; Tabatabaeenejad, Alireza; Rodriguez, Ernesto

    2005-01-01

    Knowledge of subsurface characteristics such as permittivity variations and layering structure could provide a breakthrough in many terrestrial and planetary science disciplines. For Earth science, knowledge of subsurface and subcanopy soil moisture layers can enable the estimation of vertical flow in the soil column linking surface hydrologic processes with that in the subsurface. For planetary science, determining the existence of subsurface water and ice is regarded as one of the most critical information needs for the study of the origins of the solar system. The subsurface in general can be described as several near-parallel layers with rough interfaces. Each homogenous rough layer can be defined by its average thickness, permittivity, and rms interface roughness assuming a known surface spectral distribution. As the number and depth of layers increase, the number of measurements needed to invert for the layer unknowns also increases, and deeper penetration capability would be required. To nondestructively calculate the characteristics of the rough layers, a multifrequency polarimetric radar backscattering approach can be used. One such system is that we have developed for data prototyping of the Microwave Observatory of Subcanopy and Subsurface (MOSS) mission concept. A tower-mounted radar makes backscattering measurements at VHF, UHF, and L-band frequencies. The radar is a pulsed CW system, which uses the same wideband antenna to transmit and receive the signals at all three frequencies. To focus the beam at various incidence angles within the beamwidth of the antenna, the tower is moved vertically and measurements made at each position. The signals are coherently summed to achieve focusing and image formation in the subsurface. This requires an estimate of wave velocity profiles. To solve the inverse scattering problem for subsurface velocity profile simultaneously with radar focusing, we use an iterative technique based on a forward numerical solution of

  12. Radiation-hardened microwave communications system

    Science.gov (United States)

    Smith, S. F.; Bible, D. W.; Crutcher, R. I.; Hannah, J. H.; Moore, J. A.; Nowlin, C. H.; Vandermolen, R. I.; Chagnot, D.; Leroy, A.

    1993-03-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10(exp 7) rads and at elevated ambient temperatures.

  13. Radiation-hardened microwave communications system

    International Nuclear Information System (INIS)

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Hannah, J.H.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.; Chagnot, D.; LeRoy, A.

    1993-01-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10 7 rads and at elevated ambient temperatures

  14. Detecting and mitigating wind turbine clutter for airspace radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2013-01-01

    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  15. Detecting and Mitigating Wind Turbine Clutter for Airspace Radar Systems

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    2013-01-01

    Full Text Available It is well recognized that a wind turbine has a large radar cross-section (RCS and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  16. Advanced RF and microwave functions based on an integrated optical frequency comb source.

    Science.gov (United States)

    Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2018-02-05

    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

  17. Atmospheric pressure microwave plasma system with ring waveguide

    International Nuclear Information System (INIS)

    Liu Liang; Zhang Guixin; Zhu Zhijie; Luo Chengmu

    2007-01-01

    Some scientists used waveguide as the cavity to produce a plasma jet, while large volume microwave plasma was relatively hard to get in atmospheric pressure. However, a few research institutes have already developed devices to generate large volume of atmospheric pressure microwave plasma, such as CYRANNUS and SLAN series, which can be widely applied. In this paper, present a microwave plasma system with ring waveguide to excite large volume of atmospheric pressure microwave plasma, plot curves on theoretical disruption electric field of some working gases, emulate the cavity through software, measure the power density to validate and show the appearance of microwave plasma. At present, large volume of argon and helium plasma have already been generated steadily by atmospheric pressure microwave plasma system. This research can build a theoretical basis of microwave plasma excitation under atmospheric pressure and will be useful in study of the device. (authors)

  18. Software Radar Technology

    Directory of Open Access Journals (Sweden)

    Tang Jun

    2015-08-01

    Full Text Available In this paper, the definition and the key features of Software Radar, which is a new concept, are proposed and discussed. We consider the development of modern radar system technology to be divided into three stages: Digital Radar, Software radar and Intelligent Radar, and the second stage is just commencing now. A Software Radar system should be a combination of various modern digital modular components conformed to certain software and hardware standards. Moreover, a software radar system with an open system architecture supporting to decouple application software and low level hardware would be easy to adopt "user requirements-oriented" developing methodology instead of traditional "specific function-oriented" developing methodology. Compared with traditional Digital Radar, Software Radar system can be easily reconfigured and scaled up or down to adapt to the changes of requirements and technologies. A demonstration Software Radar signal processing system, RadarLab 2.0, which has been developed by Tsinghua University, is introduced in this paper and the suggestions for the future development of Software Radar in China are also given in the conclusion.

  19. Microwave Atmospheric-Pressure Sensor

    Science.gov (United States)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1986-01-01

    Report describes tests of microwave pressure sounder (MPS) for use in satellite measurements of atmospheric pressure. MPS is multifrequency radar operating between 25 and 80 GHz. Determines signal absorption over vertical path through atmosphere by measuring strength of echoes from ocean surface. MPS operates with cloud cover, and suitable for use on current meteorological satellites.

  20. Preliminary radar systems analysis for Venus orbiter missions

    Science.gov (United States)

    Brandenburg, R. K.; Spadoni, D. J.

    1971-01-01

    A short, preliminary analysis is presented of the problems involved in mapping the surface of Venus with radar from an orbiting spacecraft. Two types of radar, the noncoherent sidelooking and the focused synthetic aperture systems, are sized to fulfill two assumed levels of Venus exploration. The two exploration levels, regional and local, assumed for this study are based on previous Astro Sciences work (Klopp 1969). The regional level is defined as 1 to 3 kilometer spatial and 0.5 to 1 km vertical resolution of 100 percent 0 of the planet's surface. The local level is defined as 100 to 200 meter spatial and 50-10 m vertical resolution of about 100 percent of the surfAce (based on the regional survey). A 10cm operating frequency was chosen for both radar systems in order to minimize the antenna size and maximize the apparent radar cross section of the surface.

  1. Digital microwave communication engineering point-to-point microwave systems

    CERN Document Server

    Kizer, George

    2013-01-01

    The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all en

  2. Optical technology for microwave applications V; Proceedings of the Meeting, Orlando, FL, Apr. 3-5, 1991

    Science.gov (United States)

    Yao, Shi-Kay

    Consideration is given to light modulation technologies, wideband optical links, phased array antenna applications, radar and EW applications, and novel optoelectronic devices and technologies. Particular attention is given to wideband nonlinear optical organic external modulators, ultra-linear electrooptic modulators for microwave fiber-optic communications, coherent optical modulation for antenna remoting, a hybrid optical transmitter for microwave communication, a direct optical phase shifter for phased array systems, acoustooptic architectures for multidimensional phased-array antenna processing, generalized phased-array Bragg interaction in anisotropic crystals, analog optical processing of radio frequency signals, a wideband acoustooptic spectrometer, ring resonators for microwave optoelectronics, optical techniques for microwave monolithic circuit characterization, microwave control using a high-gain bias-free optoelectronic switch, and A/D conversion of microwave signals using a hybrid optical-electronic technique. (For individual items see A93-25727 to A93-25758)

  3. Space Radar Image of Kilauea Volcano, Hawaii

    Science.gov (United States)

    1994-01-01

    This is a deformation map of the south flank of Kilauea volcano on the big island of Hawaii, centered at 19.5 degrees north latitude and 155.25 degrees west longitude. The map was created by combining interferometric radar data -- that is data acquired on different passes of the space shuttle which are then overlayed to obtain elevation information -- acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar during its first flight in April 1994 and its second flight in October 1994. The area shown is approximately 40 kilometers by 80 kilometers (25 miles by 50 miles). North is toward the upper left of the image. The colors indicate the displacement of the surface in the direction that the radar instrument was pointed (toward the right of the image) in the six months between images. The analysis of ground movement is preliminary, but appears consistent with the motions detected by the Global Positioning System ground receivers that have been used over the past five years. The south flank of the Kilauea volcano is among the most rapidly deforming terrains on Earth. Several regions show motions over the six-month time period. Most obvious is at the base of Hilina Pali, where 10 centimeters (4 inches) or more of crustal deformation can be seen in a concentrated area near the coastline. On a more localized scale, the currently active Pu'u O'o summit also shows about 10 centimeters (4 inches) of change near the vent area. Finally, there are indications of additional movement along the upper southwest rift zone, just below the Kilauea caldera in the image. Deformation of the south flank is believed to be the result of movements along faults deep beneath the surface of the volcano, as well as injections of magma, or molten rock, into the volcano's 'plumbing' system. Detection of ground motions from space has proven to be a unique capability of imaging radar technology. Scientists hope to use deformation data acquired by SIR-C/X-SAR and future imaging

  4. On-chip microwave circulators using quantum Hall plasmonics

    Science.gov (United States)

    Mahoney, Alice; Colless, James; Pauka, Sebastian; Hornibrook, John; Doherty, Andrew; Reilly, David; Peeters, Lucas; Fox, Eli; Goldhaber-Gordon, David; Kou, Xuefeng; Pan, Lei; Wang, Kang; Watson, John; Gardner, Geoffrey; Manfra, Michael

    Circulators are directional circuit elements integral to technologies including radar systems, microwave communication transceivers and the readout of quantum information devices. Their non-reciprocity commonly arises from the interference of microwaves over the centimetre-scale of the signal wavelength in the presence of bulky magnetic media that breaks time-reversal symmetry. We present a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, `slow-light' response of a GaAs/AlGaAs 2-dimensional electron gas in the quantum Hall regime. Further, by implementing this circulator design on a thin film of a magnetic topological insulator (Cr0.12(Bi0.26Sb0.62)2Te3), we show that similar non-reciprocity can be achieved at zero magnetic field. This additional mode of operation serves as a non-invasive probe of edge states in the quantum anomalous Hall effect, while also extending the possibility for integration with superconducting devices.

  5. Precision microwave applicators and systems for plasma and materials processing

    International Nuclear Information System (INIS)

    Asmussen, J.; Garard, R.

    1988-01-01

    Modern applications of microwave energy have imposed new requirements upon microwave processing systems. Interest in energy efficiency, processing uniformity and control of process cycles has placed new design conditions upon microwave power oscillators, microwave systems and microwave applicator design. One approach of meeting new application requirements is the use of single-mode or controlled multimode applicators. The use of a single-mode applicator for plasma generation and materials processing will be presented. Descriptions of actual applicator designs for heating, curing, and processing of solid materials and the generations of high and low pressure discharges will be given. The impact of these applicators on the total microwave system including the microwave power source will be described. Specific examples of applicator and associated microwave systems will be detailed for the applications of (1) plasma thin film deposition and (2) the precision processing and diagnosis of materials. Methods of process control and diagnosis, control of process uniformity and process scale up are discussed

  6. The Goldstone solar system radar: A science instrument for planetary research

    Science.gov (United States)

    Dvorsky, J. D.; Renzetti, N. A.; Fulton, D. E.

    1992-01-01

    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided.

  7. Radiation-hardened microwave communications system

    International Nuclear Information System (INIS)

    Smith, S.F.; Crutcher, R.I.; Vandermolen, R.I.

    1990-01-01

    The consolidated fuel reprocessing program (CFRP) at the Oak Ridge National Laboratory (ORNL) has been developing signal transmission techniques and equipment to improve the efficiency of remote handling operations for nuclear applications. These efforts have been largely directed toward the goals of (a) remotely controlling bilateral force-reflecting servomanipulators for dexterous manipulation-based operations in remote maintenance tasks and (b) providing television viewing of the work site. In September 1987, developmental microwave transceiving hardware operating with dish antennas was demonstrated in the advanced integrated maintenance system (AIMS) facility at ORNL, successfully implementing both high-quality one-way television transmissions and simultaneous bidirectional digital control data transmissions with very low error rates. Initial test results based on digital transmission at a 1.0-Mbaud data rate indicated that the error rates of the microwave system were comparable to those of a hardwired system. During these test intervals, complex manipulator operations were performed, and the AIMS transporter was moved repeatedly without adverse effects on data integrity. Results of these tests have been factored into subsequent phases of the development program, with an ultimate goal of designing a fully radiation-hardened microwave signal transmission system for use in nuclear facilities

  8. Synergistic use of active and passive microwave in soil moisture estimation

    Science.gov (United States)

    O'Neill, P.; Chauhan, N.; Jackson, T.; Saatchi, S.

    1992-01-01

    Data gathered during the MACHYDRO experiment in central Pennsylvania in July 1990 have been utilized to study the synergistic use of active and passive microwave systems for estimating soil moisture. These data sets were obtained during an eleven-day period with NASA's Airborne Synthetic Aperture Radar (AIRSAR) and Push-Broom Microwave Radiometer (PBMR) over an instrumented watershed which included agricultural fields with a number of different crop covers. Simultaneous ground truth measurements were also made in order to characterize the state of vegetation and soil moisture under a variety of meteorological conditions. A combination algorithm is presented as applied to a representative corn field in the MACHYDRO watershed.

  9. Radar Fundamentals, Presentation

    OpenAIRE

    Jenn, David

    2008-01-01

    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  10. Multiple-scattering in radar systems: A review

    International Nuclear Information System (INIS)

    Battaglia, Alessandro; Tanelli, Simone; Kobayashi, Satoru; Zrnic, Dusan; Hogan, Robin J.; Simmer, Clemens

    2010-01-01

    Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces. Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude). This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is

  11. Microwave-Based Water Decontamination System

    Science.gov (United States)

    Arndt, G. Dickey (Inventor); Byerly, Diane (Inventor); Sognier, Marguerite (Inventor); Dusl, John (Inventor)

    2016-01-01

    A system for decontaminating a medium. The system can include a medium having one or more contaminants disposed therein. The contaminants can be or include bacteria, fungi, parasites, viruses, and combinations thereof. A microwave energy radiation device can be positioned proximate the medium. The microwave energy radiation device can be adapted to generate a signal having a frequency from about 10 GHz to about 100 GHz. The signal can be adapted to kill one or more of the contaminants disposed within the medium while increasing a temperature of the medium by less than about 10 C.

  12. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas

    2009-01-01

    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  13. Wind turbine clutter mitigation in coastal UHF radar.

    Science.gov (United States)

    Yang, Jing; Pan, Chao; Wang, Caijun; Jiang, Dapeng; Wen, Biyang

    2014-01-01

    Coastal UHF radar provides a unique capability to measure the sea surface dynamic parameters and detect small moving targets, by exploiting the low energy loss of electromagnetic waves propagating along the salty and good conducting ocean surface. It could compensate the blind zone of HF surface wave radar at close range and reach further distance than microwave radars. However, its performance is susceptible to wind turbines which are usually installed on the shore. The size of a wind turbine is much larger than the wavelength of radio waves at UHF band, which results in large radar cross section. Furthermore, the rotation of blades adds time-varying Doppler frequency to the clutter and makes the suppression difficult. This paper proposes a mitigation method which is based on the specific periodicity of wind turbine clutter and performed mainly in the time-frequency domain. Field experimental data of a newly developed UHF radar are used to verify this method, and the results prove its effectiveness.

  14. The Interaction of C-Band Microwaves with Large Plasma Sheets

    International Nuclear Information System (INIS)

    Ding Liang; Huo Wenqing; Yang Xinjie; Xu Yuemin

    2012-01-01

    A large plasma sheet 60 cm×60 cm×2 cm in size was generated using a hollow cathode, and measurements were conducted for interactions including transmission, reflection and absorption. With different discharge parameters, plasma sheets can vary and influence microwave strength. Microwave reflection decreases when the discharge current rises, and the opposite occurs in transmission. The C-band microwave is absorbed when it is propagated through large plasma sheets at higher pressure. When plasma density and collision frequency are fitted with incident microwave frequency, a large amount of microwave energy is consumed. Reflection, transmission and absorption all exist simultaneously. Plasma sheets are an attractive alternative to microwave steering at low pressure, and the microwave reflection used in receiving radar can be altered by changing the discharge parameters.

  15. Reconfigurable signal processor designs for advanced digital array radar systems

    Science.gov (United States)

    Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining

    2017-05-01

    The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.

  16. The physical basis for estimating wave-energy spectra with the radar ocean-wave spectrometer

    Science.gov (United States)

    Jackson, Frederick C.

    1987-01-01

    The derivation of the reflectivity modulation spectrum of the sea surface for near-nadir-viewing microwave radars using geometrical optics is described. The equations required for the derivation are presented. The derived reflectivity modulation spectrum provides data on the physical basis of the radar ocean-wave spectrometer measurements of ocean-wave directional spectra.

  17. Satellite passive microwave rain rate measurement over croplands during spring, summer and fall

    International Nuclear Information System (INIS)

    Spencer, R.W.

    1984-01-01

    Rain rate algorithms for spring, summer and fall that have been developed from comparisons between the brightness temperatures measured by the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and rain rates derived from operational WSR-57 radars over land are described. Data were utilized from a total of 25 SMMR passes and 234 radars, resulting in ∼12 000 observations of ∼1600 km 2 areas. Multiple correlation coefficients of 0.63, 0.80 and 0.75 are achieved for the spring, summer and fall algorithms, respectively. Most of this information is in the form of multifrequency contrast in brightness temperature, which is interpreted as a measurement of the degree to which the land-emitted radiation is attenuated by the rain systems. The SMMR 37 GHz channel has more information on rain rate than any other channel. By combining the lower frequency channels with the 37 GHz observations, variations in land and precipitation thermometric temperatures can be removed, leaving rain attenuation as the major effect on brightness temperature. Polarization screening at 37 GHz is found to be sufficient to screen out cases of wet ground, which is only important when the ground is relatively vegetation free. Heavy rain cases are found to be a significant part of the algorithms' success, because of the strong microwave signatures (low brightness temperatures) that result from the presence of precipitation-sized ice in the upper portions of heavily precipitating storms. If IR data are combined with the summer microwave data, an improved (0.85) correlation with radar rain rates is achieved

  18. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  19. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    Science.gov (United States)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  20. Transmitter passband requirements for imaging radar.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2012-12-01

    In high-power microwave power amplifiers for radar, distortion in both amplitude and phase should generally be expected. Phase distortions can be readily equalized. Some amplitude distortions are more problematic than others. In general, especially for SAR using LFM chirps, low frequency modulations such as gain slopes can be tolerated much better than multiple cycles of ripple across the passband of the waveform.

  1. An investigation into the use of large area silicon semiconductors in microwave systems

    International Nuclear Information System (INIS)

    Holliday, H.R.

    1999-09-01

    Semiconductor microwave devices are usually manufactured using micron or sub-micron geometries. The equipment needed for these techniques has a high capital cost and demands high overheads. The material traditionally processed for microwave applications is gallium arsenide but during the period of this investigation a move towards the use of silicon and silicon germanium has emerged. This study, which is essentially practical, covers a range of new ideas for components using large area silicon devices. In the course of the study considerable progress has also been made in the understanding of the behaviour of silicon at microwave frequencies, and some of the initial Concepts were shown to be invalid. An accurate determination of the dielectric constant of silicon has been made using quasi optical techniques at microwave frequencies. The fabrication techniques described originate from methods used at Q-par Angus to manufacture large area silicon nuclear radiation detectors. Developed at the University of Birmingham, these are 'wet chemistry' methods that preclude the need for diffusion or other conventional semiconductor processing techniques. Novel microwave components have been developed using these techniques. These include an optically controlled attenuator with multioctave bandwidth and good dynamic range; window devices to reduce the radar cross section of microwave antennas; and microwave cavity devices including a variable-Q cavity. Concepts for millimeter wave filters are discussed, as are areas for further research. During the attenuator study Wheeler's equations have been extended to cover truncated microstrip. It was observed at an early stage in the work that optical excitation was very effective as a method of controlling the devices. This fits well with current trends in electro-optical devices. The piezo resistance effect in silicon has been briefly investigated and a mechanical attenuator exploiting this effect has been developed. (author)

  2. Microwave absorbing properties of activated carbon fibre polymer ...

    Indian Academy of Sciences (India)

    cations in the field of radar and electromagnetic compatibility. (Singh et al ... fibres have irregular-shaped cross sections (shown in fig- ure 1) ... Microwave absorbing properties of activated carbon fibre polymer composites. 77. 2. 4. 6. 8. 10. 12.

  3. Combining Passive Microwave Rain Rate Retrieval with Visible and Infrared Cloud Classification.

    Science.gov (United States)

    Miller, Shawn William

    The relation between cloud type and rain rate has been investigated here from different approaches. Previous studies and intercomparisons have indicated that no single passive microwave rain rate algorithm is an optimal choice for all types of precipitating systems. Motivated by the upcoming Tropical Rainfall Measuring Mission (TRMM), an algorithm which combines visible and infrared cloud classification with passive microwave rain rate estimation was developed and analyzed in a preliminary manner using data from the Tropical Ocean Global Atmosphere-Coupled Ocean Atmosphere Response Experiment (TOGA-COARE). Overall correlation with radar rain rate measurements across five case studies showed substantial improvement in the combined algorithm approach when compared to the use of any single microwave algorithm. An automated neural network cloud classifier for use over both land and ocean was independently developed and tested on Advanced Very High Resolution Radiometer (AVHRR) data. The global classifier achieved strict accuracy for 82% of the test samples, while a more localized version achieved strict accuracy for 89% of its own test set. These numbers provide hope for the eventual development of a global automated cloud classifier for use throughout the tropics and the temperate zones. The localized classifier was used in conjunction with gridded 15-minute averaged radar rain rates at 8km resolution produced from the current operational network of National Weather Service (NWS) radars, to investigate the relation between cloud type and rain rate over three regions of the continental United States and adjacent waters. The results indicate a substantially lower amount of available moisture in the Front Range of the Rocky Mountains than in the Midwest or in the eastern Gulf of Mexico.

  4. The effect of recombination and attachment on meteor radar diffusion coefficient profiles

    Science.gov (United States)

    Lee, C. S.; Younger, J. P.; Reid, I. M.; Kim, Y. H.; Kim, J.-H.

    2013-04-01

    Estimates of the ambipolar diffusion coefficient producedusing meteor radar echo decay times display an increasing trend below 80-85 km, which is inconsistent with a diffusion-only theory of the evolution of meteor trails. Data from the 33 MHz meteor radar at King Sejong Station, Antarctica, have been compared with observations from the Aura Earth Observing System Microwave Limb Sounder satellite instrument. It has been found that the height at which the diffusion coefficient gradient reverses follows the height of a constant neutral atmospheric density surface. Numerical simulations of meteor trail diffusion including dissociative recombination with atmospheric ions and three-body attachment of free electrons to neutral molecules indicate that three-body attachment is responsible for the distortion of meteor radar diffusion coefficient profiles at heights below 90 km, including the gradient reversal below 80-85 km. Further investigation has revealed that meteor trails with low initial electron line density produce decay times more consistent with a diffusion-only model of meteor trail evolution.

  5. Calibration methods for ECE systems with microwave sources

    International Nuclear Information System (INIS)

    Tubbing, B.J.D.; Kissel, S.E.

    1987-01-01

    The authors investigated the feasibility of two methods for calibration of electron cyclotron emission (ECE) systems, both based on the use of a microwave source. In the first method -called the Antenna Pattern Integration (API) method - the microwave source is scanned in space, so as to simulate a large - area - blackbody -source. In the second method -called the Untuned Cavity (UC) method -an untuned cavity, fed by the microwave source, is used to simulate a blackbody. For both methods, the hardware required to perform partly automated calibrations was developed. The microwave based methods were compared with a large area blackbody calibration on two different ECE systems, a Michelson interferometer and a grating polychromator. The API method was found to be more successful than the UC method. (author)

  6. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    Science.gov (United States)

    Leonard, Regis F.; Bhasin, Kul B.

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure. (For individual items see A93-25777 to A93-25814)

  7. Empirical studies of the microwave radiometric response to rainfall in the tropics and midlatitudes

    Science.gov (United States)

    Petty, Grant W.; Katsaros, Kristina B.

    1989-01-01

    Results are presented from quantitative comparisons between satellite microwave radiometer observations and digital radar observations of equatorial convective cloud clusters and midlatitude frontal precipitation. Simultaneous data from the Winter Monsoon Experiment digital radar and the SMMR for December 1978 are analyzed. It is found that the most important differences between the microwave response to rainfall in the equatorial tropics and to stratiform rain in oceanic midlatitude fronts is caused by the different spatial characteristics of stratiform and convective rainfall and by the different background brightness temperature fields associated with tropical and midlatitude levels of atmospheric water vapor.

  8. All-Cause Mortality Among Belgian Military Radar Operators: A 40-Year Controlled Longitudinal Study

    International Nuclear Information System (INIS)

    Degrave, Etienne; Autier, Philippe; Grivegnee, Andre-Robert; Zizi, Martin

    2005-01-01

    Background: It has been suggested that exposure to radiofrequency/microwaves radiations could be associated with greater health hazards and higher mortality. Methods: The all-cause mortality of 27,671 Belgian militaries who served from 1963 until 1994 in battalions equipped with radars for anti-aircraft defence was studied over the period 1968-2003. End of the seventies, technical modifications brought to the shielding of the micro-wave generators resulted in a reduction in irradiations. A control group was formed by 16,128 militaries who served during the same period in the same military area but who were never exposed to radars. Administrative procedures for identifying militaries and their vital status were equivalent in the radar and the control groups. Results: The age-standardized mortality ratio (SMR) in the radar battalions was 1.05 (95% CI: 0.95-1.16) in professional militaries, and 0.80 (95% CI: 0.75-0.85) in conscripts. In professional militaries no difference in mortality was found according to duration (less than, or five years or more) or to period of service (before 1978 or after 1977). Conclusions: During a 40-year period of observation, we found no increase in all-cause mortality in Belgian militaries who were in close contact with radar equipments of anti-aircraft defence battalions

  9. Construction and Operation of the West Coast OTH-B Radar System

    Science.gov (United States)

    1983-11-07

    prob- ably. I can see what your concerns are. You are concerned about that word radiation, which is kind of a bugaboo . Mrs Morehouse: How dangerous is... invest our defense dollar. An effective radar system will serve not only as a deterrent to a potential aggressor, but help us to neutralize an attack...OTH-BS radar is for me a wise and cost-effective way to invest our defense dollar. An effective radar system will serve not only as a deterrant to a

  10. Fiber optic coherent laser radar 3d vision system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-01-01

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  11. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    Science.gov (United States)

    Wang, Wen-Qin

    2015-01-01

    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  12. Modulation, resolution and signal processing in radar, sonar and related systems

    CERN Document Server

    Benjamin, R; Costrell, L

    1966-01-01

    Electronics and Instrumentation, Volume 35: Modulation, Resolution and Signal Processing in Radar, Sonar and Related Systems presents the practical limitations and potentialities of advanced modulation systems. This book discusses the concepts and techniques in the radar context, but they are equally essential to sonar and to a wide range of signaling and data-processing applications, including seismology, radio astronomy, and band-spread communications.Organized into 15 chapters, this volume begins with an overview of the principal developments sought in pulse radar. This text then provides a

  13. A Machine Learning-based Rainfall System for GPM Dual-frequency Radar

    Science.gov (United States)

    Tan, H.; Chandrasekar, V.; Chen, H.

    2017-12-01

    Precipitation measurement produced by the Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) plays an important role in researching the water circle and forecasting extreme weather event. Compare with its predecessor - Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), GRM DPR measures precipitation in two different frequencies (i.e., Ku and Ka band), which can provide detailed information on the microphysical properties of precipitation particles, quantify particle size distribution and quantitatively measure light rain and falling snow. This paper presents a novel Machine Learning system for ground-based and space borne radar rainfall estimation. The system first trains ground radar data for rainfall estimation using rainfall measurements from gauges and subsequently uses the ground radar based rainfall estimates to train GPM DPR data in order to get space based rainfall product. Therein, data alignment between space DPR and ground radar is conducted using the methodology proposed by Bolen and Chandrasekar (2013), which can minimize the effects of potential geometric distortion of GPM DPR observations. For demonstration purposes, rainfall measurements from three rain gauge networks near Melbourne, Florida, are used for training and validation purposes. These three gauge networks, which are located in Kennedy Space Center (KSC), South Florida Water Management District (SFL), and St. Johns Water Management District (STJ), include 33, 46, and 99 rain gauge stations, respectively. Collocated ground radar observations from the National Weather Service (NWS) Weather Surveillance Radar - 1988 Doppler (WSR-88D) in Melbourne (i.e., KMLB radar) are trained with the gauge measurements. The trained model is then used to derive KMLB radar based rainfall product, which is used to train GPM DPR data collected from coincident overpasses events. The machine learning based rainfall product is compared against the GPM standard products

  14. A wearable microwave antenna array for time-domain breast tumor screening

    OpenAIRE

    Porter, Emily; Bahrami, Hadi; Santorelli, Adam; Gosselin, Benoit; Rusch, Leslie; Popovic, Milica

    2016-01-01

    In this work, we present a clinical prototype with a wearable patient interface for microwave breast cancer detection. The long-term aim of the prototype is a breast health monitoring application. The system operates using multistatic time-domain pulsed radar, with 16 flexible antennas embedded into a bra. Unlike the previously reported, table-based prototype with a rigid cup-like holder, the wearable one requires no immersion medium and enables simple localization of breast surface. In compa...

  15. Satellite passive microwave rain measurement techniques for land and ocean

    Science.gov (United States)

    Spencer, R. W.

    1985-01-01

    Multiseasonal rainfall was found to be measurable over land with satellite passive microwave data, based upon comparisons between Nimbus 7 Scanning Multichannel Microwave Radiometer (SMME) brightness temperatures (T sub B) and operational WSR-57 radar rain rates. All of the SMMR channels (bipolarized 37, 21, 18, 10.7, and 6.6. GHz T sub B) were compared to radar reflectivities for 25 SMMR passes and 234 radar scans over the U.S. during the spring, summer, and fall of 1979. It was found that the radar rain rates were closely related to the difference between 37 and 21 GHz T sub B. This result is due to the volume scattering effects of precipitation which cause emissivity decreases with frequency, as opposed to emissive surfaces (e.g., water) whose emissivities increase with frequency. Two frequencies also act to reduce the effects of thermometric temperature variations on T sub B to a miminum. During summer and fall, multiple correlation coefficients of 0.80 and 0.75 were obtained. These approach the limit of correlation that can be expected to exist between two very different data sources, especially in light of the errors attributable to manual digitization of PPI photographs of variable quality from various operational weather radar not calibrated for research purposes. During the spring, a significantly lower (0.63) correlation was found. This poorer performance was traced to cases of wet, unvegetated soil being sensed at the lower frequencies through light rain, partly negating the rain scattering signal.

  16. Optimum radars and filters for the passive sphere system

    Science.gov (United States)

    Luers, J. K.; Soltes, A.

    1971-01-01

    Studies have been conducted to determine the influence of the tracking radar and data reduction technique on the accuracy of the meteorological measurements made in the 30 to 100 kilometer altitude region by the ROBIN passive falling sphere. A survey of accuracy requirements was made of agencies interested in data from this region of the atmosphere. In light of these requirements, various types of radars were evaluated to determine the tracking system most applicable to the ROBIN, and methods were developed to compute the errors in wind and density that arise from noise errors in the radar supplied data. The effects of launch conditions on the measurements were also examined. Conclusions and recommendations have been made concerning the optimum tracking and data reduction techniques for the ROBIN falling sphere system.

  17. Imaging of Archaeological Remains at Barcombe Roman Villa using Microwave Tomographic Depictions of Ground Penetrating Radar Data

    Science.gov (United States)

    Soldovieri, F.; Utsi, E.; Alani, A.; Persico, R.

    2012-04-01

    to 600MHz (the frequency range of the antennas used). The 2-dimensional plots were formed into a 3-dimensional cube and time slices extracted, on the basis of maximum signal return, at 16ns, 25ns and 29ns. In this work, we show the reprocessing of the GPR data via a microwave tomographic approach based on a linear approximation of the inverse scattering problem [4]. In particular, the effectiveness of this approach ensures a reliable and high resolution representation/visualization of the scene very large in terms of probing wavelength. This has been made possible thanks to the adoption of the approach presented in [5] where the 3D representation was achieved by performing 2D reconstruction and after obtaining the 3D Cube from these 2D reconstructed profiles. In particular, the re-examination of GPR data using microwave tomography has allowed to improve definition of the villa outline and to detect earlier prehistoric remains. [1] Rudling, D., & Butler, C. "Roundhouse to Villa" in Sussex Past & Present 95, pp 6 - 7, 2001. [2] Utsi, E., Wortley Villa paper currently in preparation of EAGE special issue. [3] Utsi, E., & Alani, A. "Barcombe Roman Villa: An Exercise in GPR Time Slicingand Comparative Geophysics", in Koppenjan, S., & Hua, L. (eds) Proceedings of the Ninth International Conference on Ground Penetrating Radar, 2002. [4] F. Soldovieri, R. Persico, E. Utsi, V. Utsi, "The application of inverse scattering techniques with ground penetrating radar to the problem of rebar location in concrete", NDT & E International, Vol. 39, Issue 7, October 2006, Pages 602-607. [5] R. Persico, F. Soldovieri, E. Utsi, "Microwave tomography for processing of GPR data at Ballachulish", Journal of Geophysics and Engineering, vol.7, no. 2, pp. 164-173, June 2010

  18. 77 FR 48097 - Operation of Radar Systems in the 76-77 GHz Band

    Science.gov (United States)

    2012-08-13

    ... modify the emission limits for vehicular radar systems operating within the 76-77 GHz band. Specifically.... 15.253 of the rules for vehicular radar systems operating in the 76-77 GHz band. Vehicular radars can... sensors operating in the 76-77 GHz band, the spectrum shall be investigated up to 231 GHz. (f) Fundamental...

  19. Large-scale synthesis and microwave absorption enhancement of actinomorphic tubular ZnO/CoFe2O4 nanocomposites.

    Science.gov (United States)

    Cao, Jing; Fu, Wuyou; Yang, Haibin; Yu, Qingjiang; Zhang, Yanyan; Liu, Shikai; Sun, Peng; Zhou, Xiaoming; Leng, Yan; Wang, Shuangming; Liu, Bingbing; Zou, Guangtian

    2009-04-09

    Actinomorphic tubular ZnO/CoFe(2)O(4) nanocomposites were fabricated in large scale via a simple solution method at low temperature. The phase structures, morphologies, particle size, shell thickness, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The as-synthesized nanocomposites were uniformly dispersed into the phenolic resin then the mixture was pasted on metal plate with the area of 200 mm x 200 mm as the microwave absorption test plate. The test of microwave absorption was carried out by the radar-absorbing materials (RAM) reflectivity far field radar cross-section (RCS) method. The range of microwave absorption is from 2 to 18 Hz and the best microwave absorption reach to 28.2 dB at 8.5 Hz. The results indicate that the composites are of excellence with respect to microwave absorption.

  20. Minimum redundancy MIMO radars

    OpenAIRE

    Chen, Chun-Yang; Vaidyanathan, P. P.

    2008-01-01

    The multiple-input multiple-output (MIMO) radar concept has drawn considerable attention recently. In the traditional single-input multiple-output (SIMO) radar system, the transmitter emits scaled versions of a single waveform. However, in the MIMO radar system, the transmitter transmits independent waveforms. It has been shown that the MIMO radar can be used to improve system performance. Most of the MIMO radar research so far has focused on the uniform array. However, i...

  1. MICROWAVE MEASUREMENT OF REFRACTORY MATERIALS AT HIGH-TEMPERATURE

    International Nuclear Information System (INIS)

    Kharkovsky, S.; Zoughi, R.; Smith, J.; Davis, B.; Limmer, R.

    2009-01-01

    Knowledge of the electrical behavior of refractory materials may enable the development and optimization of microwave nondestructive techniques to detect and evaluate changes in their physical properties while the materials are in service. This paper presents the results of a limited and preliminary investigation in which two refractory materials (dense chrome and dense zircon) were subjected to increasing temperature in a furnace and in which a frequency-modulated continuous-wave radar operating in the frequency range of 8-18 GHz radar was used to evaluate their attenuation properties.

  2. Microwave Measurement of Refractory Materials at High-Temperature

    Science.gov (United States)

    Kharkovsky, S.; Zoughi, R.; Smith, J.; Davis, B.; Limmer, R.

    2009-03-01

    Knowledge of the electrical behavior of refractory materials may enable the development and optimization of microwave nondestructive techniques to detect and evaluate changes in their physical properties while the materials are in service. This paper presents the results of a limited and preliminary investigation in which two refractory materials (dense chrome and dense zircon) were subjected to increasing temperature in a furnace and in which a frequency-modulated continuous-wave radar operating in the frequency range of 8-18 GHz radar was used to evaluate their attenuation properties.

  3. THz impulse radar for biomedical sensing: nonlinear system behavior

    Science.gov (United States)

    Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.

    2014-03-01

    The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.

  4. Noncontact Detection and Analysis of Respiratory Function Using Microwave Doppler Radar

    Directory of Open Access Journals (Sweden)

    Yee Siong Lee

    2015-01-01

    Full Text Available Real-time respiratory measurement with Doppler Radar has an important advantage in the monitoring of certain conditions such as sleep apnoea, sudden infant death syndrome (SIDS, and many other general clinical uses requiring fast nonwearable and non-contact measurement of the respiratory function. In this paper, we demonstrate the feasibility of using Doppler Radar in measuring the basic respiratory frequencies (via fast Fourier transform for four different types of breathing scenarios: normal breathing, rapid breathing, slow inhalation-fast exhalation, and fast inhalation-slow exhalation conducted in a laboratory environment. A high correlation factor was achieved between the Doppler Radar-based measurements and the conventional measurement device, a respiration strap. We also extended this work from basic signal acquisition to extracting detailed features of breathing function (I : E ratio. This facilitated additional insights into breathing activity and is likely to trigger a number of new applications in respiratory medicine.

  5. Design And Analysis Of Doppler Radar-Based Vehicle Speed Detection

    Directory of Open Access Journals (Sweden)

    Su Myat Paing

    2015-08-01

    Full Text Available The most unwanted thing to happen to a road user is road accident. Most of the fatal accidents occur due to over speeding. Faster vehicles are more prone to accident than the slower one. Among the various methods for detecting speed of the vehicle object detection systems based on Radar have been replaced for about a century for various purposes like detection of aircrafts spacecraft ships navigation reading weather formations and terrain mapping. The essential feature in adaptive vehicle activated sign systems is the accurate measurement of a vehicles velocity. The velocities of the vehicles are acquired from a continuous wave Doppler radar. A very low amount of power is consumed in this system and only batteries can use to operate. The system works on the principle of Doppler Effect by detecting the Doppler shift in microwaves reflected from a moving object. Since the output of the sensor is sinusoidal wave with very small amplitude and needs to be amplified with the help of the amplifier before further processing. The purpose to calculate and display the speed on LCD is performed by the microcontroller.

  6. Space Radar Image of Manaus, Brazil

    Science.gov (United States)

    1999-01-01

    These two images were created using data from the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). On the left is a false-color image of Manaus, Brazil acquired April 12, 1994, onboard space shuttle Endeavour. In the center of this image is the Solimoes River just west of Manaus before it combines with the Rio Negro to form the Amazon River. The scene is around 8 by 8 kilometers (5 by 5 miles) with north toward the top. The radar image was produced in L-band where red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low backscatter at VV polarization. The image on the right is a classification map showing the extent of flooding beneath the forest canopy. The classification map was developed by SIR-C/X-SAR science team members at the University of California,Santa Barbara. The map uses the L-HH, L-HV, and L-VV images to classify the radar image into six categories: Red flooded forest Green unflooded tropical rain forest Blue open water, Amazon river Yellow unflooded fields, some floating grasses Gray flooded shrubs Black floating and flooded grasses Data like these help scientists evaluate flood damage on a global scale. Floods are highly episodic and much of the area inundated is often tree-covered. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those

  7. Material integrity verification radar

    International Nuclear Information System (INIS)

    Koppenjan, S.K.

    1999-01-01

    The International Atomic Energy Agency (IAEA) has the need for verification of 'as-built' spent fuel-dry storage containers and other concrete structures. The IAEA has tasked the Special Technologies Laboratory (STL) to fabricate, test, and deploy a stepped-frequency Material Integrity Verification Radar (MIVR) system to nondestructively verify the internal construction of these containers. The MIVR system is based on previously deployed high-frequency, ground penetrating radar (GPR) systems that have been developed by STL for the U.S. Department of Energy (DOE). Whereas GPR technology utilizes microwave radio frequency energy to create subsurface images, MTVR is a variation for which the medium is concrete instead of soil. The purpose is to nondestructively verify the placement of concrete-reinforcing materials, pipes, inner liners, and other attributes of the internal construction. The MIVR system underwent an initial field test on CANDU reactor spent fuel storage canisters at Atomic Energy of Canada Limited (AECL), Chalk River Laboratories, Ontario, Canada, in October 1995. A second field test at the Embalse Nuclear Power Plant in Embalse, Argentina, was completed in May 1996. The DOE GPR also was demonstrated at the site. Data collection and analysis were performed for the Argentine National Board of Nuclear Regulation (ENREN). IAEA and the Brazilian-Argentine Agency for the Control and Accounting of Nuclear Material (ABACC) personnel were present as observers during the test. Reinforcing materials were evident in the color, two-dimensional images produced by the MIVR system. A continuous pattern of reinforcing bars was evident and accurate estimates on the spacing, depth, and size were made. The potential uses for safeguard applications were jointly discussed. The MIVR system, as successfully demonstrated in the two field tests, can be used as a design verification tool for IAEA safeguards. A deployment of MIVR for Design Information Questionnaire (DIQ

  8. A Microwave Photonic Interference Canceller: Architectures, Systems, and Integration

    Science.gov (United States)

    Chang, Matthew P.

    This thesis is a comprehensive portfolio of work on a Microwave Photonic Self-Interference Canceller (MPC), a specialized optical system designed to eliminate interference from radio-frequency (RF) receivers. The novelty and value of the microwave photonic system lies in its ability to operate over bandwidths and frequencies that are orders of magnitude larger than what is possible using existing RF technology. The work begins, in 2012, with a discrete fiber-optic microwave photonic canceller, which prior work had demonstrated as a proof-of-concept, and culminates, in 2017, with the first ever monolithically integrated microwave photonic canceller. With an eye towards practical implementation, the thesis establishes novelty through three major project thrusts. (Fig. 1): (1) Extensive RF and system analysis to develop a full understanding of how, and through what mechanisms, MPCs affect an RF receiver. The first investigations of how a microwave photonic canceller performs in an actual wireless environment and a digital radio are also presented. (2) New architectures to improve the performance and functionality of MPCs, based on the analysis performed in Thrust 1. A novel balanced microwave photonic canceller architecture is developed and experimentally demonstrated. The balanced architecture shows significant improvements in link gain, noise figure, and dynamic range. Its main advantage is its ability to suppress common-mode noise and reduce noise figure by increasing the optical power. (3) Monolithic integration of the microwave photonic canceller into a photonic integrated circuit. This thrust presents the progression of integrating individual discrete devices into their semiconductor equivalent, as well as a full functional and RF analysis of the first ever integrated microwave photonic canceller.

  9. IoSiS: a radar system for imaging of satellites in space

    Science.gov (United States)

    Jirousek, M.; Anger, S.; Dill, S.; Schreiber, E.; Peichl, M.

    2017-05-01

    Space debris nowadays is one of the main threats for satellite systems especially in low earth orbit (LEO). More than 700,000 debris objects with potential to destroy or damage a satellite are estimated. The effects of an impact often are not identifiable directly from ground. High-resolution radar images are helpful in analyzing a possible damage. Therefor DLR is currently developing a radar system called IoSiS (Imaging of Satellites in Space), being based on an existing steering antenna structure and our multi-purpose high-performance radar system GigaRad for experimental investigations. GigaRad is a multi-channel system operating at X band and using a bandwidth of up to 4.4 GHz in the IoSiS configuration, providing fully separated transmit (TX) and receive (RX) channels, and separated antennas. For the observation of small satellites or space debris a highpower traveling-wave-tube amplifier (TWTA) is mounted close to the TX antenna feed. For the experimental phase IoSiS uses a 9 m TX and a 1 m RX antenna mounted on a common steerable positioner. High-resolution radar images are obtained by using Inverse Synthetic Aperture Radar (ISAR) techniques. The guided tracking of known objects during overpass allows here wide azimuth observation angles. Thus high azimuth resolution comparable to the range resolution can be achieved. This paper outlines technical main characteristics of the IoSiS radar system including the basic setup of the antenna, the radar instrument with the RF error correction, and the measurement strategy. Also a short description about a simulation tool for the whole instrument and expected images is shown.

  10. Planetary Radar

    Science.gov (United States)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  11. Development of Deep Learning Based Data Fusion Approach for Accurate Rainfall Estimation Using Ground Radar and Satellite Precipitation Products

    Science.gov (United States)

    Chen, H.; Chandra, C. V.; Tan, H.; Cifelli, R.; Xie, P.

    2016-12-01

    Rainfall estimation based on onboard satellite measurements has been an important topic in satellite meteorology for decades. A number of precipitation products at multiple time and space scales have been developed based upon satellite observations. For example, NOAA Climate Prediction Center has developed a morphing technique (i.e., CMORPH) to produce global precipitation products by combining existing space based rainfall estimates. The CMORPH products are essentially derived based on geostationary satellite IR brightness temperature information and retrievals from passive microwave measurements (Joyce et al. 2004). Although the space-based precipitation products provide an excellent tool for regional and global hydrologic and climate studies as well as improved situational awareness for operational forecasts, its accuracy is limited due to the sampling limitations, particularly for extreme events such as very light and/or heavy rain. On the other hand, ground-based radar is more mature science for quantitative precipitation estimation (QPE), especially after the implementation of dual-polarization technique and further enhanced by urban scale radar networks. Therefore, ground radars are often critical for providing local scale rainfall estimation and a "heads-up" for operational forecasters to issue watches and warnings as well as validation of various space measurements and products. The CASA DFW QPE system, which is based on dual-polarization X-band CASA radars and a local S-band WSR-88DP radar, has demonstrated its excellent performance during several years of operation in a variety of precipitation regimes. The real-time CASA DFW QPE products are used extensively for localized hydrometeorological applications such as urban flash flood forecasting. In this paper, a neural network based data fusion mechanism is introduced to improve the satellite-based CMORPH precipitation product by taking into account the ground radar measurements. A deep learning system is

  12. Advances in bistatic radar

    CERN Document Server

    Willis, Nick

    2007-01-01

    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  13. Prototype of Microwave Imaging System for Breast-Cancer Screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2009-01-01

    Microwave imaging for breast-cancer detection has received the attention of a large number of research groups in the last decade. In this paper, the imaging system currently being developed at the Technical university of Denmark is presented. This includes a description of the antenna system......, the microwave hardware, and the imaging algorithm....

  14. Miniaturized hand held microwave interference scanning system for NDE of dielectric armor and armor systems

    International Nuclear Information System (INIS)

    Schmidt, Karl F.; Little, Jack R.; Ellingson, William A.; Meitzler, Thomas J.; Green, William

    2011-01-01

    Inspection of ceramic-based armor has advanced through development of a microwave-based, portable, non-contact NDE system. Recently, this system was miniaturized and made wireless for maximum utility in field applications. The electronic components and functionality of the laboratory system are retained, with alternative means of position input for creation of scan images. Validation of the detection capability was recently demonstrated using specially fabricated surrogates and ballistic impact-damaged specimens. The microwave data results have been compared to data from laboratory-based microwave interferometry systems and digital x-ray imaging. The microwave interference scanning has been shown to reliably detect cracks, laminar features and material property variations. The authors present details of the system operation, descriptions of the test samples used and recent results obtained.

  15. Radar and ARPA manual

    CERN Document Server

    Bole, A G

    2013-01-01

    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  16. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures

    Science.gov (United States)

    1980-01-01

    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.

  17. A Doppler Radar System for Sensing Physiological Parameters in Walking and Standing Positions

    Directory of Open Access Journals (Sweden)

    Malikeh Pour Ebrahim

    2017-03-01

    Full Text Available Doppler radar can be implemented for sensing physiological parameters wirelessly at a distance. Detecting respiration rate, an important human body parameter, is essential in a range of applications like emergency and military healthcare environments, and Doppler radar records actual chest motion. One challenge in using Doppler radar is being able to monitor several patients simultaneously and in different situations like standing, walking, or lying. This paper presents a complete transmitter-receiver Doppler radar system, which uses a 4 GHz continuous wave radar signal transmission and receiving system, to extract base-band data from a phase-shifted signal. This work reports experimental evaluations of the system for one and two subjects in various standing and walking positions. It provides a detailed signal analysis of various breathing rates of these two subjects simultaneously. These results will be useful in future medical monitoring applications.

  18. Vibrational resonances in biological systems at microwave frequencies.

    Science.gov (United States)

    Adair, Robert K

    2002-03-01

    Many biological systems can be expected to exhibit resonance behavior involving the mechanical vibration of system elements. The natural frequencies of such resonances will, generally, be in the microwave frequency range. Some of these systems will be coupled to the electromagnetic field by the charge distributions they carry, thus admitting the possibility that microwave exposures may generate physiological effects in man and other species. However, such microwave excitable resonances are expected to be strongly damped by interaction with their aqueous biological environment. Although those dissipation mechanisms have been studied, the limitations on energy transfers that follow from the limited coupling of these resonances to the electromagnetic field have not generally been considered. We show that this coupling must generally be very small and thus the absorbed energy is so strongly limited that such resonances cannot affect biology significantly even if the systems are much less strongly damped than expected from basic dissipation models.

  19. Millimeter-Wave Radar Field Measurements and Inversion of Cloud Parameters for the 1999 Mt. Washington Icing Sensors Project

    Science.gov (United States)

    Pazmany, Andrew L.; Reehorst, Andrew (Technical Monitor)

    2001-01-01

    The Mount Washington Icing Sensors Project (MWISP) was a multi-investigator experiment with participants from Quadrant Engineering, NOAA Environmental Technology Laboratory (NOAA/ETL), the Microwave Remote Sensing Laboratory (MIRSL) of the University of Massachusetts (UMass), and others. Radar systems from UMass and NOAA/ETL were used to measure X-, Ka-, and W-band backscatter data from the base of Mt. Washington, while simultaneous in-situ particle measurements were made from aircraft and from the observatory at the summit. This report presents range and time profiles of liquid water content and particle size parameters derived from range profiles of radar reflectivity as measured at X-, Ka-, and W-band (9.3, 33.1, and 94.9 GHz) using an artificial neural network inversion algorithm. In this report, we provide a brief description of the experiment configuration, radar systems, and a review of the artificial neural network used to extract cloud parameters from the radar data. Time histories of liquid water content (LWC), mean volume diameter (MVD) and mean Z diameter (MZD) are plotted at 300 m range intervals for slant ranges between 1.1 and 4 km. Appendix A provides details on the extraction of radar reflectivity from measured radar power, and Appendix B provides summary logs of the weather conditions for each day in which we processed data.

  20. Experimental and numerical investigations of microwave return loss of aircraft inlets with low-pressure plasma

    Science.gov (United States)

    Zhang, Yachun; He, Xiang; Chen, Jianping; Chen, Hongqing; Chen, Li; Zhang, Hongchao; Ni, Xiaowu; Lu, Jian; Shen, Zhonghua

    2018-03-01

    The relationships between return losses of the cylindrical inlet and plasma discharge parameters are investigated experimentally and numerically. The return losses are measured using a high dynamic range measurement system and simulated by COMSOL Multiphysics when the frequency band of the microwaves is in the range 1-4 GHz. The profiles of the plasma density are estimated using Epstein and Bessel functions. Results show that the incident microwaves can be absorbed by plasma efficaciously. The maximal return loss can reach -13.84 dB when the microwave frequency is 2.3 GHz. The increase of applied power implies augmentation of the return loss, which behaves conversely for gas pressure. The experimental and numerical results display reasonable agreement on return loss, suggesting that the use of plasma is effective in the radar cross section reduction of aircraft inlets.

  1. Electromagnetic characterization of white spruce at different moisture contents using synthetic aperture radar imaging

    Science.gov (United States)

    Ingemi, Christopher M.; Owusu Twumasi, Jones; Yu, Tzuyang

    2018-03-01

    Detection and quantification of moisture content inside wood (timber) is key to ensuring safety and reliability of timber structures. Moisture inside wood attracts insects and fosters the development of fungi to attack the timber, causing significant damages and reducing the load bearing capacity during their design life. The use of non-destructive evaluation (NDE) techniques (e.g., microwave/radar, ultrasonic, stress wave, and X-ray) for condition assessment of timber structures is a good choice. NDE techniques provide information about the level of deterioration and material properties of timber structures without obstructing their functionality. In this study, microwave/radar NDE technique was selected for the characterization of wood at different moisture contents. A 12 in-by-3.5 in-by-1.5 in. white spruce specimen (picea glauca) was imaged at different moisture contents using a 10 GHz synthetic aperture radar (SAR) sensor inside an anechoic chamber. The presence of moisture was found to increase the SAR image amplitude as expected. Additionally, integrated SAR amplitude was found beneficial in modeling the moisture content inside the wood specimen.

  2. Prediction of microwave absorption properties of tetrapod-needle zinc oxide whisker radar absorbing material without prior knowledge

    Science.gov (United States)

    Zhao, Yu-Chen; Wang, Jie; Liu, Jiang-Fan; Song, Zhong-Guo; Xi, Xiao-Li

    2017-07-01

    The radar absorbing material (RAM) containing a tetrapod-needle zinc oxide whisker (T-ZnOw) has been proved to have good efficiency of microwave absorption. However, the available theoretical models, which are intended to predict the microwave absorbing properties of such an interesting composite, still cannot work well without some prior knowledge, like the measured effective electromagnetic parameters of the prepared T-ZnOw composite. Hence, we propose a novel predictive method here to calculate the reflectivity of T-ZnOw RAM without prior knowledge. In this method, the absorbing ability of this kind of material is divided into three main aspects: the unstructured background, the conductive network, and the nanostructured particle. Then, the attenuation properties of these three parts are represented, respectively, by three different approaches: the equivalent spherical particle and the static strong fluctuation theory, the equivalent circuit model obtained from the complex impedance spectra technology, and the combination of four different microscopic electromagnetic responses. The operational calculation scheme can be obtained by integrating these three absorption effects into the existing theoretical attenuation model. The reasonable agreement between the theoretical and experimental data of a T-ZnON/SiO2 composite in the range of 8-14 GHz shows that the proposed scheme can predict the microwave absorption properties of the T-ZnOw RAM. Furthermore, a detailed analysis of these three mechanisms indicates that, on the one hand, the background plays a dominant role in determining the real part of the effective permittivity of the T-ZnOw composite while the network and the particle are the decisive factors of its material loss; on the other hand, an zero-phase impedance, i.e., a pure resistance, with appropriate resonance characteristic might be a rational physical description of the attenuation property of the conductive network, but it is difficult to realize

  3. Environmental Statement. Continental United States Over-the-Horizon Backscatter Radar System

    Science.gov (United States)

    1984-02-01

    kind of a bugaboo . Mrs Morehouse: How dangerous is this kind of radiation? Mr Raffa: That one has been determined by Doctor Polson and others. Since we...quality. From a broader perspective, the OTH-BS radar is for me a wise and cost-effective way to invest our defense dollar. An effective radar system...transportation scheduling and carrier quality. From a broader perspective, the OTH-BS radar is for me a wise and cost-effective way to invest our

  4. Localization Capability of Cooperative Anti-Intruder Radar Systems

    Directory of Open Access Journals (Sweden)

    Mauro Montanari

    2008-06-01

    Full Text Available System aspects of an anti-intruder multistatic radar based on impulse radio ultrawideband (UWB technology are addressed. The investigated system is composed of one transmitting node and at least three receiving nodes, positioned in the surveillance area with the aim of detecting and locating a human intruder (target that moves inside the area. Such systems, referred to also as UWB radar sensor networks, must satisfy severe power constraints worldwide imposed by, for example, the Federal Communications Commission (FCC and by the European Commission (EC power spectral density masks. A single transmitter-receiver pair (bistatic radar is considered at first. Given the available transmitted power and the capability of the receiving node to resolve the UWB pulses in the time domain, the surveillance area regions where the target is detectable, and those where it is not, are obtained. Moreover, the range estimation error for the transmitter-receiver pair is discussed. By employing this analysis, a multistatic system is then considered, composed of one transmitter and three or four cooperating receivers. For this multistatic system, the impact of the nodes location on area coverage, necessary transmitted power and localization uncertainty is studied, assuming a circular surveillance area. It is highlighted how area coverage and transmitted power, on one side, and localization uncertainty, on the other side, require opposite criteria of nodes placement. Consequently, the need for a system compromising between these factors is shown. Finally, a simple and effective criterion for placing the transmitter and the receivers is drawn.

  5. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting

    Science.gov (United States)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  6. Low-level microwave irradiation and central cholinergic systems

    International Nuclear Information System (INIS)

    Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W.

    1989-01-01

    Our previous research showed that 45 min of exposure to low-level, pulsed microwaves (2450-MHz, 2-microseconds pulses, 500 pps, whole-body average specific absorption rate 0.6 W/kg) decreased sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. The effects of microwaves on central cholinergic systems were further investigated in this study. Increases in choline uptake activity in the frontal cortex, hippocampus, and hypothalamus were observed after 20 min of acute microwave exposure, and tolerance to the effect of microwaves developed in the hypothalamus, but not in the frontal cortex and hippocampus, of rats subjected to ten daily 20-min exposure sessions. Furthermore, the effects of acute microwave irradiation on central choline uptake could be blocked by pretreating the animals before exposure with the narcotic antagonist naltrexone. In another series of experiments, rats were exposed to microwaves in ten daily sessions of either 20 or 45 min, and muscarinic cholinergic receptors in different regions of the brain were studied by 3H-QNB binding assay. Decreases in concentration of receptors occurred in the frontal cortex and hippocampus of rats subjected to ten 20-min microwave exposure sessions, whereas increase in receptor concentration occurred in the hippocampus of animals exposed to ten 45-min sessions. This study also investigated the effects of microwave exposure on learning in the radial-arm maze. Rats were trained in the maze to obtain food reinforcements immediately after 20 or 45 min of microwave exposure

  7. Live demonstration: Screen printed, microwave based level sensor for automated drug delivery

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-02

    Level sensors find numerous applications in many industries to automate the processes involving chemicals. Recently, some commercial ultrasound based level sensors are also being used to automate the drug delivery process [1]. Some of the most desirable features of level sensors to be used for medical use are their non-intrusiveness, low cost and consistent performance. In this demo, we will present a completely new method of sensing the liquid level using microwaves. It is a common stereotype to consider microwaves sensing mechanism as being expensive. Unlike usual expensive, intrusive and bulky microwave methods of level sensing using guided radars, we will present an extremely low cost printed, non-intrusive microwave sensor to reliably sense the liquid level.

  8. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    Science.gov (United States)

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  9. Detection-Discrimination Method for Multiple Repeater False Targets Based on Radar Polarization Echoes

    Directory of Open Access Journals (Sweden)

    Z. W. ZONG

    2014-04-01

    Full Text Available Multiple repeat false targets (RFTs, created by the digital radio frequency memory (DRFM system of jammer, are widely used in practical to effectively exhaust the limited tracking and discrimination resource of defence radar. In this paper, common characteristic of radar polarization echoes of multiple RFTs is used for target recognition. Based on the echoes from two receiving polarization channels, the instantaneous polarization radio (IPR is defined and its variance is derived by employing Taylor series expansion. A detection-discrimination method is designed based on probability grids. By using the data from microwave anechoic chamber, the detection threshold of the method is confirmed. Theoretical analysis and simulations indicate that the method is valid and feasible. Furthermore, the estimation performance of IPRs of RFTs due to the influence of signal noise ratio (SNR is also covered.

  10. Space Radar Image of Bebedauro, Brazil, seasonal

    Science.gov (United States)

    1994-01-01

    This is an X-band image showing seasonal changes at the hydrological test site of Bebedouro in Brazil. The image is centered at 9 degrees south latitude and 40.2 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994, during the first flight of the radar system, and on October 1, 1994, during the second mission. The swath width is approximately 16.5 kilometers (10.5 miles) wide. The image channels have the following color assignments: red represents data acquired on April 10; green represents data acquired on October 1; blue corresponds to the ratio of the two data sets. Agriculture plays an important economic and social role in Brazil. One of the major problems related to Brazilian agriculture is estimating the size of planting areas and their productivity. Due to cloud cover and the rainy season, which occurs from November through April, optical and infrared Earth observations are seldom used to survey the region. An additional goal of monitoring this region is to watch the floodplains of rivers like Rio Sao Francisco in order to determine suitable locations for additional agricultural fields. This area belongs to the semi-arid northeastern region of Brazil, where estimates have suggested that about 10 times more land could be used for agriculture, including some locations which could be used for irrigation projects. Monitoring of soil moisture during the important summer crop season is of high priority for the future development and productivity of this region. In April the area was covered with vegetation because of the moisture of the soil and only small differences could be seen in X-band data. In October the run-off channels of this hilly region stand out quite clearly because the greenish areas indicated much less soil moisture and water content in plants. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR

  11. A microwave window for K band electromagnetic systems

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr

    2017-01-01

    This article proposes a solution for microwave window at K band. Properties of the window such as performance (transparency) at microwave frequencies, dimensions, and mounting place are discussed. The dimensions of the window were optimized in a full-wave simulator. To verify the design...... and simulation results the prototype of the window is realized by implementing into transition section and tested experimentally. The microwave window provides low return loss |S11| below −30 dB, low insertion loss |S21| below −0.5 dB and can be used for electromagnetic systems where vacuum sealing is required...

  12. Space Radar Image of West Texas - SAR scan

    Science.gov (United States)

    1999-01-01

    forthcoming Canadian RADARSAT satellite. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  13. 47 CFR 15.509 - Technical requirements for ground penetrating radars and wall imaging systems.

    Science.gov (United States)

    2010-10-01

    ..., fire fighting, emergency rescue, scientific research, commercial mining, or construction. (1) Parties... radars and wall imaging systems. 15.509 Section 15.509 Telecommunication FEDERAL COMMUNICATIONS... ground penetrating radars and wall imaging systems. (a) The UWB bandwidth of an imaging system operating...

  14. Multimode Adaptable Microwave Radar Sensor Based on Leaky-Wave Antennas

    Czech Academy of Sciences Publication Activity Database

    Hudec, P.; Pánek, Petr; Jeník, V.

    2017-01-01

    Roč. 65, č. 9 (2017), s. 3464-3473 ISSN 0018-9480 Institutional support: RVO:67985882 Keywords : adaptable sensor * low-range radar * multimode sensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Electrical and electronic engineering Impact factor: 2.897, year: 2016

  15. Synchronous Design and Test of Distributed Passive Radar Systems Based on Digital Broadcasting and Television

    Directory of Open Access Journals (Sweden)

    Wan Xianrong

    2017-02-01

    Full Text Available Digital broadcasting and television are important classes of illuminators of opportunity for passive radars. Distributed and multistatic structure are the development trends for passive radars. Most modern digital broadcasting and television systems work on a network, which not only provides a natural condition to distributed passive radar but also puts forward higher requirements on the design of passive radar systems. Among those requirements, precise synchronization among the receivers and transmitters as well as among multiple receiving stations, which mainly involves frequency and time synchronization, is the first to be solved. To satisfy the synchronization requirements of distributed passive radars, a synchronization scheme based on GPS is presented in this paper. Moreover, an effective scheme based on the China Mobile Multimedia Broadcasting signal is proposed to test the system synchronization performance. Finally, the reliability of the synchronization design is verified via the distributed multistatic passive radar experiments.

  16. Quality Control and Calibration of the Dual-Polarization Radar at Kwajalein, RMI

    Science.gov (United States)

    Marks, David A.; Wolff, David B.; Carey, Lawrence D.; Tokay, Ali

    2010-01-01

    Weather radars, recording information about precipitation around the globe, will soon be significantly upgraded. Most of today s weather radars transmit and receive microwave energy with horizontal orientation only, but upgraded systems have the capability to send and receive both horizontally and vertically oriented waves. These enhanced "dual-polarimetric" (DP) radars peer into precipitation and provide information on the size, shape, phase (liquid / frozen), and concentration of the falling particles (termed hydrometeors). This information is valuable for improved rain rate estimates, and for providing data on the release and absorption of heat in the atmosphere from condensation and evaporation (phase changes). The heating profiles in the atmosphere influence global circulation, and are a vital component in studies of Earth s changing climate. However, to provide the most accurate interpretation of radar data, the radar must be properly calibrated and data must be quality controlled (cleaned) to remove non-precipitation artifacts; both of which are challenging tasks for today s weather radar. The DP capability maximizes performance of these procedures using properties of the observed precipitation. In a notable paper published in 2005, scientists from the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) at the University of Oklahoma developed a method to calibrate radars using statistically averaged DP measurements within light rain. An additional publication by one of the same scientists at the National Severe Storms Laboratory (NSSL) in Norman, Oklahoma introduced several techniques to perform quality control of radar data using DP measurements. Following their lead, the Topical Rainfall Measuring Mission (TRMM) Satellite Validation Office at NASA s Goddard Space Flight Center has fine-tuned these methods for specific application to the weather radar at Kwajalein Island in the Republic of the Marshall Islands, approximately 2100 miles

  17. Design of remote control alarm system by microwave detection

    Science.gov (United States)

    Wang, Junli

    2018-04-01

    A microwave detection remote control alarm system is designed, which is composed of a Microwave detectors, a radio receiving/transmitting module and a digital encoding/decoding IC. When some objects move into the surveillance area, microwave detectors will generate a control signal to start transmitting system. A radio control signal will be spread by the transmitting module, once the signal can be received, and it will be disposed by some circuits, arousing some voices that awake the watching people. The whole device is a modular configuration, it not only has some advantage of frequency stable, but also reliable and adjustment-free, and it is suitable for many kinds of demands within the distance of 100m.

  18. Integrating an embedded system in a microwave moisture meter

    Science.gov (United States)

    The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...

  19. Development of passive radar systems at TNO

    NARCIS (Netherlands)

    Gelsema, S.J.

    2007-01-01

    Since 2002, the Netherlands Organisation for Applied Scientific Research – TNO, has been involved in the development of passive radar systems for research purposes. The development has been sponsored partly by the Royal Netherlands Air Force – whose main interest is threat evaluation – and partly by

  20. Active Sensing Air Pressure Using Differential Absorption Barometric Radar

    Science.gov (United States)

    Lin, B.

    2016-12-01

    Tropical storms and other severe weathers cause huge life losses and property damages and have major impacts on public safety and national security. Their observations and predictions need to be significantly improved. This effort tries to develop a feasible active microwave approach that measures surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 GHz O2 absorption band in order to constrain assimilated dynamic fields of numerical weather Prediction (NWP) models close to actual conditions. Air pressure is the most important variable that drives atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Even over land there is no uniform coverage of surface air pressure measurements. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as 4mb ( 1mb) under all weather conditions. NASA Langley research team has made substantial progresses in advancing the DiBAR concept. The feasibility assessment clearly shows the potential of surface barometry using existing radar technologies. The team has also developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted laboratory, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. The precision and accuracy of radar surface pressure measurements are within the range of the theoretical analysis of the DiBAR concept. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will provide us an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  1. Satellite microwave remote sensing of North Eurasian inundation dynamics: development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data

    International Nuclear Information System (INIS)

    Schroeder, R; Rawlins, M A; McDonald, K C; Podest, E; Zimmermann, R; Kueppers, M

    2010-01-01

    Wetlands are not only primary producers of atmospheric greenhouse gases but also possess unique features that are favourable for application of satellite microwave remote sensing to monitoring their status and trend. In this study we apply combined passive and active microwave remote sensing data sets from the NASA sensors AMSR-E and QuikSCAT to map surface water dynamics over Northern Eurasia. We demonstrate our method on the evolution of large wetland complexes for two consecutive years from January 2006 to December 2007. We apply river discharge measurements from the Ob River along with land surface runoff simulations derived from the Pan-Arctic Water Balance Model during and after snowmelt in 2006 and 2007 to interpret the abundance of widespread flooding along the River Ob in early summer of 2007 observed in the remote sensing products. The coarse-resolution, 25 km, surface water product is compared to a high-resolution, 30 m, inundation map derived from ALOS PALSAR (Advanced Land Observation Satellite phased array L-band synthetic aperture radar) imagery acquired for 11 July 2006, and extending along a transect in the central Western Siberian Plain. We found that the surface water fraction derived from the combined AMSR-E/QuikSCAT data sets closely tracks the inundation mapped using higher-resolution ALOS PALSAR data.

  2. Real-data tests of a single-Doppler radar assimilation system

    Science.gov (United States)

    Nehrkorn, Thomas; Hegarty, James; Hamill, Thomas M.

    1994-06-01

    Real data tests of a single-Doppler radar data assimilation and forecast system have been conducted for a Florida sea breeze case. The system consists of a hydrostatic mesoscale model used for prediction of the preconvective boundary layer, an objective analysis that combines model first guess fields with radar derived horizontal winds, a thermodynamic retrieval scheme that obtains temperature information from the three-dimensional wind field and its temporal evolution, and a Newtonian nudging scheme for forcing the model forecast to closer agreement with the analysis. As was found in earlier experiments with simulated data, assimilation using Newtonian nudging benefits from temperature data in addition to wind data. The thermodynamic retrieval technique was successful in retrieving a horizontal temperature gradient from the radar-derived wind fields that, when assimilated into the model, led to a significantly improved forecast of the seabreeze strength and position.

  3. Radar remote sensing in biology

    Science.gov (United States)

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  4. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  5. Microwave remote sensing: Active and passive. Volume 2 - Radar remote sensing and surface scattering and emission theory

    Science.gov (United States)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1982-01-01

    The fundamental principles of radar backscattering measurements are presented, including measurement statistics, Doppler and pulse discrimination techniques, and associated ambiguity functions. The operation of real and synthetic aperture sidelooking airborne radar systems is described, along with the internal and external calibration techniques employed in scattering measurements. Attention is given to the physical mechanisms responsible for the scattering emission behavior of homogeneous and inhomogeneous media, through a discussion of surface roughness, dielectric properties and inhomogeneity, and penetration depth. Simple semiempirical models are presented. Theoretical models involving greater mathematical sophistication are also given for extended ocean and bare soil surfaces, and the more general case of a vegetation canopy over a rough surface.

  6. Ground penetrating radar and microwave tomography for the safety management of a cultural heritage site: Miletos Ilyas Bey Mosque (Turkey)

    International Nuclear Information System (INIS)

    Kadioglu, Selma; Kadioglu, Yusuf Kagan; Catapano, Ilaria; Soldovieri, Francesco

    2013-01-01

    Detection and assessment of structural damage affecting foundation robustness is of significant relevance for the safety management of cultural heritage sites. In this framework, ground penetrating radar (GPR) is worth consideration owing to its capability of providing high resolution and detailed information about the inner status of a structure, without involving significant invasive actions and ensuring a fast survey. On the other hand, the effectiveness of a GPR diagnostic survey can be impaired by the low interpretability of the raw data radargrams; thus huge interest is currently focused on the development of advanced and application-oriented data processing strategies. In this paper, a data processing chain based on the combined use of the commercial REFLEXW program and a microwave tomography approach is presented. An assessment of the achievable imaging capabilities is provided by processing measurements collected during a survey at the Great Mosque of Ilyas Bey (Ilyas Bey Mosque), one of the most important cultural heritages in ancient Miletos-Iona in Söke-Aydin city (Turkey). (paper)

  7. Integrating an Embedded System within a Microwave Moisture Meter

    Science.gov (United States)

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...

  8. Improving Weather Radar Precipitation Estimates by Combining two Types of Radars

    DEFF Research Database (Denmark)

    Nielsen, Jesper Ellerbæk; Thorndahl, Søren Liedtke; Rasmussen, Michael R.

    2014-01-01

    This paper presents a demonstration of how Local Area Weather Radar (LAWR) X-band measurements can be combined with meteorological C–band measurements into a single radar product. For this purpose, a blending method has been developed which combines the strengths of the two radar systems. Combining...... the two radar types achieves a radar product with both long range and high temporal resolution. It is validated that the blended radar product performs better than the individual radars based on ground observations from laser disdrometers. However, the data combination is challenged by lower performance...... of the LAWR. Although both radars benefits from the data combination, it is also found that advection based temporal interpolation is a more favourable method for increasing the temporal resolution of meteorological C–band measurements....

  9. Development Of Signal Detection For Radar Navigation System

    OpenAIRE

    Theingi Win Hlaing; Hla Myo Tun; Zaw Min Naing; Win Khaing Moe

    2017-01-01

    This paper aims to evaluate the performance of target detection in the presence of sea clutter. Radar detection of a background of unwanted clutter due to echoes from sea clutter or land is a problem of interest in the radar field. Radar detector has been developed by assuming the radar clutter is Gaussian distributed. However as technology emerges the radar distribution is seen to deviates from the Gaussian assumption. Thus detectors designs based on Gaussian assumption are no longer optimum...

  10. Social Radar

    Science.gov (United States)

    2012-01-01

    RTA HFM-201/RSM PAPER 3 - 1 © 2012 The MITRE Corporation. All Rights Reserved. Social Radar Barry Costa and John Boiney MITRE Corporation...defenders require an integrated set of capabilities that we refer to as a “ social radar.” Such a system would support strategic- to operational-level...situation awareness, alerting, course of action analysis, and measures of effectiveness for each action undertaken. Success of a social radar

  11. Space Radar Image of Manaus region of Brazil

    Science.gov (United States)

    1994-01-01

    the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  12. Coherent Laser Radar Metrology System for Large Scale Optical Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of laser radar metrology inspection system is proposed that incorporates a novel, dual laser coherent detection scheme capable of eliminating both...

  13. Network connectivity paradigm for the large data produced by weather radar systems

    Science.gov (United States)

    Guenzi, Diego; Bechini, Renzo; Boraso, Rodolfo; Cremonini, Roberto; Fratianni, Simona

    2014-05-01

    The traffic over Internet is constantly increasing; this is due in particular to social networks activities but also to the enormous exchange of data caused especially by the so-called "Internet of Things". With this term we refer to every device that has the capability of exchanging information with other devices on the web. In geoscience (and, in particular, in meteorology and climatology) there is a constantly increasing number of sensors that are used to obtain data from different sources (like weather radars, digital rain gauges, etc.). This information-gathering activity, frequently, must be followed by a complex data analysis phase, especially when we have large data sets that can be very difficult to analyze (very long historical series of large data sets, for example), like the so called big data. These activities are particularly intensive in resource consumption and they lead to new computational models (like cloud computing) and new methods for storing data (like object store, linked open data, NOSQL or NewSQL). The weather radar systems can be seen as one of the sensors mentioned above: it transmit a large amount of raw data over the network (up to 40 megabytes every five minutes), with 24h/24h continuity and in any weather condition. Weather radar are often located in peaks and in wild areas where connectivity is poor. For this reason radar measurements are sometimes processed partially on site and reduced in size to adapt them to the limited bandwidth currently available by data transmission systems. With the aim to preserve the maximum flow of information, an innovative network connectivity paradigm for the large data produced by weather radar system is here presented. The study is focused on the Monte Settepani operational weather radar system, located over a wild peak summit in north-western Italy.

  14. Space Radar Image of Flevoland, Netherlands

    Science.gov (United States)

    1999-01-01

    This is a three-frequency false color image of Flevoland, The Netherlands, centered at 52.4 degrees north latitude, 5.4 degrees east longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard space shuttle Endeavour on April 14, 1994. It was produced by combining data from the X-band, C-band and L-band radars. The area shown is approximately 25 kilometers by 28 kilometers (15-1/2 by 17-1/2 miles). Flevoland, which fills the lower two-thirds of the image, is a very flat area that is made up of reclaimed land that is used for agriculture and forestry. At the top of the image, across the canal from Flevoland, is an older forest shown in red; the city of Harderwijk is shown in white on the shore of the canal. At this time of the year, the agricultural fields are bare soil, and they show up in this image in blue. The changes in the brightness of the blue areas are equal to the changes in roughness. The dark blue areas are water and the small dots in the canal are boats. This SIR-C/X-SAR supersite is being used for both calibration and agricultural studies. Several soil and crop ground-truth studies will be conducted during the shuttle flight. In addition, about 10calibration devices and 10 corner reflectors have been deployed to calibrate and monitor the radar signal. One of these transponders can be seen as a bright star in the lower right quadrant of the image. This false-color image was made using L-band total power in the red channel, C-band total power in the green channel, and X-band VV polarization in the blue channel. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by

  15. Nonlinear effects in microwave photoconductivity of two-dimensional electron systems

    International Nuclear Information System (INIS)

    Ryzhii, V; Suris, R

    2003-01-01

    We present a model for microwave photoconductivity of two-dimensional electron systems in a magnetic field which describes the effects of strong microwave and steady-state electric fields. Using this model, we derive an analytical formula for the photoconductivity associated with photon- and multi-photon-assisted impurity scattering as a function of the frequency and power of microwave radiation. According to the developed model, the microwave conductivity is an oscillatory function of the frequency of microwave radiation and the cyclotron frequency which becomes zero at the cyclotron resonance and its harmonics. It exhibits maxima and minima (with absolute negative conductivity) at microwave frequencies somewhat different from the resonant frequencies. The calculated power dependence of the amplitude of the microwave photoconductivity oscillations exhibits pronounced sublinear behaviour similar to a logarithmic function. The height of the microwave photoconductivity maxima and the depth of its minima are nonmonotonic functions of the electric field. The possibility of a strong widening of the maxima and minima due to a strong sensitivity of their parameters on the electric field and the presence of strong long-range electric-field fluctuations is pointed to. The obtained dependences are consistent with the results of the experimental observations

  16. Comparison of sea-level measurements using microwave radar and subsurface pressure gauge deployed in Mandovi estuary in Goa, Central West Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Agarvadekar, Y.; Luis, R.; Nadaf, L.

    . INTRODUCTION The information about mean sea level and its variability along the coastal locations is essential for practical as well as scientific studies. However, witness to the recent disastrous consequences of Japan Tsunami (11 th March, 2011... technologies are (IOC, 2006); A stilling well and a float, Pressure system, Acoustic system and Radar system. We will briefly describe the principle of operation of Pressure and Radar system in this section, as they are the used in the present study: A...

  17. Environmental assessment for the Satellite Power System (SPS) Concept Development and Evaluation Program (CDEP). [Microwave and non-microwave health and ecological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Valentino, A.R.

    1980-08-01

    In the satellite power system (SPS), satellites in geosynchronous earth orbit would collect solar energy in space, convert it to microwaves, and transmit the microwaves to receiving antennas (rectennas) on earth. At the rectennas, the microwave energy would be converted to electricity. This SPS environmental assessment considers the microwave and nonmicrowave effects on the terrestrial environment and human health, atmospheric effects, and effects on electromagnetic systems. No environmental problem has been identified that would preclude the continued study of SPS technology. To increase the certainty of the assessment, some research has been initiated and long-term research is being planned.

  18. Development Of Signal Detection For Radar Navigation System

    Directory of Open Access Journals (Sweden)

    Theingi Win Hlaing

    2017-09-01

    Full Text Available This paper aims to evaluate the performance of target detection in the presence of sea clutter. Radar detection of a background of unwanted clutter due to echoes from sea clutter or land is a problem of interest in the radar field. Radar detector has been developed by assuming the radar clutter is Gaussian distributed. However as technology emerges the radar distribution is seen to deviates from the Gaussian assumption. Thus detectors designs based on Gaussian assumption are no longer optimum for detection in non-Gaussian nature. The theory of target detection in Gaussian distributed clutter has been well established and the closed form of the detection performances can be easily obtained. However that is not the case in non-Gaussian clutter distributions. The operation of radar detection is determined by radar detection theory with different types of Swerling target models such as Swerling I II III IV and V. By using MATLAB these signal detection techniques are developed.

  19. Space Radar Image of Colombian Volcano

    Science.gov (United States)

    1999-01-01

    This is a radar image of a little known volcano in northern Colombia. The image was acquired on orbit 80 of space shuttle Endeavour on April 14, 1994, by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The volcano near the center of the image is located at 5.6 degrees north latitude, 75.0 degrees west longitude, about 100 kilometers (65 miles) southeast of Medellin, Colombia. The conspicuous dark spot is a lake at the bottom of an approximately 3-kilometer-wide (1.9-mile) volcanic collapse depression or caldera. A cone-shaped peak on the bottom left (northeast rim) of the caldera appears to have been the source for a flow of material into the caldera. This is the northern-most known volcano in South America and because of its youthful appearance, should be considered dormant rather than extinct. The volcano's existence confirms a fracture zone proposed in 1985 as the northern boundary of volcanism in the Andes. The SIR-C/X-SAR image reveals another, older caldera further south in Colombia, along another proposed fracture zone. Although relatively conspicuous, these volcanoes have escaped widespread recognition because of frequent cloud cover that hinders remote sensing imaging in visible wavelengths. Four separate volcanoes in the Northern Andes nations ofColombia and Ecuador have been active during the last 10 years, killing more than 25,000 people, including scientists who were monitoring the volcanic activity. Detection and monitoring of volcanoes from space provides a safe way to investigate volcanism. The recognition of previously unknown volcanoes is important for hazard evaluations because a number of major eruptions this century have occurred at mountains that were not previously recognized as volcanoes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of

  20. Microwave propagation and remote sensing atmospheric influences with models and applications

    CERN Document Server

    Karmakar, Pranab Kumar

    2011-01-01

    Because prevailing atmospheric/troposcopic conditions greatly influence radio wave propagation above 10 GHz, the unguided propagation of microwaves in the neutral atmosphere can directly impact many vital applications in science and engineering. These include transmission of intelligence, and radar and radiometric applications used to probe the atmosphere, among others. Where most books address either one or the other, Microwave Propagation and Remote Sensing: Atmospheric Influences with Models and Applications melds coverage of these two subjects to help readers develop solutions to the problems they present. This reference offers a brief, elementary account of microwave propagation through the atmosphere and discusses radiometric applications in the microwave band used to characterize and model atmospheric constituents, which is also known as remote sensing. Summarizing the latest research results in the field, as well as radiometric models and measurement methods, this book covers topics including: Free sp...

  1. Formation of silicides in a cavity applicator microwave system

    International Nuclear Information System (INIS)

    Thompson, D.C.; Kim, H.C.; Alford, T.L.; Mayer, J.W.

    2003-01-01

    Metal silicides of nickel and cobalt are formed in a cavity applicator microwave system with a magnetron power of 1200 W and a frequency of 2.45 GHz. X-ray diffraction, Rutherford backscattering spectrometry, and four-point-probe measurements are used to identify the silicide phase present and layer thicknesses. Additional processing confirmed that the products attained from heating by microwaves do not differ appreciably from those attained in heating by thermal processes. Materials properties are used to explain microwave power absorption and demonstrate how to tailor a robust process in which thin film reactions can be attained and specific products isolated

  2. System design development for microwave and millimeter-wave materials processing

    Science.gov (United States)

    Feher, Lambert; Thumm, Manfred

    2002-06-01

    The most notable effect in processing dielectrics with micro- and millimeter-waves is volumetric heating of these materials, offering the opportunity of very high heating rates for the samples. In comparison to conventional heating where the heat transfer is diffusive and depends on the thermal conductivity of the material, the microwave field penetrates the sample and acts as an instantaneous heat source at each point of the sample. By this unique property, microwave heating at 2.45 GHz and 915 MHz ISM (Industrial, Medical, Scientific) frequencies is established as an important industrial technology since more than 50 years ago. Successful application of microwaves in industries has been reported e.g. by food processing systems, domestic ovens, rubber industry, vacuum drying etc. The present paper shows some outlines of microwave system development at Forschungszentrum Karlsruhe, IHM by transferring properties from the higher frequency regime (millimeter-waves) to lower frequency applications. Anyway, the need for using higher frequencies like 24 GHz (ISM frequency) for industrial applications has to be carefully verified with respect to special physical/engineering advantages or to limits the standard microwave technology meets for the specific problem.

  3. Systems and methods for remote long standoff biometric identification using microwave cardiac signals

    Science.gov (United States)

    McGrath, William R. (Inventor); Talukder, Ashit (Inventor)

    2012-01-01

    Systems and methods for remote, long standoff biometric identification using microwave cardiac signals are provided. In one embodiment, the invention relates to a method for remote biometric identification using microwave cardiac signals, the method including generating and directing first microwave energy in a direction of a person, receiving microwave energy reflected from the person, the reflected microwave energy indicative of cardiac characteristics of the person, segmenting a signal indicative of the reflected microwave energy into a waveform including a plurality of heart beats, identifying patterns in the microwave heart beats waveform, and identifying the person based on the identified patterns and a stored microwave heart beats waveform.

  4. High-resolution imaging using a wideband MIMO radar system with two distributed arrays.

    Science.gov (United States)

    Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi

    2010-05-01

    Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method.

  5. The microwave market

    International Nuclear Information System (INIS)

    Bybokas, J.

    1989-01-01

    As superconductors move from the laboratory to the marketplace, it becomes more important for researchers and manufacturers to understand the markets for this technology. The large market for microwave systems represents a major opportunity for high-T c superconductors. Conductor losses are a primary design limitation in conventional microwave systems. The low losses of superconductors at microwave frequencies will allow component designers and system designers to improve their products in many ways. The most important market segments for microwave systems are outlined in this discussion

  6. Sea Ice Thickness Measurement by Ground Penetrating Radar for Ground Truth of Microwave Remote Sensing Data

    Science.gov (United States)

    Matsumoto, M.; Yoshimura, M.; Naoki, K.; Cho, K.; Wakabayashi, H.

    2018-04-01

    Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR) can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately) aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  7. 46 CFR 184.404 - Radars.

    Science.gov (United States)

    2010-10-01

    ... within one mile of land must be fitted with a FCC Type Accepted general marine radar system for surface... Federal Communications Commission (FCC) type accepted general marine radar system for surface navigation... 46 Shipping 7 2010-10-01 2010-10-01 false Radars. 184.404 Section 184.404 Shipping COAST GUARD...

  8. Design of a Microwave Duplexer without Ferrite and without Magnet

    Directory of Open Access Journals (Sweden)

    F. Mejri

    2018-06-01

    Full Text Available In this paper we present the design, realization and characterization of a microwave duplexer, compact, easy to realize and integrate into systems such as ground penetrating radars. It is made without the use of ferrite or magnet. This device is designed in the S band and made in micro-ribbon technology. It consists of a power divider and two RF amplifiers, low gain, using a BFR91 bipolar transistor. The latter is frequently available and inexpensive. Measurements made on a vector network analyzer have shown a low insertion loss with insulation considered satisfactory – for low power applications - between the transmitter (Tx and the receiver (Rx circuits.

  9. A low-cost, modular, microwave-linked, color TV inspection system

    International Nuclear Information System (INIS)

    Panda, N.C.

    1991-01-01

    This paper reports that many custom-built radiation-shielded CCTV inspection systems for nuclear facilities are available in the market. This author, however, could find no reference to units using low-cost nodular technology for wireless transmission and control of color CCTV signals in radiation environments. The system that was developed is a process control observation tool geared toward identifying locations ad volumes of accumulated in-cell solids. It also performs remote integrity assessments of tanks and pipe routings that are required by regulatory agencies. System highlights are: microwave transmission of video and control signals, low cost, low maintenance, and modular design. Use of standard components enables easy exchange of modules. Microwave transmission resolved the complications of a wired system while increasing reliability and safety. The video image is created by the remote in-cell color TV camera and transmitted by microwave out of the cell to TV monitors at consoles in non-radiation zones

  10. Active/passive microwave sensor comparison of MIZ-ice concentration estimates. [Marginal Ice Zone (MIZ)

    Science.gov (United States)

    Burns, B. A.; Cavalieri, D. J.; Keller, M. R.

    1986-01-01

    Active and passive microwave data collected during the 1984 summer Marginal Ice Zone Experiment in the Fram Strait (MIZEX 84) are used to compare ice concentration estimates derived from synthetic aperture radar (SAR) data to those obtained from passive microwave imagery at several frequencies. The comparison is carried out to evaluate SAR performance against the more established passive microwave technique, and to investigate discrepancies in terms of how ice surface conditions, imaging geometry, and choice of algorithm parameters affect each sensor. Active and passive estimates of ice concentration agree on average to within 12%. Estimates from the multichannel passive microwave data show best agreement with the SAR estimates because the multichannel algorithm effectively accounts for the range in ice floe brightness temperatures observed in the MIZ.

  11. Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2011-01-01

    community. This paper presents the survey of the ongoing research in the field of microwave imaging of biological tissues, with major focus on the breast tumor detection application. The existing microwave imaging systems are categorized on the basis of the employed measurement concepts. The advantages......Among the various breast imaging modalities for breast cancer detection, microwave imaging is attractive due to the high contrast in dielectric properties between the cancerous and normal tissue. Due to this reason, this modality has received a significant interest and attention from the microwave...... and disadvantages of the implemented imaging techniques are discussed. The fundamental tradeoffs between the various system requirements are indicated. Some strategies to overcome these limitations are outlined....

  12. Analysis of Radar and ADS-B Influences on Aircraft Detect and Avoid (DAA Systems

    Directory of Open Access Journals (Sweden)

    William Semke

    2017-09-01

    Full Text Available Detect and Avoid (DAA systems are complex communication and locational technologies comprising multiple independent components. DAA technologies support communications between ground-based and space-based operations with aircraft. Both manned and unmanned aircraft systems (UAS rely on DAA communication and location technologies for safe flight operations. We examined the occurrence and duration of communication losses between radar and automatic dependent surveillance–broadcast (ADS-B systems with aircraft operating in proximate airspace using data collected during actual flight operations. Our objectives were to identify the number and duration of communication losses for both radar and ADS-B systems that occurred within a discrete time period. We also investigated whether other unique communication behavior and anomalies were occurring, such as reported elevation deviations. We found that loss of communication with both radar and ADS-B systems does occur, with variation in the length of communication losses. We also discovered that other unexpected behaviors were occurring with communications. Although our data were gathered from manned aircraft, there are also implications for UAS that are operating within active airspaces. We are unaware of any previously published work on occurrence and duration of communication losses between radar and ADS-B systems.

  13. Laser radar cross-section estimation from high-resolution image data.

    Science.gov (United States)

    Osche, G R; Seeber, K N; Lok, Y F; Young, D S

    1992-05-10

    A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.

  14. Trilateration-based localization algorithm for ADS-B radar systems

    Science.gov (United States)

    Huang, Ming-Shih

    Rapidly increasing growth and demand in various unmanned aerial vehicles (UAV) have pushed governmental regulation development and numerous technology research advances toward integrating unmanned and manned aircraft into the same civil airspace. Safety of other airspace users is the primary concern; thus, with the introduction of UAV into the National Airspace System (NAS), a key issue to overcome is the risk of a collision with manned aircraft. The challenge of UAV integration is global. As automatic dependent surveillance-broadcast (ADS-B) system has gained wide acceptance, additional exploitations of the radioed satellite-based information are topics of current interest. One such opportunity includes the augmentation of the communication ADS-B signal with a random bi-phase modulation for concurrent use as a radar signal for detecting other aircraft in the vicinity. This dissertation provides detailed discussion about the ADS-B radar system, as well as the formulation and analysis of a suitable non-cooperative multi-target tracking method for the ADS-B radar system using radar ranging techniques and particle filter algorithms. In order to deal with specific challenges faced by the ADS-B radar system, several estimation algorithms are studied. Trilateration-based localization algorithms are proposed due to their easy implementation and their ability to work with coherent signal sources. The centroid of three most closely spaced intersections of constant-range loci is conventionally used as trilateration estimate without rigorous justification. In this dissertation, we address the quality of trilateration intersections through range scaling factors. A number of well-known triangle centers, including centroid, incenter, Lemoine point (LP), and Fermat point (FP), are discussed in detail. To the author's best knowledge, LP was never associated with trilateration techniques. According our study, LP is proposed as the best trilateration estimator thanks to the

  15. Microwave polarimetry system in the CDX-U tokamak

    International Nuclear Information System (INIS)

    Hwang, Y.S.; Fredriksen, A.; Qin, H.; Forest, C.B.; Ono, M.

    1995-01-01

    An existing microwave interferometer system is modified to add the capability of polarimetry in the CDX-U tokamak. Though this interferometer system can scan vertically and radially, only the vertical view channel is modified to accomodate Faraday rotation measurements, with its radial scanning capability preserved. For our relatively long microwave wavelength, the signal amplitude variation due to refraction is more important than effects due to vibration. An amplitude independent design of Faraday rotation diagnostics has been developed. By using a linearly polarized beam as input and putting a rotating polarizer in the beam after the plasma, birefringency effects are minimized. A digital phase detection technique has been developed for better resolution of the Faraday rotation angle

  16. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    Science.gov (United States)

    Kelly, Kenneth C.; Huang, John

    2000-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  17. Development of Remote Control and Interlock System for the PEFP Microwave Ion Source

    International Nuclear Information System (INIS)

    Song, Young Gi; Seol, Kyung Tae; Kwon, Hyeok Jung; Jang, Ji Ho; Cho, Yong Sub

    2011-01-01

    The control system for a microwave ion source as an isolated high voltage device is a main part of the PEFP distributed control system. The system is used to control two sets of microwave ion sources, the remote control and the interlock system. A VME system with an embedded Power PC CPU is used as main computer. The VME system is dedicated to control and monitoring of the ion source operation. An isolated control system has been designed and developed for remote control and monitoring of a microwave generator and various power supplies. As the source is placed on high voltage platform, optical fiber isolation has been used between the serial to optical fiber VME I/O board and the control system on the high voltage platform. These are connected through RS232 serial interface. A fast Ethernet is used to communicate between the microwave ion source control system and other control stations in the PEFP control system. EPICS toolkit is adopted to provide network programming and user interface by using EPICS Channel Access (CA)

  18. Radar spectrum opportunities for cognitive communications transmission

    OpenAIRE

    Wang, L; McGeehan, JP; Williams, C; Doufexi, A

    2008-01-01

    In relation to opportunistic access to radar spectrum, the impact of the radar on a communication system is investigated in this paper. This paper illustrates that by exploring the spatial and temporal opportunities in the radar spectrum and therefore improving the tolerance level to radar interference, a substantial increase on the throughput of a communication system is possible. Results are presented regarding the impact of swept radars on a WiMAX system. The results show the impact of SIR...

  19. The Development of an Information System Master Plan for the Pacific Missile Range Facility, Barking Sands, Hawaii

    Science.gov (United States)

    1992-03-01

    sites and support facilities are located on the islands of Niihau and Oahu. Figure 1 depicts the overall layout of PMRF. [Ref. 4: p. 2] In addition...the HIANG facility at Kokee: • a wideband microwave system serving Niihau Island remotely controls operation of the AN/APS-134 surveillance radar, and...provides relay of digitized radar data, control data and voice between the remotely operated, unmanned radar on Niihau Island and Barking Sands

  20. Integrated microwave photonics for phase modulated systems

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2012-01-01

    For the last 25 years, microwave photonic (MWP) systems and links have relied almost exclusively on discrete optoelectronic devices, standard optical fibers and fiber-based components. With this concept, various functionalities like RF signal generation, distribution, processing and analysis have

  1. An introduction to microwave imaging for breast cancer detection

    CERN Document Server

    Conceição, Raquel Cruz; O'Halloran, Martin

    2016-01-01

    This book collates past and current research on one of the most promising emerging modalities for breast cancer detection. Readers will discover how, as a standalone technology or in conjunction with another modality, microwave imaging has the potential to provide reliable, safe and comfortable breast exams at low cost. Current breast imaging modalities include X- ray, Ultrasound, Magnetic Resonance Imaging, and Positron Emission Tomography. Each of these methods suffers from limitations, including poor sensitivity or specificity, high cost, patient discomfort, and exposure to potentially harmful ionising radiation. Microwave breast imaging is based on a contrast in the dielectric properties of breast tissue that exists at microwave frequencies. The book begins by considering the anatomy and dielectric properties of the breast, contrasting historical and recent studies. Next, radar-based breast imaging algorithms are discussed, encompassing both early-stage artefact removal, and data independent and adaptive ...

  2. Radar Plan Position Indicator Scope

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radar Plan Position Indicator Scope is the collection of weather radar imagery for the period prior to the beginning of the Next Generation Radar (NEXRAD) system...

  3. A comparison of the influence of different dopants on the radar-absorbing properties of barium hexaferrite

    International Nuclear Information System (INIS)

    Jones, M.; Suder, M.M.; Edge, A.J.J.; Stewart, G.A.; Hutchison, W.D.; Amiet, A.; Jewsbury, P.

    2004-01-01

    Full text: The ferromagnetic resonance of barium hexaferrite is at approximately 48 GHz, which sits well above the frequency bands employed by most radar systems. However, certain elements (or combinations of elements), when doped into the iron sub-lattice, have been observed to weaken the system's uniaxial magnetocrystalline anisotropy and thereby lower the ferromagnetic resonance frequency. This contribution presents a survey of ferromagnetic resonance frequencies published in the literature, as well as resonance frequencies that we have converted from published magnetic characterisations of the magnetic anisotropy. In several cases we have confirmed the reliability of such converted values, and new data will be presented for (Co 1/2 Zr 1/2 )- and (Co 1/2 Mo 1/2 )-doped barium hexaferrite. Our specimen materials were prepared by solid state reaction, and characterised using x-ray powder diffraction and 57 Fe Moessbauer spectroscopy. The electromagnetic response characteristics were recorded with a microwave network analyser, using either a co-axial specimen (0 - 18 GHz) or a larger, planar tile specimen (0 - 40 GHz). An ideal radar absorbing material would require just a small concentration of an inexpensive dopant to lower the ferromagnetic resonance frequency into the 0 - 2 GHz band that is typical of long-range radars. The likelihood of finding such a doped barium hexaferrite system will be discussed

  4. Electromagnetic behavior of radar absorbing materials based on Ca hexaferrite modified with Co-Ti ions and doped with La

    Directory of Open Access Journals (Sweden)

    Valdirene Aparecida da Silva

    2009-06-01

    Full Text Available Radar Absorbing Materials (RAM are compounds that absorb incidental electromagnetic radiation in tuned frequencies and dissipate it as heat. Its preparation involves the adequate processing of polymeric matrices filled with compounds that act as radar absorbing centers in the microwave range. This work shows the electromagnetic evaluation of RAM based on CoTi and La doped Ca hexaferrite. Vibrating Sample Magnetization analyses show that ion substitution promoted low values for the parameters of saturation magnetization (123.65 Am2/kg and coercive field (0.07 T indicating ferrite softening. RAM samples obtained using different hexaferrite concentrations (40-80 per cent, w/w show variations in complex permeability and permittivity parameters and also in the performance of incidental radiation attenuation. Microwave attenuation values between 40 and 98 per cent were obtained.

  5. Potential of commercial microwave link network derived rainfall for river runoff simulations

    Science.gov (United States)

    Smiatek, Gerhard; Keis, Felix; Chwala, Christian; Fersch, Benjamin; Kunstmann, Harald

    2017-03-01

    Commercial microwave link networks allow for the quantification of path integrated precipitation because the attenuation by hydrometeors correlates with rainfall between transmitter and receiver stations. The networks, operated and maintained by cellphone companies, thereby provide completely new and country wide precipitation measurements. As the density of traditional precipitation station networks worldwide is significantly decreasing, microwave link derived precipitation estimates receive increasing attention not only by hydrologists but also by meteorological and hydrological services. We investigate the potential of microwave derived precipitation estimates for streamflow prediction and water balance analyses, exemplarily shown for an orographically complex region in the German Alps (River Ammer). We investigate the additional value of link derived rainfall estimations combined with station observations compared to station and weather radar derived values. Our river runoff simulation system employs a distributed hydrological model at 100 × 100 m grid resolution. We analyze the potential of microwave link derived precipitation estimates for two episodes of 30 days with typically moderate river flow and an episode of extreme flooding. The simulation results indicate the potential of this novel precipitation monitoring method: a significant improvement in hydrograph reproduction has been achieved in the extreme flooding period that was characterized by a large number of local strong precipitation events. The present rainfall monitoring gauges alone were not able to correctly capture these events.

  6. Pulsed radiofrequency microwave fields around a quadrupole particle accelerator: measurement and safety evaluation

    International Nuclear Information System (INIS)

    Sachdev, R.N.; Swarup, G.; Rajan, K.K.; Joseph, L.

    1996-01-01

    Pulsed radiofrequency microwave radiation (RFMR) fields occur during the use of high power microwaves in plasma heating in fusion research, plasma and solid state diagnostics, particle accelerators and colliders, pump sources in lasers, material processing as well as in high power radars. This paper describes the experimental work done at Trombay for measurement of pulsed RFMR fields in the working area of a radiofrequency quadrupole (RFQ) accelerator with the use of a meter calibrated in continuous field and interprets the observed fields in the light of existing protection criteria for pulsed RFMR fields. (author)

  7. Microwave energy transmission

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi [Kyoto Univ. (Japan)

    1989-03-05

    Laying stress on the technological problems and effect on the environment of microwave energy transmission, recent scientific and engineering problems and related subjects are described. Because no fuel is required for the solar power generation, the power generation system can not be considered as an expensive one when the unit cost of energy is taken into consideration. Some of the important technological problems in the microwave energy transmission are accurate microwave beam control technology to receiving stations and improvement in the efficiency of transmission system. Microwave energy beam has effects on living bodies, communication, and plasma atmosphere of the earth. Microwave energy transmission using a space flyer unit is scheduled. Its objective is the development of microwave wireless transmission technology and the study of the correlation between high power microwave and ionosphere plasma. Experiments on such a small scale application as a microwave driven space ship to bring results seem also important. 12 refs., 13 figs.

  8. Modelling of long-wave chaotic radar system for anti-stealth applications

    Science.gov (United States)

    Al-Suhail, Ghaida A.; Tahir, Fadhil Rahma; Abd, Mariam Hussien; Pham, Viet-Thanh; Fortuna, Luigi

    2018-04-01

    Although the Very Low-Frequency (VLF) waveforms have limited practical applications in acoustics (sonar) and secure military communications with radars and submarines; to this end; this paper presents a new and simple analytical model of VLF monostatic direct chaotic radar system. The model hypothetically depends on the two identical coupled time-delayed feedback chaotic systems which can generate and recover a long-wave chaotic signal. To resist the influence of positive Lyapunov exponents of the time-delay chaotic systems, the complete replacement of Pecaro and Carroll (PC) synchronization is employed. It can faithfully recover the chaotic signal from the back-scattered (echo) signal from the target over a noisy channel. The system performance is characterized in terms of the time series of synchronization in addition to the peak of the cross-correlation. Simulation results are conducted for substantial sensitivities of the chaotic signal to the system parameters and initial conditions. As a result, it is found that an effective and robust chaotic radar (CRADAR) model can be obtained when the signal-to-noise ratio (SNR) highly degrades to 0 dB, but with clear peak in correlation performance for detecting the target. Then, the model can be considered as a state of the art towards counter stealth technology and might be developed for other acoustic secure applications.

  9. A Field Performance Evaluation Scheme for Microwave-Absorbing Material Coatings

    Directory of Open Access Journals (Sweden)

    Shaopeng Guan

    2017-03-01

    Full Text Available Performance evaluation is an important aspect in the study of microwave-absorbing material coatings. The reflectivity of the incident wave is usually taken as the performance indicator. There have been various methods to directly or indirectly measure the reflectivity, but existing methods are mostly cumbersome and require a strict testing environment. What is more, they cannot be applied to field measurement. In this paper, we propose a scheme to achieve field performance evaluation of microwave-absorbing materials, which adopts a small H-plane sectoral horn antenna as the testing probe and a small microwave reflectometer as the indicator. When the size of the H-plane sectoral horn antenna is specially designed, the field distribution at the antenna aperture can be approximated as a plane wave similar to the far field of the microwave emitted by a radar unit. Therefore, the reflectivity can be obtained by a near-field measurement. We conducted experiments on a kind of ferrite-based microwave-absorbing material at X band (8.2–12.4 GHz to validate the scheme. The experimental results show that the reflectivity is in agreement with the reference data measured by the conventional method as a whole.

  10. Retrieval algorithm for rainfall mapping from microwave links in a cellular communication network

    NARCIS (Netherlands)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2016-01-01

    Microwave links in commercial cellular communication networks hold a promise for areal rainfall monitoring and could complement rainfall estimates from ground-based weather radars, rain gauges, and satellites. It has been shown that country-wide (≈ 35 500 km2) 15 min rainfall maps can

  11. A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers

    Science.gov (United States)

    Meng, Huan; Dong, Jun; Ferraro, Ralph; Yan, Banghua; Zhao, Limin; Kongoli, Cezar; Wang, Nai-Yu; Zavodsky, Bradley

    2017-06-01

    Snowfall rate retrieval from spaceborne passive microwave (PMW) radiometers has gained momentum in recent years. PMW can be so utilized because of its ability to sense in-cloud precipitation. A physically based, overland snowfall rate (SFR) algorithm has been developed using measurements from the Advanced Microwave Sounding Unit-A/Microwave Humidity Sounder sensor pair and the Advanced Technology Microwave Sounder. Currently, these instruments are aboard five polar-orbiting satellites, namely, NOAA-18, NOAA-19, Metop-A, Metop-B, and Suomi-NPP. The SFR algorithm relies on a separate snowfall detection algorithm that is composed of a satellite-based statistical model and a set of numerical weather prediction model-based filters. There are four components in the SFR algorithm itself: cloud properties retrieval, computation of ice particle terminal velocity, ice water content adjustment, and the determination of snowfall rate. The retrieval of cloud properties is the foundation of the algorithm and is accomplished using a one-dimensional variational (1DVAR) model. An existing model is adopted to derive ice particle terminal velocity. Since no measurement of cloud ice distribution is available when SFR is retrieved in near real time, such distribution is implicitly assumed by deriving an empirical function that adjusts retrieved SFR toward radar snowfall estimates. Finally, SFR is determined numerically from a complex integral. The algorithm has been validated against both radar and ground observations of snowfall events from the contiguous United States with satisfactory results. Currently, the SFR product is operationally generated at the National Oceanic and Atmospheric Administration and can be obtained from that organization.

  12. Time-domain ultra-wideband radar, sensor and components theory, analysis and design

    CERN Document Server

    Nguyen, Cam

    2014-01-01

    This book presents the theory, analysis, and design of ultra-wideband (UWB) radar and sensor systems (in short, UWB systems) and their components. UWB systems find numerous applications in the military, security, civilian, commercial and medicine fields. This book addresses five main topics of UWB systems: System Analysis, Transmitter Design, Receiver Design, Antenna Design and System Integration and Test. The developments of a practical UWB system and its components using microwave integrated circuits, as well as various measurements, are included in detail to demonstrate the theory, analysis and design technique. Essentially, this book will enable the reader to design their own UWB systems and components. In the System Analysis chapter, the UWB principle of operation as well as the power budget analysis and range resolution analysis are presented. In the UWB Transmitter Design chapter, the design, fabrication and measurement of impulse and monocycle pulse generators are covered. The UWB Receiver Design cha...

  13. Investigations on the sensitivity of a stepped-frequency radar utilizing a vector network analyzer for Ground Penetrating Radar

    Science.gov (United States)

    Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg

    2014-12-01

    Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.

  14. Relating multifrequency radar backscattering to forest biomass: Modeling and AIRSAR measurement

    Science.gov (United States)

    Sun, Guo-Qing; Ranson, K. Jon

    1992-01-01

    During the last several years, significant efforts in microwave remote sensing were devoted to relating forest parameters to radar backscattering coefficients. These and other studies showed that in most cases, the longer wavelength (i.e. P band) and cross-polarization (HV) backscattering had higher sensitivity and better correlation to forest biomass. This research examines this relationship in a northern forest area through both backscatter modeling and synthetic aperture radar (SAR) data analysis. The field measurements were used to estimate stand biomass from forest weight tables. The backscatter model described by Sun et al. was modified to simulate the backscattering coefficients with respect to stand biomass. The average number of trees per square meter or radar resolution cell, and the average tree height or diameter breast height (dbh) in the forest stand are the driving parameters of the model. The rest of the soil surface, orientation, and size distributions of leaves and branches, remain unchanged in the simulations.

  15. Radar Precoder Design for Spectral Coexistence with Coordinated Multi-point (CoMP) System

    OpenAIRE

    Mahal, Jasmin A.; Khawar, Awais; Abdelhadi, Ahmed; Clancy, T. Charles

    2015-01-01

    This paper details the design of precoders for a MIMO radar spectrally coexistent with a MIMO cellular network. We focus on a coordinated multi-point (CoMP) system where a cluster of base stations (BSs) coordinate their transmissions to the intended user. The radar operates in two modes, interference-mitigation mode when it avoids interference with the CoMP system and cooperation mode when it exchanges information with it. Using either the conventional Switched Null Space Projection (SNSP) or...

  16. Space Radar Image of Chernobyl

    Science.gov (United States)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  17. SEA ICE THICKNESS MEASUREMENT BY GROUND PENETRATING RADAR FOR GROUND TRUTH OF MICROWAVE REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    M. Matsumoto

    2018-04-01

    Full Text Available Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  18. Creating soil moisture maps based on radar satellite imagery

    Science.gov (United States)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  19. System and circuit models for microwave antennas

    OpenAIRE

    Sobhy, Mohammed; Sanz-Izquierdo, Benito; Batchelor, John C.

    2007-01-01

    This paper describes how circuit and system models are derived for antennas from measurement of the input reflection coefficient. Circuit models are used to optimize the antenna performance and to calculate the radiated power and the transfer function of the antenna. System models are then derived for transmitting and receiving antennas. The most important contribution of this study is to show how microwave structures can be integrated into the simulation of digital communication systems. Thi...

  20. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  1. NOAA JPSS Microwave Integrated Retrieval System (MIRS) Advanced Technology Microwave Sounder (ATMS) Sounding Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains temperature and humidity profiles from the NOAA Microwave Integrated Retrieval System (MIRS) using sensor data from the Advanced Technology...

  2. Microwave Plasma System: PVA Tepla 300

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: Microwave AsherA tool using microwave oxygen plasma to remove organics on the surfacesSpecifications / Capabilities:Frequency: 2.45 GHzPower:...

  3. Applications of high power microwaves

    International Nuclear Information System (INIS)

    Benford, J.; Swegle, J.

    1993-01-01

    The authors address a number of applications for HPM technology. There is a strong symbiotic relationship between a developing technology and its emerging applications. New technologies can generate new applications. Conversely, applications can demand development of new technological capability. High-power microwave generating systems come with size and weight penalties and problems associated with the x-radiation and collection of the electron beam. Acceptance of these difficulties requires the identification of a set of applications for which high-power operation is either demanded or results in significant improvements in peRFormance. The authors identify the following applications, and discuss their requirements and operational issues: (1) High-energy RF acceleration; (2) Atmospheric modification (both to produce artificial ionospheric mirrors for radio waves and to save the ozone layer); (3) Radar; (4) Electronic warfare; and (5) Laser pumping. In addition, they discuss several applications requiring high average power than border on HPM, power beaming and plasma heating

  4. All-cause mortality and radar exposure among french navy personnel: a 30 years cohort study

    International Nuclear Information System (INIS)

    Dabouis, V.; Arvers, P.; Debouzy, J.C.; Perrin, A.; Hours, M.

    2006-01-01

    To improve operational performance in a modern navy force, radiofrequency (RF) and microwaves emitting devices are widely used. It has been suggested that exposure to electromagnetic fields could be associated with greater health hazards and higher mortality. The all-cause mortality of 39488 militaries of the French navy forces was studied over the period 1975-2001 with a cohort epidemiological study. They served from 1975 until 1995. In a first step, the mortality of radar exposed militaries was compared to a control group formed by militaries who served during the same period in the same environment but without radar exposure. Administrative procedures for identifying militaries and their vital status were equivalent in the radar and the control groups. The age standardized mortality ratio in the radar navy personnel was 0.70 (95% CI: 0.54-0.90). In professional militaries, no difference in mortality ratio was found according to duration of estimated exposure. During a 30 years period of observation, we found no increase in all-cause mortality in the French navy personnel who were close to radar equipments

  5. SHUTTLE IMAGING RADAR: PHYSICAL CONTROLS ON SIGNAL PENETRATION AND SUBSURFACE SCATTERING IN THE EASTERN SAHARA.

    Science.gov (United States)

    Schaber, Gerald G.; McCauley, John F.; Breed, Carol S.; Olhoeft, Gary R.

    1986-01-01

    It is found that the Shuttle Imaging Radar A (SIR-A) signal penetration and subsurface backscatter within the upper meter or so of the sediment blanket in the Eastern Sahara of southern Egypt and northern Sudan are enhanced both by radar sensor parameters and by the physical and chemical characteristics of eolian and alluvial materials. The near-surface stratigraphy, the electrical properties of materials, and the types of radar interfaces found to be responsible for different classes of SIR-A tonal response are summarized. The dominant factors related to efficient microwave signal penetration into the sediment blanket include 1) favorable distribution of particle sizes, 2) extremely low moisture content and 3) reduced geometric scattering at the SIR-A frequency (1. 3 GHz). The depth of signal penetration that results in a recorded backscatter, called radar imaging depth, was documented in the field to be a maximum of 1. 5 m, or 0. 25 times the calculated skin depth, for the sediment blanket. The radar imaging depth is estimated to be between 2 and 3 m for active sand dune materials.

  6. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  7. 'RADAR': Euratom's standard unattended data acquisition system

    International Nuclear Information System (INIS)

    Schwalbach, P.; Holzleitner, L.; Jung, S.; Chare, P.; Smejkal, A.; Swinhoe, M.; Kloeckner, W.

    2001-01-01

    Full text: The physical verification of nuclear material is an essential part of Euratom's inspection activities. Industrial plants handling large amounts of bulk material typically require large numbers of measurements. Modem plants, particularly plutonium-handling facilities, are normally automated and make it difficult for the inspector to access the material. Adapting to the plant requirements with respect to safety and security as well as economics (throughput), safeguards instrumentation is today often integrated into the plant. In order to optimize scarce inspection resources, the required measurements as well as the data analysis have to be done automatically as far as feasible. For automatic measurements Euratom has developed a new unattended data acquisition system, called RADAR (Remote Acquisition of Data and Review), which has been deployed to more than a dozen installations, handling more than 100 sensors (neutron and gamma radiations detectors, balances, seals, identity readers, switches, etc.). RADAR is the standard choice for new systems but is also replacing older automatic data systems slowly as they become outdated. RADAR and most of the associated analysis tools are the result of an in-house development, with the support of external software contractors where appropriate. Experience with turn-key systems led, in 1997, to the conclusion that in-house development would be a more effective use of resources than to buy third party products. RADAR has several layers, which will be discussed in detail in the presentation. The inner core of the package consists of services running under Windows NT. This core has watchdog and logging functions, contains a scheduler and takes care of replicating files across a network. Message and file exchange is based on TCP/IP. The replicator service contains compression and encryption facilities, the encryption is based on POP. With the help of routers, e.g. from CISCO, network connections to remote locations can be

  8. Testing of a Microwave Blade Tip Clearance Sensor at the NASA Glenn Research Center

    Science.gov (United States)

    Woike, Mark R.; Roeder, James W.; Hughes, Christopher E.; Bencic, Timothy J.

    2009-01-01

    The development of new active tip clearance control and structural health monitoring schemes in turbine engines and other types of rotating machinery requires sensors that are highly accurate and can operate in a high-temperature environment. The use of a microwave sensor to acquire blade tip clearance and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave blade tip clearance sensor works on principles that are very similar to a short-range radar system. The sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase difference of the reflected signal is directly proportional to the distance between the sensor and the target being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in turbine engines. The use of microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with installation effects are not well quantified as they are for other sensor technologies. Developing calibration techniques and evaluating installation effects are essential in using these sensors to make tip clearance and tip timing measurements. As a means of better understanding these issues, the microwave sensors were used on a benchtop calibration rig, a large axial vane fan, and a turbofan. Background on the microwave tip clearance sensor, an overview of their calibration, and the results from their use on the axial vane fan and the turbofan will be presented in this paper.

  9. Study on preparation and microwave absorption property of the core-nanoshell composite materials doped with La.

    Science.gov (United States)

    Wei, Liqiu; Che, Ruxin; Jiang, Yijun; Yu, Bing

    2013-12-01

    Microwave absorbing material plays a great role in electromagnetic pollution controlling, electromagnetic interference shielding and stealth technology, etc. The core-nanoshell composite materials doped with La were prepared by a solid-state reaction method, which is applied to the electromagnetic wave absorption. The core is magnetic fly-ash hollow cenosphere, and the shell is the nanosized ferrite doped with La. The thermal decomposition process of the sample was investigated by thermogravimetry and differential thermal analysis. The morphology and components of the composite materials were investigated by the X-ray diffraction analysis, the microstructure was observed by scanning electron microscope and transmission electron microscope. The results of vibrating sample magnetometer analysis indicated that the exchange-coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which caused outstanding magnetic properties. The microwave absorbing property of the sample was measured by reflectivity far field radar cross section of radar microwave absorbing material with vector network analyzer. The results indicated that the exchange-coupling interaction enhanced magnetic loss of composite materials. Therefore, in the frequency of 5 GHz, the reflection coefficient can achieve -24 dB. It is better than single material and is consistent with requirements of the microwave absorbing material at the low-frequency absorption. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  11. Radar Based Flow and Water Level Forecasting in Sewer Systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Bot...

  12. Microwave transmission system for space power

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R M [Jet Propulsion Lab., Pasadena, Calif. (USA)

    1976-09-01

    A small total system model and a large subsystem element similar to those that could be eventually used for wireless power transmission experiments in space have been successfully demonstrated by NASA. The short range, relatively low-power laboratory system achieved a dc-to-dc transmission efficiency of 54%. A separate high-power-level receiving subsystem, tested over a 1.54-km range at Goldstone, California, has achieved the transportation of over 30 kW of dc output power. Both tests used 12-cm wave-length microwaves.

  13. Introduction to radar target recognition

    CERN Document Server

    Tait, P

    2006-01-01

    This new text provides an overview of the radar target recognition process and covers the key techniques being developed for operational systems. It is based on the fundamental scientific principles of high resolution radar, and explains how the techniques can be used in real systems, taking into account the characteristics of practical radar system designs and component limitations. It also addresses operational aspects, such as how high resolution modes would fit in with other functions such as detection and tracking. Mathematics is kept to a minimum and the complex techniques and issues are

  14. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  15. Radar network communication through sensing of frequency hopping

    Science.gov (United States)

    Dowla, Farid; Nekoogar, Faranak

    2013-05-28

    In one embodiment, a radar communication system includes a plurality of radars having a communication range and being capable of operating at a sensing frequency and a reporting frequency, wherein the reporting frequency is different than the sensing frequency, each radar is adapted for operating at the sensing frequency until an event is detected, each radar in the plurality of radars has an identification/location frequency for reporting information different from the sensing frequency, a first radar of the radars which senses the event sends a reporting frequency corresponding to its identification/location frequency when the event is detected, and all other radars in the plurality of radars switch their reporting frequencies to match the reporting frequency of the first radar upon detecting the reporting frequency switch of a radar within the communication range. In another embodiment, a method is presented for communicating information in a radar system.

  16. Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system.

    Science.gov (United States)

    Gu, Changzhan; Li, Changzhi

    2015-03-16

    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique.

  17. Ocean wave-radar modulation transfer functions from the West Coast experiment

    Science.gov (United States)

    Wright, J. W.; Plant, W. J.; Keller, W. C.; Jones, W. L.

    1980-01-01

    Short gravity-capillary waves, the equilibrium, or the steady state excitations of the ocean surface are modulated by longer ocean waves. These short waves are the predominant microwave scatterers on the ocean surface under many viewing conditions so that the modulation is readily measured with CW Doppler radar used as a two-scale wave probe. Modulation transfer functions (the ratio of the cross spectrum of the line-of-sight orbital speed and backscattered microwave power to the autospectrum of the line-of-sight orbital speed) were measured at 9.375 and 1.5 GHz (Bragg wavelengths of 2.3 and 13 cm) for winds up to 10 m/s and ocean wave periods from 2-18 s. The measurements were compared with the relaxation-time model; the principal result is that a source of modulation other than straining by the horizontal component of orbital speed, possibly the wave-induced airflow, is responsible for most of the modulation by waves of typical ocean wave period (10 s). The modulations are large; for unit coherence, spectra of radar images of deep-water waves should be proportional to the quotient of the slope spectra of the ocean waves by the ocean wave frequency.

  18. Microwave photonics systems based on whispering-gallery-mode resonators.

    Science.gov (United States)

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K

    2013-08-05

    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.

  19. Symmetries in Hall-like systems: microwave and nonlinear transport effects

    International Nuclear Information System (INIS)

    Torres, Manuel; Kunold, Alejandro

    2008-01-01

    In this work, we present a model to describe the nonlinear response to a dc electrical current of a two-dimensional electron system subjected to magnetic and microwave fields. Considering the separation of the electron coordinates into the non-commuting relative and guiding center coordinates, we obtain a unitary transformation that exactly solves the time-dependent Schroedinger equation in the presence of arbitrarily strong electric, magnetic and microwave fields. Based on this formalism, we provide a Kubo-like formula that takes into account the oscillatory Floquet structure of the problem. We discuss results related to the recently discovered zero-resistance states and to the microwave-induced resistivity oscillations and the Hall-induced resistivity oscillations

  20. Principles of modern radar radar applications

    CERN Document Server

    Scheer, James A

    2013-01-01

    Principles of Modern Radar: Radar Applications is the third of the three-volume seriesof what was originally designed to be accomplished in one volume. As the final volumeof the set, it finishes the original vision of a complete yet bounded reference for radartechnology. This volume describes fifteen different system applications or class ofapplications in more detail than can be found in Volumes I or II.As different as the applications described, there is a difference in how these topicsare treated by the authors. Whereas in Volumes I and II there is strict adherence tochapter format and leve

  1. Evaluation of a radar-based proximity warning system for off-highway dump trucks.

    Science.gov (United States)

    Ruff, Todd

    2006-01-01

    A radar-based proximity warning system was evaluated by researchers at the Spokane Research Laboratory of the National Institute for Occupational Safety and Health to determine if the system would be effective in detecting objects in the blind spots of an off-highway dump truck. An average of five fatalities occur each year in surface mines as a result of an equipment operator not being aware of a smaller vehicle, person or change in terrain near the equipment. Sensor technology that can detect such obstacles and that also is designed for surface mining applications is rare. Researchers worked closely with the radar system manufacturer to test and modify the system on large, off-highway dump trucks at a surface mine over a period of 2 years. The final system was thoroughly evaluated by recording video images from a camera on the rear of the truck and by recording all alarms from the rear-mounted radar. Data show that the system reliably detected small vehicles, berms, people and other equipment. However, alarms from objects that posed no immediate danger were common, supporting the assertion that sensor-based systems for proximity warning should be used in combination with other devices, such as cameras, that would allow the operator to check the source of any alarm.

  2. Probabilistic discrimination between liquid rainfall events, hailstorms, biomass burning and industrial fires from C-Band Radar Polarimetric Variables

    Science.gov (United States)

    Valencia, J. M.; Sepúlveda, J.; Hoyos, C.; Herrera, L.

    2017-12-01

    Characterization and identification of fire and hailstorm events using weather radar data in a tropical complex topography region is an important task in risk management and agriculture. Polarimetric variables from a C-Band Dual polarization weather radar have potential uses in particle classification, due to the relationship their sensitivity to shape, spatial orientation, size and fall behavior of particles. In this sense, three forest fires and two chemical fires were identified for the Áburra Valley regions. Measurements were compared between each fire event type and with typical data radar retrievals for liquid precipitation events. Results of this analysis show different probability density functions for each type of event according to the particles present in them. This is very important and useful result for early warning systems to avoid precipitation false alarms during fire events within the study region, as well as for the early detection of fires using radar retrievals in remote cases. The comparative methodology is extended to hailstorm cases. Complementary sensors like laser precipitation sensors (LPM) disdrometers and meteorological stations were used to select dates of solid precipitation occurrence. Then, in this dates weather radar data variables were taken in pixels surrounding the stations and solid precipitation polar values were statistically compared with liquid precipitation values. Spectrum precipitation measured by LPM disdrometer helps to define typical features like particles number, fall velocities and diameters for both precipitation types. In addition, to achieve a complete hailstorm characterization, other meteorological variables were analyzed: wind field from meteorological stations and radar wind profiler, profiling data from Micro Rain Radar (MRR), and thermodynamic data from a microwave radiometer.

  3. The Reliability and Effectiveness of a Radar-Based Animal Detection System

    Science.gov (United States)

    2017-09-22

    This document contains data on the reliability and effectiveness of an animal detection system along U.S. Hwy 95 near Bonners Ferry, Idaho. The system uses a Doppler radar to detect large mammals (e.g., deer and elk) when they approach the highway. T...

  4. The Reliability and Effectiveness of a Radar-Based Animal Detection System

    Science.gov (United States)

    2017-09-01

    This document contains data on the reliability and effectiveness of an animal detection system along U.S. Hwy 95 near Bonners Ferry, Idaho. The system uses a Doppler radar to detect large mammals (e.g., deer and elk) when they approach the highway. T...

  5. Microwave Radiometry for Oil Pollution Monitoring, Measurements, and Systems

    DEFF Research Database (Denmark)

    Skou, Niels

    1986-01-01

    Work is presently carried out in Europe to change the Status of the microwave radiometer, namely, to develop it from a research instrument to an operational instrument-especially for measuring oil pollution on the sea surface. The Technical University of Denmark (TUD), with its long experience...... in airborne microwave radiometry, is heavily involved in this process. The TUD multichannel imaging radiometer system has been flown in several large-scale oil-pollution experiments, the collected data have been analyzed, and they have revealed that care must be exercised to obtain accurate oil volume...

  6. Sensor management in RADAR/IRST track fusion

    Science.gov (United States)

    Hu, Shi-qiang; Jing, Zhong-liang

    2004-07-01

    In this paper, a novel radar management strategy technique suitable for RADAR/IRST track fusion, which is based on Fisher Information Matrix (FIM) and fuzzy stochastic decision approach, is put forward. Firstly, optimal radar measurements' scheduling is obtained by the method of maximizing determinant of the Fisher information matrix of radar and IRST measurements, which is managed by the expert system. Then, suggested a "pseudo sensor" to predict the possible target position using the polynomial method based on the radar and IRST measurements, using "pseudo sensor" model to estimate the target position even if the radar is turned off. At last, based on the tracking performance and the state of target maneuver, fuzzy stochastic decision is used to adjust the optimal radar scheduling and retrieve the module parameter of "pseudo sensor". The experiment result indicates that the algorithm can not only limit Radar activity effectively but also keep the tracking accuracy of active/passive system well. And this algorithm eliminates the drawback of traditional Radar management methods that the Radar activity is fixed and not easy to control and protect.

  7. Microwave discharge electrodeless lamps (MDEL). Part IV. Novel self-ignition system incorporating metallic microwave condensing cones to activate MDELs in photochemical reactions.

    Science.gov (United States)

    Horikoshi, Satoshi; Tsuchida, Akihiro; Sakai, Hideki; Abe, Masahiko; Sato, Susumu; Serpone, Nick

    2009-11-01

    A metallic condensing cone that concentrates microwave radiation (equivalent to an optical lens) has been developed and used as part of a system to activate a microwave discharge electrodeless lamp (MDEL) in the oxidative treatment of wastewaters by aiding the novel self-ignition of the lamp on irradiation at low microwave power levels. This approach to self-ignition can potentially lead to considerable energy savings in such treatments. System performance was examined for the ignition power of microwaves of such MDEL devices in water, whose usefulness was assessed by investigating the photolytic transformation of aqueous solutions of representatives of three classes of contaminants: chlorinated phenols, herbicides and endocrine disruptors, specifically 4-chlorophenol (4-CP), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4,4'-isopropylidenediphenol (bisphenol-A; BPA), respectively, taken as model wastewaters in air-equilibrated, in oxygen-saturated and in TiO2-containing aqueous media. The results are discussed in terms of the dynamics of the photo-induced degradation processes.

  8. Small battery operated unattended radar sensor for security systems

    Science.gov (United States)

    Plummer, Thomas J.; Brady, Stephen; Raines, Robert

    2013-06-01

    McQ has developed, tested, and is supplying to Unattended Ground Sensor (UGS) customers a new radar sensor. This radar sensor is designed for short range target detection and classification. The design emphasis was to have low power consumption, totally automated operation, a very high probability of detection coupled with a very low false alarm rate, be able to locate and track targets, and have a price compatible with the UGS market. The radar sensor complements traditional UGS sensors by providing solutions for scenarios that are difficult for UGS. The design of this radar sensor and the testing are presented in this paper.

  9. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    Science.gov (United States)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  10. Performance indicators modern surveillance radar

    NARCIS (Netherlands)

    Nooij, P.N.C.; Theil, A.

    2014-01-01

    Blake chart computations are widely employed to rank detection coverage capabilities of competitive search radar systems. Developed for comparable 2D radar systems with a mechanically rotating reflector antenna, it was not necessary to regard update rate and plot quality in Blake's chart. To

  11. Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

    Science.gov (United States)

    Gergely, Mathias; Cooper, Steven J.; Garrett, Timothy J.

    2017-10-01

    The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV) and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs). Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.

  12. System aspects of the Indian MST radar facility

    Science.gov (United States)

    Viswanathan, G.

    1986-01-01

    One of the major objectives of the Indian Middle Atmosphere Program is to investigate the motions of the middle atmosphere on temporal and spatial scales and the interaction between the three height regions of the middle atmosphere. Realizing the fact that radar technique has proven to be a very powerful tool for the study of Earth atmosphere, the Indian Middle Atmosphere Program has recommended establishing a mesosphere-stratosphere-troposphere (MST) radar as a national facility for atmospheric research. The major landmarks in this attempt to setup the MST radar as a national facility are described.

  13. Rice status and microwave characteristics: Analysis of rice paddy fields at Kojima Bay [Okayama, Japan] using multi-frequency and polarimetric Pi-SAR radar data images

    International Nuclear Information System (INIS)

    Ishitsuka, N.; Saito, G.; Ouchi, K.; Davidson, G.; Mohri, K.; Uratsuka, S.

    2003-01-01

    Abstract South-east Asia has a rainy-season at the crop growing period, and it is difficult to observe agricultural land in this season using optical remote sensing. Synthetic Aperture Radar (SAR) can observe the earth's surface without being influenced by of clouds. However, it is less useful for observing agricultural land, because satellite SAR has only one data band. Recently, SAR is able to provide multi band and multi polarimetric data. Pi-SAR, an airborne SAR developed by NASDA and CRL, can provide L and X bands and fully polarimetric data. Rice is the main crop in Asia, and we studied the characteristic microwave scatter on rice paddy fields using Pi-SAR data. Our study area was the rice paddy fields in Kojima reclaimed land in Japan. We had two fully polarimetric data sets from 13 July 1999 and 4 October 2000. First, we processed the color polarimetric composite image. Next we calibrated the phase of each polarimetric data using river area by the Kimura method. After that we performed decomposition analysis and drew polarimetric signatures for understanding the status of rice paddy fields. At the rice planting period, rice paddy fields are filled with water and rice plants are very small. The SAR microwave scatters on water surfaces like a mirror, called 'mirror (or specular) reflection'. This phenomenon makes backscatter a small value at the water-covered area. The image from July is about one month after trans-planting and rice plants are 20-40 cm in height. X-band microwave scatters on the rice surface, but L-band microwave passes through rice bodies and shows mirror refraction on water surfaces. Some strong backscatter occur on rice paddy fields especially VV polarization because of bragg scattering. The fields where bragg scattering returns strong VV scatter because the space between rice stems cause resonation in the L-band wavelength. We can easily understand bragg scatter by using polarimetric data. Using the image from October at

  14. Remote operation of microwave systems for solids content analysis and chemical dissolution in highly radioactive environments

    International Nuclear Information System (INIS)

    Sturcken, E.F.; Floyd, T.S.; Manchester, D.P.

    1986-10-01

    Microwave systems provide quick and easy determination of solids content of samples in high-level radioactive cells. In addition, dissolution of samples is much faster when employing microwave techniques. These are great advantages because work in cells,using master-slave manipulators through leaded glass walls, is normally slower by an order of magnitude than direct contact methods. This paper describes the modifiction of a moisture/solids analyzer microwave system and a drying/digestion microwave system for remote operation in radiation environments. The moisture/solids analyzer has operated satisfactorily for over a year in a gamma radiation field of 1000 roentgens per hour and the drying/digestion system is ready for installation in a cell

  15. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  16. Classification of radar echoes using fractal geometry

    International Nuclear Information System (INIS)

    Azzaz, Nafissa; Haddad, Boualem

    2017-01-01

    Highlights: • Implementation of two concepts of fractal geometry to classify two types of meteorological radar echoes. • A new approach, called a multi-scale fractal dimension is used for classification between fixed echoes and rain echoes. • An Automatic identification system of meteorological radar echoes was proposed using fractal geometry. - Abstract: This paper deals with the discrimination between the precipitation echoes and the ground echoes in meteorological radar images using fractal geometry. This study aims to improve the measurement of precipitations by weather radars. For this, we considered three radar sites: Bordeaux (France), Dakar (Senegal) and Me lbourne (USA). We showed that the fractal dimension based on contourlet and the fractal lacunarity are pertinent to discriminate between ground and precipitation echoes. We also demonstrated that the ground echoes have a multifractal structure but the precipitations are more homogeneous than ground echoes whatever the prevailing climate. Thereby, we developed an automatic classification system of radar using a graphic interface. This interface, based on the fractal geometry makes possible the identification of radar echoes type in real time. This system can be inserted in weather radar for the improvement of precipitation estimations.

  17. Optimal Power Allocation Strategy in a Joint Bistatic Radar and Communication System Based on Low Probability of Intercept.

    Science.gov (United States)

    Shi, Chenguang; Wang, Fei; Salous, Sana; Zhou, Jianjiang

    2017-11-25

    In this paper, we investigate a low probability of intercept (LPI)-based optimal power allocation strategy for a joint bistatic radar and communication system, which is composed of a dedicated transmitter, a radar receiver, and a communication receiver. The joint system is capable of fulfilling the requirements of both radar and communications simultaneously. First, assuming that the signal-to-noise ratio (SNR) corresponding to the target surveillance path is much weaker than that corresponding to the line of sight path at radar receiver, the analytically closed-form expression for the probability of false alarm is calculated, whereas the closed-form expression for the probability of detection is not analytically tractable and is approximated due to the fact that the received signals are not zero-mean Gaussian under target presence hypothesis. Then, an LPI-based optimal power allocation strategy is presented to minimize the total transmission power for information signal and radar waveform, which is constrained by a specified information rate for the communication receiver and the desired probabilities of detection and false alarm for the radar receiver. The well-known bisection search method is employed to solve the resulting constrained optimization problem. Finally, numerical simulations are provided to reveal the effects of several system parameters on the power allocation results. It is also demonstrated that the LPI performance of the joint bistatic radar and communication system can be markedly improved by utilizing the proposed scheme.

  18. 20040217 NATO Advanced Research Workshop on Quasi-Optical Control of Intense Microwave Transmission Nizhny Novgorod, Russia 17 - 20 Feb 2004 2004 novgorod20040217 20040220

    CERN Document Server

    Hirshfield, Jay L

    2005-01-01

    This volume assembles the texts of presentations given at the NATO-sponsored Advanced Research Workshop on Quasi-Optical Transmission of High-Power Microwaves, held in Nizhny Novgorod, Russia in February 2004. The presentations bridge a wide range of technical areas, but share common tools of analysis and design. Applications of quasi-optics extend to the use of high-power microwaves—including millimeter-waves— for radar and communications (especially deep space millimeter-wave systems, space debris detection radar, and radar for the detection of small targets moving over heavy clutter); particle accelerators (especially for a future high-acceleration-gradient electron-positron collider); plasma research (especially for controlled nuclear fusion and waste decontamination); and material processing (in particular, ceramic sintering with millimeter-waves, and the coating of metal surfaces with protective dielectric films.). Scientists and engineers working in any of these areas should benefit significantly f...

  19. Modern devices of optimum filtration for the active radar system

    OpenAIRE

    V. E. Bychkov; O. D. Mrachkovskiy; V. I. Pravda

    2006-01-01

    The principle of construction the matched filter and correlator, for the active radar system operating with a broadband noise signal is esteemed. The example of construction a сhan-nel of processing on the basis of microcircuits of a programmed logic (PLD) is shown

  20. Auroral ion acoustic wave enhancement observed with a radar interferometer system

    Directory of Open Access Journals (Sweden)

    N. M. Schlatter

    2015-07-01

    Full Text Available Measurements of naturally enhanced ion acoustic line (NEIAL echoes obtained with a five-antenna interferometric imaging radar system are presented. The observations were conducted with the European Incoherent SCATter (EISCAT radar on Svalbard and the EISCAT Aperture Synthesis Imaging receivers (EASI installed at the radar site. Four baselines of the interferometer are used in the analysis. Based on the coherence estimates derived from the measurements, we show that the enhanced backscattering region is of limited extent in the plane perpendicular to the geomagnetic field. Previously it has been argued that the enhanced backscatter region is limited in size; however, here the first unambiguous observations are presented. The size of the enhanced backscatter region is determined to be less than 900 × 500 m, and at times less than 160 m in the direction of the longest antenna separation, assuming the scattering region to have a Gaussian scattering cross section in the plane perpendicular to the geomagnetic field. Using aperture synthesis imaging methods volumetric images of the NEIAL echo are obtained showing the enhanced backscattering region to be aligned with the geomagnetic field. Although optical auroral emissions are observed outside the radar look direction, our observations are consistent with the NEIAL echo occurring on field lines with particle precipitation.

  1. Reconstruction of the sea surface elevation from the analysis of the data collected by a wave radar system

    Science.gov (United States)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco; Lugni, Claudio; Fucile, Fabio; Bulian, Gabriele

    2016-04-01

    X-band radar system is able to provide information about direction and intensity of the sea surface currents and dominant waves in a range of few kilometers from the observation point (up to 3 nautical miles). This capability, together with their flexibility and low cost, makes these devices useful tools for the sea monitoring either coastal or off-shore area. The data collected from wave radar system can be analyzed by using the inversion strategy presented in [1,2] to obtain the estimation of the following sea parameters: peak wave direction; peak period; peak wavelength; significant wave height; sea surface current and bathymetry. The estimation of the significant wave height represents a limitation of the wave radar system because of the radar backscatter is not directly related to the sea surface elevation. In fact, in the last period, substantial research has been carried out to estimate significant wave height from radar images either with or without calibration using in-situ measurements. In this work, we will present two alternative approaches for the reconstruction of the sea surface elevation from wave radar images. In particular, the first approach is based on the basis of an approximated version of the modulation transfer function (MTF) tuned from a series of numerical simulation, following the line of[3]. The second approach is based on the inversion of radar images using a direct regularised least square technique. Assuming a linearised model for the tilt modulation, the sea elevation has been reconstructed as a least square fitting of the radar imaging data[4]. References [1]F. Serafino, C. Lugni, and F. Soldovieri, "A novel strategy for the surface current determination from marine X-band radar data," IEEE Geosci.Remote Sens. Lett., vol. 7, no. 2, pp. 231-235, Apr. 2010. [2]Ludeno, G., Brandini, C., Lugni, C., Arturi, D., Natale, A., Soldovieri, F., Serafino, F. (2014). Remocean System for the Detection of the Reflected Waves from the Costa

  2. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB Radar Systems

    Directory of Open Access Journals (Sweden)

    Jana Rovňáková

    2013-09-01

    Full Text Available In the case of through-the-wall localization of moving targets by ultra wideband (UWB radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  3. German Radar Observation Shuttle Experiment (ROSE)

    Science.gov (United States)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  4. Estimating Mixing Heights Using Microwave Temperature Profiler

    Science.gov (United States)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  5. Radar Based Flow and Water Level Forecasting in Sewer Systems:a danisk case study

    OpenAIRE

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.; Neve, S. L.

    2009-01-01

    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Both radar data and flow/water level model are continuously updated using online rain gauges and online in-sewer measurements, in order to make the best possible predictions. The project show very promis...

  6. MST radar data-base management

    Science.gov (United States)

    Wickwar, V. B.

    1983-01-01

    Data management for Mesospheric-Stratospheric-Tropospheric, (MST) radars is addressed. An incoherent-scatter radar data base is discussed in terms of purpose, centralization, scope, and nature of the data base management system.

  7. Proceedings of the 1986 international geoscience and remote sensing symposium (IGARSS' 86) on remote sensing: today's solutions for tomorrow's information needs, volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Guyenne, T.D.; Hunt, J.J.

    1986-08-01

    Remote sensing applications to agriculture; image processing methodology; active microwave sensing of the ocean; passive microwave sensing of vegetation and soils; radar forestry; hydrology; imaging radar missions; SAR observation of ocean waves; land analysis with optical sensors; and SAR system considerations were discussed.

  8. FMCW radar system for detection and classification of small vessels in high sea state conditions

    NARCIS (Netherlands)

    Wasselin, J.-P.; Mazuel, S.; Itcia, E.; Huizing, A.G.; Theil, A.

    2012-01-01

    The ROCKWELL COLLINS France radar department is currently developing a FMCW radar system for the detection and the classification of small maritime targets in the frame of the SISMARIS, SARGOS & I2C projects. Several test campaigns have been conducted since 2009 to develop a sensor as well as an

  9. Tomographic retrieval of cloud liquid water fields from a single scanning microwave radiometer aboard a moving platform – Part 1: Field trial results from the Wakasa Bay experiment

    Directory of Open Access Journals (Sweden)

    D. Huang

    2010-07-01

    Full Text Available Tomographic methods offer great potential for retrieving three-dimensional spatial distributions of cloud liquid water from radiometric observations by passive microwave sensors. Fixed tomographic systems require multiple radiometers, while mobile systems can use just a single radiometer. Part 1 (this paper examines the results from a limited cloud tomography trial with a single-radiometer airborne system carried out as part of the 2003 AMSR-E validation campaign over Wakasa Bay of the Sea of Japan. During this trial, the Polarimetric Scanning Radiometer (PSR and Microwave Imaging Radiometer (MIR aboard the NASA P-3 research aircraft provided a useful dataset for testing the cloud tomography method over a system of low-level clouds. We do tomographic retrievals with a constrained inversion algorithm using three configurations: PSR, MIR, and combined PSR and MIR data. The liquid water paths from the PSR retrieval are consistent with those from the MIR retrieval. The retrieved cloud field based on the combined data appears to be physically plausible and consistent with the cloud image obtained by a cloud radar. We find that some vertically-uniform clouds appear at high altitudes in the retrieved field where the radar shows clear sky. This is likely due to the sub-optimal data collection strategy. This sets the stage for Part 2 of this study that aims to define optimal data collection strategies using observation system simulation experiments.

  10. Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two Approaches

    Directory of Open Access Journals (Sweden)

    Damien Vivet

    2013-08-01

    Full Text Available This paper is concerned with robotic applications using a ground-based radar sensor for simultaneous localization and mapping problems. In mobile robotics, radar technology is interesting because of its long range and the robustness of radar waves to atmospheric conditions, making these sensors well-suited for extended outdoor robotic applications. Two localization and mapping approaches using data obtained from a 360° field of view microwave radar sensor are presented and compared. The first method is a trajectory-oriented simultaneous localization and mapping technique, which makes no landmark assumptions and avoids the data association problem. The estimation of the ego-motion makes use of the Fourier-Mellin transform for registering radar images in a sequence, from which the rotation and translation of the sensor motion can be estimated. The second approach uses the consequence of using a rotating range sensor in high speed robotics. In such a situation, movement combinations create distortions in the collected data. Velocimetry is achieved here by explicitly analysing these measurement distortions. As a result, the trajectory of the vehicle and then the radar map of outdoor environments can be obtained. The evaluation of experimental results obtained by the two methods is presented on real-world data from a vehicle moving at 30 km/h over a 2.5 km course.

  11. Microwave systems design

    CERN Document Server

    Awang, Zaiki

    2014-01-01

    The aim of this book is to serve as a design reference for students and as an up-to-date reference for researchers. It also acts as an excellent introduction for newcomers to the field and offers established rf/microwave engineers a comprehensive refresher.  The content is roughly classified into two – the first two chapters provide the necessary fundamentals, while the last three chapters focus on design and applications. Chapter 2 covers detailed treatment of transmission lines. The Smith chart is utilized in this chapter as an important tool in the synthesis of matching networks for microwave amplifiers. Chapter 3 contains an exhaustive review of microstrip circuits, culled from various references. Chapter 4 offers practical design information on solid state amplifiers, while Chapter 5 contains topics on the design of modern planar filters, some of which were seldom published previously. A set of problems at the end of each chapter provides the readers with exercises which were compiled from actual uni...

  12. ICUD-0471 Weather radar rainfall for design of urban storm water systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Wright, D. B.; Nielsen, Jesper Ellerbæk

    2017-01-01

    Long continuous series of high-resolution radar rainfall series provides valuable information on spatial and temporal variability of rainfall, which can be used in design of urban drainage systems. In design of especially large drainage systems with complex flow patterns (and potentially surface ...

  13. A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials.

    Science.gov (United States)

    Hasar, U C

    2009-05-01

    A microcontroller-based noncontact and nondestructive microwave free-space measurement system for real-time and dynamic determination of complex permittivity of lossy liquid materials has been proposed. The system is comprised of two main sections--microwave and electronic. While the microwave section provides for measuring only the amplitudes of reflection coefficients, the electronic section processes these data and determines the complex permittivity using a general purpose microcontroller. The proposed method eliminates elaborate liquid sample holder preparation and only requires microwave components to perform reflection measurements from one side of the holder. In addition, it explicitly determines the permittivity of lossy liquid samples from reflection measurements at different frequencies without any knowledge on sample thickness. In order to reduce systematic errors in the system, we propose a simple calibration technique, which employs simple and readily available standards. The measurement system can be a good candidate for industrial-based applications.

  14. An Assessment of the Capabilities of the ERS Satellites' Active Microwave Instruments for Monitoring Soil Moisture Change

    Directory of Open Access Journals (Sweden)

    K. Blyth

    1997-01-01

    Full Text Available The launch of the European Remote sensing Satellite (ERS-1 in July 1991 represented an important turning point in the development of Earth observation as it was the first of a series of satellites which would carry high resolution active microwave (radar sensors which could operate through the thickest cloudeover and provide continuity of data for at least a decade. This was of particular relevance to hydrological applications, such as soil moisture monitoring, which generally require frequent satellite observations to monitor changes in state. ERS-1 and its successor ERS-2 carry the active microwave instrument (AMI which operates in 3 modes (synthetic aperture radar, wind scatterometer and wave seatterometer together with the radar altimeter which may all be useful for the observation of soil moisture. This paper assesses the utility of these sensors through a comprehensive review of work in this field. Two approaches to soil moisture retrieval are identified: 1 inversion modelling, where the physical effects of vegetation and soil roughness on radar backscatter are quantified through the use of multi-frequency and/or multi-polarization sensors and 2 change detection where these effects are normalized through frequent satellite observation, the residual effects being attributed to short-term changes in soil moisture. Both approaches will be better supported by the future European Envisat-l satellite which will provide both multi-polarization SAR and low resolution products which should facilitate more frequent temporal observation.

  15. Microwave amplifier and active circuit design using the real frequency technique

    CERN Document Server

    Jarry, Pierre

    2016-01-01

    This book focuses on the authors' Real Frequency Technique (RFT) and its application to a wide variety of multi-stage microwave amplifiers and active filters, and passive equalizers for radar pulse shaping and antenna return loss applications. The first two chapters review the fundamentals of microwave amplifier design and provide a description of the RFT. Each subsequent chapter introduces a new type of amplifier or circuit design, reviews its design problems, and explains how the RFT can be adapted to solve these problems. The authors take a practical approach by summarizing the design steps and giving numerous examples of amplifier realizations and measured responses. Provides a complete description of the RFT as it is first used to design multistage lumped amplifiers using a progressive optimization of the equalizers, leading to a small umber of parameters to optimize simultaneously Presents modifications to the RFT to design trans-impedance microwave amplifiers that are used for photodiodes acti...

  16. Handheld microwave bomb-detecting imaging system

    Science.gov (United States)

    Gorwara, Ashok; Molchanov, Pavlo

    2017-05-01

    Proposed novel imaging technique will provide all weather high-resolution imaging and recognition capability for RF/Microwave signals with good penetration through highly scattered media: fog, snow, dust, smoke, even foliage, camouflage, walls and ground. Image resolution in proposed imaging system is not limited by diffraction and will be determined by processor and sampling frequency. Proposed imaging system can simultaneously cover wide field of view, detect multiple targets and can be multi-frequency, multi-function. Directional antennas in imaging system can be close positioned and installed in cell phone size handheld device, on small aircraft or distributed around protected border or object. Non-scanning monopulse system allows dramatically decrease in transmitting power and at the same time provides increased imaging range by integrating 2-3 orders more signals than regular scanning imaging systems.

  17. HF radar and drifter observing system in the Adriatic for fishery management and security

    DEFF Research Database (Denmark)

    Corgnati, Lorenzo; Carlson, Daniel Frazier; Mantovani, Carlo

    2014-01-01

    A HF radar system has been operating since May 2013 in the Southern Adriatic between the Gargano Cape and the Manfredonia Gulf. The system, that has been tested and complemented with drifter launchings during three experiments, produces maps of surface ocean velocities at 2 km resolution every hour....... These data support fishery management as well as search and rescue and pollution mitigation operations. The Manfredonia Gulf is a known nursery area for small pelagic fish (anchovies and sardines), and its dynamics and connectivity properties are very relevant to the study of population dynamics. HF radar...

  18. NOAA JPSS Microwave Integrated Retrieval System (MIRS) Advanced Technology Microwave Sounder (ATMS) Precipitation and Surface Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains two-dimensional precipitation and surface products from the JPSS Microwave Integrated Retrieval System (MIRS) using sensor data from the...

  19. Pedestrian recognition using automotive radar sensors

    Science.gov (United States)

    Bartsch, A.; Fitzek, F.; Rasshofer, R. H.

    2012-09-01

    The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insights into the object classification process. The impact of raw radar data properties can be directly observed in every layer of the classification system by avoiding machine learning and tracking. This gives information on the limiting factors of raw radar data in terms of classification decision making. To accomplish the very challenging distinction between pedestrians and static objects, five significant and stable object features from the spatial distribution and Doppler information are found. Experimental results with data from a 77 GHz automotive radar sensor show that over 95% of pedestrians can be classified correctly under optimal conditions, which is compareable to modern machine learning systems. The impact of the pedestrian's direction of movement, occlusion, antenna beam elevation angle, linear vehicle movement, and other factors are investigated and discussed. The results show that under real life conditions, radar only based pedestrian recognition is limited due to insufficient Doppler frequency and spatial resolution as well as antenna side lobe effects.

  20. First Measurements of Polar Mesospheric Summer Echoes by a Tri-static Radar System

    Science.gov (United States)

    La Hoz, C.

    2015-12-01

    Polar Mesospheric Summer Echoes (PMSE) have been observed for the first time by a tri-static radar system comprising the EISCAT VHF (224 MHz, 0.67 m Bragg wavelength) active radar in Tromso (Norway) and passive receiving stations in Kiruna, (Sweden) and Sodankyla (Finland). The antennas at the receiving stations, originally part of the EISCAT tri-static UHF radar system at 930 MHz, have been refitted with new feeder systems at the VHF frequency of the transmitter in Tromso. The refitted radar system opens new opportunities to study PMSE for its own sake and as a tracer of the dynamics of the polar mesosphere, a region that is difficult to investigate by other means. The measurements show that very frequently both remote receiving antennas detect coherent signals that are much greater than the regular incoherent scattering due to thermal electrons and coinciding in time and space with PMSE measured by the transmitter station in Tromso. This represents further evidence that PMSE is not aspect sensitive, as was already indicated by a less sensitive radar system in a bi-static configuration, and implying that the underlying atmospheric turbulence, at least at sub-meter scales, is isotropic in agreement with Kolmogorov's hypothesis. Measurements also show that the vertical rate of fall of persistent features of PMSE is the same as the vertical line of sight velocity inferred from the doppler shift of the PMSE signals. This equivalence forms the basis for using PMSE as a tracer of the dynamics of the background mesosphere. Thus, it is possible to measure the 3-dimensional velocity field in the PMSE layer over the intersection volume of the three antennas. Since the signals have large signal-to-noise ratios (up to 30 dB), the inferred velocities have high accuracies and good time resolutions. This affords the possibility to make estimates of momentum flux in the mesosphere deposited by overturning gravity waves. Gravity wave momentum flux is believed to be the engine of a

  1. New Approach for Monitoring Seismic and Volcanic Activities Using Microwave Radiometer Data

    Science.gov (United States)

    Maeda, Takashi; Takano, Tadashi

    Interferograms formed from the data of satellite-borne synthetic aperture radar (SAR) enable us to detect slight land-surface deformations related to volcanic eruptions and earthquakes. Currently, however, we cannot determine when land-surface deformations occurred with high time resolution since the time lag between two scenes of SAR used to form interferograms is longer than the recurrent period of the satellite carrying it (several tens of days). In order to solve this problem, we are investigating new approach to monitor seismic and vol-canic activities with higher time resolution from satellite-borne sensor data, and now focusing on a satellite-borne microwave radiometer. It is less subject to clouds and rainfalls over the ground than an infrared spectrometer, so more suitable to observe an emission from land sur-faces. With this advantage, we can expect that thermal microwave energy by increasing land surface temperatures is detected before a volcanic eruption. Additionally, laboratory experi-ments recently confirmed that rocks emit microwave energy when fractured. This microwave energy may result from micro discharges in the destruction of materials, or fragment motions with charged surfaces of materials. We first extrapolated the microwave signal power gener-ated by rock failures in an earthquake from the experimental results and concluded that the microwave signals generated by rock failures near the land surface are strong enough to be detected by a satellite-borne radiometer. Accordingly, microwave energy generated by rock failures associated with a seismic activity is likely to be detected as well. However, a satellite-borne microwave radiometer has a serious problem that its spatial res-olution is too coarse compared to SAR or an infrared spectrometer. In order to raise the possibility of detection, a new methodology to compensate the coarse spatial resolution is es-sential. Therefore, we investigated and developed an analysis method to detect local

  2. Microwave and Millimeter-Wave Remote Sensing for Security Applications. By Jeffrey A. Nanzer, Artech House, 2012; 372 pages. Price £109.00, ISBN 978-1-60807-172-2

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2013-01-01

    Full Text Available Microwave and millimeter-wave remote sensing techniques are fast becoming a necessity in many aspects of security as detection and classification of objects or intruders becomes more difficult. This groundbreaking resource offers you expert guidance in this burgeoning area. It provides you with a thorough treatment of the principles of microwave and millimeter-wave remote sensing for security applications, as well as practical coverage of the design of radiometer, radar, and imaging systems. You learn how to design active and passive sensors for intruder detection, concealed object detection, and human activity classification. This detailed book presents the fundamental concepts practitioners need to understand, including electromagnetic wave propagation in free space and in media, antenna theory, and the principles of receiver design. You find in-depth discussions on the interactions of electromagnetic waves with human tissues, the atmosphere and various building and clothing materials. This timely volume explores recently developed detection techniques, such as micro-Doppler radar signatures and correlation radiometry. The book is supported with over 200 illustrations and 1,135 equations.

  3. Using snowflake surface-area-to-volume ratio to model and interpret snowfall triple-frequency radar signatures

    Directory of Open Access Journals (Sweden)

    M. Gergely

    2017-10-01

    Full Text Available The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs. Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.

  4. Pocket radar guide key facts, equations, and data

    CERN Document Server

    Curry, G Richard

    2010-01-01

    ThePocket Radar Guideis a concise collection of key radar facts and important radar data that provides you with necessary radar information when you are away from your office or references. It includes statements and comments on radar design, operation, and performance; equations describing the characteristics and performance of radar systems and their components; and tables with data on radar characteristics and key performance issues.It is intended to supplement other radar information sources by providing a pocket companion to refresh memory and provide details whenever you need them such a

  5. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  6. Preliminary Results of a New Auxiliary Mechatronic Near-Field Radar System to 3D Mammography for Early Detection of Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ashkan Ghanbarzadeh Dagheyan

    2018-01-01

    Full Text Available Accurate and early detection of breast cancer is of high importance, as it is directly associated with the patients’ overall well-being during treatment and their chances of survival. Uncertainties in current breast imaging methods can potentially cause two main problems: (1 missing newly formed or small tumors; and (2 false alarms, which could be a source of stress for patients. A recent study at the Massachusetts General Hospital (MGH indicates that using Digital Breast Tomosynthesis (DBT can reduce the number of false alarms, when compared to conventional mammography. Despite the image quality enhancement DBT provides, the accurate detection of cancerous masses is still limited by low radiological contrast (about 1% between the fibro-glandular tissue and affected tissue at X-ray frequencies. In a lower frequency region, at microwave frequencies, the contrast is comparatively higher (about 10% between the aforementioned tissues; yet, microwave imaging suffers from low spatial resolution. This work reviews conventional X-ray breast imaging and describes the preliminary results of a novel near-field radar imaging mechatronic system (NRIMS that can be fused with the DBT, in a co-registered fashion, to combine the advantages of both modalities. The NRIMS consists of two antipodal Vivaldi antennas, an XY positioner, and an ethanol container, all of which are particularly designed based on the DBT physical specifications. In this paper, the independent performance of the NRIMS is assessed by (1 imaging a bearing ball immersed in sunflower oil and (2 computing the heat Specific Absorption Rate (SAR due to the electromagnetic power transmitted into the breast. The preliminary results demonstrate that the system is capable of generating images of the ball. Furthermore, the SAR results show that the system complies with the standards set for human trials. As a result, a configuration based on this design might be suitable for use in realistic clinical

  7. An Entropy-Based Propagation Speed Estimation Method for Near-Field Subsurface Radar Imaging

    Science.gov (United States)

    Flores-Tapia, Daniel; Pistorius, Stephen

    2010-12-01

    During the last forty years, Subsurface Radar (SR) has been used in an increasing number of noninvasive/nondestructive imaging applications, ranging from landmine detection to breast imaging. To properly assess the dimensions and locations of the targets within the scan area, SR data sets have to be reconstructed. This process usually requires the knowledge of the propagation speed in the medium, which is usually obtained by performing an offline measurement from a representative sample of the materials that form the scan region. Nevertheless, in some novel near-field SR scenarios, such as Microwave Wood Inspection (MWI) and Breast Microwave Radar (BMR), the extraction of a representative sample is not an option due to the noninvasive requirements of the application. A novel technique to determine the propagation speed of the medium based on the use of an information theory metric is proposed in this paper. The proposed method uses the Shannon entropy of the reconstructed images as the focal quality metric to generate an estimate of the propagation speed in a given scan region. The performance of the proposed algorithm was assessed using data sets collected from experimental setups that mimic the dielectric contrast found in BMI and MWI scenarios. The proposed method yielded accurate results and exhibited an execution time in the order of seconds.

  8. Embedded DSP-based telehealth radar system for remote in-door fall detection.

    Science.gov (United States)

    Garripoli, Carmine; Mercuri, Marco; Karsmakers, Peter; Jack Soh, Ping; Crupi, Giovanni; Vandenbosch, Guy A E; Pace, Calogero; Leroux, Paul; Schreurs, Dominique

    2015-01-01

    Telehealth systems and applications are extensively investigated nowadays to enhance the quality-of-care and, in particular, to detect emergency situations and to monitor the well-being of elderly people, allowing them to stay at home independently as long as possible. In this paper, an embedded telehealth system for continuous, automatic, and remote monitoring of real-time fall emergencies is presented and discussed. The system, consisting of a radar sensor and base station, represents a cost-effective and efficient healthcare solution. The implementation of the fall detection data processing technique, based on the least-square support vector machines, through a digital signal processor and the management of the communication between radar sensor and base station are detailed. Experimental tests, for a total of 65 mimicked fall incidents, recorded with 16 human subjects (14 men and two women) that have been monitored for 320 min, have been used to validate the proposed system under real circumstances. The subjects' weight is between 55 and 90 kg with heights between 1.65 and 1.82 m, while their age is between 25 and 39 years. The experimental results have shown a sensitivity to detect the fall events in real time of 100% without reporting false positives. The tests have been performed in an area where the radar's operation was not limited by practical situations, namely, signal power, coverage of the antennas, and presence of obstacles between the subject and the antennas.

  9. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  10. Interaction of microwave radiation with the high mobility two-dimensional electron system in GaAs/AlGaAs heterostructures

    International Nuclear Information System (INIS)

    Ramanayaka, A.N.; Ye, Tianyu; Liu, H.-C.; Wegscheider, W.; Mani, R.G.

    2014-01-01

    The influence of microwave excitation on the magnetotransport properties of the high mobility two-dimensional electron system (2DES) in the GaAs/AlGaAs heterostructure system is investigated by exploring (a) the dependence of the amplitude of the microwave-induced magnetoresistance-oscillations on the polarization direction of the linearly polarized microwaves and (b) the microwave reflection from the 2DES. The polarization study indicates that the amplitude of the magnetoresistance oscillations is remarkably responsive to the relative orientation between the linearly polarized microwaves and the current-axis in the specimen. At low microwave power, P, experiments indicate a strong sinusoidal variation in the diagonal resistance R xx vs. θ at the oscillatory extrema of the microwave-induced magnetoresistance oscillations. The reflection study indicates strong correlations between the microwave induced magnetoresistance oscillations and oscillatory features in the microwave reflection in a concurrent measurement of the magnetoresistance and the microwave magnetoreflection from the 2DES. The correlations are followed as a function of the microwave frequency and the microwave power, and the results are reported

  11. Interaction of microwave radiation with the high mobility two-dimensional electron system in GaAs/AlGaAs heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ramanayaka, A.N.; Ye, Tianyu; Liu, H.-C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Wegscheider, W. [Laboratorium fuer Festkoerperphysik, ETH Zurich, 8093 Zurich (Switzerland); Mani, R.G., E-mail: rmani@gsu.edu [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)

    2014-11-15

    The influence of microwave excitation on the magnetotransport properties of the high mobility two-dimensional electron system (2DES) in the GaAs/AlGaAs heterostructure system is investigated by exploring (a) the dependence of the amplitude of the microwave-induced magnetoresistance-oscillations on the polarization direction of the linearly polarized microwaves and (b) the microwave reflection from the 2DES. The polarization study indicates that the amplitude of the magnetoresistance oscillations is remarkably responsive to the relative orientation between the linearly polarized microwaves and the current-axis in the specimen. At low microwave power, P, experiments indicate a strong sinusoidal variation in the diagonal resistance R{sub xx} vs. θ at the oscillatory extrema of the microwave-induced magnetoresistance oscillations. The reflection study indicates strong correlations between the microwave induced magnetoresistance oscillations and oscillatory features in the microwave reflection in a concurrent measurement of the magnetoresistance and the microwave magnetoreflection from the 2DES. The correlations are followed as a function of the microwave frequency and the microwave power, and the results are reported.

  12. Use of Radar Vegetation Index (RVI) in Passive Microwave Algorithms for Soil Moisture Estimates

    Science.gov (United States)

    Rowlandson, T. L.; Berg, A. A.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) satellite will provide a unique opportunity for the estimation of soil moisture by having simultaneous radar and radiometer measurements available. As with the Soil Moisture and Ocean Salinity (SMOS) satellite, the soil moisture algorithms will need to account for the contribution of vegetation to the brightness temperature. Global maps of vegetation volumetric water content (VWC) are difficult to obtain, and the SMOS mission has opted to estimate the optical depth of standing vegetation by using a relationship between the VWC and the leaf area index (LAI). LAI is estimated from optical remote sensing or through soil-vegetation-atmosphere transfer modeling. During the growing season, the VWC of agricultural crops can increase rapidly, and if cloud cover exists during an optical acquisition, the estimation of LAI may be delayed, resulting in an underestimation of the VWC and overestimation of the soil moisture. Alternatively, the radar vegetation index (RVI) has shown strong correlation and linear relationship with VWC for rice and soybeans. Using the SMAP radar to produce RVI values that are coincident to brightness temperature measurements may eliminate the need for LAI estimates. The SMAP Validation Experiment 2012 (SMAPVEX12) was a cal/val campaign for the SMAP mission held in Manitoba, Canada, during a 6-week period in June and July, 2012. During this campaign, soil moisture measurements were obtained for 55 fields with varying soil texture and vegetation cover. Vegetation was sampled from each field weekly to determine the VWC. Soil moisture measurements were taken coincident to overpasses by an aircraft carrying the Passive and Active L-band System (PALS) instrumentation. The aircraft flew flight lines at both high and low altitudes. The low altitude flight lines provided a footprint size approximately equivalent to the size of the SMAPVEX12 field sites. Of the 55 field sites, the low altitude flight lines provided

  13. Proceedings of microwave processing of materials 3

    International Nuclear Information System (INIS)

    Beatty, R.L.

    1992-01-01

    This book contains proceedings of the third MRS Symposium on Microwave Processing of Materials. Topics covered include: Microwave Processing Overviews, Numerical Modeling Techniques, Microwave Processing System Design, Microwave/Plasma Processing, Microwave/Materials Interactions, Microwave Processing of Ceramics, Microwave Processing of Polymers, Microwave Processing of Hazardous Wastes, Microwave NDE Techniques and Dielectric Properties and Measurements

  14. Impulse radar imaging system for concealed object detection

    Science.gov (United States)

    Podd, F. J. W.; David, M.; Iqbal, G.; Hussain, F.; Morris, D.; Osakue, E.; Yeow, Y.; Zahir, S.; Armitage, D. W.; Peyton, A. J.

    2013-10-01

    Electromagnetic systems for imaging concealed objects at checkpoints typically employ radiation at millimetre and terahertz frequencies. These systems have been shown to be effective and provide a sufficiently high resolution image. However there are difficulties and current electromagnetic systems have limitations particularly in accurately differentiating between threat and innocuous objects based on shape, surface emissivity or reflectivity, which are indicative parameters. In addition, water has a high absorption coefficient at millimetre wavelength and terahertz frequencies, which makes it more difficult for these frequencies to image through thick damp clothing. This paper considers the potential of using ultra wideband (UWB) in the low gigahertz range. The application of this frequency band to security screening appears to be a relatively new field. The business case for implementing the UWB system has been made financially viable by the recent availability of low-cost integrated circuits operating at these frequencies. Although designed for the communication sector, these devices can perform the required UWB radar measurements as well. This paper reports the implementation of a 2 to 5 GHz bandwidth linear array scanner. The paper describes the design and fabrication of transmitter and receiver antenna arrays whose individual elements are a type of antipodal Vivaldi antenna. The antenna's frequency and angular response were simulated in CST Microwave Studio and compared with laboratory measurements. The data pre-processing methods of background subtraction and deconvolution are implemented to improve the image quality. The background subtraction method uses a reference dataset to remove antenna crosstalk and room reflections from the dataset. The deconvolution method uses a Wiener filter to "sharpen" the returned echoes which improves the resolution of the reconstructed image. The filter uses an impulse response reference dataset and a signal

  15. Superconductor Microwave Kinetic Inductance Detectors: System Model of the Readout Electronics

    Directory of Open Access Journals (Sweden)

    F. Alimenti

    2009-06-01

    Full Text Available This paper deals with the readout electronics needed by superconductor Microwave Kinetic Inductance Detectors (MKIDs. MKIDs are typically implemented in the form of cryogenic-cooled high quality factor microwave resonator. The natural frequency of these resonators changes as a millimeter or sub-millimeter wave radiation impinges on the resonator itself. A quantitative system model of the readout electronics (very similar to that of a vector network analyzer has been implemented under ADS environment and tested by several simulation experiments. The developed model is a tool to further optimize the readout electronic and to design the frequency allocation of parallel-connected MKIDs resonators. The applications of MKIDs will be in microwave and millimeter-wave radiometric imaging as well as in radio-astronomy focal plane arrays.

  16. Planning a radar system for protection from the airborne threat

    International Nuclear Information System (INIS)

    Greneker, E.F.; McGee, M.C.

    1986-01-01

    A planning methodology for developing a radar system to protect nuclear materials facilities from the airborne threat is presented. Planning for physical security to counter the airborne threat is becoming even more important because hostile acts by terrorists are increasing and airborne platforms that can be used to bypass physical barriers are readily available. The comprehensive system planning process includes threat and facility surveys, defense hardening, analysis of detection and early warning requirements, optimization of sensor mix and placement, and system implementation considerations

  17. Bistatic radar

    CERN Document Server

    Willis, Nick

    2004-01-01

    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  18. Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: observing system simulation experiments

    Directory of Open Access Journals (Sweden)

    Chih-Chien Tsai

    2014-03-01

    Full Text Available This study develops a Doppler radar data assimilation system, which couples the local ensemble transform Kalman filter with the Weather Research and Forecasting model. The benefits of this system to quantitative precipitation nowcasting (QPN are evaluated with observing system simulation experiments on Typhoon Morakot (2009, which brought record-breaking rainfall and extensive damage to central and southern Taiwan. The results indicate that the assimilation of radial velocity and reflectivity observations improves the three-dimensional winds and rain-mixing ratio most significantly because of the direct relations in the observation operator. The patterns of spiral rainbands become more consistent between different ensemble members after radar data assimilation. The rainfall intensity and distribution during the 6-hour deterministic nowcast are also improved, especially for the first 3 hours. The nowcasts with and without radar data assimilation have similar evolution trends driven by synoptic-scale conditions. Furthermore, we carry out a series of sensitivity experiments to develop proper assimilation strategies, in which a mixed localisation method is proposed for the first time and found to give further QPN improvement in this typhoon case.

  19. Nanoelectromechanical systems: Nanodevice motion at microwave frequencies

    Science.gov (United States)

    Henry Huang, Xue Ming; Zorman, Christian A.; Mehregany, Mehran; Roukes, Michael L.

    2003-01-01

    It has been almost forgotten that the first computers envisaged by Charles Babbage in the early 1800s were mechanical and not electronic, but the development of high-frequency nanoelectromechanical systems is now promising a range of new applications, including sensitive mechanical charge detectors and mechanical devices for high-frequency signal processing, biological imaging and quantum measurement. Here we describe the construction of nanodevices that will operate with fundamental frequencies in the previously inaccessible microwave range (greater than 1 gigahertz). This achievement represents a significant advance in the quest for extremely high-frequency nanoelectromechanical systems.

  20. Radar reflection off extensive air showers

    CERN Document Server

    Stasielak, J; Bertaina, M; Blümer, J; Chiavassa, A; Engel, R; Haungs, A; Huege, T; Kampert, K -H; Klages, H; Kleifges, M; Krömer, O; Ludwig, M; Mathys, S; Neunteufel, P; Pekala, J; Rautenberg, J; Riegel, M; Roth, M; Salamida, F; Schieler, H; Šmída, R; Unger, M; Weber, M; Werner, F; Wilczyński, H; Wochele, J

    2012-01-01

    We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  1. Microwave and Millimeter-Wave Signal Power Generation

    DEFF Research Database (Denmark)

    Hadziabdic, Dzenan

    Among the major limitations in high-speed communications and highresolution radars is the lack of efficient and powerful signal sources with low distortion. Microwave and millimeter-wave (mm-wave) signal power is needed for signal transmission. Progress in signal generation stems largely from...... distortion and high PAE were observed. The estimated output power of 42.5 dBm and PAE of 31.3% are comparable to the state-of-the-art results reported for GaN HEMT amplifiers. Wireless communication systems planned in the near future will operate at E-band, around 71-86 GHz, and require mm-wave-PAs to boost...... the application of novel materials like galliumnitride (GaN) and silicon-carbide (SiC) and fabrication of indiumphosphide (InP) based transistors. One goal of this thesis is to assess GaN HEMT technology with respect to linear efficient signal power generation. While most reports on GaN HEMT high-power devices...

  2. Design, fabrication, operation and modification of a glove box adaptable microwave heating system

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G K; Gautam, V K; Shivashankaran, G; Behere, P G; Mohan, Anand; Bhargava, V K; Kamath, H S [Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur (India)

    1999-01-01

    The microwave heating techniques have enormous potential to improve the processing conditions for many radiochemical and radio-metallurgical processes. An update review on the various aspects of development and fabrication of an indigenous microwave heating system and its adaptation to the glove box has been reported in this paper. (author) 3 refs.

  3. Low-Cost Mini Radar: Design Prototyping and Tests

    Directory of Open Access Journals (Sweden)

    Dario Tarchi

    2017-01-01

    Full Text Available Radar systems are largely employed for surveillance of wide and remote areas; the recent advent of drones gives the opportunity to exploit radar sensors on board of unmanned aerial platforms. Nevertheless, whereas drone radars are currently available for military applications, their employment in the civilian domain is still limited. The present research focuses on design, prototyping, and testing of an agile, low-cost, mini radar system, to be carried on board of Remotely Piloted Aircraft (RPAs or tethered aerostats. In particular, the paper faces the challenge to integrate the in-house developed radar sensor with a low-cost navigation board, which is used to estimate attitude and positioning data. In fact, a suitable synchronization between radar and navigation data is essential to properly reconstruct the radar picture whenever the platform is moving or the radar is scanning different azimuthal sectors. Preliminary results, relative to tests conducted in preoperational conditions, are provided and exploited to assert the suitable consistency of the obtained radar pictures. From the results, there is a high consistency between the radar images and the picture of the current environment emerges; finally, the comparison of radar images obtained in different scans shows the stability of the platform.

  4. Microwave remote sensing of sea ice in the AIDJEX Main Experiment

    Science.gov (United States)

    Campbell, W.J.; Wayenberg, J.; Ramseyer, J.B.; Ramseier, R.O.; Vant, M.R.; Weaver, R.; Redmond, A.; Arsenaul, L.; Gloersen, P.; Zwally, H.J.; Wilheit, T.T.; Chang, T.C.; Hall, D.; Gray, L.; Meeks, D.C.; Bryan, M.L.; Barath, F.T.; Elachi, C.; Leberl, F.; Farr, Tom

    1978-01-01

    During the AIDJEX Main Experiment, April 1975 through May 1976, a comprehensive microwave sensing program was performed on the sea ice of the Beaufort Sea. Surface and aircraft measurements were obtained during all seasons using a wide variety of active and passive microwave sensors. The surface program obtained passive microwave measurements of various ice types using four antennas mounted on a tracked vehicle. In three test regions, each with an area of approximately 1.5 ?? 104 m2, detailed ice crystallographic, dielectric properties, and brightness temperatures of first-year, multiyear, and first-year/multiyear mixtures were measured. A NASA aircraft obtained passive microwave measurements of the entire area of the AIDJEX manned station array (triangle) during each of 18 flights. This verified the earlier reported ability to distinguish first-year and multiyear ice types and concentration and gave new information on ways to observe ice mixtures and thin ice types. The active microwave measurements from aircraft included those from an X- and L-band radar and from a scatterometer. The former is used to study a wide variety of ice features and to estimate deformations, while both are equally usable to observe ice types. With the present data, only the scatterometer can be used to distinguish positively multiyear from first-year and various types of thin ice. This is best done using coupled active and passive microwave sensing. ?? 1978 D. Reidel Publishing Company.

  5. Target scattering characteristics for OAM-based radar

    Directory of Open Access Journals (Sweden)

    Kang Liu

    2018-02-01

    Full Text Available The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM based radar system. To illustrate the role of OAM-based radar cross section (ORCS, conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS. The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  6. Target scattering characteristics for OAM-based radar

    Science.gov (United States)

    Liu, Kang; Gao, Yue; Li, Xiang; Cheng, Yongqiang

    2018-02-01

    The target scattering characteristics are crucial for radar systems. However, there is very little study conducted for the recently developed orbital angular momentum (OAM) based radar system. To illustrate the role of OAM-based radar cross section (ORCS), conventional radar equation is modified by taking characteristics of the OAM waves into account. Subsequently, the ORCS is defined in analogy to classical radar cross section (RCS). The unique features of the incident OAM-carrying field are analyzed. The scattered field is derived, and the analytical expressions of ORCSs for metal plate and cylinder targets are obtained. Furthermore, the ORCS and RCS are compared to illustrate the influences of OAM mode number, target size and signal frequency on the ORCS. Analytical studies demonstrate that the mirror-reflection phenomenon disappears and peak values of ORCS are in the non-specular direction. Finally, the ORCS features are summarized to show its advantages in radar target detection. This work can provide theoretical guidance to the design of OAM-based radar as well as the target detection and identification applications.

  7. Identification of sea ice types in spaceborne synthetic aperture radar data

    Science.gov (United States)

    Kwok, Ronald; Rignot, Eric; Holt, Benjamin; Onstott, R.

    1992-01-01

    This study presents an approach for identification of sea ice types in spaceborne SAR image data. The unsupervised classification approach involves cluster analysis for segmentation of the image data followed by cluster labeling based on previously defined look-up tables containing the expected backscatter signatures of different ice types measured by a land-based scatterometer. Extensive scatterometer observations and experience accumulated in field campaigns during the last 10 yr were used to construct these look-up tables. The classification approach, its expected performance, the dependence of this performance on radar system performance, and expected ice scattering characteristics are discussed. Results using both aircraft and simulated ERS-1 SAR data are presented and compared to limited field ice property measurements and coincident passive microwave imagery. The importance of an integrated postlaunch program for the validation and improvement of this approach is discussed.

  8. Ground Penetrating Radar (GPR) for Detection of Underground Objects

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Kamal Shah Shamsuddin; Wan Zainal Abidin; Awang Sarfarudin Awang Putra

    2011-01-01

    Ground Penetrating Radar (GPR) utilizes an electromagnetic microwave that is transmitted into the matter under investigation. Any objects with different dielectric properties from the medium of the matter under investigation will reflect the waves and will be picked up by the receivers embedded in the antenna. We have applied GPR in various application such as concrete inspection, underground utility detection, grave detection, archaeology, oil contamination of soil, soil layer thickness measurement and etc. This paper will give general findings of the application of GPR to provide solutions to the industry and public. The results of the GPR surveys will be discussed. (author)

  9. Micropower radar systems for law enforcement technology

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, S.G.; Mast, J.; Brase, J. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-11-15

    LLNL researchers have pioneered a unique compact low-power and inexpensive radar technology (microradar) that has enormous potential in various industries. Some licenses are currently in place for motion sensors and stud finders. The ultra-wideband characteristics of the microradar (4 to 10 GHz) make it difficult to detect, yet provide potential range resolution of 1 cm at ranges of greater than 20 meters. Real and synthetic apertures arrays of radar elements can address imaging applications behind walls at those distances. Personnel detection applications are currently being tested.

  10. From the atomic nucleus to mesoscopic systems to microwave cavities

    Indian Academy of Sciences (India)

    Abstract. Universal statistical aspects of wave scattering by a variety of physical systems ranging from atomic nuclei to mesoscopic systems and microwave cavities are described. A statistical model for the scattering matrix is employed to address the problem of quantum chaotic scattering. The model, introduced in the past ...

  11. Radar reflection off extensive air showers

    Directory of Open Access Journals (Sweden)

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  12. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  13. Microwave Scattering System Design for ρe-Scale Turbulence Measurements on NSTX

    International Nuclear Information System (INIS)

    Smith, D.R.; Mazzucato, E.; Munsat, T.; Park, H.; Johnson, D.; Lin, L.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.

    2004-01-01

    Despite suppression of ρ i -scale turbulent fluctuations, electron thermal transport remains anomalous in NSTX. For this reason, a microwave scattering system will be deployed to directly observe the w and k spectra of ρ e -scale turbulent fluctuations and characterize the effect on electron thermal transport. The scattering system will employ a Gaussian probe beam produced by a high power 280 GHz microwave source. A five-channel heterodyne detection system will measure radial turbulent spectra in the range |k r | = 0-20 cm -1 . Inboard and outboard launch configurations cover most of the normalized minor radius. Improved spatial localization of measurements is achieved with low aspect ratio and high magnetic shear configurations. This paper will address the global design of the scattering system, such as choice of frequency, size, launching system, and detection system

  14. Target Detection Based on EBPSK Satellite Passive Radar

    Directory of Open Access Journals (Sweden)

    Lu Zeyuan

    2015-05-01

    Full Text Available Passive radar is a topic anti stealth technology with simple structure, and low cost. Radiation source model, signal transmission model, and target detection are the key points of passive radar technology research. The paper analyzes the characteristics of EBPSK signal modulation and target detection method aspect of spaceborne radiant source. By comparison with other satellite navigation and positioning system, the characteristics of EBPSK satellite passive radar system are analyzed. It is proved that the maximum detection range of EBPSK satellite signal can satisfy the needs of the proposed model. In the passive radar model, sparse representation is used to achieve high resolution DOA detection. The comparison with the real target track by simulation demonstrates that effective detection of airborne target using EBPSK satellite passive radar system based on sparse representation is efficient.

  15. Meteor observation by the Kyoto meteor radar

    International Nuclear Information System (INIS)

    Kato, S.; Tsuda, T.

    1987-01-01

    The Kyoto Meteor Radar is a monostatic coherent pulsed Doppler radar operating on the frequency of 31.57 MH. The system is computer controlled and uses radio interferometry for echo height determination. The antenna, an improvement, can be directed either to the north or the east. The system has been continuously collecting data on winds at meteor heights by radar observation. The meteor echo rate was also measured, the echo rate distribution with height and the daily variation in height integrated echo rate are discussed. Investigations of atmospheric tides are being pursued by cooperative observations. A novel approach to the study of gravity waves was attempted using the meteor radar which is able to detect the horizontal propagation of the waves by observing the changing phase through the region illuminated by the radar

  16. HF Radar Sea-echo from Shallow Water

    Directory of Open Access Journals (Sweden)

    Josh Kohut

    2008-08-01

    Full Text Available HF radar systems are widely and routinely used for the measurement of ocean surface currents and waves. Analysis methods presently in use are based on the assumption of infinite water depth, and may therefore be inadequate close to shore where the radar echo is strongest. In this paper, we treat the situation when the radar echo is returned from ocean waves that interact with the ocean floor. Simulations are described which demonstrate the effect of shallow water on radar sea-echo. These are used to investigate limits on the existing theory and to define water depths at which shallow-water effects become significant. The second-order spectral energy increases relative to the first-order as the water depth decreases, resulting in spectral saturation when the waveheight exceeds a limit defined by the radar transmit frequency. This effect is particularly marked for lower radar transmit frequencies. The saturation limit on waveheight is less for shallow water. Shallow water affects second-order spectra (which gives wave information far more than first-order (which gives information on current velocities, the latter being significantly affected only for the lowest radar transmit frequencies for extremely shallow water. We describe analysis of radar echo from shallow water measured by a Rutgers University HF radar system to give ocean wave spectral estimates. Radar-derived wave height, period and direction are compared with simultaneous shallow-water in-situ measurements.

  17. Ground Penetrating Radar Technologies in Ukraine

    Science.gov (United States)

    Pochanin, Gennadiy P.; Masalov, Sergey A.

    2014-05-01

    Transient electromagnetic fields are of great interest in Ukraine. The following topics are studied by research teams, with high-level achievements all over the world: (i) Ultra-Wide Band/Short-pulse radar techniques (IRE and LLC "Transient Technologies", for more information please visit http://applied.ire.kharkov.ua/radar%20systems_their%20components%20and%20relevant%20technologies_e.html and http://viy.ua); (ii) Ground Penetrating Radar (GPR) with stepped frequency sounding signals (IRE); (iii) Continuous-Wave (CW) radar with phase-shift keying signals (IRE); and (iv) Radio-wave interference investigation (Scientific and Technical Centre of The Subsurface Investigation, http://geophysics.ua). GPR applications are mainly in search works, for example GPR is often used to search for treasures. It is also used to identify leaks and diffusion of petroleum in soil, in storage areas, as well as for fault location of pipelines. Furthermore, GPR is used for the localization of underground utilities and for diagnostics of the technical state of hydro dams. Deeper GPR probing was performed to identify landslides in Crimea. Rescue radar with CW signal was designed in IRE to search for living people trapped under the rubble of collapsed buildings. The fourth version of this radar has been recently created, showing higher stability and noise immunity. Radio-wave interference investigation allows studying the soil down to tens of meters. It is possible to identify areas with increased conductivity (moisture) of the soil. LLC "Transient Technologies" is currently working with Shevchenko Kyiv University on a cooperation program in which the construction of a test site is one of the planned tasks. In the framework of this program, a GPR with a 300 MHz antenna was handed to the geological Faculty of the University. Employees of "Transient Technologies" held introductory lectures with a practical demonstration for students majoring in geophysics. The authors participated to GPR

  18. Experimental study on an S-band near-field microwave magnetron power transmission system on hundred-watt level

    Science.gov (United States)

    Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun

    2015-11-01

    A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.

  19. Design of multi-frequency CW radars

    CERN Document Server

    Jankiraman, Mohinder

    2007-01-01

    This book deals with the basic theory for design and analysis of Low Probability of Intercept (LPI) radar systems. The design of one such multi-frequency high resolution LPI radar, PANDORA, is covered.

  20. Microwave. Instructor's Edition. Louisiana Vocational-Technical Education.

    Science.gov (United States)

    Blanton, William

    This publication contains related study assignments and job sheets for a course in microwave technology. The course is organized into 12 units covering the following topics: introduction to microwave, microwave systems, microwave oscillators, microwave modulators, microwave transmission lines, transmission lines, detectors and mixers, microwave…

  1. Detection performance improvement of FMCW radar using frequency shift

    NARCIS (Netherlands)

    Wu, Y.; Linnartz, J.P.M.G.

    2011-01-01

    Frequency modulated continuous wave (FMCW) radars have been widely used for measuring target range and speed. In this paper, we present a mathematical model that quantifies the system-level performance of FMCW radar systems. In FMCW radar, the target range is measured through measuring the beat

  2. Extended Target Recognition in Cognitive Radar Networks

    Directory of Open Access Journals (Sweden)

    Xiqin Wang

    2010-11-01

    Full Text Available We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR based sequential hypothesis testing (SHT framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS. Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  3. Establishment Criteria for Integrated Wind Shear Detection Systems: Low-Level Wind Shear Alert System (LLWAS), Terminal Doppler Weather Radar (TDWR), and Modified Airport Surveillance Radar

    Science.gov (United States)

    1990-12-01

    Overviev . ......................................... 9 2. Programs , Syr!ems, and Services ........................ 11 a. National Weather Service...Equipment Appropriation. ADA, a computer system developed and maintained by the Office of Aviation Policy and rlans, facilitates APS-I processing... Program Plan. The primary benefit of LLWAS, TDWR, and modified airport surveillance radar is reduced risk and expected incidence of wind shear-related

  4. Microwave ablation devices for interventional oncology.

    Science.gov (United States)

    Ward, Robert C; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    Microwave ablation is one of the several options in the ablation armamentarium for the treatment of malignancy, offering several potential benefits when compared with other ablation, radiation, surgical and medical treatment modalities. The basic microwave system consists of the generator, power distribution system and antennas. Often under image (computed tomography or ultrasound) guidance, a needle-like antenna is inserted percutaneously into the tumor, where local microwave electromagnetic radiation is emitted from the probe's active tip, producing frictional tissue heating, capable of causing cell death by coagulation necrosis. Half of the microwave ablation systems use a 915 MHz generator and the other half use a 2450 MHz generator. To date, there are no completed clinical trials comparing microwave devices head-to-head. Prospective comparisons of microwave technology with other treatment alternatives, as well as head-to-head comparison with each microwave device, is needed if this promising field will garner more widespread support and use in the oncology community.

  5. Quantum radar

    CERN Document Server

    Lanzagorta, Marco

    2011-01-01

    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  6. A portable W-band radar system for enhancement of infrared vision in fire fighting operations

    Science.gov (United States)

    Klenner, Mathias; Zech, Christian; Hülsmann, Axel; Kühn, Jutta; Schlechtweg, Michael; Hahmann, Konstantin; Kleiner, Bernhard; Ulrich, Michael; Ambacher, Oliver

    2016-10-01

    In this paper, we present a millimeter wave radar system which will enhance the performance of infrared cameras used for fire-fighting applications. The radar module is compact and lightweight such that the system can be combined with inertial sensors and integrated in a hand-held infrared camera. This allows for precise distance measurements in harsh environmental conditions, such as tunnel or industrial fires, where optical sensors are unreliable or fail. We discuss the design of the RF front-end, the antenna and a quasi-optical lens for beam shaping as well as signal processing and demonstrate the performance of the system by in situ measurements in a smoke filled environment.

  7. Radar cross-section measurements of ice particles using vector network analyzer

    Directory of Open Access Journals (Sweden)

    Jinhu Wang

    2016-09-01

    Full Text Available We carried out radar cross-section (RSC measurements of ice particles in a microwave anechoic chamber at Nanjing University of Information Science and Technology. We used microwave similarity theory to enlarge the size of particle from the micrometer to millimeter scale and to reduce the testing frequency from 94 GHz to 10 GHz. The microwave similarity theory was validated using the method of moments for single metal sphere, single dielectric sphere, and spherical and non-spherical dielectric particle swarms. The differences between the retrieved and theoretical results at 94 GHz were 0.016117%, 0.0023029%, 0.027627%, and 0.0046053%, respectively. We proposed a device that can measure the RCS of ice particles in the chamber based on the S21 parameter obtained from vector network analyzer. On the basis of the measured S21 parameter of the calibration material (metal plates and their corresponding theoretical RCS values, the RCS values of a spherical Teflon particle swarm and cuboid candle particle swarm was retrieved at 10 GHz. In this case, the differences between the retrieved and theoretical results were 12.72% and 24.49% for the Teflon particle swarm and cuboid candle swarm, respectively.

  8. Detecting and classifying low probability of intercept radar

    CERN Document Server

    Pace, Phillip E

    2003-01-01

    The drive is on to devise LPI radar systems that evade hostile detection as well as develop non-cooperative intercept devices that outsmart enemy LPI radar. Based on the author's own design experience, this comprehensive, hands-on book gives you the latest design and development techniques to innovate new LPI radar systems and discover new ways to intercept enemy LPI radar. and help you visually identify waveform parameters. Filled with more than 500 equations that provide rigorous mathematical detail, this book can be used by both entry-level and seasoned engineers. Besides thoroughly treatin

  9. Interception of LPI radar signals

    Science.gov (United States)

    Lee, Jim P.

    1991-11-01

    Most current radars are designed to transmit short duration pulses with relatively high peak power. These radars can be detected easily by the use of relatively modest EW intercept receivers. Three radar functions (search, anti-ship missile (ASM) seeker, and navigation) are examined to evaluate the effectiveness of potential low probability of intercept (LPI) techniques, such as waveform coding, antenna profile control, and power management that a radar may employ against current Electronic Warfare (EW) receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current intercept EW receivers. LPI operation is most easily achieved at close ranges and against a target with a large radar cross section. The general system sensitivity requirement for the detection of current and projected LPI radars is found to be on the order of -100 dBmi which cannot be met by current EW receivers. Finally, three potential LPI receiver architectures, using channelized, superhet, and acousto-optic receivers with narrow RF and video bandwidths are discussed. They have shown some potential in terms of providing the sensitivity and capability in an environment where both conventional and LPI signals are present.

  10. Radar principles for the nonspecialist, 3rd edition

    CERN Document Server

    Toomay, John

    2004-01-01

    Radar Principles for the Non-specialist, Third Edition continues its popular tradition: to distill the very complex technology of radar into its fundamentals, tying them to the laws of nature on one end and to the most modern and complex systems on the other. It starts with electromagnetic propagation, describes a radar of the utmost simplicity, and derives the radar range equation from that simple radar. Once the range equation is available, the book attacks the meaning of each term in it, moving through antennas, detection and tracking, radar cross-section, waveforms andsignal proces

  11. Solid-state radar switchboard

    Science.gov (United States)

    Thiebaud, P.; Cross, D. C.

    1980-07-01

    A new solid-state radar switchboard equipped with 16 input ports which will output data to 16 displays is presented. Each of the ports will handle a single two-dimensional radar input, or three ports will accommodate a three-dimensional radar input. A video switch card of the switchboard is used to switch all signals, with the exception of the IFF-mode-control lines. Each card accepts inputs from up to 16 sources and can pass a signal with bandwidth greater than 20 MHz to the display assigned to that card. The synchro amplifier of current systems has been eliminated and in the new design each PPI receives radar data via a single coaxial cable. This significant reduction in cabling is achieved by adding a serial-to-parallel interface and a digital-to-synchro converter located at the PPI.

  12. An optimal beam alignment method for large-scale distributed space surveillance radar system

    Science.gov (United States)

    Huang, Jian; Wang, Dongya; Xia, Shuangzhi

    2018-06-01

    Large-scale distributed space surveillance radar is a very important ground-based equipment to maintain a complete catalogue for Low Earth Orbit (LEO) space debris. However, due to the thousands of kilometers distance between each sites of the distributed radar system, how to optimally implement the Transmitting/Receiving (T/R) beams alignment in a great space using the narrow beam, which proposed a special and considerable technical challenge in the space surveillance area. According to the common coordinate transformation model and the radar beam space model, we presented a two dimensional projection algorithm for T/R beam using the direction angles, which could visually describe and assess the beam alignment performance. Subsequently, the optimal mathematical models for the orientation angle of the antenna array, the site location and the T/R beam coverage are constructed, and also the beam alignment parameters are precisely solved. At last, we conducted the optimal beam alignment experiments base on the site parameters of Air Force Space Surveillance System (AFSSS). The simulation results demonstrate the correctness and effectiveness of our novel method, which can significantly stimulate the construction for the LEO space debris surveillance equipment.

  13. Monitoring internal organ motion with continuous wave radar in CT

    International Nuclear Information System (INIS)

    Pfanner, Florian; Maier, Joscha; Allmendinger, Thomas; Flohr, Thomas; Kachelrieß, Marc

    2013-01-01

    Purpose: To avoid motion artifacts in medical imaging or to minimize the exposure of healthy tissues in radiation therapy, medical devices are often synchronized with the patient's respiratory motion. Today's respiratory motion monitors require additional effort to prepare the patients, e.g., mounting a motion belt or placing an optical reflector on the patient's breast. Furthermore, they are not able to measure internal organ motion without implanting markers. An interesting alternative to assess the patient's organ motion is continuous wave radar. The aim of this work is to design, implement, and evaluate such a radar system focusing on application in CT.Methods: The authors designed a radar system operating in the 860 MHz band to monitor the patient motion. In the intended application of the radar system, the antennas are located close to the patient's body inside the table of a CT system. One receive and four transmitting antennas are used to avoid the requirement of exact patient positioning. The radar waves propagate into the patient's body and are reflected at tissue boundaries, for example at the borderline between muscle and adipose tissue, or at the boundaries of organs. At present, the authors focus on the detection of respiratory motion. The radar system consists of the hardware mentioned above as well as of dedicated signal processing software to extract the desired information from the radar signal. The system was evaluated using simulations and measurements. To simulate the radar system, a simulation model based on radar and wave field equations was designed and 4D respiratory-gated CT data sets were used as input. The simulated radar signals and the measured data were processed in the same way. The radar system hardware and the signal processing algorithms were tested with data from ten volunteers. As a reference, the respiratory motion signal was recorded using a breast belt simultaneously with the radar measurements.Results: Concerning the

  14. Architecture for a 1-GHz Digital RADAR

    Science.gov (United States)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  15. A simple model for retrieving bare soil moisture from radar-scattering coefficients

    International Nuclear Information System (INIS)

    Chen, K.S.; Yen, S.K.; Huang, W.P.

    1995-01-01

    A simple algorithm based on a rough surface scattering model was developed to invert the bare soil moisture content from active microwave remote sensing data. In the algorithm development, a frequency mixing model was used to relate soil moisture to the dielectric constant. In particular, the Integral Equation Model (IEM) was used over a wide range of surface roughness and radar frequencies. To derive the algorithm, a sensitivity analysis was performed using a Monte Carlo simulation to study the effects of surface parameters, including height variance, correlation length, and dielectric constant. Because radar return is inherently dependent on both moisture content and surface roughness, the purpose of the sensitivity testing was to select the proper radar parameters so as to optimally decouple these two factors, in an attempt to minimize the effects of one while the other was observed. As a result, the optimal radar parameter ranges can be chosen for the purpose of soil moisture content inversion. One thousand samples were then generated with the IEM model followed by multivariate linear regression analysis to obtain an empirical soil moisture model. Numerical comparisons were made to illustrate the inversion performance using experimental measurements. Results indicate that the present algorithm is simple and accurate, and can be a useful tool for the remote sensing of bare soil surfaces. (author)

  16. Design and Implementation of a FPGA and DSP Based MIMO Radar Imaging System

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-06-01

    Full Text Available The work presented in this paper is aimed at the implementation of a real-time multiple-input multiple-output (MIMO imaging radar used for area surveillance. In this radar, the equivalent virtual array method and time-division technique are applied to make 16 virtual elements synthesized from the MIMO antenna array. The chirp signal generater is based on a combination of direct digital synthesizer (DDS and phase locked loop (PLL. A signal conditioning circuit is used to deal with the coupling effect within the array. The signal processing platform is based on an efficient field programmable gates array (FPGA and digital signal processor (DSP pipeline where a robust beamforming imaging algorithm is running on. The radar system was evaluated through a real field experiment. Imaging capability and real-time performance shown in the results demonstrate the practical feasibility of the implementation.

  17. Probabilities of False Alarm for Vital Sign Detection on the Basis of a Doppler Radar System

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Phuoc Van

    2018-02-01

    Full Text Available Vital detection on the basis of Doppler radars has drawn a great deal of attention from researchers because of its high potential for applications in biomedicine, surveillance, and finding people alive under debris during natural hazards. In this research, the signal-to-noise ratio (SNR of the remote vital-sign detection system is investigated. On the basis of different types of noise, such as phase noise, Gaussian noise, leakage noise between the transmitting and receiving antennae, and so on, the SNR of the system has first been examined. Then the research has focused on the investigation of the detection and false alarm probabilities of the system when the transmission link between the human and the radar sensor system took the Nakagami-m channel model. The analytical model for the false alarm and the detection probabilities of the system have been derived. The proposed theoretical models for the SNR and detection probability match with the simulation and measurement results. These theoretical models have the potential to be used as good references for the hardware development of the vital-sign detection radar sensor system.

  18. Wind farm radar study

    International Nuclear Information System (INIS)

    Davies, N.G.

    1995-01-01

    This report examines the possible degradations of radar performance that may be caused by the presence of a wind turbine generator within the radar coverage area. A brief literature survey reviews the previously published work, which is mainly concerned with degradation of broadcast TV reception. Estimates are made of wind turbine generator scattering cross-sections, and of the time and Doppler characteristics of the echo signals from representative wind turbine generator. The general characteristics of radar detection and tracking methods are described, and the behaviour of such systems in the presence of strong returns from a wind turbine generator (or an array of them) is discussed. (author)

  19. Pedestrian recognition using automotive radar sensors

    OpenAIRE

    A. Bartsch; F. Fitzek; R. H. Rasshofer

    2012-01-01

    The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insight...

  20. Digital data acquisition for laser radar for vibration analysis

    OpenAIRE

    Montes, Felix G.

    1998-01-01

    Approved for public release; distribution is unlimited Laser radar for vibration analysis represents a military application to develop a target identification system in the future. The problem addressed is how to analyze the vibrations of a target illuminated by the laser radar to achieve a positive identification. This thesis develops a computer-based data acquisition and analysis system for improving the laser radar capability. Specifically, a review is made of the CO2 laser radar, coher...

  1. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  2. The Passive Microwave Neural Network Precipitation Retrieval (PNPR) for AMSU/MHS and ATMS cross-track scanning radiometers

    Science.gov (United States)

    Sano', Paolo; Casella, Daniele; Panegrossi, Giulia; Cinzia Marra, Anna; Dietrich, Stefano

    2016-04-01

    another when an observed precipitation system extends over two or more types of surfaces. As input data, the PNPR algorithm incorporates the TBs from selected channels, and various additional TBs-derived variables. Ancillary geographical/geophysical inputs (i.e., latitude, terrain height, surface type, season) are also considered during the training phase. The PNPR algorithm outputs consist of both the surface precipitation rate (along with the information on precipitation phase: liquid, mixed, solid) and a pixel-based quality index. We will illustrate the main features of the PNPR algorithm and will show results of a verification study over Europe and Africa. The study is based on the available ground-based radar and/or rain gauge network observations over the European area. In addition, results of the comparison with rainfall products available from the NASA/JAXA Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) (over the African area) and Global Precipitation Measurement (GPM) Dual frequency Precipitation Radar (DPR) will be shown. The analysis is built upon a two-years coincidence dataset of AMSU/MHS and ATMS observations with PR (2013-2014) and DPR (2014-2015). The PNPR is developed within the EUMETSAT H/SAF program (Satellite Application Facility for Operational Hydrology and Water Management), where it is used operationally towards the full exploitation of all microwave radiometers available in the GPM era. The algorithm will be tailored to the future European Microwave Sounder (MWS) onboard the MetOp-Second Generation (MetOp-SG) satellites.

  3. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other.

    Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  4. VHF/UHF radar observations of tropical mesoscale convective systems over southern India

    Directory of Open Access Journals (Sweden)

    K. Kishore Kumar

    2005-07-01

    Full Text Available Several campaigns have been carried out to study the convective systems over Gadanki (13.5° N, 79.2° E, a tropical station in India, using VHF and UHF radars. The height-time sections of several convective systems are investigated in detail to study reflectivity, turbulence and vertical velocity structure. Structure and dynamics of the convective systems are the main objectives of these campaigns. The observed systems are classified into single- and multi-cell systems. It has been observed that most of the convective systems at this latitude are multi-cellular in nature. Simultaneous VHF and UHF radar observations are used to classify the observed precipitating systems as convective, intermediary and stratiform regions. Composite height profiles of vertical velocities in these regions were obtained and the same were compared with the profiles obtained at other geographical locations. These composite profiles of vertical velocity in the convective regions have shown their peaks in the mid troposphere, indicating that the maximum latent heat is being released at those heights. These profiles are very important for numerical simulations of the convective systems, which vary significantly from one geographical location to the other. Keywords. Meteorology and atmospheric dynamics (Mesoscale meteorology; Convective processes – Radio science (Remote sensing

  5. Experimental evaluation of a system for human life detection under debris

    Science.gov (United States)

    Joju, Reshma; Konica, Pimplapure Ramya T.; Alex, Zachariah C.

    2017-11-01

    It is difficult to for the human beings to be found under debris or behind the walls in case of military applications. Due to which several rescue techniques such as robotic systems, optical devices, and acoustic devices were used. But if victim was unconscious then these rescue system failed. We conducted an experimental analysis on whether the microwaves could detect heart beat and breathing signals of human beings trapped under collapsed debris. For our analysis we used RADAR based on by Doppler shift effect. We calculated the minimum speed that the RADAR could detect. We checked the frequency variation by placing the RADAR at a fixed position and placing the object in motion at different distances. We checked the frequency variation by using objects of different materials as debris behind which the motion was made. The graphs of different analysis were plotted.

  6. Indicators of Macromolecular Oxidative Damage and Antioxidant Defence Examinees Exposed to the Radar Frequencies 1.5 - 10.9 GHz

    International Nuclear Information System (INIS)

    Marjanovic, A.M.; Flajs, D.; Pavicic, I.; Domijan, A.

    2011-01-01

    Radar is an object-detection system which uses microwaves (Mw). As a result of increased use of radar there is a rising concern regarding health effects of Mw radiation on human body. Living organisms are complex electrochemical systems being evolved in a relatively narrow range of well-defined environmental parameters. For life to be maintained these parameters must be kept within their normal range, since deviations can induce biochemical effects causing cell function impairment and disease. Some theories indicate connection between Mw radiation, oxidative damage as well as antioxidant defence of organism. Aim of this study was to evaluate level and damage of macromolecular structures - proteins and lipids in blood of men occupationally exposed to Mw radiation. Concentration of glutathione (GSH), a known indicator of organism antioxidant defence, was also determined. Blood samples were collected from 27 male workers occupationally exposed to radar frequencies 1.5 to 10.9 GHz. Corresponding control group (N = 8) was a part of study. Concentrations of total and oxidised proteins, protein carbonyls, and GSH were measured by spectrophotometric method, while malondialdeyde (MDA), product of lipid peroxidation, was determined by high performance liquid chromatography (HPLC). Gained concentrations of oxidised proteins, GSH and MDA were presented in relation to total proteins. Concentration of oxidised proteins between control and exposed group of examinees did not show any significant statistical difference. However, concentration of GSH in exposed group was found considerably decreased, while concentration of MDA was found to be increased. Results indicate that Mw radiation of radar operating at frequencies 1.5 - 10.9 GHz could cause damage to proteins and lipids in addition to impairment of antioxidant defence of organism. (author)

  7. High-power microwave transmission and launching systems for fusion plasma heating systems

    International Nuclear Information System (INIS)

    Bigelow, T.S.

    1989-01-01

    Microwave power in the 30- to 300-GHz frequency range is becoming widely used for heating of plasma in present-day fusion energy magnetic confinement experiments. Microwave power is effective in ionizing plasma and heating electrons through the electron cyclotron heating (ECH) process. Since the power is absorbed in regions of the magnetic field where resonance occurs and launching antennas with narrow beam widths are possible, power deposition location can be highly controlled. This is important for maximizing the power utilization efficiency and improving plasma parameters. Development of the gyrotron oscillator tube has advanced in recent years so that a 1-MW continuous-wave, 140-GHz power source will soon be available. Gyrotron output power is typically in a circular waveguide propagating a circular electric mode (such as TE 0,2 ) or a whispering-gallery mode (such as TE 15,2 ), depending on frequency and power level. An alternative high-power microwave source currently under development is the free-electron laser (FEL), which may be capable of generating 2-10 MW of average power at frequencies of up to 500 GHz. The FEL has a rectangular output waveguide carrying the TE 0,1 mode. Because of its higher complexity and cost, the high-average-power FEL is not yet as extensively developed as the gyrotron. In this paper, several types of operating ECH transmission systems are discussed, as well systems currently being developed. The trend in this area is toward higher power and frequency due to the improvements in plasma density and temperature possible. Every system requires a variety of components, such as mode converters, waveguide bends, launchers, and directional couplers. Some of these components are discussed here, along with ongoing work to improve their performance. 8 refs

  8. Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 1. Comparison of wind measurements with MF spaced antenna radar system

    Science.gov (United States)

    Kumar, Karanam Kishore; Ramkumar, Geetha; Shelbi, S. T.

    2007-12-01

    In the present communication, initial results from the allSKy interferometric METeor (SKiYMET) radar installed at Thumba (8.5°N, 77°E) are presented. The meteor radar system provides hourly zonal and meridional winds in the mesosphere lower thermosphere (MLT) region. The meteor radar measured zonal and meridional winds are compared with nearby MF radar at Tirunalveli (8.7°N, 77.8°E). The present study provided an opportunity to compare the winds measured by the two different techniques, namely, interferometry and spaced antenna drift methods. Simultaneous wind measurements for a total number of 273 days during September 2004 to May 2005 are compared. The comparison showed a very good agreement between these two techniques in the height region 82-90 km and poor agreement above this height region. In general, the zonal winds compare very well as compared to the meridional winds. The observed discrepancies in the wind comparison above 90 km are discussed in the light of existing limitations of both the radars. The detailed analysis revealed the consistency of the measured winds by both the techniques. However, the discrepancies are observed at higher altitudes and are attributed to the contamination of MF radar neutral wind measurements with Equatorial Electro Jet (EEJ) induced inospheric drifts rather than the limitations of the spaced antenna technique. The comparison of diurnal variation of zonal winds above 90 km measured by both the radars is in reasonably good agreement in the absence of EEJ (during local nighttime). It is also been noted that the difference in the zonal wind measurements by both the radars is directly related to the strength of EEJ, which is a noteworthy result from the present study.

  9. An Entropy-Based Propagation Speed Estimation Method for Near-Field Subsurface Radar Imaging

    Directory of Open Access Journals (Sweden)

    Pistorius Stephen

    2010-01-01

    Full Text Available During the last forty years, Subsurface Radar (SR has been used in an increasing number of noninvasive/nondestructive imaging applications, ranging from landmine detection to breast imaging. To properly assess the dimensions and locations of the targets within the scan area, SR data sets have to be reconstructed. This process usually requires the knowledge of the propagation speed in the medium, which is usually obtained by performing an offline measurement from a representative sample of the materials that form the scan region. Nevertheless, in some novel near-field SR scenarios, such as Microwave Wood Inspection (MWI and Breast Microwave Radar (BMR, the extraction of a representative sample is not an option due to the noninvasive requirements of the application. A novel technique to determine the propagation speed of the medium based on the use of an information theory metric is proposed in this paper. The proposed method uses the Shannon entropy of the reconstructed images as the focal quality metric to generate an estimate of the propagation speed in a given scan region. The performance of the proposed algorithm was assessed using data sets collected from experimental setups that mimic the dielectric contrast found in BMI and MWI scenarios. The proposed method yielded accurate results and exhibited an execution time in the order of seconds.

  10. Radar-based alert system to operate a sewerage network: relevance and operational effectiveness after several years of use.

    Science.gov (United States)

    Faure, D; Payrastre, O; Auchet, P

    2005-01-01

    Since January 2000, the sewerage network of a very urbanised catchment area in the Greater Nancy Urban Community has been operated according to the alarms generated in real time by a storm alert system using weather radar data. This alert system is based on an automatic identification of intense rain cells in the radar images. This paper presents the characteristics of this alert system and synthesises the main results of two complementary studies realised in 2002 in order to estimate the relevance and the operational effectiveness of the alert system. The first study consisted in an off-line analysis of almost 50,000 intense rain cells detected in four years of historical radar data. The second study was an analysis of the experience feedback after two years of operational use of this alert system. The results of these studies are discussed in function of the initial operational objectives.

  11. Derivation of Z-R equation using Mie approach for a 77 GHz radar

    Science.gov (United States)

    Bertoldo, Silvano; Lucianaz, Claudio; Allegretti, Marco; Perona, Giovanni

    2017-04-01

    The ETSI (European Telecommunications Standards Institute) defines the frequency band around 77 GHz as dedicated to automatic cruise control long-range radars. This work aims to demonstrate that, with specific assumption and the right theoretical background it is also possible to use a 77 GHz as a mini weather radar and/or a microwave rain gauge. To study the behavior of a 77 GHz meteorological radar, since the raindrop size are comparable to the wavelength, it is necessary to use the general Mie scattering theory. According to the Mie formulation, the radar reflectivity factor Z is defined as a function of the wavelength on the opposite of Rayleigh approximation in which is frequency independent. Different operative frequencies commonly used in radar meteorology are considered with both the Rayleigh and Mie scattering theory formulation. Comparing them it is shown that with the increasing of the radar working frequency the use of Rayleigh approximation lead to an always larger underestimation of rain. At 77 GHz such underestimation is up to 20 dB which can be avoided with the full Mie theory. The crucial derivation of the most suited relation between the radar reflectivity factor Z and rainfall rate R (Z-R equation) is necessary to achieve the best Quantitative Precipitation Estimation (QPE) possible. Making the use of Mie scattering formulation from the classical electromagnetic theory and considering different radar working frequencies, the backscattering efficiency and the radar reflectivity factor have been derived from a wide range of rain rate using specific numerical routines. Knowing the rain rate and the corresponding reflectivity factor it was possible to derive the coefficients of the Z-R equation for each frequency with the least square method and to obtain the best coefficients for each frequency. The coefficients are then compared with the ones coming from the scientific literature. The coefficients of a 77 GHz weather radar are then obtained. A

  12. Waveform design and diversity for advanced radar systems

    CERN Document Server

    Gini, Fulvio

    2012-01-01

    In recent years, various algorithms for radar signal design, that rely heavily upon complicated processing and/or antenna architectures, have been suggested. These techniques owe their genesis to several factors, including revolutionary technological advances (new flexible waveform generators, high speed signal processing hardware, digital array radar technology, etc.) and the stressing performance requirements, often imposed by defence applications in areas such as airborne early warning and homeland security.Increasingly complex operating scenarios calls for sophisticated algorithms with the

  13. Classification of Agricultural Crops in Radar Images

    NARCIS (Netherlands)

    Hoogeboom, P.

    1983-01-01

    For the past few years an accurate X-band SLAR system with digital recording has been available in The Netherlands. The images of this system are corrected to indicate radar backscatter coefficients (gamma) instead of arbitrary greytones. In 1980 a radar measurement campaign was organized in the

  14. Block diagrams of the radar interface and control unit

    Science.gov (United States)

    Collier, J. W.

    1989-01-01

    The Interface and Control Unit is the heart of the radar module, which occupies one complex channel of the High-Speed Data Acquisition System of the Goldstone Solar System Radar. Block diagrams of the interface unit are presented as an aid to understanding its operation and interconnections to the rest of the radar module.

  15. Remote sensing science for the Nineties; Proceedings of IGARSS '90 - 10th Annual International Geoscience and Remote Sensing Symposium, University of Maryland, College Park, May 20-24, 1990. Vols. 1, 2, & 3

    Science.gov (United States)

    1990-01-01

    Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.

  16. Radar-based Flood Warning System for Houston, Texas and Its Performance Evaluation

    Science.gov (United States)

    Fang, N.; Bedient, P.

    2009-12-01

    Houston has a long history of flooding problems as a serious nature. For instance, Houstonians suffered from severe flood inundation during Tropical Storm Allison in 2001 and Hurricane Ike in 2008. Radar-based flood warning systems as non-structural tools to provide accurate and timely warnings to the public and private entities are greatly needed for urban areas prone to flash floods. Fortunately, the advent of GIS, radar-based rainfall estimation using NEXRAD, and real-time delivery systems on the internet have allowed flood alert systems to provide important advanced warning of impending flood conditions. Thus, emergency personnel can take proper steps to mitigate against catastrophic losses. The Rice and Texas Medical Center (TMC) Flood Alert System (FAS2) has been delivering warning information with 2 to 3 hours of lead time to facility personnel in a readily understood format for more than 40 events since 1997. The system performed well during these major rainfall events with R square value of 93%. The current system has been improved by incorporating a new hydraulic prediction tool - FloodPlain Map Library (FPML). The FPML module aims to provide visualized information such as floodplain maps and water surface elevations instead of just showing hydrographs in real time based on NEXRAD radar rainfall data. During Hurricane Ike (September, 2008), FAS2 successfully provided precise and timely flood warning information to TMC with the peak flow difference of 3.6% and the volume difference of 5.6%; timing was excellent for this double-peaked event. With the funding from the Texas Department of Transportation, a similar flood warning system has been developed at a critical transportation pass along Highway 288 in Houston, Texas. In order to enable emergency personnel to begin flood preparation with as much lead time as possible, FAS2 is being used as a prototype to develop warning system for other flood-prone areas such as City of Sugar Land.

  17. Diffraction effects in microwave propagation at the origin of superluminal behaviors

    Energy Technology Data Exchange (ETDEWEB)

    Ranfagni, A. [Istituto di Fisica Applicata ' Nello Carrara' , Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Ricci, A.M. [Istituto per le Telecomunicazioni e l' Elettronica della Marina Militare ' Giancarlo Vallauri' (Mariteleradar), Viale Italia 72, 57100 Livorno (Italy); Ruggeri, R. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sezione di Firenze, Firenze (Italy)], E-mail: rocco.ruggeri@isc.cnr.it; Agresti, A. [Dipartimento di Fisica dell' Universita di Firenze, Firenze (Italy)

    2008-10-27

    Superluminal behaviors, as evidenced by the presence of forerunners, in advanced position with respect to the main luminal peak, have been revealed in microwave propagation experiments by using a radar technique. The results are interpreted on the basis of (fast) complex waves, usually considered only in the near-field region, but still surviving beyond this limit. Consideration of further diffraction effects, as due to geometrical limitations of the experimental set-up, allows for the obtainment of a plausible description of the results.

  18. Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    Science.gov (United States)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; McLinden, Matthew; Cervantes, Jaime I.

    2013-01-01

    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms.

  19. A 24 GHz Waveguide based Radar System using an Advanced Algorithm for I/Q Offset Cancelation

    Directory of Open Access Journals (Sweden)

    C. Will

    2017-10-01

    Full Text Available Precise position measurement with micrometer accuracy plays an important role in modern industrial applications. Herewith, a guided wave Six-Port interferometric radar system is presented. Due to limited matching and discontinuities in the radio frequency part of the system, the designers have to deal with DC offsets. The offset voltages in the baseband lead to worse relative modulation dynamics relating to the full scale range of the analog-to-digital converters and thus, considerably degrade the system performance. While common cancelation techniques try to estimate and extinguish the DC offsets directly, the proposed radar system is satisfied with equalizing both DC offsets for each of the two differential baseband signal pairs. Since the complex representation of the baseband signals is utilized for a subsequent arctangent demodulation, the proposed offset equalization implicates a centering of the in-phase and quadrature (I/Q components of the received signal, which is sufficient to simplify the demodulation and improve the phase accuracy. Therefore, a standard Six-Port radar system is extended and a variable phase shifter plus variable attenuators are inserted at different positions. An intelligent algorithm adjusts these configurable components to achieve optimal I/Q offset cancelation.

  20. The NASA radar entomology program at Wallops Flight Center

    Science.gov (United States)

    Vaughn, C. R.

    1979-01-01

    NASA contribution to radar entomology is presented. Wallops Flight Center is described in terms of its radar systems. Radar tracking of birds and insects was recorded from helicopters for airspeed and vertical speed.

  1. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xianjun, E-mail: xianjun.huang@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Hu, Zhirun [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Liu, Peiguo [College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-11-15

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications.

  2. Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction

    International Nuclear Information System (INIS)

    Huang, Xianjun; Hu, Zhirun; Liu, Peiguo

    2014-01-01

    This paper proposes a new type of graphene based tunable radar absorbing screen. The absorbing screen consists of Hilbert curve metal strip array and chemical vapour deposition (CVD) graphene sheet. The graphene based screen is not only tunable when the chemical potential of the graphene changes, but also has broadband effective absorption. The absorption bandwidth is from 8.9GHz to 18.1GHz, ie., relative bandwidth of more than 68%, at chemical potential of 0eV, which is significantly wider than that if the graphene sheet had not been employed. As the chemical potential varies from 0 to 0.4eV, the central frequency of the screen can be tuned from 13.5GHz to 19.0GHz. In the proposed structure, Hilbert curve metal strip array was designed to provide multiple narrow band resonances, whereas the graphene sheet directly underneath the metal strip array provides tunability and averagely required surface resistance so to significantly extend the screen operation bandwidth by providing broadband impedance matching and absorption. In addition, the thickness of the screen has been optimized to achieve nearly the minimum thickness limitation for a nonmagnetic absorber. The working principle of this absorbing screen is studied in details, and performance under various incident angles is presented. This work extends applications of graphene into tunable microwave radar cross section (RCS) reduction applications

  3. FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar

    Science.gov (United States)

    Azim, Noor ul; Jun, Wang

    2016-11-01

    Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.

  4. Simulating lightning tests to radar system

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2010-01-01

    The risk of destruction due to lightning makes simulating the effects of lightning strikes a necessity. We modeled a radar enclosure and simulated the effect of a lightning strike. The results have been validated using full threat lightning current tests.

  5. Characterization of Adolescent Prescription Drug Abuse and Misuse Using the Researched Abuse Diversion and Addiction-Related Surveillance (RADARS[R]) System

    Science.gov (United States)

    Zosel, Amy; Bartelson, Becki Bucher; Bailey, Elise; Lowenstein, Steven; Dart, Rick

    2013-01-01

    Objective: To describe the characteristics and health effects of adolescent (age 13-19 years) prescription drug abuse and misuse using the Researched Abuse Diversion and Addiction-Related Surveillance (RADARS[R])) System. Method: Secondary analysis of data collected from RADARS System participating poison centers was performed. Data for all…

  6. Developing hydrological monitoring system based on HF radar for islands and reefs in the South China Sea

    Science.gov (United States)

    Li, J.; Shi, P.; Chen, J.; Zhu, Y.; Li, B.

    2016-12-01

    There are many islands (or reefs) in the South China Sea. The hydrological properties (currents and waves) around the islands are highly spatially variable compared to those of coastal region of mainland, because the shorelines are more complex with much smaller scale, and the topographies are step-shape with a much sharper slope. The currents and waves with high spatial variations may destroy the buildings or engineering on shorelines, or even influence the structural stability of reefs. Therefore, it is necessary to establish monitoring systems to obtain the high-resolution hydrological information. This study propose a plan for developing a hydrological monitoring system based on HF radar on the shoreline of a typical island in the southern South China Sea: firstly, the HF radar are integrated with auxiliary equipment (such as dynamo, fuel tank, air conditioner, communication facilities) in a container to build a whole monitoring platform; synchronously, several buoys are set within the radar visibility for data calibration and validation; and finally, the current and wave observations collected by the HF radar are assimilated with numerical models to obtain long-term and high-precision reanalysis products. To test the feasibility of this plan, our research group has built two HF radar sites at the western coastal region of Guangdong Province. The collected data were used to extract surface current information and assimilated with an ocean model. The results show that the data assimilation can highly improve the surface current simulation, especially for typhoon periods. Continuous data with intervals between 6 and 12 hour are the most suitable for ideal assimilations. On the other hand, the test also reveal that developing similar monitoring system on island environments need advanced radars that have higher resolutions and a better performance for persistent work.

  7. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  8. MEMS Keys as a Way to Delay the Phase of the Microwave Range

    Directory of Open Access Journals (Sweden)

    Anton Antonenko

    2015-04-01

    Full Text Available The paper deals with a new type of phase shifter antennas scanned beam shows the principle of constructing controlled microwave phase shifters that have a low cost. Also, given the results of a theoretical study of the main characteristics of dependency - controlled phase shift and frequency band working on the design parameters and then refined by calculating finite element program CST Microwave Studio. These inexpensive scanned antenna can be used in radar centimeter and millimeter wavelengths in the frequency range 2 ¸ 30 GHz. The results of calculation of capacitive and inductive coupling during switching detector elements and the simulation results of the phase shift in passing through the phase shifter television signal containing includes microelectromechanical systems - manageable sections that have to change the direction of polarization of the signal. Thus for supplying voltage-controlled permanent magnet field is used. According to the simulation results, which are presented in the conclusions can be drawn about the development of the design of optimal geometric parameters, the values obtained for the results of the optimization modeling. However revealed a high quality factor switching phase.

  9. Radar probing of the auroral plasma

    International Nuclear Information System (INIS)

    Brekke, A.

    1977-01-01

    The European Incoherent Scatter Radar in the Auroral Zone (EISCAT) is an intereuropean organization planning to install an incoherent scatter radar system in Northern Scandinavia. It is supported by Finland, France, Norway, Great Britain, Sweden and West Germany, and its headquarters is in Kiruna, Sweden. The radar is planned to be operating in 1979. In order to introduce students and young scientists to the incoherent scatter radar technique, a summer school was held in Tromsoe, from 5th to 13th June 1975. In these proceedings an introduction to the basic theory of fluctuations in a plasma is given. Some of the present incoherent scatter radars now in use are presented and special considerations with respect to the planned EISACT facility are discussed. Reviews of some recent results and scientific problems relevant to EISCAT are also presented and finally a presentation of some observational techniques complementary to incoherent scatter radars is included. (Ed.)

  10. Micropower impulse radar technology and applications

    Energy Technology Data Exchange (ETDEWEB)

    Mast, J., LLNL

    1998-04-15

    The LLNL-developed Micropower Impulse Radar (MIR) technology has quickly gone from laboratory concept to embedded circuitry in numerous government and commercial systems in the last few years[l]. The main ideas behind MIR, invented by T. McEwan in the Laser Program, are the generation and detection systems for extremely low- power ultra-wideband pulses in the gigaHertz regime using low-cost components. These ideas, coupled with new antenna systems, timing and radio-frequency (RF) circuitry, computer interfaces, and signal processing, have provided the catalyst for a new generation of compact radar systems. Over the past several years we have concentrated on a number of applications of MIR which address a number of remote-sensing applications relevant to emerging programs in defense, transportation, medical, and environmental research. Some of the past commercial successes have been widely publicized [2] and are only now starting to become available for market. Over 30 patents have been filed and over 15 licenses have been signed on various aspects of the MIR technology. In addition, higher performance systems are under development for specific laboratory programs and government reimbursables. The MIR is an ultra- wideband, range-gated radar system that provides the enabling hardware technology used in the research areas mentioned above. It has numerous performance parameters that can be Selected by careful design to fit the requirements. We have improved the baseline, short- range, MIR system to demonstrate its effectiveness. The radar operates over the hand from approximately I to 4 GHz with pulse repetition frequencies up to 10 MHz. It provides a potential range resolution of I cm at ranges of greater than 20 m. We have developed a suite of algorithms for using MIR for image formation. These algorithms currently support Synthetic aperture and multistate array geometries. This baseline MIR radar imaging system has been used for several programmatic applications.

  11. Wind farms impact on radar aviation interests - final report

    Energy Technology Data Exchange (ETDEWEB)

    Poupart, G.J.

    2003-09-01

    The main objectives of the study were: to determine the effects of siting wind turbines adjacent to primary air traffic control radar; to gather the information required for the generation of guidelines by civil, military and wind farm developer stakeholders; to determine the extent to which the design of wind turbines influences their effects on radar systems and to determine the extent to which design of the radar processing influences the effects of wind turbines on radar systems. A computer model was developed to predict the Radar Cross Section (RCS) of wind turbines and understand the interaction of radar energy and turbines. The model was designed to predict and simulate the impact of wind farms on the primary radar display. Validation of the model was carried out in a full-scale trial and modelling process, with data collected from a number of sources. The model was validated against a single turbine scenario and showed an accurate prediction capability. Further validation of the model could be gained through a multiple turbine trial. The knowledge gained from the development and validation of the predictive computer model has been used to conduct a sensitivity analysis (of the sub-elements of the radar and wind farm interaction) and to compile a list of the key factors influencing the radar signature of wind turbines. The result is a more detailed quantification of the complex interactions between wind turbines and radar systems than was previously available. The key findings of how the design, size and construction materials of wind turbines affect RCS are summarised.

  12. Design and Development of the SMAP Microwave Radiometer Electronics

    Science.gov (United States)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  13. An improved interface to process GPR data by means of microwave tomography

    Science.gov (United States)

    Catapano, Ilaria; Affinito, Antonio; Soldovieri, Francesco

    2015-04-01

    Ground Penetrating Radar (GPR) systems are well assessed non-invasive diagnostic tools, which are worth being considered in civil engineering surveys since they allow to gather information on constructive materials and techniques of manmade structures as well as on the aging and risk factors affecting their healthiness. However, the practical use of GPR depends strictly on the availability of data processing tools, on one hand, capable of providing reliable and easily interpretable images of the probed scenarios and, on the other side, easy to be used by not expert users. In this frame, 2D and full 3D microwave tomographic approaches based on the Born approximation have been developed and proved to be effective in several practical conditions [1, 2]. Generally speaking, a GPR data processing chain exploiting microwave tomography is made by two main steps: the pre-processing and the data inversion. The pre-processing groups standard procedures like start time correction, muting and background removal, which are performed in time domain to remove the direct antennas coupling, to reduce noise and to improve the targets footprint. The data inversion faces the imaging as the solution of a linear inverse scattering problem in the frequency domain. Hence, a linear integral equation relating the scattered field (i.e. the data) to the unknown electric contrast function is solved by using the truncated Singular Value Decomposition (SVD) as a regularized inversion scheme. Pre-processing and the data inversion are linked by a Discrete Fourier Transform (DFT), which allows to pass from the time domain to the frequency domain. In this respect, a frequency analysis of the GPR signals (traces) is also performed to identify the actual frequency range of the data. Unfortunately, the adoption of microwave tomography is strongly subjected to the involvement of expert people capable of managing properly the processing chain. To overcome this drawback, a couple of years ago, an end

  14. Radar Location Equipment Development Program: Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  15. Radar Location Equipment Development Program: Phase I

    International Nuclear Information System (INIS)

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2 0 , respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1 0 in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs

  16. A hardware-in-the-loop simulation program for ground-based radar

    Science.gov (United States)

    Lam, Eric P.; Black, Dennis W.; Ebisu, Jason S.; Magallon, Julianna

    2011-06-01

    A radar system created using an embedded computer system needs testing. The way to test an embedded computer system is different from the debugging approaches used on desktop computers. One way to test a radar system is to feed it artificial inputs and analyze the outputs of the radar. More often, not all of the building blocks of the radar system are available to test. This will require the engineer to test parts of the radar system using a "black box" approach. A common way to test software code on a desktop simulation is to use breakpoints so that is pauses after each cycle through its calculations. The outputs are compared against the values that are expected. This requires the engineer to use valid test scenarios. We will present a hardware-in-the-loop simulator that allows the embedded system to think it is operating with real-world inputs and outputs. From the embedded system's point of view, it is operating in real-time. The hardware in the loop simulation is based on our Desktop PC Simulation (PCS) testbed. In the past, PCS was used for ground-based radars. This embedded simulation, called Embedded PCS, allows a rapid simulated evaluation of ground-based radar performance in a laboratory environment.

  17. Wave parameters comparisons between High Frequency (HF) radar system and an in situ buoy: a case study

    Science.gov (United States)

    Fernandes, Maria; Alonso-Martirena, Andrés; Agostinho, Pedro; Sanchez, Jorge; Ferrer, Macu; Fernandes, Carlos

    2015-04-01

    The coastal zone is an important area for the development of maritime countries, either in terms of recreation, energy exploitation, weather forecasting or national security. Field measurements are in the basis of understanding how coastal and oceanic processes occur. Most processes occur over long timescales and over large spatial ranges, like the variation of mean sea level. These processes also involve a variety of factors such as waves, winds, tides, storm surges, currents, etc., that cause huge interference on such phenomena. Measurement of waves have been carried out using different techniques. The instruments used to measure wave parameters can be very different, i.e. buoys, ship base equipment like sonar and satellites. Each equipment has its own advantage and disadvantage depending on the study subject. The purpose of this study is to evaluate the behaviour of a different technology available and presently adopted in wave measurement. In the past few years the measurement of waves using High Frequency (HF) Radars has had several developments. Such a method is already established as a powerful tool for measuring the pattern of surface current, but its use in wave measurements, especially in the dual arrangement is recent. Measurement of the backscatter of HF radar wave provides the raw dataset which is analyzed to give directional data of surface elevation at each range cell. Buoys and radars have advantages, disadvantages and its accuracy is discussed in this presentation. A major advantage with HF radar systems is that they are unaffected by weather, clouds or changing ocean conditions. The HF radar system is a very useful tool for the measurement of waves over a wide area with real-time observation, but it still lacks a method to check its accuracy. The primary goal of this study was to show how the HF radar system responds to high energetic variations when compared to wave buoy data. The bulk wave parameters used (significant wave height, period and

  18. Optimal Power Allocation Algorithm for Radar Network Systems Based on Low Probability of Intercept Optimization(in English

    Directory of Open Access Journals (Sweden)

    Shi Chen-guang

    2014-08-01

    Full Text Available A novel optimal power allocation algorithm for radar network systems is proposed for Low Probability of Intercept (LPI technology in modern electronic warfare. The algorithm is based on the LPI optimization. First, the Schleher intercept factor for a radar network is derived, and then the Schleher intercept factor is minimized by optimizing the transmission power allocation among netted radars in the network to guarantee target-tracking performance. Furthermore, the Nonlinear Programming Genetic Algorithm (NPGA is used to solve the resulting nonconvex, nonlinear, and constrained optimization problem. Numerical simulation results show the effectiveness of the proposed algorithm.

  19. Weather Radar Stations

    Data.gov (United States)

    Department of Homeland Security — These data represent Next-Generation Radar (NEXRAD) and Terminal Doppler Weather Radar (TDWR) weather radar stations within the US. The NEXRAD radar stations are...

  20. 35-GHz radar sensor for automotive collision avoidance

    Science.gov (United States)

    Zhang, Jun

    1999-07-01

    This paper describes the development of a radar sensor system used for automotive collision avoidance. Because the heavy truck may have great larger radar cross section than a motorcyclist has, the radar receiver may have a large dynamic range. And multi-targets at different speed may confuse the echo spectrum causing the ambiguity between range and speed of target. To get more information about target and background and to adapt to the large dynamic range and multi-targets, a frequency modulated and pseudo- random binary sequences phase modulated continuous wave radar system is described. The analysis of this double- modulation system is given. A high-speed signal processing and data processing component are used to process and combine the data and information from echo at different direction and at every moment.

  1. Spectral Properties of Homogeneous and Nonhomogeneous Radar Images

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang

    1987-01-01

    On the basis of a two-dimensional, nonstationary white noisemodel for the complex radar backscatter, the spectral properties ofa one-look synthetic-aperture radar (SAR) system is derived. It isshown that the power spectrum of the complex SAR image is sceneindependent. It is also shown that the sp......On the basis of a two-dimensional, nonstationary white noisemodel for the complex radar backscatter, the spectral properties ofa one-look synthetic-aperture radar (SAR) system is derived. It isshown that the power spectrum of the complex SAR image is sceneindependent. It is also shown...... that the spectrum of the intensityimage is in general related to the radar scene spectrum by a linearintegral equation, a Fredholm's integral equation of the third kind.Under simplifying assumptions, a closed-form equation giving theradar scene spectrum as a function of the SAR image spectrum canbe derived....

  2. Quantitative Determination of Serum Proteins in Persons Occupationally Exposed to Radar

    International Nuclear Information System (INIS)

    Kasuba, V.; Garaj-Vrhovac, V.

    1998-01-01

    Radio-wave communications are used extensively in the modern society. We are all subject to radio frequency radiation (RFR) created by a radio, television, wireless telephony, emergency communications, and radar. The interest in the health effects of RFR has been motivated the rapid growth in wireless communications. Recently, many investigations are headed to the influence of nonionizing electromagnetic radiation to people. The interpretation of nonionizing radiation effects depends on apsorption characteristics of biological material and on thermoregulative system of exposed persons. This article includes serum protein analysis of 14 people who work in a radar zone. All the examinees are men aged 39 in average. The average exposure period in the radar zone was 16 years (twelve hours each second day). Human serum proteins in all samples were detected by electrophoresis on cellulose acetate membranes (Cellogel 500, Chemeton, Italy) in sodium-Veronal-Veronal-TRIS buffer pH 8.6. The duration of electrophoresis was two hours at 130-140 V at 11 cm bridge. Electroferograms were stained with 0.1 % Ponceau,s (w/v) (Chemetron, Italy) in 5% trichloracetic acid (v/v). Quantitative determination, i.e. densitometry of five serum protein fractions (albumin, α 1 - , α 2 - , β 1 - and γ -globulin) was carried out by photometry at multipolar densitometer. The results show gradual decrease of albumin 58.0 - 44.0 g/l versus control (64.05 g/l), except in three examinees where the values were almost equal to the normal value. One can also observe the changes in γ -globulin levels. All examinees except one showed increase in g -globulin levels (19.0 - 30.0 g/l vs. normal 15.0 g/l). The effect of nonionizing electromagnetic and microwave radiation on those who work in related field certainly needs much more investigation. (author)

  3. Microwave system of the 7-10 MeV electron linear accelerator ALIN for medical applications

    International Nuclear Information System (INIS)

    Martin, D.; Iliescu, E.; Stirbet, M.; Oproiu, C.; Vintan, I.

    1978-01-01

    A detailed description of the Central Institute of Physics 10 MeV linear microwave system and its associated subsystems are presented. Methods of impedance matching to obtain maximum power transfer are described along with broadband design methods for transmission-line impedance transformers. Experimental results for such microwave devices are included. With respect to microwave device performances, simultaneous high efficiency and high power capability with reliability and long life at relatively low unit cost have only recently been achieved as typical device characteristics. Industrial, medical and scientific application of microwave electron accelerators have markedly influenced microwave research progress. Radiographic linear accelerators have grown substantially mainly during the past few years. Following this, the improvements of microwave device performances solicit our attention. The first electron therapy Linear Accelerator ALIN 10 marks a new stage in the development of such instrumentation. Its subsequent ALIN 15 is designed to produce a maximum energy of 18 MeV to widen its applicability in radiotherapy. In addition, a new electron linear accelerator of 8 MeV for nondestructive testing has been started. (author)

  4. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  5. Enhance the accuracy of radar snowfall estimation with Multi new Z-S relationships in MRMS system

    Science.gov (United States)

    Qi, Y.

    2017-12-01

    Snow may have negative affects on roadways and human lives, but the result of the melted snow/ice is good for farm, humans, and animals. For example, in the Southwest and West mountainous area of United States, water shortage is a very big concern. However, snowfall in the winter can provide humans, animals and crops an almost unlimited water supply. So, using radar to accurately estimate the snowfall is very important for human life and economic development in the water lacking area. The current study plans to analyze the characteristics of the horizontal and vertical variations of dry/wet snow using dual polarimetric radar observations, relative humidity and in situ snow water equivalent observations from the National Weather Service All Weather Prediction Accumulation Gauges (AWPAG) across the CONUS, and establish the relationships between the reflectivity (Z) and ground snow water equivalent (S). The new Z-S relationships will be evaluated with independent CoCoRaHS (Community Collaborative Rain, Hail & Snow Network) gauge observations and eventually implemented in the Multi-Radar Multi-Sensor system for improved quantitative precipitation estimation for snow. This study will analyze the characteristics of the horizontal and vertical variations of dry/wet snow using dual polarimetric radar observations, relative humidity and in situ snow water equivalent observations from the National Weather Service All Weather Prediction Accumulation Gauges (AWPAG) across the CONUS, and establish the relationships between the reflectivity (Z) and ground snow water equivalent (S). The new Z-S relationships will be used to reduce the error of snowfall estimation in Multi Radar and Multi Sensors (MRMS) system, and tested in MRMS system and evaluated with the COCORaHS observations. Finally, it will be ingested in MRMS sytem, and running in NWS/NCAR operationally

  6. An X-Band Radar System for Bathymetry and Wave Field Analysis in a Harbour Area

    Directory of Open Access Journals (Sweden)

    Giovanni Ludeno

    2015-01-01

    Full Text Available Marine X-band radar based systems are well tested to provide information about sea state and bathymetry. It is also well known that complex geometries and non-uniform bathymetries provide a much bigger challenge than offshore scenarios. In order to tackle this issue a retrieval method is proposed, based on spatial partitioning of the data and the application of the Normalized Scalar Product (NSP, which is an innovative procedure for the joint estimation of bathymetry and surface currents. The strategy is then applied to radar data acquired around a harbour entrance, and results show that the reconstructed bathymetry compares well with ground truth data obtained by an echo-sounder campaign, thus proving the reliability of the whole procedure. The spectrum thus retrieved is then analysed to show the evidence of reflected waves from the harbour jetties, as confirmed by chain of hydrodynamic models of the sea wave field. The possibility of using a land based radar to reveal sea wave reflection is entirely new and may open up new operational applications of the system.

  7. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    Science.gov (United States)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform

  8. Fpga based L-band pulse doppler radar design and implementation

    Science.gov (United States)

    Savci, Kubilay

    As its name implies RADAR (Radio Detection and Ranging) is an electromagnetic sensor used for detection and locating targets from their return signals. Radar systems propagate electromagnetic energy, from the antenna which is in part intercepted by an object. Objects reradiate a portion of energy which is captured by the radar receiver. The received signal is then processed for information extraction. Radar systems are widely used for surveillance, air security, navigation, weather hazard detection, as well as remote sensing applications. In this work, an FPGA based L-band Pulse Doppler radar prototype, which is used for target detection, localization and velocity calculation has been built and a general-purpose Pulse Doppler radar processor has been developed. This radar is a ground based stationary monopulse radar, which transmits a short pulse with a certain pulse repetition frequency (PRF). Return signals from the target are processed and information about their location and velocity is extracted. Discrete components are used for the transmitter and receiver chain. The hardware solution is based on Xilinx Virtex-6 ML605 FPGA board, responsible for the control of the radar system and the digital signal processing of the received signal, which involves Constant False Alarm Rate (CFAR) detection and Pulse Doppler processing. The algorithm is implemented in MATLAB/SIMULINK using the Xilinx System Generator for DSP tool. The field programmable gate arrays (FPGA) implementation of the radar system provides the flexibility of changing parameters such as the PRF and pulse length therefore it can be used with different radar configurations as well. A VHDL design has been developed for 1Gbit Ethernet connection to transfer digitized return signal and detection results to PC. An A-Scope software has been developed with C# programming language to display time domain radar signals and detection results on PC. Data are processed both in FPGA chip and on PC. FPGA uses fixed

  9. Diagnosis of pneumothorax using a microwave-based detector

    Science.gov (United States)

    Ling, Geoffrey S. F.; Riechers, Ronald G., Sr.; Pasala, Krishna M.; Blanchard, Jeremy; Nozaki, Masako; Ramage, Anthony; Jackson, William; Rosner, Michael; Garcia-Pinto, Patricia; Yun, Catherine; Butler, Nathan; Riechers, Ronald G., Jr.; Williams, Daniel; Zeidman, Seth M.; Rhee, Peter; Ecklund, James M.; Fitzpatrick, Thomas; Lockhart, Stephen

    2001-08-01

    A novel method for identifying pneumothorax is presented. This method is based on a novel device that uses electromagnetic waves in the microwave radio frequency (RF) region and a modified algorithm previously used for the estimation of the angle of arrival of radar signals. In this study, we employ this radio frequency triage tool (RAFT) to the clinical condition of pneumothorax, which is a collapsed lung. In anesthetized pigs, RAFT can detect changes in the RF signature from a lung that is 20 percent or greater collapsed. These results are compared to chest x-ray. Both studies are equivalent in their ability to detect pneumothorax in pigs.

  10. Microwave photonics technologies supporting high capacity and flexible wireless communications systems

    DEFF Research Database (Denmark)

    Lu, Xiaofeng; Tatarczak, Anna; Rommel, Simon

    2015-01-01

    Emerging 5G wireless systems require technologies for increased capacity, guarantee robustness, low latency and flexibility. We review a number of approaches to provide the above based on microwave photonics and hybrid optical fiber-wireless communication techniques....

  11. Novel RF and microwave components employing ferroelectric and solid-state tunable capacitors for multi-functional wireless communication systems

    Science.gov (United States)

    Tombak, Ali

    The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF/microwave

  12. Microwave life detector for buried victims using neutrodyning loop based system

    Science.gov (United States)

    Tahar J., Bel Hadj

    2009-07-01

    This paper describes a new design of an electromagnetic life detector for the detection of buried victims. The principle of the microwave life sensor is based on the detection of the modulated part of a scattered wave which is generated by the breathing activity of the victim. Those movements generate a spectral component located in the low frequency range, which for most of the cases, is located in a spectrum extending from 0.18 Hz to 0.34 Hz. The detection process requires high sensitivity with respect to breathing movements and, simultaneously, a relative insensitivity for other non-modulated or modulated parasitic signals. Developed microwave system, generating a frequency adjustable between 500 MHz and 1 GHz, is based on a neutrodyning loop required to cancel any non-modulated background and reflected signals in order to get better receiver sensitivity without introducing supplementary distortions on the received signal. Life signal is considered practically periodic that facilitates the extraction of this spectral component using several processing techniques, such as adaptive filtering and correlation permitting to ameliorate the detection range to be more than 15 m in low-loss medium. Detection range is a fundamental parameter for a microwave life detector. A range around 1 m doesn't have a large interest for this application. To attain a range more than 15 m, while guaranteeing professional performances, the technology has to optimize the system parameters as well as the involved signal processing for the purpose of overcoming the presence of obstacles, attenuation, and noise perturbation. This constitutes the main contribution of the present work. Experimental measurements have confirmed the potentiality of this microwave technique for life detector with best space covering detection.

  13. Microwave Plasma Propulsion Systems for Defensive Counter-Space

    Science.gov (United States)

    2007-09-01

    microwave/ECR-based propulsion system. No electron cathode or neutralizer is needed. There are no electrodes to erode, sputter or damage. Measurement of...without the need for a cathode neutralizer, a wide range of performance parameters can be achieved by selecting the size and length of the resonance...EC • Earth Coverage Antenna NCA • Narrow coverege Antenna LNA • Low Noise Amplifier Rx • Receive Tx =Transmit IV IV TI.IO CMOI Figure 53

  14. Retrievals of Ice Cloud Microphysical Properties of Deep Convective Systems using Radar Measurements

    Science.gov (United States)

    Tian, J.; Dong, X.; Xi, B.; Wang, J.; Homeyer, C. R.

    2015-12-01

    This study presents innovative algorithms for retrieving ice cloud microphysical properties of Deep Convective Systems (DCSs) using Next-Generation Radar (NEXRAD) reflectivity and newly derived empirical relationships from aircraft in situ measurements in Wang et al. (2015) during the Midlatitude Continental Convective Clouds Experiment (MC3E). With composite gridded NEXRAD radar reflectivity, four-dimensional (space-time) ice cloud microphysical properties of DCSs are retrieved, which is not possible from either in situ sampling at a single altitude or from vertical pointing radar measurements. For this study, aircraft in situ measurements provide the best-estimated ice cloud microphysical properties for validating the radar retrievals. Two statistical comparisons between retrieved and aircraft in situ measured ice microphysical properties are conducted from six selected cases during MC3E. For the temporal-averaged method, the averaged ice water content (IWC) and median mass diameter (Dm) from aircraft in situ measurements are 0.50 g m-3 and 1.51 mm, while the retrievals from radar reflectivity have negative biases of 0.12 g m-3 (24%) and 0.02 mm (1.3%) with correlations of 0.71 and 0.48, respectively. For the spatial-averaged method, the IWC retrievals are closer to the aircraft results (0.51 vs. 0.47 g m-3) with a positive bias of 8.5%, whereas the Dm retrievals are larger than the aircraft results (1.65 mm vs. 1.51 mm) with a positive bias of 9.3%. The retrieved IWCs decrease from ~0.6 g m-3 at 5 km to ~0.15 g m-3 at 13 km, and Dm values decrease from ~2 mm to ~0.7 mm at the same levels. In general, the aircraft in situ measured IWC and Dm values at each level are within one standard derivation of retrieved properties. Good agreements between microphysical properties measured from aircraft and retrieved from radar reflectivity measurements indicate the reasonable accuracy of our retrievals.

  15. MAARSY - The new MST radar on Andøya: System description and first results

    Science.gov (United States)

    Latteck, Ralph; Zecha, Marius; Rapp, Markus; Stober, Gunter; Singer, Werner; Renkwitz, Toralf

    2012-07-01

    In 2011 the Leibniz-Institute of Atmospheric Physics in Kühlungsborn completed the installation of the Middle Atmosphere Alomar Radar System ({MAARSY}) on the North-Norwegian island Andøya. MAARSY is a 53.5 MHz monostatic radar with an active phased array antenna consisting of 433 Yagi antennas. The 3-element Yagi antennas are arranged in an equilateral triangular grid forming a circular aperture of approximately 6300 m^2. Each individual antenna is connected to its own transceiver with independent phase control and a scalable power output of up to 2 kW. This arrangement provides very high flexibility of beam forming and beam steering with a symmetric radar beam of a minimum beam width of 3.6°. The system allows classical beam swinging operation as well as experiments with simultaneous multiple beams and the use of interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatio-temporal resolution. Standard observations of tropospheric winds and polar mesosphere summer echoes started immediately with an initial stage of expansion in spring 2010. Meteor head echo experiments and 3D observations of polar mesospheric winter echoes were conducted after an upgrade of the system in December 2010. Multi-beam experiments using up to 97 beams quasi-simultaneously in the mesosphere have been carried out during campaigns in summer 2011 with the completed system. We present a system description of MAARSY including beam pattern validation and show initial results from various campaigns obtained during the first 2 years of operation.

  16. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part II: Evaluation of Estimates Using Independent Data

    Science.gov (United States)

    Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.

    2006-01-01

    Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated

  17. Annual non-compliance report drops charge on Soviet radars

    International Nuclear Information System (INIS)

    Lockwood, D.

    1993-01-01

    Last year's non-compliance report said a data link between Soviet early warming radars and the Moscow ABM system may be a significant violation of fundamental provisions of the ABM Treaty. This year's report, however, reverses last years position by saying: In light of the ambiguity of the Treaty language, and based on further review of the issue and on the probable Soviet practice - the US now judges that the support of ABM systems by early warning radars providing precise handover data will not constitute use of the radars as ABM radars in violation of the ABM Treaty

  18. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    Science.gov (United States)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  19. Space Radar Image of Bahia

    Science.gov (United States)

    1994-01-01

    . The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fuer luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  20. Radar-acoustic interaction for IFF applications

    Science.gov (United States)

    Saffold, James A.; Williamson, Frank R.; Ahuja, Krishan; Stein, Lawrence R.; Muller, Marjorie

    1998-08-01

    This paper describes the results of an internal development program (IDP) No. 97-1 conducted from August 1-October 1 1996 at the Georgia Tech Research Institute. The IDP program was implemented to establish theoretical relationships and verify the interaction between X-band radar waves and ultrasonic acoustics. Low cost, off-the-shelf components were used for the verification in order to illustrate the cost savings potential of developing and utilizing these systems. The measured data was used to calibrate the developed models of the phenomenology and to support extrapolation for radar systems which can exploit these interactions. One such exploitation is for soldier identification IFF and radar taggant concepts. The described IDP program provided the phenomenological data which is being used to extrapolate concept system performances based on technological limitations and battlefield conditions for low cost IFF and taggant configurations.

  1. Aspect-Aided Dynamic Non-Negative Sparse Representation-Based Microwave Image Classification

    Directory of Open Access Journals (Sweden)

    Xinzheng Zhang

    2016-09-01

    Full Text Available Classification of target microwave images is an important application in much areas such as security, surveillance, etc. With respect to the task of microwave image classification, a recognition algorithm based on aspect-aided dynamic non-negative least square (ADNNLS sparse representation is proposed. Firstly, an aspect sector is determined, the center of which is the estimated aspect angle of the testing sample. The training samples in the aspect sector are divided into active atoms and inactive atoms by smooth self-representative learning. Secondly, for each testing sample, the corresponding active atoms are selected dynamically, thereby establishing dynamic dictionary. Thirdly, the testing sample is represented with ℓ 1 -regularized non-negative sparse representation under the corresponding dynamic dictionary. Finally, the class label of the testing sample is identified by use of the minimum reconstruction error. Verification of the proposed algorithm was conducted using the Moving and Stationary Target Acquisition and Recognition (MSTAR database which was acquired by synthetic aperture radar. Experiment results validated that the proposed approach was able to capture the local aspect characteristics of microwave images effectively, thereby improving the classification performance.

  2. A new ground-penetrating radar system for remote site characterization

    International Nuclear Information System (INIS)

    Davis, K.C.; Sandness, G.A.

    1994-08-01

    The cleanup of waste burial sites and military bombing ranges involves the risk of exposing field personnel to toxic chemicals, radioactive materials, or unexploded munitions. Time-consuming and costly measures are required to provide protection from those hazards. Therefore, there is a growing interest in developing remotely controlled sensors and sensor platforms that can be employed in site characterization surveys. A specialized ground-penetrating radar has been developed to operate on a remotely controlled vehicle for the non-intrusive subsurface characterization of buried waste sites. Improved radar circuits provide enhanced performance, and an embedded microprocessor dynamically optimizes operation. The radar unit is packaged to survive chemical contamination and decontamination

  3. Solution of inverse localization problem associated to multistatic radar system

    Directory of Open Access Journals (Sweden)

    Boutkhil M.

    2016-01-01

    Full Text Available This work deals with the problem of inverse localization by a target with the aim to retrieve the position of the target, given the intensity and phase of the electromagnetic waves scattered by this object. Assuming the surface cross section to be known as well as the intensity and phase of the scattered waves, the target position was reconstructed through the echo signals scattered of each bistatic. We develop in the same time a multistatic ambiguity function trough bistatic ambiguity function to investigate several fundamental aspects that determine multistatic radar performance. We used a multistatic radar constructed of two bistatic radars, two transmitters and one receiver.

  4. Development of a modified two-scale electromagnetic model simulating both active and passive microwave measurements: Comparison to data remotely sensed over the ocean

    Science.gov (United States)

    Boukabara, S. A.; Eymard, L.; Guillou, C.; Lemaire, D.; Sobieski, P.; Guissard, A.

    2002-08-01

    Spaceborne microwave remote sensing allows the determination of oceanic and atmospheric parameters. Operational payloads such as ERS-1 and ERS-2 and TOPEX/Poseidon as well as missions such as Jason (from NASA-Centre National d'Etudes) or Envisat (from the European Space Agency), have contained or contain paired microwave instruments looking at the nadir direction. This combination consists of microwave radiometers and a radar-altimeter. For the frequencies chosen in oceanographic satellite payloads, the active mode signal is mostly dependent on the surface state through its reflectivity and thus used for the near-surface wind speed retrieval. The active mode can also be attenuated by the atmosphere. On the other hand, the passive mode is related to the surface emissivity and the atmospheric radiation through the radiative transfer equation. Until now, the oceanic and atmospheric parameters have been retrieved separately, the latter being used to correct radar measurements. However, the reflectivity and the emissivity of a target are not independent quantities; hence the synergistic use of these two kinds of microwave measurements should allow one to improve the retrieval quality of the sea and atmosphere parameters. For this purpose, a unified model has been developed for the simulation of both the microwave backscattering coefficient σ° (active measurement) and the microwave emissivity, an important factor for the brightness temperature TB simulation, for every configuration (incidence angles, frequency, polarizations), taking into account the fact that the reflectivity and the emissivity are complementary to unity. The atmospheric absorption is computed following a widely used model from the literature. This paper gives a description and a first attempt of validation of this approach through a comparison with real data. The performance of the model is assessed by comparing the simulations to both brightness temperatures and backscattering coefficients from ERS

  5. A millimetre-wave MIMO radar system for threat detection in urban environments

    Science.gov (United States)

    Kirschner, A. J.; Guetlein, J.; Bertl, S.; Detlefsen, J.

    2012-10-01

    The European Defence Agency (EDA) engages countermeasures against Improvised Explosive Devices (IEDs) by funding several scientific programs on threat awareness, countermeasures IEDs or land-mine detection, in which this work is only one of numerous projects. The program, denoted as Surveillance in an urban environment using mobile sensors (SUM), covers the idea of equipping one or more vehicles of a patrol or a convoy with a set of sensors exploiting different physical principles in order to gain detailed insights of the road situation ahead. In order to give an added value to a conventional visual camera system, measurement data from an infra-red (IR) camera, a radiometer and a millimetre-wave radar are fused with data from an optical image and are displayed on a human-machine-interface (HMI) which shall assist the vehicle's co-driver to identify suspect objects or persons on or next to the road without forcing the vehicle to stop its cruise. This paper shall especially cover the role of the millimetre-wave radar sensor and its different operational modes. Measurement results are discussed. It is possible to alter the antenna mechanically which gives two choices for a field of view and angular resolution trade-off. Furthermore a synthetic aperture radar mode is possible and has been tested successfully. MIMO radar principles like orthogonal signal design were exploited tofrom a virtual array by 4 transmitters and 4 receivers. In joint evaluation, it was possible to detect e.g. grenade shells under cardboard boxes or covered metal barrels which were invisible for optical or infra-red detection.

  6. Noise and LPI radar as part of counter-drone mitigation system measures

    Science.gov (United States)

    Zhang, Yan (Rockee); Huang, Yih-Ru; Thumann, Charles

    2017-05-01

    With the rapid proliferation of small unmanned aerial systems (UAS) in the national airspace, small operational drones are being sometimes considered as a security threat for critical infrastructures, such as sports stadiums, military facilities, and airports. There have been many civilian counter-drone solutions and products reported, including radar and electromagnetic counter measures. For the current electromagnetic solutions, they are usually limited to particular type of detection and counter-measure scheme, which is usually effective for the specific type of drones. Also, control and communication link technologies used in even RC drones nowadays are more sophisticated, making them more difficult to detect, decode and counter. Facing these challenges, our team proposes a "software-defined" solution based on noise and LPI radar. For the detection, wideband-noise radar has the resolution performance to discriminate possible micro-Doppler features of the drone versus biological scatterers. It also has the benefit of more adaptive to different types of drones, and covertly detecting for security application. For counter-measures, random noise can be combined with "random sweeping" jamming scheme, to achieve the optimal balance between peak power allowed and the effective jamming probabilities. Some theoretical analysis of the proposed solution is provided in this study, a design case study is developed, and initial laboratory experiments, as well as outdoor tests are conducted to validate the basic concepts and theories. The study demonstrates the basic feasibilities of the Drone Detection and Mitigation Radar (DDMR) concept, while there are still much work needs to be done for a complete and field-worthy technology development.

  7. A New Ka-Band Scanning Radar Facility: Polarimetric and Doppler Spectra Measurements of Snow Events

    Science.gov (United States)

    Oue, M.; Kollias, P.; Luke, E. P.; Mead, J.

    2017-12-01

    Polarimetric radar analyses offer the capability of identification of ice hydrometeor species as well as their spatial distributions. In addition to polarimetric parameter observations, Doppler spectra measurements offer unique insights into ice particle properties according to particle fall velocities. In particular, millimeter-wavelength radar Doppler spectra can reveal supercooled liquid cloud droplets embedded in ice precipitation clouds. A Ka-band scanning polarimetric radar, named KASPR, was installed in an observation facility at Stony Brook University, located 22 km west of the KOKX NEXRAD radar at Upton, NY. The KASPR can measure Doppler spectra and full polarimetric variables, including radar reflectivity, differential reflectivity (ZDR), differential phase (φDP), specific differential phase (KDP), correlation coefficient (ρhv), and linear depolarization ratio (LDR). The facility also includes a micro-rain radar and a microwave radiometer capable of measuring reflectivity profiles and integrated liquid water path, respectively. The instruments collected initial datasets during two snowstorm events and two snow shower events in March 2017. The radar scan strategy was a combination of PPI scans at 4 elevation angles (10, 20, 45, and 60°) and RHI scans in polarimetry mode, and zenith pointing with Doppler spectra collection. During the snowstorm events the radar observed relatively larger ZDR (1-1.5 dB) and enhanced KDP (1-2 ° km-1) at heights corresponding to a plate/dendrite crystal growth regime. The Doppler spectra showed that slower-falling particles ( 1 m s-1). The weakly increased ZDR could be produced by large, faster falling particles such as quasi-spherical aggregates, while the enhanced KDP could be produced by highly-oriented oblate, slowly-falling particles. Below 2 km altitude, measurements of dual wavelength ratio (DWR) based on Ka and S-band reflectivities from the KASPR and NEXRAD radars were available. Larger DWR (>10 dB) suggested

  8. Research cooperation of the development of laser radar for environmental measurements; Kankyo keisokuyo laser radar no kaihatsu ni kansuru kenkyu kyoryoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    Research and development of the laser radar for measuring the air pollution in urban areas and the environmental information network have been conducted through the cooperation with Indonesian researchers. A measurement system suitable to actual situation of Indonesia has been constructed. In FY 1996, some works have been conducted as in the final fiscal year. To set the laser radar for environmental measurements and to make a plan of measurement research, conditions of air pollution in Indonesia and setting places of systems have been investigated. Opinions for the cooperation research have been exchanged with Indonesian researchers. Actual trends of the environmental measurements technology using laser radar have been surveyed. Indonesian researchers have been invited to learn operation and data processing of the system. One unit of MIE diffusion laser radar system has been designed and fabricated, and an additional data processing program has been made. The system has been delivered to Jakarta and installed. After the adjustment, performance tests have been conducted to complete the construction of the system. 3 refs., 72 figs., 10 tabs.

  9. Expert systems and microwave communication systems alarms processing: A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Tonn, B.; Goeltz, R.; Purucker, S.

    1987-07-01

    This report presents the results of a feasibility study conducted by Oak Ridge National Laboratory (ORNL) for the Bonneville Power Administration concerning the applicability of Artificial Intelligence (AI) technology to process alarms associated with Bonneville's Microwave Communication System (MCS). Specifically, the discussion focuses on the characteristics of a prototype expert system/database management system (DBMS) configuration capable of intelligently processing alarms, efficiently storing alarm-based historical data, and providing analysis and reporting tools. Such a system has the potential to improve response to critical alarms, increase the information content of a large volume of complicated data, free operators from performing routine analysis, and provide alarm information to operators, field personnel, and management through queries and automatically produced reports.

  10. Microwave-gamma ray water in crude monitor

    International Nuclear Information System (INIS)

    Paap, H.J.

    1984-01-01

    A microwave-gamma ray water-in-crude monitoring system measures the percent quantity of fresh water or salt water in crude oil flowing in a pipe line. The system includes a measuring cell arranged with the pipe line so that the crude oil flows through the measuring cell. A microwave transmitter subsystem and a gamma ray source are arranged with the measuring cell so that microwave energy and gamma rays are transmitted through the measuring cell. A microwave receiving subsystem and a gamma ray detector provide signals corresponding to received microwave energy and to the received gamma rays, respectively. Apparatus connected to the microwave receiver and to the gamma ray detector provides an indication of the percentage of water in the crude oil

  11. Experimental continuous sludge microwave system to enhance dehydration ability and hydrogen production from anaerobic digestion of sludge.

    Science.gov (United States)

    Zhou, Cuihong; Huang, Xintong; Zeng, Meng

    2018-05-01

    Dehydrating large amounts of sludge produced by sewage treatment plants is difficult. Microwave pretreatment can effectively and significantly improve the dewaterability and hydrogen production of sludge subjected to anaerobic digestion. The aim of this study was to investigate the effects of different microwave conditions on hydrogen production from anaerobic digestion and dewaterability of sludge. Based on an analysis of the electric field distribution, a spiral reactor was designed and a continuous microwave system was built to conduct intermittent and continuous experiments under different conditions. Settling Volume, Capillary Suction Time, particle size, and moisture content of the sludge were measured. The results show that sludge pretreatment in continuous experiments has equally remarkable dehydration performance as in intermittent experiments; the minimum moisture content was 77.29% in the intermittent experiment under a microwave power of 300W and an exposure time of 60sec, and that in the continuous experiment was 77.56% under a microwave power of 400W and an exposure time of 60sec. The peak measured by Differential Scanning Calorimeter appeared earliest under a microwave power of 600W and an exposure time of 180sec. The heat flux at the peak was 4.343W/g, which is relatively small. This indicates that microwave pretreatment induced desirable effects. The maximum yield of hydrogen production was 7.967% under the conditions of microwave power of 500W, exposure time of 120sec, and water bath at 55°C. This research provides a theoretical and experimental basis for the development of a continuous microwave sludge-conditioning system. Copyright © 2017. Published by Elsevier B.V.

  12. FLIGHT DEVELOPMENT OF A DISTRIBUTED INERTIAL SATELLITE MICRONAVIGATTION SYSTEM FOR SYNTHETIC - APERTURE RADAR

    Directory of Open Access Journals (Sweden)

    Alexander Vladimirovich Chernodarov

    2017-01-01

    Full Text Available The current state of the onboard systems is characterized by the integration of aviation and radio-electronic equipment systems for solving problems of navigation and control. These problems include micro-navigation of the anten- na phase center (APC of the radar during the review of the Earth's surface from aboard the aircraft. Increasing of the reso- lution of the radar station (RLS by hardware increasing the antenna size is not always possible due to restrictions on the aircraft onboard equipment weight and dimensions. Therefore the implementation of analytic extension of the radiation pattern by "gluing" the images, obtained by RLS on the aircraft motion trajectory is embodied. The estimations are con- verted into amendments to the signals of RLS with synthetic aperture RSA to compensate instabilities. The purpose of the research is building a theoretical basis and a practical implementation of procedures for evaluating the trajectory APS in- stabilities using a distributed system of inertial-satellite micro-navigation (DSMN taking into account the RSA flight oper- ations actual conditions. The technology of evaluation and compensation of RSA trajectory instabilities via DSMN is con- sidered. The implementation of this technology is based on the mutual support of inertial, satellite and radar systems. Syn- chronization procedures of inertial and satellite measurements in the evaluation of DSMN errors are proposed. The given results of DSMN flight testing justify the possibility and expediency to apply the proposed technology in order to improve the resolution of RSA. The compensation of aircraft trajectory instabilities in RSA signals can be provided by inertial- satellite micro-navigation system, taking into account the actual conditions of the RSA flight operations. The researches show that in order to achieve the required resolution of RSA it seems to be appropriate to define the rational balance be- tween accuracy DSMN characteristics

  13. Mutual information-based LPI optimisation for radar network

    Science.gov (United States)

    Shi, Chenguang; Zhou, Jianjiang; Wang, Fei; Chen, Jun

    2015-07-01

    Radar network can offer significant performance improvement for target detection and information extraction employing spatial diversity. For a fixed number of radars, the achievable mutual information (MI) for estimating the target parameters may extend beyond a predefined threshold with full power transmission. In this paper, an effective low probability of intercept (LPI) optimisation algorithm is presented to improve LPI performance for radar network. Based on radar network system model, we first provide Schleher intercept factor for radar network as an optimisation metric for LPI performance. Then, a novel LPI optimisation algorithm is presented, where for a predefined MI threshold, Schleher intercept factor for radar network is minimised by optimising the transmission power allocation among radars in the network such that the enhanced LPI performance for radar network can be achieved. The genetic algorithm based on nonlinear programming (GA-NP) is employed to solve the resulting nonconvex and nonlinear optimisation problem. Some simulations demonstrate that the proposed algorithm is valuable and effective to improve the LPI performance for radar network.

  14. Improvement of antenna decoupling in radar systems

    Science.gov (United States)

    Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban

    2015-02-01

    In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.

  15. Intercomparison of attenuation correction algorithms for single-polarized X-band radars

    Science.gov (United States)

    Lengfeld, K.; Berenguer, M.; Sempere Torres, D.

    2018-03-01

    Attenuation due to liquid water is one of the largest uncertainties in radar observations. The effects of attenuation are generally inversely proportional to the wavelength, i.e. observations from X-band radars are more affected by attenuation than those from C- or S-band systems. On the other hand, X-band radars can measure precipitation fields in higher temporal and spatial resolution and are more mobile and easier to install due to smaller antennas. A first algorithm for attenuation correction in single-polarized systems was proposed by Hitschfeld and Bordan (1954) (HB), but it gets unstable in case of small errors (e.g. in the radar calibration) and strong attenuation. Therefore, methods have been developed that restrict attenuation correction to keep the algorithm stable, using e.g. surface echoes (for space-borne radars) and mountain returns (for ground radars) as a final value (FV), or adjustment of the radar constant (C) or the coefficient α. In the absence of mountain returns, measurements from C- or S-band radars can be used to constrain the correction. All these methods are based on the statistical relation between reflectivity and specific attenuation. Another way to correct for attenuation in X-band radar observations is to use additional information from less attenuated radar systems, e.g. the ratio between X-band and C- or S-band radar measurements. Lengfeld et al. (2016) proposed such a method based isotonic regression of the ratio between X- and C-band radar observations along the radar beam. This study presents a comparison of the original HB algorithm and three algorithms based on the statistical relation between reflectivity and specific attenuation as well as two methods implementing additional information of C-band radar measurements. Their performance in two precipitation events (one mainly convective and the other one stratiform) shows that a restriction of the HB is necessary to avoid instabilities. A comparison with vertically pointing

  16. DMSP SSM/I- Microwave Imager

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/I is a seven-channel, four frequency, linearly-polarized, passive microwave radiometric system which measures atmospheric, ocean and terrain microwave...

  17. Earth-Space Link Attenuation Estimation via Ground Radar Kdp

    Science.gov (United States)

    Bolen, Steven M.; Benjamin, Andrew L.; Chandrasekar, V.

    2003-01-01

    A method of predicting attenuation on microwave Earth/spacecraft communication links, over wide areas and under various atmospheric conditions, has been developed. In the area around the ground station locations, a nearly horizontally aimed polarimetric S-band ground radar measures the specific differential phase (Kdp) along the Earth-space path. The specific attenuation along a path of interest is then computed by use of a theoretical model of the relationship between the measured S-band specific differential phase and the specific attenuation at the frequency to be used on the communication link. The model includes effects of rain, wet ice, and other forms of precipitation. The attenuation on the path of interest is then computed by integrating the specific attenuation over the length of the path. This method can be used to determine statistics of signal degradation on Earth/spacecraft communication links. It can also be used to obtain real-time estimates of attenuation along multiple Earth/spacecraft links that are parts of a communication network operating within the radar coverage area, thereby enabling better management of the network through appropriate dynamic routing along the best combination of links.

  18. Radar, sonar, and holography an introduction

    CERN Document Server

    Kock, Winston E

    1974-01-01

    Radar, Sonar, and Holography: An Introduction provides an introduction to the technology of radar and sonar. Because the new science of holography is affecting both these fields quite strongly, the book includes an explanation of the fundamental principles underlying this new art (including the subjects of wave coherence, interference, and diffraction) and of the hologram process itself. Finally, numerous examples are discussed which show how holography is providing new horizons to radar and sonar systems. The book thus also provides a simple approach to the new technology of holography. The

  19. Radar data processing using a distributed computational system

    Science.gov (United States)

    Mota, Gilberto F.

    1992-06-01

    This research specifies and validates a new concurrent decomposition scheme, called Confined Space Search Decomposition (CSSD), to exploit parallelism of Radar Data Processing algorithms using a Distributed Computational System. To formalize the specification, we propose and apply an object-oriented methodology called Decomposition Cost Evaluation Model (DCEM). To reduce the penalties of load imbalance, we propose a distributed dynamic load balance heuristic called Object Reincarnation (OR). To validate the research, we first compare our decomposition with an identified alternative using the proposed DCEM model and then develop a theoretical prediction of selected parameters. We also develop a simulation to check the Object Reincarnation Concept.

  20. Comparison of FPS-16 radar/jimsphere and NASA's 50-MHz radar wind profiler turbulence indicators

    Science.gov (United States)

    Susko, Michael

    1993-01-01

    Measurements of the wind and turbulent regions from the surface to 16 km by the FPS-11 radar/jimsphere system are reported with particular attention given to the use of these turbulence and wind assessments to validate the NASA 50-MHz radar wind profiler. Wind profile statistics were compared at 150-m wavelengths, a wavelength validated from 20 jimspheres, simultaneously tracked by FPS-16 and FPQ-14 radar, and the resulting analysis of auto spectra, cross-spectra, and coherence squared spectra of the wind profiles. Results demonstrate that the NASA prototype wind profiler is an excellent monitoring device illustrating the measurements of the winds within 1/2 hour of launch zero.

  1. System to continuously produce carbon fiber via microwave assisted plasma processing

    Science.gov (United States)

    White, Terry L; Paulauskas, Felix L; Bigelow, Timothy S

    2014-03-25

    A method for continuously processing carbon fiber including establishing a microwave plasma in a selected atmosphere contained in an elongated chamber having a microwave power gradient along its length defined by a lower microwave power at one end and a higher microwave power at the opposite end of the elongated chamber. The elongated chamber having an opening in each of the ends of the chamber that are adapted to allow the passage of the fiber tow while limiting incidental gas flow into or out of said chamber. A continuous fiber tow is introduced into the end of the chamber having the lower microwave power. The fiber tow is withdrawn from the opposite end of the chamber having the higher microwave power. The fiber to is subjected to progressively higher microwave energy as the fiber is being traversed through the elongated chamber.

  2. Accuracy of three-dimensional glacier surface volocities derived from radar interfeometry and ice-soundin radar measurements

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Reeh, Niels; Madsen, Søren Nørvang

    2003-01-01

    We present a method for analyzing the errors involved in measuring three-dimensional glacier velocities with interferometric radar. We address the surface-parallel flow assumption and an augmented approach with a flux-divergence (FD) term. The errors in an interferometric ERS-1/-2 satellite radar...... dataset with ascending- and descending-orbit data covering Storstrommen glacier, northeast Greenland, are assessed. The FD error assessment is carried out on airborne 60 MHz ice-sounding radar data from the same area. A simple model of an interferometric radar system is developed and analyzed. The error...... sources considered include phase noise, atmospheric distortions, baseline calibration errors, a dry snow layer, and the stationary-flow assumption used in differential interferometry. The additional error sources in the analysis of FD errors are noise, bias and unknown variations of the ice thickness...

  3. Investigating nearby exoplanets via interstellar radar

    Science.gov (United States)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  4. CAMAC system for computer control of microwave spectrometers

    International Nuclear Information System (INIS)

    Zizka, G.; Turko, B.; Kolbe, B.

    1979-01-01

    An interface between a microwave spectrometer and a computer is described. It consists of three CAMAC modules and uses a standard CAMAC crate and controller. The hardware, in conjunction with appropriate software routines was designed to synchronize measurements, to collect data, and to control the microwave frequency and other experimental parameters

  5. Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization.

    Science.gov (United States)

    Zhou, Junwen; Liu, Shiyu; Zhou, Nan; Fan, Liangliang; Zhang, Yaning; Peng, Peng; Anderson, Erik; Ding, Kuan; Wang, Yunpu; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2018-05-01

    A continuous fast microwave-assisted pyrolysis system was designed, fabricated, and tested with sewage sludge. The system is equipped with continuous biomass feeding, mixing of biomass and microwave absorbent, and separated catalyst upgrading. The effect of the sludge pyrolysis temperature (450, 500, 550, and 600 °C) on the products yield, distribution and potentially energy recovery were investigated. The physical, chemical, and energetic properties of the raw sewage sludge and bio-oil, char and gas products obtained were analyzed using elemental analyzer, GC-MS, Micro-GC, SEM and ICP-OES. While the maximum bio-oil yield of 41.39 wt% was obtained at pyrolysis temperature of 550 °C, the optimal pyrolysis temperature for maximum overall energy recovery was 500 °C. The absence of carrier gas in the process may be responsible for the high HHV of gas products. This work could provide technical support for microwave-assisted system scale-up and sewage sludge utilization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. New look at radar auroral motions

    International Nuclear Information System (INIS)

    Greenwald, R.A.; Ecklund, W.L.

    1975-01-01

    During October 1974, three modifications were temporarily added to the NOAA radar auroral backscatter facility located at Anchorage, Alaska. These modifications included (1) a multiple azimuth antenna system. (2) an on-line computer for processing amplitude and mean Doppler profiles of the radar backscatter, and (3) a 13-baud Barker coder. In combination with the radar these modifications provided data relevant to understanding both the microscopic and the macroscopic nature of the radar aurora. Appreciable structure was often found in the Doppler velocity profiles of radar auroral irregularities. Doppler velocities of nearly 2000 m/s were observed. By combining scatter amplitude profiles and mean Doppler profiles from the five azimuths we have produced contour maps of the scatter intensity and the Doppler velocity. The scatter intensity maps often indicate appreciable temporal and spatial structure in the radar auroral irregularities, corroborating the results of Tsunoda et al. (1974). The mean Doppler contour maps indicate that there is also appreciable temporal and spatial structure in the flow velocities of radar auroral irregularities. At those times when there appears to be large-scale uniformity in the irregularity flow, the Doppler velocity varies with azimuth in a manner that is consistent with a cosine-dependent azimuthal variation

  7. Hyperspectral and Radar Airborne Imagery over Controlled Release of Oil at Sea

    Directory of Open Access Journals (Sweden)

    Sébastien Angelliaume

    2017-08-01

    Full Text Available Remote sensing techniques are commonly used by Oil and Gas companies to monitor hydrocarbon on the ocean surface. The interest lies not only in exploration but also in the monitoring of the maritime environment. Occurrence of natural seeps on the sea surface is a key indicator of the presence of mature source rock in the subsurface. These natural seeps, as well as the oil slicks, are commonly detected using radar sensors but the addition of optical imagery can deliver extra information such as thickness and composition of the detected oil, which is critical for both exploration purposes and efficient cleanup operations. Today, state-of-the-art approaches combine multiple data collected by optical and radar sensors embedded on-board different airborne and spaceborne platforms, to ensure wide spatial coverage and high frequency revisit time. Multi-wavelength imaging system may create a breakthrough in remote sensing applications, but it requires adapted processing techniques that need to be developed. To explore performances offered by multi-wavelength radar and optical sensors for oil slick monitoring, remote sensing data have been collected by SETHI (Système Expérimental de Télédection Hyperfréquence Imageur, the airborne system developed by ONERA (the French Aerospace Lab, during an oil spill cleanup exercise carried out in 2015 in the North Sea, Europe. The uniqueness of this dataset lies in its high spatial resolution, low noise level and quasi-simultaneous acquisitions of different part of the EM spectrum. Specific processing techniques have been developed to extract meaningful information associated with oil-covered sea surface. Analysis of this unique and rich dataset demonstrates that remote sensing imagery, collected in both optical and microwave domains, allows estimating slick surface properties such as the age of the emulsion released at sea, the spatial abundance of oil and the relative concentration of hydrocarbons remaining on

  8. A method for combining passive microwave and infrared rainfall observations

    Science.gov (United States)

    Kummerow, Christian; Giglio, Louis

    1995-01-01

    Because passive microwave instruments are confined to polar-orbiting satellites, rainfall estimates must interpolate across long time periods, during which no measurements are available. In this paper the authors discuss a technique that allows one to partially overcome the sampling limitations by using frequent infrared observations from geosynchronous platforms. To accomplish this, the technique compares all coincident microwave and infrared observations. From each coincident pair, the infrared temperature threshold is selected that corresponds to an area equal to the raining area observed in the microwave image. The mean conditional rainfall rate as determined from the microwave image is then assigned to pixels in the infrared image that are colder than the selected threshold. The calibration is also applied to a fixed threshold of 235 K for comparison with established infrared techniques. Once a calibration is determined, it is applied to all infrared images. Monthly accumulations for both methods are then obtained by summing rainfall from all available infrared images. Two examples are used to evaluate the performance of the technique. The first consists of a one-month period (February 1988) over Darwin, Australia, where good validation data are available from radar and rain gauges. For this case it was found that the technique approximately doubled the rain inferred by the microwave method alone and produced exceptional agreement with the validation data. The second example involved comparisons with atoll rain gauges in the western Pacific for June 1989. Results here are overshadowed by the fact that the hourly infrared estimates from established techniques, by themselves, produced very good correlations with the rain gauges. The calibration technique was not able to improve upon these results.

  9. Advanced signal processing theory and implementation for sonar, radar, and non-invasive medical diagnostic systems

    CERN Document Server

    Stergiopoulos, Stergios

    2009-01-01

    Integrates topics of signal processing from sonar, radar, and medical system technologies by identifying their concept similarities. This book covers non-invasive medical diagnostic system applications, including intracranial ultrasound, a technology that attempts to address non-invasive detection on brain injuries and stroke.

  10. A data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission

    Science.gov (United States)

    Entekhabi, D.; Jagdhuber, T.; Das, N. N.; Baur, M.; Link, M.; Piles, M.; Akbar, R.; Konings, A. G.; Mccoll, K. A.; Alemohammad, S. H.; Montzka, C.; Kunstmann, H.

    2016-12-01

    The active-passive soil moisture retrieval algorithm of NASA's SMAP mission depends on robust statistical estimation of active-passive covariation (β) and vegetation structure (Γ) parameters in order to provide reliable global measurements of soil moisture on an intermediate level (9km) compared to the native resolution of the radiometer (36km) and radar (3km) instruments. These parameters apply to the SMAP radiometer-radar combination over the period of record that was cut short with the end of the SMAP radar transmission. They also apply to the current SMAP radiometer and Sentinel 1A/B radar combination for high-resolution surface soil moisture mapping. However, the performance of the statistically-based approach is directly dependent on the selection of a representative time frame in which these parameters can be estimated assuming dynamic soil moisture and stationary soil roughness and vegetation cover. Here, we propose a novel, data-driven and physics-based single-pass retrieval of active-passive microwave covariation and vegetation parameters for the SMAP mission. The algorithm does not depend on time series analyses and can be applied using minimum one pair of an active-passive acquisition. The algorithm stems from the physical link between microwave emission and scattering via conservation of energy. The formulation of the emission radiative transfer is combined with the Distorted Born Approximation of radar scattering for vegetated land surfaces. The two formulations are simultaneously solved for the covariation and vegetation structure parameters. Preliminary results from SMAP active-passive observations (April 13th to July 7th 2015) compare well with the time-series statistical approach and confirms the capability of this method to estimate these parameters. Moreover, the method is not restricted to a given frequency (applies to both L-band and C-band combinations for the radar) or incidence angle (all angles and not just the fixed 40° incidence

  11. Satellite Observation Systems for Polar Climate Change Studies

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  12. Foliage penetration radar detection and characterization of objects under trees

    CERN Document Server

    Davis, Mark

    2011-01-01

    This book covers all aspects of foliage penetration (FOPEN) radar, concentrating on both airborne military radar systems as well as earth resource mapping radars. It is the first concise and thorough treatment of FOPEN, covering the results of a decade-long investment by DARPA in characterizing foliage and earth surface with ultrawideband UHF and VHF synthetic aperture radar (SAR).

  13. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  14. Weather radar rainfall data in urban hydrology

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Einfalt, Thomas; Willems, Patrick

    2017-01-01

    estimation, radar data adjustment and data quality, and (3) nowcasting of radar rainfall and real-time applications. Based on these three fields of research, the paper provides recommendations based on an updated overview of shortcomings, gains, and novel developments in relation to urban hydrological...... applications. The paper also reviews how the focus in urban hydrology research has shifted over the last decade to fields such as climate change impacts, resilience of urban areas to hydrological extremes, and online prediction/warning systems. It is discussed how radar rainfall data can add value......Application of weather radar data in urban hydrological applications has evolved significantly during the past decade as an alternative to traditional rainfall observations with rain gauges. Advances in radar hardware, data processing, numerical models, and emerging fields within urban hydrology...

  15. Blending satellite data and RADAR tool for rapid flood damage assessment in Agriculture: A case study in Sri Lanka

    Science.gov (United States)

    Amarnath, Giriraj; Inada, Yoshiaki; Inoue, Ryosuke; Alahacoon, Niranga; Smakhtin, Vladimir

    2014-05-01

    During the catastrophic flooding it is critically important to estimate losses as it is essential for facilitating good decision making at the district, province and national levels of government and to appraise aid agencies for necessary assistance. Flood loss estimates can also be used to evaluate the cost effectiveness of alternative approaches to strengthening flood control measures. In the case of Sri Lanka there were limited knowledge and application system exist for carrying out rapid damage assessment for Agriculture in Sri Lanka. FAO has developed the tool "Rapid Agricultural Disaster Assessment Routine" (RADAR) based on theoretical approach that uses simple tools for assessing the impact on agriculture of a disastrous event. There are two knowledge bases that contain information needed for calculation of the value loss or damage. The procedure of rapid impact assessment implies the use of knowledge-bases, database and GIS. In this study, the user friendly application of RADAR system has been developed. Three components were considered including agriculture, livestock and farmers asset to estimate the losses. The application will allow estimating flood damage at various scales and this being tested at district level and specific example for the 2011 floods in Sri Lanka. In order to understand flood inundation cycle, time-series optical MODIS satellite data (2000-2011) and microwave ALOS PALSAR (2006-2011) were used to derive annual flood extent, flood duration and recurrent areas to identify flood risk and impact of seasonal flooding on agriculture. This study demonstrates how RADAR & satellite-based flood products can be effectively used for rapid damage assessment and managing the floods.

  16. Test results for triple-modulation radar electronics with improved range disambiguation

    Energy Technology Data Exchange (ETDEWEB)

    Pollastrone, Fabio, E-mail: fabio.pollastrone@enea.it; Neri, Carlo

    2015-10-15

    Highlights: • A new digital radar electronic system based on triple-modulation has been developed. • The triple-modulation system uses an improved algorithm for the range-disambiguation. • The new radar electronics has been applied in the IVVS optical radar prototype for ITER. • The performances obtained with IVVS double and triple-modulation were compared. - Abstract: The In Vessel Viewing System (IVVS) is an optical radar with sub milimetrical resolution that will be used for imaging and metrology pourposes in ITER. The electronics of the system is based on a Digital Radar Electronics developed in ENEA Frascati laboratories during the past years. Until the present study, the system was based on amplitude modulation technique having double-modulation frequency. The power of the laser is sinusoidally modulated and the distance of the points scanned by the laser beam is obtained measuring the phase difference between outgoing and echo signals. Recently a triple-modulation radar electronics version and an algorithm able to solve the range disambiguation were developed. The aim of the upgrade was the increase of the robustness in the range disambiguation. The paper briefly describes the updates carried out on the Digital Radar Electronics and extensively the test results obtained by comparing the performance of the triple modulation versus the double modulation techniques.

  17. Exploring inner structure of Titan's dunes from Cassini Radar observations

    Science.gov (United States)

    Sharma, P.; Heggy, E.; Farr, T. G.

    2013-12-01

    Linear dunes discovered in the equatorial regions of Titan by the Cassini-Huygens mission are morphologically very similar to many terrestrial linear dune fields. These features have been compared with terrestrial longitudinal dune fields like the ones in Namib desert in western Africa. This comparison is based on the overall parallel orientation of Titan's dunes to the predominant wind direction on Titan, their superposition on other geomorphological features and the way they wrap around topographic obstacles. Studying the internal layering of dunes has strong implications in understanding the hypothesis for their origin and evolution. In Titan's case, although the morphology of the dunes has been studied from Cassini Synthetic Aperture Radar (SAR) images, it has not been possible to investigate their internal structure in detail as of yet. Since no radar sounding data is available for studying Titan's subsurface yet, we have developed another technique to examine the inner layering of the dunes. In this study, we utilize multiple complementary radar datasets, including radar imaging data for Titan's and Earth's dunes and Ground Penetrating Radar (GPR)/radar sounding data for terrestrial dunes. Based on dielectric mixing models, we suggest that the Cassini Ku-band microwaves should be able to penetrate up to ~ 3 m through Titan's dunes, indicating that the returned radar backscatter signal would include contributions from both surface and shallow subsurface echoes. This implies that the shallow subsurface properties can be retrieved from the observed radar backscatter (σ0). In our analysis, the variation of the radar backscatter as a function of dune height is used to provide an insight into the layering in Titan's dunes. We compare the variation of radar backscatter with elevation over individual dunes on Titan and analogous terrestrial dunes in three sites (Great Sand Sea, Siwa dunes and Qattaniya dunes) in the Egyptian Sahara. We observe a strong, positive

  18. The 183-WSL Fast Rain Rate Retrieval Algorithm. Part II: Validation Using Ground Radar Measurements

    Science.gov (United States)

    Laviola, Sante; Levizzani, Vincenzo

    2014-01-01

    The Water vapour Strong Lines at 183 GHz (183-WSL) algorithm is a method for the retrieval of rain rates and precipitation type classification (convectivestratiform), that makes use of the water vapor absorption lines centered at 183.31 GHz of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and NOAA-19Metop-A satellite series, respectively. The characteristics of this algorithm were described in Part I of this paper together with comparisons against analogous precipitation products. The focus of Part II is the analysis of the performance of the 183-WSL technique based on surface radar measurements. The ground truth dataset consists of 2.5 years of rainfall intensity fields from the NIMROD European radar network which covers North-Western Europe. The investigation of the 183-WSL retrieval performance is based on a twofold approach: 1) the dichotomous statistic is used to evaluate the capabilities of the method to identify rain and no-rain clouds; 2) the accuracy statistic is applied to quantify the errors in the estimation of rain rates.The results reveal that the 183-WSL technique shows good skills in the detection of rainno-rain areas and in the quantification of rain rate intensities. The categorical analysis shows annual values of the POD, FAR and HK indices varying in the range 0.80-0.82, 0.330.36 and 0.39-0.46, respectively. The RMSE value is 2.8 millimeters per hour for the whole period despite an overestimation in the retrieved rain rates. Of note is the distribution of the 183-WSL monthly mean rain rate with respect to radar: the seasonal fluctuations of the average rainfalls measured by radar are reproduced by the 183-WSL. However, the retrieval method appears to suffer for the winter seasonal conditions especially when the soil is partially frozen and the surface emissivity drastically changes. This fact is verified observing the discrepancy distribution diagrams where2the 183-WSL

  19. A microwave evaporation system for the waste treatment of radioactive animals

    International Nuclear Information System (INIS)

    Saito, Tomoo; Nishiyama, Yumiko; Hikita, Akio; Takaoka, Ayako; Nakamura, Aiko.

    1979-01-01

    A microwave evaporation system was developed for the waste treatment of animal wastes contaminated with tritium or carbon-14. The apparatus composed of a 2450 MHz microwave range, a cooling unit, a receiver, a 3 H and 14 C sampler, an evacuating system and an automatic controller unit gave satisfactory results. The extent of evaporation can be optionally controlled in the range of 80% to 100%. The maximum rate of evaporation under reduced pressure reaches 10 g of water per minute at 480 W high frequency power level and 12.5 g per minute at 600 W. The evaporation of water in the carcass weighing 1 kg is generally completed in about 1 hour, and the weight is reduced by approximately 70%. The distribution in the apparatus of tritium or carbon-14 released from carcass by the microwave evaporation was studied using such labelled compounds as [ 3 H] water, [6- 3 H] thymidine, [methyl- 3 H] thymidine, [2- 14 C] thymidine, [U- 14 C] glutamic acid, [U- 14 C] fructose and [U- 14 C] glucose. The difference in activity trapped by the cooler and sampler was observed between the case of aqueous solutions of labelled compounds and that of animals administered with the same labelled compounds. The reason for this difference probably lies in metabolism of labelled compounds or exchange of tritium atoms within the animal body. (author)

  20. Artificial Neural Network-Based Clutter Reduction Systems for Ship Size Estimation in Maritime Radars

    Directory of Open Access Journals (Sweden)

    M. P. Jarabo-Amores

    2010-01-01

    Full Text Available The existence of clutter in maritime radars deteriorates the estimation of some physical parameters of the objects detected over the sea surface. For that reason, maritime radars should incorporate efficient clutter reduction techniques. Due to the intrinsic nonlinear dynamic of sea clutter, nonlinear signal processing is needed, what can be achieved by artificial neural networks (ANNs. In this paper, an estimation of the ship size using an ANN-based clutter reduction system followed by a fixed threshold is proposed. High clutter reduction rates are achieved using 1-dimensional (horizontal or vertical integration modes, although inaccurate ship width estimations are achieved. These estimations are improved using a 2-dimensional (rhombus integration mode. The proposed system is compared with a CA-CFAR system, denoting a great performance improvement and a great robustness against changes in sea clutter conditions and ship parameters, independently of the direction of movement of the ocean waves and ships.

  1. Applications of high power microwaves to atmospheric modification and measurement

    International Nuclear Information System (INIS)

    Benford, J.

    1993-01-01

    The current state of proposals to use high power microwaves in the atmosphere is reviewed. HPM has been proposed to aid in the conservation of stratospheric ozone by partial breakdown, facilitating chemistry to eliminate chlorine. Another proposal is over-the-horizon radar using a partial breakdown area in the ionosphere. A key to any such effort is rapid diagnosis of the state of the atmosphere before, during and after intervention. Technology requirements of these modification and measurement proposals are reviewed. The elements of an atmospheric modification program are identified and political, economic and ideological factors are discussed

  2. Research and development of laser radar for environmental measurements. Pt. 3; Kankyo keisokuyo laser radar no kenkyu kaihatsu. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Described herein are the results of the joint project between Japan and Indonesia to construct a new laser radar network system, which can three-dimensionally measure air pollution conditions in urban areas, in Djakarta. This joint project is implemented to elucidate the mechanisms involved in air pollution in the city, and thereby to contribute to environmental administration of Indonesia. This project is expected to give the basic approach to solution of environmental problems in urban areas, and eventually on a global scale, and hence to contribute to construction of the global network systems for environment-related information, which should be necessary in the near future. The (ODA Laser Radar Development Committee) is the deliberative body for the project, responsible for evaluating the project results. The project will be implemented on a 4-year plan from FY1993 to 1996. The activities in this year, the third year for the project, include on-the-spot survey, selection of the laser radar site, and development/improvement of the laser radar system. These results are described herein. (NEDO)

  3. Initial results for compressive sensing in electronic support receiver systems

    CSIR Research Space (South Africa)

    Du Plessis, WP

    2011-04-01

    Full Text Available determined by the antenna and microwave system comprising the transmitter and receiver, while the instantaneous bandwidth is mainly determined by the Analog-to-Digital Converter (ADC) in the receiver. A radar can thus operate at any frequency within its... Electronic/Electromagnetic Support Measures (ESM) was used historically [1], [2]. Modern ES receiver systems are based on digital receivers allowing powerful signal processing techniques to be used [3], [4]. Recent developments in sampling technology...

  4. Evaluation of X-band polarimetric radar estimation of rainfall and rain drop size distribution parameters in West Africa

    Science.gov (United States)

    Koffi, A. K.; Gosset, M.; Zahiri, E.-P.; Ochou, A. D.; Kacou, M.; Cazenave, F.; Assamoi, P.

    2014-06-01

    As part of the African Monsoon Multidisciplinary Analysis (AMMA) field campaign an X-band dual-polarization Doppler radar was deployed in Benin, West-Africa, in 2006 and 2007, together with a reinforced rain gauge network and several optical disdrometers. Based on this data set, a comparative study of several rainfall estimators that use X-band polarimetric radar data is presented. In tropical convective systems as encountered in Benin, microwave attenuation by rain is significant and quantitative precipitation estimation (QPE) at X-band is a challenge. Here, several algorithms based on the combined use of reflectivity, differential reflectivity and differential phase shift are evaluated against rain gauges and disdrometers. Four rainfall estimators were tested on twelve rainy events: the use of attenuation corrected reflectivity only (estimator R(ZH)), the use of the specific phase shift only R(KDP), the combination of specific phase shift and differential reflectivity R(KDP,ZDR) and an estimator that uses three radar parameters R(ZH,ZDR,KDP). The coefficients of the power law relationships between rain rate and radar variables were adjusted either based on disdrometer data and simulation, or on radar-gauges observations. The three polarimetric based algorithms with coefficients predetermined on observations outperform the R(ZH) estimator for rain rates above 10 mm/h which explain most of the rainfall in the studied region. For the highest rain rates (above 30 mm/h) R(KDP) shows even better scores, and given its performances and its simplicity of implementation, is recommended. The radar based retrieval of two parameters of the rain drop size distribution, the normalized intercept parameter NW and the volumetric median diameter Dm was evaluated on four rainy days thanks to disdrometers. The frequency distributions of the two parameters retrieved by the radar are very close to those observed with the disdrometer. NW retrieval based on a combination of ZH

  5. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    Science.gov (United States)

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  6. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers

    International Nuclear Information System (INIS)

    Barellini, A.; Bogi, L.; Licitra, G.; Silvi, A. M.; Zari, A.

    2009-01-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. (authors)

  7. On preventing the destructive influence of the ionosphere on the resolution of a microwave trans-ionospheric radar system during remote Earth probing

    International Nuclear Information System (INIS)

    Shtejnshleger, V.B.; Dzenkevich, A.V.; Manakov, V.Yu.; Misezhnikov, G.S.

    1998-01-01

    The results presented testify to the efficiency of the proposed two-dimensional adaptive compensation of dispersion and fluctuation ionospheric distortions of signals from space radar station with synthesized equipment (RSE) of USW range waves. This creates a prerequisite for remote probing of the Earth using trans-ionospheric RSE of USW range wave, possessing an increased capability of penetrating through the plant mantle and upper layer of the Earth surface [ru

  8. Photoelectric radar servo control system based on ARM+FPGA

    Science.gov (United States)

    Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun

    2016-01-01

    In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a

  9. Freeze dehydration of milk using microwave energy

    International Nuclear Information System (INIS)

    Souda, K.B.; Akyel, C.; Bilgen, E.

    1989-01-01

    This paper presents the results of experimental studies on heat and mass transfer during a microwave freeze dehydration process. An experimental system and procedure was developed to freeze dry milk. A 2500-W microwave system with an appropriate wave guide was set up and instrumented, and a procedure was experimentally developed to obtain milk powder first by freezing milk and then dehydrating it at low pressure using microwave energy. An unsteady-state analysis was used to derive a one-dimensional mathematical model of the freeze dehydration process in a microwave electromagnetic field

  10. Radar efficiency and the calculation of decade-long PMSE backscatter cross-section for the Resolute Bay VHF radar

    Directory of Open Access Journals (Sweden)

    N. Swarnalingam

    2009-04-01

    Full Text Available The Resolute Bay VHF radar, located in Nunavut, Canada (75.0° N, 95.0° W and operating at 51.5 MHz, has been used to investigate Polar Mesosphere Summer Echoes (PMSE since 1997. PMSE are a unique form of strong coherent radar echoes, and their understanding has been a challenge to the scientific community since their discovery more than three decades ago. While other high latitude radars have recorded strong levels of PMSE activities, the Resolute Bay radar has observed relatively lower levels of PMSE strengths. In order to derive absolute measurements of PMSE strength at this site, a technique is developed to determine the radar efficiency using cosmic (sky noise variations along with the help of a calibrated noise source. VHF radars are only rarely calibrated, but determination of efficiency is even less common. Here we emphasize the importance of efficiency for determination of cross-section measurements. The significant advantage of this method is that it can be directly applied to any MST radar system anywhere in the world as long as the sky noise variations are known. The radar efficiencies for two on-site radars at Resolute Bay are determined. PMSE backscatter cross-section is estimated, and decade-long PMSE strength variations at this location are investigated. It was noticed that the median of the backscatter cross-section distribution remains relatively unchanged, but over the years a great level of variability occurs in the high power tail of the distribution.

  11. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber.

    Science.gov (United States)

    Dechana, A; Thamboon, P; Boonyawan, D

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films-analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques-will be discussed.

  12. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Energy Technology Data Exchange (ETDEWEB)

    Dechana, A. [Program of Physics and General Science, Faculty of Science and Technology, Songkhla Rajabhat University, Songkhla 90000 (Thailand); Thamboon, P. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Boonyawan, D., E-mail: dheerawan.b@cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-10-15

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  13. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    Science.gov (United States)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  14. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    International Nuclear Information System (INIS)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-01-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al 2 O 3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al 2 O 3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed

  15. Precision Near-Field Reconstruction in the Time Domain via Minimum Entropy for Ultra-High Resolution Radar Imaging

    Directory of Open Access Journals (Sweden)

    Jiwoong Yu

    2017-05-01

    Full Text Available Ultra-high resolution (UHR radar imaging is used to analyze the internal structure of objects and to identify and classify their shapes based on ultra-wideband (UWB signals using a vector network analyzer (VNA. However, radar-based imaging is limited by microwave propagation effects, wave scattering, and transmit power, thus the received signals are inevitably weak and noisy. To overcome this problem, the radar may be operated in the near-field. The focusing of UHR radar signals over a close distance requires precise geometry in order to accommodate the spherical waves. In this paper, a geometric estimation and compensation method that is based on the minimum entropy of radar images with sub-centimeter resolution is proposed and implemented. Inverse synthetic aperture radar (ISAR imaging is used because it is applicable to several fields, including medical- and security-related applications, and high quality images of various targets have been produced to verify the proposed method. For ISAR in the near-field, the compensation for the time delay depends on the distance from the center of rotation and the internal RF circuits and cables. Required parameters for the delay compensation algorithm that can be used to minimize the entropy of the radar images are determined so that acceptable results can be achieved. The processing speed can be enhanced by performing the calculations in the time domain without the phase values, which are removed after upsampling. For comparison, the parameters are also estimated by performing random sampling in the data set. Although the reduced data set contained only 5% of the observed angles, the parameter optimization method is shown to operate correctly.

  16. Weather radars – the new eyes for offshore wind farms?

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien; Pinson, Pierre; Vincent, Claire Louise

    2014-01-01

    Offshore wind fluctuations are such that dedicated prediction and control systems are needed for optimizing the management of wind farms in real-time. In this paper, we present a pioneer experiment – Radar@Sea – in which weather radars are used for monitoring the weather at the Horns Rev offshore...... inputs to prediction systems for anticipating changes in the wind fluctuation dynamics, generating improved wind power forecasts and developing specific control strategies. However, integrating weather radar observations into automated decision support systems is not a plug-and-play task...... observed at Horns Rev and (iv) we discuss the future perspectives for weather radars in wind energy. Copyright © 2013 John Wiley & Sons, Ltd....

  17. Physical working principles of medical radar.

    Science.gov (United States)

    Aardal, Øyvind; Paichard, Yoann; Brovoll, Sverre; Berger, Tor; Lande, Tor Sverre; Hamran, Svein-Erik

    2013-04-01

    There has been research interest in using radar for contactless measurements of the human heartbeat for several years. While many systems have been demonstrated, not much attention have been given to the actual physical causes of why this work. The consensus seems to be that the radar senses small body movements correlated with heartbeats, but whether only the movements of the body surface or reflections from internal organs are also monitored have not been answered definitely. There has recently been proposed another theory that blood perfusion in the skin could be the main reason radars are able to detect heartbeats. In this paper, an experimental approach is given to determine the physical causes. The measurement results show that it is the body surface reflections that dominate radar measurements of human heartbeats.

  18. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  19. The Next Generation of Airborne Polarimetric Doppler Weather Radar: NCAR/EOL Airborne Phased Array Radar (APAR) Development

    Science.gov (United States)

    Moore, James; Lee, Wen-Chau; Loew, Eric; Vivekanandan, Jothiram; Grubišić, Vanda; Tsai, Peisang; Dixon, Mike; Emmett, Jonathan; Lord, Mark; Lussier, Louis; Hwang, Kyuil; Ranson, James

    2017-04-01

    The National Center for Atmospheric Research (NCAR) Earth observing Laboratory (EOL) is entering the third year of preliminary system design studies, engineering prototype testing and project management plan preparation for the development of a novel Airborne Phased Array Radar (APAR). This system being designed by NCAR/EOL will be installed and operated on the NSF/NCAR C-130 aircraft. The APAR system will consist of four removable C-band Active Electronically Scanned Arrays (AESA) strategically placed on the fuselage of the aircraft. Each AESA measures approximately 1.5 x 1.9 m and is composed of 3000 active radiating elements arranged in an array of line replaceable units (LRU) to simplify maintenance. APAR will provide unprecedented observations, and in conjunction with the advanced radar data assimilation schema, will be able to address the key science questions to improve understanding and predictability of significant and high-impact weather APAR, operating at C-band, allows the measurement of 3-D kinematics of the more intense portions of storms (e.g. thunderstorm dynamics and tornadic development, tropical cyclone rainband structure and evolution) with less attenuation compared with current airborne Doppler radar systems. Polarimetric measurements are not available from current airborne tail Doppler radars. However, APAR, with dual-Doppler and dual polarization diversity at a lesser attenuating C-band wavelength, will further advance the understanding of the microphysical processes within a variety of precipitation systems. The radar is sensitive enough to provide high resolution measurements of winter storm dynamics and microphysics. The planned APAR development that would bring the system to operational readiness for research community use aboard the C-130 is expected to take 8 years once major funding support is realized. The authors will review the overall APAR design and provide new details of the system based on our Technical Requirements Document

  20. Simulation of a weather radar display for over-water airborne radar approaches

    Science.gov (United States)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  1. Microwave Breast Imaging System Prototype with Integrated Numerical Characterization

    Directory of Open Access Journals (Sweden)

    Mark Haynes

    2012-01-01

    Full Text Available The increasing number of experimental microwave breast imaging systems and the need to properly model them have motivated our development of an integrated numerical characterization technique. We use Ansoft HFSS and a formalism we developed previously to numerically characterize an S-parameter- based breast imaging system and link it to an inverse scattering algorithm. We show successful reconstructions of simple test objects using synthetic and experimental data. We demonstrate the sensitivity of image reconstructions to knowledge of the background dielectric properties and show the limits of the current model.

  2. Ground and Space Radar Volume Matching and Comparison Software

    Science.gov (United States)

    Morris, Kenneth; Schwaller, Mathew

    2010-01-01

    This software enables easy comparison of ground- and space-based radar observations. The software was initially designed to compare ground radar reflectivity from operational, ground based Sand C-band meteorological radars with comparable measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite s Precipitation Radar (PR) instrument. The software is also applicable to other ground-based and space-based radars. The ground and space radar volume matching and comparison software was developed in response to requirements defined by the Ground Validation System (GVS) of Goddard s Global Precipitation Mission (GPM) project. This software innovation is specifically concerned with simplifying the comparison of ground- and spacebased radar measurements for the purpose of GPM algorithm and data product validation. This software is unique in that it provides an operational environment to routinely create comparison products, and uses a direct geometric approach to derive common volumes of space- and ground-based radar data. In this approach, spatially coincident volumes are defined by the intersection of individual space-based Precipitation Radar rays with the each of the conical elevation sweeps of the ground radar. Thus, the resampled volume elements of the space and ground radar reflectivity can be directly compared to one another.

  3. Coupled superconducting qudit-resonator system: Energy spectrum, state population, and state transition under microwave drive

    Science.gov (United States)

    Liu, W. Y.; Xu, H. K.; Su, F. F.; Li, Z. Y.; Tian, Ye; Han, Siyuan; Zhao, S. P.

    2018-03-01

    Superconducting quantum multilevel systems coupled to resonators have recently been considered in some applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity to the present phase device.

  4. Fiber optic coherent laser radar 3D vision system

    International Nuclear Information System (INIS)

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-01-01

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution

  5. Remote Sensing of Surface Soil Moisture using Semi-Concurrent Radar and Radiometer Observations

    Science.gov (United States)

    Li, L.; Ouellette, J. D.; Colliander, A.; Cosh, M. H.; Caldwell, T. G.; Walker, J. P.

    2017-12-01

    Radar backscatter and radiometer brightness temperature both have well-documented sensitivity to surface soil moisture, particularly in the microwave regime. While radiometer-derived soil moisture retrievals have been shown to be stable and accurate, they are only available at coarse spatial resolutions on the order of tens of kilometers. Backscatter from Synthetic Aperture Radar (SAR) is similarly sensitive to soil moisture but can yield higher spatial resolutions, with pixel sizes about an order of magnitude smaller. Soil moisture retrieval from radar backscatter is more difficult, however, due to the combined sensitivity of radar scattering to surface roughness, vegetation structure, and soil moisture. The algorithm uses a time-series of SAR data to retrieval soil moisture information, constraining the SAR-derived soil moisture estimates with radiometer observations. This effectively combines the high spatial resolution offered by SAR with the precision offered by passive radiometry. The algorithm is a change detection approach which maps changes in the radar backscatter to changes in surface soil moisture. This new algorithm differs from existing retrieval techniques in that it does not require ancillary vegetation information, but assumes vegetation and surface roughness are stable between pairs of consecutive radar overpasses. Furthermore, this method does not require a radar scattering model for the vegetation canopy, nor the use of a training data set. The algorithm works over a long time series, and is constrained by hard bounds which are defined using a coarse-resolution radiometer soil moisture product. The presentation will include soil moisture retrievals from Soil Moisture Active/Passive (SMAP) SAR data. Two sets of optimization bounds will constrain the radar change detection algorithm: one defined by SMAP radiometer retrievals and one defined by WindSat radiometer retrievals. Retrieved soil moisture values will be presented on a world map and will

  6. Synthesis and microwave absorbing characteristics of functionally graded carbonyl iron/polyurethane composites

    Directory of Open Access Journals (Sweden)

    R. B. Yang

    2016-05-01

    Full Text Available Radar absorbing materials (RAMs also known as microwave absorbers, which can absorb and dissipate incident electromagnetic wave, are widely used in the fields of radar-cross section reduction, electromagnetic interference (EMI reduction and human health protection. In this study, the synthesis of functionally graded material (FGM (CI/Polyurethane composites, which is fabricated with semi-sequentially varied composition along the thickness, is implemented with a genetic algorithm (GA to optimize the microwave absorption efficiency and bandwidth of FGM. For impedance matching and broad-band design, the original 8-layered FGM was obtained by the GA method to calculate the thickness of each layer for a sequential stacking of FGM from 20, 30, 40, 50, 60, 65, 70 and 75 wt% of CI fillers. The reflection loss of the original 8-layered FGM below –10 dB can be obtained in the frequency range of 5.12∼18 GHz with a total thickness of 9.66 mm. Further optimization reduces the number of the layers and the stacking sequence of the optimized 4-layered FGM is 20, 30, 65, 75 wt% with thickness of 0.8, 1.6, 0.6 and 1.0 mm, respectively. The synthesis and measurement of the optimized 4-layered FGM with a thickness of 4 mm reveal a minimum reflection loss of –25.2 dB at 6.64 GHz and its bandwidth below – 10 dB is larger than 12.8 GHz.

  7. Advanced Architectures for Modern Weather/Multifunction Radars

    Science.gov (United States)

    2017-03-01

    Radar (PAIR) system, a mobile , C-band, active phased array with multiple digital beams for imaging (under development). The digital transceiver... backend from Horus is also being used to drive row-based analog subarrays of the future Polarimetric Atmospheric Imaging Radar (PAIR, Fig. 6), which is

  8. Paleodrainages of the Eastern Sahara - The radar rivers revisited (SIR-A/B implications for a mid-tertiary Trans-African drainage system)

    Science.gov (United States)

    Mccauley, J. F.; Breed, C. S.; Schaber, G. G.; Mchugh, W. P.; Haynes, C. C.

    1986-01-01

    The images obtained by the Shuttle Imaging Radar (SIR)-A and -B systems over the southwestern Egypt and northwestern Sudan were coregistered with the Landsat images and the existing maps to aid in extrapolations of the buried paleodrainages ('radar rivers'), first discovered by SIR-A. Field observations explain the radar responses of three types of radar rivers, RR-1 (broad, aggraded valleys filled with alluvium), RR-2 (braided channels inset in the RR-1 valleys), and RR-3 (narrow, long, bedrock-incised channels). A generalized model of the radar rivers, based on field studies and regional geologic relations, shows inferred changes in river regimen since the large valleys were established during the later Paleogene-early Neogene. It is suggested that a former Trans-African master stream system may have flowed from headwaters in the Red Sea Hills southwestward across North Africa, discharging into the Atlantic at the Paleo-Niger delta, prior to the Neogene domal uplifts and building of volcanic edifices across the paths of these ancient watercourses.

  9. Evaluation of radar imagery for geological and cartographic applications

    Science.gov (United States)

    Moore, Gerald K.; Sheehan, Cynthia A.

    1981-01-01

    -cost method of reproducing the images. The images from modern, commercially available radar systems have good visual quality; they also have better geometric accuracy and higher information content than images from older systems. Images from modern systems, however, also have some of the same disadvantages as those from older systems. The most serious problem is that considerable information is lost in the process of recording the radar return on film. Another problem is that the oblique radar view of the landscape results in interpretations that are biased by look direction. A compromise antenna depression angle also commonly results in inadequate or excessive shadowing in parts of the image. There is a need for high-resolution digital data, not currently available from the private sector, to significantly improve the utility of radar data for geologic and cartographic applications.

  10. Discussion on informatization teaching of certain radar transmitter

    Science.gov (United States)

    Liang, Guanhui; Lv, Guizhou; Meng, Yafeng

    2017-04-01

    With the development of informatization, the traditional teaching method of certain radar transmitter is more and more difficult to meet the need of cultivating new type of high-quality military talents. This paper first analyzes the problems traditional teaching method of certain radar transmitter, and then puts forward the strategy of informatization teaching, and finally elaborates the concrete steps and contents of informatization teaching. Using the multimedia maintenance training system, information simulation training system and network courses and other informatization means, effectively improves the master degree to radar transmitter by trainees, but also lays a good foundation for repair in the next step.

  11. Using phase for radar scatterer classification

    Science.gov (United States)

    Moore, Linda J.; Rigling, Brian D.; Penno, Robert P.; Zelnio, Edmund G.

    2017-04-01

    Traditional synthetic aperture radar (SAR) systems tend to discard phase information of formed complex radar imagery prior to automatic target recognition (ATR). This practice has historically been driven by available hardware storage, processing capabilities, and data link capacity. Recent advances in high performance computing (HPC) have enabled extremely dense storage and processing solutions. Therefore, previous motives for discarding radar phase information in ATR applications have been mitigated. First, we characterize the value of phase in one-dimensional (1-D) radar range profiles with respect to the ability to correctly estimate target features, which are currently employed in ATR algorithms for target discrimination. These features correspond to physical characteristics of targets through radio frequency (RF) scattering phenomenology. Physics-based electromagnetic scattering models developed from the geometrical theory of diffraction are utilized for the information analysis presented here. Information is quantified by the error of target parameter estimates from noisy radar signals when phase is either retained or discarded. Operating conditions (OCs) of signal-tonoise ratio (SNR) and bandwidth are considered. Second, we investigate the value of phase in 1-D radar returns with respect to the ability to correctly classify canonical targets. Classification performance is evaluated via logistic regression for three targets (sphere, plate, tophat). Phase information is demonstrated to improve radar target classification rates, particularly at low SNRs and low bandwidths.

  12. Specification for a surface-search radar-detection-range model

    Science.gov (United States)

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  13. Radar orthogonality and radar length in Finsler and metric spacetime geometry

    Science.gov (United States)

    Pfeifer, Christian

    2014-09-01

    The radar experiment connects the geometry of spacetime with an observers measurement of spatial length. We investigate the radar experiment on Finsler spacetimes which leads to a general definition of radar orthogonality and radar length. The directions radar orthogonal to an observer form the spatial equal time surface an observer experiences and the radar length is the physical length the observer associates to spatial objects. We demonstrate these concepts on a forth order polynomial Finsler spacetime geometry which may emerge from area metric or premetric linear electrodynamics or in quantum gravity phenomenology. In an explicit generalization of Minkowski spacetime geometry we derive the deviation from the Euclidean spatial length measure in an observers rest frame explicitly.

  14. Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, S., E-mail: stefan.klingler@wmi.badw.de; Maier-Flaig, H.; Weiler, M. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Gross, R.; Huebl, H.; Goennenwein, S. T. B. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), 80799 Munich (Germany); Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T2N2 (Canada)

    2016-08-15

    Microfocused Brillouin light scattering (BLS) and microwave absorption (MA) are used to study magnon-photon coupling in a system consisting of a split-ring microwave resonator and an yttrium iron garnet (YIG) film. The split-ring resonator is defined by optical lithography and loaded with a 1 μm-thick YIG film grown by liquid phase epitaxy. BLS and MA spectra of the hybrid system are simultaneously recorded as a function of the applied magnetic field magnitude and microwave excitation frequency. Strong coupling of the magnon and microwave resonator modes is found with a coupling strength of g{sub eff} /2π = 63 MHz. The combined BLS and MA data allow us to study the continuous transition of the hybridized modes from a purely magnonic to a purely photonic mode by varying the applied magnetic field and microwave frequency. Furthermore, the BLS data represent an up-conversion of the microwave frequency coupling to optical frequencies.

  15. Microwave Sensors for Breast Cancer Detection.

    Science.gov (United States)

    Wang, Lulu

    2018-02-23

    Breast cancer is the leading cause of death among females, early diagnostic methods with suitable treatments improve the 5-year survival rates significantly. Microwave breast imaging has been reported as the most potential to become the alternative or additional tool to the current gold standard X-ray mammography for detecting breast cancer. The microwave breast image quality is affected by the microwave sensor, sensor array, the number of sensors in the array and the size of the sensor. In fact, microwave sensor array and sensor play an important role in the microwave breast imaging system. Numerous microwave biosensors have been developed for biomedical applications, with particular focus on breast tumor detection. Compared to the conventional medical imaging and biosensor techniques, these microwave sensors not only enable better cancer detection and improve the image resolution, but also provide attractive features such as label-free detection. This paper aims to provide an overview of recent important achievements in microwave sensors for biomedical imaging applications, with particular focus on breast cancer detection. The electric properties of biological tissues at microwave spectrum, microwave imaging approaches, microwave biosensors, current challenges and future works are also discussed in the manuscript.

  16. Estimation of three-dimensional radar tracking using modified extended kalman filter

    Science.gov (United States)

    Aditya, Prima; Apriliani, Erna; Khusnul Arif, Didik; Baihaqi, Komar

    2018-03-01

    Kalman filter is an estimation method by combining data and mathematical models then developed be extended Kalman filter to handle nonlinear systems. Three-dimensional radar tracking is one of example of nonlinear system. In this paper developed a modification method of extended Kalman filter from the direct decline of the three-dimensional radar tracking case. The development of this filter algorithm can solve the three-dimensional radar measurements in the case proposed in this case the target measured by radar with distance r, azimuth angle θ, and the elevation angle ϕ. Artificial covariance and mean adjusted directly on the three-dimensional radar system. Simulations result show that the proposed formulation is effective in the calculation of nonlinear measurement compared with extended Kalman filter with the value error at 0.77% until 1.15%.

  17. The influence of microwave irradiation on rocks for microwave-assisted underground excavation

    Directory of Open Access Journals (Sweden)

    Ferri Hassani

    2016-02-01

    Full Text Available Demand is growing for explosive-free rock breakage systems for civil and mining engineering, and space industry applications. This paper highlights the work being undertaken in the Geomechanics Laboratory of McGill University to make a real application of microwave-assisted mechanical rock breakage to full-face tunneling machines and drilling. Comprehensive laboratory tests investigated the effect of microwave radiation on temperature profiles and strength reduction in hard rocks (norite, granite, and basalt for a range of exposure times and microwave power levels. The heating rate on the surface of the rock specimens linearly decreased with distance between the sample and the microwave antenna, regardless of microwave power level and exposure time. Tensile and uniaxial compressive strengths were reduced with increasing exposure time and power level. Scanning electron micrographs (SEMs highlighted fracture development in treated basalt. It was concluded that the microwave power level has a strong positive influence on the amount of heat damage induced to the rock surface. Numerical simulations of electric field intensity and wave propagation conducted with COMSOL Multiphysics® software generated temperature profiles that were in close agreement with experimental results.

  18. Non-invasive Continuous Monitoring of Cerebral Edema Using Portable Microwave Based System

    Science.gov (United States)

    Jiang, Yuhao; Zhao, Minji; Wang, Huiqian; Li, Guoquan

    2018-01-01

    A portable non-invasive head detecting system based on microwave technology was developed for evaluation of cerebral edema change inside human brain. Real-time monitoring of cerebral edema in the brain helps the clinician to assess medical condition and treatment. In this work, a microwave signal was transmitted and coupled into an open-end circular waveguide sensor, incident on a 3D printed head phantom, and reflected back to receiver. Theoretically, the operation of this instrument depends on the conductivity contrast between cerebral edema and healthy brain tissues. The efficacy of the proposed detecting system is verified using 3D printed anatomically and dielectrically realistic human head phantoms with simulated cerebral edema targets with different size. Changes in the amplitude of time domain result were shown to be induced by the expansion or decrease of the edema volume. The eventual goal of this proposed head evaluating system is use in the hospital as an effective real-time monitoring tool.

  19. Passive Microwave Components and Antennas

    DEFF Research Database (Denmark)

    State-of-the-art microwave systems always require higher performance and lower cost microwave components. Constantly growing demands and performance requirements of industrial and scientific applications often make employing traditionally designed components impractical. For that reason, the design...... and development process remains a great challenge today. This problem motivated intensive research efforts in microwave design and technology, which is responsible for a great number of recently appeared alternative approaches to analysis and design of microwave components and antennas. This book highlights...... techniques. Modelling and computations in electromagnetics is a quite fast-growing research area. The recent interest in this field is caused by the increased demand for designing complex microwave components, modeling electromagnetic materials, and rapid increase in computational power for calculation...

  20. Development and Application of integrated monitoring platform for the Doppler Weather SA-BAND Radar

    Science.gov (United States)

    Zhang, Q.; Sun, J.; Zhao, C. C.; Chen, H. Y.

    2017-10-01

    The doppler weather SA-band radar is an important part of modern meteorological observation methods, monitoring the running status of radar and the data transmission is important.This paper introduced the composition of radar system and classification of radar data,analysed the characteristics and laws of the radar when is normal or abnormal. Using Macromedia Dreamweaver and PHP, developed the integrated monitoring platform for the doppler weather SA-band radar which could monitor the real-time radar system running status and important performance indicators such as radar power,status parameters and others on Web page,and when the status is abnormal it will trigger the audio alarm.