Sample records for microwave radar system

  1. Microwave Imaging Radar Reflectometer System Utilizing Digital Beam Forming (United States)

    Hu, Fengqi; Li, Meijiao; Domier, Calvin W.; Liu, Xiaoguang; Luhmann, Neville C., Jr.


    Microwave Imaging Reflectometry is a radar-like technique developed to measure the electron density fluctuations in fusion plasmas. Phased Antenna Arrays can serve as electronically controlled ``lenses'' that can generate the required wavefronts by phase shifting and amplitude scaling, which is being realized in the digital domain with higher flexibility and faster processing speed. In the transmitter, the resolution of the phase control is 1.4 degrees and the amplitude control is 0.5 dB/ step. A V-band double-sided, printed bow tie antenna which exhibits 49% bandwidth (46 - 76 GHz) is employed. The antenna is fed by a microstrip transmission line for easy impedance matching. The simple structure and the small antenna are suitable for low cost fabrication, easy circuit integration, and phased antenna array multi-frequency applications. In the receiver part, a sub-array of 32 channels with 200 mil spacing is used to collect the scattered reflected signal from one unit spot on the plasma cutoff surface. Pre-amplification is used to control the noise level of the system and wire bondable components are used to accommodate the small spacing between each channel. After down converting, base band signals are digitized and processed in an FPGA module. U.S. Department of Energy Grant No. DE-FG02-99ER54531.

  2. Ground penetrating detection using miniaturized radar system based on solid state microwave sensor. (United States)

    Yao, B M; Fu, L; Chen, X S; Lu, W; Guo, H; Gui, Y S; Hu, C-M


    We propose a solid-state-sensor-based miniaturized microwave radar technique, which allows a rapid microwave phase detection for continuous wave operation using a lock-in amplifier rather than using expensive and complicated instruments such as vector network analyzers. To demonstrate the capability of this sensor-based imaging technique, the miniaturized system has been used to detect embedded targets in sand by measuring the reflection for broadband microwaves. Using the reconstruction algorithm, the imaging of the embedded target with a diameter less than 5 cm buried in the sands with a depth of 5 cm or greater is clearly detected. Therefore, the sensor-based approach emerges as an innovative and cost-effective way for ground penetrating detection.

  3. A Scanning Microwave Radar and Radiometer

    DEFF Research Database (Denmark)

    Skou, Niels


    The Scanning Microwave Radar and Radiometer (SMRR) is a line scanner featuring a combined radar and radiometer system operating around 35 and 94 GHz. The layout of the SMRR is shown. The 2 offset antenna parabolas scan in synchronism, the receiver antenna has the highest gain in order to ensure...... that footprints are identical for the radar and the radiometer. The instrument will be flown in a pod under a Gulfstream G3 normally cruising with 240 m/sec at 12500 m, and will thus be able to sense clouds and precipitation from above...

  4. Recent antenna- and microwave systems designed at CSIR, DPSS for radar systems

    CSIR Research Space (South Africa)

    Botha, Louis


    Full Text Available We have decided to develop some common building blocks for use in radar system at the CSIR, DPSS. The reasons for doing this are: a) The cost of ad-hoc- developed RF subsystems (using connectorised components) is getting to be prohibitive as a...

  5. Noise radar with broadband microwave ring correlator (United States)

    Susek, Waldemar; Stec, Bronislaw


    A principle of quadrature correlation detection of noise signals using an analog broadband microwave correlator is presented in the paper. Measurement results for the correlation function of noise signals are shown and application of such solution in the noise radar for precise determination of distance changes and velocity of these changes is also presented. Results for short range noise radar operation are presented both for static and moving objects. Experimental results using 2,6 - 3,6 GHz noise like waveform for the signal from a breathing human is presented. Conclusions and future plans for applications of presented detection technique in broadband noise radars bring the paper to an end.

  6. Novel Low-Impact Integration of a Microwave Radiometer into Cloud Radar System Project (United States)

    National Aeronautics and Space Administration — The radiometer channel will have significant filtering to reduce the contamination of the radar signal into the radiometer channels.The successful isolation between...

  7. Microwave Radiometer Systems, Design and Analysis

    DEFF Research Database (Denmark)

    Skou, Niels; Vine, David Le

    Two important microwave remote sensors are the radar and the radiometer. There have been a number of books written on various aspects of radar, but there have been only a few written on microwave radiometers, especially on subjects of how to design and build radiometer systems. This book, which...

  8. Microwave Radiometer Systems, Design and Analysis

    DEFF Research Database (Denmark)

    Skou, Niels; Vine, David Le

    Two important microwave remote sensors are the radar and the radiometer. There have been a number of books written on various aspects of radar, but there have been only a few written on microwave radiometers, especially on subjects of how to design and build radiometer systems. This book, which...

  9. Understanding radar systems

    CERN Document Server

    Kingsley, Simon


    What is radar? What systems are currently in use? How do they work? This book provides engineers and scientists with answers to these critical questions, focusing on actual radar systems in use today. It is a perfect resource for those just entering the field, or as a quick refresher for experienced practitioners. The book leads readers through the specialized language and calculations that comprise the complex world of radar engineering as seen in dozens of state-of-the-art radar systems. An easy to read, wide ranging guide to the world of modern radar systems.

  10. Principles of modern radar systems

    CERN Document Server

    Carpentier, Michel H


    Introduction to random functions ; signal and noise : the ideal receiver ; performance of radar systems equipped with ideal receivers ; analysis of the operating principles of some types of radar ; behavior of real targets, fluctuation of targets ; angle measurement using radar ; data processing of radar information, radar coverage ; applications to electronic scanning antennas to radar ; introduction to Hilbert spaces.

  11. The Cloud Radar System (United States)

    Racette, Paul; Heymsfield, Gerald; Li, Lihua; Tian, Lin; Zenker, Ed


    Improvement in our understanding of the radiative impact of clouds on the climate system requires a comprehensive view of clouds including their physical dimensions, dynamical generation processes, and detailed microphysical properties. To this end, millimeter vave radar is a powerful tool by which clouds can be remotely sensed. The NASA Goddard Space Flight Center has developed the Cloud Radar System (CRS). CRS is a highly sensitive 94 GHz (W-band) pulsed-Doppler polarimetric radar that is designed to fly on board the NASA high-altitude ER-2 aircraft. The instrument is currently the only millimeter wave radar capable of cloud and precipitation measurements from above most all clouds. Because it operates from high-altitude, the CRS provides a unique measurement perspective for cirrus cloud studies. The CRS emulates a satellite view of clouds and precipitation systems thus providing valuable measurements for the implementation and algorithm validation for the upcoming NASA CloudSat mission that is designed to measure ice cloud distributions on the global scale using a spaceborne 94 GHz radar. This paper describes the CRS instrument and preliminary data from the recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). The radar design is discussed. Characteristics of the radar are given. A block diagram illustrating functional components of the radar is shown. The performance of the CRS during the CRYSTAL-FACE campaign is discussed.

  12. Combined radar and telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina; Hsieh, Lung-Hwa; Conover, Kurt; Heintzleman, Richard


    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  13. Monitoring by holographic radar systems (United States)

    Catapano, Ilaria; Crocco, Lorenzo; Affinito, Antonio; Gennarelli, Gianluca; Soldovieri, Francesco


    Nowadays, radar technology represents a significant opportunity to collect useful information for the monitoring and conservation of critical infrastructures. Radar systems exploit the non-invasive interaction between the matter and the electromagnetic waves at microwave frequencies. Such an interaction allows obtaining images of the region under test from which one can infer the presence of potential anomalies such as deformations, cracks, water infiltrations, etc. This information turns out to be of primary importance in practical scenarios where the probed structure is in a poor state of preservation and renovation works must be planned. In this framework, the aim of this contribution is to describe the potentialities of the holographic radar Rascan 4/4000, a holographic radar developed by Remote Sensing Laboratory of Bauman Moscow State Technical University, as a non-destructive diagnostic tool capable to provide, in real-time, high resolution subsurface images of the sounded structure [1]. This radar provides holograms of hidden anomalies from the amplitude of the interference signal arising between the backscattered signal and a reference signal. The performance of the holographic radar is appraised by means of several experiments. Preliminary tests concerning the imaging below the floor and inside wood structures are carried out in controlled conditions at the Electromagnetic Diagnostic Laboratory of IREA-CNR. After, with reference to bridge monitoring for security aim, the results of a measurement campaign performed on the Musmeci bridge are presented [2]. Acknowledgments This research has been performed in the framework of the "Active and Passive Microwaves for Security and Subsurface imaging (AMISS)" EU 7th Framework Marie Curie Actions IRSES project (PIRSES-GA-2010-269157). REFERENCES [1] S. Ivashov, V. Razevig, I. Vasilyev, A. Zhuravlev, T. Bechtel, L. Capineri, The holographic principle in subsurface radar technology, International Symposium to

  14. Numerical simulation and inversion of offshore area depth based on x-band microwave radar

    Institute of Scientific and Technical Information of China (English)

    WANG Li; WU Xiongbin; PI Xiaoshan; MA Ketao; LIU Jianfei; TIAN Yun


    A detection method of offshore area depth utilizing the x-band microwave radar is proposed. The method is based on the sea clutter imaging mechanism of microwave radar, and combined with dispersion equation of the liner wave theorem and least square method (LSM), consequently get the inversion results of water depth in the detected region. The wave monitoring system OSMAR-X exploited by the Ocean State Laborato-ry, Wuhan University, based on a microwave radar has proven to be a powerful tool to monitor ocean waves in time and space. Numerical simulation and inversion of offshore area depth are carried out here; since JONSWAP model can give description of stormy waves in different growth phase, it is suitable for simulation. Besides, some results from measured data detected by OSMAR-X x-band radar located at Longhai of Fujian Province, China, validates this method. The tendency of the average water depths inferred from the radar images is in good agreement with the tide level detected by Xiamen tide station. These promising results suggest the possibility of using OSMAR-X to monitor operationally morphodynamics in coastal zones. This method can be applied to both shore-based and shipborne x-band microwave radar.

  15. Network radar countermeasure systems integrating radar and radar countermeasures

    CERN Document Server

    Jiang, Qiuxi


    This is the very first book to present the network radar countermeasure system. It explains in detail the systematic concept of combining radar and radar countermeasures from the perspective of the information acquisition of target location, the optimization of the reconnaissance and detection, the integrated attack of the signals and facilities, and technological and legal developments concerning the networked system. It achieves the integration of the initiative and passivity, detection and jamming. The book explains how the system locates targets, completes target identification, tracks targets and compiles the data.

  16. Microwave Doppler Radar for Heart Beat Detection Versus Electrocardiogram: A Validation Approach


    Obeid, Dany; Sadek, Sawsan; Zaharia, Gheorghe; El Zein, Ghais


    International audience; This paper provides a validation approach for a microwave Doppler Radar system used for heartbeat detection. The proposed system is tested at 16 GHz with several transmitted power, simultaneously with a pc-based electrocardiogram. Obtained results show accurate detection for the heartbeat signal in terms of heartbeat rate and heart rate variability.

  17. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images (United States)

    Lavoie, Benjamin R.; Okoniewski, Michal; Fear, Elise C.


    We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range. PMID:27611785

  18. Monitoring and Analysis of Respiratory Patterns Using Microwave Doppler Radar (United States)

    Pathirana, Pubudu N.; Steinfort, Christopher Louis; Caelli, Terry


    Noncontact detection characteristic of Doppler radar provides an unobtrusive means of respiration detection and monitoring. This avoids additional preparations, such as physical sensor attachment or special clothing, which can be useful for certain healthcare applications. Furthermore, robustness of Doppler radar against environmental factors, such as light, ambient temperature, interference from other signals occupying the same bandwidth, fading effects, reduce environmental constraints and strengthens the possibility of employing Doppler radar in long-term respiration detection, and monitoring applications such as sleep studies. This paper presents an evaluation in the of use of microwave Doppler radar for capturing different dynamics of breathing patterns in addition to the respiration rate. Although finding the respiration rate is essential, identifying abnormal breathing patterns in real-time could be used to gain further insights into respiratory disorders and refine diagnostic procedures. Several known breathing disorders were professionally role played and captured in a real-time laboratory environment using a noncontact Doppler radar to evaluate the feasibility of this noncontact form of measurement in capturing breathing patterns under different conditions associated with certain breathing disorders. In addition to that, inhalation and exhalation flow patterns under different breathing scenarios were investigated to further support the feasibility of Doppler radar to accurately estimate the tidal volume. The results obtained for both experiments were compared with the gold standard measurement schemes, such as respiration belt and spirometry readings, yielding significant correlations with the Doppler radar-based information. In summary, Doppler radar is highlighted as an alternative approach not only for determining respiration rates, but also for identifying breathing patterns and tidal volumes as a preferred nonwearable alternative to the conventional

  19. Systems and Methods for Radar Data Communication (United States)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)


    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  20. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images

    Directory of Open Access Journals (Sweden)

    Zhang Zenghui


    Full Text Available Sparse microwave imaging using sparse priors of observed scenes in space, time, frequency, or polarization domain and echo data with sampling rate smaller than the traditional Nyquist rate as well as optimization algorithms for reconstructing the microwave images of observed scenes has many advantages over traditional microwave imaging systems. In sparse microwave imaging, image acquisition and representation vary; therefore, new feature analysis and cognitive interpretation theories and methods should be developed based on current research results. In this study, we analyze the statistical properties of sparse Synthetic Aperture Radar (SAR images and changes in point, line and regional features induced by sparse reconstruction. For SAR images recovered by the spatial sparse model, the statistical distribution degrades, whereas points and lines can be accurately extracted by low sampling rates. Furthermore, the target detection method based on sparse SAR images is studied. Owing to a weak background noise, target detection is easier using sparse SAR images than traditional ones.

  1. Microwave system engineering principles

    CERN Document Server

    Raff, Samuel J


    Microwave System Engineering Principles focuses on the calculus, differential equations, and transforms of microwave systems. This book discusses the basic nature and principles that can be derived from thermal noise; statistical concepts and binomial distribution; incoherent signal processing; basic properties of antennas; and beam widths and useful approximations. The fundamentals of propagation; LaPlace's Equation and Transmission Line (TEM) waves; interfaces between homogeneous media; modulation, bandwidth, and noise; and communications satellites are also deliberated in this text. This bo

  2. Microwave-heating-coupled photoacoustic radar for tissue diagnostic imaging (United States)

    Wang, Wei; Mandelis, Andreas


    An investigation of microwave (MW) heating effects on biotissue for enhancing photoacoustic radar (PAR) signals was conducted. Localized tissue heating generated by MWs was used to improve PAR imaging depth and signal-to-noise ratio (SNR). Elevated temperatures were measured with thermocouples in ex vivo bovine muscle. The measured temperature rise on the heated spot surface by MWs was in agreement with theoretical predictions. The study showed localized MW heating can increase the photoacoustic imaging depth by 11%, and the SNR by 5% in ex vivo bovine muscle.

  3. Validation of GPM Ka-Radar Algorithm Using a Ground-based Ka-Radar System (United States)

    Nakamura, Kenji; Kaneko, Yuki; Nakagawa, Katsuhiro; Furukawa, Kinji; Suzuki, Kenji


    GPM led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration of US (NASA) aims to observe global precipitation. The core satellite is equipped with a microwave radiometer (GMI) and a dual-frequency radar (DPR) which is the first spaceborne Ku/Ka-band dual-wavelength radar dedicated for precipitation measurement. In the DPR algorithm, measured radar reflectivity is converted to effective radar reflectivity by estimating the rain attenuation. Here, the scattering/attenuation characteristics of Ka-band radiowaves are crucial, particularly for wet snow. A melting layer observation using a dual Ka-band radar system developed by JAXA was conducted along the slope of Mt. Zao in Yamagata Prefecture, Japan. The dual Ka-band radar system consists of two nearly identical Ka-band FM-CW radars, and the precipitation systems between two radars were observed in opposite directions. From this experiment, equivalent radar reflectivity (Ze) and specific attenuation (k) were obtained. The experiments were conducted for two winter seasons. During the data analyses, it was found that k estimate easily fluctuates because the estimate is based on double difference calculation. With much temporal and spatial averaging, k-Ze relationship was obtained for melting layers. One of the results is that the height of the peak of k seems slightly higher than that of Ze. The results are compared with in-situ precipitation particle measurements.

  4. Experimental results and analysis of sparse microwave imaging from spaceborne radar raw data

    Institute of Scientific and Technical Information of China (English)

    JIANG ChengLong; ZHANG BingChen; ZHANG Zhe; HONG Wen; WU YiRong


    Sparse microwave imaging is a novel radar framework aiming to bring revolutions to the microwave imaging according to the theory of sparse signal processing. As compressive sensing (CS) is introduced to synthetic aperture radar (SAR) imaging in recent years,the current SAR sparse imaging methods have shown their advantages over the traditional matched filtering methods.However,the requirement for these methods to process the compressed range data results in the increase of the hardware complexity.So the SAR sparse imaging method that directly uses the raw data is needed.This paper describes the method of SAR sparse imaging with raw data directly,presents the analysis of the signal-to-noise ratio (SNR) in the echo signal by combining the traditional radar equation with the compressive sensing theory,and provides the tests on 2-D simulated SAR data.The simulation results demonstrate the validity of the SNR analysis,and the good performance of the proposed method while a large percentage of the raw data is dropped. An experiment with RadarSat-1 raw data is also carried out to show the feasibility of processing the real SAR data via the method proposed in this paper.Our method is helpful for designing new SAR systems.

  5. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991 (United States)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)


    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  6. Study of imaging radar using ultra-wideband microwave-modulated infrared laser (United States)

    Mase, Atsushi; Kogi, Yuichiro; Ikezi, Hiroyuki; Inutake, Masaaki; Wang, Xiaolong


    In this paper, we present an ultra-wideband microwave-modulated laser radar which is designed and fabricated for improvement of the spatial resolution both in the range direction and the azimuth direction. The amplitude modulation in a range of 0.01-18 GHz is applied to an infrared laser source of 1550 nm wavelength. The frequency and the bandwidth are assigned by the Administration of Radio under the Ministry of Internal Affairs and Communications in Japan. However, there is no bandwidth limitation in the infrared region. Considering the influence of radiation pattern for microwave antennas case, there is no side lobe in laser beam transmission. Ambiguous signal and interferences which are returned from the ground can be suppressed. A prototype of laser-radar system with a fiber collimator for both transmitting and receiving optics has been fabricated. A vector network analyzer is used to obtain S21 signal between the microwave modulation input and that of received signal. The system is, at first, applied to the measurement of the distance (position) of an object. It is proved that the spatial resolution is less than 1 cm during 5-10 m. As an initial experiment, we have succeeded to obtain 3D image of object by scanning a laser beam in two dimensions.

  7. Microwave engineering

    CERN Document Server

    Pozar, David M


    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  8. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991 (United States)

    Leonard, Regis F.; Bhasin, Kul B.

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure. (For individual items see A93-25777 to A93-25814)

  9. SUNIST Microwave Power System

    Institute of Scientific and Technical Information of China (English)

    Feng Songlin; Yang Xuanzong; Feng Chunhua; Wang Long; Rao Jun; Feng Kecheng


    Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device.The 2.45 GHz/100 kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.

  10. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric


    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  11. Estimation of rain rate by microwave radiometry and active radar during CLEOPATRA `92

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, M.T. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation); Hagen, M. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Evtushenko, A.V. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation); Kutuza, B.G. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation); Meischner, P.F. [Inst. fuer Physik der Atmosphaere, DLR Oberpfaffenhofen, Wessling (Germany); Petrenko, B.Z. [Inst. of Radioengineering and Electronics, RAS, Moscow (Russian Federation)


    Microwave radiometers operating at wavelengths 0.3, 0.8, 1.35 and 2.25 cm were used to estimate rain rates from ground during CLEOPATRA (Meischner et al., 1993). The systems were similar to those planned for the forthcoming PRIRODA mission. They were mainly operated looking at a fixed elevation of 75 . A model for estimation of the microwave emission of a rain layer taking into account polarization effects is briefly described. Originally designed for the evaluation of space borne measurements it was modified for ground based measurements and used to retrieve different rain parameters of interest. Intercomparisons with simultaneous measurements by the polarimetric Doppler radar POLDIRAD of DLR (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt) and rain gauges provided the base for validation of the algorithm for rain rate estimations. Agreement strongly depends on the type of rain event characterized by the homogeneity of the rain clouds and by different drop size distributions influencing especially the radar measurements. Passive microwave radiometer measurements and active polarimetric radar measurements ideally complement each other in rain rate estimations from space as well as from ground. Ground based active radar is of importance in estimating small scale structures in time and space, such reducing possible errors of the radiometer measurements and for the selection of appropriate parameters for the rain model. (orig.) [Deutsch] Ein Mikrowellenradiometersystem mit den Wellenlaengen 0,3; 0,8; 1,35 und 2,25 cm wurde eingesetzt, um Regenraten am Grund waehrend CLEOPATRA (Meischner et al., 1993) zu messen. Das System entspricht einer Konfiguration, die mit der zukuenftigen PRIRODA Mission auf der russischen Raumstation MIR fliegen soll. Die Messungen wurden weitgehend unter einem festen Elevationswinkel von 75 durchgefuehrt. Ein Modell zur Bestimmung der emittierten Mikrowellenstrahlung unter Beruecksichtigung polarimetrischer Effekte wird kurz beschrieben

  12. Radar signature acquisition using an indigenously designed noise radar system (United States)

    Freundorfer, A. P.; Siddiqui, J. Y.; Antar, Y. M. M.; Thayaparan, T.


    A new design of a noise radar system is proposed with capabilities to measure and acquire the radar signature of various targets. The proposed system can cover a noise bandwidth of near DC to 30 GHz. The noise radar signature measurements were conducted for selective targets like spheres and carpenter squares with and without dielectric bodies for a noise band of 400MHz-3000MHz. The bandwidth of operation was limited by the multiplier and the antennae used. The measured results of the target signatures were verified with the simulation results.

  13. Reliability of Naval Radar Systems (United States)


    CONFIDENTIAL (THIS PACE IS UNCUIASSFIED) CONFIDENTIAL (U) For airborne radars, 3-M’(Maintenance and Material Management )and RISE (Readiness Improvement...of the 3-M Program reports (3-M from Maintenance and Material Management ) as well as Naval Air Systems Command RISE (Readi-. ness Improvement Summary...TRANSIT PULSE LE11CTR (;As): 12.8 ANTENNA UEIGHr (k 1058 (2331 lbs.) excluding pedestal COMPRESSED PLUE LENGTH (.is): 0.2 BEAN POSITIObiNG TECNIQUES : H)RZ

  14. Scanning array radar system for bridge subsurface imaging (United States)

    Lai, Chieh-Ping; Ren, Yu-Jiun; Yu, Tzu Yang


    Early damage detection of bridge has been an important issue for modern civil engineering technique. Existing bridge inspection techniques used by State Department of Transportation (DOT) and County DOT include visual inspection, mechanical sounding, rebound hammer, cover meter, electrical potential measurements, and ultrasonics; other NDE techniques include ground penetrating radar (GPR), radiography, and some experimental types of sensors. Radar technology like GPR has been widely used for the bridge structure detection with a good penetration depth using microwave energy. The system to be presented in this paper is a different type of microwave sensing technology. It is focus on the subsurface detection and trying to find out detail information at subsurface (10 cm) with high resolution radar imaging from a flexible standoff distance. Our radar operating frequency is from 8-12 GHz, which is different from most of the current GPR systems. Scanning array antenna system is designed for adjustable beamwidth, preferable scanning area, and low sidelobe level. From the theoretical analysis and experimental results, it is found that the proposed technique can successfully capture the presence of the near-surface anomaly. This system is part of our Multi- Modal Remote Sensing System (MRSS) and provides good imaging correlations with other MRSS sensors.

  15. Future of phased array radar systems (United States)

    Bassyouni, Ahmed


    This paper spots the light on the future progress of phased array radar systems, presenting two innovative examples on the directions of development. The first example starts with the classic radar range equation to develop the topology of what is called a "Mobile Adaptive Digital Array Radar" (MADAR) system. The second example discusses the possibility to achieve what is called "Entangled Photonic Radar" (EPR) system. The EPR quantum range equation is derived and compared to the classic one to compare the performance. Block diagrams and analysis for both proposed systems are presented.

  16. The Liverpool Microwave Palaeointensity System (United States)

    Hill, Mimi; Biggin, Andrew; Hawkins, Louise; Hodgson, Emma; Hurst, Elliot


    The motivation for the group at Liverpool in the 1990s (led by John Shaw and Derek Walton) to start experimenting with using microwaves to demagnetise and remagnetise palaeomagnetic samples, rather than heating using conventional ovens, was to reduce laboratory induced alteration in absolute palaeointensity experiments. As with other methods, the non-ideal effects of grain size and naturally altered remanence must still be addressed. From humble beginnings using a domestic microwave oven the current 4th generation microwave system (MWS) has developed in to an integrated combined 14 GHz microwave resonant cavity and SQUID magnetometer system. The MWS is designed to investigate one 5 mm diameter sample at a time with microwave exposure (the equivalent of a heating step in conventional experiments) ranging from a few seconds up to around a minute. Each experiment (protocol, checks, direction and strength of applied field, number of steps etc) can be tailored to the behaviour of each individual sample. There have been many published studies demonstrating the equivalence of conventional thermal (Thellier) and microwave techniques using both artificial and natural remanence and also that the microwave method can indeed reduce laboratory induced alteration. Here an overview of the present MWS including a discussion of the physical processes occurring will be given. Examples of current projects (both archaeological and geological) utilising the method will also be described. Finally, future developments and applications of the method will be discussed.

  17. Penn State Radar Systems: Implementation and Observations (United States)

    Urbina, J. V.; Seal, R.; Sorbello, R.; Kuyeng, K.; Dyrud, L. P.


    Software Defined Radio/Radar (SDR) platforms have become increasingly popular as researchers, hobbyists, and military seek more efficient and cost-effective means for radar construction and operation. SDR platforms, by definition, utilize a software-based interface for configuration in contrast to traditional, hard-wired platforms. In an effort to provide new and improved radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future radars, with primary objectives of making such instruments more capable, portable, and more cost effective. This paper will describe the design and implementation of two low-cost radar systems and their deployment in ionospheric research at both low and mid-latitudes. One radar has been installed near Penn State campus, University Park, Pennsylvania (77.97°W, 40.70°N), to make continuous meteor observations and mid-latitude plasma irregularities. The second radar is being installed in Huancayo (12.05°S, -75.33°E), Peru, which is capable of detecting E and F region plasma irregularities as well as meteor reflections. In this paper, we examine and compare the diurnal and seasonal variability of specular, non- specular, and head-echoes collected with these two new radar systems and discuss sampling biases of each meteor observation technique. We report our current efforts to validate and calibrate these radar systems with other VHF radars such as Jicamarca and SOUSY. We also present the general characteristics of continuous measurements of E-region and F-region coherent echoes using these modern radar systems and compare them with coherent radar events observed at other geographic mid-latitude radar stations.

  18. Microwave Sterilization and Depyrogenation System (United States)

    Akse, James R.; Dahl, Roger W.; Wheeler, Richard R., Jr.


    A fully functional, microgravity-compatible microwave sterilization and depyrogenation system (MSDS) prototype was developed that is capable of producing medical-grade water (MGW) without expendable supplies, using NASA potable water that currently is available aboard the International Space Station (ISS) and will be available for Lunar and planetary missions in the future. The microwave- based, continuous MSDS efficiently couples microwaves to a single-phase, pressurized, flowing water stream that is rapidly heated above 150 C. Under these conditions, water is rapidly sterilized. Endotoxins, significant biological toxins that originate from the cell walls of gram-negative bacteria and which represent another defining MGW requirement, are also deactivated (i.e., depyrogenated) albeit more slowly, with such deactivation representing a more difficult challenge than sterilization. Several innovations culminated in the successful MSDS prototype design. The most significant is the antenna-directed microwave heating of a water stream flowing through a microwave sterilization chamber (MSC). Novel antenna designs were developed to increase microwave transmission efficiency. These improvements resulted in greater than 95-percent absorption of incident microwaves. In addition, incorporation of recuperative heat exchangers (RHxs) in the design reduced the microwave power required to heat a water stream flowing at 15 mL/min to 170 C to only 50 W. Further improvements in energy efficiency involved the employment of a second antenna to redirect reflected microwaves back into the MSC, eliminating the need for a water load and simplifying MSDS design. A quick connect (QC) is another innovation that can be sterilized and depyrogenated at temperature, and then cooled using a unique flow design, allowing collection of MGW at atmospheric pressure and 80 C. The final innovation was the use of in-line mixers incorporated in the flow path to disrupt laminar flow and increase contact time

  19. Numerical simulation of imaging laser radar system (United States)

    Han, Shaokun; Lu, Bo; Jiang, Ming; Liu, Xunliang


    Rational and effective design of imaging laser radar systems is the key of imaging laser radar system research. Design must fully consider the interrelationship between various parameters. According to the parameters, choose suitable laser, detector and other components. To use of mathematical modeling and computer simulation is an effective imaging laser radar system design methods. This paper based on the distance equation, using the detection statistical methods, from the laser radar range coverage, detection probability, false-alarm rate, SNR to build the laser radar system mathematical models. In the process of setting up the mathematical models to fully consider the laser, atmosphere, detector and other factors on the performance that is to make the models be able to respond accurately the real situation. Based on this using C# and Matlab designed a simulation software.

  20. Kharkiv Meteor Radar System (the XX Age) (United States)

    Kolomiyets, S. V.


    Kharkiv meteor radar research are of historic value (Kolomiyets and Sidorov 2007). Kharkiv radar observations of meteors proved internationally as the best in the world, it was noted at the IAU General Assembly in 1958. In the 1970s Kharkiv meteor automated radar system (MARS) was recommended at the international level as a successful prototype for wide distribution. Until now, this radar system is one of the most sensitive instruments of meteor radars in the world for astronomical observations. In 2004 Kharkiv meteor radar system is included in the list of objects which compose the national property of Ukraine. Kharkiv meteor radar system has acquired the status of the important historical astronomical instrument in world history. Meteor Centre for researching meteors in Kharkiv is a analogue of the observatory and performs the same functions of a generator and a battery of special knowledge and skills (the world-famous studio). Kharkiv and the location of the instrument were brand points on the globe, as the place where the world-class meteor radar studies were carried out. They are inscribed in the history of meteor astronomy, in large letters and should be immortalized on a world-wide level.

  1. Improved Spectrum Analysis Noise Radar Systems. (United States)

    and evaluated. A new spectrum analysis system designed to detect moving targets is presented. Comparison is made of the detection capabilities of all four noise radar systems in the presence of extraneous noise. (Author)

  2. Microwave systems design

    CERN Document Server

    Awang, Zaiki


    The aim of this book is to serve as a design reference for students and as an up-to-date reference for researchers. It also acts as an excellent introduction for newcomers to the field and offers established rf/microwave engineers a comprehensive refresher.  The content is roughly classified into two – the first two chapters provide the necessary fundamentals, while the last three chapters focus on design and applications. Chapter 2 covers detailed treatment of transmission lines. The Smith chart is utilized in this chapter as an important tool in the synthesis of matching networks for microwave amplifiers. Chapter 3 contains an exhaustive review of microstrip circuits, culled from various references. Chapter 4 offers practical design information on solid state amplifiers, while Chapter 5 contains topics on the design of modern planar filters, some of which were seldom published previously. A set of problems at the end of each chapter provides the readers with exercises which were compiled from actual uni...

  3. Capability of patch antennas in a portable harmonic radar system to track insects (United States)

    Monitoring technologies are needed to track insects and gain a better understanding of their behavior, population, migration and movement. A portable microwave harmonic-radar tracking system that utilizes antenna miniaturization techniques was investigated to achieve this goal. The system mainly con...

  4. Knowledge Based Systems and Metacognition in Radar (United States)

    Capraro, Gerard T.; Wicks, Michael C.

    An airborne ground looking radar sensor's performance may be enhanced by selecting algorithms adaptively as the environment changes. A short description of an airborne intelligent radar system (AIRS) is presented with a description of the knowledge based filter and detection portions. A second level of artificial intelligence (AI) processing is presented that monitors, tests, and learns how to improve and control the first level. This approach is based upon metacognition, a way forward for developing knowledge based systems.

  5. Ground-based microwave weather radar observations and retrievals during the 2014 Holuhraun eruption (Bárðarbunga, Iceland) (United States)

    Mereu, Luigi; Silvio Marzano, Frank; Barsotti, Sara; Montopoli, Mario; Yeo, Richard; Arngrimsson, Hermann; Björnsson, Halldór; Bonadonna, Costanza


    During an eruptive event the real-time forecasting of ash dispersal into the atmosphere is a key factor to prevent air traffic disasters. The ash plume is extremely hazardous to aircraft that inadvertently may fly through it. Real-time monitoring of such phenomena is crucial, particularly to obtain specific data for the initialization of eruption and dispersion models in terms of source parameters. The latter, such as plume height, ash concentration, mass flow rate and size spectra, are usually very difficult to measure or to estimate with a relatively good accuracy. Over the last years different techniques have been developed to improved ash plume detection and retrieval. Satellite-based observations, using multi-frequency visible and infrared radiometers, are usually exploited for monitoring and measuring dispersed ash clouds. The observations from geostationary orbit suffer from a relatively poor spatial resolution, whereas the low orbit level has a relatively poor temporal resolution. Moreover, the field-of-view of infrared radiometric measurements may be reduced by obstructions caused by water and ice clouds lying between the ground and the sensor's antenna. Weather radar-based observations represent an emerging technique to detect and, to a certain extent, mitigate the hazard from the ash plumes. Ground-based microwave scanning radar systems can provide the three-dimensional information about the detected ash volume with a fairly high spatial resolution every few minutes and in all weather conditions. Methodological studies have recently investigated the possibility of using single-polarization and dual-polarization ground-based radar for the remote sensing of volcanic ash cloud. In this respect, radar observations can be complementary to satellite observations. A microphysical electromagnetic characterization of volcanic ash was carried out in terms of dielectric properties, composition, size and orientation of ash particles. An extended Volcanic Ash Radar

  6. Optical-fiber-connected 300-GHz FM-CW radar system (United States)

    Kanno, Atsushi; Sekine, Norihiko; Kasamatsu, Akifumi; Yamamoto, Naokatsu; Kawanishi, Tetsuya


    300-GHz frequency-modulated continuous-wave (FM-CW) radar system operated by radio over fiber technologies is configured and demonstrated. Centralized signal generator, which is based on an optical frequency comb generation, provides high-precise FM-CW radar signal. The optical signal is easy to be transported to radar heads through an optical fiber network. Optical-modulator-based optical frequency comb generator is utilized as an optical frequency multiplier from a microwave signal to a 300-GHz terahertz signal by an optical modulation technique. In the study, we discuss the configuration of the network, signal generator and remote radar head for terahertz-wave multi-static radar system.

  7. Information-Aided Smart Schemes for Vehicle Flow Detection Enhancements of Traffic Microwave Radar Detectors

    Directory of Open Access Journals (Sweden)

    Tan-Jan Ho


    Full Text Available For satisfactory traffic management of an intelligent transport system, it is vital that traffic microwave radar detectors (TMRDs can provide real-time traffic information with high accuracy. In this study, we develop several information-aided smart schemes for traffic detection improvements of TMRDs in multiple-lane environments. Specifically, we select appropriate thresholds not only for removing noise from fast Fourier transforms (FFTs of regional lane contexts but also for reducing FFT side lobes within each lane. The resulting FFTs of reflected vehicle signals and those of clutter are distinguishable. We exploit FFT and lane-/or time stamp-related information for developing smart schemes, which mitigate adverse effects of lane-crossing FFT side lobes of a vehicle signal. As such, the proposed schemes can enhance the detection accuracy of both lane vehicle flow and directional traffic volume. On-site experimental results demonstrate the advantages and feasibility of the proposed methods, and suggest the best smart scheme.

  8. Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions (United States)

    Johnson, Benjamin T.; Petty, Grant W.; Skofronick-Jackson, Gail


    A simplied framework is presented for assessing the qualitative sensitivities of computed microwave properties, satellite brightness temperatures, and radar reflectivities to assumptions concerning the physical properties of ice-phase hydrometeors. Properties considered included the shape parameter of a gamma size distribution andthe melted-equivalent mass median diameter D0, the particle density, dielectric mixing formula, and the choice of complex index of refraction for ice. We examine these properties at selected radiometer frequencies of 18.7, 36.5, 89.0, and 150.0 GHz; and radar frequencies at 2.8, 13.4, 35.6, and 94.0 GHz consistent with existing and planned remote sensing instruments. Passive and active microwave observables of ice particles arefound to be extremely sensitive to the melted-equivalent mass median diameter D0 ofthe size distribution. Similar large sensitivities are found for variations in the ice vol-ume fraction whenever the geometric mass median diameter exceeds approximately 1/8th of the wavelength. At 94 GHz the two-way path integrated attenuation is potentially large for dense compact particles. The distribution parameter mu has a relatively weak effect on any observable: less than 1-2 K in brightness temperature and up to 2.7 dB difference in the effective radar reflectivity. Reversal of the roles of ice and air in the MaxwellGarnett dielectric mixing formula leads to a signicant change in both microwave brightness temperature (10 K) and radar reflectivity (2 dB). The choice of Warren (1984) or Warren and Brandt (2008) for the complex index of refraction of ice can produce a 3%-4% change in the brightness temperature depression.

  9. Wideband Antennas for Modern Radar Systems


    Ren, Yu-Jiun; Lai, Chieh-Ping


    In this chapter, the basics of the antenna and phased array are reviewed and different wideband antennas for modern radar systems are presented. The concepts of the radome and frequency selective surface are also reviewed. The main contents include important parameters of the antenna, and theory and design consideration of the array antenna. Various wideband antennas are introduced and their performances are demonstrated, including: (1) for the phased array radar, the slotted waveguide array ...

  10. Radar sensing via a Micro-UAV-borne system (United States)

    Catapano, Ilaria; Ludeno, Giovanni; Gennarelli, Gianluca; Soldovieri, Francesco; Rodi Vetrella, Amedeo; Fasano, Giancarmine


    In recent years, the miniaturization of flight control systems and payloads has contributed to a fast and widespread diffusion of micro-UAV (Unmanned Aircraft Vehicle). While micro-UAV can be a powerful tool in several civil applications such as environmental monitoring and surveillance, unleashing their full potential for societal benefits requires augmenting their sensing capability beyond the realm of active/passive optical sensors [1]. In this frame, radar systems are drawing attention since they allow performing missions in all-weather and day/night conditions and, thanks to the microwave ability to penetrate opaque media, they enable the detection and localization not only of surface objects but also of sub-surface/hidden targets. However, micro-UAV-borne radar imaging represents still a new frontier, since it is much more than a matter of technology miniaturization or payload installation, which can take advantage of the newly developed ultralight systems. Indeed, micro-UAV-borne radar imaging entails scientific challenges in terms of electromagnetic modeling and knowledge of flight dynamics and control. As a consequence, despite Synthetic Aperture Radar (SAR) imaging is a traditional remote sensing tool, its adaptation to micro-UAV is an open issue and so far only few case studies concerning the integration of SAR and UAV technologies have been reported worldwide [2]. In addition, only early results concerning subsurface imaging by means of an UAV-mounted radar are available [3]. As a contribution to radar imaging via autonomous micro-UAV, this communication presents a proof-of-concept experiment. This experiment represents the first step towards the development of a general methodological approach that exploits expertise about (sub-)surface imaging and aerospace systems with the aim to provide high-resolution images of the surveyed scene. In details, at the conference, we will present the results of a flight campaign carried out by using a single radar

  11. Integrating a Microwave Radiometer into Radar Hardware for Simultaneous Data Collection Between the Instruments (United States)

    McLinden, Matthew; Piepmeier, Jeffrey


    The conventional method for integrating a radiometer into radar hardware is to share the RF front end between the instruments, and to have separate IF receivers that take data at separate times. Alternatively, the radar and radiometer could share the antenna through the use of a diplexer, but have completely independent receivers. This novel method shares the radar's RF electronics and digital receiver with the radiometer, while allowing for simultaneous operation of the radar and radiometer. Radars and radiometers, while often having near-identical RF receivers, generally have substantially different IF and baseband receivers. Operation of the two instruments simultaneously is difficult, since airborne radars will pulse at a rate of hundreds of microseconds. Radiometer integration time is typically 10s or 100s of milliseconds. The bandwidth of radar may be 1 to 25 MHz, while a radiometer will have an RF bandwidth of up to a GHz. As such, the conventional method of integrating radar and radiometer hardware is to share the highfrequency RF receiver, but to have separate IF subsystems and digitizers. To avoid corruption of the radiometer data, the radar is turned off during the radiometer dwell time. This method utilizes a modern radar digital receiver to allow simultaneous operation of a radiometer and radar with a shared RF front end and digital receiver. The radiometer signal is coupled out after the first down-conversion stage. From there, the radar transmit frequencies are heavily filtered, and the bands outside the transmit filter are amplified and passed to a detector diode. This diode produces a DC output proportional to the input power. For a conventional radiometer, this level would be digitized. By taking this DC output and mixing it with a system oscillator at 10 MHz, the signal can instead be digitized by a second channel on the radar digital receiver (which typically do not accept DC inputs), and can be down-converted to a DC level again digitally. This

  12. Urban Flood Warning Systems using Radar Technologies (United States)

    Fang, N.; Bedient, P. B.


    There have been an increasing number of urban areas that rely on weather radars to provide accurate precipitation information for flood warning purposes. As non-structural tools, radar-based flood warning systems can provide accurate and timely warnings to the public and private entities in urban areas that are prone to flash floods. The wider spatial and temporal coverage from radar increases flood warning lead-time when compared to rain and stream gages alone. The Third Generation Rice and Texas Medical Center (TMC) Flood Alert System (FAS3) has been delivering warning information with 2 to 3 hours of lead time and a R2 value of 93% to facility personnel in a readily understood format for more than 50 events in the past 15 years. The current FAS utilizes NEXRAD Level II radar rainfall data coupled with a real-time hydrologic model (RTHEC-1) to deliver warning information. The system has a user-friendly dashboard to provide rainfall maps, Google Maps based inundation maps, hydrologic predictions, and real-time monitoring at the bayou. This paper will evaluate its reliable performance during the recent events occurring in 2012 and 2013 and the development of a similar radar-based flood warning system for the City of Sugar Land, Texas. Having a significant role in the communication of flood information, FAS marks an important step towards the establishment of an operational and reliable flood warning system for flood-prone urban areas.


    Directory of Open Access Journals (Sweden)

    Arundhati Misra


    Full Text Available Microwave Remote Sensing data acquired by a RADAR sensor such as SAR(Synthetic Aperture Radar is affected by a peculiar kind of noise called speckle. This noise not only renders the data ineffective for classification, texture analysis, segmentation etc. which are used for image analysis purposes, but also degrades the overall contrast and radiometric quality of the image. Here we discuss the various noise removal techniques which have been widely used by scientists all over the world. Different filtering methods have their pros and cons, and no single method can give the most satisfactory result. In order to circumvent those issues, better and better methods are being attempted. One of the recent methods is that based on Wavelet technique. This paper discusses the denoising techniques based on Wavelets and the results from some of those methods. The relative merits and demerits of the filters and their evaluation is also done.

  14. Island based radar and microwave radiometer measurements of stratus cloud parameters during the Atlantic Stratocumulus Transition Experiment (ASTEX)

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, A.S. [Colorado State Univ., Fort Collins, CO (United States); Fairall, C.W.; Snider, J.B. [NOAA Environmental Technology Lab., Boulder, CO (United States); Lenshow, D.H.; Mayer, S.D. [National Center for Atmospheric Research, Boulder, CO (United States)


    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, simultaneous measurements were made with a vertically pointing cloud sensing radar and a microwave radiometer. The radar measurements are used to estimate stratus cloud drizzle and turbulence parameters. In addition, with the microwave radiometer measurements of reflectivity, we estimated the profiles of cloud liquid water and effective radius. We used radar data for computation of vertical profiles of various drizzle parameters such as droplet concentration, modal radius, and spread. A sample of these results is shown in Figure 1. In addition, in non-drizzle clouds, with the radar and radiometer we can estimate the verticle profiles of stratus cloud parameters such as liquid water concentration and effective radius. This is accomplished by assuming a droplet distribution with droplet number concentration and width constant with height.

  15. Radiation-hardened microwave system

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.F.; Bible, D.W.; Crutcher, R.I.; Moore, J.A.; Nowlin, C.H.; Vandermolen, R.I.


    In order to develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe RF multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced MSTS configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high band-rate digital data links at total gamma dose tolerance levels exceeding 10{sup 7} rads and at elevated ambient temperatures. 3 refs., 4 figs.


    Institute of Scientific and Technical Information of China (English)

    Zhang Wei; Xiang Jingcheng; Wang Xuegang


    To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar system simulation software developed for frequencyphase scanning three-dimensional (3-D) radar. Experimental results prove that the software could be used for system evaluation and for training purposes as an attractive alternative to real EW system.

  17. Doppler visibility of coherent random noise radar systems (United States)

    Li, Zhixi; Narayanan, Ram M.


    Random noise radar has recently been used in a variety of imaging and surveillance applications. These systems can be made phase coherent using the technique of heterodyne correlation. Phase coherence has been exploited to measure Doppler and thereby the velocity of moving targets. The Doppler visibility, i.e., the ability to extract Doppler information over the inherent clutter spectra, is constrained by system parameters, especially the phase noise generated by microwave components. Our paper proposes a new phase noise model for the heterodyne mixer as applicable for ultrawideband (UWB) random noise radar and for the local oscillator in the time domain. The Doppler spectra are simulated by including phase noise contamination effects and compared to our previous experimental results. A Genetic Algorithm (GA) optimization routine is applied to synthesize the effects of a variety of parameter combinations to derive a suitable empirical formula for estimating the Doppler visibility in dB. According to the phase noise analysis and the simulation results, the Doppler visibility of UWB random noise radar depends primarily on the following parameters: (a) the local oscillator (LO) drive level of the receiver heterodyne mixer; (b) the saturation current in the receiver heterodyne mixer; (c) the bandwidth of the transmit noise source, and; (d) the target velocity. Other parameters such as the carrier frequency of the receiver LO and the loaded quality factor of the LO have a small effect over the range of applicability of the model and are therefore neglected in the model formulation. The Doppler visibility curves generated from this formula match the simulation results very well over the applicable parameter range within 1 dB. Our model may therefore be used to quickly estimate the Doppler visibility of random noise radars for trade-off analysis.

  18. High-temperature superconductivity for avionic electronic warfare and radar systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.A. [Wright Lab., Wright-Patterson AFB, OH (United States). Avionics Directorate


    The electronic warfare (EW) and radar communities expect to be major beneficiaries of the performance advantages high-temperature superconductivity (HTS) has to offer over conventional technology. Near term upgrades to system hardware can be envisioned using extremely small, high Q, microwave filters and resonators; compact, wideband, low loss, microwave delay and transmission lines; as well as, wideband, low loss, monolithic microwave integrated circuit phase shifters. The most dramatic impact will be in the far term, using HTS to develop new, real time threat identification and response strategy receiver/processing systems designed to utilize the unique high frequency properties of microwave and ultimately digital HTS. To make superconductivity practical for operational systems, however, technological obstacles need to be overcome. Compact cryogenically cooled subsystems with exceptional performance able to withstand rugged operational environments for long periods of time need to be developed.

  19. Development of passive radar systems at TNO

    NARCIS (Netherlands)

    Gelsema, S.J.


    Since 2002, the Netherlands Organisation for Applied Scientific Research – TNO, has been involved in the development of passive radar systems for research purposes. The development has been sponsored partly by the Royal Netherlands Air Force – whose main interest is threat evaluation – and partly by

  20. Digital microwave communication engineering point-to-point microwave systems

    CERN Document Server

    Kizer, George


    The first book to cover all engineering aspects of microwave communication path design for the digital age Fixed point-to-point microwave systems provide moderate-capacity digital transmission between well-defined locations. Most popular in situations where fiber optics or satellite communication is impractical, it is commonly used for cellular or PCS site interconnectivity where digital connectivity is needed but not economically available from other sources, and in private networks where reliability is most important. Until now, no book has adequately treated all en

  1. Airborne microwave radiometric imaging system (United States)

    Guo, Wei; Li, Futang; Zhang, Zuyin


    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  2. Goldstone Solar System Radar Waveform Generator (United States)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Nguyen, Huy


    Due to distances and relative motions among the transmitter, target object, and receiver, the time-base between any transmitted and received signal will undergo distortion. Pre-distortion of the transmitted signal to compensate for this time-base distortion allows reception of an undistorted signal. In most radar applications, an arbitrary waveform generator (AWG) would be used to store the pre-calculated waveform and then play back this waveform during transmission. The Goldstone Solar System Radar (GSSR), however, has transmission durations that exceed the available memory storage of such a device. A waveform generator capable of real-time pre-distortion of a radar waveform to a given time-base distortion function is needed. To pre-distort the transmitted signal, both the baseband radar waveform and the RF carrier must be modified. In the GSSR, this occurs at the up-conversion mixing stage to an intermediate frequency (IF). A programmable oscillator (PO) is used to generate the IF along with a time-varying phase component that matches the time-base distortion of the RF carrier. This serves as the IF input to the waveform generator where it is mixed with a baseband radar waveform whose time-base has been distorted to match the given time-base distortion function producing the modulated IF output. An error control feedback loop is used to precisely control the time-base distortion of the baseband waveform, allowing its real-time generation. The waveform generator produces IF modulated radar waveforms whose time-base has been pre-distorted to match a given arbitrary function. The following waveforms are supported: continuous wave (CW), frequency hopped (FH), binary phase code (BPC), and linear frequency modulation (LFM). The waveform generator takes as input an IF with a time varying phase component that matches the time-base distortion of the carrier. The waveform generator supports interconnection with deep-space network (DSN) timing and frequency standards, and

  3. Microwave Plasma Hydrogen Recovery System (United States)

    Atwater, James; Wheeler, Richard, Jr.; Dahl, Roger; Hadley, Neal


    A microwave plasma reactor was developed for the recovery of hydrogen contained within waste methane produced by Carbon Dioxide Reduction Assembly (CRA), which reclaims oxygen from CO2. Since half of the H2 reductant used by the CRA is lost as CH4, the ability to reclaim this valuable resource will simplify supply logistics for longterm manned missions. Microwave plasmas provide an extreme thermal environment within a very small and precisely controlled region of space, resulting in very high energy densities at low overall power, and thus can drive high-temperature reactions using equipment that is smaller, lighter, and less power-consuming than traditional fixed-bed and fluidized-bed catalytic reactors. The high energy density provides an economical means to conduct endothermic reactions that become thermodynamically favorable only at very high temperatures. Microwave plasma methods were developed for the effective recovery of H2 using two primary reaction schemes: (1) methane pyrolysis to H2 and solid-phase carbon, and (2) methane oligomerization to H2 and acetylene. While the carbon problem is substantially reduced using plasma methods, it is not completely eliminated. For this reason, advanced methods were developed to promote CH4 oligomerization, which recovers a maximum of 75 percent of the H2 content of methane in a single reactor pass, and virtually eliminates the carbon problem. These methods were embodied in a prototype H2 recovery system capable of sustained high-efficiency operation. NASA can incorporate the innovation into flight hardware systems for deployment in support of future long-duration exploration objectives such as a Space Station retrofit, Lunar outpost, Mars transit, or Mars base. The primary application will be for the recovery of hydrogen lost in the Sabatier process for CO2 reduction to produce water in Exploration Life Support systems. Secondarily, this process may also be used in conjunction with a Sabatier reactor employed to

  4. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    This book is based on recent research work conducted by the authors dealing with the design and development of active and passive microwave components, integrated circuits and systems. It is divided into seven parts. In the first part comprising the first two chapters, alternative concepts...... and equations for multiport network analysis and characterization are provided. A thru-only de-embedding technique for accurate on-wafer characterization is introduced. The second part of the book corresponds to the analysis and design of ultra-wideband low-noise amplifiers (LNA). The LNA is the most critical...... as sufficient gain in a wide frequency range of operation, which is very difficult to achieve. Most circuits demonstrated are not stable across the frequency band, which makes these amplifiers prone to self-oscillations and therefore limit their applicability. The trade-off between noise figure, gain, linearity...

  5. Measurement of velocities in noisy environments with a microwave Doppler-effect radar

    Energy Technology Data Exchange (ETDEWEB)

    Lozano-Rogado, J. [Departamento de Fisica Aplicada III, Facultad de Fisicas, Universidad Complutense de Madrid, Madrid (Spain)]. E-mail:; Miranda-Pantoja, J.M.; Sebastian, J.L. [Departamento de Fisica Aplicada III, Facultad de Fisicas, Universidad Complutense de Madrid, Madrid (Spain)


    An undergraduate experiment is proposed to facilitate the understanding of the basic principles related to radar systems and signal analysis. A Doppler-effect radar has been installed and used to measure the velocities of a target under different conditions. This system features the use of a low-power generator and a general purpose data acquisition card. The analysis of the measured IF (intermediate frequency) voltage has been made by using the fast Fourier transform in order to illustrate the relevance of the basic spectral techniques for the characterization of weak signals in noisy environments. (author)

  6. An RF tag communication system model for noise radar (United States)

    Pan, Qihe; Narayanan, Ram M.


    RF (radio-frequency) tags have drawn increasing research interest because of their great potential uses in many radio frequency identification applications. They can also be configured to work with radar as a communication channel by receiving radar acquisition signals, suitably coding these, and retransmitting them back to the radar. This paper proposes a system model for the communication between a noise radar and multiple RF tags. The radar interrogates the RF tags in a region of interest by sending ultrawideband noise signals. Upon receiving the radar's signal, all the tags within the radar's range wake up, and respond to the radar with simple messages. The RF tag filters the radar signal to a unique spectral band, which represents its identification information, and different RF tags occupy different non-overlapping bands of the spectrum of the radar signal. Tag messages are modulated onto the waveform through taps of weighted delays. The radar decodes the RF tag identifications and corresponding messages by cross-correlating the RF tag returned signals with the replica of the radar transmitted signal. Calculations and simulation results both show that the proposed system is capable of communicating simple messages between RF tags and radar.

  7. Performance Assessment of a Microwave Tomographic Approach for the Forward Looking Radar Configuration (United States)

    Catapano, Ilaria; Soldovieri, Francesco; González-Huici, María A.


    This paper deals with the application and the performance analysis of a microwave tomography approach for Forward-Looking Radar (FLR) bistatic illumination. The imaging problem is faced by adopting an inverse scattering algorithm based on an approximated model of the electromagnetic scattering. In particular, the Born Approximation is used to describe the wave-material interaction and the targets are assumed to be embedded in a homogenous medium. The adoption of a simplified model of the electromagnetic scattering allows us to analyse how the reconstruction capabilities depend on the measurement configuration. An investigation of the resolution limits in the FLR case is performed and some numerical results are provided in order to show the effectiveness of the proposed approach in cases resembling the ones occurring in real situations.

  8. A Directional Antenna in a Matching Liquid for Microwave Radar Imaging

    Directory of Open Access Journals (Sweden)

    Saeed I. Latif


    Full Text Available The detailed design equations and antenna parameters for a directional antenna for breast imaging are presented in this paper. The antenna was designed so that it could be immersed in canola oil to achieve efficient coupling of the electromagnetic energy to the breast tissue. Ridges were used in the horn antenna to increase the operating bandwidth. The antenna has an exponentially tapered section for impedance matching. The double-ridged horn antenna has a wideband performance from 1.5 GHz to 5 GHz (3.75 GHz or 110% of impedance bandwidth, which is suitable for breast microwave radar imaging. The fabricated antenna was tested and compared with simulated results, and similar bandwidths were obtained. Experiments were conducted on breast phantoms using these antennas, to detect a simulated breast lesion. The reconstructed image from the experiments shows distinguishable tumor responses indicating promising results for successful breast cancer detection.

  9. Influences of weather phenomena on automotive laser radar systems (United States)

    Rasshofer, R. H.; Spies, M.; Spies, H.


    Laser radar (lidar) sensors provide outstanding angular resolution along with highly accurate range measurements and thus they were proposed as a part of a high performance perception system for advanced driver assistant functions. Based on optical signal transmission and reception, laser radar systems are influenced by weather phenomena. This work provides an overview on the different physical principles responsible for laser radar signal disturbance and theoretical investigations for estimation of their influence. Finally, the transmission models are applied for signal generation in a newly developed laser radar target simulator providing - to our knowledge - worldwide first HIL test capability for automotive laser radar systems.

  10. Application Research on Space Laser Communication in Bistatic Radar System

    Institute of Scientific and Technical Information of China (English)

    李晓萍; 韩绍坤; 郝小宁


    There exist three synchronizing problems in the bistatic radar system that some signals of the radar receiver must be synchronized with those of the radar transmitter. Several methods realizing data transmission, which are used to complete the synchronization existing in the bistatic radar system, are described. Then a new idea is brought forward that employs space laser communication in the bistatic radar system to realize its data transmission. The theoretic analysis of the idea's usability and its merits are discussed in details. Finally the latest development of space laser communication is introduced, and the utility of the idea is pointed out further.

  11. Design of a Printed Dipole Antenna Array for a Passive Radar System

    Directory of Open Access Journals (Sweden)

    Peter Knott


    Full Text Available Passive radar (or Passive Coherent Localisation is an advancing technology for covert operation. The signal transmitted from sources of opportunity such as radio or TV stations is used as illumination for a certain area of interest. Part of the transmitted signal is reflected by radar targets, for example, moving objects such as vehicles or aircraft. Typical radar parameters are derived from the comparison between the direct line-of-sight from the transmitter and the signal scattered from the target object. Such systems are an attractive addition to existing active radar stations because they have the potential to discover low-flying and low-observable targets and no active radar transmitter is required. Printed dipole antennas are very attractive antenna elements for such systems because of their easy fabrication, low-cost, polarisation purity, and low-profile properties. The present paper describes the design of an antenna array using printed dipole elements with flared arms for a passive radar system operating in the GSM900 frequency range. Isolated antenna elements and a small uniform linear antenna array were designed and optimised using computational electromagnetic methods. Several prototypes have been fabricated on conventional microwave PCB substrate material. Preliminary measurement results for antenna matching and far-field radiation patterns are shown.

  12. Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Latent Heating Profiles (United States)

    Grecu, Mircea; Olson, William S.; Shie, Chung-Lin; L'Ecuyer, Tristan S.; Tao, Wei-Kuo


    In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2

  13. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging (United States)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.


    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  14. Synthetic aperture radar image processing techniques for damage detection of FRP-concrete systems (United States)

    Yu, Tzuyang


    Electromagnetic imaging enables researchers and engineers to assess the surface and subsurface condition of concrete structures using radar and microwave sensors. Among existing radar imaging methods, synthetic aperture radar (SAR) imaging offers flexible resolution for various purposes in condition assessment. In this paper, two novel SAR image processing techniques are reported for the subsurface condition assessment of FRP(fiber reinforced polymer)-strengthened concrete systems; mathematical morphology (MM) and the K-R-I transform. Glass FRP (GFRP) and carbon CFRP (CFRP) strengthened concrete cylinders are used as examples. From our experimental results, it is found that both techniques are capable of quantifying SAR images for condition assessment. It is also found that Euler's number and the coefficient of correlation of K-R-I curves of SAR images can be used for monitoring subsurface changes in FRP-concrete systems.

  15. On detection performance and system configuration of MIMO radar

    Institute of Scientific and Technical Information of China (English)

    TANG Jun; WU Yong; PENG YingNing; WANG XiuTan


    Multiple-input multiple-output (MIMO) radar is a new concept with some new characteristics, such as multiple orthogonal waveforms and omnidirectional coverage. Based on Stein's lemma, we use relative entropy as a precise and general measure of error exponent to study detection performance for both MIMO radar and phased array radar. And based on derived analytical results, we further study the system configuration problem of Bistatic MIMO radar systems, where transmitters and receivers are located in different positions. Some interesting results are presented. For phased array radar, when the total numbers of transmitters and receivers are fixed, we should always make the number of transmitters equal to the number of receivers. For MIMO radar, we should use a small number of transmitters in low signal noise ratio (SNR) region, and make the number of transmitters equal to the number of receivers in high SNR region. These results are instructive for deployment of bistatic MIMO radar systems in the future.

  16. Collaborative Error Registration Algorithm for Radar System

    Institute of Scientific and Technical Information of China (English)

    WU Ze-min; REN Shu-jie; LIU Xi


    Affected by common target selection, target motion estimation and time alignment, the radar system error registration algorithm is greatly limited in application. By using communication and time synchronization function of a data link network, a collaborative algorithm is proposed, which makes use of a virtual coordinates constructed by airplane to get high precision measurement source and realize effective estimation of the system error. This algorithm is based on Kalman filter and does not require high capacities in memory and calculation. Simulated results show that the algorithm has better convergence performance and estimation precision, no constrain on sampling period and accords with transfer characteristic of data link and tactical internet perfectly.

  17. Detecting and mitigating wind turbine clutter for airspace radar systems. (United States)

    Wang, Wen-Qin


    It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.

  18. Bayesian Estimation of Precipitation from Satellite Passive Microwave Observations Using Combined Radar-Radiometer Retrievals (United States)

    Grecu, Mircea; Olson, William S.


    Precipitation estimation from satellite passive microwave radiometer observations is a problem that does not have a unique solution that is insensitive to errors in the input data. Traditionally, to make this problem well posed, a priori information derived from physical models or independent, high-quality observations is incorporated into the solution. In the present study, a database of precipitation profiles and associated brightness temperatures is constructed to serve as a priori information in a passive microwave radiometer algorithm. The precipitation profiles are derived from a Tropical Rainfall Measuring Mission (TRMM) combined radar radiometer algorithm, and the brightness temperatures are TRMM Microwave Imager (TMI) observed. Because the observed brightness temperatures are consistent with those derived from a radiative transfer model embedded in the combined algorithm, the precipitation brightness temperature database is considered to be physically consistent. The database examined here is derived from the analysis of a month-long record of TRMM data that yields more than a million profiles of precipitation and associated brightness temperatures. These profiles are clustered into a tractable number of classes based on the local sea surface temperature, a radiometer-based estimate of the echo-top height (the height beyond which the reflectivity drops below 17 dBZ), and brightness temperature principal components. For each class, the mean precipitation profile, brightness temperature principal components, and probability of occurrence are determined. The precipitation brightness temperature database supports a radiometer-only algorithm that incorporates a Bayesian estimation methodology. In the Bayesian framework, precipitation estimates are weighted averages of the mean precipitation values corresponding to the classes in the database, with the weights being determined according to the similarity between the observed brightness temperature principal

  19. HF Over-the-Horizon Radar System Performance Analysis (United States)


    target detection technique and radar equations are applied. Chapter V uses PROPLAB model simulation to bring in the principle of raytracing and... RADAR SYSTEM PERFORMANCE ANALYSIS by Bin-Yi Liu September 2007 Thesis Co-Advisors: Phillip E. Pace Jeffrey B. Knorr THIS PAGE...Thesis 4. TITLE AND SUBTITLE HF Over-the-Horizon Radar System Performance Analysis 6. AUTHOR(S) Bin-Yi Liu 5. FUNDING NUMBERS 7. PERFORMING

  20. Application of uniform DFT filter bank in radar jamming system

    Institute of Scientific and Technical Information of China (English)

    Dai Le; Gao Meiguo


    The principle of Uniform DFT filter bank is presented. Exploiting poly-phase structure, radar jamming system samples the intercepted wideband radar signals through analysis filter bank by different channels and linearly modulates the intercepted radar signal according to the theory of signal and system, then synthesizes the jamming signal through the synthesis filter bank. The method merely requires lower sample frequency, reduces the computational complexity and the data quantity to be processed. The un-ideal filter's influence to the result of signals processing is analyzed by simulating the match filter in radar jamming system.

  1. A monolithic K-band phase-locked loop for microwave radar application (United States)

    Zhou, Guangyao; Ma, Shunli; Li, Ning; Ye, Fan; Ren, Junyan


    A monolithic K-band phase-locked loop (PLL) for microwave radar application is proposed and implemented in this paper. By eliminating the tail transistor and using optimized high-Q LC-tank, the proposed voltage-controlled oscillator (VCO) achieves a tuning range of 18.4 to 23.3 GHz and reduced phase noise. Two cascaded current-mode logic (CML) divide-by-two frequency prescalers are implemented to bridge the frequency gap, in which inductor peaking technique is used in the first stage to further boost allowable input frequency. Six-stage TSPC divider chain is used to provide programmable division ratio from 64 to 127, and a second-order passive loop filter with 825 kHz bandwidth is also integrated on-chip to minimize required external components. The proposed PLL needs only approximately 18.2 μs settling time, and achieves a wide tuning range from 18.4 to 23.3 GHz, with a typical output power of -0.84 dBm and phase noise of -91.92 dBc/Hz @ 1 MHz. The chip is implemented in TSMC 65 nm CMOS process, and occupies an area of 0.56 mm2 without pads under a 1.2 V single voltage supply. Project supported by the National High-Tech Research and Development Program of China (No. 2013AA014101).

  2. Radar Fundamentals, Presentation


    Jenn, David


    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  3. Radar Fundamentals, Presentation


    Jenn, David


    Topics include: introduction, radar functions, antennas basics, radar range equation, system parameters, electromagnetic waves, scattering mechanisms, radar cross section and stealth, and sample radar systems.

  4. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems... (United States)


    ... COMMISSION Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems... the United States after importation of certain navigation products, including GPS devices, navigation... products, including GPS devices, navigation and display systems, radar systems, navigational aids,...

  5. Comparative of signal processing techniques for micro-Doppler signature extraction with automotive radar systems (United States)

    Rodriguez-Hervas, Berta; Maile, Michael; Flores, Benjamin C.


    In recent years, the automotive industry has experienced an evolution toward more powerful driver assistance systems that provide enhanced vehicle safety. These systems typically operate in the optical and microwave regions of the electromagnetic spectrum and have demonstrated high efficiency in collision and risk avoidance. Microwave radar systems are particularly relevant due to their operational robustness under adverse weather or illumination conditions. Our objective is to study different signal processing techniques suitable for extraction of accurate micro-Doppler signatures of slow moving objects in dense urban environments. Selection of the appropriate signal processing technique is crucial for the extraction of accurate micro-Doppler signatures that will lead to better results in a radar classifier system. For this purpose, we perform simulations of typical radar detection responses in common driving situations and conduct the analysis with several signal processing algorithms, including short time Fourier Transform, continuous wavelet or Kernel based analysis methods. We take into account factors such as the relative movement between the host vehicle and the target, and the non-stationary nature of the target's movement. A comparison of results reveals that short time Fourier Transform would be the best approach for detection and tracking purposes, while the continuous wavelet would be the best suited for classification purposes.

  6. Improvement of antenna decoupling in radar systems (United States)

    Anchidin, Liliana; Topor, Raluca; Tamas, Razvan D.; Dumitrascu, Ana; Danisor, Alin; Berescu, Serban


    In this paper we present a type of antipodal Vivaldi antenna design, which can be used for pulse radiation in UWB communication. The Vivaldi antenna is a special tapered slot antenna with planar structure which is easily to be integrated with transmitting elements and receiving elements to form a compact structure. When the permittivity is very large, the wavelength of slot mode is so short that the electromagnetic fields concentrate in the slot to form an effective and balanced transmission line. Due to its simple structure and small size the Vivaldi antennas are one of the most popular designs used in UWB applications. However, for a two-antenna radar system, there is a high mutual coupling between two such antennas due to open configuration. In this paper, we propose a new method for reducing this effect. The method was validated by simulating a system of two Vivaldi antennas in front of a standard target.

  7. Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.


    Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the

  8. Microwave-Based Water Decontamination System (United States)

    Arndt, G. Dickey (Inventor); Byerly, Diane (Inventor); Sognier, Marguerite (Inventor); Dusl, John (Inventor)


    A system for decontaminating a medium. The system can include a medium having one or more contaminants disposed therein. The contaminants can be or include bacteria, fungi, parasites, viruses, and combinations thereof. A microwave energy radiation device can be positioned proximate the medium. The microwave energy radiation device can be adapted to generate a signal having a frequency from about 10 GHz to about 100 GHz. The signal can be adapted to kill one or more of the contaminants disposed within the medium while increasing a temperature of the medium by less than about 10 C.

  9. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn (United States)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad


    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  10. Passive Microwave Soil Moisture Retrieval through Combined Radar/Radiometer Ground Based Simulator with Special Reference to Dielectric Schemes (United States)

    Srivastava, Prashant K., ,, Dr.; O'Neill, Peggy, ,, Dr.


    indicated a higher performance in terms of soil moisture retrieval accuracy for the Mironov dielectric model (RMSE of 0.035 m3/m3), followed by Dobson, Wang & Schmugge, and Hallikainen. This analysis indicates that Mironov dielectric model is promising for passive-only microwave soil moisture retrieval and could be a useful choice for SMAP satellite soil moisture retrieval. Keywords: Dielectric models; Single Channel Algorithm, Combined Radar/Radiometer, Soil moisture; L band References: Behari, J. (2005). Dielectric Behavior of Soil (pp. 22-40). Springer Netherlands O'Neill, P. E., Lang, R. H., Kurum, M., Utku, C., & Carver, K. R. (2006), Multi-Sensor Microwave Soil Moisture Remote Sensing: NASA's Combined Radar/Radiometer (ComRAD) System. In IEEE MicroRad, 2006 (pp. 50-54). IEEE. Srivastava, P. K., Han, D., Rico Ramirez, M. A., & Islam, T. (2013), Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. Journal of Hydrology, 498, 292-304. USDA OPE3 web site at

  11. Increased noise signal processing in incoherent radar systems

    Directory of Open Access Journals (Sweden)

    I. I. Chesanovskyi


    Full Text Available Introduction. The work is devoted to the method of increasing coherence and noise immunity pulse radar systems with incoherent sources probing signals. Problem. Incongruities between a resolution and a range of pulsed radar systems can not be resolved within the classical approaches of building incoherent radar systems, requiring new approaches in their construction. The main part. The paper presents a method of two-stage processing incoherent pulsed radar signals, allowing to compensate and use the information available to them and the angular amplitude of spurious modulation. Conclusions. Simulation results and research functions of these expressions of uncertainty indicate that use volatility as an additional transmitter modulation allows to significantly improve the resolution and robustness of the radar system.

  12. Integrated protection architectures for radars and communication systems

    NARCIS (Netherlands)

    Wanum, M. van; Monni, S.; Vliet, F.E. van


    The protection of phased array T/R modules from high input power levels is an important aspect in reducing vulnerability of radars and communication systems RF electronics in modern military platforms. Different categories of threats can damage the sensitive electronics in the phased-array radar,

  13. Rainfall estimates for hydrological models: Comparing rain gauge, radar and microwave link data as input for the Wageningen Lowland Runoff Simulator (WALRUS) (United States)

    Brauer, Claudia; Overeem, Aart; Uijlenhoet, Remko


    Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of differences in rainfall estimates on discharge simulations in a lowland catchment by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in the Hupsel Brook catchment. We used two automatic rain gauges with hourly resolution, located inside the catchment (the base run) and 30 km northeast. Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. Traditionally, the precipitation research community places emphasis on quantifying spatial errors and uncertainty, but for hydrological applications, temporal errors and uncertainty should be quantified as well. Its memory makes the hydrologic system sensitive to missed or badly timed rainfall events, but also emphasizes the effect of a bias in rainfall estimates. Systematic underestimation of rainfall by the uncorrected operational radar product leads to very dry model states and an increasing underestimation of discharge. Using the rain gauge 30 km northeast of the catchment yields good results for climatological studies, but not for forecasting individual floods. Simulating discharge using the maps derived from microwave link data and the gauge-adjusted radar product yields good results for both events and climatological studies. This indicates that these products can be

  14. High Resolution Software Defined Radar System for Target Detection

    Directory of Open Access Journals (Sweden)

    S. Costanzo


    Full Text Available The Universal Software Radio Peripheral USRP NI2920, a software defined transceiver so far mainly used in Software Defined Radio applications, is adopted in this work to design a high resolution L-Band Software Defined Radar system. The enhanced available bandwidth, due to the Gigabit Ethernet interface, is exploited to obtain a higher slant-range resolution with respect to the existing Software Defined Radar implementations. A specific LabVIEW application, performing radar operations, is discussed, and successful validations are presented to demonstrate the accurate target detection capability of the proposed software radar architecture. In particular, outdoor and indoor test are performed by adopting a metal plate as reference structure located at different distances from the designed radar system, and results obtained from the measured echo are successfully processed to accurately reveal the correct target position, with the predicted slant-range resolution equal to 6 m.

  15. Retrieval of Vertical Profiles of Liquid Water and Ice Content in Mixed Clouds from Doppler Radar and Microwave Radiometer Measurements. (United States)

    Sauvageot, Henri


    A new method to retrieve vertical profiles of liquid water content Mw(z), ice water content Mi(z), and ice particle size distribution Ni(D, z), (where D is the ice particle size and z the vertical coordinate) in mixed nonprecipitating clouds using the observations of a zenith-viewing Doppler radar and of a microwave radiometer is proposed. In this method, the profile of the vertical air velocity deduced from Doppler radar measurements is used to describe the rate of production by the updrafts of water. vapor in excess of saturation with respect to ice. Using a Zi Mi power-law relation with an unknown linear parameter (let i, be this parameter) and initially assuming that Zw is negligible with respect to Zi, (where Zw and Zi are the radar reflectivity factors of liquid water and ice particles respectively), the measured radar reflectivity factor profile Zm ( Zi) is inverted to estimate Ni(D, z). From Ni(D, z), the profile of the rate of water vapor that can be consumed by pure deposition on ice particles is calculated. The difference between the rate of production of the exam water vapor and the rate of deposited water vapor is an expression of the rate of liquid water generation at each level. By writing that the integral of the liquid water along the profile has to be equal to the total liquid water deduced from the microwave radiometer measurement, an estimation of the i parameter is obtained. From i, an estimation of the profiles Mw(z), Mi(z), Zw(z), Zi(z) (=Zm Zw), and Ni(D, z) is calculated. If Zw is effectively negligible with respect to Zi, the computation of the retrieved profiles is ended. If not, Zi(z) is corrected and a new estimation of the profiles is computed. The results of the numerical simulation of the algorithm are presented.

  16. New algorithm for integration between wireless microwave sensor network and radar for improved rainfall measurement and mapping

    Directory of Open Access Journals (Sweden)

    Y. Liberman


    Full Text Available One of the main challenges for meteorological and hydrological modelling is accurate rainfall measurement and mapping across time and space. To date the most effective methods for large scale rainfall estimates are radar, satellites, and more recently, received signal level (RSL measurements received from commercial microwave networks (CMN. While these methods provide improved spatial resolution over traditional rain gauges, these have their limitations as well. For example, the wireless CMN, which are comprised of microwave links (ML, are dependant upon existing infrastructure, and the ML arbitrary distribution in space. Radar, on the other hand, is known in its limitation in accurately estimating rainfall in urban regions, clutter areas and distant locations. In this paper the pros and cons of the radar and ML methods are considered in order to develop a new algorithm for improving rain fall measurement and mapping, which is based on data fusion of the different sources. The integration is based on an optimal weighted average of the two data sets, taking into account location, number of links, rainfall intensity and time step. Our results indicate that by using the proposed new method we not only generate a more accurate 2-D rainfall reconstructions, compared with actual rain intensities in space, but also the reconstructed maps are extended to the maximum coverage area. By inspecting three significant rain events, we show an improvement of rain rate estimation over CMN or radar alone, almost uniformly, both for instantaneous spatial measurements, as well as in calculating total accumulated rainfall. These new improved 2-D rainfall maps, and the accurate rainfall measurements over large areas at sub-hourly time scales, will allow for improved understanding, initialization and calibration of hydrological and meteorological models necessary, mainly, for water resource management and planning.

  17. New algorithm for integration between wireless microwave sensor network and radar for improved rainfall measurement and mapping (United States)

    Liberman, Y.; Samuels, R.; Alpert, P.; Messer, H.


    One of the main challenges for meteorological and hydrological modelling is accurate rainfall measurement and mapping across time and space. To date, the most effective methods for large-scale rainfall estimates are radar, satellites, and, more recently, received signal level (RSL) measurements derived from commercial microwave networks (CMNs). While these methods provide improved spatial resolution over traditional rain gauges, they have their limitations as well. For example, wireless CMNs, which are comprised of microwave links (ML), are dependant upon existing infrastructure and the ML' arbitrary distribution in space. Radar, on the other hand, is known in its limitation for accurately estimating rainfall in urban regions, clutter areas and distant locations. In this paper the pros and cons of the radar and ML methods are considered in order to develop a new algorithm for improving rainfall measurement and mapping, which is based on data fusion of the different sources. The integration is based on an optimal weighted average of the two data sets, taking into account location, number of links, rainfall intensity and time step. Our results indicate that, by using the proposed new method, we not only generate more accurate 2-D rainfall reconstructions, compared with actual rain intensities in space, but also the reconstructed maps are extended to the maximum coverage area. By inspecting three significant rain events, we show that our method outperforms CMNs or the radar alone in rain rate estimation, almost uniformly, both for instantaneous spatial measurements, as well as in calculating total accumulated rainfall. These new improved 2-D rainfall maps, as well as the accurate rainfall measurements over large areas at sub-hourly timescales, will allow for improved understanding, initialization, and calibration of hydrological and meteorological models mainly necessary for water resource management and planning.

  18. Partially Adaptive Phased Array Fed Cylindrical Reflector Technique for High Performance Synthetic Aperture Radar System (United States)

    Hussein, Z.; Hilland, J.


    Spaceborne microwave radar instruments demand a high-performance antenna with a large aperature to address key science themes such as climate variations and predictions and global water and energy cycles.

  19. Advanced Meteor radar at Tirupati: System details and first results (United States)

    Sunkara, Eswaraiah; Gurubaran, Subramanian; Sundararaman, Sathishkumar; Venkat Ratnam, Madineni; Karanam, Kishore Kumar; Eethamakula, Kosalendra; Vijaya Bhaskara Rao, S.

    An advanced meteor radar viz., Enhanced Meteor Detection Radar (EMDR) operating at 35.25 MHz is installed at Sri Venkateswara University (SVU), Tirupati (13.63oN, 79.4oE), India, in the month of August 2013. Present communication describes the need for the meteor radar at present location, system description, its measurement techniques, its variables and comparison of measured mean winds with contemporary radars over the Indian region. The present radar site is selected to fill the blind region of Gadanki (13.5oN, 79.2oE) MST radar, which covers mesosphere and lower thermosphere (MLT) region (70-110 km). By modifying the receiving antenna structure and elements, this radar is capable of providing accurate wind information between 70 and 110 km unlike other similar radars. Height covering region is extended by increasing the meteor counting capacity by modifying the receiving antenna structure and elements and hence its wind estimation limits extended below and above of 80 and 100 km, respectively. In the present study, we also made comparison of horizontal winds in the MLT region with those measured by similar and different (MST and MF radars) techniques over the Indian region including the model (HWM 07) data sets. The comparison showed a very good agreement between the overlapping altitudes (82-98 km) of different radars. Zonal winds compared very well as that of meridional winds. The observed discrepancies and limitations in the wind measurement are discussed. This new radar is expected to play important role in understanding the vertical and lateral coupling by forming a unique local network.



    Kopylov, Alexei; Kruglik, Olga; Khlebopros, Rem


    This research is concerned with development of the microwave system for research the radiophysical microwave radiation effects on laboratory animals. The frequency was 1 GHz. The results obtained demonstrate the metabolic changes in mice under the electromagnetic field influence.

  1. Tomographic measurement of temperature change in phantoms of the human body by chirp radar-type microwave computed tomography. (United States)

    Miyakawa, M


    The chirp radar-type microwave computed tomograph (CT) measures the temperature change in a human body noninvasively. The paper examines its feasibility. A chirp pulse signal between 1 and 2 GHz is radiated from the transmitting antenna to the phantom. The transmitted waves are detected by the receiving antenna, which is placed on the opposite side of the object, and the beat signal between the incident wave and the transmitted wave is produced by the mixer. By spectral analysis of the beat signal, only those signals transmitted on the straight line between the transmitting antenna and the receiving antenna are discriminated from multipath signals. The microwave tomogram can therefore be reconstructed easily using the conventional algorithms for an X-ray CT image. The microwave CT can use the chirp signal to remove the influence of multipath signals caused by diffraction and reflection. The imaging of dielectric materials with complicated structures is thus possible. The experimental results using phantoms show that the spatial resolution of this microwave CT is about 10 mm and that a two-dimensional distribution of temperature change can be measured.

  2. New method to implement digital down converter in radar system

    Institute of Scientific and Technical Information of China (English)

    Ma Zhigang; Wen Biyang; Zhou Hao; Bai Liyun


    Digital down converter (DDC) is the main part of the next generation high frequency (HF) radar. In order to realize the single chip integrations of digital receiver hardware in the next generation HF Radar, a new design for DDC by using FPGA is presented. Some important and practical applications are given in this paper, and the result can prove the validity. Because we can adjust the parameters freely according to our need, the DDC system can be adapted to the next generation HF radar system.

  3. Integrated radar-camera security system: range test (United States)

    Zyczkowski, M.; Szustakowski, M.; Ciurapinski, W.; Karol, M.; Markowski, P.


    The paper presents the test results of a mobile system for the protection of large-area objects, which consists of a radar and thermal and visual cameras. Radar is used for early detection and localization of an intruder and the cameras with narrow field of view are used for identification and tracking of a moving object. The range evaluation of an integrated system is presented as well as the probability of human detection as a function of the distance from radar-camera unit.

  4. Integrated mobile radar-camera system in airport perimeter security (United States)

    Zyczkowski, M.; Szustakowski, M.; Ciurapinski, W.; Dulski, R.; Kastek, M.; Trzaskawka, P.


    The paper presents the test results of a mobile system for the protection of large-area objects, which consists of a radar and thermal and visual cameras. Radar is used for early detection and localization of an intruder and the cameras with narrow field of view are used for identification and tracking of a moving object. The range evaluation of an integrated system are presented as well as the probability of human detection as a function of the distance from radar-camera unit.

  5. Signal Processing System for the CASA Integrated Project I Radars

    Energy Technology Data Exchange (ETDEWEB)

    Bharadwaj, Nitin; Chandrasekar, V.; Junyent, Francesc


    This paper describes the waveform design space and signal processing system for dual-polarization Doppler weather radar operating at X band. The performance of the waveforms is presented with ground clutter suppression capability and mitigation of range velocity ambiguity. The operational waveform is designed based on operational requirements and system/hardware requirements. A dual Pulse Repetition Frequency (PRF) waveform was developed and implemented for the first generation X-band radars deployed by the Center for Collaborative Adaptive Sensing of the Atmosphere (CASA). This paper presents an evaluation of the performance of the waveforms based on simulations and data collected by the first-generation CASA radars during operations.

  6. Microwave Plasma System: PVA Tepla 300 (United States)

    Federal Laboratory Consortium — Description: CORAL Name: Microwave Asher A tool using microwave oxygen plasma to remove organics on the surfaces Specifications / Capabilities: Frequency: 2.45 GHz...

  7. Nordic Snow Radar Experiment (United States)

    Lemmetyinen, Juha; Kontu, Anna; Pulliainen, Jouni; Vehviläinen, Juho; Rautiainen, Kimmo; Wiesmann, Andreas; Mätzler, Christian; Werner, Charles; Rott, Helmut; Nagler, Thomas; Schneebeli, Martin; Proksch, Martin; Schüttemeyer, Dirk; Kern, Michael; Davidson, Malcolm W. J.


    The objective of the Nordic Snow Radar Experiment (NoSREx) campaign was to provide a continuous time series of active and passive microwave observations of snow cover at a representative location of the Arctic boreal forest area, covering a whole winter season. The activity was a part of Phase A studies for the ESA Earth Explorer 7 candidate mission CoReH2O (Cold Regions Hydrology High-resolution Observatory). The NoSREx campaign, conducted at the Finnish Meteorological Institute Arctic Research Centre (FMI-ARC) in Sodankylä, Finland, hosted a frequency scanning scatterometer operating at frequencies from X- to Ku-band. The radar observations were complemented by a microwave dual-polarization radiometer system operating from X- to W-bands. In situ measurements consisted of manual snow pit measurements at the main test site as well as extensive automated measurements on snow, ground and meteorological parameters. This study provides a summary of the obtained data, detailing measurement protocols for each microwave instrument and in situ reference data. A first analysis of the microwave signatures against snow parameters is given, also comparing observed radar backscattering and microwave emission to predictions of an active/passive forward model. All data, including the raw data observations, are available for research purposes through the European Space Agency and the Finnish Meteorological Institute. A consolidated dataset of observations, comprising the key microwave and in situ observations, is provided through the ESA campaign data portal to enable easy access to the data.

  8. The Eyjafjöll explosive volcanic eruption from a microwave weather radar perspective

    Directory of Open Access Journals (Sweden)

    F. S. Marzano


    Full Text Available The sub-glacial Eyjafjöll explosive volcanic eruptions of April and May 2010 are analyzed and quantitatively interpreted by using ground-based weather radar data and volcanic ash radar retrieval (VARR technique. The Eyjafjöll eruptions have been continuously monitored by the Keflavík C-band weather radar, located at a distance of about 155 km from the volcano vent. Considering that the Eyjafjöll volcano is approximately 20 km far from the Atlantic Ocean and that the northerly winds stretched the plume toward the mainland Europe, weather radars are the only means to provide an estimate of the total ejected tephra. The VARR methodology is summarized and applied to available radar time series to estimate the plume maximum height, ash particle category, ash volume, ash fallout and ash concentration every 5 min near the vent. Estimates of the discharge rate of eruption, based on the retrieved ash plume top height, are provided together with an evaluation of the total erupted mass and volume. Deposited ash at ground is also retrieved from radar data by empirically reconstructing the vertical profile of radar reflectivity and estimating the near-surface ash fallout. Radar-based retrieval results cannot be compared with ground measurements, due to the lack of the latter, but further demonstrate the unique contribution of these remote sensing products to the understating and modelling of explosive volcanic ash eruptions.

  9. The Eyjafjöll explosive volcanic eruption from a microwave weather radar perspective

    Directory of Open Access Journals (Sweden)

    F. S. Marzano


    Full Text Available The sub-glacial Eyjafjöll explosive volcanic eruptions of April and May 2010 are analyzed and quantitatively interpreted by using ground-based weather radar data and the Volcanic Ash Radar Retrieval (VARR technique. The Eyjafjöll eruptions have been continuously monitored by the Keflavík C-band weather radar, located at a distance of about 155 km from the volcano vent. Considering that the Eyjafjöll volcano is approximately 20 km from the Atlantic Ocean and that the northerly winds stretched the plume toward the mainland Europe, weather radars are the only means to provide an estimate of the total ejected tephra. The VARR methodology is summarized and applied to available radar time series to estimate the plume maximum height, ash particle category, ash volume, ash fallout and ash concentration every 5 min near the vent. Estimates of the discharge rate of eruption, based on the retrieved ash plume top height, are provided together with an evaluation of the total erupted mass and volume. Deposited ash at ground is also retrieved from radar data by empirically reconstructing the vertical profile of radar reflectivity and estimating the near-surface ash fallout. Radar-based retrieval results cannot be compared with ground measurements, due to the lack of the latter, but further demonstrate the unique contribution of these remote sensing products to the understating and modelling of explosive volcanic ash eruptions.

  10. Micropower radar systems for law enforcement technology

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, S.G.; Mast, J.; Brase, J. [Lawrence Livermore National Lab., CA (United States)] [and others


    LLNL researchers have pioneered a unique compact low-power and inexpensive radar technology (microradar) that has enormous potential in various industries. Some licenses are currently in place for motion sensors and stud finders. The ultra-wideband characteristics of the microradar (4 to 10 GHz) make it difficult to detect, yet provide potential range resolution of 1 cm at ranges of greater than 20 meters. Real and synthetic apertures arrays of radar elements can address imaging applications behind walls at those distances. Personnel detection applications are currently being tested.

  11. Statistical design for microwave systems (United States)

    Cooke, Roland; Purviance, John


    This paper presents an introduction to statistical system design. Basic ideas needed to understand statistical design and a method for implementing statistical design are presented. The nonlinear characteristics of the system amplifiers and mixers are accounted for in the given examples. The specification of group delay, signal-to-noise ratio and output power are considered in these statistical designs.

  12. Analysis of the Exposure Levels and Potential Biologic Effects of the PAVE PAWS Radar System. (United States)


    purported effects of microwave exposure, cataract induction is the only irreversible alteration repgted to have occurred in humans as a result of accidental ...Czerski12 ) described the cases of two long-term radar technicians wh2 were accidentally exposed to microwave power densities of 30-70 mW/cmZ. These power...of the children had never revealed a harmful effect. OTHER EFFECTS There is no evidence of significant microwave-induced immunologic, cerebrovascular

  13. A Potential Integrated Multiwavelength Radar System at the Medicina Radiotelescopes (United States)

    Montebugnoli, S.; Salerno, E.; Pupillo, G.; Pluchino, S.


    Ground-based radars provide a powerful tool for detection, tracking and identification of the space debris fragments orbiting around Earth at different altitudes. The Medicina Radioastronomical Station is an Italian radio observation facility that is here proposed as receiving part of a bistatic radar system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits).

  14. Reconfigurable signal processor designs for advanced digital array radar systems (United States)

    Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining


    The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.

  15. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    such as voltage-controlled oscillators and electron devices for millimeter wave and submillimeter wave applications. This part also covers studies of integrated buffer circuits. Passive components are indispensable elements of any electronic system. The increasing demands to miniaturization and cost effectiveness...... component in a receiving system. Its performance determines the overall system sensitivity because it is the first block to amplify the received signal from the antenna. Hence, for the achievement of high receiver performance, the LNA is required to have a low noise figure with good input matching as well......, bandwidth, and power consumption, which generally accompanies the LNA design process, is discussed in this part. The requirement from an amplifier design differs for different applications. A power amplifier is a type of amplifier which drives the antenna of a transmitter. Unlike LNA, a power amplifier...

  16. Integration of WERA Ocean Radar into Tsunami Early Warning Systems (United States)

    Dzvonkovskaya, Anna; Helzel, Thomas; Kniephoff, Matthias; Petersen, Leif; Weber, Bernd


    High-frequency (HF) ocean radars give a unique capability to deliver simultaneous wide area measurements of ocean surface current fields and sea state parameters far beyond the horizon. The WERA® ocean radar system is a shore-based remote sensing system to monitor ocean surface in near real-time and at all-weather conditions up to 300 km offshore. Tsunami induced surface currents cause increasing orbital velocities comparing to normal oceanographic situation and affect the measured radar spectra. The theoretical approach about tsunami influence on radar spectra showed that a tsunami wave train generates a specific unusual pattern in the HF radar spectra. While the tsunami wave is approaching the beach, the surface current pattern changes slightly in deep water and significantly in the shelf area as it was shown in theoretical considerations and later proved during the 2011 Japan tsunami. These observed tsunami signatures showed that the velocity of tsunami currents depended on a tsunami wave height and bathymetry. The HF ocean radar doesn't measure the approaching wave height of a tsunami; however, it can resolve the surface current velocity signature, which is generated when tsunami reaches the shelf edge. This strong change of the surface current can be detected by a phased-array WERA system in real-time; thus the WERA ocean radar is a valuable tool to support Tsunami Early Warning Systems (TEWS). Based on real tsunami measurements, requirements for the integration of ocean radar systems into TEWS are already defined. The requirements include a high range resolution, a narrow beam directivity of phased-array antennas and an accelerated data update mode to provide a possibility of offshore tsunami detection in real-time. The developed software package allows reconstructing an ocean surface current map of the area observed by HF radar based on the radar power spectrum processing. This fact gives an opportunity to issue an automated tsunami identification message

  17. A CMOS UWB transmitter with Vivaldi Array for Ultra-fast Beam steering microwave radar

    National Research Council Canada - National Science Library

    De Oliveira, Alexandre M; Ascama, Héctor D. O; Hiramatsu, Roberto K; Kofuji, Sérgio T; Perotoni, Marcelo B; Justo, João F


    This work presents a new Ultra Wide Band (UWB) beamforming fifth-order derivative Gaussian pulse transmitter with dual small Vivaldi antennas for remote acquisition of vital signals in impulse radar applications...

  18. Optical techniques for signal distribution and control in advanced radar and communication systems (United States)

    Forrest, J. R.


    It is concluded that optical techniques offer some advantages for signal distribution and control in advanced radar and communication systems. They are clearly ideal for transporting microwave signals over considerable distances, as in remote positioning of radar receivers, provided high dynamic range is not required and an enclosed transmission path is essential. They are an elegant means of distributing low level r.f. or i.f. signals around an active phased array where these signals are of relatively constant amplitude (as in mixer local oscillator applications). However, there is currently a rather restrictive limit on the size of distribution network possible. Optical techniques are obviously suitable for distributing digital control signals to phased array modules and confer considerable immunity to interference. They are less suitable for high dynamic range signals, such as the received radar returns, either at r.f. or when downcovered to i.f. Future developments in coherent optics or in fast optical A/D technology could, however, influence this conclusion. Currently, the optimum applications for optical techniques appear to be i.f. beamformers for multibeam communication satellite systems and in calibration/monitoring systems for phased arrays.

  19. High power microwave system based on power combining and pulse compression of conventional klystrons

    CERN Document Server

    Xiong, Zheng-Feng; Cheng, Cheng; Ning, Hui; Tang, Chuan-Xiang


    A high power microwave system based on power combining and pulse compression of conventional klystrons is introduced in this paper. This system mainly consists of pulse modulator, power combiner, driving source of klystrons and pulse compressor. A solid state induction modulator and pulse transformer were used to drive two 50 MW S-band klystrons with pulse widths 4 {\\mu}s in parallel, after power combining and pulse compression, the tested peak power had reached about 210 MW with pulse widths nearly 400 ns at 25 Hz, while the experimental maximum output power was just limited by the power capacity of loads. This type of high power microwave system has widely application prospect in RF system of large scale particle accelerators, high power radar transmitters and high level electromagnetic environment generators.

  20. Radar imaging of solar system ices (United States)

    Harcke, Leif J.

    We map the planet Mercury and Jupiter's moons Ganymede and Callisto using Earth-based radar telescopes and find that all of these have regions exhibiting high, depolarized radar backscatter and polarization inversion (m c > 1). Both characteristics suggest significant volume scattering from water ice or similar cold-trapped volatiles. Synthetic aperture radar mapping of Mercury's north and south polar regions at fine (6 km) resolution at 3.5 cm wavelength corroborates the results of previous 13 cm investigations of enhanced backscatter and polarization inversion (0.9 caused by simple double-bounce geometries, since the bright, reflective regions do not appear on the radar-facing wall but, instead, in shadowed regions not directly aligned with the radar look direction. Thermal models require the existence of such a layer to preserve ice deposits in craters at other than high polar latitudes. The additional attenuation (factor 1.64 +/- 15%) of the 3.5 cm wavelength data from these experiments over previous 13 cm radar observations is consistent with a range of layer thickness from 0 +/- 11 to 35 +/- 15 cm, depending on the assumed scattering law exponent n. Our 3.5 cm wavelength bistatic aperture synthesis observations of the two outermost Galilean satellites of Jupiter, Ganymede and Callisto, resolve the north-south ambiguity of previous images, and confirm the disk-integrated enhanced backscatter and polarization inversion noted in prior investigations. The direct imaging technique more clearly shows that higher backscatter are as are associated with the terrain that has undergone recent resurfacing, such as the sulci and the impact crater basins. The leading hemispheres of both moons have somewhat higher (20% +/- 5%) depolarized echoes than their trailing hemispheres, suggesting additional wavelength-scale structure in the regolith. Two improvements to existing delay-Doppler techniques enhance data reduction. First, correlation using subsets of the standard

  1. Industrial scale microwave processing of tomato juice using a novel continuous microwave system. (United States)

    Stratakos, Alexandros Ch; Delgado-Pando, Gonzalo; Linton, Mark; Patterson, Margaret F; Koidis, Anastasios


    This study evaluated the effect of an industrial scale continuous flow microwave volumetric heating system in comparison to conventional commercial scale pasteurisation for the processing of tomato juice in terms of physicochemical properties, microbial characteristics and antioxidant capacity. The effect against oxidative stress in Caco-2 cells, after in vitro digestion was also investigated. Physicochemical and colour characteristics of juices were very similar between technologies and during storage. Both conventional and microwave pasteurisation inactivated microorganisms and kept them in low levels throughout storage. ABTS[Symbol: see text](+) values, but not ORAC, were higher for the microwave pasteurised juice at day 0 however no significant differences between juices were observed during storage. Juice processed with the microwave system showed an increased cytoprotective effect against H2O2 induced oxidation in Caco-2 cells. Organoleptic analysis revealed that the two tomato juices were very similar. The continuous microwave volumetric heating system appears to be a viable alternative to conventional pasteurisation.

  2. Near-Space Microwave Radar Remote Sensing: Potentials and Challenge Analysis

    Directory of Open Access Journals (Sweden)

    Qicong Peng


    Full Text Available Near-space, defined as the region between 20 km and 100 km, offers many new capabilities that are not accessible to low earth orbit (LEO satellites and airplanes, because it is above storm and not constrained by either the orbital mechanics of satellites or the high fuel consumption of airplanes. By placing radar transmitter/receiver in near-space platforms, many functions that are currently performed with satellites or airplanes could be performed in a cheaper way. Inspired by these advantages, this paper introduces several near-space vehicle-based radar configurations, such as near-space passive bistatic radar and high-resolution wide-swath (HRWS synthetic aperture radar (SAR. Their potential applications, technical challenges and possible solutions are investigated. It is shown that near-space is a satisfactory solution to some specific remote sensing applications. Firstly, near-space passive bistatic radar using opportunistic illuminators offers a solution to persistent regional remote sensing, which is particularly interest for protecting homeland security or monitoring regional environment. Secondly, near-space provides an optimal solution to relative HRWS SAR imaging. Moreover, as motion compensation is a common technical challenge for the described radars, an active transponder-based motion compensation is also described.

  3. Solid-State Cloud Radar System (CRS) Upgrade and Deployment (United States)

    McLinden, Matt; Heymsfield, Gerald; Li, Lihua; Racette, Paul; Coon, Michael; Venkatesh, Vijay


    The recent decade has brought rapid development in solid-state power amplifier (SSPA) technology. This has enabled the use of solid-state precipitation radar in place of high-power and high-voltage systems such as those that use Klystron or Magnetron transmitters. The NASA Goddard Space Flight Center has recently completed a comprehensive redesign of the 94 gigahertz Cloud Radar System (CRS) to incorporate a solid-state transmitter. It is the first cloud radar to achieve sensitivity comparable to that of a high-voltage transmitter using solid-state. The NASA Goddard Space Flight Center's Cloud Radar System (CRS) is a 94 gigahertz Doppler radar that flies on the NASA ER-2 high-altitude aircraft. The upgraded CRS system utilizes a state-of-the-art solid-state 94 gigahertz power amplifier with a peak transmit power of 30 watts. The modernized CRS system is detailed here with data results from its deployment during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEX).

  4. Microwaves - the hidden danger. Mikrowellen - die verheimlichte Gefahr

    Energy Technology Data Exchange (ETDEWEB)

    Brodeur, P.


    Today, highly frequent radio waves are regarded as undangerous to man. Diseases seen at radar-technicians during the 2nd World War, however, indicated that microwaves applied in radar systems were hazardous to health. The Russian work medicine has been knowing microwave-caused hazards in industry since the beginning of the thirties. Therefore in some East-European countries there are terms of protection and severe norms of safety for the staying of persons in the radiation sphere of microwaves.

  5. Velocity profiles inside volcanic clouds from three-dimensional scanning microwave dual-polarization Doppler radars (United States)

    Montopoli, Mario


    In this work, velocity profiles within a volcanic tephra cloud obtained by dual-polarization Doppler radar acquisitions with three-dimensional (3-D) mechanical scanning capability are analyzed. A method for segmenting the radar volumes into three velocity regimes: vertical updraft, vertical fallout, and horizontal wind advection within a volcanic tephra cloud using dual-polarization Doppler radar moments is proposed. The horizontal and vertical velocity components within the regimes are retrieved using a novel procedure that makes assumptions concerning the characteristics of the winds inside these regimes. The vertical velocities retrieved are combined with 1-D simulations to derive additional parameters including particle fallout, mass flux, and particle sizes. The explosive event occurred on 23 November 2013 at the Mount Etna volcano (Sicily, Italy), is considered a demonstrative case in which to analyze the radar Doppler signal inside the tephra column. The X-band radar (3 cm wavelength) in the Catania, Italy, airport observed the 3-D scenes of the Etna tephra cloud ~32 km from the volcano vent every 10 min. From the radar-derived vertical velocity profiles of updraft, particle fallout, and horizontal transportation, an exit velocity of 150 m/s, mass flux rate of 1.37 • 107 kg/s, particle fallout velocity of 18 m/s, and diameters of precipitating tephra particles equal to 0.8 cm are estimated on average. These numbers are shown to be consistent with theoretical 1-D simulations of plume dynamics and local reports at the ground, respectively. A thickness of 3 ± 0.36 km for the downwind ash cloud is also inferred by differentiating the radar-derived cloud top and the height of transition between the convective and buoyancy regions, the latter being inferred by the estimated vertical updraft velocity profile. The unique nature of the case study as well as the novelty of the segmentation and retrieval methods presented potentially give new insights into the

  6. Microwave Plasma System: PVA Tepla 300 (United States)

    Federal Laboratory Consortium — Description:CORAL Name: Microwave AsherA tool using microwave oxygen plasma to remove organics on the surfacesSpecifications / Capabilities:Frequency: 2.45 GHzPower:...

  7. The influence of microwave radiation on transdermal delivery systems. (United States)

    Moseley, H; Johnston, S; Allen, A


    It has been alleged that the exposure of a transdermal delivery system to leakage of microwave radiation from a domestic microwave oven can result in the user receiving a second-degree burn in the area of the patch. Several transdermal delivery systems were exposed to microwave radiation from an Electro Medical Supplies Microtron 200 microwave diathermy unit. Temperature rises of up to 2.2 degrees C were recorded at a maximum power density of 800 W/m2. These temperature rises were considered insignificant compared to that required to produce a burn. The exposure of transdermal delivery systems to a microwave diathermy field or lower level leakage radiation from a microwave oven is unlikely to cause direct thermal injury to the wearer.

  8. Noncontact Detection and Analysis of Respiratory Function Using Microwave Doppler Radar

    Directory of Open Access Journals (Sweden)

    Yee Siong Lee


    Full Text Available Real-time respiratory measurement with Doppler Radar has an important advantage in the monitoring of certain conditions such as sleep apnoea, sudden infant death syndrome (SIDS, and many other general clinical uses requiring fast nonwearable and non-contact measurement of the respiratory function. In this paper, we demonstrate the feasibility of using Doppler Radar in measuring the basic respiratory frequencies (via fast Fourier transform for four different types of breathing scenarios: normal breathing, rapid breathing, slow inhalation-fast exhalation, and fast inhalation-slow exhalation conducted in a laboratory environment. A high correlation factor was achieved between the Doppler Radar-based measurements and the conventional measurement device, a respiration strap. We also extended this work from basic signal acquisition to extracting detailed features of breathing function (I : E ratio. This facilitated additional insights into breathing activity and is likely to trigger a number of new applications in respiratory medicine.

  9. Radar Based Flow and Water Level Forecasting in Sewer Systems

    DEFF Research Database (Denmark)

    Thorndahl, Søren; Rasmussen, Michael R.; Grum, M.


    This paper describes the first radar based forecast of flow and/or water level in sewer systems in Denmark. The rainfall is successfully forecasted with a lead time of 1-2 hours, and flow/levels are forecasted an additional ½-1½ hours using models describing the behaviour of the sewer system. Both...... radar data and flow/water level model are continuously updated using online rain gauges and online in-sewer measurements, in order to make the best possible predictions. The project show very promising results, and show large potentials, exploiting the existing water infrastructure in future climate...

  10. Design of a Radar Based Space Situational Awareness System (United States)

    Liebschwager, T.; Neff, T.; Suess, I. H.; Foerstner, I. R.


    Existing SSA-Networks in most cases consist of sensors which originally were not designed for the purpose of detecting or tracking space debris and active satellites. Furthermore there are different kinds of sensors in use which makes it even more complicated to handle all generated data. Therefore it is reasonable to create a network consisting of homogenous sensors, which means sensors of the same type (like radar or optical) and with the same output format of the data. Technologies that are available for detection and tracking of objects (e.g. optical sensors or radar) will be discussed. Focal point will be on operational availability, reliability and obtainable accuracy. It will be shown that Phased Array Radars are the most reasonable technology to be used while creating a sensor network consisting of homogenous sensors. This paper entails to present a proposal for a network of Phased Array Radars configured for this purpose. The system is intended to detect and track objects that are at least as small as objects that can currently be found in the US SSN catalogue. Furthermore potential hazards in different orbits will be evaluated and discussed to optimize the system on these areas. The system is supposed to be able to create an own object catalogue. Therefore perseverative tracking and required capacity will also be considered. On the basis of these considerations the paper shows how to lay-up such a radar-system starting from scratch. Criteria for detection and tracking of objects will be determined. This part of the work contains aspects like choosing the frequency band or tracking-frequencies for different sizes of objects. In the next step the locations for the sensors will be chosen. Based on thoughts about infrastructure it is plausible to place the radar systems on existing observation sites. By analyzing simulations with different numbers of sensors and / or locations several feasible approaches for such a Space Situational Awareness Network will be

  11. Dependence of microwave absorption properties on ferrite volume fraction in MnZn ferrite/rubber radar absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Gama, Adriana M., E-mail: [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Rezende, Mirabel C., E-mail: [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil); Dantas, Christine C., E-mail: [Divisao de Materiais (AMR), Instituto de Aeronautica e Espaco (IAE), Departamento de Ciencia e Tecnologia Aeroespacial - DCTA (Brazil)


    We report the analysis of measurements of the complex magnetic permeability ({mu}{sub r}) and dielectric permittivity ({epsilon}{sub r}) spectra of a rubber radar absorbing material (RAM) with various MnZn ferrite volume fractions. The transmission/reflection measurements were carried out in a vector network analyzer. Optimum conditions for the maximum microwave absorption were determined by substituting the complex permeability and permittivity in the impedance matching equation. Both the MnZn ferrite content and the RAM thickness effects on the microwave absorption properties, in the frequency range of 2-18 GHz, were evaluated. The results show that the complex permeability and permittivity spectra of the RAM increase directly with the ferrite volume fraction. Reflection loss calculations by the impedance matching degree (reflection coefficient) show the dependence of this parameter on both thickness and composition of RAM. - Highlights: > Permeability and permittivity spectra of a MnZn ferrite RAM (2-18 GHz) are given. > Higher MnZn volume fraction favors increase of RAM/'s permeability and permittivity. > Minimum RL as a function of frequency, thickness and MnZn volume fraction given. > Higher thicknesses imply better absorption; optimum band shifts to lower frequencies. > For higher volume fractions, smaller thickness might offer better absorption (>10 GHz).

  12. Development of a Low-Cost UAV Doppler Radar Data System (United States)

    Knuble, Joseph; Li, Lihua; Heymsfield, Gerry


    A viewgraph presentation on the design of a low cost unmanned aerial vehicle (UAV) doppler radar data system is presented. The topics include: 1) Science and Mission Background; 2) Radar Requirements and Specs; 3) Radar Realization: RF System; 4) Processing of RF Signal; 5) Data System Design Process; 6) Can We Remove the DSP? 7) Determining Approximate Speed Requirements; 8) Radar Realization: Data System; 9) Data System Operation; and 10) Results.

  13. Multitarget Identification and Localization Using Bistatic MIMO Radar Systems

    Directory of Open Access Journals (Sweden)

    Guisheng Liao


    Full Text Available A scheme for multitarget identification and localization using bistatic MIMO radar systems is proposed. Multitarget can be distinguished by Capon method, as well as the targets angles with respect to transmitter and receiver can be synthesized using the received signals. Thus, the locations of the multiple targets are obtained and spatial synchronization problem in traditional bistatic radars is avoided. The maximum number of targets that can be uniquely identified by proposed method is also analyzed. It is indicated that the product of the numbers of receive and transmit elements minus-one targets can be identified by exploiting the fluctuating of the radar cross section (RCS of the targets. Cramer-Rao bounds (CRB are derived to obtain more insights of this scheme. Simulation results demonstrate the performances of the proposed method using Swerling II target model in various scenarios.

  14. An automated radar-signature measurement system (United States)

    Kruse, Juergen

    The design and operation of an automated measurement facility permitting determination of radar cross sections and location and characterization of scattering centers on aircraft models up to 4.5 m in length are described and illustrated with diagrams, drawings, graphs, and photographs. The facility comprises a 15 x 5.8 x 3.8-m measurement chamber, a rotating platform with maximum load 270 kg and elevation range from -5 to +35 deg (precision 0.1 deg), a tunable broadband 2-18-GHz transmitter, a phase-sensitive receiver, and control and data-processing computers. The analytical techniques employed to correct for measurement errors and to resolve scattering centers both longitudinally and transversely (two-dimensional representation) are explained and demonstrated. The facility is currently being used to develop and evaluate stealth-type aircraft designs.

  15. Use of microwave in processing of drug delivery systems. (United States)

    Wong, T W


    Microwave has received a widespread application in pharmaceuticals and food processing, microbial sterilization, biomedical therapy, scientific and biomedical analysis, as well as, drug synthesis. This paper reviews the basis of application of microwave to prepare pharmaceutical dosage forms such as agglomerates, gel beads, microspheres, nanomatrix, solid dispersion, tablets and film coat. The microwave could induce drying, polymeric crosslinkages as well as drug-polymer interaction, and modify the structure of drug crystallites via its effects of heating and/or electromagnetic field on the dosage forms. The use of microwave opens a new approach to control the physicochemical properties and drug delivery profiles of pharmaceutical dosage forms without the need for excessive heat, lengthy process or toxic reactants. Alternatively, the microwave can be utilized to process excipients prior to their use in the formulation of drug delivery systems. The intended release characteristics of drugs in dosage forms can be met through modifying the physicochemical properties of excipients using the microwave.

  16. Proceedings of the COST 75 final seminar on advanced weather radar systems; Beitraege des Instituts zum COST 75 final seminar on advanced weather radar systems

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, R.; Flender, F.; Hagen, M.; Hoeller, H.; Keil, C.; Meischner, P.


    Across Europe more than 110 weather radars are in operation. More than 60 of them are Doppler radars and this number is increasing steadily. Doppler systems are becoming an operational standard. Most systems operate in C-band, with the exception of the Spanish radar network which is composed of S-band Doppler radars. Radar product composites are available for Scandinavia and Central Europe. National networks exist for the UK, France and Spain. Europe further is fortunate to have 8 polarimetric Doppler radars used mainly for research. In Italy some of those systems are used also for operational nowcasting applications for dedicated customers. The Chilbolton multiparameter Doppler radar operates at S-band. (orig.)

  17. Advanced RADAR Sensors Modeling for Driving Assistance Systems Testing.


    KEDZIA, Jean-Claude; DESOUZA, Philippe; Gruyer, Dominique


    With Advanced Driver Assistance Systems (ADAS) getting always more sophisticated, the related Virtual Prototyping platforms have to propose a very high level of accuracy with improved flexibility regarding vehicles, sensors, environments and scenarios. In this paper a new strategy is introduced for RADAR sensors modeling aimed at allowing high accuracy while limiting the related development efforts.

  18. 76 FR 67017 - Notice to Manufacturers of Airport Avian Radar Systems (United States)


    ... Federal Aviation Administration Notice to Manufacturers of Airport Avian Radar Systems AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of Airport Avian Radar Systems... waivers to foreign manufacturers of airport avian radar systems that meet the requirements of FAA...

  19. 76 FR 35176 - Operation of Radar Systems in the 76-77 GHz Band (United States)


    ... emission limits be modified for vehicular radar systems operating within the 76- 77 GHz band. Specifically... proposes to modify its rules for vehicular radar systems operating in the 76-77 GHz band as TMC requests... there is very little likelihood that vehicular radar systems operating at either the current or...

  20. Integrating an Embedded System within a Microwave Moisture Meter (United States)

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...

  1. Integrating an embedded system in a microwave moisture meter (United States)

    The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...

  2. All-optical bandwidth-tailorable radar

    CERN Document Server

    Zou, Weiwen; Long, Xin; Zhang, Siteng; Cui, Yuanjun; Chen, Jianping


    Radar has been widely used in military, security, and rescue. Metamaterial cloak is employed in stealth targets to evade radar detection. Hence modern radar should be reconfigurable at multi-bands for detecting stealth targets, which might be realized based on microwave photonics. Here, we demonstrate an all-optical bandwidth-tailorable radar architecture. It is a coherent system utilizing one mode-locked laser for both signal generation and reception. Heterodyning of two individually filtered optical pulses that are pre-chirped via wavelength-to-time mapping generates wideband linearly-chirped radar signal. The working bands can be flexibly tailored with desired bandwidth at user-preferred carrier frequency. After modulated onto the pre-chirped optical pulse, radar echoes are time-stretched and frequency-compressed by several times. The digitization becomes much easier without loss of detection ability. We believe that the demonstration can innovate the radar's architecture with ultra-high range resolution.

  3. Mimo radar waveform design for spectrum sharing with cellular systems a Matlab based approach

    CERN Document Server

    Khawar, Awais; Clancy, T Charles


    This book discusses spectrum sharing between cellular systems and radars. The book addresses a novel way to design radar waveforms that can enable spectrum sharing between radars and communication systems, without causing interference to communication systems, and at the same time achieving radar objectives of target detection, estimation, and tracking. The book includes a MATLAB-based approach, which provides reader with a way to learn, experiment, compare, and build on top of existing algorithms.

  4. Interference suppression in noise radar systems (United States)

    Djukanović, Slobodan; Daković, Miloš; Thayaparan, Thayananthan; Stanković, Ljubiša


    This paper addresses the issue of interference suppression in noise radars. The proposed methods can be divided into non-parametric and parametric ones. The considered non-parametric methods are based on linear time-frequency (TF) tools, namely the short-time Fourier transform (STFT) and local polynomial Fourier transform (LPFT). The STFT is the simplest TF method, but, due to the resolution problem, it performs poorly with highly nonstationary interferences. The LPFT resolves the resolution problem, however at the cost of increased complexity. In parametric methods, the phase of interference is locally approximated by a polynomial, which is motivated by the Weierstrass's theorem. Using the phase approximation, the corrupted received signal is demodulated and successively filtered. Two methods for polynomial phase approximation are considered, the high-order ambiguity function (HAF) and product high-order ambiguity function (PHAF). The method based on the HAF is computationally efficient; however, it suffers from the identifiability problem when multicomponent signals are considered. The identifiability problem can be resolved using the PHAF.

  5. Doppler radar sensor positioning in a fall detection system. (United States)

    Liu, Liang; Popescu, Mihail; Ho, K C; Skubic, Marjorie; Rantz, Marilyn


    Falling is a common health problem for more than a third of the United States population over 65. We are currently developing a Doppler radar based fall detection system that already has showed promising results. In this paper, we study the sensor positioning in the environment with respect to the subject. We investigate three sensor positions, floor, wall and ceiling of the room, in two experimental configurations. Within each system configuration, subjects performed falls towards or across the radar sensors. We collected 90 falls and 341 non falls for the first configuration and 126 falls and 817 non falls for the second one. Radar signature classification was performed using a SVM classifier. Fall detection performance was evaluated using the area under the ROC curves (AUCs) for each sensor deployment. We found that a fall is more likely to be detected if the subject is falling toward or away from the sensor and a ceiling Doppler radar is more reliable for fall detection than a wall mounted one.

  6. Imaging of Archaeological Remains at Barcombe Roman Villa using Microwave Tomographic Depictions of Ground Penetrating Radar Data (United States)

    Soldovieri, F.; Utsi, E.; Alani, A.; Persico, R.


    to 600MHz (the frequency range of the antennas used). The 2-dimensional plots were formed into a 3-dimensional cube and time slices extracted, on the basis of maximum signal return, at 16ns, 25ns and 29ns. In this work, we show the reprocessing of the GPR data via a microwave tomographic approach based on a linear approximation of the inverse scattering problem [4]. In particular, the effectiveness of this approach ensures a reliable and high resolution representation/visualization of the scene very large in terms of probing wavelength. This has been made possible thanks to the adoption of the approach presented in [5] where the 3D representation was achieved by performing 2D reconstruction and after obtaining the 3D Cube from these 2D reconstructed profiles. In particular, the re-examination of GPR data using microwave tomography has allowed to improve definition of the villa outline and to detect earlier prehistoric remains. [1] Rudling, D., & Butler, C. "Roundhouse to Villa" in Sussex Past & Present 95, pp 6 - 7, 2001. [2] Utsi, E., Wortley Villa paper currently in preparation of EAGE special issue. [3] Utsi, E., & Alani, A. "Barcombe Roman Villa: An Exercise in GPR Time Slicingand Comparative Geophysics", in Koppenjan, S., & Hua, L. (eds) Proceedings of the Ninth International Conference on Ground Penetrating Radar, 2002. [4] F. Soldovieri, R. Persico, E. Utsi, V. Utsi, "The application of inverse scattering techniques with ground penetrating radar to the problem of rebar location in concrete", NDT & E International, Vol. 39, Issue 7, October 2006, Pages 602-607. [5] R. Persico, F. Soldovieri, E. Utsi, "Microwave tomography for processing of GPR data at Ballachulish", Journal of Geophysics and Engineering, vol.7, no. 2, pp. 164-173, June 2010

  7. Multibeam monopulse radar for airborne sense and avoid system (United States)

    Gorwara, Ashok; Molchanov, Pavlo


    The multibeam monopulse radar for Airborne Based Sense and Avoid (ABSAA) system concept is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. In the proposed system the multibeam monopulse radar with an array of directional antennas is positioned on a small aircaraft or Unmanned Aircraft System (UAS). Radar signals are simultaneously transmitted and received by multiple angle shifted directional antennas with overlapping antenna patterns and the entire sky, 360° for both horizontal and vertical coverage. Digitizing of amplitude and phase of signals in separate directional antennas relative to reference signals provides high-accuracy high-resolution range and azimuth measurement and allows to record real time amplitude and phase of reflected from non-cooperative aircraft signals. High resolution range and azimuth measurement provides minimal tracking errors in both position and velocity of non-cooperative aircraft and determined by sampling frequency of the digitizer. High speed sampling with high-accuracy processor clock provides high resolution phase/time domain measurement even for directional antennas with wide Field of View (FOV). Fourier transform (frequency domain processing) of received radar signals provides signatures and dramatically increases probability of detection for non-cooperative aircraft. Steering of transmitting power and integration, correlation period of received reflected signals for separate antennas (directions) allows dramatically decreased ground clutter for low altitude flights. An open architecture, modular construction allows the combination of a radar sensor with Automatic Dependent Surveillance - Broadcast (ADS-B), electro-optic, acoustic sensors.

  8. Impulse radar imaging system for concealed object detection (United States)

    Podd, F. J. W.; David, M.; Iqbal, G.; Hussain, F.; Morris, D.; Osakue, E.; Yeow, Y.; Zahir, S.; Armitage, D. W.; Peyton, A. J.


    Electromagnetic systems for imaging concealed objects at checkpoints typically employ radiation at millimetre and terahertz frequencies. These systems have been shown to be effective and provide a sufficiently high resolution image. However there are difficulties and current electromagnetic systems have limitations particularly in accurately differentiating between threat and innocuous objects based on shape, surface emissivity or reflectivity, which are indicative parameters. In addition, water has a high absorption coefficient at millimetre wavelength and terahertz frequencies, which makes it more difficult for these frequencies to image through thick damp clothing. This paper considers the potential of using ultra wideband (UWB) in the low gigahertz range. The application of this frequency band to security screening appears to be a relatively new field. The business case for implementing the UWB system has been made financially viable by the recent availability of low-cost integrated circuits operating at these frequencies. Although designed for the communication sector, these devices can perform the required UWB radar measurements as well. This paper reports the implementation of a 2 to 5 GHz bandwidth linear array scanner. The paper describes the design and fabrication of transmitter and receiver antenna arrays whose individual elements are a type of antipodal Vivaldi antenna. The antenna's frequency and angular response were simulated in CST Microwave Studio and compared with laboratory measurements. The data pre-processing methods of background subtraction and deconvolution are implemented to improve the image quality. The background subtraction method uses a reference dataset to remove antenna crosstalk and room reflections from the dataset. The deconvolution method uses a Wiener filter to "sharpen" the returned echoes which improves the resolution of the reconstructed image. The filter uses an impulse response reference dataset and a signal

  9. Linear Frequency Modulated Signals VS Orthogonal Frequency Division Multiplexing Signals for Synthetic Aperture Radar Systems (United States)



  10. 78 FR 19063 - Airworthiness Approval for Aircraft Forward-Looking Windshear and Turbulence Radar Systems (United States)


    ... Turbulence Radar Systems AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Request for comment... approval for aircraft forward-looking windshear and turbulence radar systems. The planned advisory circular..., Airborne Weather Radar Equipment. The objective is to leverage the installation specific guidance from...

  11. Software Defined Doppler Radar as a Contactless Multipurpose Microwave Sensor for Vibrations Monitoring (United States)

    Raffo, Antonio; Costanzo, Sandra; Di Massa, Giuseppe


    A vibration sensor based on the use of a Software-Defined Radio (SDR) platform is adopted in this work to provide a contactless and multipurpose solution for low-cost real-time vibrations monitoring. In order to test the vibration detection ability of the proposed non-contact method, a 1 GHz Doppler radar sensor is simulated and successfully assessed on targets at various distances, with various oscillation frequencies and amplitudes. Furthermore, an SDR Doppler platform is practically realized, and preliminary experimental validations on a device able to produce a harmonic motion are illustrated to prove the effectiveness of the proposed approach. PMID:28075345

  12. Calibration of a Microwave Imaging System Using a Known Scatterer

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy


    An increasing number of operational microwave imaging systems have been presented in recent years, especially for medical imaging. This has increased the focus on the practical aspects of microwave imaging, such as the need for calibration, how to decrease measurement time, and how to minimize...... the effect of noise. At the Technical University of Denmark, a 32-channel microwave imaging system for breast cancer screening has been under development for some time. In this system, each antenna is equipped with its own transceiver module, containing amplifiers, switches, and a mixer. This design ensures...

  13. Microwave Sinterator Freeform Additive Construction System (MS-FACS) (United States)

    Howe, Alan S.; Wilcox, Brian H.; Barmatz, Martin B.; Mercury, Michael B.; Siebert, Michael A.; Rieber, Richard R.


    The harmful properties of lunar dust, such as small size, glass composition, abnormal surface area, and coatings of imbedded nanophase iron, lead to a unique coupling of the dust with microwave radiation. This coupling can be exploited for rapid sintering of lunar soil for use as a construction material that can be formed to take on an infinite number of shapes and sizes. This work describes a system concept for building structures on the lunar surface using lunar regolith (soil). This system uses the ATHLETE (All-Terrain Hex- Limbed Extra-Terrestrial Explorer) mobility system as a positioning system with a microwave print head (similar to that of a smaller-scale 3D printer). A processing system delivers the lunar regolith to the microwave print head, where the microwave print head/chamber lays down a layer of melted regolith. An arm on the ATHLETE system positions the layer depending on the desired structure.

  14. Localization Capability of Cooperative Anti-Intruder Radar Systems

    Directory of Open Access Journals (Sweden)

    Mauro Montanari


    Full Text Available System aspects of an anti-intruder multistatic radar based on impulse radio ultrawideband (UWB technology are addressed. The investigated system is composed of one transmitting node and at least three receiving nodes, positioned in the surveillance area with the aim of detecting and locating a human intruder (target that moves inside the area. Such systems, referred to also as UWB radar sensor networks, must satisfy severe power constraints worldwide imposed by, for example, the Federal Communications Commission (FCC and by the European Commission (EC power spectral density masks. A single transmitter-receiver pair (bistatic radar is considered at first. Given the available transmitted power and the capability of the receiving node to resolve the UWB pulses in the time domain, the surveillance area regions where the target is detectable, and those where it is not, are obtained. Moreover, the range estimation error for the transmitter-receiver pair is discussed. By employing this analysis, a multistatic system is then considered, composed of one transmitter and three or four cooperating receivers. For this multistatic system, the impact of the nodes location on area coverage, necessary transmitted power and localization uncertainty is studied, assuming a circular surveillance area. It is highlighted how area coverage and transmitted power, on one side, and localization uncertainty, on the other side, require opposite criteria of nodes placement. Consequently, the need for a system compromising between these factors is shown. Finally, a simple and effective criterion for placing the transmitter and the receivers is drawn.

  15. Ground-Based Calibration Of A Microwave Landing System (United States)

    Kiriazes, John J.; Scott, Marshall M., Jr.; Willis, Alfred D.; Erdogan, Temel; Reyes, Rolando


    System of microwave instrumentation and data-processing equipment developed to enable ground-based calibration of microwave scanning-beam landing system (MSBLS) at distances of about 500 to 1,000 ft from MSBLS transmitting antenna. Ensures accuracy of MSBLS near touchdown point, without having to resort to expense and complex logistics of aircraft-based testing. Modified versions prove useful in calibrating aircraft instrument landing systems.

  16. A microwave window for K band electromagnetic systems

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr


    This article proposes a solution for microwave window at K band. Properties of the window such as performance (transparency) at microwave frequencies, dimensions, and mounting place are discussed. The dimensions of the window were optimized in a full-wave simulator. To verify the design and simul......This article proposes a solution for microwave window at K band. Properties of the window such as performance (transparency) at microwave frequencies, dimensions, and mounting place are discussed. The dimensions of the window were optimized in a full-wave simulator. To verify the design...... and simulation results the prototype of the window is realized by implementing into transition section and tested experimentally. The microwave window provides low return loss |S11| below −30 dB, low insertion loss |S21| below −0.5 dB and can be used for electromagnetic systems where vacuum sealing is required...

  17. Sparse microwave imaging: Principles and applications

    Institute of Scientific and Technical Information of China (English)

    ZHANG BingChen; HONG Wen; WU YiRong


    This paper provides principles and applications of the sparse microwave imaging theory and technology.Synthetic aperture radar (SAR) is an important method of modern remote sensing.During decades microwave imaging technology has achieved remarkable progress in the system performance of microwave imaging technology,and at the same time encountered increasing complexity in system implementation.The sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theory,new system and new methodology of microwave imaging.Based on classical SAR imaging model and fundamental theories of sparse signal processing,we can derive the model of sparse microwave imaging,which is a sparse measurement and recovery problem and can be solved with various algorithms.There exist several fundamental points that must be considered in the efforts of applying sparse signal processing to radar imaging,including sparse representation,measurement matrix construction,unambiguity reconstruction and performance evaluation.Based on these considerations,the sparse signal processing could be successfully applied to radar imaging,and achieve benefits in several aspects,including improvement of image quality,reduction of data amount for sparse scene and enhancement of system performance.The sparse signal processing has also been applied in several specific radar imaging applications.

  18. Prediction of microwave absorption properties of tetrapod-needle zinc oxide whisker radar absorbing material without prior knowledge (United States)

    Zhao, Yu-Chen; Wang, Jie; Liu, Jiang-Fan; Song, Zhong-Guo; Xi, Xiao-Li


    The radar absorbing material (RAM) containing a tetrapod-needle zinc oxide whisker (T-ZnOw) has been proved to have good efficiency of microwave absorption. However, the available theoretical models, which are intended to predict the microwave absorbing properties of such an interesting composite, still cannot work well without some prior knowledge, like the measured effective electromagnetic parameters of the prepared T-ZnOw composite. Hence, we propose a novel predictive method here to calculate the reflectivity of T-ZnOw RAM without prior knowledge. In this method, the absorbing ability of this kind of material is divided into three main aspects: the unstructured background, the conductive network, and the nanostructured particle. Then, the attenuation properties of these three parts are represented, respectively, by three different approaches: the equivalent spherical particle and the static strong fluctuation theory, the equivalent circuit model obtained from the complex impedance spectra technology, and the combination of four different microscopic electromagnetic responses. The operational calculation scheme can be obtained by integrating these three absorption effects into the existing theoretical attenuation model. The reasonable agreement between the theoretical and experimental data of a T-ZnON/SiO2 composite in the range of 8-14 GHz shows that the proposed scheme can predict the microwave absorption properties of the T-ZnOw RAM. Furthermore, a detailed analysis of these three mechanisms indicates that, on the one hand, the background plays a dominant role in determining the real part of the effective permittivity of the T-ZnOw composite while the network and the particle are the decisive factors of its material loss; on the other hand, an zero-phase impedance, i.e., a pure resistance, with appropriate resonance characteristic might be a rational physical description of the attenuation property of the conductive network, but it is difficult to realize

  19. Ultrahigh and microwave frequency nanomechanical systems (United States)

    Huang, Xue Ming Henry

    Nanodevices that operate with fundamental frequencies in the previously inaccessible microwave range (greater than 1 gigahertz) have been constructed. Two advances have been crucial to breaking the 1-GHz barrier in nanoelectromechanical systems (NEMS): the use of 3C- silicon carbide epilayers, and the development of balanced, high frequency displacement transducers. This achievement represents a significant advance in the quest for extremely high frequency nanoelectromechanical systems.However, silicon carbide nanomechanical resonators with fundamental frequencies in the ultrahigh frequency and microwave range have exhibited deteriorating quality factors compared to devices at lower frequencies, which could significantly restrict the application of this developing technology. Our experiments have established a strong correlation between silicon carbide surface roughness and deteriorating quality factor. Also, dissipation in such devices increases as the aspect ratio of the doubly clamped beams is reduced. Based on such observations, we have then demonstrated that the SiC free-free beam nanomechanical resonators offer significant improvement in quality factor compared to doubly clamped beam design operating at similar frequencies.Apart from 3C-SiC epilayers on silicon, polished 6H-SiC bulk material based NEMS are also made possible by our invention. A tilted Electron Cyclotron Resonance (ECR) etching technique has been developed to fabricate suspended nanomechanical structures from bulk 6H-SiC wafers. A suspended nanoscale, doubly clamped beam resonator has been made as an initial demonstration of this new fabrication method. Fundamental flexural mode mechanical resonance is detected at 171.2 MHz, with a quality factor of about 3000. The ability to fabricate 3-D suspended nanostructures from 6H-SiC is an important breakthrough in NEMS not only because it enables electronic integration, but also because it provides a unique platform for exploring the effects of

  20. NESDIS Microwave Integrated Retrieval System (MIRS) ATMS Sounding Products (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains temperature and humidity profiles from the NOAA Microwave Integrated Retrieval System (MIRS) using sensor data from the Advanced Technology...

  1. Upgrading microwave telemetry data communications with an analog lightwave system (United States)

    Reynolds, Harrell D., Jr.

    The work performed in replacing four microwave telemetry data communications systems with one single analog fiber-optics system at Edwards Air Force Base is described. The fiber-optic system used was initially designed for use in a television video system, and thus a method of aligning the fiber-optic system to meet the needs of the transmission system was required. The objectives were met by utilizing several well-known methods of AM and FM measurement techniques not yet described in the implementation of fiber-optic communications systems. After alignment, the system transmitted the already developed basebands as well as the original microwave equipment.

  2. Decision Tool for optimal deployment of radar systems

    NARCIS (Netherlands)

    Vogel, M.H.


    A Decision Tool for air defence is presented. This Decision Tool, when provided with information about the radar, the environment, and the expected class of targets, informs the radar operator about detection probabilities. This assists the radar operator to select the optimum radar parameters. n

  3. Decision Tool for optimal deployment of radar systems

    NARCIS (Netherlands)

    Vogel, M.H.


    A Decision Tool for air defence is presented. This Decision Tool, when provided with information about the radar, the environment, and the expected class of targets, informs the radar operator about detection probabilities. This assists the radar operator to select the optimum radar parameters. n th

  4. Transponder-aided joint calibration and synchronization compensation for distributed radar systems.

    Directory of Open Access Journals (Sweden)

    Wen-Qin Wang

    Full Text Available High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF. The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  5. Transponder-aided joint calibration and synchronization compensation for distributed radar systems. (United States)

    Wang, Wen-Qin


    High-precision radiometric calibration and synchronization compensation must be provided for distributed radar system due to separate transmitters and receivers. This paper proposes a transponder-aided joint radiometric calibration, motion compensation and synchronization for distributed radar remote sensing. As the transponder signal can be separated from the normal radar returns, it is used to calibrate the distributed radar for radiometry. Meanwhile, the distributed radar motion compensation and synchronization compensation algorithms are presented by utilizing the transponder signals. This method requires no hardware modifications to both the normal radar transmitter and receiver and no change to the operating pulse repetition frequency (PRF). The distributed radar radiometric calibration and synchronization compensation require only one transponder, but the motion compensation requires six transponders because there are six independent variables in the distributed radar geometry. Furthermore, a maximum likelihood method is used to estimate the transponder signal parameters. The proposed methods are verified by simulation results.

  6. Lightning protecting materials used on radar system

    NARCIS (Netherlands)

    Blaj, M.A.; Damstra, Geert C.; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes


    Because of the extensive use in modern systems of very sensitive electronic components, lightning strikes does not represent only a threat, but something that cannot be neglected anymore and safety hazards caused by direct and indirect lightning to the aircraft or naval industry. Everyday new materi

  7. Adaptive and Cognitive Ground and Wall Penetrating Radar System (United States)


    during Fleming Museum sidewalk scan. . . . Page 40 46. Figure 46 Dual-band GPR test results from Fleming Museum sidewalk scan: a. Channel 1 (400 MHz...position. Page 42 48. Figure 48 Dual-band GPR test results from Fleming Museum sidewalk scan: a. Channel 1 (400 MHz Antenna), b. Channel 2 (1,600 MHz...of microwave engineering, sensing, cognitive systems and structural identification. Students from Civil Engineering, Electrical Engineering, and

  8. An interactive system for compositing digital radar and satellite data (United States)

    Heymsfield, G. M.; Ghosh, K. K.; Chen, L. C.


    This paper describes an approach for compositing digital radar data and GOES satellite data for meteorological analysis. The processing is performed on a user-oriented image processing system, and is designed to be used in the research mode. It has a capability to construct PPIs and three-dimensional CAPPIs using conventional as well as Doppler data, and to composite other types of data. In the remapping of radar data to satellite coordinates, two steps are necessary. First, PPI or CAPPI images are remapped onto a latitude-longitude projection. Then, the radar data are projected into satellite coordinates. The exact spherical trigonometric equations, and the approximations derived for simplifying the computations are given. The use of these approximations appears justified for most meteorological applications. The largest errors in the remapping procedure result from the satellite viewing angle parallax, which varies according to the cloud top height. The horizontal positional error due to this is of the order of the error in the assumed cloud height in mid-latitudes. Examples of PPI and CAPPI data composited with satellite data are given for Hurricane Frederic on 13 September 1979 and for a squall line on 2 May 1979 in Oklahoma.

  9. Cancer in radar technicians exposed to radiofrequency/microwave radiation: sentinel episodes. (United States)

    Richter, E; Berman, T; Ben-Michael, E; Laster, R; Westin, J B


    Controversy exists concerning the health risks from exposures to radiofrequency/microwave irradiation (RF/MW). The authors report exposure-effect relationships in sentinel patients and their co-workers, who were technicians with high levels of exposure to RF/MW radiation. Information about exposures of patients with sentinel tumors was obtained from interviews, medical records, and technical sources. One patient was a member of a cohort of 25 workers with six tumors. The authors estimated relative risks for cancer in this group and latency periods for a larger group of self-reported individuals. Index patients with melanoma of the eye, testicular cancer, nasopharyngioma, non-Hodgkin's lymphoma, and breast cancer were in the 20-37-year age group. Information about work conditions suggested prolonged exposures to high levels of RF/MW radiation that produced risks for the entire body. Clusters involved many different types of tumors. Latency periods were extremely brief in index patients and a larger self-reported group. The findings suggest that young persons exposed to high levels of RF/MW radiation for long periods in settings where preventive measures were lax were at increased risk for cancer. Very short latency periods suggest high risks from high-level exposures. Calculations derived from a linear model of dose-response suggest the need to prevent exposures in the range of 10-100 microw/cm(2).

  10. Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems (United States)

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang


    In this paper, we investigate the problem of low probability of intercept (LPI)-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems, where the radar system optimizes the transmitted waveform such that the interference caused to the cellular communication systems is strictly controlled. Assuming that the precise knowledge of the target spectra, the power spectral densities (PSDs) of signal-dependent clutters, the propagation losses of corresponding channels and the communication signals is known by the radar, three different LPI based criteria for radar waveform optimization are proposed to minimize the total transmitted power of the radar system by optimizing the multicarrier radar waveform with a predefined signal-to-interference-plus-noise ratio (SINR) constraint and a minimum required capacity for the cellular communication systems. These criteria differ in the way the communication signals scattered off the target are considered in the radar waveform design: (1) as useful energy, (2) as interference or (3) ignored altogether. The resulting problems are solved analytically and their solutions represent the optimum power allocation for each subcarrier in the multicarrier radar waveform. We show with numerical results that the LPI performance of the radar system can be significantly improved by exploiting the scattered echoes off the target due to cellular communication signals received at the radar receiver.

  11. Systems and methods for remote long standoff biometric identification using microwave cardiac signals (United States)

    McGrath, William R. (Inventor); Talukder, Ashit (Inventor)


    Systems and methods for remote, long standoff biometric identification using microwave cardiac signals are provided. In one embodiment, the invention relates to a method for remote biometric identification using microwave cardiac signals, the method including generating and directing first microwave energy in a direction of a person, receiving microwave energy reflected from the person, the reflected microwave energy indicative of cardiac characteristics of the person, segmenting a signal indicative of the reflected microwave energy into a waveform including a plurality of heart beats, identifying patterns in the microwave heart beats waveform, and identifying the person based on the identified patterns and a stored microwave heart beats waveform.

  12. Coherent Laser Radar Metrology System for Large Scale Optical Systems Project (United States)

    National Aeronautics and Space Administration — A new type of laser radar metrology inspection system is proposed that incorporates a novel, dual laser coherent detection scheme capable of eliminating both...

  13. Coherent Laser Radar Metrology System for Large Scale Optical Systems Project (United States)

    National Aeronautics and Space Administration — A new type of laser radar metrology inspection system is proposed that incorporates a novel, dual laser coherent detection scheme capable of eliminating both...

  14. Experimental 0.22 THz Stepped Frequency Radar System for ISAR Imaging (United States)

    Liang, Mei Yan; Zhang, Cun Lin; Zhao, Ran; Zhao, Yue Jin


    High resolution inverse synthetic aperture radar (ISAR) imaging is demonstrated by using a 0.22 THz stepped-frequency (SF) imaging radar system. The synthesis bandwidth of the terahertz (THz) SF radar is 12 GHz, which are beneficial for high resolution imaging. The resolution of ISAR image can reach centimeter-scale with the use of Range-Doppler algorithm (RDA). Results indicate that high resolution ISAR imaging is realized by using 0.22THz SF radar coupled with turntable scanning, which can provide foundations for further research on high-resolution radar image in the THz band.

  15. Microwave Disinfection in a Ventilation and Air-Conditioning System

    Institute of Scientific and Technical Information of China (English)

    LU Zhen; ZHANG Ji-li; MA Liang-dong; HE Juan


    Because of its broad spectrum and high efficiency,the microwave disinfection was used to control the airborne microbial contaminates in VAC system.Some microwave disinfection devices were developed com-bined with air filter,the design and calculation method was presented,and the disinfection effects on White staphylococcus,Staphylococcus aureus,Bacillus Subtilis,Escherichi coli were measured.The results show that the major influence factors on disinfection effect are microwave power,water-content of filter material,dis-infecting duration.After 15 min,the kill ratio is>90%,and the log value is>1.The microwave field is uni-form and the kill effect of bacteria on each surface of filter is the same,without statistically significant differ-ence.

  16. Integrated radar-camera security system: experimental results (United States)

    Zyczkowski, M.; Palka, N.; Trzcinski, T.; Dulski, R.; Kastek, M.; Trzaskawka, P.


    The nature of the recent military conflicts and terrorist attacks along with the necessity to protect bases, convoys and patrols have made a serious impact on the development of more effective security systems. Current widely-used perimeter protection systems with zone sensors will soon be replaced with multi-sensor systems. Multi-sensor systems can utilize day/night cameras, IR uncooled thermal cameras, and millimeter-wave radars which detect radiation reflected from targets. Ranges of detection, recognition and identification for all targets depend on the parameters of the sensors used and of the observed scene itself. In this paper two essential issues connected with multispectral systems are described. We will focus on describing the autonomous method of the system regarding object detection, tracking, identification, localization and alarm notifications. We will also present the possibility of configuring the system as a stationary, mobile or portable device as in our experimental results.

  17. Multi-agent system for target-adaptive radar tracking (United States)

    O'Connor, Alan C.


    Sensor systems such as distributed sensor networks and radar systems are potentially agile - they have parameters that can be adjusted in real-time to improve the quality of data obtained for state-estimation and decision-making. The integration of such sensors with cyber systems involving many users or agents permits greater flexibility in choosing measurement actions. This paper considers the problem of selecting radar waveforms to minimize uncertainty about the state of a tracked target. Past work gave a tractable method for optimizing the choice of measurements when an accurate dynamical model is available. However, prior knowledge about a system is often not precise, for example, if the target under observation is an adversary. A multiple agent system is proposed to solve the problem in the case of uncertain target dynamics. Each agent has a different target model and the agents compete to explain past data and select the parameters of future measurements. Collaboration or competition between these agents determines which obtains access to the limited physical sensing resources. This interaction produces a self-aware sensor that adapts to changing information requirements.

  18. Modelling a C-Band Space Surveillance Radar using Systems Tool Kit (United States)


    Orbit LOS Line of Sight PRF Pulse Repetition Frequency PSD Power Spectral Density RCS Radar Cross Section RF Radio Frequency SAR Synthetic...Simulation of both monostatic and bistatic radar systems.  Modelling of system characteristics (e.g. transmitter power, frequency, antenna size) and...system definition, search/track modes, refraction and constraints. Synthetic aperture radar ( SAR ) and jammers can be modelled but are not applicable in

  19. A Short Range, High Accuracy Radar Ranging System, (United States)


    radar cross section of a triangular trihedral reflector can be calculated using a= 4ni (0.289 L) 2 2 (5) r, where L, is the length of the...imaximum radar cross section of 16.1 square meters. Alignment of the axis of the corner reflector was done visually: since triangular corner reflectors ...As the aircraft flies its motion causes the radar cross section of each of the many scatterers to fluctuate. If the radar

  20. Effect of Microwaves on the Immune System. (United States)


    the role of endotoxin , which might be released from the microwave Irradiated intestinal tract, and the role of hydrocortisone, as the animals are...wei ght of the exposed animal as wel l as the I- spatial ori entation of the animal toward the irradiation source. 3. Examination and definition of...problem , we utilized certain mutant strains of mice , genetica lly unable to respond to endotoxin (CBA/N, C3Hfhej ’), and were able to show

  1. Battlespace surveillance using netted wireless random noise radar systems (United States)

    Surender, Shrawan C.; Narayanan, Ram M.


    Network-Centric Warfare (NCW) technology is currently being investigated to enhance the military"s effectiveness in the battlespace by providing the warfighter the necessary information to take proper decisions and win wars. One of the main battlespace requirements is surveillance, especially in today"s guerilla warfare theaters, such as the littoral and urban zones. NCW requires warfighters to be networked, self-organizing, spectrally undetectable, and having precise information about hostile targets in their vicinity. Towards this end, we are developing the concept of Netted Wireless Random Noise Radars, which is presented in this paper. The low probability-of-detection (LPD) and low probability-of-intercept (LPI) properties of random noise radars are well-known. Such radar sensors form a self-organizing network-centric architecture, using a deterministically fragmented spectrum to avoid spectral fratricide. The central concept is to use notch filtering to fragment parts of the band-limited non-coherent random noise waveform spectrum, and use these intermediate bandwidths for network communication (target tracking and track fusion) among the wireless sensors. For target detection and ranging, these sensors transmit random noise waveforms combined with continuous signals carrying digital data. As seen by the hostile target, the transmitted waveform appears random and noise-like. However, for the friendly sensors of this system, the noise-like signal contains camouflaged information. The advantages being envisioned with such a system are lower probability of detection due to noise-like transmissions, mobility to sensors due to the self-organizing capability, spectral efficiency due to fragmentation of spectrum, and better immunity to coherent interference due to the use of non-coherent signal waveforms.

  2. Analysis of chaotic FM system synchronization for bistatic radar (United States)

    Pappu, Chandra S.; Verdin, Berenice; Flores, Benjamin C.; Boehm, James; Debroux, Patrick


    We propose a scheme for bistatic radar that uses a chaotic system to generate a wideband FM signal that is reconstructed at the receiver via a conventional phase lock loop. The setup for the bistatic radar includes a 3 state variable drive oscillator at the transmitter and a response oscillator at the receiver. The challenge is in synchronizing the response oscillator of the radar receiver utilizing a scaled version of the transmitted signal sr(t, x) = αst(t, x) where x is one of three driver oscillator state variables and α is the scaling factor that accounts for antenna gain, system losses, and space propagation. For FM, we also assume that the instantaneous frequency of the received signal, xs, is a scaled version of the Lorenz variable x. Since this additional scaling factor may not be known a priori, the response oscillator must be able to accept the scaled version of x as an input. Thus, to achieve synchronization we utilize a generalized projective synchronization technique that introduces a controller term -μe where μ is a control factor and e is the difference between the response state variable xs and a scaled x. Since demodulation of sr(t) is required to reconstruct the chaotic state variable x, the phase lock loop imposes a limit on the minimum error e. We verify through simulations that, once synchronization is achieved, the short-time correlation of x and xs is high and that the self-noise in the correlation is negligible over long periods of time.

  3. Radar-to-Radar Interference Suppression for Distributed Radar Sensor Networks


    Wen-Qin Wang; Huaizong Shao


    Radar sensor networks, including bi- and multi-static radars, provide several operational advantages, like reduced vulnerability, good system flexibility and an increased radar cross-section. However, radar-to-radar interference suppression is a major problem in distributed radar sensor networks. In this paper, we present a cross-matched filtering-based radar-to-radar interference suppression algorithm. This algorithm first uses an iterative filtering algorithm to suppress the radar-to-radar ...

  4. MARA (Multimode Airborne Radar Altimeter) system documentation. Volume 1: MARA system requirements document (United States)

    Parsons, C. L. (Editor)


    The Multimode Airborne Radar Altimeter (MARA), a flexible airborne radar remote sensing facility developed by NASA's Goddard Space Flight Center, is discussed. This volume describes the scientific justification for the development of the instrument and the translation of these scientific requirements into instrument design goals. Values for key instrument parameters are derived to accommodate these goals, and simulations and analytical models are used to estimate the developed system's performance.

  5. Resolution of a phase ambiguity in a calibration procedure for polarimetric radar systems

    Energy Technology Data Exchange (ETDEWEB)

    Sletten, M.A. (Naval Research Lab., Washington, DC (United States). Radar Div.)


    In response to the remote sensing communities' interest in radar polarimetry, considerable effort has recently been devoted to the development of calibration techniques for polarimetric radar systems. A cross-pol/co-pol phase ambiguity in a previously published calibration procedure for polarimetric radar systems is discussed. The original procedure is modified to resolve the ambiguity while still retaining insensitivity to calibration target orientation. The modified form is then generalized and applied to an ultrawideband radar system for which the ambiguity in the original procedure is particularly evident.

  6. Three-dimensional radar imaging techniques and systems for near-field applications

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, Anthony M.; Tedeschi, Jonathan R.


    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  7. Development of radar cross section analysis system of naval ships

    Directory of Open Access Journals (Sweden)

    Kookhyun Kim


    Full Text Available A software system for a complex object scattering analysis, named SYSCOS, has been developed for a systematic radar cross section (RCS analysis and reduction design. The system is based on the high frequency analysis methods of physical optics, geometrical optics, and physical theory of diffraction, which are suitable for RCS analysis of electromagnetically large and complex targets as like naval ships. In addition, a direct scattering center analysis function has been included, which gives relatively simple and intuitive way to discriminate problem areas in design stage when comparing with conventional image-based approaches. In this paper, the theoretical background and the organization of the SYSCOS system are presented. To verify its accuracy and to demonstrate its applicability, numerical analyses for a square plate, a sphere and a cylinder, a weapon system and a virtual naval ship have been carried out, of which results have been compared with analytic solutions and those obtained by the other existing software.

  8. Dual-channel and multifrequency radar system calibration (United States)

    Stjernman, Anders; Vivekanandan, J.; Nystrom, Anders


    Uncertainty in absolute gain and crosstalk factors are the primary sources of error in dual-channel radar measurements. A full two-port calibration technique compensates for the errors introduced due to an imperfect antenna system and improves the isolation between orthogonal polarization channels as long as the observed cross section is above the equivalent system noise cross section. A novel technique for calibrating a dual-polarized network analyzer-based scatterometer system is discussed. Rigorous two-port S-parameter representation is used to describe absolute gain and crosstalk characteristics. Validity of the crosstalk correction is demonstrated by measuring the point target scattering matrix. Correction factors are obtained by measuring the S-parameters of trihedral and dihedral corner reflectors of known sizes. Results of absolute gain of the antenna system are verified using independent test target cross section measurements.

  9. Prototype of Microwave Imaging System for Breast-Cancer Screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy


    Microwave imaging for breast-cancer detection has received the attention of a large number of research groups in the last decade. In this paper, the imaging system currently being developed at the Technical university of Denmark is presented. This includes a description of the antenna system...

  10. Model Order Selection in Multi-baseline Interferometric Radar Systems

    Directory of Open Access Journals (Sweden)

    Fulvio Gini


    Full Text Available Synthetic aperture radar interferometry (InSAR is a powerful technique to derive three-dimensional terrain images. Interest is growing in exploiting the advanced multi-baseline mode of InSAR to solve layover effects from complex orography, which generate reception of unexpected multicomponent signals that degrade imagery of both terrain radar reflectivity and height. This work addresses a few problems related to the implementation into interferometric processing of nonlinear algorithms for estimating the number of signal components, including a system trade-off analysis. Performance of various eigenvalues-based information-theoretic criteria (ITC algorithms is numerically investigated under some realistic conditions. In particular, speckle effects from surface and volume scattering are taken into account as multiplicative noise in the signal model. Robustness to leakage of signal power into the noise eigenvalues and operation with a small number of looks are investigated. The issue of baseline optimization for detection is also addressed. The use of diagonally loaded ITC methods is then proposed as a tool for robust operation in the presence of speckle decorrelation. Finally, case studies of a nonuniform array are studied and recommendations for a proper combination of ITC methods and system configuration are given.

  11. Photonics for microwave systems and ultra-wideband signal processing (United States)

    Ng, W.


    The advantages of using the broadband and low-loss distribution attributes of photonics to enhance the signal processing and sensing capabilities of microwave systems are well known. In this paper, we review the progress made in the topical areas of true-time-delay beamsteering, photonic-assisted analog-to-digital conversion, RF-photonic filtering and link performances. We also provide an outlook on the emerging field of integrated microwave photonics (MWP) that promise to reduce the cost of MWP subsystems and components, while providing significantly improved form-factors for system insertion.

  12. A novel backpackable ice-penetrating radar system (United States)

    Matsuoka, Kenichi; Saito, Ryoji; Naruse, Renji

    We have developed a novel ice-penetrating radar system that can be carried on a backpack. Including batteries for a 3 hour continuous measurement, the total weight is 13 kg. In addition, it operates reliably down to -25°C, has a low power consumption of 24 W, and is semi-waterproof. The system has a built-in-one controller with a high-brightness display for reading data quickly, a receiver with 12-bit digitizing, and a 1 kV pulse transmitter in which the pulse amplitude varies by <0.2%. Optical communications between components provides low-noise data acquisition and allows synchronizing of the pulse transmission with sampling. Measurements with the system revealed the 300 m deep bed topography of a temperate valley glacier in the late ablation season.

  13. Design and implementation of a noise radar tomographic system (United States)

    Asmuth, Mark A.; Shin, Hee Jung; Narayanan, Ram M.; Rangaswamy, Muralidhar


    A hardware system has been developed to perform ultrawideband (UWB) noise radar tomography over the 3-5 GHz frequency range. The system utilizes RF hardware to transmit multiple independent and identically distributed UWB random noise waveforms. A 3-5 GHz band-limited signal is generated using an arbitrary waveform generator and the waveform is then amplified and transmitted through a horn antenna. A linear scanner with a single antenna is used in place of an antenna array to collect backscatter. The backscatter is collected from the transmission of each waveform and reconstructed to form an image. The images that result from each scan are averaged to produce a single tomographic image of the target. After background subtraction, the scans are averaged to improve the image quality. The experimental results are compared to the theoretical predictions. The system is able to successfully image metallic and dielectric cylinders of different cross sections.


    Energy Technology Data Exchange (ETDEWEB)

    Walters, T; Paul Burket, P; John Scogin, J


    A hybrid-heating microwave oven provides the energy to heat small 10-gram samples of spent metal tritide storage bed material to release tenaciously held decay product {sup 3}He. Complete mass balance procedures require direct measurement of added or produced gases on a tritide bed, and over 1100 C is necessary to release deep trapped {sup 3}He. The decomposition of non-radioactive CaCO{sub 3} and the quantitative measurement of CO{sub 2} within 3% of stoichiometry demonstrate the capabilities of the apparatus to capture generated (released) gases.

  15. Preliminary Results From the UNICIT High Frequency Microwave Palaeointensity System (United States)

    Biggin, A.; Boehnel, H.; Walton, D.


    Two of the biggest problems encountered when using the Thellier method to obtain estimates of the geomagnetic field intensity in the past are thermochemical alteration occurring during the experiments and the time intensive nature of the experiments themselves. Together these factors frequently yield a frustratingly low ratio of success achieved to time spent in the laboratory. However this ratio can be much increased, if microwave radiation instead of conventional thermal energy is used to excite the ferromagnetic grains within samples. Following the recent success of the geomagnetism group at the University of Liverpool in using microwave radiation to perform palaeointensity experiments, a new system has been developed at the Earth science research unit (UNICIT) of UNAM in Querétaro, Mexico. Conceptually, it differs from the Liverpool system (described in the literature) only in that it is designed to use higher frequency microwave radiation (12 to 18 GHz as opposed to 8.5 GHz) as a more efficient means to excite the ferromagnetic systems of materials. The system has been used to perform modified Thellier palaeointensity experiments on volcanic samples which had previously had a full TRM imparted to them using a known field in the laboratory. The results of these experiments were very encouraging and will be presented. Currently, samples derived from recent volcanic material which has previously undergone conventional Thellier analysis are being studied using the microwave system. Results from these experiments will also be discussed.

  16. Photoelectric radar servo control system based on ARM+FPGA (United States)

    Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun


    In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a

  17. Active microwave remote sensing research program plan. Recommendations of the Earth Resources Synthetic Aperture Radar Task Force. [application areas: vegetation canopies, surface water, surface morphology, rocks and soils, and man-made structures (United States)


    A research program plan developed by the Office of Space and Terrestrial Applications to provide guidelines for a concentrated effort to improve the understanding of the measurement capabilities of active microwave imaging sensors, and to define the role of such sensors in future Earth observations programs is outlined. The focus of the planned activities is on renewable and non-renewable resources. Five general application areas are addressed: (1) vegetation canopies, (2) surface water, (3) surface morphology, (4) rocks and soils, and (5) man-made structures. Research tasks are described which, when accomplished, will clearly establish the measurement capabilities in each area, and provide the theoretical and empirical results needed to specify and justify satellite systems using imaging radar sensors for global observations.

  18. Microwave Radiometry for Oil Pollution Monitoring, Measurements, and Systems

    DEFF Research Database (Denmark)

    Skou, Niels


    Work is presently carried out in Europe to change the Status of the microwave radiometer, namely, to develop it from a research instrument to an operational instrument-especially for measuring oil pollution on the sea surface. The Technical University of Denmark (TUD), with its long experience...... in airborne microwave radiometry, is heavily involved in this process. The TUD multichannel imaging radiometer system has been flown in several large-scale oil-pollution experiments, the collected data have been analyzed, and they have revealed that care must be exercised to obtain accurate oil volume...

  19. Research Relative to High Spatial Resolution Passive Microwave Sounding Systems (United States)

    Staelin, D. H.; Rosenkranz, P. W.


    Methods to obtain high resolution passive microwave weather observations, and understanding of their probable impact on numerical weather prediction accuracy were investigated. The development of synthetic aperture concepts for geosynchronous passive microwave sounders were studied. The effects of clouds, precipitation, surface phenomena, and atmospheric thermal fine structure on a scale of several kilometers were examined. High resolution passive microwave sounders (e.g., AMSU) with an increased number of channels will produce initialization data for numerical weather prediction (NWP) models with both increased spatial resolution and coverage. The development of statistical models for error growth in high resolution primitive equation NWP models which permit the consequences of various observing system alternatives, including sensors and assimilation times and procedures is discussed. A high resolution three dimensional primitive equation NWP model to determine parameters in an error growth model similar to that formulated by Lorenz, but with more degrees of freedom is utilized.

  20. Cognitive Dynamic Systems: A Technical Review of Cognitive Radar


    Krishnan, Krishanth; Schwering, Taralyn; Sarraf, Saman


    We start with the history of cognitive radar, where origins of the PAC, Fuster research on cognition and principals of cognition are provided. Fuster describes five cognitive functions: perception, memory, attention, language, and intelligence. We describe the Perception-Action Cyclec as it applies to cognitive radar, and then discuss long-term memory, memory storage, memory retrieval and working memory. A comparison between memory in human cognition and cognitive radar is given as well. Atte...

  1. Application of Radar Data to Remote Sensing and Geographical Information Systems (United States)

    vanZyl, Jakob J.


    The field of synthetic aperture radar changed dramatically over the past decade with the operational introduction of advance radar techniques such as polarimetry and interferometry. Radar polarimetry became an operational research tool with the introduction of the NASA/JPL AIRSAR system in the early 1980's, and reached a climax with the two SIR-C/X-SAR flights on board the space shuttle Endeavour in April and October 1994. Radar interferometry received a tremendous boost when the airborne TOPSAR system was introduced in 1991 by NASA/JPL, and further when data from the European Space Agency ERS-1 radar satellite became routinely available in 1991. Several airborne interferometric SAR systems are either currently operational, or are about to be introduced. Radar interferometry is a technique that allows one to map the topography of an area automatically under all weather conditions, day or night. The real power of radar interferometry is that the images and digital elevation models are automatically geometrically resampled, and could be imported into GIS systems directly after suitable reformatting. When combined with polarimetry, a technique that uses polarization diversity to gather more information about the geophysical properties of the terrain, a very rich multi-layer data set is available to the remote sensing scientist. This talk will discuss the principles of radar interferometry and polarimetry with specific application to the automatic categorization of land cover. Examples will include images acquired with the NASA/JPL AIRSAR/TOPSAR system in Australia and elsewhere.

  2. Ku/Ka-band electrically-scanned line array for tri-band cloud and precipitation radar applications Project (United States)

    National Aeronautics and Space Administration — A spaceborne radar system that operates simultaneously at multiple frequency bands from microwave through millimeter-wave frequencies can exploit the largely varying...

  3. A Scattering Model for Detection of Tunnels Using Video Pulse Radar Systems. (United States)


    obtained if a general underground radar system design is to be achieved. In a previous report (91 we have discussed the means of obtaining the propagation...Detector," U. S. Patent 3,967,282, June 29, 1976. [2) J. D. Young, "A Transient Underground Radar for Buried Pipe Location," USNC/URSI Meeting, Boulder

  4. FMCW radar system for detection and classification of small vessels in high sea state conditions

    NARCIS (Netherlands)

    Wasselin, J.-P.; Mazuel, S.; Itcia, E.; Huizing, A.G.; Theil, A.


    The ROCKWELL COLLINS France radar department is currently developing a FMCW radar system for the detection and the classification of small maritime targets in the frame of the SISMARIS, SARGOS & I2C projects. Several test campaigns have been conducted since 2009 to develop a sensor as well as an

  5. Limitations of Radar Coordinates


    Bini, Donato; Lusanna, Luca; Mashhoon, Bahram


    The construction of a radar coordinate system about the world line of an observer is discussed. Radar coordinates for a hyperbolic observer as well as a uniformly rotating observer are described in detail. The utility of the notion of radar distance and the admissibility of radar coordinates are investigated. Our results provide a critical assessment of the physical significance of radar coordinates.

  6. A Doppler Radar System for Sensing Physiological Parameters in Walking and Standing Positions

    Directory of Open Access Journals (Sweden)

    Malikeh Pour Ebrahim


    Full Text Available Doppler radar can be implemented for sensing physiological parameters wirelessly at a distance. Detecting respiration rate, an important human body parameter, is essential in a range of applications like emergency and military healthcare environments, and Doppler radar records actual chest motion. One challenge in using Doppler radar is being able to monitor several patients simultaneously and in different situations like standing, walking, or lying. This paper presents a complete transmitter-receiver Doppler radar system, which uses a 4 GHz continuous wave radar signal transmission and receiving system, to extract base-band data from a phase-shifted signal. This work reports experimental evaluations of the system for one and two subjects in various standing and walking positions. It provides a detailed signal analysis of various breathing rates of these two subjects simultaneously. These results will be useful in future medical monitoring applications.

  7. Two-Dimensional River Flow Patterns Observed with a Pair of UHF Radar System

    Directory of Open Access Journals (Sweden)

    Yidong Hou


    Full Text Available A pair of ultrahigh-frequency (UHF radars system for measuring the two-dimensional river flow patterns is presented. The system consists of two all-digital UHF radars with exactly the same hardware structure, operating separately at 329–339 MHz and 341–351 MHz. The adoption of direct radio frequency (RF sampling technique and digital pulse compression simplifies the structure of radar system and eliminates the distortion introduced by the analog mixer, which improves the SNR and dynamic range of the radar. The field experiment was conducted at Hanjiang River, Hubei province, China. Over a period of several weeks, the radar-derived surface velocity has been very highly correlated with the measurements of EKZ-I, with a correlation coefficient of 0.958 and a mean square error of 0.084 m/s.

  8. Moving Target Indication for Multi-channel Airborne Radar Systems

    NARCIS (Netherlands)

    Lidicky, L.


    Moving target indication (MTI) using radar is of great interest in civil and military applications. Its uses include airborne or space-borne surveillance of ground moving vehicles (cars, trains) or ships at sea, for instance. Airborne (space-borne) radar offers several advantages when compared to op

  9. Moving Target Indication for Multi-channel Airborne Radar Systems

    NARCIS (Netherlands)

    Lidicky, L.


    Moving target indication (MTI) using radar is of great interest in civil and military applications. Its uses include airborne or space-borne surveillance of ground moving vehicles (cars, trains) or ships at sea, for instance. Airborne (space-borne) radar offers several advantages when compared to op

  10. Advanced W-Band Gallium Nitride Monolithic Microwave Integrated Circuits (MMICs) for Cloud Doppler Radar Supporting ACE Project (United States)

    National Aeronautics and Space Administration — Develop W-band Gallium Nitride (GaN) MMICs to enable the advanced cross-track scanning, dual-frequency Doppler cloud radar concept in support of the...

  11. Planetary Radar (United States)

    Neish, Catherine D.; Carter, Lynn M.


    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  12. Advances in bistatic radar

    CERN Document Server

    Willis, Nick


    Advances in Bistatic Radar updates and extends bistatic and multistatic radar developments since publication of Willis' Bistatic Radar in 1991. New and recently declassified military applications are documented. Civil applications are detailed including commercial and scientific systems. Leading radar engineers provide expertise to each of these applications. Advances in Bistatic Radar consists of two major sections: Bistatic/Multistatic Radar Systems and Bistatic Clutter and Signal Processing. Starting with a history update, the first section documents the early and now declassified military

  13. Ray-Trace of an Abnormal Radar Echo Using Geographic Information System

    Directory of Open Access Journals (Sweden)

    Chi-Nan Chen


    Full Text Available Weather radar plays a key role in natural disaster mitigation just as surveillance radar does in detecting objects that threaten homeland security. Both together comprise an instrumental part of radar observation. Therefore, quality control of the data gathered through radar detection is extremely important. However, radar waves propagate in the atmosphere, and an anomalous echo can occur if there are significant discontinuities in temperature and humidity in the lower boundary layer. The refractive curvature of the earth makes some errors in observation inevitable. On the night of July 3, 2003, Next Generation Radar (NEXRAD weather radar detected an abnormal echo. The Weather Research and Forecast (WRF model was utilized to simulate the atmospheric conditions. Radar propagation was simulated using the Advanced Refractivity Engineering Prediction System (AREPS as well as the GIS. The results show the feasibility of establishing an abnormal propagation early-warning system and extending the application of the GIS in serving as the foundation of a Common Operation Picture (COP. Furthermore, the parameters of the boundary layer near the sea's surface in the numerical weather forecasting model need remodification.Defence Science Journal, 2009, 59(1, pp.63-72, DOI:

  14. Solution of inverse localization problem associated to multistatic radar system

    Directory of Open Access Journals (Sweden)

    Boutkhil M.


    Full Text Available This work deals with the problem of inverse localization by a target with the aim to retrieve the position of the target, given the intensity and phase of the electromagnetic waves scattered by this object. Assuming the surface cross section to be known as well as the intensity and phase of the scattered waves, the target position was reconstructed through the echo signals scattered of each bistatic. We develop in the same time a multistatic ambiguity function trough bistatic ambiguity function to investigate several fundamental aspects that determine multistatic radar performance. We used a multistatic radar constructed of two bistatic radars, two transmitters and one receiver.

  15. Preprocessing of side-looking airborne radar data.

    NARCIS (Netherlands)

    Hoogeboom, P.


    Studies on microwave surface scattering in The Netherlands have indicated the need for accurate radar systems for applications in remote sensing. An SLAR system with digital recording was developed and is now being used for several programmes. This system was designed with special attention to speck

  16. Waveform design and diversity for advanced radar systems

    CERN Document Server

    Gini, Fulvio


    In recent years, various algorithms for radar signal design, that rely heavily upon complicated processing and/or antenna architectures, have been suggested. These techniques owe their genesis to several factors, including revolutionary technological advances (new flexible waveform generators, high speed signal processing hardware, digital array radar technology, etc.) and the stressing performance requirements, often imposed by defence applications in areas such as airborne early warning and homeland security.Increasingly complex operating scenarios calls for sophisticated algorithms with the

  17. Earth resources shuttle imaging radar. [systems analysis and design analysis of pulse radar for earth resources information system (United States)


    A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.

  18. Optical-network-connected multi-channel 96-GHz-band distributed radar system (United States)

    Kanno, Atsushi; Kuri, Toshiaki; Kawanishi, Tetsuya


    The millimeter-wave (MMW) radar is a promising candidate for high-precision imaging because of its short wavelength and broad range of available bandwidths. In particular in the frequency range of 92-100 GHz, which is regulated for radiolocation, an atmospheric attenuation coefficient less than 1 dB/km limits the imaging range. Therefore, a combination of MMW radar and distributed antenna system directly connected to optical fiber networks can realize both high-precision imaging and large-area surveillance. In this paper, we demonstrate a multi-channel MMW frequency-modulated continuous-wave distributed radar system connected to an analog radio-over-fiber network.

  19. Modulation, resolution and signal processing in radar, sonar and related systems

    CERN Document Server

    Benjamin, R; Costrell, L


    Electronics and Instrumentation, Volume 35: Modulation, Resolution and Signal Processing in Radar, Sonar and Related Systems presents the practical limitations and potentialities of advanced modulation systems. This book discusses the concepts and techniques in the radar context, but they are equally essential to sonar and to a wide range of signaling and data-processing applications, including seismology, radio astronomy, and band-spread communications.Organized into 15 chapters, this volume begins with an overview of the principal developments sought in pulse radar. This text then provides a

  20. Microwave Photonics Systems Based on Whispering-gallery-mode Resonators (United States)

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K.


    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency. PMID:23963358

  1. Microwave photonics systems based on whispering-gallery-mode resonators. (United States)

    Coillet, Aurélien; Henriet, Rémi; Phan Huy, Kien; Jacquot, Maxime; Furfaro, Luca; Balakireva, Irina; Larger, Laurent; Chembo, Yanne K


    Microwave photonics systems rely fundamentally on the interaction between microwave and optical signals. These systems are extremely promising for various areas of technology and applied science, such as aerospace and communication engineering, sensing, metrology, nonlinear photonics, and quantum optics. In this article, we present the principal techniques used in our lab to build microwave photonics systems based on ultra-high Q whispering gallery mode resonators. First detailed in this article is the protocol for resonator polishing, which is based on a grind-and-polish technique close to the ones used to polish optical components such as lenses or telescope mirrors. Then, a white light interferometric profilometer measures surface roughness, which is a key parameter to characterize the quality of the polishing. In order to launch light in the resonator, a tapered silica fiber with diameter in the micrometer range is used. To reach such small diameters, we adopt the "flame-brushing" technique, using simultaneously computer-controlled motors to pull the fiber apart, and a blowtorch to heat the fiber area to be tapered. The resonator and the tapered fiber are later approached to one another to visualize the resonance signal of the whispering gallery modes using a wavelength-scanning laser. By increasing the optical power in the resonator, nonlinear phenomena are triggered until the formation of a Kerr optical frequency comb is observed with a spectrum made of equidistant spectral lines. These Kerr comb spectra have exceptional characteristics that are suitable for several applications in science and technology. We consider the application related to ultra-stable microwave frequency synthesis and demonstrate the generation of a Kerr comb with GHz intermodal frequency.

  2. Precision characteristics of two-position radar station in Cartesian coordinate system

    Directory of Open Access Journals (Sweden)

    D. I. Docenko


    Full Text Available Two-position radar station is examined. Analytic expressions for dispersion and intercorrelation of measurement errors in Cartesian coordinate system are obtained. For exampl eerror estimation and analysis were performed.

  3. DSS-13 S-/X-band microwave feed system (United States)

    Manshadi, F.


    The configuration, detail design, and performance of the dual S-/X-band microwave feed system for the new DSN beam-waveguide antenna, Deep Space Station (DSS) 13, are reported. By using existing spare components, reducing fabrication cost of new components by simplifying their design, and using new fabrication techniques and material, this DSS-13 feed system was implemented successfully with a small budget and a very tight schedule. Measured noise temperature gains of the feed system are 17.5 K for S-band (2200-2300 MHz) and 24.0 K for X-band (8200-8600 MHz), which agree very closely with the predicted performance.

  4. 雷达对扩频通信系统干扰分析方法%Analysis methodology of interference from radar to spectrum spread communication system

    Institute of Scientific and Technical Information of China (English)

    王磊; 谢树果


    针对雷达与扩频通信系统的电磁兼容问题,提出一种基于时域符号级的雷达干扰分析方法.首先详细分析了雷达对扩频通信系统电磁辐射干扰的机理,推导得出扩频通信系统在脉冲雷达干扰下的误码率公式和曲线;然后利用建立的雷达电磁干扰仿真模型,对扩频通信系统采用不同扩频因子以及不同频率隔离度时的受扰性能进行了仿真分析,验证了理论分析结果的合理性;最后利用所提方法计算给出了微波频段5种典型雷达与扩频通信系统的频率-距离隔离关系.研究结果表明:该方法对于在更深层次上揭示雷达辐射干扰的本质,提高频谱利用效率具有重要意义.%Radar is one of severe interferences for spread spectrum communication system.A time-symbol level interference analysis methodology from radar to spread spectrum communication was proposed.Firstly,the electromagnetic interference mechanism from radars to spectrum spread communication system was analyzed based on time-symbol level,and the error bit rate formula of spectrum spread communication system in the presence of pulse radars interference was concluded.The performance of interference from pulse radar to spectrum spread communication system was simulated by the radar electromagnetic interference model,which proved the theory analysis result.Finally the frequency-distance relationship of five general radar and spread spectrum communication system in microwave band was calculated.The results show that this interference analysis method well exhibits the interference essence of radar and improve the frequency utilization efficiency.

  5. Radiometric Receiver for Passive Microwave Imaging System

    Directory of Open Access Journals (Sweden)

    Ubaichin Anton


    Full Text Available The paper describes a new method to develop a zero-type W-band radiometric receiver. The block diagram and operating algorithm of the digital control system are presented. The main advantages of the zero method in passive radio physical investigations in comparison with classical engineering solutions are shown.

  6. Development of software application dedicated to impulse- radar-based system for monitoring of human movements (United States)

    Miękina, Andrzej; Wagner, Jakub; Mazurek, Paweł; Morawski, Roman Z.; Sudmann, Tobba T.; Børsheim, Ingebjørg T.; Øvsthus, Knut; Jacobsen, Frode F.; Ciamulski, Tomasz; Winiecki, Wiesław


    The importance of research on new technologies that could be employed in care services for elderly and disabled persons is highlighted. Advantages of radar sensors, when applied for non-invasive monitoring of such persons in their home environment, are indicated. A need for comprehensible visualisation of the intermediate results of measurement data processing is justified. Capability of an impulse-radar-based system to provide information, being of crucial importance for medical or healthcare personnel, are investigated. An exemplary software interface, tailored for non-technical users, is proposed, and preliminary results of impulse-radar-based monitoring of human movements are demonstrated.

  7. RF and microwave coupled-line circuits

    CERN Document Server

    Mongia, R K; Bhartia, P; Hong, J; Gupta, K C


    This extensively revised edition of the 1999 Artech House classic, RF and Microwave Coupled-Line Circuits, offers you a thoroughly up-to-date understanding of coupled line fundamentals, explaining their applications in designing microwave and millimeter-wave components used in today's communications, microwave, and radar systems. The Second Edition includes a wealth of new material, particularly relating to applications. You find brand new discussions on a novel simple design technique for multilayer coupled circuits, high pass filters using coupled lines, software packages used for filter des

  8. Microwave signal processing in two-frequency domain for ROF systems implementation: training course (United States)

    Morozov, Oleg G.; Morozov, Gennady A.


    This article is presented materials from two tutorials: "Optical two-frequency domain reflectometry1, 2" and "Microwave technologies in industry, living systems and telecommunications3". These materials were prepared for master training courses and listed in the "SPIE Optical Education Directory" for 2013/2014. The main its theme is microwave photonics. Microwave photonics has been defined as the study of photonic devices operating at microwave frequencies and their application to microwave and optical systems. Its initial rationale was to use the advantages of photonic technologies to provide functions in microwave systems that are very complex or even impossible to carry out directly in the radiofrequency domain. But microwave photonics is also succeeding in incorporating a variety of techniques used in microwave engineering to improve the performance of photonic communication networks and systems. Three parts of this chapter are devoted to applications and construction principles of systems forming microwave photonic filters, measuring instantaneous frequency of microwave heterodyne signals and characterizing stimulated Mandelstam- Brillouin scattering spectrum in ROF systems. The main emphasis is on the use of the two-frequency symmetric radiation, generated by the Il'in-Morozov's method4, in given systems. It is forming radiation for the synthesis of optical filters coefficients, it's application and processing determine the increase in the signal-to-noise ratio during heterodyne frequencies monitoring and characterization of nonlinear effects spectrum.

  9. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin


    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  10. The importance of measuring peak power in radar systems; La importancia de la medida de potencia de pico en sistemas de radar

    Energy Technology Data Exchange (ETDEWEB)



    radar systems are widely used in civil aviation and military, also on Weather monitoring equipment and road traffic control to name a few. Of these systems depends largely on our security and require power measurements with accuracy. This paper focuses on those radars such as aviation that use bursts of pulses, or pulse modulated to obtain more precise details of the target and are highly sensitive receptors for low-noise measures. (Author)

  11. Design of a Ku band Instrumentation Synthetic Aperture Radar System (United States)


    small form-factor Ku band Synthetic Aperture Radar (SAR) for use on aerial drones . Group 105 have also been using this radar as an instrumentation...frequency of the LFM chirp would be over the Nyquist frequency. To solve this problem , the bandwidth of the LFM chirp was halved to 275 MHz. 40 m/s based off of the speed of a predator drone . Parameter Value Speed of Light 299720000 m/s Center Frequency 16.75 GHz Wavelength 0.0179 m

  12. A general interactive system for compositing digital radar and satellite data (United States)

    Ghosh, K. K.; Chen, L. C.; Faghmous, M.; Heymsfield, G. M.


    Reynolds and Smith (1979) have considered the combined use of digital weather radar and satellite data in interactive systems for case study analysis and forecasting. Satellites view the top of clouds, whereas radar is capable of observing the detailed internal structure of clouds. The considered approach requires the use of a common coordinate system. In the present investigation, it was decided to use the satellite coordinate system as the base system in order to maintain the fullest resolution of the satellite data. The investigation is concerned with the development of a general interactive software system called RADPAK for remapping and analyzing conventional and Doppler radar data. RADPAK is implemented as a part of a minicomputer-based image processing system, called Atmospheric and Oceanographic Image Processing System. Attention is given to a general description of the RADPAK system, remapping methodology, and an example of satellite remapping.

  13. Tracking method based on separation and combination of the measurements for radar and IR fusion system

    Institute of Scientific and Technical Information of China (English)

    Wang Qingchao; Wang Wenfei


    A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separated from the radar measurements together with measurements of IR form a pseudo vector of IR, and the corresponding filter is designed. The results indicate that the method not only makes a great improvement to the local tracker's performance, but also improves the global tracking precision efficiently.

  14. Delay-Modulated RF Tag System Concept Using Ultrawideband Noise Radar Waveforms



    Radio frequency (RF) tags have been widely used in inventory tracking, environmental monitoring, battlefield situational awareness, and combat identification due to their low cost, small size, and wireless functionality. This paper explores the application of active RF tags in outdoor environments responding to random noise radar interrogations with predetermined messages. A conceptual system design for communication between radar and RF tags using ultrawideband (UWB) noise waveforms is propo...

  15. Dual-band Planar Bowtie Monopole for a Fall-Detection Radar and Telemetry System


    Soh, Ping Jack; Mercuri, Marco; Pandey, Gokarna; Vandenbosch, Guy; Schreurs, Dominique


    A dual-band planar bowtie monopole for a fall-detection telemetry radar system is presented. Unidirectionality is successfully enabled by a full ground plane. A compact radiator footprint is achieved by closely spacing two bowtie elements for transmit-receive operation, combined with a simple and effective technique for mutual-coupling reduction. The radar antenna shows target location and speed detection capabilities of up to 4 m with resolution of 30 cm and fall detection success rate of 95...

  16. Target Classification for the Installation Security Radar System (United States)


    NUMBER 2. GOVT ACCESSION No. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED Target Classification for the...INSECTS MEASURED != .,EE FLIGHT (ref 10) L-band radarInsect target cross section (dBsm) Wingless Hawkmoth -60 Honeybee -63 Dragonfly -67 Since no studies

  17. Antenna Array Signal Processing for Multistatic Radar Systems

    NARCIS (Netherlands)

    Belfiori, F.


    The introductions of Digital Beam Forming (DBF), original signal exploitation and waveform multiplexing techniques have led to the design of novel radar concepts. Passive Coherent Locator (PCL) and Multiple-Input Multiple-Output (MIMO) sensors are two examples of innovative approaches. Beside the

  18. Antenna Array Signal Processing for Multistatic Radar Systems

    NARCIS (Netherlands)

    Belfiori, F.


    The introductions of Digital Beam Forming (DBF), original signal exploitation and waveform multiplexing techniques have led to the design of novel radar concepts. Passive Coherent Locator (PCL) and Multiple-Input Multiple-Output (MIMO) sensors are two examples of innovative approaches. Beside the in

  19. Radar Landmass Simulation Computer Programming (Interim Report). (United States)


  20. A microwave tomography system using a tunable mirror for beam steering

    Energy Technology Data Exchange (ETDEWEB)

    Tayebi, A. [Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824 (United States); Non-Destructive Evaluation Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physic (United States); Tang, J. [Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824 (United States); Paladhi, P. Roy; Udpa, L.; Udpa, S. [Department of Electrical and Computer Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824 (United States); Non-Destructive Evaluation Laboratory, Michigan State University, East Lansing, MI 48824 (United States)


    Microwave tomography is a fast-growing technique in the fields of NDE and medical industry. This paper presents a new microwave tomography system which reduces the complexities of conventional microwave imaging systems by utilizing a reconfigurable mirror, a tunable reflectarray antenna. In order to build a tunable reflectarray with beam steering capabilities, the unit cell characteristics should dynamically alter. Modelling and experimental results of a single unit cell are presented in this work.

  1. IoSiS: a radar system for imaging of satellites in space (United States)

    Jirousek, M.; Anger, S.; Dill, S.; Schreiber, E.; Peichl, M.


    Space debris nowadays is one of the main threats for satellite systems especially in low earth orbit (LEO). More than 700,000 debris objects with potential to destroy or damage a satellite are estimated. The effects of an impact often are not identifiable directly from ground. High-resolution radar images are helpful in analyzing a possible damage. Therefor DLR is currently developing a radar system called IoSiS (Imaging of Satellites in Space), being based on an existing steering antenna structure and our multi-purpose high-performance radar system GigaRad for experimental investigations. GigaRad is a multi-channel system operating at X band and using a bandwidth of up to 4.4 GHz in the IoSiS configuration, providing fully separated transmit (TX) and receive (RX) channels, and separated antennas. For the observation of small satellites or space debris a highpower traveling-wave-tube amplifier (TWTA) is mounted close to the TX antenna feed. For the experimental phase IoSiS uses a 9 m TX and a 1 m RX antenna mounted on a common steerable positioner. High-resolution radar images are obtained by using Inverse Synthetic Aperture Radar (ISAR) techniques. The guided tracking of known objects during overpass allows here wide azimuth observation angles. Thus high azimuth resolution comparable to the range resolution can be achieved. This paper outlines technical main characteristics of the IoSiS radar system including the basic setup of the antenna, the radar instrument with the RF error correction, and the measurement strategy. Also a short description about a simulation tool for the whole instrument and expected images is shown.

  2. Integration of differential global positioning system with ultrawideband synthetic aperture radar for forward imaging (United States)

    Wong, David C.; Bui, Khang; Nguyen, Lam H.; Smith, Gregory; Ton, Tuan T.


    The U.S. Army Research Laboratory (ARL), as part of a customer and mission-funded exploratory development program, has been evaluating low-frequency, ultra-wideband (UWB) imaging radar for forward imaging to support the Army's vision for increased mobility and survivability of unmanned ground vehicle missions. As part of the program to improve the radar system and imaging capability, ARL has incorporated a differential global positioning system (DGPS) for motion compensation into the radar system. The use of DGPS can greatly increase positional accuracy, thereby allowing us to improve our ability to focus better images for the detection of small targets such as plastic mines and other concealed objects buried underground. The ability of UWB radar technology to detect concealed objects could provide an important obstacle avoidance capability for robotic vehicles, which would improve the speed and maneuverability of these vehicles and consequently increase the survivability of the U.S. forces. This paper details the integration and discusses the significance of integrating a DGPS into the radar system for forward imaging. It also compares the difference between DGPS and the motion compensation data collected by the use of the original theodolite-based system.

  3. Radar seeker based autonomous navigation update system using topography feature matching techniques (United States)

    Lerche, H. D.; Tumbreagel, F.


    The discussed navigation update system was designed for an unmanned platform with fire and forget capability. It meets the requirement due to fully autonomous operation. The system concept will be characterized by complementary use of the radar seeker for target identification as well as for navigation function. The system works in the navigation mode during preprogrammable phases where the primary target identification function is not active or in parallel processing. The dual function radar seeker system navigates the drone during the midcourse and terminal phases of the mission. Its high resolution due to range measurement and doppler beam sharpening in context with its radar reflectivity sensing capability are the basis for topography referenced navigation computation. The detected height jumps (coming from terrain elevation and cultural objects) and radar reflectivity features will be matched together with topography referenced features. The database comprises elevation data and selected radar reflectivity features that are robust against seasonal influences. The operational benefits of the discussed system are as follows: (1) the improved navigation performance with high probability of position fixing, even over flat terrain; (2) the operation within higher altitudes; and (3) bad weather capability. The developed software modules were verified with captive flight test data running in a hardware-in-the-loop simulation.

  4. A new active array MST radar system with enhanced capabilities for high resolution atmospheric observations (United States)

    Durga rao, Meka; Jayaraman, Achuthan; Patra, Amit; Venkat Ratnam, Madineni; Narayana Rao, T.; Kamaraj, Pandian; Jayaraj, Katta; Kmv, Prasad; Kamal Kumar, J.; Raghavendra, J.; Prasad, T. Rajendra; Thriveni, A.; Yasodha, Polisetti


    A new version of the 53-MHz MST Radar, using the 1024 solid state Transmit-Receive Modules (TRM), necessary feeder network, multi-channel receiver and a modified radar controller has been established using the existing antenna array of 1024 crossed Yagis. The new system has been configured for steering the beam on a pulse-to-pulse basis in all 360o azimuth and 20o zenith angle, providing enhanced capability to study the Mesosphere-Stratosphere-Troposphere and Ionosphere. The multi channel receiver system has been designed for Spaced Antenna (SA) and Interferometry/ Iamging applications. The new system has also been configured for radiating in circular polarization for its application in the Ionosphere Incoherent Scatter mode. The new active array MST radar at Very-High-Frequency (53-MHz) located at Gadanki (13.45°N, 79.18°E), a tropical station in India, will be used to enhance the observations of winds, turbulence during the passage of convective events over the radar site as deep convection occurs very often at tropical latitudes. The new configuration with enhanced average power, beam agility with multi-channel experiments will be a potential source for studying middle atmosphere and ionosphere. In this paper, we present the system configuration, new capabilities and the first results obtained using the new version of the MST Radar.

  5. Radar observations of the 2009 eruption of Redoubt Volcano, Alaska: Initial deployment of a transportable Doppler radar system for volcano-monitoring (United States)

    Hoblitt, R. P.; Schneider, D. J.


    The rapid detection of explosive volcanic eruptions and accurate determination of eruption-column altitude and ash-cloud movement are critical factors in the mitigation of volcanic risks to aviation and in the forecasting of ash fall on nearby communities. The U.S. Geological Survey (USGS) deployed a transportable Doppler radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska, and it provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data that it captured during the Redoubt eruption. The volcano-monitoring Doppler radar operates in the C-band (5.36 cm) and has a 2.4-m parabolic antenna with a beam width of 1.6 degrees, a transmitter power of 330 watts, and a maximum effective range of 240 km. The entire disassembled system, including a radome, fits inside a 6-m-long steel shipping container that has been modified to serve as base for the antenna/radome, and as a field station for observers and other monitoring equipment. The radar was installed at the Kenai Municipal Airport, 82 km east of Redoubt and about 100 km southwest of Anchorage. In addition to an unobstructed view of the volcano, this secure site offered the support of the airport staff and the City of Kenai. A further advantage was the proximity of a NEXRAD Doppler radar operated by the Federal Aviation Administration. This permitted comparisons with an established weather-monitoring radar system. The new radar system first became functional on March 20, roughly a day before the first of nineteen explosive ash-producing events of Redoubt between March 21 and April 4. Despite inevitable start-up problems, nearly all of the events were observed by the radar, which was remotely operated from the Alaska Volcano Observatory office in Anchorage. The USGS and NEXRAD radars both detected the eruption columns and tracked the directions of drifting ash clouds. The USGS radar scanned a 45-degree sector

  6. Phantom experiments with a microwave imaging system for breast-cancer screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy


    Microwave imaging is emerging as a promising technique for breast-cancer detection. In this paper, the microwave imaging system currently being developed at the Technical University of Denmark is introduced. This system consists of 32 antennas positioned in a cylindrical setup, each equipped...

  7. Design of an FMCW radar baseband signal processing system for automotive application. (United States)

    Lin, Jau-Jr; Li, Yuan-Ping; Hsu, Wei-Chiang; Lee, Ta-Sung


    For a typical FMCW automotive radar system, a new design of baseband signal processing architecture and algorithms is proposed to overcome the ghost targets and overlapping problems in the multi-target detection scenario. To satisfy the short measurement time constraint without increasing the RF front-end loading, a three-segment waveform with different slopes is utilized. By introducing a new pairing mechanism and a spatial filter design algorithm, the proposed detection architecture not only provides high accuracy and reliability, but also requires low pairing time and computational loading. This proposed baseband signal processing architecture and algorithms balance the performance and complexity, and are suitable to be implemented in a real automotive radar system. Field measurement results demonstrate that the proposed automotive radar signal processing system can perform well in a realistic application scenario.

  8. Thermoelectric temperature control system for the pushbroom microwave radiometer (PBMR) (United States)

    Dillon-Townes, L. A.; Averill, R. D.


    A closed loop thermoelectric temperature control system is developed for stabilizing sensitive RF integrated circuits within a microwave radiometer to an accuracy of + or - 0.1 C over a range of ambient conditions from -20 C to +45 C. The dual mode (heating and cooling) control concept utilizes partial thermal isolation of the RF units from an instrument deck which is thermally controlled by thermoelectric coolers and thin film heaters. The temperature control concept is simulated with a thermal analyzer program (MITAS) which consists of 37 nodes and 61 conductors. A full scale thermal mockup is tested in the laboratory at temperatures of 0 C, 21 C, and 45 C to confirm the validity of the control concept. A flight radiometer and temperature control system is successfully flight tested on the NASA Skyvan aircraft.

  9. On the Use of Low-Cost Radar Networks for Collision Warning Systems Aboard Dumpers

    Directory of Open Access Journals (Sweden)

    José-Tomás González-Partida


    Full Text Available The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system.

  10. Low level range coverage performance prediction for VHF radar (United States)

    Kuschel, H.


    A VHF radar frequencies the range coverage is not strictly limited by the quasi-optical horizon like at microwave radar frequencies but is extended due to diffraction propagation. This effect, here called beyond-the-horizon (BTH) detection capability is strongly dependent on the propagation path and thus on the terrain structure. The availability of digital terrain maps gives way to the use of computerized methods for the prediction of radar range coverage in real environment. In combination with wave propagation models suitable for diffraction at terrain structures, digital terrain data can even be used for the prediction of BTH target detectability at VHF radar. Here the digital landmass system (DLSS) terrain database was used in combination with a multiple-knife-edge diffraction model to predict the diffraction attenuation between the radar and the potential target positions, especially beyond the optical horizon. The propagation paths extracted from the database are modeled as a sequence of diffraction screens suited for the application of a Fresnel-Kirchhoff algorithm yielding the knife-edge-diffraction attenuation. This terrain related propagation model was verified by a large number of measurements at different frequencies. Implemented in a fast computer system, this prediction model can be used for mission planning of air operations. Considering hostile VHF radar coverage and terrain condition for flight path optimization or, on the other hand it can assist in siting mobile radars for gap filling according to the actual threat situation. Calculations of the diffraction propagation using the prediction model, yield range coverage patterns in real terrain situations, allowing to quantify the BTH detection advantage of VHF radar compared to microwave radar. An experimental large wavelength radar LARA (VHF) built flying targets beyond the close horizon. Here, especially the detection of hiding helicopters by exploiting diffractive wave propagation was examined

  11. Sensitivity of S- and Ka-band matched dual-wavelength radar system for detecting nonprecipitating cloud (United States)

    Vivekanandan, J.; Politovich, Marcia; Rilling, Robert; Ellis, Scott; Pratte, Frank


    Remote detection of cloud phase in either liquid, ice or mixed form a key microphysical observation. Evolution of a cloud system and associated radiative properties depend on microphysical characteristics. Polarization radars rely on the shape of the particle to delineate the regions of liquid and ice. For specified transmitter and receiver characteristics, it is easier to detect a high concentrations of larger atmospheric particles than a low concentration of small particles. However, the radar cross-section of a given hydrometeor increases as the transmit frequency of the radar increases. Thus, in spite of a low transmit power, the sensitivity of a millimeter-wave radar might be better than high powered centimeter-wave radars. Also, ground clutter echoes and receiver system noise powers are sensitive functions of radar transmit frequency. For example, ground clutter in centimeter-wave radar sample volumes might mask non-precipitating or lightly precipitating clouds. An optimal clutter filter or signal processing technique can be used to suppress clutter masking its effects and/or enhanced weak cloud echoes that have significantly different Doppler characteristics than stationary ground targets. In practice, it is imperative to investigate the actual performance of S and Ka-band radar systems to detect small-scale, weak cloud reflectivity. This paper describes radar characteristics and the sensitivity of the new system in non-precipitating conditions. Recently, a dual-wavelength S and Ka-band radar system with matched resolution volume and sensitivity was built to remotely detect supercooled liquid droplets. The detection of liquid water content was based on the fact that the shorter of the two wavelengths is more strongly attenuated by liquid water. The radar system was deployed during the Winter Icing Storms Project 2004 (WISP04) near Boulder, Colorado to detect and estimate liquid water content. Observations by dual-wavelength radar were collected in both non

  12. Microwave Remote Sensing: Needs and Requirements Concerning Technology

    DEFF Research Database (Denmark)

    Skou, Niels


    Spaceborne microwave remote sensing instruments, like the imaging radiometer and the synthetic aperture radar, are over timed faced with two partly conflicting requirements: performance expectations (resolutions, sensitivity, coverage) steadily increase with resource allocations (weight, power, b......, bulk, cost) decrease. This results in needs and requirements to the development of advanced technology thus enabling the future advanced systems to be viable and realistic.......Spaceborne microwave remote sensing instruments, like the imaging radiometer and the synthetic aperture radar, are over timed faced with two partly conflicting requirements: performance expectations (resolutions, sensitivity, coverage) steadily increase with resource allocations (weight, power...

  13. Borehole radar system for South African gold and platinum mines

    CSIR Research Space (South Africa)

    Vogt, D


    Full Text Available arm contains the battery and the electronics. The resistively loaded arm is designed with a Wu-King taper (Wu and King, 1965), and implemented using 'A W metal film resistors. The receiver is illustrated in Figure 3. The transmitter has similar... directional ambiguity. Acknow^ledgements I would like to thank the CSIR and DEEPMINE for funding this research. I would also like to thank all my colleagues who helped me to build and use the radar, especially Reinhard Bilged, Stephens Letlotla, Marianne...

  14. Advanced signal processing theory and implementation for sonar, radar, and non-invasive medical diagnostic systems

    CERN Document Server

    Stergiopoulos, Stergios


    Integrates topics of signal processing from sonar, radar, and medical system technologies by identifying their concept similarities. This book covers non-invasive medical diagnostic system applications, including intracranial ultrasound, a technology that attempts to address non-invasive detection on brain injuries and stroke.

  15. Using Weather Radar to Optimise Operation of an Urban Drainage System with Distributed Rainwater Storage

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Thorndahl, Søren Liedtke; Bentzen, Thomas Ruby


    The perspective of controlling the local rain water storage tanks for a small catchment is investigated to evaluate if a predictive control reduces the CSO from the storm drainage system. A weather radar based nowcast system is used to predict the actual precipitation two hours ahead. In case...

  16. Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy


    Among the various breast imaging modalities for breast cancer detection, microwave imaging is attractive due to the high contrast in dielectric properties between the cancerous and normal tissue. Due to this reason, this modality has received a significant interest and attention from the microwave...... community. This paper presents the survey of the ongoing research in the field of microwave imaging of biological tissues, with major focus on the breast tumor detection application. The existing microwave imaging systems are categorized on the basis of the employed measurement concepts. The advantages...

  17. Influence of the underlying surface on the antenna system of the ground penetrating radar (United States)

    Balzovsky, E. V.; Buyanov, Yu I.; Shipilov, S. E.


    Simulation results of the antenna system of the radar of subsurface sounding intended for contactless investigation of the road condition are presented. The elements of the antenna system of ground penetrating radar with extended bandwidth made as a combination of electric and magnetic type radiators have been designed. The transmission coefficient between the elements of the antenna array determining their mutual influence has been calculated. Despite the close arrangement of the elements in the array, the level of mutual influence of the elements is not critical. The developed antenna array can be used both for excitation with short ultrawideband pulses and for frequency steering in the range of 0.8-4 GHz.

  18. Environmental assessment for the Satellite Power System (SPS) Concept Development and Evaluation Program (CDEP). [Microwave and non-microwave health and ecological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Valentino, A.R.


    In the satellite power system (SPS), satellites in geosynchronous earth orbit would collect solar energy in space, convert it to microwaves, and transmit the microwaves to receiving antennas (rectennas) on earth. At the rectennas, the microwave energy would be converted to electricity. This SPS environmental assessment considers the microwave and nonmicrowave effects on the terrestrial environment and human health, atmospheric effects, and effects on electromagnetic systems. No environmental problem has been identified that would preclude the continued study of SPS technology. To increase the certainty of the assessment, some research has been initiated and long-term research is being planned.

  19. General purpose multiplexing device for cryogenic microwave systems (United States)

    Chapman, Benjamin J.; Moores, Bradley A.; Rosenthal, Eric I.; Kerckhoff, Joseph; Lehnert, K. W.


    We introduce and experimentally characterize a general purpose device for signal processing in circuit quantum electrodynamics systems. The device is a broadband two-port microwave circuit element with three modes of operation: it can transmit, reflect, or invert incident signals between 4 and 8 GHz. This property makes it a versatile tool for lossless signal processing at cryogenic temperatures. In particular, rapid switching (≤ 15 ns ) between these operation modes enables several multiplexing readout protocols for superconducting qubits. We report the device's performance in a two-channel code domain multiplexing demonstration. The multiplexed data are recovered with fast readout times (up to 400 ns ) and infidelities ≤ 10-2 for probe powers ≥ 7 fW , in agreement with the expectation for binary signaling with Gaussian noise.

  20. Network connectivity paradigm for the large data produced by weather radar systems (United States)

    Guenzi, Diego; Bechini, Renzo; Boraso, Rodolfo; Cremonini, Roberto; Fratianni, Simona


    The traffic over Internet is constantly increasing; this is due in particular to social networks activities but also to the enormous exchange of data caused especially by the so-called "Internet of Things". With this term we refer to every device that has the capability of exchanging information with other devices on the web. In geoscience (and, in particular, in meteorology and climatology) there is a constantly increasing number of sensors that are used to obtain data from different sources (like weather radars, digital rain gauges, etc.). This information-gathering activity, frequently, must be followed by a complex data analysis phase, especially when we have large data sets that can be very difficult to analyze (very long historical series of large data sets, for example), like the so called big data. These activities are particularly intensive in resource consumption and they lead to new computational models (like cloud computing) and new methods for storing data (like object store, linked open data, NOSQL or NewSQL). The weather radar systems can be seen as one of the sensors mentioned above: it transmit a large amount of raw data over the network (up to 40 megabytes every five minutes), with 24h/24h continuity and in any weather condition. Weather radar are often located in peaks and in wild areas where connectivity is poor. For this reason radar measurements are sometimes processed partially on site and reduced in size to adapt them to the limited bandwidth currently available by data transmission systems. With the aim to preserve the maximum flow of information, an innovative network connectivity paradigm for the large data produced by weather radar system is here presented. The study is focused on the Monte Settepani operational weather radar system, located over a wild peak summit in north-western Italy.

  1. Microwave remote sensing: Active and passive. Volume 3 - From theory to applications (United States)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.


    Aspects of volume scattering and emission theory are discussed, taking into account a weakly scattering medium, the Born approximation, first-order renormalization, the radiative transfer method, and the matrix-doubling method. Other topics explored are related to scatterometers and probing systems, the passive microwave sensing of the atmosphere, the passive microwave sensing of the ocean, the passive microwave sensing of land, the active microwave sensing of land, and radar remote sensing applications. Attention is given to inversion techniques, atmospheric attenuation and emission, a temperature profile retrieval from ground-based observations, mapping rainfall rates, the apparent temperature of the sea, the emission behavior of bare soil surfaces, the emission behavior of vegetation canopies, the emission behavior of snow, wind-vector radar scatterometry, radar measurements of sea ice, and the back-scattering behavior of cultural vegetation canopies.

  2. System for Control,Data Collection and Processing in 8 mm Portable Microwave Radiometer—Scatterometer

    Institute of Scientific and Technical Information of China (English)

    李毅; 方振和; 等


    In this paper we describe a system used to control,collect and process data in 8mm portable microwave radiometer-scatterometer,We focus on hardware and software design of the system based on a PIC16F874 chip.The system has been successfully used in an 8mm portable microwave radiometer-scatterometer,compared with other similar systems,the system modularization miniatureization and intelligentization are improved so as to meet portable instrument requirements.

  3. System-Level Performance Evaluation of Microwave Fiber-Optic Links (United States)

    Ackerman, Edward Irving

    Future generations of phased array radar systems as well as steerable communication antennas will require feed and distribution to many hundreds--possibly thousands --of solid-state MMIC radiating elements. In phased arrays operating at millimeter-wave frequencies, backplane interface and signal distribution methods will need to fulfill strict performance criteria. The metallic waveguides and coaxial cables currently used as phased array backplane interconnects will be unable to meet these stringent requirements. At millimeter-wave frequencies, where array backplane congestion is a major problem, distribution of the RF and digital control signals using optical fiber offers significant weight and crosstalk immunity advantages. To realize all the benefits of optical fiber signal distribution in a phased array, the single most critical development is the high-performance RF fiber-optic link. Some radar and communication systems, however, have such stringent transmit and/or receive performance goals which may not be easily met with conventional fiber-optic links. Fulfilling such difficult performance criteria requires prudent link architecture design. Before choosing a fiber-optic link design approach, it would benefit the phased array antenna system designer to possess a means of determining what RF performance could be expected. To do this, the designer needs a means of verifying that the mixing, modulation, and detection methods and the devices selected will result in a link with high -fidelity performance at the RF design frequencies. This work provides just such a design tool. In order to identify how best to leverage the advantages of optical fiber signal distribution in a microwave or millimeter-wave phased array, this thesis will investigate the optical link architectures that offer the maximum potential for achieving high-performance, low-profile array backplane interfaces. To assist the designer in the choice of signal mixing technique, modulation scheme, and

  4. 10MeV/20kW Electron Linac for Irradiation Microwave System

    Institute of Scientific and Technical Information of China (English)

    WU; Qing-feng; ZHU; Zhi-bin; WANG; Xiu-long; LIU; Bao-jie; HU; Tao


    Microwave system is one of main subsystems of 10 MeV/20kW electron irradiating linac.It provides accelerating tube with microwave power,and accelerates electron beam to design energy,high-energy electron beam is ultimately used for irradiation processing.In order to meet the requirements of the

  5. Compact Microwave Fourier Spectrum Analyzer (United States)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry


    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  6. Assessment of human respiration patterns via noncontact sensing using Doppler multi-radar system. (United States)

    Gu, Changzhan; Li, Changzhi


    Human respiratory patterns at chest and abdomen are associated with both physical and emotional states. Accurate measurement of the respiratory patterns provides an approach to assess and analyze the physical and emotional states of the subject persons. Not many research efforts have been made to wirelessly assess different respiration patterns, largely due to the inaccuracy of the conventional continuous-wave radar sensor to track the original signal pattern of slow respiratory movements. This paper presents the accurate assessment of different respiratory patterns based on noncontact Doppler radar sensing. This paper evaluates the feasibility of accurately monitoring different human respiration patterns via noncontact radar sensing. A 2.4 GHz DC coupled multi-radar system was used for accurate measurement of the complete respiration patterns without any signal distortion. Experiments were carried out in the lab environment to measure the different respiration patterns when the subject person performed natural breathing, chest breathing and diaphragmatic breathing. The experimental results showed that accurate assessment of different respiration patterns is feasible using the proposed noncontact radar sensing technique.

  7. Considerations for a Radar System to Detect an Ocean Underneath the Icy Shell of Europa (United States)

    Markus, Thorsten; Gogineni, Prasad; Green, James; Cooper, John; Fung, Shing; Taylor, William; Benson, Robert; Reinisch, Bodo; Song, Paul


    The detection of an ocean underneath Europa is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. An orbiting surface penetrating radar has the potential of providing that measurement thus yielding information regarding the possibility of life support on Europa. Radars in the MHz range have successfully monitored the kilometer-deep ice shelves of Greenland and Antarctica, including the detection of Lake Vostok (and others) below an ice sheet thickness of about 4 km. The performance of a radar system orbiting Europa will be subject to several potential complications and unknowns. Besides ionospheric dispersion and the actual depth of the ocean, which is estimated between 2 and 30 km, major unknowns affecting radar performance are the temperature profile, the amount of salt and other impurities within the ice crust as well as the surface roughness. These impurities can in part be produced at the highly irradiated surface by magnetospheric interactions and transported downward into the ice crust by geologic processes. The ionospheric interference must also be modeled from effects of these interactions on production of the thin neutral atmosphere and subsequent ionization of the neutrals. We investigated these uncertainties through radar simulations using different surface and ice characteristics over a frequency range from 10 to 50 MHz. The talk will present results from these simulations discussing potential limitations.

  8. Radar and ARPA manual

    CERN Document Server

    Bole, A G


    Radar and ARPA Manual focuses on the theoretical and practical aspects of electronic navigation. The manual first discusses basic radar principles, including principles of range and bearing measurements and picture orientation and presentation. The text then looks at the operational principles of radar systems. Function of units; aerial, receiver, and display principles; transmitter principles; and sitting of units on board ships are discussed. The book also describes target detection, Automatic Radar Plotting Aids (ARPA), and operational controls of radar systems, and then discusses radar plo

  9. Initial assessment: electromagnetic compatibility aspects of proposed SPS Microwave Power Transmission System (MPTS) operations

    Energy Technology Data Exchange (ETDEWEB)


    An analysis of major concerns with regard to the effects on radio and electronic systems by the proposed Microwave Power Transmission System for transmitting power from a satellite solar power station to earth is presented. (LCL)

  10. Application of microwave imaging system for density fluctuation measurements on Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Pavlichenko, R.; Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science (NIFS), Toki (Japan); Ignatenko, M.; Kogi, Y.; Mase, A. [Kyushu Univ., KASTEC, Kasuga (Japan)


    This short paper describes the microwave imaging reflectometry system that has been installed on the Large Helical Device as a plasma diagnostic system for spatially resolved plasma density fluctuations.

  11. FPGA based hardware optimized implementation of signal processing system for LFM pulsed radar (United States)

    Azim, Noor ul; Jun, Wang


    Signal processing is one of the main parts of any radar system. Different signal processing algorithms are used to extract information about different parameters like range, speed, direction etc, of a target in the field of radar communication. This paper presents LFM (Linear Frequency Modulation) pulsed radar signal processing algorithms which are used to improve target detection, range resolution and to estimate the speed of a target. Firstly, these algorithms are simulated in MATLAB to verify the concept and theory. After the conceptual verification in MATLAB, the simulation is converted into implementation on hardware using Xilinx FPGA. Chosen FPGA is Xilinx Virtex-6 (XC6LVX75T). For hardware implementation pipeline optimization is adopted and also other factors are considered for resources optimization in the process of implementation. Focusing algorithms in this work for improving target detection, range resolution and speed estimation are hardware optimized fast convolution processing based pulse compression and pulse Doppler processing.

  12. Design and Implementation of a FPGA and DSP Based MIMO Radar Imaging System

    Directory of Open Access Journals (Sweden)

    Wei Wang


    Full Text Available The work presented in this paper is aimed at the implementation of a real-time multiple-input multiple-output (MIMO imaging radar used for area surveillance. In this radar, the equivalent virtual array method and time-division technique are applied to make 16 virtual elements synthesized from the MIMO antenna array. The chirp signal generater is based on a combination of direct digital synthesizer (DDS and phase locked loop (PLL. A signal conditioning circuit is used to deal with the coupling effect within the array. The signal processing platform is based on an efficient field programmable gates array (FPGA and digital signal processor (DSP pipeline where a robust beamforming imaging algorithm is running on. The radar system was evaluated through a real field experiment. Imaging capability and real-time performance shown in the results demonstrate the practical feasibility of the implementation.

  13. ECCM schemes in netted radar system based on temporal pulse diversity

    Institute of Scientific and Technical Information of China (English)

    Ahmed Abdalla; Zhao Yuan; Bin Tang


    For a netted radar system to counteract the deception electronic countermeasure (ECM) signals, an effective electronic counter countermeasure (ECCM) approach is proposed. The pro-posed approach is realized based on the new signaling strategy for the temporal pulse diversity, which makes use of transmitting pulses at each pulse repetition interval (PRI) with specific trans-mission pulse block, and then fol owing proper processing and information fusion. The existence of the deceptive ECM signal is confirmed by one station, while the other stations in the netted radar with same parameters applied the pulse diversity skil ful y. Meanwhile, this method ensured that, pulse diversity can be ap-plied in netted radar. The performance assessment shows that the proposed solutions are effective in presence of ECM signals. This algorithm has been demonstrated by simulations. The presented simulation results are in excel ent consensus with theoretical pre-dictions.

  14. Chaotic signal reconstruction with application to noise radar system (United States)

    Liu, Lidong; Hu, Jinfeng; He, Zishu; Han, Chunlin; Li, Huiyong; Li, Jun


    Chaotic signals are potentially attractive in engineering applications, most of which require an accurate estimation of the actual chaotic signal from a noisy background. In this article, we present an improved symbolic dynamics-based method (ISDM) for accurate estimating the initial condition of chaotic signal corrupted by noise. Then, a new method, called piecewise estimation method (PEM), for chaotic signal reconstruction based on ISDM is proposed. The reconstruction performance using PEM is much better than that using the existing initial condition estimation methods. Next, PEM is applied in a noncoherent reception noise radar scheme and an improved noncoherent reception scheme is given. The simulation results show that the improved noncoherent scheme has better correlation performance and range resolution especially at low signal-to-noise ratios (SNRs).

  15. Chaotic signal reconstruction with application to noise radar system

    Directory of Open Access Journals (Sweden)

    Liu Lidong


    Full Text Available Abstract Chaotic signals are potentially attractive in engineering applications, most of which require an accurate estimation of the actual chaotic signal from a noisy background. In this article, we present an improved symbolic dynamics-based method (ISDM for accurate estimating the initial condition of chaotic signal corrupted by noise. Then, a new method, called piecewise estimation method (PEM, for chaotic signal reconstruction based on ISDM is proposed. The reconstruction performance using PEM is much better than that using the existing initial condition estimation methods. Next, PEM is applied in a noncoherent reception noise radar scheme and an improved noncoherent reception scheme is given. The simulation results show that the improved noncoherent scheme has better correlation performance and range resolution especially at low signal-to-noise ratios (SNRs.

  16. 微波雷达海洋回波多普勒频谱的数值仿真%Numerical Simulation of Doppler Spectrum of Sea Echo for Microwave Radar

    Institute of Scientific and Technical Information of China (English)

    陈泽宗; 金燕; 陈曦; 范林刚


    研究了微波与海面相互作用的散射机理,在Plant等人研究成果的基础上对多普勒频谱仿真模型进行改进和完善.根据Bragg散射原理、复合表面理论和线性波理论,引入不同极化机制下的NRCS,给出多普勒频谱的谱型、幅度和时域变化特征,比较分析了不同海况下的仿真结果.%An improved numerical simulation method of Doppler Spectrum of sea echo for ground-based microwave wave radar is presented based on a study of scattering mechanism of microwave with ocean surface and some research results by W.J.Plant et al.According to the theories of Bragg scattering,composite surface,linear wave,and the expressions for NRCS of different polarization types,the characteristics of Doppler spectrum is displayed in shape,amplitude and time domain,and Doppler spectra of different ocean conditions are compared and qualitatively analyzed.Accordingly,it can be concluded that the simulation results reflect actual ocean environment and accord with objective law,which provides significant theoretical model for oceanographic observation by microwave wave radar and information extraction of sea state,especially parameters of wind,wave and current.

  17. Final Environmental Statement. Continental United States Over-the-Horizon Backscatter Radar System. (United States)


    Corporation developed and released a Concept Formulation Package/Technical Development Plan for the CONUS OTH-B Radar System. Various alterna - tives and...Force to consider all corrients made by the State. d. In May 1972, Governor Carti of Maine in a r to the Air Force expressed his appreciation

  18. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.


    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  19. Design of an ultra-wideband ground-penetrating radar system using impulse radiating antennas

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.; Giri, D.V.


    At TNO-FEL, one of the research programs is to explore the use of ultra-wideband (UWB) electromagnetic fields in a bi-static ground-penetrating radar (GPR) system for the detection, location and identification of buried items of unexploded ordnance (e.g. land mines). In the present paper we describe

  20. Flexible end-to-end system design for synthetic aperture radar applications (United States)

    Zaugg, Evan C.; Edwards, Matthew C.; Bradley, Joshua P.


    This paper presents ARTEMIS, Inc.'s approach to development of end-to-end synthetic aperture radar systems for multiple applications and platforms. The flexible design of the radar and the image processing tools facilitates their inclusion in a variety of application-specific end-to-end systems. Any given application comes with certain requirements that must be met in order to achieve success. A concept of operation is defined which states how the technology is used to meet the requirements of the application. This drives the design decisions. Key to adapting our system to multiple applications is the flexible SlimSAR radar system, which is programmable on-the-fly to meet the imaging requirements of a wide range of altitudes, swath-widths, and platform velocities. The processing software can be used for real-time imagery production or post-flight processing. The ground station is adaptable, and the radar controls can be run by an operator on the ground, on-board the aircraft, or even automated as part of the aircraft autopilot controls. System integration takes the whole operation into account, seeking to flawlessly work with data links and on-board data storage, aircraft and payload control systems, mission planning, and image processing and exploitation. Examples of applications are presented including using a small unmanned aircraft at low altitude with a line of sight data link, a long-endurance UAV maritime surveillance mission with on-board processing, and a manned ground moving target indicator application with the radar using multiple receive channels.

  1. Passive MIMO Radar Detection (United States)


    cumulative distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 CORA COvert RAdar...PaRaDe), developed by the Insti- tute of Electronic Systems at the Warsaw University of Technology [59, 60]; COvert RAdar ( CORA ), developed by the German

  2. Investigation of the foam influence on the wind-wave momentum exchange and cross-polarization microwave radar return within laboratory modeling of atmosphere-ocean boundary layer (United States)

    Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim; Ermoshkin, Alexey


    The effect of foam presence on the transfer processes and the parameters of the surface roughness within the laboratory simulation of wind-wave interaction was carried out on the Thermostratified Wind-Wave Tank (TSWiWaT) IAP, using a specially designed foam generator. The parameters of air flow profiles and waves elevation were measured with scanning Pitot gauge and wire wave gauges respectively in the range of equivalent wind speed U10 from 12 to 38 m/s (covering strong winds) on the clean water and with foam. It was shown that the foam reduces the amplitudes and slopes of the waves in comparison with the clean water in the hole range of wind speeds investigated, and the peak frequency and wave numbers remain almost constant. The drag coefficient calculating by profiling method demonstrated similar behavior (almost independent on U10) for case of foam and increased compared with clear water, particularly noticeable for low wind speeds. Simultaneously the investigations of influence of the foam on the peculiarity of the microwave radio back scattering of X-diapason was investigated. These measurements were carried for different sensing angles (30, 40 i 50 degrees from vertical) and for four polarizations: co-polarized HH and VV, and de-polarized HV and VH. It was shown that foam leads to decrease of specific radar cross section of the wavy surface in comparison with clean water. The work was supported by the Russian Foundation for Basic Research (grants No. 15-35-20953, 14-05-00367, 16-55-52022) and project ASIST of FP7. The experiment is supported by Russian Science Foundation (Agreement No. 15-17-20009), radilocation measurments are partially supported by Russian Science Foundation (Agreement No. 14-17-00667).

  3. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software (United States)

    Howard, S. D.


    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  4. Solution for Using the Microwave Energy in Order to Improve the Quality for Agricultural Seeds. Generation and Processing Microwave System

    Directory of Open Access Journals (Sweden)

    F. I. Hathazi


    Full Text Available This paper deals with the analysis of theelectromagnetic field question into the microwavesystem. The study regarding the heating question forthe agricultural seeds and quality are also studied. Thisapplication has the character of an applicativeresearch, and the obtained results being of practicaluse together with the experimental results and has asthe main purpose to optimize the working parametersfor the mixed microwave and hot air system in order toimprove the quality of the stored agricultural seeds.

  5. Phased-array radar design application of radar fundamentals

    CERN Document Server

    Jeffrey, Thomas


    Phased-Array Radar Design is a text-reference designed for electrical engineering graduate students in colleges and universities as well as for corporate in-house training programs for radar design engineers, especially systems engineers and analysts who would like to gain hands-on, practical knowledge and skills in radar design fundamentals, advanced radar concepts, trade-offs for radar design and radar performance analysis.

  6. Automotive radar - investigation of mutual interference mechanisms (United States)

    Goppelt, M.; Blöcher, H.-L.; Menzel, W.


    In the past mutual interference between automotive radar sensors has not been regarded as a major problem. With an increasing number of such systems, however, this topic is receiving more and more attention. The investigation of mutual interference and countermeasures is therefore one topic of the joint project "Radar on Chip for Cars" (RoCC) funded by the German Federal Ministry of Education and Research (BMBF). RoCC's goal is to pave the way for the development of high-performance, low-cost 79 GHz radar sensors based on Silicon-Germanium (SiGe) Monolithic Microwave Integrated Circuits (MMICs). This paper will present some generic interference scenarios and report on the current status of the analysis of interference mechanisms.

  7. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive


    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  8. 吸波Cf和SiCf的制备及其微波电磁特性%Preparation of Radar Absorbing Carbon Fiber and Silicon Carbide Fiber and Their Microwave Permittivity and Permeability

    Institute of Scientific and Technical Information of China (English)

    赵东林; 沈曾民


    探讨了吸波Cf和吸波SiCf的制备方法和微波电磁特性,降低Cf的碳化温度、改变Cf的截面形状和大小、对Cf进行表面改性以及对Cf进行掺杂改性能制备出吸波性能优良的Cf。采用高温处理、对纤维进行表面改性和掺杂异种元素可制备出吸波SiCf。%Carbon fiber and silicon carbide fiber have been widely used in stealth technology,which are two main kinds of fibers to reinforce radar absorbing materials.Preparatibn methods and microwave permittivity and permeability of radar absorbing carbon fiber and silicon carbide fiber are discussed.Carbon fiber with good radar absorbing can be prepiared by decreasing its heat treatment temperature,changing its cross section shape and size,modifying outer surface and doping other elements into the carbon fiber.Silicon carbide fiber with radar absorbing can be prepared by increasing the heat treatment temperature,modifying fiber surface and doping other elements into fiber.

  9. A Huygens Surface Approach to Antenna Implementation in Near-Field Radar Imaging System Simulations (United States)


    critical geometrical details; re- casting the FDTD update equations on a grid conformal to a curvilinear coordinate system (e.g., cylindrical); and...Imaging System Simulations by Traian Dogaru and DaHan Liao Approved for public release; distribution unlimited...A Huygens Surface Approach to Antenna Implementation in Near-Field Radar Imaging System Simulations by Traian Dogaru and DaHan Liao Sensors

  10. On-Chip Microwave Quantum Hall Circulator (United States)

    Mahoney, A. C.; Colless, J. I.; Pauka, S. J.; Hornibrook, J. M.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.; Doherty, A. C.; Reilly, D. J.


    Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1 /1000 th the wavelength by exploiting the chiral, "slow-light" response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330 μ m diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  11. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems (United States)

    Thajudeen, Christopher

    Through-the-wall imaging (TWI) is a topic of current interest due to its wide range of public safety, law enforcement, and defense applications. Among the various available technologies such as, acoustic, thermal, and optical imaging, which can be employed to sense and image targets of interest, electromagnetic (EM) imaging, in the microwave frequency bands, is the most widely utilized technology and has been at the forefront of research in recent years. The primary objectives for any Through-the-Wall Radar Imaging (TWRI) system are to obtain a layout of the building and/or inner rooms, detect if there are targets of interest including humans or weapons, determine if there are countermeasures being employed to further obscure the contents of a building or room of interest, and finally to classify the detected targets. Unlike conventional radar scenarios, the presence of walls, made of common construction materials such as brick, drywall, plywood, cinder block, and solid concrete, adversely affects the ability of any conventional imaging technique to properly image targets enclosed within building structures as the propagation through the wall can induce shadowing effects on targets of interest which may result in image degradation, errors in target localization, and even complete target masking. For many applications of TWR systems, the wall ringing signals are strong enough to mask the returns from targets not located a sufficient distance behind the wall, beyond the distance of the wall ringing, and thus without proper wall mitigation, target detection becomes extremely difficult. The results presented in this thesis focus on the development of wall parameter estimation, and intra-wall and wall-type characterization techniques for use in both the time and frequency domains as well as analysis of these techniques under various real world scenarios such as reduced system bandwidth scenarios, various wall backing scenarios, the case of inhomogeneous walls, presence

  12. Design and Tests of A Cable Detection Laser Imaging Radar System

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-ran; YUAN Jin


    Rotorcraft in low-level flight is endangered by power lines or telephone wires. The development of automation tools that can detect obstacles in the flight path and warn the crew would significantly reduce pilot workload and increase safety. Therefore, a cable detection radar system is developed. The real-time dynamic imaging synchronizing with radar space scanning has been implemented in developed ladar system. The requirements of the flight mission to prevent "wire strike"are analyzed and estimated, the advantages and disadvantages of the millimeter wave system with the laser system are weighted. The result shows that Laser system is the best suited for helicopter avoidance obstacle. In addition, several design gist of detecting wire radar that was used in the developed ladar system is proposed and the developed zero backlash imaging technology and several advanced warning function are described. The detailed results of system ground tests and the performances description are presented. The ground test of the developed ladar system has demonstrated that the developed imaging ladar system performance can achieve and satisfy the requirements of the mission to prevent "wire strike".

  13. Design and Realization of Phased Array Radar Optical Fiber Transmission System

    Institute of Scientific and Technical Information of China (English)

    HU Shan-qing; LIU Feng; LONG Teng


    One optical fiber transmission system is designed.The modularization optical fiber transmission adapters were utilized in the system,so the system structure could be flexibly scalable.The sub-array adapter and signal processor adapter were designed and realized utilizing the new field programmable gate array (FPGA) which could drive the optical transceiver.The transmission agreement was designed based on the data stream.In order to solve the signal synchronization problem of the optical fiber transmitted phased array radar,a method named synchronous clock was designed.The fiber transmission error code rate of the system was zero with an experimental transmission velocity of 800 Mbit/s.The phased array radar system has detected the airplane target,thus validated the feasibility of the design method.

  14. UAV-Borne Profiling Radar for Forest Research

    Directory of Open Access Journals (Sweden)

    Yuwei Chen


    Full Text Available Microwave Radar is an attractive solution for forest mapping and inventories because microwave signals penetrates into the forest canopy and the backscattering signal can provide information regarding the whole forest structure. Satellite-borne and airborne imaging radars have been used in forest resources mapping for many decades. However, their accuracy with respect to the main forest inventory attributes substantially varies depending on the wavelength and techniques used in the estimation. Systems providing canopy backscatter as a function of canopy height are, practically speaking, missing. Therefore, there is a need for a radar system that would enable the scientific community to better understand the radar backscatter response from the forest canopy. Consequently, we undertook a research study to develop an unmanned aerial vehicle (UAV-borne profiling (i.e., waveform radar that could be used to improve the understanding of the radar backscatter response for forestry mapping and inventories. A frequency modulation continuous waveform (FMCW profiling radar, termed FGI-Tomoradar, was introduced, designed and tested. One goal is the total weight of the whole system is less than 7 kg, including the radar system and georeferencing system, with centimetre-level positioning accuracy. Achieving this weight goal would enable the FGI-Tomoradar system to be installed on the Mini-UAV platform. The prototype system had all four linear polarization measuring capabilities, with bistatic configuration in Ku-band. In system performance tests in this study, FGI-Tomoradar was mounted on a manned helicopter together with a Riegl VQ-480-U laser scanner and tested in several flight campaigns performed at the Evo site, Finland. Airborne laser scanning data was simultaneously collected to investigate the differences and similarities of the outputs for the same target area for better understanding the penetration of the microwave signal into the forest canopy

  15. MMW radar enhanced vision systems: the Helicopter Autonomous Landing System (HALS) and Radar-Enhanced Vision System (REVS) are rotary and fixed wing enhanced flight vision systems that enable safe flight operations in degraded visual environments (United States)

    Cross, Jack; Schneider, John; Cariani, Pete


    Sierra Nevada Corporation (SNC) has developed rotary and fixed wing millimeter wave radar enhanced vision systems. The Helicopter Autonomous Landing System (HALS) is a rotary-wing enhanced vision system that enables multi-ship landing, takeoff, and enroute flight in Degraded Visual Environments (DVE). HALS has been successfully flight tested in a variety of scenarios, from brown-out DVE landings, to enroute flight over mountainous terrain, to wire/cable detection during low-level flight. The Radar Enhanced Vision Systems (REVS) is a fixed-wing Enhanced Flight Vision System (EFVS) undergoing prototype development testing. Both systems are based on a fast-scanning, threedimensional 94 GHz radar that produces real-time terrain and obstacle imagery. The radar imagery is fused with synthetic imagery of the surrounding terrain to form a long-range, wide field-of-view display. A symbology overlay is added to provide aircraft state information and, for HALS, approach and landing command guidance cuing. The combination of see-through imagery and symbology provides the key information a pilot needs to perform safe flight operations in DVE conditions. This paper discusses the HALS and REVS systems and technology, presents imagery, and summarizes the recent flight test results.

  16. The 94 GHz Cloud Radar System on a NASA ER-2 Aircraft (United States)

    Li, Lihua; Heymsfield, Gerald M.; Racette, Paul E.; Tian, Lin; Zenker, Ed


    The 94-GHz (W-band) Cloud Radar System (CRS) has been developed and flown on a NASA ER-2 high-altitude (20 km) aircraft. The CRS is a fully coherent, polarimeteric Doppler radar that is capable of detecting clouds and precipitation from the surface up to the aircraft altitude in the lower stratosphere. The radar is especially well suited for cirrus cloud studies because of its high sensitivity and fine spatial resolution. This paper describes the CRS motivation, instrument design, specifications, calibration, and preliminary data &om NASA s Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE) field campaign. The unique combination of CRS with other sensors on the ER-2 provides an unprecedented opportunity to study cloud radiative effects on the global energy budget. CRS observations are being used to improve our knowledge of atmospheric scattering and attenuation characteristics at 94 GHz, and to provide datasets for algorithm implementation and validation for the upcoming NASA CloudSat mission that will use a 94-GHz spaceborne cloud radar to provide the first direct global survey of the vertical structure of cloud systems.

  17. HTS thin films: Passive microwave components and systems integration issues

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B. [National Aeronautics and Space Administration, Cleveland, OH (United States)


    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.

  18. Use of radars to monitor stream discharge by noncontact methods (United States)

    Costa, J.E.; Cheng, R.T.; Haeni, F.P.; Melcher, N.; Spicer, K.R.; Hayes, E.; Plant, W.; Hayes, K.; Teague, C.; Barrick, D.


    Conventional measurements of river flows are costly, time-consuming, and frequently dangerous. This report evaluates the use of a continuous wave microwave radar, a monostatic UHF Doppler radar, a pulsed Doppler microwave radar, and a ground-penetrating radar to measure river flows continuously over long periods and without touching the water with any instruments. The experiments duplicate the flow records from conventional stream gauging stations on the San Joaquin River in California and the Cowlitz River in Washington. The purpose of the experiments was to directly measure the parameters necessary to compute flow: surface velocity (converted to mean velocity) and cross-sectional area, thereby avoiding the uncertainty, complexity, and cost of maintaining rating curves. River channel cross sections were measured by ground-penetrating radar suspended above the river. River surface water velocity was obtained by Bragg scattering of microwave and UHF Doppler radars, and the surface velocity data were converted to mean velocity on the basis of detailed velocity profiles measured by current meters and hydroacoustic instruments. Experiments using these radars to acquire a continuous record of flow were conducted for 4 weeks on the San Joaquin River and for 16 weeks on the Cowlitz River. At the San Joaquin River the radar noncontact measurements produced discharges more than 20% higher than the other independent measurements in the early part of the experiment. After the first 3 days, the noncontact radar discharge measurements were within 5% of the rating values. On the Cowlitz River at Castle Rock, correlation coefficients between the USGS stream gauging station rating curve discharge and discharge computed from three different Doppler radar systems and GPR data over the 16 week experiment were 0.883, 0.969, and 0.992. Noncontact radar results were within a few percent of discharge values obtained by gauging station, current meter, and hydroacoustic methods. Time

  19. US Integrated Ocean Observing System HF Radar Network: National Applications and International Implementation (United States)

    Harlan, J.


    The US Integrated Ocean Observing System (IOOS), a partnership of academic institutions and Federal agencies, within NOAA National Ocean Service (NOS), operates the nation's only high-frequency (HF) radar network providing near-real-time 2-D maps of ocean of surface currents speed and direction. This system supports US Coast Guard search and rescue operations, NOAA response to oil spills, port navigation and tracking of harmful algal bloom. In the research realm, the data are helping to understand oceanographic processes such as the warm water mass off of the west coast of the US and are routinely ingested into oceanographic models and are used for research into tsunami detection. A key component of the network is the data management system that ingests and distributes hourly data from radars throughout US coastal areas as well as Canada and Mexico, comprising nearly 150 radars. HF radar operators outside the US have adopted the data file formats that were developed by the US IOOS and these data are displayed publicly in near-real-time. To enhance the utility of HF radar data to end-users in all parts of the globe, operational products are needed. Recently in the US, quasi-operational products have been developed, or are under development, including: 2-D maps in AWIPS-II, tidal analysis and prediction from NOS Center for Operational Oceanographic Products & Services (CO-OPS), tsunami detection algorithms led by National Tsunami Warning Center, and significant wave height pilot project. These products will be highlighted and potential for international use discussed.

  20. NESDIS Microwave Integrated Retrieval System (MIRS) ATMS Precipitation and Surface Products (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains two-dimensional precipitation and surface products from the NESDIS Microwave Integrated Retrieval System (MIRS) using sensor data from the...

  1. Development of a Microwave System for Highly-Efficient Drying of Fish

    Directory of Open Access Journals (Sweden)

    Yuttapong PIANROJ


    Full Text Available Dried fish is an important product of Nakhon Si Thammarat province, located in southern Thailand. Fish are conventionally dried using heat from the sun or heat from burning wood as energy sources. These drying methods have problems such as low efficiency and environmental problems. Exploiting the strong electric dipole of the water molecules in the fish, which allows the fish to absorb microwave energy effectively, we have developed a novel microwave heating system for the efficient drying of fish. The system utilizes a high-voltage power supply so that the magnetron can generate a microwave field continuously, and its output power can be adjusted from 0 - 200 W making it very different to commercial microwave oven. The waveguide is designed for effective transmission of microwave fields into the multi-mode heating cavity. The experimental results reveal that heat produced by the microwave system causes evaporation of moisture from the fish making it possible to produce high quality dried fish. The drying process also shows a dependence of fish surface temperature and moisture content on the radiation time and microwave power.

  2. Microwave heating systems for atmospheric pressure: Nonequilibrium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guest, G.E.; Dandl, R.A. (AMPC, Inc., Carlsbad, CA (USA))


    Nonequilibrium plasma-chemical processing is attracting increasing interest because of the possibility of creating mixtures of active species that would not be available in thermal equilibrium. For significant throughput of reactants it would be advantageous to create nonequilibrium plasmas in large volumes of atmospheric-pressure mixtures of gases. Techniques for accomplishing this are very limited at present. Here they describe a novel microwave approach to creating nonequilibrium plasmas in large volumes of atmospheric-pressure gases using pulses of microwave radiation with very high peak power that are focused by quasi-optical techniques at one or more points in the interior of the reaction chamber. A new type of microwave source, the Plasma Electron Microwave Source (PEMS), is able to produce the require power levels by storing cw microwave power in a mirror-confined, relativistic-electron plasma and periodically transforming a fraction of that stored energy into intense microwave pulses. This approach avoids many of the limitations inherent in resonant cavity approaches and is expected to permit ultrahigh purity discharges to be produced.

  3. Chosen results of field tests of synthetic aperture radar system installed on board UAV (United States)

    Kaniewski, Piotr; Komorniczak, Wojciech; Lesnik, Czeslaw; Cyrek, Jacek; Serafin, Piotr; Labowski, Michal; Wajszczyk, Bronislaw


    The paper presents a synthetic information on a UAV-based radar terrain imaging system, its purpose, structure and working principle as well as terrain images obtained from flight experiments. A SAR technology demonstrator has been built as a result of a research project conducted by the Military University of Technology and WB Electronics S.A. under the name WATSAR. The developed system allows to obtain high resolution radar images, both in on-line and off-line modes, independently of the light conditions over the observed area. The software developed for the system allows to determine geographic coordinates of the imaged objects with high accuracy. Four LFM-CW radar sensors were built during the project: two for S band and two for Ku band, working with different signal bandwidths. Acquired signals were processed with the TDC algorithm, which allowed for a number of analyses in order to evaluate the performance of the system. The impact of the navigational corrections on a SAR image quality was assessed as well. The research methodology of the in-flight experiments of the system is presented in the paper. The projects results show that the developed system may be implemented as an aid to tactical C4ISR systems.

  4. Stepped-frequency radar sensors theory, analysis and design

    CERN Document Server

    Nguyen, Cam


    This book presents the theory, analysis and design of microwave stepped-frequency radar sensors. Stepped-frequency radar sensors are attractive for various sensing applications that require fine resolution. The book consists of five chapters. The first chapter describes the fundamentals of radar sensors including applications followed by a review of ultra-wideband pulsed, frequency-modulated continuous-wave (FMCW), and stepped-frequency radar sensors. The second chapter discusses a general analysis of radar sensors including wave propagation in media and scattering on targets, as well as the radar equation. The third chapter addresses the analysis of stepped-frequency radar sensors including their principles and design parameters. Chapter 4 presents the development of two stepped-frequency radar sensors at microwave and millimeter-wave frequencies based on microwave integrated circuits (MICs), microwave monolithic integrated circuits (MMICs) and printed-circuit antennas, and discusses their signal processing....

  5. Conductivity magnetooscillations in 2D electron-impurity system under microwave irradiation: role of magnetoplasmons


    Takhtamirov, E. E.; V. A. Volkov


    It is developed a many-electron approach to explain the recently observed conductivity magnetooscillations in very high mobility 2D electron systems under microwave irradiation. For the first time a theory takes into account the microwave-induced renormalization of the screened impurity potential. As a result this potential has singular, dynamic and non-linear in electric field nature. That changes the picture of scattering of electrons at impurities in a ``clean'' 2D system essentially: for ...

  6. A novel protection layer of superconducting microwave circuits toward a hybrid quantum system

    CERN Document Server

    Lee, Jongmin


    We propose a novel multilayer structure based on Bragg layers that can protect a superconducting microwave resonator from photons and blackbody radiation and have little effect on its quality factor. We also discuss a hybrid quantum system exploiting a superconducting microwave circuit and a two-color evanescent field atom trap, where surface-scattered photons and absorption-induced broadband blackbody radiation might deteriorate the system.

  7. Microwave photonics technologies supporting high capacity and flexible wireless communications systems

    DEFF Research Database (Denmark)

    Lu, Xiaofeng; Tatarczak, Anna; Rommel, Simon;


    Emerging 5G wireless systems require technologies for increased capacity, guarantee robustness, low latency and flexibility. We review a number of approaches to provide the above based on microwave photonics and hybrid optical fiber-wireless communication techniques.......Emerging 5G wireless systems require technologies for increased capacity, guarantee robustness, low latency and flexibility. We review a number of approaches to provide the above based on microwave photonics and hybrid optical fiber-wireless communication techniques....

  8. Deep Stochastic Radar Models


    Wheeler, Tim Allan; Holder, Martin; Winner, Hermann; Kochenderfer, Mykel


    Accurate simulation and validation of advanced driver assistance systems requires accurate sensor models. Modeling automotive radar is complicated by effects such as multipath reflections, interference, reflective surfaces, discrete cells, and attenuation. Detailed radar simulations based on physical principles exist but are computationally intractable for realistic automotive scenes. This paper describes a methodology for the construction of stochastic automotive radar models based on deep l...

  9. Progress report on the NASA/JPL airborne synthetic aperture radar system (United States)

    Lou, Y.; Imel, D.; Chu, A.; Miller, T.; Moller, D.; Skotnicki, W.


    AIRSAR has served as a test-bed for both imaging radar techniques and radar technologies for over a decade. In fact, the polarimetric, cross-track interferometric, and along-track introferometric radar techniques were all developed using AIRSAR.


    Bradley, Jerry A.; Wright, David L.


    An efficient microprocessor-based system is described that permits real-time acquisition, stacking, and digital recording of data generated by a borehole radar system. Although the system digitizes, stacks, and records independently of a computer, it is interfaced to a desktop computer for program control over system parameters such as sampling interval, number of samples, number of times the data are stacked prior to recording on nine-track tape, and for graphics display of the digitized data. The data can be transferred to the desktop computer during recording, or it can be played back from a tape at a latter time. Using the desktop computer, the operator observes results while recording data and generates hard-copy graphics in the field. Thus, the radar operator can immediately evaluate the quality of data being obtained, modify system parameters, study the radar logs before leaving the field, and rerun borehole logs if necessary. The system has proven to be reliable in the field and has increased productivity both in the field and in the laboratory.

  11. Development and application of millimeter-wave imaging radar

    Energy Technology Data Exchange (ETDEWEB)

    Mase, Atsushi; Kogi, Yuichiro; Yamamoto, Akihide; Ohashi, Masamichi; Osako, Shuhei [Kyushu Univ., Advanced Science and Technology Center for Cooperative Research, Kasuga, Fukuoka (Japan); Bruskin, Leonid G. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Hojo, Hitoshi [Tsukuba Univ., Plasma Research Center, Tsukuba, Ibaraki (Japan)


    Significant advances in microwave and millimeter wave technology have enabled the development of a new generation of imaging diagnostics in this frequency region. Millimeter wave imaging radar is expected to be one of the most promising diagnostic methods for this purpose. It consists of a frequency-modulated continuous wave or pulsed wave as a probe beam and quasi-optical focusing optics followed by a planar-type detector array. We have started to develop a diagnostic system for the achievement of imaging radar. Representative experimental results obtained with related diagnostic systems are presented. (author)

  12. Artificial Neural Network-Based Clutter Reduction Systems for Ship Size Estimation in Maritime Radars

    Directory of Open Access Journals (Sweden)

    Vicen-Bueno R


    Full Text Available The existence of clutter in maritime radars deteriorates the estimation of some physical parameters of the objects detected over the sea surface. For that reason, maritime radars should incorporate efficient clutter reduction techniques. Due to the intrinsic nonlinear dynamic of sea clutter, nonlinear signal processing is needed, what can be achieved by artificial neural networks (ANNs. In this paper, an estimation of the ship size using an ANN-based clutter reduction system followed by a fixed threshold is proposed. High clutter reduction rates are achieved using 1-dimensional (horizontal or vertical integration modes, although inaccurate ship width estimations are achieved. These estimations are improved using a 2-dimensional (rhombus integration mode. The proposed system is compared with a CA-CFAR system, denoting a great performance improvement and a great robustness against changes in sea clutter conditions and ship parameters, independently of the direction of movement of the ocean waves and ships.

  13. Noise analysis for near field 3-D FM-CW radar imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.


    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  14. A portable W-band radar system for enhancement of infrared vision in fire fighting operations (United States)

    Klenner, Mathias; Zech, Christian; Hülsmann, Axel; Kühn, Jutta; Schlechtweg, Michael; Hahmann, Konstantin; Kleiner, Bernhard; Ulrich, Michael; Ambacher, Oliver


    In this paper, we present a millimeter wave radar system which will enhance the performance of infrared cameras used for fire-fighting applications. The radar module is compact and lightweight such that the system can be combined with inertial sensors and integrated in a hand-held infrared camera. This allows for precise distance measurements in harsh environmental conditions, such as tunnel or industrial fires, where optical sensors are unreliable or fail. We discuss the design of the RF front-end, the antenna and a quasi-optical lens for beam shaping as well as signal processing and demonstrate the performance of the system by in situ measurements in a smoke filled environment.

  15. Optically controlled microwave devices and circuits: Emerging applications in space communications systems (United States)

    Bhasin, Kul B.; Simons, Rainee N.


    Optical control of microwave devices and circuits by an optical fiber has the potential to simplify signal distribution networks in high frequency communications systems. The optical response of two terminal and three terminal (GaAs MESFET, HEMT, PBT) microwave devices are compared and several schemes for controlling such devices by modulated optical signals examined. Monolithic integration of optical and microwave functions on a single semiconductor substrate is considered to provide low power, low loss, and reliable digital and analog optical links for signal distribution.

  16. The electromagnetic-trait imaging computation of traveling wave method in breast tumor microwave sensor system. (United States)

    Tao, Zhi-Fu; Han, Zhong-Ling; Yao, Meng


    Using the difference of dielectric constant between malignant tumor tissue and normal breast tissue, breast tumor microwave sensor system (BRATUMASS) determines the detected target of imaging electromagnetic trait by analyzing the properties of target tissue back wave obtained after near-field microwave radicalization (conelrad). The key of obtained target properties relationship and reconstructed detected space is to analyze the characteristics of the whole process from microwave transmission to back wave reception. Using traveling wave method, we derive spatial transmission properties and the relationship of the relation detected points distances, and valuate the properties of each unit by statistical valuation theory. This chapter gives the experimental data analysis results.

  17. Cross-polarization borehole radar system with a RF analog optical transmission link. Hikaridenso ni yoru chokko henpa bore hole radar keisoku system

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, T.; Sato, M.; Niitsuma, H. (Tohoku University, Sendai (Japan). Faculty of Engineering)


    The cross-polarization borehole radar system (BRS) was reported. The RF analogue optical transmission system (using the optical fiber cable) was introduced into the signal transmission between the sonde and the surface station to broaden the band and to heighten the S/N ratio. The sonde consisted of cable head (to transmit the trigger signal), receiving antenna, and transmitting antenna. The transmitting antenna was excited by the trigger signal from the surface to generate the pulse by the pulse generator. The signal received by the receiving antenna was sent to the oscilloscope on the surface. The field test of cross-polarization borehole system revealed that the effect of noise associated with the BRS employing the eccentric cable did not appear on the BRS. Examples of field test of the cross-polarization borehole measurement system employing the BRS were described. 4 refs., 8 figs., 1 tab.

  18. Verification measurements of the Karoo Array timing system: a laser radar based time transfer system (United States)

    Siebrits, R.; Bauermeister, E.; Gamatham, R.; Adams, G.; Malan, J. A.; Burger, J. P.; Kapp, F.; Gibbon, T.; Kriel, H.; Abbott, T.


    An optical fiber based laser radar time transfer system has been developed for the 64-dish MeerKAT radiointerferometer telescope project to provide accurate atomic time to the receivers of the telescope system. This time transfer system is called the Karoo Array Timing System (KATS). Calibration of the time transfer system is essential to ensure that time is accurately transferred to the digitisers that form part of the receivers. Frequency domain reflectometry via vector network analysers is also used to verify measurements taken using time interval counters. This paper details the progress that is made in the verification measurements of the system in order to ensure that time, accurate to within a few nanoseconds of the Universal Coordinated Time (UTC, is available at the point where radio signals from astronomical sources are received. This capability enables world class transient and timing studies with a compact radio interferometer, which has inherent advantages over large single dish radio-telescopes, in observing the transient sky.

  19. Radar illusion via metamaterials (United States)

    Jiang, Wei Xiang; Cui, Tie Jun


    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

  20. The Adelaide MF partial-reflection radar and VHF ST radar (United States)

    Vincent, R. A.


    The microwave frequency (MF) partial-reflection radar ran continuously since November 1983, with data being analyzed in real time. The spaced antenna technique was used routinely to produce a climatology of the mean circulation, atmospheric tides, and gravity waves. Since the beginning of 1985, the system was also used as a Doppler radar to measure the spectral widths of the mesospheric echoes. This has enabled the turbulence dissipation rates to be determined. The Stratosphere-Troposphere (ST) radar was operated in the spaced antenna mode to measure winds in November 1984, in conjunction with a cooperative campaign to study the propagation of cold fronts across SE Australia. Observations were also performed to study the structure of the more intense and deeper cold fronts, which occur in late winter.

  1. Bistatic radar

    CERN Document Server

    Willis, Nick


    Annotation his book is a major extension of a chapter on bistatic radar written by the author for the Radar Handbook, 2nd edition, edited by Merrill Skolnik. It provides a history of bistatic systems that points out to potential designers the applications that have worked and the dead-ends not worth pursuing. The text reviews the basic concepts and definitions, and explains the mathematical development of relationships, such as geometry, Ovals of Cassini, dynamic range, isorange and isodoppler contours, target doppler, and clutter doppler spread.Key Features * All development and analysis are

  2. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C


    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  3. 微波环行器、隔离器在雷达固态发射机中的应用%Applications of microwave circulator and isolator in solid state transmitter for radars

    Institute of Scientific and Technical Information of China (English)

    王卫华; 孙卫忠


    Microwave circulators and isolators have been used in solid state transmitter on a large scale, and their performance is one of important factors that affect the performance of equipment. So till now they can not be substituted. The basic concept of this type of devices is briefly introduced. Their function in solid state transmitter of radar is analyzed in detail. In solid state transmitter of modern radar the urgent demand on microwave circulators and isolators is described. The development trend is pointed out combining with the current technology bottleneck of these devices.%微波环行器、隔离器在雷达固态发射机中得到了大量应用,其性能优劣是影响装备性能的重要因素之一,至今仍具有无可取代的地位.简要介绍了该类型器件的基本概念,详细分析了其在雷达固态发射机中的作用,阐述了现代雷达固态发射机对微波环行器、隔离器的迫切需求,结合目前该类型器件存在的技术瓶颈,指出了发展趋势.

  4. Embedded DSP-based telehealth radar system for remote in-door fall detection. (United States)

    Garripoli, Carmine; Mercuri, Marco; Karsmakers, Peter; Jack Soh, Ping; Crupi, Giovanni; Vandenbosch, Guy A E; Pace, Calogero; Leroux, Paul; Schreurs, Dominique


    Telehealth systems and applications are extensively investigated nowadays to enhance the quality-of-care and, in particular, to detect emergency situations and to monitor the well-being of elderly people, allowing them to stay at home independently as long as possible. In this paper, an embedded telehealth system for continuous, automatic, and remote monitoring of real-time fall emergencies is presented and discussed. The system, consisting of a radar sensor and base station, represents a cost-effective and efficient healthcare solution. The implementation of the fall detection data processing technique, based on the least-square support vector machines, through a digital signal processor and the management of the communication between radar sensor and base station are detailed. Experimental tests, for a total of 65 mimicked fall incidents, recorded with 16 human subjects (14 men and two women) that have been monitored for 320 min, have been used to validate the proposed system under real circumstances. The subjects' weight is between 55 and 90 kg with heights between 1.65 and 1.82 m, while their age is between 25 and 39 years. The experimental results have shown a sensitivity to detect the fall events in real time of 100% without reporting false positives. The tests have been performed in an area where the radar's operation was not limited by practical situations, namely, signal power, coverage of the antennas, and presence of obstacles between the subject and the antennas.

  5. Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection

    Directory of Open Access Journals (Sweden)



    Full Text Available Among the various breast imaging modalities for breast cancer detection, microwave imaging is attractive due to the high contrast in dielectric properties between the cancerous and normal tissue. Due to this reason, this modality has received a significant interest and attention from the microwave community. This paper presents the survey of the ongoing research in the field of microwave imaging of biological tissues, with major focus on the breast tumor detection application. The existing microwave imaging systems are categorized on the basis of the employed measurement concepts. The advantages and disadvantages of the implemented imaging techniques are discussed. The fundamental tradeoffs between the various system requirements are indicated. Some strategies to overcome these limitations are outlined.

  6. Nonclassical correlation between optical and microwave photons in a hybrid electro-optomechanical system (United States)

    Xie, Hong; Chen, Xiang; Lin, Gongwei; Lin, Xiumin


    A scheme to correlate optical and microwave photons is proposed in a hybrid electro-optomechanical system, where mechanical resonator is coupled to both optical and microwave fields. Analytical and numerical simulation results show that the cross-correlation function between Stokes and anti-Stokes photons strongly violates the Cauchy-Schwarz inequality, which confirms the nonclassical correlation between the optical and microwave photons. It is worth noting that the nonclassical photon pairs with vast different wavelengths, which may be useful for quantum communication, are generated under the experimentally accessible weak coupling limit rather than single-photon strong coupling regime. In addition, the protocol provides a possible route to combine the respective advantages of optical photons, microwave photons, and phonons in a hybrid electro-optomechanical system.

  7. Prediction and experimental measurement of the electromagnetic thrust generated by a microwave thruster system

    Institute of Scientific and Technical Information of China (English)

    Yang Juan; Wang Yu-Quan; Ma Yan-Jie; Li Peng-Fei; Yang Le; Wang Yang; He Guo-Qiang


    A microwave thruster system that can convert microwave power directly to thrust without a gas propellant is developed.In the system,a cylindrical tapered resonance cavity and a magnetron microwave source are used respectively as the thruster cavity and the energy source to generate the electromagnetic wave.The wave is radiated into and then reflected from the cavity to form a pure standing wave with non-uniform electromagnetic pressure distribution.Consequently,a net electromagnetic thrust exerted on the axis of the thruster cavity appears,which is demonstrated through theoretical calculation based on the electromagnetic theory.The net electromagnetic thrust is also experimentally measured in the range from 70 mN to 720 mN when the microwave output power is from 80 W to 2500 W.

  8. Integrated microwave processing system for the extraction of organophosphorus pesticides in fresh vegetables. (United States)

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming


    A simple and efficient integrated microwave processing system (IMPS) was firstly assembled and validated for the extraction of organophosphorus pesticides in fresh vegetables. Two processes under microwave irradiation, dynamic microwave-assisted extraction (DMAE) and microwave-accelerated solvent elution (MASE), were integrated for simplifying the pretreatment of the sample. Extraction, separation, enrichment and elution were finished in a simple step. The organophosphorus pesticides were extracted from the fresh vegetables into hexane with DMAE, and then the extract was directly introduced into the enrichment column packed with active carbon fiber (ACF). Subsequently, the organophosphorus pesticides trapped on the ACF were eluted with ethyl acetate under microwave irradiation. No further filtration or cleanup was required before analysis of the eluate by gas chromatography-mass spectrometry. Some experimental parameters affecting extraction efficiency were investigated and optimized, such as microwave output power, kind and volume of extraction solvent, extraction time, amount of sorbent, elution microwave power, kind and volume of elution solvent, elution solvent flow rate. Under the optimized conditions, the recoveries were in the range of 71.5-105.2%, and the relative standard deviations were lower than 11.6%. The experiment results prove that the present method is a simple and effective sample preparation method for the determination of pesticides in solid samples.

  9. Research on technology of ROF using in radar (United States)

    Bi, Xiaowen; Zhang, Huiyong; Liu, Caibin


    The technology of Radio over Fiber (ROF) not only has broad prospects in the field of communications, but also has great potential in the field of radar. ROF technology will be able to change the traditional structure of radar and radar network, improve their performance. The radar can be reduced to a system that has only transmitter, receiver, transmission line and antenna. Other equipment can be concentrated to the command center. The command center will be not only a data processing center, but also a signal processing center. At first, this paper analyzed the factors that influence the phase stability of microwave signal in fiber. For a short fiber, the stress in the fiber direction is the major point that influence the phase stability, other factors can be neglected. For a long fiber, all factors should be considered. And then, this paper analyzed the technical requirements of radar signal transmission, concluded that the phase stability of ROF system is the most important factor for radar, and chosen the method of phase compensation to solve this problem. At last, this paper designed a ROF link for RF transmission of radar.

  10. A Cramer Rao analysis on receiver placement in a FM band commensal radar system based on doppler only measurements

    CSIR Research Space (South Africa)

    Maasdorp, FDV


    Full Text Available This paper investigates the theoretical placement of receivers in an Commensal Radar (CR), Doppler only tracking system with a single transmitter multiple receiver configuration. Theory, based on the Fisher Information matrix (FIM), is developed...

  11. Study of a Bistatic Radar System Using VLBI Technologies for Detecting Space Debris and the Experimental Verification of its Validity (United States)

    Yajima, Masanobu; Tsuchikawa, Kazutomo; Murakami, Toshiyuki; Katsumoto, Kazuyoshi; Takano, Tadashi


    Space debris are increasing around the Earth. The observation of space debris is a key issue for the investigation and monitoring of space environment. But the observation opportunities and the detection ability are limited in existing monostatic radar systems. This paper proposes a bistatic radar which is composed of a transmitting station and a receiving-only station. A carrier wave modulated by PN-PSK signals is used in combination with a VLBI (Very Long Baseline Interferometry) recorder for range measurement between space debris and stations. The receiving radio wave is processed on the basis of VLBI techniques. Accordingly, the system is shown to have significant advantages over a monostatic radar. We actually formed a bistatic radar system, and observed a satellite in order to experimentally verify the validity. The configuration of the system, data analysis and the experimental results are described.


    Institute of Scientific and Technical Information of China (English)


    Some bases are presented for determining and calculating the airborne pulse doppler radar's DBS system parameters.Major problems discussed here are the limitation to the beam sharpening ratio and azimuth resolution, and the limitation to maximum pitch angle and minimum azimuth angle.Some basic formulas are given for calculating the batch processing period, framescan time and antenna rotating speed.Also discussed are the limiting condition and determining principle of the pulse repetition frequency.

  13. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) (United States)


    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...11 Track to Budget 17 Cost and Funding 18 Low Rate Initial Production 23 Foreign Military Sales 24 Nuclear Costs 24 Unit Cost...Document CLIN - Contract Line Item Number CPD - Capability Production Document CY - Calendar Year DAB - Defense Acquisition Board DAE - Defense Acquisition

  14. The Microwave Direct Heating of Zeolite FAU in an Open System

    Institute of Scientific and Technical Information of China (English)


    Zeolite FAU was heated directly by microwave irradiation at 2450 MHz in an open system without special loading materials. It was discovered that zeolite X was heated to 1473 K about 90 seconds at power output of 400 W. HY type zeolite was also heated to 1373 K although it needed relative long time (about 11 minutes). Influences of exchangeable cations and adsorbed substances on zeolite1s ability to absorb microwaves were also discussed.

  15. The Microwave Direct Heating of Zeolite FAU in an Open System

    Institute of Scientific and Technical Information of China (English)

    JinXiangDONG; FengWU; 等


    Zeolite FAU was heated directly by microwave irradiation at 2450 MHz is in open system without special loading materials. It was discovered that zeolite X was heated to 1473K about 90 seconds at power output of 400W. HY type zeolite was also heated to 1373K although in needed relative long time (about 11 minutes). Influences of exchangeable cations and adsorbed substances on zeolite′s ability to absorb microwaves were also discussed.

  16. Magnetotransport in Two Dimensional Electron Systems Under Microwave Excitation and in Highly Oriented Pyrolytic Graphite (United States)


    remark- able electronic properties observed in graphene. Chapter 2 reviews the basic physical con- cepts of 2DES including a brief introduction to...magnetotransport in high quality GaAs/ AlGaAs heterostructure two dimensional electron systems. The effect of microwave (MW) radiation on electron...This thesis consists of two parts. The rst part considers the e ect of microwave radiation on magnetotransport in high quality GaAs/ AlGaAs

  17. The lidar dark band: An oddity of the radar bright band analogy

    Energy Technology Data Exchange (ETDEWEB)

    Sassen, K. [Univ. of Utah, Salt Lake City, UT (United States)


    Although much has sbeen learned from independent radar and lidar studies of atmospheric precipitations, occasionally supported by aircraft profiling, what has been lacking is combined optical, microwave, and insitu observations of the melting layer. Fortunately, the rainshowers on April 21, 1994, during the Remote Cloud Sensing intensive obervations Period (RCSIOP) at the Southern Great Plains Cloud and radiation Testbed (CART) site provided an opportunity for coordinated dual-wavelength University of Utah Polarization Diversity Lidar, University of Massachusetts Cloud Profiling Radar System Doppler Radar, and the University of North Dakota Citation aircraft measurements.

  18. A study of rain effects on radar scattering from water waves (United States)

    Bliven, Larry F.; Giovanangeli, Jean-Paul; Norcross, George


    Results are presented from a laboratory investigation of microwave power return due to rain-generated short waves on a wind wave surface. The wind wave tank, sensor, and data processing methods used in the study are described. The study focuses on the response of a 36-GHz radar system, orientated 30 deg from nadir and pointing upwind, to surface waves generated by various combinations of rain and wind. The results show stronger radar signal levels due to short surface waves generated by rain impacting the wind wave surface, supporting the results of Moore et al. (1979) for a 14-GHz radar.

  19. Multidimensional radar picture (United States)

    Waz, Mariusz


    In marine navigation systems, the three-dimensional (3D) visualization is often and often used. Echosonders and sonars working in hydroacustic systems can present pictures in three dimensions. Currently, vector maps also offer 3D presentation. This presentation is used in aviation and underwater navigation. In the nearest future three-dimensional presentation may be obligatory presentation in displays of navigation systems. A part of these systems work with radar and communicates with it transmitting data in a digital form. 3D presentation of radar picture require a new technology to develop. In the first step it is necessary to compile digital form of radar signal. The modern navigation radar do not present data in three-dimensional form. Progress in technology of digital signal processing make it possible to create multidimensional radar pictures. For instance, the RSC (Radar Scan Converter) - digital radar picture recording and transforming tool can be used to create new picture online. Using RSC and techniques of modern computer graphics multidimensional radar pictures can be generated. The radar pictures mentioned should be readable for ECDIS. The paper presents a method for generating multidimensional radar picture from original signal coming from radar receiver.

  20. Investigation of microwave hologram techniques for application to earth resources (United States)

    Larson, R. W.; Bayma, R. W.; Evans, M. B.; Zelenka, J. S.; Doss, H. W.; Ferris, J. E.


    An investigation of microwave hologram techniques for application to earth resources was conducted during the period from June 1971 to November 1972. The objective of this investigation has been to verify the feasibility of an orbital microwave holographic radar experiment. The primary advantage of microwave hologram radar (MHR) over the side-looking airborne radar (SLAR) is that of aspect or viewing angle; the MHR has a viewing angle identical with that of photography and IR systems. The combination of these systems can thus extend the multispectral analysis concept to span optical through microwave wavelengths. Another advantage is the capacity of the MHR system to generate range contours by operating in a two-frequency mode. It should be clear that along-track resolution of an MHR can be comparable with SLAR systems, but cross-track resolution will be approximately an order of magnitude coarser than the range resolution achievable with an arbitrary SLAR system. An advantage of the MHR over the SLAR is that less average transmitter power is required. This reduction in power results from the much larger receiving apertures associated with MHR systems.

  1. HF Detecting Radar and Communication Frequency Selection System

    Institute of Scientific and Technical Information of China (English)


    Real time communication (RTC) frequency selecting system is used to the maximum usable frequency (MUF) between two communication points, then finds the best frequency between 0. 85 MUF and 1.0MUF. Determination of electric wave delay is mostly introduced, and of MUF values, the form of frequencycontrolling code and relative interface circuits in the frequency selecting system are introduced in detail.

  2. System of extraction of volatiles from soil using microwave processes (United States)

    Ethridge, Edwin C. (Inventor); Kaukler, William F. (Inventor)


    A device for the extraction and collection of volatiles from soil or planetary regolith. The device utilizes core drilled holes to gain access to underlying volatiles below the surface. Microwave energy beamed into the holes penetrates through the soil or regolith to heat it, and thereby produces vapor by sublimation. The device confines and transports volatiles to a cold trap for collection.

  3. Microwave radiometric system for biomedical 'true temperature' and emissivity measurements. (United States)

    Lüdeke, K M; Köhler, J


    A novel type of radiometer is described, which solves the problem of emissivity-(mismatch)-independent noise temperature measurements by simultaneous registration of an object's apparent temperature and its reflectivity with just one microwave receiver and real-time calculation of the object's emissivity and its actual temperature.

  4. Multiple solutions to dense systems in radar scattering using a preconditioned block GMRES solver

    Energy Technology Data Exchange (ETDEWEB)

    Boyse, W.E. [Advanced Software Resources, Inc., Santa Clara, CA (United States)


    Multiple right-hand sides occur in radar scattering calculations in the computation of the simulated radar return from a body at a large number of angles. Each desired angle requires a right-hand side vector to be computed and the solution generated. These right-hand sides are naturally smooth functions of the angle parameters and this property is utilized in a novel way to compute solutions an order of magnitude faster than LINPACK The modeling technique addressed is the Method of Moments (MOM), i.e. a boundary element method for time harmonic Maxwell`s equations. Discretization by this method produces general complex dense systems of rank 100`s to 100,000`s. The usual way to produce the required multiple solutions is via LU factorization and solution routines such as found in LINPACK. Our method uses the block GMRES iterative method to directly iterate a subset of the desired solutions to convergence.

  5. Forecast generation for real-time control of urban drainage systems using greybox modelling and radar rainfall

    DEFF Research Database (Denmark)

    Löwe, Roland; Mikkelsen, Peter Steen; Madsen, Henrik


    We present stochastic flow forecasts to be used in a real-time control setup for urban drainage systems. The forecasts are generated using greybox models with rain gauge and radar rainfall observations as input. Predictions are evaluated as intervals rather than just mean values. We obtain...... satisfactory predictions for the smaller catchment but rather large uncertainties for the bigger catchment where the applied storage cascade seems too simple. Radar rainfall introduces more uncertainty into the flow forecast model estimation. However, the radar rainfall forecasts also result in a slightly...

  6. An X-Band Radar System for Bathymetry and Wave Field Analysis in a Harbour Area

    Directory of Open Access Journals (Sweden)

    Giovanni Ludeno


    Full Text Available Marine X-band radar based systems are well tested to provide information about sea state and bathymetry. It is also well known that complex geometries and non-uniform bathymetries provide a much bigger challenge than offshore scenarios. In order to tackle this issue a retrieval method is proposed, based on spatial partitioning of the data and the application of the Normalized Scalar Product (NSP, which is an innovative procedure for the joint estimation of bathymetry and surface currents. The strategy is then applied to radar data acquired around a harbour entrance, and results show that the reconstructed bathymetry compares well with ground truth data obtained by an echo-sounder campaign, thus proving the reliability of the whole procedure. The spectrum thus retrieved is then analysed to show the evidence of reflected waves from the harbour jetties, as confirmed by chain of hydrodynamic models of the sea wave field. The possibility of using a land based radar to reveal sea wave reflection is entirely new and may open up new operational applications of the system.

  7. Microphysical processes observed by X band polarimetric radars during the evolution of storm systems (United States)

    Xie, Xinxin; Evaristo, Raquel; Troemel, Silke; Simmer, Clemens


    Polarimetric radars are now widely used for characterizing storm systems since they offer significant information for the improvement for atmospheric models and numerical weather prediction. Their observations allow a detailed insight into macro- and micro-physical processes during the spatial and temporal evolution of storm systems. In the frame of the initiative for High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2), which focuses on improving the accuracy of climate models in relation to cloud and precipitation processes, the HD(CP)2 Observational Prototype Experiment (HOPE) was designed to provide a critical model evaluation at scales covered by Large Eddy Simulation (LES) models, which in turn will be used to better understand sub-grid variability and microphysical properties and processes parameterized by larger scale models. Three X-band polarimetric radars deployed in Bonn (BoXPol) and in the vicinity of Juelich (JuXPol and KiXPol), Germany, were operated together with other instruments during the HOPE campaign, in order to obtain a holistic view of precipitation systems covering both macro- and microscopic processes. Given the variability of polarimetric moments observed by polarimetric radars, the corresponding microphysical processes occurring during the development of storm cells thus can be inferred accordingly. This study focuses on the microscopic processes of storm systems which were observed by RHI (range-height indicator) scans of the three X band radars. The two frequently observed microphysical processes during the HOPE campaign, coalescence and differential sedimentation, will be shown, and the evolution of droplet size distributions (DSDs) will be also analyzed. The associated DSDs which are retrieved using radar measured polarimetric moments are further verified by the polarimetric forward operator where the assumptions of non-spherical hydrometeors have been embedded. The results indicate that the estimated

  8. First Measurements of Polar Mesospheric Summer Echoes by a Tri-static Radar System (United States)

    La Hoz, C.


    Polar Mesospheric Summer Echoes (PMSE) have been observed for the first time by a tri-static radar system comprising the EISCAT VHF (224 MHz, 0.67 m Bragg wavelength) active radar in Tromso (Norway) and passive receiving stations in Kiruna, (Sweden) and Sodankyla (Finland). The antennas at the receiving stations, originally part of the EISCAT tri-static UHF radar system at 930 MHz, have been refitted with new feeder systems at the VHF frequency of the transmitter in Tromso. The refitted radar system opens new opportunities to study PMSE for its own sake and as a tracer of the dynamics of the polar mesosphere, a region that is difficult to investigate by other means. The measurements show that very frequently both remote receiving antennas detect coherent signals that are much greater than the regular incoherent scattering due to thermal electrons and coinciding in time and space with PMSE measured by the transmitter station in Tromso. This represents further evidence that PMSE is not aspect sensitive, as was already indicated by a less sensitive radar system in a bi-static configuration, and implying that the underlying atmospheric turbulence, at least at sub-meter scales, is isotropic in agreement with Kolmogorov's hypothesis. Measurements also show that the vertical rate of fall of persistent features of PMSE is the same as the vertical line of sight velocity inferred from the doppler shift of the PMSE signals. This equivalence forms the basis for using PMSE as a tracer of the dynamics of the background mesosphere. Thus, it is possible to measure the 3-dimensional velocity field in the PMSE layer over the intersection volume of the three antennas. Since the signals have large signal-to-noise ratios (up to 30 dB), the inferred velocities have high accuracies and good time resolutions. This affords the possibility to make estimates of momentum flux in the mesosphere deposited by overturning gravity waves. Gravity wave momentum flux is believed to be the engine of a

  9. Effects of 900-MHz microwave radiation on gamma-ray-induced damage to mouse hematopoietic system. (United States)

    Cao, Yi; Xu, Qian; Jin, Zong-Da; Zhang, Jun; Lu, Min-Xia; Nie, Ji-Hua; Tong, Jian


    Exposure of humans simultaneously to microwave and gamma-ray irradiation may be a commonly encountered phenomenon. In a previous study data showed that low-dose microwave radiation increased the survival rate of mice irradiated with 8Gy gamma-ray; however, the mechanisms underlying these findings remain unclear. Consequently, studies were undertaken to examine the effects of microwave exposure on hematopoietic system adversely altered by gamma-ray irradiation in mice. Preexposure to low-dose microwaves attenuated the damage produced by gamma-ray irradiation as evidenced by less severe pathological alterations in bone marrow and spleen. The protective effects of microwaves were postulated to be due to up-expression of some hematopoietic growth factors, stimulation of proliferation of the granulocyte-macrophages in bone marrow, and inhibition of the gamma-ray induced suppression of hematopoietic stem cells/hematopoietic progenitor cells. Data thus indicate that prior exposure to microwaves may be beneficial in providing protection against injuries produced by gamma-ray on the hematopoietic system in mice.

  10. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers. (United States)

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A


    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  11. Radar observations of individual rain drops in the free atmosphere. (United States)

    Schmidt, Jerome M; Flatau, Piotr J; Harasti, Paul R; Yates, Robert D; Littleton, Ricky; Pritchard, Michael S; Fischer, Jody M; Fischer, Erin J; Kohri, William J; Vetter, Jerome R; Richman, Scott; Baranowski, Dariusz B; Anderson, Mark J; Fletcher, Ed; Lando, David W


    Atmospheric remote sensing has played a pivotal role in the increasingly sophisticated representation of clouds in the numerical models used to assess global and regional climate change. This has been accomplished because the underlying bulk cloud properties can be derived from a statistical analysis of the returned microwave signals scattered by a diverse ensemble comprised of numerous cloud hydrometeors. A new Doppler radar, previously used to track small debris particles shed from the NASA space shuttle during launch, is shown to also have the capacity to detect individual cloud hydrometeors in the free atmosphere. Similar to the traces left behind on film by subatomic particles, larger cloud particles were observed to leave a well-defined radar signature (or streak), which could be analyzed to infer the underlying particle properties. We examine the unique radar and environmental conditions leading to the formation of the radar streaks and develop a theoretical framework which reveals the regulating role of the background radar reflectivity on their observed characteristics. This main expectation from theory is examined through an analysis of the drop properties inferred from radar and in situ aircraft measurements obtained in two contrasting regions of an observed multicellular storm system. The observations are placed in context of the parent storm circulation through the use of the radar's unique high-resolution waveforms, which allow the bulk and individual hydrometeor properties to be inferred at the same time.

  12. Optimal waveform-based clutter suppression algorithm for recursive synthetic aperture radar imaging systems (United States)

    Zhu, Binqi; Gao, Yesheng; Wang, Kaizhi; Liu, Xingzhao


    A computational method for suppressing clutter and generating clear microwave images of targets is proposed in this paper, which combines synthetic aperture radar (SAR) principles with recursive method and waveform design theory, and it is suitable for SAR for special applications. The nonlinear recursive model is introduced into the SAR operation principle, and the cubature Kalman filter algorithm is used to estimate target and clutter responses in each azimuth position based on their previous states, which are both assumed to be Gaussian distributions. NP criteria-based optimal waveforms are designed repeatedly as the sensor flies along its azimuth path and are used as the transmitting signals. A clutter suppression filter is then designed and added to suppress the clutter response while maintaining most of the target response. Thus, with fewer disturbances from the clutter response, we can generate the SAR image with traditional azimuth matched filters. Our simulations show that the clutter suppression filter significantly reduces the clutter response, and our algorithm greatly improves the SINR of the SAR image based on different clutter suppression filter parameters. As such, this algorithm may be preferable for special target imaging when prior information on the target is available.

  13. Advanced system model for 1574-nm imaging, scannerless, eye-safe laser radar (United States)

    Schael, Ulrich; Rothe, Hendrik


    Laser radar based on gated viewing uses narrow laser pulses to illuminate a whole scene for direct (incoherent) detection. Due to the time of flight principle and a very fast shutter with precisely controlled delay time, only light reflected in the range R (range slice ΔR) is detected by a camera. Scattered light which reaches the shutter outside a given exposure time (gate) is suppressed. Hence, it is possible to "look" along the optical axis through changing atmospheric transmissions (rain, haze, fog, snow). For each laser pulse, the grey value image ES(x,y) of the camera is captured by a framegrabber for subsequent evaluation. Image sequences from these laser radar systems are ideally suited to recognize objects, because of the automatic contrast generation of the technology. Difficult object recognition problems, detection, target tracking, or obstacle avoidance at bad weather conditions are favorite applications. In this paper we discuss improvements in the system modelling and simulation of our laser radar system. Formerly the system performance was calculated for the whole system using the signal-to-noise ratio (SNR), leading to a general estimation of the maximum range of target detection. Changing to a pixel oriented approach, we are now able to study the system response for targets with arbitrary two and even three dimensional form. We take into account different kinds of target reflectivity and the Gaussian nature of the illuminating laser spot. Hence it is possible to simulate gray value images (range slices) and calculate range images. This will lead to a modulation transfer function for the system in future. Finally, the theoretical considerations are compared with experimental results from indoor measurements.

  14. 微波辐射计在雷测数据折射误差修正中的应用%Application of microwave radiometer in the refractive error correction of radar measurement data

    Institute of Scientific and Technical Information of China (English)

    刘宗伟; 刘夫体; 甘友谊; 程显海


    Based on the study of atmospheric refractivity profile(RP)retrieved by microwave radiometer(MR),and compared with the radiosonde measurement data,the result indicates that the RP retrieved by MR could reflect the distribution of refractivity at the radar stations.By applying the two RP to calculate the radiowave refraction error of radar measurement data,the residual error shows that it is effective to apply the RP retrieved by MR to the radiowave refraction error correction of radar.It provides the theoretical and experimental basis for applying MR to high-precision maneuvering radar and improving the data processing precision.%基于用微波辐射计实时测量反演大气折射率剖面的研究,并与施放气象探空仪直接测量的结果进行比对,结果表明微波辐射计实时测量反演得到的大气折射率剖面能够较好地反映雷达站所在地的折射率分布。将反演和实测折射率剖面应用于某次雷达测量数据的电波折射误差计算中,由修正量比对残差分析结果得出:将微波辐射计实时测量反演的大气折射率剖面用于电波折射误差修正是有效的。为微波辐射计应用于高精度机动测控雷达,提高测量数据处理的精度提供了理论和试验依据。

  15. Snow monitoring using microwave radars


    Koskinen, Jarkko


    Remote sensing has proven its usefulness in various applications. For mapping, land-use classification and forest monitoring optical satellite and airborne images are used operationally. However, this is not the case with snow monitoring. Currently only ground-based in situ and weather measurements are used operationally for snow monitoring in Finland. Ground measurements are conducted once a month on special snow courses. These measurements are used to update the hydrological model that simu...

  16. Novel RF and microwave components employing ferroelectric and solid-state tunable capacitors for multi-functional wireless communication systems (United States)

    Tombak, Ali

    The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF/microwave

  17. A bat inspired technique for clutter reduction in radar sounder systems (United States)

    Carrer, L.; Bruzzone, L.


    Radar Sounders are valuable instruments for subsurface investigation. They are widely employed for the study of planetary bodies around the solar system. Due to their wide antenna beam pattern, off-nadir surface reflections (i.e. clutter) of the transmitted signal can compete with echoes coming from the subsurface thus masking them. Different strategies have been adopted for clutter mitigation. However, none of them proved to be the final solution for this specific problem. Bats are very well known for their ability in discriminating between a prey and unwanted clutter (e.g. foliage) by effectively employing their sonar. According to recent studies, big brown bats can discriminate clutter by transmitting two different carrier frequencies. Most interestingly, there are many striking analogies between the characteristics of the bat sonar and the one of a radar sounder. Among the most important ones, they share the same nadir acquisition geometry and transmitted signal type (i.e. linear frequency modulation). In this paper, we explore the feasibility of exploiting frequency diversity for the purpose of clutter discrimination in radar sounding by mimicking unique bats signal processing strategies. Accordingly, we propose a frequency diversity clutter reduction method based on specific mathematical conditions that, if verified, allow the disambiguation between the clutter and the subsurface signal to be performed. These analytic conditions depend on factors such as difference in central carrier frequencies, surface roughness and subsurface material properties. The method performance has been evaluated by different simulations of meaningful acquisition scenarios which confirm its clutter reduction effectiveness.

  18. Noise and LPI radar as part of counter-drone mitigation system measures (United States)

    Zhang, Yan (Rockee); Huang, Yih-Ru; Thumann, Charles


    With the rapid proliferation of small unmanned aerial systems (UAS) in the national airspace, small operational drones are being sometimes considered as a security threat for critical infrastructures, such as sports stadiums, military facilities, and airports. There have been many civilian counter-drone solutions and products reported, including radar and electromagnetic counter measures. For the current electromagnetic solutions, they are usually limited to particular type of detection and counter-measure scheme, which is usually effective for the specific type of drones. Also, control and communication link technologies used in even RC drones nowadays are more sophisticated, making them more difficult to detect, decode and counter. Facing these challenges, our team proposes a "software-defined" solution based on noise and LPI radar. For the detection, wideband-noise radar has the resolution performance to discriminate possible micro-Doppler features of the drone versus biological scatterers. It also has the benefit of more adaptive to different types of drones, and covertly detecting for security application. For counter-measures, random noise can be combined with "random sweeping" jamming scheme, to achieve the optimal balance between peak power allowed and the effective jamming probabilities. Some theoretical analysis of the proposed solution is provided in this study, a design case study is developed, and initial laboratory experiments, as well as outdoor tests are conducted to validate the basic concepts and theories. The study demonstrates the basic feasibilities of the Drone Detection and Mitigation Radar (DDMR) concept, while there are still much work needs to be done for a complete and field-worthy technology development.

  19. Reconstruction of the sea surface elevation from the analysis of the data collected by a wave radar system (United States)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco; Lugni, Claudio; Fucile, Fabio; Bulian, Gabriele


    X-band radar system is able to provide information about direction and intensity of the sea surface currents and dominant waves in a range of few kilometers from the observation point (up to 3 nautical miles). This capability, together with their flexibility and low cost, makes these devices useful tools for the sea monitoring either coastal or off-shore area. The data collected from wave radar system can be analyzed by using the inversion strategy presented in [1,2] to obtain the estimation of the following sea parameters: peak wave direction; peak period; peak wavelength; significant wave height; sea surface current and bathymetry. The estimation of the significant wave height represents a limitation of the wave radar system because of the radar backscatter is not directly related to the sea surface elevation. In fact, in the last period, substantial research has been carried out to estimate significant wave height from radar images either with or without calibration using in-situ measurements. In this work, we will present two alternative approaches for the reconstruction of the sea surface elevation from wave radar images. In particular, the first approach is based on the basis of an approximated version of the modulation transfer function (MTF) tuned from a series of numerical simulation, following the line of[3]. The second approach is based on the inversion of radar images using a direct regularised least square technique. Assuming a linearised model for the tilt modulation, the sea elevation has been reconstructed as a least square fitting of the radar imaging data[4]. References [1]F. Serafino, C. Lugni, and F. Soldovieri, "A novel strategy for the surface current determination from marine X-band radar data," IEEE Geosci.Remote Sens. Lett., vol. 7, no. 2, pp. 231-235, Apr. 2010. [2]Ludeno, G., Brandini, C., Lugni, C., Arturi, D., Natale, A., Soldovieri, F., Serafino, F. (2014). Remocean System for the Detection of the Reflected Waves from the Costa

  20. Compound Radar Approach for Breast Imaging. (United States)

    Byrne, Dallan; Sarafianou, Mantalena; Craddock, Ian J


    Multistatic radar apertures record scattering at a number of receivers when the target is illuminated by a single transmitter, providing more scattering information than its monostatic counterpart per transmission angle. This paper considers the well-known problem of detecting tumor targets within breast phantoms using multistatic radar. To accurately image potentially cancerous targets size within the breast, a significant number of multistatic channels are required in order to adequately calibrate-out unwanted skin reflections, increase the immunity to clutter, and increase the dynamic range of a breast radar imaging system. However, increasing the density of antennas within a physical array is inevitably limited by the geometry of the antenna elements designed to operate with biological tissues at microwave frequencies. A novel compound imaging approach is presented to overcome these physical constraints and improve the imaging capabilities of a multistatic radar imaging modality for breast scanning applications. The number of transmit-receive (TX-RX) paths available for imaging are increased by performing a number of breast scans with varying array positions. A skin calibration method is presented to reduce the influence of skin reflections from each channel. Calibrated signals are applied to receive a beamforming method, compounding the data from each scan to produce a microwave radar breast profile. The proposed imaging method is evaluated with experimental data obtained from constructed phantoms of varying complexity, skin contour asymmetries, and challenging tumor positions and sizes. For each imaging scenario outlined in this study, the proposed compound imaging technique improves skin calibration, clearly detects small targets, and substantially reduces the level of undesirable clutter within the profile.

  1. Ultra-wideband noise radar based on optical waveform generation (United States)

    Grodensky, Daniel; Kravitz, Daniel; Zadok, Avi


    A microwave-photonic, ultra-wideband (UWB) noise radar system is proposed and demonstrated. The system brings together photonic generation of UWB waveforms and fiber-optic distribution. The use of UWB noise provides high ranging resolution and better immunity to interception and jamming. Distribution over fibers allows for the separation the radar-operating personnel and equipment from the location of the front-end. The noise waveforms are generated using the amplified spontaneous emission that is associated with stimulated Brillouin scattering in a standard optical fiber, or with an erbium-doped fiber amplifier. Our experiments demonstrate a proof of concept for an integrated radar system, driven by optically generated UWB noise waveforms of more than 1 GHz bandwidth that are distributed over 10 km distance. The detection of concealed metallic object and the resolving of two targets with the anticipated ranging resolution are reported.

  2. Comparison of sea-level measurements using microwave radar and subsurface pressure gauge deployed in Mandovi estuary in Goa, Central West Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Mehra, P.; Agarvadekar, Y.; Luis, R.; Nadaf, L.

    measurement of atmospheric pressure along with sub-bottom absolute pressure gauge. The radar gauge has advantages over other type of gauges with regard to easy installation, maintenance and also sea level measurements are absolute and could be given precedence...

  3. Quantum dynamics of a microwave driven superconducting phase qubit coupled to a two-level system (United States)

    Sun, Guozhu; Wen, Xueda; Mao, Bo; Zhou, Zhongyuan; Yu, Yang; Wu, Peiheng; Han, Siyuan


    We present an analytical and comprehensive description of the quantum dynamics of a microwave resonantly driven superconducting phase qubit coupled to a microscopic two-level system (TLS), covering a wide range of the external microwave field strength. Our model predicts several interesting phenomena in such an ac driven four-level bipartite system including anomalous Rabi oscillations, high-contrast beatings of Rabi oscillations, and extraordinary two-photon transitions. Our experimental results in a coupled qubit-TLS system agree quantitatively very well with the predictions of the theoretical model.

  4. Flow Forecasting in Drainage Systems with Extrapolated Radar Rainfall Data and Auto Calibration on Flow Observations

    DEFF Research Database (Denmark)

    Thorndahl, Søren Liedtke; Grum, M.; Rasmussen, Michael R.;


    in a small urban catchment has been developed. The forecast is based on application of radar rainfall data, which by a correlation based technique, is extrapolated with a lead time up to two hours. The runoff forecast in the drainage system is based on a fully distributed MOUSE model which is auto......Forecasting of flows, overflow volumes, water levels, etc. in drainage systems can be applied in real time control of drainage systems in the future climate in order to fully utilize system capacity and thus save possible construction costs. An online system for forecasting flows and water levels......-calibrated on flow measurements in order to produce the best possible forecast for the drainage system at all times. The system shows great potential for the implementation of real time control in drainage systems and forecasting flows and water levels....

  5. Ocean wave parameters and spectrum estimated from single and dual high-frequency radar systems (United States)

    Hisaki, Yukiharu


    The high-frequency (HF) radar inversion algorithm for spectrum estimation (HIAS) can estimate ocean wave directional spectra from both dual and single radar. Wave data from a dual radar and two single radars are compared with in situ observations. The agreement of the wave parameters estimated from the dual radar with those from in situ observations is the best of the three. In contrast, the agreement of the wave parameters estimated from the single radar in which no Doppler spectra are observed in the cell closest to the in situ observation point is the worst among the three. Wave data from the dual radar and the two single radars are compared. The comparison of the wave heights estimated from the single and dual radars shows that the area sampled by the Doppler spectra for the single radar is more critical than the number of Doppler spectra in terms of agreement with the dual-radar-estimated wave heights. In contrast, the comparison of the wave periods demonstrates that the number of Doppler spectra observed by the single radar is more critical for agreement of the wave periods than the area of the Doppler spectra. There is a bias directed to the radar position in the single radar estimated wave direction.

  6. The status of parametric studies in radar agriculture (United States)

    Morain, S. A.


    Outlined is an information system based on the use of remote sensor data and the design, testing, and implementation of interpretation keys for agriculture. The task of crop identification from radar imagery emphasizes dichotomous keys and the effects of frequency, angular and other microwave dependencies of crops for use in discrimination. A mosaic is formulated from imagery and used to study acres in wheat for spread of circular irrigation, spread of crops, and other phenomena.

  7. Fusing Laser and Radar Data for Enhanced Situation Awareness


    Eliasson, Emanuel


    With an increasing traffic intensity the demands on vehicular safety is higher than ever before. Active safety systems that have been developed recent years are a response to that. In this master thesis Sensor Fusion is used to combine information from a laser scanner and a microwave radar in order to get more information about the surroundings in front of a vehicle. The Extended Kalman Filter method has been used to fuse the information from the sensors. The process model consists partly of ...

  8. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band (United States)

    Kelly, Kenneth C.; Huang, John


    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L- Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  9. Nonreciprocal conversion between microwave and optical photons in electro-optomechanical systems

    CERN Document Server

    Xu, Xun-Wei; Chen, Ai-Xi; Liu, Yu-xi


    We propose to demonstrate nonreciprocal conversion between microwave photons and optical photons in an electro-optomechanical system where a microwave mode and an optical mode are coupled indirectly via two non-degenerate mechanical modes. The nonreciprocal conversion is obtained in the broken time-reversal symmetry regime, where the conversion of photons from one frequency to the other is enhanced for constructive quantum interference while the conversion in the reversal direction is suppressed due to destructive quantum interference. It is interesting that the nonreciprocal response between the microwave and optical modes in the electro-optomechanical system appears at two different frequencies with opposite directions. The proposal can be used to realize nonreciprocal conversion between photons of any two distinctive modes with different frequencies. Moreover, the electro-optomechanical system can also be used to construct a three-port circulator for three optical modes with distinctively different frequen...

  10. Ground-based radar reflectivity mosaic of mei-yu precipitation systems over the Yangtze River-Huaihe River basins (United States)

    Luo, Yali; Qian, Weimiao; Gong, Yu; Wang, Hongyan; Zhang, Da-Lin


    The 3D radar reflectivity produced by a mosaic software system, with measurements from 29 operational weather radars in the Yangtze River-Huaihe River Basins (YRHRB) during the mei-yu season of 2007, is compared to coincident TRMM PR observations in order to evaluate the value of the ground-based radar reflectivity mosaic in characterizing the 3D structures of mei-yu precipitation. Results show reasonable agreement in the composite radar reflectivity between the two datasets, with a correlation coefficient of 0.8 and a mean bias of -1 dB. The radar mosaic data at constant altitudes are reasonably consistent with the TRMM PR observations in the height range of 2-5 km, revealing essentially the same spatial distribution of radar echo and nearly identical histograms of reflectivity. However, at altitudes above 5 km, the mosaic data overestimate reflectivity and have slower decreasing rates with height compared to the TRMM PR observations. The areas of convective and stratiform precipitation, based on the mosaic reflectivity distribution at 3-km altitude, are highly correlated with the corresponding regions in the TRMM products, with correlation coefficients of 0.92 and 0.97 and mean relative differences of -7.9% and -2.5%, respectively. Finally, the usefulness of the mosaic reflectivity at 3-km altitude at 6-min intervals is illustrated using a mesoscale convective system that occurred over the YRHRB.

  11. Through-the-Wall Localization of a Moving Target by Two Independent Ultra Wideband (UWB Radar Systems

    Directory of Open Access Journals (Sweden)

    Jana Rovňáková


    Full Text Available In the case of through-the-wall localization of moving targets by ultra wideband (UWB radars, there are applications in which handheld sensors equipped only with one transmitting and two receiving antennas are applied. Sometimes, the radar using such a small antenna array is not able to localize the target with the required accuracy. With a view to improve through-the-wall target localization, cooperative positioning based on a fusion of data retrieved from two independent radar systems can be used. In this paper, the novel method of the cooperative localization referred to as joining intersections of the ellipses is introduced. This method is based on a geometrical interpretation of target localization where the target position is estimated using a properly created cluster of the ellipse intersections representing potential positions of the target. The performance of the proposed method is compared with the direct calculation method and two alternative methods of cooperative localization using data obtained by measurements with the M-sequence UWB radars. The direct calculation method is applied for the target localization by particular radar systems. As alternative methods of cooperative localization, the arithmetic average of the target coordinates estimated by two single independent UWB radars and the Taylor series method is considered.

  12. X-Band wave radar system for monitoring and risk management of the coastal infrastructures (United States)

    Ludeno, Giovanni; Soldovieri, Francesco; Serafino, Francesco


    waves from the coastal infrastructures, e.g. from the harbor jetties. In fact, the reflected waves may significantly complicate the harbour activities (e.g., berthing operations), as they interfere with the oncoming waves thus creating a confused sea [2]. References [1] G. Ludeno, C. Brandini, C. Lugni, D. Arturi, A. Natale, F. Soldovieri, B. Gozzini, F. Serafino, "Remocean System for the Detection of the Reflected Waves from the Costa Concordia Ship Wreck", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol.7, no.3, pp.3011-3018, July 2014. [2] G. Ludeno, F. Reale, F. Dentale, E. Pugliese Carratelli, A. Natale, F. Soldovieri, F. Serafino "An X-Band Radar System for Bathymetry and Wave Field Analysis in Harbor Area", Sensors, Vol.15, no.1, pp. 1691-1707, January 2015. [3] F. Raffa, G. Ludeno, B. Patti, F. Soldovieri, S. Mazzola, and F. Serafino, "X-band wave radar for coastal upwelling detection off the southern coast of Sicily.", Journal of Atmospheric and Oceanic Technology, January 2017, Vol. 34, No. 1, Published online on 22 Dec 2016.

  13. Passive and active RF-microwave circuits course and exercises with solutions

    CERN Document Server

    Jarry, Pierre


    Microwave and radiofrequency (RF) circuits play an important role in communication systems. Due to the proliferation of radar, satellite, and mobile wireless systems, there is a need for design methods that can satisfy the ever increasing demand for accuracy, reliability, and fast development times. This book explores the principal elements for receiving and emitting signals between Earth stations, satellites, and RF (mobile phones) in four parts; the theory and realization of couplers, computation and realization of microwave and RF filters, amplifiers and microwave and RF oscillators. Pas

  14. Research of radar microwave on T-cell and blood cell of offiecers and soldiers in the radar station%微波辐射对雷达官兵T细胞亚群和血细胞的影响

    Institute of Scientific and Technical Information of China (English)

    罗春生; 罗显荣; 马聪暖


    目的:调查雷达微波对T淋巴细胞和外周血细胞的影响。方法检测雷达官兵和非雷达官兵各44名外周血T细胞亚群和血细胞计数。结果雷达兵组CD4+细胞百分比(46�80±7�95)%明显低于对照组(53�44±7�05)%,差异有统计学意义(P<0�01)。雷达兵组CD4+细胞计数(700�88±167�81)个/μL明显低于对照组(823�44±315�66)个/μL,差异有统计学意义(P<0�05)。CD4+/CD8+雷达兵组(1�10±0�36)明显低于对照组(1�37±0�41),差异有统计学意义(P<0�01)。雷达兵组血红蛋白(134�9±24�05)g/L低于对照组(148�7±11�20)g/L,差异有统计学意义(P<0�01)。结论雷达微波可能影响雷达官兵的细胞免疫功能和血红蛋白。%Objective To survey the effect of microwave of radar on T⁃cell and blood cell. Methods The T⁃cell and blood cell were determined in 44 officers of radar stations(radar group) and 44 officers who did not work in the radar stations(control group). Results The CD4+ in the radar group was significantly lower than that of the control group [(46.80±7.95)% vs. (53.44±7.05)%, P<0.01]), CD4+ were significantly lower than that of the control group [(700.88±167.81)/μL vs. (823.44±315.66)/μL, P<0.05], and CD4+/CD8+ ratio were significantly lower than that of the control group [(1.10±0.36) vs. (1.37±0.41), P<0.01]. The Hb in the radar group was also significantly decrease than that of the control group [(134.9±24.05)g/L vs. (148.7±11.20)g/L, P<0.01)]. Conclusion The microwave of radar may affect function of cellular immunity and hemoglobin of soldiers who worked in radar stations.

  15. Radar-based alert system to operate a sewerage network: relevance and operational effectiveness after several years of use. (United States)

    Faure, D; Payrastre, O; Auchet, P


    Since January 2000, the sewerage network of a very urbanised catchment area in the Greater Nancy Urban Community has been operated according to the alarms generated in real time by a storm alert system using weather radar data. This alert system is based on an automatic identification of intense rain cells in the radar images. This paper presents the characteristics of this alert system and synthesises the main results of two complementary studies realised in 2002 in order to estimate the relevance and the operational effectiveness of the alert system. The first study consisted in an off-line analysis of almost 50,000 intense rain cells detected in four years of historical radar data. The second study was an analysis of the experience feedback after two years of operational use of this alert system. The results of these studies are discussed in function of the initial operational objectives.

  16. Versatile microwave-driven trapped ion spin system for quantum information processing. (United States)

    Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S; Wölk, Sabine; Wunderlich, Christof


    Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform-an essential building block for many quantum algorithms-is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer.

  17. Launching of Microwaves into a Dense Plasma in Open Confinement Systems

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)


    A study is made of the propagation of microwave beams in a plasma and their passage through the critical surface. It is shown that, in order for microwaves to penetrate deeply into a dense plasma, it is necessary to launch them through a magnetic mirror at a slight angle to the device axis. The characteristic features of ray trajectories are analyzed both ahead of and behind the critical surface. In a dense plasma behind the critical surface, microwaves tend to run out of the axial region toward the plasma periphery. This tendency may be unfavorable for heating plasmas whose radial density profiles are strongly peaked about the system axis. The problems under analysis are particularly important for assessing the prospects for ECR heating of dense plasmas in open confinement systems.

  18. Micro-Doppler Estimation and Analysis of Slow Moving Objects in Forward Scattering Radar System

    Directory of Open Access Journals (Sweden)

    Raja Syamsul Azmir Raja Abdullah


    Full Text Available Micro-Doppler signature can convey information of detected targets and has been used for target recognition in many Radar systems. Nevertheless, micro-Doppler for the specific Forward Scattering Radar (FSR system has yet to be analyzed and investigated in detail; consequently, information carried by the micro-Doppler in FSR is not fully understood. This paper demonstrates the feasibility and effectiveness of FSR in detecting and extracting micro-Doppler signature generated from a target’s micro-motions. Comprehensive theoretical analyses and simulation results followed by experimental investigations into the feasibility of using the FSR for detecting micro-Doppler signatures are presented in this paper. The obtained results verified that the FSR system is capable of detecting micro-Doppler signature of a swinging pendulum placed on a moving trolley and discriminating different swinging speeds. Furthermore, human movement and micro-Doppler from hand motions can be detected and monitored by using the FSR system which resembles a potential application for human gait monitoring and classification.

  19. Digital Terrestrial Video Broadcast Interference Suppression in Forward-Looking Ground Penetrating Radar Systems (United States)

    Rial, F. I.; Mendez-Rial, Roi; Lawadka, Lukasz; Gonzalez-Huici, Maria A.


    In this paper we show how radio frequency interference (RFI) generated by digital video broadcasting terrestrial and digital audio broadcasting transmitters can be an important noise source for forward-looking ground penetrating radar (FLGPR) systems. Even in remote locations the average interference power sometimes exceeds ultra-wideband signals by many dB, becoming the limiting factor in the system sensitivity. The overall problem of RFI and its impact in GPR systems is briefly described and several signal processing approaches to removal of RFI are discussed. These include spectral estimation and coherent subtraction algorithms and various filter approaches which have been developed and applied by the research community in similar contexts. We evaluate the performance of these methods by simulating two different scenarios submitted to real RFI acquired with a FLGPR system developed at the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR), (GER). The effectiveness of these algorithms in removing RFI is presented using some performance indices after suppression.

  20. Development of radio acoustic sounding system (RASS) with Gadanki MST radar – first results


    T. V. Chandrasekhar Sarma; Narayana Rao, D.; Furumoto, J.; Tsuda, T.


    A high-power acoustic exciter was designed and developed for the Gadanki MST Radar to facilitate observations in the Radio Acoustic Sounding System (RASS) mode. Sweep range of acoustic signal frequencies was set to 94–125 Hz so as to satisfy Bragg matching condition for temperature range of −90°–40°C between surface and the tropopause (about 17 km). Raytracing of acoustic wave propagation was used to predict the antenna beam directions along which optimum RASS echoes could be ob...

  1. The PARAFAC-MUSIC Algorithm for DOA Estimation with Doppler Frequency in a MIMO Radar System

    Directory of Open Access Journals (Sweden)

    Nan Wang


    Full Text Available The PARAFAC-MUSIC algorithm is proposed to estimate the direction-of-arrival (DOA of the targets with Doppler frequency in a monostatic MIMO radar system in this paper. To estimate the Doppler frequency, the PARAFAC (parallel factor algorithm is firstly utilized in the proposed algorithm, and after the compensation of Doppler frequency, MUSIC (multiple signal classification algorithm is applied to estimate the DOA. By these two steps, the DOA of moving targets can be estimated successfully. Simulation results show that the proposed PARAFAC-MUSIC algorithm has a higher accuracy than the PARAFAC algorithm and the MUSIC algorithm in DOA estimation.

  2. Self-Oscillations of a spontaneous electric field in a nonequilibrium two-dimensional electron system under microwave irradiation (United States)

    Dorozhkin, S. I.


    Self-oscillations of a microwave photovoltage with irregular interruptions have been discovered in the states with vanishing dc dissipation emerging in two-dimensional electron systems under microwave irradiation. The observed picture can be caused by transitions between a stable pole and a limiting cycle in the phase space of the systems (Andronov-Hopf bifurcation) that occur owing to fluctuations.

  3. The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal Air-Sea Interaction Experiment data (United States)

    Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk


    The Frontal Air-Sea Interaction Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the processes in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.

  4. Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: observing system simulation experiments

    Directory of Open Access Journals (Sweden)

    Chih-Chien Tsai


    Full Text Available This study develops a Doppler radar data assimilation system, which couples the local ensemble transform Kalman filter with the Weather Research and Forecasting model. The benefits of this system to quantitative precipitation nowcasting (QPN are evaluated with observing system simulation experiments on Typhoon Morakot (2009, which brought record-breaking rainfall and extensive damage to central and southern Taiwan. The results indicate that the assimilation of radial velocity and reflectivity observations improves the three-dimensional winds and rain-mixing ratio most significantly because of the direct relations in the observation operator. The patterns of spiral rainbands become more consistent between different ensemble members after radar data assimilation. The rainfall intensity and distribution during the 6-hour deterministic nowcast are also improved, especially for the first 3 hours. The nowcasts with and without radar data assimilation have similar evolution trends driven by synoptic-scale conditions. Furthermore, we carry out a series of sensitivity experiments to develop proper assimilation strategies, in which a mixed localisation method is proposed for the first time and found to give further QPN improvement in this typhoon case.

  5. Application of the thermoelectric MEMS microwave power sensor in a power radiation monitoring system (United States)

    Bo, Gao; Jing, Yang; Si, Jiang; Debo, Wang


    A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. Project supported by the National Natural Science Foundation of China (No. 11304158), the Province Natural Science Foundation of Jiangsu (No. BK20140890), the Open Research Fund of the Key Laboratory of MEMS of Ministry of Education, Southeast University (No. 3206005302), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Nos. NY213024, NY215139).

  6. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    Directory of Open Access Journals (Sweden)

    Van-Han Nguyen


    Full Text Available In indoor environments, the Global Positioning System (GPS and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  7. First Measurements of Aspect Sensitivity of Polar Mesospheric Summer Echoes by a Bistatic Radar System (United States)

    La Hoz, C.; Pinedo, H.; Havnes, O.; Kosch, M. J.; Senior, A.; Rietveld, M. T.


    Polar Mesospheric Summer Echoes (PMSE) have been observed for the first time by a bistatic radar system comprising the EISCAT VHF (224 MHz) active radar in Tromso (Norway) and the receiving EISCAT_3D demonstrator array located in Kiruna, (Sweden). The receiving system is 234 km southeast from the transmitting radar and its line of sight to the mesosphere above Tromso has an elevation angle of 21 degrees implying an aspect angle of the scattered signals in that direction of 69 degrees. This is the first time that a truly bistatic configuration has been employed to measure the angle dependence of the scattering mechanism of PMSE which otherwise has been measured only in monostatic configurations. The bistatic configuration is unencumbered by drawbacks of the monostatic configuration that cannot reach angles greater than about 20 degrees due to antenna beam pattern degradation and the use of models to extrapolate the angle dependence of the scattered signals. Strong scattering was observed over prolonged periods on several days by the demonstrator array in July of 2011. These measurements are at variance with previous aspect angle measurements that have reported aspect angles no greater than about 15 degrees. These results indicate that the turbulent irregularities that produce the scattering have a high degree of isotropy, which is more in line with Kolmogorov's hypothesis of a universal scaling of turbulence based on the assumption of homogeneity and isotropy in the inertial regime of turbulence which applies also to the Batchelor regime (due to large Schmidt numbers) believed to be the case for PMSE.

  8. Accounting for Hydrologic State in Ground-Penetrating Radar Classification Systems (United States)


    on ground - penetrating radar (GPR) signals, particularly those associated with landmines , and (2) investigate the potential for developing contextual... ground - penetrating radar (GPR) signals, particularly those associated with landmines , and (2) investigate the potential for developing contextual GPR...on ground - penetrating radar (GPR) signals, particularly those associated with landmines , and (2) investigate the potential for developing contextual

  9. MARSnet: Mission-aware Autonomous Radar Sensor Network for Future Combat Systems (United States)


    SNR of 8-radar RSN can gain \\. ldD smaller than 4-radar SNR to acheive the same PM = 10-3. The probability of false alarm of envelope detector in...Journal, pp. 159-169. Jan. 1986. [9] M. B. N. Butler. "Radar applications of SAW dispersive filters". IEE Proceedings, vol. 127, no. 2, pp. 118-124

  10. HERMES: a high-speed radar imaging system for inspection of bridge decks

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, S.G.


    Corrosion of rebar in concrete bridges causes subsurface cracks and is a major cause of structural degradation that necessitates repair or replacement. Early detection of corrosion effects can limit the location and extent of necessary repairs, while providing long-term information about the infrastructure status. Most current detection methods, however, are destructive of the road surface and require closing or restricting traffic while the tests are performed. A ground-penetrating radar imaging system has been designed and developed that will perform the nondestructive evaluation of road-bed cracking at traffic speeds; i.e., without the need to restrict traffic flow. The first-generation system (called the HERMES bridge inspector), consists of an offset-linear array of 64 impulse radar transceivers and associated electronics housed in a trailer. Computers in the trailer and in the towing vehicle control the data acquisition, processing, and display. Cross-road resolution is three centimeters at up to 30 cm in depth, while down-road resolution depends on speed; 3 cm below 20 mph up to 8 cm at 50 mph. A two-meter- wide path is inspected on each pass over the roadway. This paper, describes the design of this system, shows preliminary results, and lays out its deployment schedule.

  11. Advances in microwaves 4

    CERN Document Server

    Young, Leo


    Advances in Microwaves, Volume 4 covers some innovations in the devices and applications of microwaves. This volume contains three chapters and begins with a discussion of the application of microwave phasers and time delay elements as beam steering elements in array radars. The next chapter provides first an overview of the technical aspects and different types of millimeter waveguides, followed by a survey of their application to railroads. The last chapter examines the general mode of conversion properties of nonuniform waveguides, such as waveguide tapers, using converted Maxwell's equatio

  12. Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring

    Directory of Open Access Journals (Sweden)

    Domenico Zito


    Full Text Available A new system-on-a-chip radar sensor for next-generation wearable wireless interface applied to the human health care and safeguard is presented. The system overview is provided and the feasibility study of the radar sensor is presented. In detail, the overall system consists of a radar sensor for detecting the heart and breath rates and a low-power IEEE 802.15.4 ZigBee radio interface, which provides a wireless data link with remote data acquisition and control units. In particular, the pulse radar exploits 3.1–10.6 GHz ultra-wideband signals which allow a significant reduction of the transceiver complexity and then of its power consumption. The operating principle of the radar for the cardiopulmonary monitoring is highlighted and the results of the system analysis are reported. Moreover, the results obtained from the building-blocks design, the channel measurement, and the ultra-wideband antenna realization are reported.

  13. Phase-sensitive microwave optical double resonance in an N system (United States)

    Preethi, T. M.; Manukumara, M.; Asha, K.; Vijay, J.; Roshi, D. A.; Narayanan, A.


    An experimental investigation of a Microwave Optical Double Resonance (MODR) phenomenon is carried out in a four level N system of 85Rb atoms, at room temperature. This N system consists of a closed three level Λ subsystem irradiated with two optical fields and one microwave field. The MODR response is investigated in a separate probe field which drives a resonant transition from one of the ground states of the Λ system to a fourth level. We find that, under two-photon resonance condition for the optical fields, the MODR becomes a function of the relative phase between the beat frequency envelop of the optical fields and the microwave field. The variation in MODR is shown to be correlated with the phase-sensitive variation of the EIT phenomenon seen in such microwave-connected closed Λ systems. We envisage that this phase-sensitive variation in the MODR, can be utilized for a phase-sensitive manipulation of non-linear optical phenomena in N systems.

  14. Radar and wind turbines; Radar en windturbines

    Energy Technology Data Exchange (ETDEWEB)

    Van Doorn, H.


    In the last years the developments of wind parks were hampered because of their possible effect on the radar for observation of air traffic. Work is currently being done on a new assessment model for wind turbines under the auspices of the steering group National Security for the military radar systems. Air traffic control Netherlands (LVNL) will look at the options for civil radars to join in. [Dutch] In de afgelopen jaren zijn windparkontwikkelingen onder meer belemmerd vanwege mogelijke effecten op radar voor de waarneming van luchtverkeer. Onder auspicien van de stuurgroep Nationale Veiligheid voor de militaire radarsystemen op land wordt gewerkt aan een nieuw beoordelingsmodel voor windturbines. De Luchtverkeersleiding Nederland (LVNL) zal bezien in hoeverre de civiele radars hierbij kunnen aansluiten.

  15. Terahertz and Microwave Devices Based on the Photo-Excited Low Dimensional Electronic System (United States)


    condition that is realized by photo-exciting the system with electromagnetic waves in the microwave and THz parts of the radiation spectrum, in the...electron system. This research aimed to advance the understanding of such radiation -induced phenomena in the two-dimensional electron system, while helping...exciting a high mobility low dimensional electron system. This research aimed to advance the understanding of such radiation -induced phenomena in the two

  16. High-power microwave development in Russia (United States)

    Gauthier, Sylvain


    This is a survey of Russian research and development in high-power microwave (HPM) sources. It emphasizes those sources of nanoseconds pulse duration time which have potential weapon as well as radar applications. It does not cover the whole range of Russian HPM research and development but concentrates on those aspects which may lead to military applications. Russian investigators have achieved many world firsts in HPM generation; for example, a multiwave Cerenkov generator with a peak output power of 15 gigawatts. Their successes are based on their impressive capability in pulsed power technology which has yielded high-current generators of terawatt peak power. They have transformed the energy of these currents into microwave radiation using tubes of both conventional and novel designs exploiting relativistic electron beams. Recently, the development of high-current mini-accelerators has moved relativistic electron-beam (REB) HPM generation out of the laboratory and enabled the development of deployable military systems with peak powers in the gigawatt range. As a result, they now see development of a REB-based radar systems as one of the most promising directions in radar systems. Details of such a system are described and the implications for HPM weapons are considered.

  17. A contactless microwave-based diagnostic tool for high repetition rate laser systems

    CERN Document Server

    Braggio, C


    We report on a novel electro-optic device for the diagnostics of high repetition rate laser systems. It is composed of a microwave receiver and of a second order nonlinear crystal, whose irradiation with a train of short laser pulses produces a time-dependent polarization in the crystal itself as a consequence of optical rectification. This process gives rise to the emission of microwave radiation that is detected by a receiver and is analyzed to infer the repetition rate and intensity of the pulses. We believe that this new method may overcome some of the limitations of photodetection techniques.

  18. Application of time reversal mirror technique in microwave-induced thermo-acoustic tomography system

    Institute of Scientific and Technical Information of China (English)


    Microwave-induced thermo-acoustic tomography (MITAT) is a promising technique with great potential in biomedical imaging. It has both the high contrast of the microwave imaging and the high resolution of the ultrasound imaging. In this paper, the proportional relationship between the absorbed microwave energy distribution and the induced ultrasound source distribution is derived. Further, the time reversal mirror (TRM) technique based on the pseudo-spectral time domain (PSTD) method is applied to MITAT system. The simulation results show that high contrast and resolution can be achieved by the TRM technique based on PSTD method even for the received signals with very low signal-to-noise ratio (SNR) and the model parameter with random fluctuation.

  19. On the combined use of radar systems for multi-scale imaging of transport infrastructures (United States)

    Catapano, I.; Bavusi, M.; Loperte, A.; Crocco, L.; Soldovieri, F.


    Ground Penetrating Radar (GPR) systems are worth to be considered as in situ non invasive diagnostic tools capable of assessing stability and integrity of transport infrastructures. As a matter of fact, by exploiting the interactions among probing electromagnetic waves and hidden objects, they provide images of the inner status of the spatial region under test from which infer risk factors, such as deformations and oxidization of the reinforcement bars as well as water infiltrations, crack and air gaps. With respect to the assessment of concrete infrastructures integrity, the reconstruction capabilities of GPR systems have been widely investigated [1,2]. However, the demand for diagnostic tools capable of providing detailed and real time information motivates the design and the performance evaluation of novel technologies and data processing methodologies aimed not only to effectively detect hidden anomalies but also to estimate their geometrical features. In this framework, this communication aims at investigating the advantages offered by the joint use of two GPR systems both of them equipped with a specific tomographic imaging approach. The first considered system is a time domain GPR equipped with a 1.5GHz shielded antenna, which is suitable for quick and good resolution surveys of the shallower layers of the structure. As second system, the holographic radar Rascan-4/4000 [3,4] is taken into account, due to its capability of providing holograms of hidden targets from the amplitude of the interference signal arising between the backscattered field and a reference signal. The imaging capabilities of both the GPR tools are enhanced by means of model based data processing approaches, which afford the imaging as a linear inverse scattering problem. Mathematical details on the inversion strategies will be provided at the conference. The combined use of the above GPR systems allows to perform multi-resolution surveys of the region under test, whose aim is, first of

  20. Trilateration-based localization algorithm for ADS-B radar systems (United States)

    Huang, Ming-Shih

    Rapidly increasing growth and demand in various unmanned aerial vehicles (UAV) have pushed governmental regulation development and numerous technology research advances toward integrating unmanned and manned aircraft into the same civil airspace. Safety of other airspace users is the primary concern; thus, with the introduction of UAV into the National Airspace System (NAS), a key issue to overcome is the risk of a collision with manned aircraft. The challenge of UAV integration is global. As automatic dependent surveillance-broadcast (ADS-B) system has gained wide acceptance, additional exploitations of the radioed satellite-based information are topics of current interest. One such opportunity includes the augmentation of the communication ADS-B signal with a random bi-phase modulation for concurrent use as a radar signal for detecting other aircraft in the vicinity. This dissertation provides detailed discussion about the ADS-B radar system, as well as the formulation and analysis of a suitable non-cooperative multi-target tracking method for the ADS-B radar system using radar ranging techniques and particle filter algorithms. In order to deal with specific challenges faced by the ADS-B radar system, several estimation algorithms are studied. Trilateration-based localization algorithms are proposed due to their easy implementation and their ability to work with coherent signal sources. The centroid of three most closely spaced intersections of constant-range loci is conventionally used as trilateration estimate without rigorous justification. In this dissertation, we address the quality of trilateration intersections through range scaling factors. A number of well-known triangle centers, including centroid, incenter, Lemoine point (LP), and Fermat point (FP), are discussed in detail. To the author's best knowledge, LP was never associated with trilateration techniques. According our study, LP is proposed as the best trilateration estimator thanks to the

  1. REVS: a radar-based enhanced vision system for degraded visual environments (United States)

    Brailovsky, Alexander; Bode, Justin; Cariani, Pete; Cross, Jack; Gleason, Josh; Khodos, Victor; Macias, Gary; Merrill, Rahn; Randall, Chuck; Rudy, Dean


    Sierra Nevada Corporation (SNC) has developed an enhanced vision system utilizing fast-scanning 94 GHz radar technology to provide three-dimensional measurements of an aircraft's forward external scene topography. This threedimensional data is rendered as terrain imagery, from the pilot's perspective, on a Head-Up Display (HUD). The image provides the requisite "enhanced vision" to continue a safe approach along the flight path below the Decision Height (DH) in Instrument Meteorological Conditions (IMC) that would otherwise be cause for a missed approach. Terrain imagery is optionally fused with digital elevation model (DEM) data of terrain outside the radar field of view, giving the pilot additional situational awareness. Flight tests conducted in 2013 show that REVS™ has sufficient resolution and sensitivity performance to allow identification of requisite visual references well above decision height in dense fog. This paper provides an overview of the Enhanced Flight Vision System (EFVS) concept, of the technology underlying REVS, and a detailed discussion of the flight test results.

  2. Absolute negative conductivity in two-dimensional electron systems under microwave radiation


    Ryzhii, Victor


    We overview mechanisms of absolute negative conductivity in two-dimensional electron systems in a magnetic field irradiated with microwaves and provide plausible explanations of the features observed in recent experiments related to the so-called zero-resistance (zero-conductance) states.

  3. Investigation of Electromagnetic Properties of Multiparticle Systems in the Optical and Microwave Regions (United States)

    Yip, Wendy

    The goal of this work is to examine the electromagnetic properties of multiple particles ensembles in optical and microwave regions. Electromagnetic scattering problems of multi-particles systems appear in many research areas, including biomedical research problems. When a particle system becomes dense, multiple scattering between the particles need to be included in order to fully describe the response of the system to an EM wave. The generalized multiparticle Mie (GMM) solution is used to rigorously solve the Maxwell's equations for multi-particles systems. The algorithm accounts for multiple scattering effects by transforming the waves scattered by an individual particle to the incident waves of other spheres in the ensemble. In the optical region, light scattering from biological tissues can reveal structural changes in the tissues which can be a mean for disease diagnosis. A new Monte Carlo simulation method is introduced to study the effect of tissue structure on signals from two diagnostic probes, the polarization gating probe and low coherence enhanced back scattering probe (LEBS). In the microwave region, the study of electromagnetic properties with metallic nanoparticles can determine their potential as effective heating agents in microwave hyperthermia therapy. The investigation aims to study the dielectric properties of metallic nanoparticles and quantify the relationship between the characteristics of metallic nanoparticles and the heating effect. The finding should help optimize the design and use of metallic nanoparticles in hyperthermia treatment. In addition, the metallic nanoparticles are studied for their potential to be contrast agents for biological tissue in the microwave region.

  4. Leveraging microwave polarization information for calibration of a land data assimilation system (United States)

    This letter contributes a new approach to calibrating a tau-omega radiative transfer model coupled to a land surface model with low frequency (< 10 GHz) microwave brightness temperature (TB) observations. The problem of calibrating this system is generally poorlyposed because various parameter combi...

  5. Oil extraction from Scenedesmus obliquus using a continuous microwave system--design, optimization, and quality characterization. (United States)

    Balasubramanian, Sundar; Allen, James D; Kanitkar, Akanksha; Boldor, Dorin


    A 1.2 kW, 2450 MHz resonant continuous microwave processing system was designed and optimized for oil extraction from green algae (Scenedesmus obliquus). Algae-water suspension (1:1 w/w) was heated to 80 and 95°C, and subjected to extraction for up to 30 min. Maximum oil yield was achieved at 95°C and 30 min. The microwave system extracted 76-77% of total recoverable oil at 20-30 min and 95°C, compared to only 43-47% for water bath control. Extraction time and temperature had significant influence (pextraction yield. Oil analysis indicated that microwaves extracted oil containing higher percentages of unsaturated and essential fatty acids (indicating higher quality). This study validates for the first time the efficiency of a continuous microwave system for extraction of lipids from algae. Higher oil yields, faster extraction rates and superior oil quality demonstrate this system's feasibility for oil extraction from a variety of feedstock.

  6. Airport Surveillance Radar : Model 8 - (United States)

    Department of Transportation — The Airport Surveillance Radar Model 8 (ASR-8) is a short-range (60 nautical mile (nmi)), analog radar system used to detect and report the presence and location of...

  7. Airport Surveillance Radar : Model 7 - (United States)

    Department of Transportation — The Airport Surveillance Radar Model 7 (ASR-7) is a short-range (60 nautical miles (nmi)) analog radar system used to detect and report the presence and location of...

  8. Compilation and assessment of microwave bioeffects. Final report. A selective review of the literature on biological effects of microwaves in relation to the Satellite Power System (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D.R.; Ragan, H.A.; Rogers, L.E.; Guy, A.W.; Hjeresen, D.L.; Hinds, W.T.; Phillips, R.D.


    One of many alternate sources of electrical energy that are being considered by the Department of Energy is a microwave-mediated Satellite Power System (SPS). Once inserted into geosynchronous orbit at an altitude of more than 40,000 kilometers, a satellite would collect then convert the sun's energy to 2450-MHz microwaves, which would be beamed to the Earth's surface, where a rectifying antenna (rectenna) would convert the microwaves to electrical current suitable for industrial and domestic use. The expanse of each rectenna (about 10 by 13 kilometers), the power density of the continuous-wave microwave beam (approx. 23 mW/cm/sup 2/ at center, with fall off to 1 mW/cm/sup 2/ or less at the periphery of the rectenna), and the possibility that 20 or more satellite systems will eventually be operating, creates two sets of interrelated problems for biological/ecological assessment. These are 1) the effects of microwave fields of higher intensity on airborne biota (including human beings in aircraft) that may traffic the area above the rectenna and 2) the effects of virtually perpetual fields of much lower intensity on all forms of life at and beyond the rectennae's zone of exclusion. In this review, the scientific literature is examined, not only for biological effects that are pertinent to assessment of SPS, but for hiatuses of knowledge that will have to be filled before SPS can be vouched for operational safety.

  9. Interseismic deformation of the Shahroud fault system (NE Iran) from space-borne radar interferometry measurements (United States)

    Mousavi, Z.; Pathier, E.; Walker, R. T.; Walpersdorf, A.; Tavakoli, F.; Nankali, H.; Sedighi, M.; Doin, M.-P.


    The Shahroud fault system is a major active structure in the Alborz range of NE Iran whose slip rate is not well constrained despite its potential high seismic hazard. In order to constrain the slip rate of the eastern Shahroud fault zone, we use space-borne synthetic aperture radar interferometry with both ascending and descending Envisat data to determine the rate of interseismic strain accumulation across the system. We invert the slip rate from surface velocity measurements using a half-space elastic dislocation model. The modeling results are consistent with a left-lateral slip rate of 4.75 ± 0.8 mm/yr on the Abr and Jajarm, strands of the Shahroud fault, with a 10 ± 4 km locking depth. This is in good agreement with the 4-6 mm/yr of left-lateral displacement rate accumulated across the total Shahroud fault system obtained from GPS measurements.

  10. Passive Target Tracking in Non-cooperative Radar System Based on Particle Filtering

    Institute of Scientific and Technical Information of China (English)

    LI Shuo; TAO Ran


    We propose a target tracking method based on particle filtering(PF) to solve the nonlinear non-Gaussian target-tracking problem in the bistatic radar systems using external radiation sources. Traditional nonlinear state estimation method is extended Kalman filtering (EKF), which is to do the first level Taylor series extension. It will cause an inaccuracy or even a scatter estimation result on condition that there is either a highly nonlinear target or a large noise square-error. Besides, Kalman filtering is the optimal resolution under a Gaussian noise assumption, and is not suitable to the non-Gaussian condition. PF is a sort of statistic filtering based on Monte Carlo simulation that is using some random samples (particles) to simulate the posterior probability density of system random variables. This method can be used in any nonlinear random system. It can be concluded through simulation that PF can achieve higher accuracy than the traditional EKF.

  11. Analysis of the tolerance of compressive noise radar systems to multiplicative perturbations (United States)

    Shastry, Mahesh C.; Narayanan, Ram M.; Rangaswamy, Muralidhar


    Compressive noise radar imaging involves the inversion of a linear system using l1-based sparsity constraints. This linear system is characterized by the circulant system matrix generated by the transmit waveform. The imaging problem is solved using convex optimization. The characterization of imaging performance in the presence of additive noise and other random perturbations remains an important open problem. Computational studies designed to be generalizable suggest that uncertainties related to multiplicative noise adversely affect detection performance. Multiplicative noise occurs when the recorded transmit waveform is an inaccurate version of the actual transmitted signal. The actual transmit signal leaving the antenna is treated as the signal. If the recorded version is considered as a noisy version of this signal, then, generalizable numerical experiments show that the signal to noise ratio of the recorded signal should be greater than about 35 dB for accurate signal recovery.

  12. MIKON 94. International Microwave Conference. Invited papers, volume 3 (United States)

    Dufrene, Roman

    The following topics are discussed: (1) New trends and ideas in the fields of microwave technology; (2) Development of dual-reflector feed for the arecibo radio telescope, an overview; (3) Advanced microwave technology in modern communication satellites; (4) Differential methods of signal selection in microwave polarimetry; (5) Anticollision car radar in the mm-wave range with pseudo-noise code modulation and digital angle evaluation; (6) Industrial microwave sensors; Theory and applications of polarimetry in radar; (7) Basic theory of radar polarimetry-an engineering approach; (8) Microwave research in agriculture; (9) Wave approach to CAD noise analysis, modeling and measurement of microwave networks; (10) Advances in technology of microwave submicrometer devices and integrated circuits; (11) Recent advances in power amplifier design methodologies; (12) Chiral media: theory and applications for microwaves; (13) State and trends in time domain electromagnetic modelling using the TLM method; and (14) Microwave remote sensing of road surface during winter time.

  13. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya


    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  14. Development of a compact cylindrical reaction cavity for a microwave dielectric heating system. (United States)

    Kim, Myungsik; Kim, Kwangsoo


    This paper describes a compact reaction cavity for a microwave-assisted synthesis system. The microwave dielectric heating is a key technology to improve synthesizing yield, however, the large size of the microwave generation and reaction parts in an all-in-one system is a major obstacle when applying the technique to various systems, of which the installation space is limited. For this particular problem, a compact stand-alone cylindrical reaction cavity was developed in the current study. A microwave excited from a monopole probe, which is inserted into the side of the cavity, is transferred to a reaction mixture through the upper hole of the cavity. The cavity is miniaturized by filling it with an alumina ceramic dielectric. Fine-tuning of the resonance frequency becomes available by controlling the length of the inserted screw between the probe and the upper hole. The physical properties of the cavity were simulated using high frequency structural simulator (HFSS) and the produced cavity was tested using an Agilent E8357A network analyzer. The test results show that the developed cavity is able to send enough energy to various solvents.

  15. [The activity of prooxidant-antioxidant system in loach embryos under the action of microwave radiation]. (United States)

    Iaremchuk, M M; Dyka, M V; Sanahurs'kyĭ, D I


    Electromagnetic radiation (EMR) affects biological organisms, primarily on the cellular level. However, the effects of EMR at low-intensity exposure on animals and state of metabolic systems are not fully defined yet. Thus, research of microwave radiation influence on the processes of lipid peroxidation and antioxidant protection system is important for understanding the mechanisms of EMR action on the cell, in particular, and organism development on the whole. The content of lipid peroxidation products--lipid hydroperoxides, thiobarbituric acid reactive substances and the activity of antioxidant enzymes--superoxide dismutase, glutathione peroxidase and catalase in loach embryos under the action of microwave radiation (GSM-900 MHz, SAR = 1.1 Vt/kg) lasting 1; 5; 10 and 20 min during early embryogenesis were studied. It has been found that content of lipid peroxidation products in germ cells undergoes significant changes under the action of low-intensity EMR. The effect of microwave radiation (1, 5, 10 min) leads to the increase of superoxide dismutase activity, nevertheless, 20 min exposure decreased this index to the level of control values as it is shown. It has been established that EMR at frequencies used for mobile communications reduce the activity of antioxidant protection system components, especially catalase and glutathione peroxidase. The growth of catalase activity at the 10-cell stage of blastomere division (P < 0.05) is an exception. The results of two-way analysis of variance attest that microwave radiation factor causes the large part of all observable modifications.

  16. Observation of low field microwave absorption in co-doped ZnO system (United States)

    Mahule, Tebogo S.; Srinivasu, Vijaya V.; Das, Jayashree


    Room temperature low field microwave absorption (LFMA) in magnetic materials find application in microwave absorbers and low field sensors. However not all the magnetic materials show LFMA and the phenomenon is not fully understood. We report on the observation of low field microwave absorption (LFMA) or the non-resonant microwave absorption (NRMA) in the transition metal (TM) co-doped ZnO samples of the composition Zn1-x(TM:TM)xO synthesized by solid state reaction technique. LFMA peaks and hysteresis matches very well with that of the magnetization hysteresis loop and the anisotropy fields at room temperature similar to the reports in the literature for other magnetic systems. However we show through our careful experiments that such a correlation between LFMA and the magnetization does not survive at low temperatures and particularly at 10 K the LFMA hysteresis collapses in our TM co-doped ZnO system; whereas the magnetization hysteresis loop becomes very big and anisotropy field becomes bigger in the range of kOe. We interpret the LFMA as field dependent surface impedance or eddy current losses, in terms of a possible role of anomalous hall resistivity that follows magnetization and the ordinary hall resistivity that only follows the applied field. We then argue that LFMA accordingly follows magnetization or applied field when AHE or OHE dominates respectively. Also we confirm the absence of LFMA signals in the rare earth co-doped ZnO system.

  17. Status of VESAS: a fully-electronic microwave imaging radiometer system (United States)

    Schreiber, Eric; Peichl, Markus; Suess, Helmut


    Present applications of microwave remote sensing systems cover a large variety. One utilisation of the frequency range from 1 - 300 GHz is the domain of security and reconnaissance. Examples are the observation of critical infrastructures or the performance of security checks on people in order to detect concealed weapons or explosives, both being frequent threats in our world of growing international terrorism. The imaging capability of concealed objects is one of the main advantages of microwave remote sensing, because of the penetration performance of electromagnetic waves through dielectric materials in this frequency domain. The main physical effects used in passive microwave sensing rely on the naturally generated thermal radiation and the physical properties of matter, the latter being surface characteristics, chemical and physical composition, and the temperature of the material. As a consequence it is possible to discriminate objects having different material characteristics like ceramic weapons or plastic explosives with respect to the human body. Considering the use of microwave imaging with respect to people scanning systems in airports, railway stations, or stadiums, it is advantageous that passively operating devices generate no exposure on the scanned objects like actively operating devices do. For frequently used security gateways it is additionally important to have a high through-put rate in order to minimize the queue time. Consequently fast imaging systems are necessary. In this regard the conceptual idea of a fully-electronic microwave imaging radiometer system is introduced. The two-dimensional scanning mechanism is divided into a frequency scan in one direction and the method of aperture synthesis in the other. The overall goal here is to design a low-cost, fully-electronic imaging system with a frame rate of around one second at Ka band. This frequency domain around a center frequency of 37 GHz offers a well-balanced compromise between the

  18. Distributed micro-radar system for detection and tracking of low-profile, low-altitude targets (United States)

    Gorwara, Ashok; Molchanov, Pavlo


    Proposed airborne surveillance radar system can detect, locate, track, and classify low-profile, low-altitude targets: from traditional fixed and rotary wing aircraft to non-traditional targets like unmanned aircraft systems (drones) and even small projectiles. Distributed micro-radar system is the next step in the development of passive monopulse direction finder proposed by Stephen E. Lipsky in the 80s. To extend high frequency limit and provide high sensitivity over the broadband of frequencies, multiple angularly spaced directional antennas are coupled with front end circuits and separately connected to a direction finder processor by a digital interface. Integration of antennas with front end circuits allows to exclude waveguide lines which limits system bandwidth and creates frequency dependent phase errors. Digitizing of received signals proximate to antennas allows loose distribution of antennas and dramatically decrease phase errors connected with waveguides. Accuracy of direction finding in proposed micro-radar in this case will be determined by time accuracy of digital processor and sampling frequency. Multi-band, multi-functional antennas can be distributed around the perimeter of a Unmanned Aircraft System (UAS) and connected to the processor by digital interface or can be distributed between swarm/formation of mini/micro UAS and connected wirelessly. Expendable micro-radars can be distributed by perimeter of defense object and create multi-static radar network. Low-profile, lowaltitude, high speed targets, like small projectiles, create a Doppler shift in a narrow frequency band. This signal can be effectively filtrated and detected with high probability. Proposed micro-radar can work in passive, monostatic or bistatic regime.

  19. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J


    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  20. Microwave Soil Moisture Retrieval Under Trees (United States)

    O'Neill, P.; Lang, R.; Kurum, M.; Joseph, A.; Jackson, T.; Cosh, M.


    Soil moisture is recognized as an important component of the water, energy, and carbon cycles at the interface between the Earth's surface and atmosphere. Current baseline soil moisture retrieval algorithms for microwave space missions have been developed and validated only over grasslands, agricultural crops, and generally light to moderate vegetation. Tree areas have commonly been excluded from operational soil moisture retrieval plans due to the large expected impact of trees on masking the microwave response to the underlying soil moisture. Our understanding of the microwave properties of trees of various sizes and their effect on soil moisture retrieval algorithms at L band is presently limited, although research efforts are ongoing in Europe, the United States, and elsewhere to remedy this situation. As part of this research, a coordinated sequence of field measurements involving the ComRAD (for Combined Radar/Radiometer) active/passive microwave truck instrument system has been undertaken. Jointly developed and operated by NASA Goddard Space Flight Center and George Washington University, ComRAD consists of dual-polarized 1.4 GHz total-power radiometers (LH, LV) and a quad-polarized 1.25 GHz L band radar sharing a single parabolic dish antenna with a novel broadband stacked patch dual-polarized feed, a quad-polarized 4.75 GHz C band radar, and a single channel 10 GHz XHH radar. The instruments are deployed on a mobile truck with an 19-m hydraulic boom and share common control software; real-time calibrated signals, and the capability for automated data collection for unattended operation. Most microwave soil moisture retrieval algorithms developed for use at L band frequencies are based on the tau-omega model, a simplified zero-order radiative transfer approach where scattering is largely ignored and vegetation canopies are generally treated as a bulk attenuating layer. In this approach, vegetation effects are parameterized by tau and omega, the microwave

  1. Comparisons between Canadian prairie MF radars, FPI (green and OH lines and UARS HRDI systems

    Directory of Open Access Journals (Sweden)

    C. E. Meek

    Full Text Available Detailed comparisons have been completed between the MF radars (MFR in the Canadian prairies and three other systems: two ground-based Fabry-Perot interferometers (FPI and the UARS high resolution Doppler imager (HRDI system. The radars were at Sylvan Lake (52°N, 114°W, Robsart 
    (49°N, 109°W and the main continuing facility is at Saskatoon (52°N, 107°W. Statistical comparisons of hourly mean winds (1988-1992 for the Saskatoon MFR and FPI (557.7 nm green line using scatter plots, wind speed-ratios, and direction-difference histograms show excellent agreement for Saskatoon. No serious biases in speeds or directions occur at the height of best agreement, 98 km. If anything, the MFR speeds appear bigger. The same applies to the Sylvan Lake MFR and Calgary FPI, where the best height is 88 km. In both cases these are close to the preferred heights for the emission layers. Differences between measurements seen on individual days are likely related to the influence of gravity waves (GW upon the optical and radar systems, each of which have inherent spatial averaging (350, 50 km respectively, as well as the spatial difference between the nominal measurement locations. For HRDI, similar statistical comparisons are made, using single-overpass satellite winds and hourly means (to improve data quality from MFR. Heights of best agreement, based upon direction-difference histograms, are shown; there is a tendency, beginning near 87 km, for these MFR heights to be 2 or 3 km greater than the HRDI heights. Speeds at these heights are typically larger for the satellite (MFR/HRDI = 0.7–0.8. Reasons for the differences are investigated. It is shown that the estimated errors and short-term (90 min differences are larger for HRDI than for the MFR, indicating more noise or GW contamination. This leads to modest but significant differences in median speed-ratio (MFR/HRDI < 1. Also, comparison

  2. Development of radio acoustic sounding system (RASS with Gadanki MST radar – first results

    Directory of Open Access Journals (Sweden)

    T. Tsuda


    Full Text Available A high-power acoustic exciter was designed and developed for the Gadanki MST Radar to facilitate observations in the Radio Acoustic Sounding System (RASS mode. Sweep range of acoustic signal frequencies was set to 94–125 Hz so as to satisfy Bragg matching condition for temperature range of −90°–40°C between surface and the tropopause (about 17 km. Raytracing of acoustic wave propagation was used to predict the antenna beam directions along which optimum RASS echoes could be obtained. During the RASS observation period of about 18 h on 23–24 July 2006 height profiles of atmospheric virtual temperature were obtained between 1.5 km and 10 km and occasionally up to 14 km. In comparison with the three simultaneous radiosonde launches, RASS derived temperature profiles had the r.m.s. discrepancy of about 1 K, although deviation of the RASS results sometimes appeared when the radial wind velocity was not fully available for the correction of apparent sound speed. This study has successfully demonstrated capability of the RASS application with the Gadanki MST radar, which will be used for continuous monitoring of the temperature profiles in the troposphere and lower stratosphere region in the tropics.

  3. Microwave and millimeter-wave remote sensing for security applications

    CERN Document Server

    Nanzer, Jeffrey


    Microwave and millimeter-wave remote sensing techniques are fast becoming a necessity in many aspects of security as detection and classification of objects or intruders becomes more difficult. This groundbreaking resource offers you expert guidance in this burgeoning area. It provides you with a thorough treatment of the principles of microwave and millimeter-wave remote sensing for security applications, as well as practical coverage of the design of radiometer, radar, and imaging systems. You learn how to design active and passive sensors for intruder detection, concealed object detection,

  4. 一种双基地雷达时间同步的新方法%A Novel Method for Time Synchronization of Bistatic Radar System

    Institute of Scientific and Technical Information of China (English)

    刘继业; 陈西宏; 刘强; 孙际哲


    提出了一种基于对流层散射双向时间比对的双基地雷达时间同步的新方法(TWT3S),利用对流层散射通信设备进行雷达站间双向时间比对以求取雷达站间精确的时间差。详细推导了TWT3 S的计算模型,对时间间隔测量误差、发射与接收设备时延误差、对流层时延误差、几何距离时延误差进行了讨论,并给出了TWT3 S的理论精度。计算结果表明,对流层时延误差是最主要的误差来源,占所有误差的90%以上。 TWT3 S模型的理论精度为15~21 ns,比采用微波或光纤直接同步法精度高,为双基地雷达时间同步提供了新的思路。%A novel method for time synchronization of bistatic radar system is put forward based on two -way time transfer via troposphere scattering ( TWT3 S ) .In order to get accurate time difference of the radar stations,the troposphere scattering communication equipments are employed to contrast bilateral time signals.Firstly,the calculation model of TWT3S is deduced in detail.Then the time interval measurement error,the launching and receiving device delay error,the tropospheric delay error and the geometrical distance error are studied .Finally,theoretical precision of TWT 3 S is presented .The computational results demonstrate that tropospheric delay error is the main error,which accounts for more than 90%of all errors. Further more,theoretical precision of TWT 3 S system is 15~21 ns,and obviously it has a better performance compared with the direct synchronization method via microwave or optical fiber channel .The work provides a new way for time synchronization of bistatic radar system .

  5. Characterization of Adolescent Prescription Drug Abuse and Misuse Using the Researched Abuse Diversion and Addiction-Related Surveillance (RADARS[R]) System (United States)

    Zosel, Amy; Bartelson, Becki Bucher; Bailey, Elise; Lowenstein, Steven; Dart, Rick


    Objective: To describe the characteristics and health effects of adolescent (age 13-19 years) prescription drug abuse and misuse using the Researched Abuse Diversion and Addiction-Related Surveillance (RADARS[R])) System. Method: Secondary analysis of data collected from RADARS System participating poison centers was performed. Data for all…

  6. Hand-held microwave search detector (United States)

    Daniels, David J.; Philippakis, Mike


    This paper describes the further development of a patented, novel, low cost, microwave search detector using noise radar technology operating in the 27-40GHz range of frequencies, initially reported in SPIE 2004. Initial experiments have shown that plastic explosives, ceramics and plastic material hidden on the body can be detected with the system. This paper considers the basic physics of the technique and reports on the development of a initial prototype system for hand search of suspects and addresses the work carried out on optimisation of PD and FAR. The radar uses a novel lens system and the design and modelling of this for optimum depth of field of focus will be reported.

  7. Road safety alerting system with radar and GPS cooperation in a VANET environment (United States)

    Santamaria, Amilcare Francesco; Sottile, Cesare; De Rango, Floriano; Voznak, Miroslav


    New applications in wireless environments are increasing and keeping even more interests from the developer companies and researchers. In particular, in these last few years the government and institutional organization for road safety spent a lot of resources and money to promote Vehicular Ad-Hoc Network (VANET) technology, also car manufactures are giving a lot of contributions on this field as well. In our paper, we propose an innovative system to increase road safety, matching the requests of the market allowing a cooperation between on-board devices. The vehicles are equipped with On Board Unit (OBU) and On Board Radar Unit (OBRU), which can spread alerting messages around the network regarding warning and dangerous situations exploiting standard. Vehicles move along roads observing the environment, traffic and road conditions, and vehicles parameters as well. These information can be elaborated and shared between neighbors, Road Side Unit (RSU)s and, of course, with Internet, allowing inter-system communications exploiting an Road Traffic Manager (RTM). Radar systems task it the detection of the environment in order to increase the knowledge of current conditions of the roads, for example it is important to identify obstacles, road accidents, dangerous situations and so on. Once detected exploiting onboard devices, such as Global Position System (GPS) receiver it is possible to know the exact location of the caught event and after a data elaboration the information is spread along the network. Once the drivers are advised, they can make some precautionary actions such as reduction of traveling speed or modification of current road path. In this work the routing algorithms, which have the main goal to rapidly disseminate information, are also been investigated.

  8. Quantum radar

    CERN Document Server

    Lanzagorta, Marco


    This book offers a concise review of quantum radar theory. Our approach is pedagogical, making emphasis on the physics behind the operation of a hypothetical quantum radar. We concentrate our discussion on the two major models proposed to date: interferometric quantum radar and quantum illumination. In addition, this book offers some new results, including an analytical study of quantum interferometry in the X-band radar region with a variety of atmospheric conditions, a derivation of a quantum radar equation, and a discussion of quantum radar jamming.This book assumes the reader is familiar w

  9. Compilation and assessment of microwave bioeffects. Final report. A selective review of the literature on biological effects of microwaves in relation to the satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D. R.; Ragan, H. A.; Rogers, L. E.; Guy, A. W.; Hjeresen, D. L.; Hinds, W. T.


    Potential biological and ecological problems are the focus of a review of the world's scientific literature on biological effects of microwave radiation. The emphasis is on recently reported data and on the 2450-MHz continuous-wave (CW) radiation that is envisioned for a Satellite Power System (SPS).

  10. A reliable, compact, and repetitive-rate high power microwave generation system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei; Li, Zhi-qiang; Sun, Xiao-liang; Zhang, Jun [College of Optoelectronics Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)


    A compact high power microwave (HPM) generation system is described in this paper. The main parts of the HPM system are a Marx generator with a pulse forming line and a magnetron with diffraction output. The total weight and length of the system are 250 kg and 120 cm, respectively. The output microwave power of the HPM system at 550 kV of applied voltage and 0.33 T of magnetic field reaches 1 GW at 2.32 GHz of central frequency with 38 ns of pulse duration, 23% of power conversion efficiency, and Gaussian radiation pattern. In the bursts operation, both time and amplitude jitters are less than 4 ns and lower than 1.5 dB, respectively.

  11. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny


    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between v...

  12. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny


    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...

  13. Noise Parameters of CW Radar Sensors Used in Active Defense Systems



    Active defense represents an innovative way of protecting military vehicles. It is based on the employment of a set of radar sensors which detect an approaching threat missile and activate a suitable counter-measure. Since the radar sensors are supposed to detect flying missiles very fast and, at the same time, distinguish them from stationary or slow-moving objects, CW Doppler radar sensors can be employed with a benefit. The submitted article deals with a complex noise analysis of this type...

  14. High power, fast, microwave components based on beam generated plasmas (United States)

    Manheimer, W. M.; Fernsler, R. F.; Gitlin, M. S.


    It is shown that the agile mirror plasma, under development as a device to simply and cheaply give electronic steering to microwave beams, also has application as a fast, electronically controlled, high power reflector, or phase shifter. In a radar system, this can lead to such applications as pulse to pulse polarization agility and electronic control of antenna gain, as well as to innovative approaches to high power millimeter wave circulators. The basic theory of the enhanced glow plasma is also developed.

  15. Comparison of snowfall estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System (United States)

    Chen, Sheng; Hong, Yang; Kulie, Mark; Behrangi, Ali; Stepanian, Phillip M.; Cao, Qing; You, Yalei; Zhang, Jian; Hu, Junjun; Zhang, Xinhua


    The latest global snowfall product derived from the CloudSat Cloud Profiling Radar (2C-SNOW-PROFILE) is compared with NOAA/National Severe Storms Laboratory's Multi-Radar Multi-Sensor (MRMS/Q3) system precipitation products from 2009 through 2010. The results show that: (1) Compared to Q3, CloudSat tends to observe more extremely light snowfall events (snow and 10% as certain mixed. When possible snow, possible mixed, and certain mixed precipitation categories are assumed to be snowfall events, CloudSat has a high snowfall POD (86.10%). (3) CloudSat shows less certain snow precipitation than Q3 by 26.13% with a low correlation coefficient (0.41) with Q3 and a high RMSE (0.6 mm/h). (4) With Q3 as reference, CloudSat underestimates (overestimates) certain snowfall when the bin height of detected snowfall events are below (above) 3 km, and generally overestimates light snowfall (surface snowfall events are >1 km high above the surface, whereas 76.41% of corresponding Q3 observations are low below 1 km to the near ground surface. This analysis will provide helpful reference for CloudSat snowfall estimation algorithm developers and the Global Precipitation Measurement (GPM) snowfall product developers to understand and quantify the strengths and weaknesses of remote sensing techniques and precipitation estimation products.

  16. Development of radar-based system for monitoring of frail home-dwelling persons: A healthcare perspective (United States)

    Sudmann, Tobba T.; Børsheim, Ingebjørg T.; Øvsthus, Knut; Ciamulski, Tomasz; Miękina, Andrzej; Wagner, Jakub; Mazurek, Paweł; Jacobsen, Frode F.


    This interdisciplinary project aims to develop and assess the functional potential of radar technology in the care services. The project mainly has an exploratory character where the technological and functional potential of impulse-radar sensor are tested out in monitoring of elderly and disabled people living in their own home. Designing a non-invasive system for monitoring of movements of frail persons living at home is the main goal, with the intent of assessing health and functional status through monitoring of activities of daily life (ADL) and detecting potentially dangerous situations, not the least related to a long lie following falls.

  17. Wave parameters comparisons between High Frequency (HF) radar system and an in situ buoy: a case study (United States)

    Fernandes, Maria; Alonso-Martirena, Andrés; Agostinho, Pedro; Sanchez, Jorge; Ferrer, Macu; Fernandes, Carlos


    The coastal zone is an important area for the development of maritime countries, either in terms of recreation, energy exploitation, weather forecasting or national security. Field measurements are in the basis of understanding how coastal and oceanic processes occur. Most processes occur over long timescales and over large spatial ranges, like the variation of mean sea level. These processes also involve a variety of factors such as waves, winds, tides, storm surges, currents, etc., that cause huge interference on such phenomena. Measurement of waves have been carried out using different techniques. The instruments used to measure wave parameters can be very different, i.e. buoys, ship base equipment like sonar and satellites. Each equipment has its own advantage and disadvantage depending on the study subject. The purpose of this study is to evaluate the behaviour of a different technology available and presently adopted in wave measurement. In the past few years the measurement of waves using High Frequency (HF) Radars has had several developments. Such a method is already established as a powerful tool for measuring the pattern of surface current, but its use in wave measurements, especially in the dual arrangement is recent. Measurement of the backscatter of HF radar wave provides the raw dataset which is analyzed to give directional data of surface elevation at each range cell. Buoys and radars have advantages, disadvantages and its accuracy is discussed in this presentation. A major advantage with HF radar systems is that they are unaffected by weather, clouds or changing ocean conditions. The HF radar system is a very useful tool for the measurement of waves over a wide area with real-time observation, but it still lacks a method to check its accuracy. The primary goal of this study was to show how the HF radar system responds to high energetic variations when compared to wave buoy data. The bulk wave parameters used (significant wave height, period and

  18. Selected algorithms for measurement data processing in impulse-radar-based system for monitoring of human movements (United States)

    Miękina, Andrzej; Wagner, Jakub; Mazurek, Paweł; Morawski, Roman Z.


    The importance of research on new technologies that could be employed in care services for elderly and disabled persons is highlighted. Advantages of impulse-radar sensors, when applied for non-intrusive monitoring of such persons in their home environment, are indicated. Selected algorithms for the measurement data preprocessing - viz. the algorithms for clutter suppression and echo parameter estimation, as well as for estimation of the twodimensional position of a monitored person - are proposed. The capability of an impulse-radar- based system to provide some application-specific parameters, viz. the parameters characterising the patient's health condition, is also demonstrated.

  19. Microwave plasma monitoring system for the elemental composition analysis of high temperature process streams

    Energy Technology Data Exchange (ETDEWEB)

    Woskov, Paul P. (Bedford, MA); Cohn, Daniel R. (Chestnuthill, MA); Titus, Charles H. (Newtown Square, PA); Surma, Jeffrey E. (Kennewick, WA)


    Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.

  20. Status and Prospects of Radar Polarimetry Techniques

    Directory of Open Access Journals (Sweden)

    Wang Xuesong


    Full Text Available Radar polarimetry is an applied fundamental science field that is focused on understanding interaction processes between radar waves and targets and disclosing their mechanisms. Radar polarimetry has significant application prospects in the fields of microwave remote sensing, earth observation, meteorological measurement, battlefield reconnaissance, anti-interference, target recognition, and so on. This study briefly reviews the development history of radar polarization theory and technology. Next, the state of the art of several key technologies within radar polarimetry, including the precise acquisition of radar polarization information, polarization-sensitive array signal processing, target polarization characteristics, polarization antiinterference, and target polarization classification and recognition, is summarized. Finally, the future developments of radar polarization technology are considered.

  1. Antenna array characterisation and signal processing for an FM radio-based passive coherent location radar system

    NARCIS (Netherlands)

    Belfiori, F.; Monni, S.; Rossum, W.L. van; Hoogeboom, P.


    The design of passive coherent location radar, which exploits broadcasting transmitters of opportunity in the very high frequency (VHF) radio bandwidth, is presented. Here, the authors primarily focus on the system set-up and on the digital pre-processing steps. Emphasis is given to the antenna sect

  2. Radar Chart (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Radar Chart collection is an archived product of summarized radar data. The geographic coverage is the 48 contiguous states of the United States. These hourly...

  3. Observation of thunderstorms by multilevel electric field measurement system and radar (United States)

    Soula, S.; Sauvageot, H.; Saissac, M. P.; Chauzy, S.


    During the summer of 1992, an experiment was conducted in southwestern France, close to the Pyrenees, at the Centre de Recherches Atmospheriques (CRA) in order to study the evolution of the electric field measured at several levels below thunderclouds. We used a field mill flush to the ground and four field sensors, suspended from an insulated cable and distributed between 0 and 48 m. These altitude sensors separately measure the ambient electric field and the field created by the sensor itself. The Rabelais millimetric radar provides reflectivities and Doppler velocities of cloud and rain systems. Meteorological data like wind velocity, humidity, temperature, and rainfall rate are recorded at the site. Two storm intervals are studied, one on July 30 and one on August 6. Both examples give an idea on how the electric field signature during the development or advection of a convective cloud can be different at the ground and at altitudes of a few tens of meters.

  4. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects (United States)


    Potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS) are discussed. A detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation is provided followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system.

  5. Environmental assessment for the satellite power system-concept development and evaluation program-microwave health and ecological effects

    Energy Technology Data Exchange (ETDEWEB)


    This report is concerned with the potential health and ecological effects of the microwave beam from the microwave power transmission system (MPTS) of the satellite power system (SPS). The report is written in the form of a detailed critical review of selected scientific articles from the published literature on the biological effects of nonionizing electromagnetic radiation, followed by an assessment of the possible effects of the SPS, based on exposure values for the reference system (US DOE and NASA, 1978).

  6. Micropower impulse radar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hall, M.S.


    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  7. Microwave discharge electrodeless lamps (MDEL). Part IV. Novel self-ignition system incorporating metallic microwave condensing cones to activate MDELs in photochemical reactions. (United States)

    Horikoshi, Satoshi; Tsuchida, Akihiro; Sakai, Hideki; Abe, Masahiko; Sato, Susumu; Serpone, Nick


    A metallic condensing cone that concentrates microwave radiation (equivalent to an optical lens) has been developed and used as part of a system to activate a microwave discharge electrodeless lamp (MDEL) in the oxidative treatment of wastewaters by aiding the novel self-ignition of the lamp on irradiation at low microwave power levels. This approach to self-ignition can potentially lead to considerable energy savings in such treatments. System performance was examined for the ignition power of microwaves of such MDEL devices in water, whose usefulness was assessed by investigating the photolytic transformation of aqueous solutions of representatives of three classes of contaminants: chlorinated phenols, herbicides and endocrine disruptors, specifically 4-chlorophenol (4-CP), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4,4'-isopropylidenediphenol (bisphenol-A; BPA), respectively, taken as model wastewaters in air-equilibrated, in oxygen-saturated and in TiO2-containing aqueous media. The results are discussed in terms of the dynamics of the photo-induced degradation processes.

  8. Estimating the vertical structure of intense Mediterranean precipitation using two X-band weather radar systems

    NARCIS (Netherlands)

    Berne, A.D.; Delrieu, G.; Andrieu, H.


    The present study aims at a preliminary approach of multiradar compositing applied to the estimation of the vertical structure of precipitation¿an important issue for radar rainfall measurement and prediction. During the HYDROMET Integrated Radar Experiment (HIRE¿98), the vertical profile of

  9. FMCW radar for the sense function of sense and avoid systems onboard UAVs

    NARCIS (Netherlands)

    Itcia, E.; Wasselin, J.P.; Mazuel, S.; Otten, M.P.G.; Huizing, A.G.


    Rockwell Collins France (RCF) radar department is currently developing, in close collaboration with TNO in The Hague, The Netherlands, a Frequency Modulated Continuous Wave (FMCW) radar sensor dedicated to Obstacle Warning function and potentially to air traffic detection. The sensor combines flood

  10. Development of microwave kinetic inductance detectors and their readout system for LiteBIRD (United States)

    Hattori, K.; Hazumi, M.; Ishino, H.; Kibayashi, A.; Kibe, Y.; Mima, S.; Okamura, T.; Sato, N.; Tomaru, T.; Yamada, Y.; Yoshida, M.; Yuasa, T.; Watanabe, H.


    Primordial gravitational waves generated by inflation have produced an odd-parity pattern B-mode in the cosmic microwave background (CMB) polarization. LiteBIRD (Light satellite for the studies of B-mode polarization and Inflation from cosmic background Radiation Detection) aims at detecting this B-mode polarization precisely. It requires about 2000 detectors capable of detecting a frequency range from 50 GHz to 250 GHz with ultra low noise. Superconducting detectors are suitable for this requirement. We have fabricated and tested microwave kinetic inductance detectors (MKIDs) and developed a new readout system. We have designed antenna-coupled MKIDs. Quasi-particles are created by incident radiation and are detected as a change of the surface impedance of a superconductor strip. This change of the surface impedance is translated into the change of the resonant frequency of a microwave signal transmitted through the resonator. We also have developed a new readout system for MKIDs. The newly developed readout system is not only able to read out the amplitude and the phase data with the homodyne detection for multi-channels, but also provides a unique feature of tracking the resonant frequency of the target resonator. This mechanism enables us to detect signals with a large dynamic range. We report on the recent R&D status of the developing MKIDs and on the read-out system for LiteBIRD.

  11. A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials. (United States)

    Hasar, U C


    A microcontroller-based noncontact and nondestructive microwave free-space measurement system for real-time and dynamic determination of complex permittivity of lossy liquid materials has been proposed. The system is comprised of two main sections--microwave and electronic. While the microwave section provides for measuring only the amplitudes of reflection coefficients, the electronic section processes these data and determines the complex permittivity using a general purpose microcontroller. The proposed method eliminates elaborate liquid sample holder preparation and only requires microwave components to perform reflection measurements from one side of the holder. In addition, it explicitly determines the permittivity of lossy liquid samples from reflection measurements at different frequencies without any knowledge on sample thickness. In order to reduce systematic errors in the system, we propose a simple calibration technique, which employs simple and readily available standards. The measurement system can be a good candidate for industrial-based applications.

  12. Radar activities of the DFVLR Institute for Radio Frequency Technology (United States)

    Keydel, W.


    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  13. Radar activities of the DFVLR Institute for Radio Frequency Technology (United States)

    Keydel, W.


    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  14. High Power mm-Wave Transmitter System for Radar or Telecommunications (United States)

    Stride, S. L.; McMaster, R. L.; Pogorzelski, R. J.


    Future NASA deep space missions able to provide tens of kilo-watts of spacecraft DC power, make it feasible to employ high power RF telecommunications systems. Traditional flight systems (e.g., Cassini), constrained by limited DC power, used a single high-gain 4m Cassegrain reflector fed by a single lower power (20W) transmitter. Increased available DC power means that high power (1000 W) transmitters can be used. Rather than continue building traditional single-transmitter systems it now becomes feasible to engineer and build multi-element active arrays that can illuminate a dish. Illuminating a 2m dish with a spherical wavefront from an offset 1kW active array can provide sufficient ERP (Effective Radiated Power) when compared to a larger Cassegrain dish. Such a system has the advantage of lower mass, lower volume, improved reliability, less stringent pointing requirements, lower cost and risk. We propose to design and build a prototype Ka-band transmit antenna with an active sub-array using 125W TWTAs. The system could be applied to a telecommunications downlink or radar transmitter used for missions such as JIMO.

  15. MIMO Radar System for Respiratory Monitoring Using Tx and Rx Modulation with M-Sequence Codes (United States)

    Miwa, Takashi; Ogiwara, Shun; Yamakoshi, Yoshiki

    The importance of respiratory monitoring systems during sleep have increased due to early diagnosis of sleep apnea syndrome (SAS) in the home. This paper presents a simple respiratory monitoring system suitable for home use having 3D ranging of targets. The range resolution and azimuth resolution are obtained by a stepped frequency transmitting signal and MIMO arrays with preferred pair M-sequence codes doubly modulating in transmission and reception, respectively. Due to the use of these codes, Gold sequence codes corresponding to all the antenna combinations are equivalently modulated in receiver. The signal to interchannel interference ratio of the reconstructed image is evaluated by numerical simulations. The results of experiments on a developed prototype 3D-MIMO radar system show that this system can extract only the motion of respiration of a human subject 2m apart from a metallic rotatable reflector. Moreover, it is found that this system can successfully measure the respiration information of sleeping human subjects for 96.6 percent of the whole measurement time except for instances of large posture change.

  16. Multihit mode direct-detection laser radar system using a Geiger-mode avalanche photodiode. (United States)

    Oh, Min Seok; Kong, Hong Jin; Kim, Tae Hoon; Hong, Keun Ho; Kim, Byung Wook; Park, Dong Jo


    In this paper, a direct-detection laser radar system that uses a Geiger-mode avalanche photodiode (GAPD) of relatively short dead time (45 ns) is described. A passively Q-switched microchip laser is used as a laser source and a compact peripheral component interconnect system, which includes a time-to-digital converter (TDC), is set up for fast signal processing. With both the GAPD and the TDC functioning multistop acquisition, the system operates in a multihit mode. The software for the three-dimensional visualization and an algorithm for the removal of noise are developed. It is shown that the single-shot precision of the system is approximately 10 cm (sigma) and the precision is improved by increasing the number of laser pulses to be averaged so that the precision of approximately 1 cm (sigma) was acquired with more than 150 laser pulses scattered from the target. The accuracy of the system is measured to be 12 cm when the energy of the emitted laser pulse varies with a factor of 7.

  17. Detection and classification results for an impulse radar mine detection system (United States)

    Ericsson, Anders; Gustafsson, Anders


    At Sweden's Defence Research Establishment, FOA, a hand-held mine detection device is under development. The system is based on impulse radar technique, which due to its large band width, has shown to be an effective means to find objects buried shallow in the ground. Working with radar technique gives an obvious advantage compared to e.g., metal detectors when searching for plastic mines, or when the search is performed in an area highly contaminated with metal fragments or when the soil itself is rich of ferrite. The paper concentrates on detection and classification of minelike objects from measurements in an indoor testing environment. The focus is on evaluating how methods, partly already successfully proven, work in a 'difficult' environment, namely extremely dry sand. The result shows that metal objects and a stone that was used as object, are fairly easy to detect and to classify correct. The fact that the stone is classifiable, means that the false alarm rate can be reduced. It is also possible to detect a nylon cylinder, but here is the result quite sensitive to parameters of the detection algorithm. This is due to that the permittivity of the sand in the experiment is extremely low and close to the one for nylon. For the same reason, a non-metallic AP mine is not detectable or classifiable in the dry sand. The results indicate that even thought he methods work in more normal environments, other detection and classification algorithms than the presented ones have to be used in extreme cases like this one, in order ensure the function of the device.

  18. Microwave power transmission system workshop, session on solid state (United States)

    Finnell, W.


    The development of solid state technology for solar power satellite systems is briefly addressed. The economic advantages of solid state based systems are listed along with some conclusions and issues regarding specific design concepts.

  19. Solid state microwave modules designed for millimiter wave electronic equipment and systems

    Directory of Open Access Journals (Sweden)

    Karushkin N. F.


    Full Text Available The paper presents scientific, technological and production potential of Research Institute «Orion» in the field of creation of wide range of high performance active and passive solid-state microwave devices, modules and components as well as multifunctional devices on their basis. These products taken as a whole form a component base for promising equipment and systems working in the frequency range from 1.0 to 200 GHz.

  20. The high-power X-band planetary radar at Goldstone - Design, development, and early results (United States)

    Hartop, R.; Bathker, D. A.


    Selected critical microwave components for a 400-kW very-long-pulse (several hours) X-band radar system are discussed from theoretical and practical viewpoints. Included are the special-sized waveguide and flanges, hybrid power combiner, couplers, switches, polarizer, rotary joints, feedhorn, and radome. The system is installed on the National Aeronautics and Space Administration/Jet Propulsion Laboratory 64-m-diam reflector antenna at Goldstone, CA.

  1. Development of High-Throughput Liquid Treatment System using Slot Antenna Excited Microwave Plasma (United States)

    Takitou, Sho; Ito, Michiko; Takashima, Seigou; Nomura, Norio; Kitagawa, Tominori; Toyoda, Hirotaka


    Recently, much attention has been given to plasma production under liquid and its industrial applications as well as investigation of chemical reactions as a result of plasma-liquid interactions. In various kinds of plasma production techniques, we have proposed pulsed microwave excited plasma using slot antenna, where damage to the slot electrode can be minimized and plasma volume can be increased. Furthermore, we have proposed an in-line microwave plasma system where plasma is efficiently produced under reduced pressures using Venturi effect, and have demonstrated enhancement of organic decomposition efficiency. For practical use of the plasma liquid treatment, however, cost-effective and more efficient treatment system with high treatment capability is required. In this study, we propose further enhancement of the treatment speed by designing four-parallel-type liquid treatment device where four discharges for the treatment are performed using one microwave power source. Decomposition speed of newly-developed plasma system is investigated. Not only high decomposition rate but also enhanced energy efficiency is realized.

  2. Radar, Insect Population Ecology, and Pest Management (United States)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)


    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  3. The KUT meteor radar: An educational low cost meteor observation system by radio forward scattering (United States)

    Madkour, W.; Yamamoto, M.


    The Kochi University of Technology (KUT) meteor radar is an educational low cost observation system built at Kochi, Japan by successive graduate students since 2004. The system takes advantage of the continuous VHF- band beacon signal emitted from Fukui National College of Technology (FNCT) for scientific usage all over Japan by receiving the forward scattered signals. The system uses the classical forward scattering setup similar to the setup described by the international meteor organization (IMO), gradually developed from the most basic single antenna setup to the multi-site meteor path determination setup. The primary objective is to automate the observation of the meteor parameters continuously to provide amounts of data sufficient for statistical analysis. The developed software system automates the observation of the astronomical meteor parameters such as meteor direction, velocity and trajectory. Also, automated counting of meteor echoes and their durations are used to observe mesospheric ozone concentration by analyzing the duration distribution of different meteor showers. The meteor parameters observed and the methodology used for each are briefly summarized.

  4. A Tutorial on Microwave Photonic Filters (United States)

    Capmany, José; Ortega, Beatriz; Pastor, Daniel


    Microwave photonic filters are photonic subsystems designed with the aim of carrying equivalent tasks to those of an ordinary microwave filter within a radio frequency (RF) system or link, bringing supplementary advantages inherent to photonics such as low loss, high bandwidth, immunity to electromagnetic interference (EMI), tunability, and reconfigurability. There is an increasing interest in this subject since, on one hand, emerging broadband wireless access networks and standards spanning from universal mobile telecommunications system (UMTS) to fixed access picocellular networks and including wireless local area network (WLAN), World Interoperability for Microwave Access, Inc. (WIMAX), local multipoint distribution service (LMDS), etc., require an increase in capacity by reducing the coverage area. An enabling technology to obtain this objective is based on radio-over-fiber (RoF) systems where signal processing is carried at a central office to where signals are carried from inexpensive remote antenna units (RAUs). On the other hand, microwave photonic filters can find applications in specialized fields such as radar and photonic beamsteering of phased-arrayed antennas, where dynamical reconfiguration is an added value. This paper provides a tutorial introduction of this subject to the reader not working directly in the field but interested in getting an overall introduction of the subject and also to the researcher wishing to get a comprehensive background before working on the subject.

  5. Concept study of radar sensors for near-field tsunami early warning

    Directory of Open Access Journals (Sweden)

    T. Börner


    Full Text Available Off-shore detection of tsunami waves is a critical component of an effective tsunami early warning system (TEWS. Even more critical is the off-shore detection of local tsunamis, namely tsunamis that strike coastal areas within minutes after generation. In this paper we propose new concepts for near-field tsunami early detection, based on innovative and up-to-date microwave remote sensing techniques. We particularly introduce the NESTRAD (NEar-Space Tsunami RADar concept, which consists of a real aperture radar accommodated inside a stationary stratospheric airship providing continuous monitoring of tsunamigenic oceanic trenches.

  6. Radar equations for modern radar

    CERN Document Server

    Barton, David K


    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  7. Microwave-to-terahertz dielectric resonators for liquid sensing in microfluidic systems (United States)

    Klein, N.; Watts, C.; Hanham, S. M.; Otter, W. J.; Ahmad, M. M.; Lucyszyn, S.


    The microwave-to-terahertz frequency range offers unique opportunities for the sensing of liquids based on the degree of molecular orientational and electronic polarization, Debye relaxation due to intermolecular forces between (semi-)polar molecules and collective vibrational modes within complex molecules. Methods for the fast dielectric characterization of (sub-)nanolitre volumes of mostly aqueous liquids and biological cell suspensions are discussed, with emphasis on labon- chip approaches aimed towards single-cell detection and label-free flow cytometry at microwave-to-terahertz frequencies. Among the most promising approaches, photonic crystal defect cavities made from high-resistivity silicon are compared with metallic split-ring resonant systems and high quality factor (Q-factor) whispering gallery-type resonances in dielectric resonators. Applications range from accurate haemoglobin measurements on nanolitre samples to label-free detection of circulating tumor cells.

  8. NASA Activities as they Relate to Microwave Technology for Aerospace Communications Systems (United States)

    Miranda, Felix A.


    This presentation discusses current NASA activities and plans as they relate to microwave technology for aerospace communications. The presentations discusses some examples of the aforementioned technology within the context of the existing and future communications architectures and technology development roadmaps. Examples of the evolution of key technology from idea to deployment are provided as well as the challenges that lay ahead regarding advancing microwave technology to ensure that future NASA missions are not constrained by lack of communication or navigation capabilities. The presentation closes with some examples of emerging ongoing opportunities for establishing collaborative efforts between NASA, Industry, and Academia to encourage the development, demonstration and insertion of communications technology in pertinent aerospace systems.

  9. Formation and Inhibition of Nε-(Carboxymethyllysine in Saccharide-Lysine Model Systems during Microwave Heating

    Directory of Open Access Journals (Sweden)

    Bing Li


    Full Text Available  Nε-(carboxymethyl lysine (CML is the most abundant advanced glycation end product (AGE, and frequently selected as an AGEs marker in laboratory studies. In this paper, the formation and inhibition of Nε-(carboxymethyllysine in saccharide-lysine model systems during microwave heating have been studied. The microwave heating treatment significantly promoted the formation of CML during Maillard reactions, which was related to the reaction temperature, time and type of saccharide. The order of CML formation for different saccharides was lactose > glucose > sucrose. Then, the inhibition effect on CML by five inhibitors was further examined. According to the results, ascorbic acid and tocopherol did not affect inhibition of CML, in contrast, thiamin, rutin and quercetin inhibited CML formation, and the inhibitory effects were concentration dependent.

  10. Data Acquisition and Control System for Broad-band Microwave Reflectometry on EAST

    CERN Document Server

    Wen, Fei; Zhang, Shoubiao; Kong, Defeng; Wang, Yuming; Han, Xiang; Qu, Hao; Gao, Xiang


    Microwave reflectometry is a non-intrusive plasma diagnostic tool which is widely applied in many fusion devices. In 2014, the microwave reflectometry on Experimental Advanced Superconducting Tokamak (EAST) had been upgraded to measure plasma density profile and fluctuation, which covered the frequency range of Q-band (32-56 GHz), V-band (47-76 GHz) and W-band (71-110 GHz). This paper presented a dedicated data acquisition and control system (DAQC) to meet the measurement requirements of high accuracy and temporal resolution. The DAQC consisted of two control modules, which integrated arbitrary waveform generation block (AWG) and trigger processing block (TP), and two data acquisition modules (DAQ) that was implemented base on the PXIe platform from National Instruments (NI). All the performance parameters had satisfied the requirements of reflectometry. The actual performance will be further examined in the experiments of EAST in 2014.

  11. Microwave Frequency Multiplier (United States)

    Velazco, J. E.


    High-power microwave radiation is used in the Deep Space Network (DSN) and Goldstone Solar System Radar (GSSR) for uplink communications with spacecraft and for monitoring asteroids and space debris, respectively. Intense X-band (7.1 to 8.6 GHz) microwave signals are produced for these applications via klystron and traveling-wave microwave vacuum tubes. In order to achieve higher data rate communications with spacecraft, the DSN is planning to gradually furnish several of its deep space stations with uplink systems that employ Ka-band (34-GHz) radiation. Also, the next generation of planetary radar, such as Ka-Band Objects Observation and Monitoring (KaBOOM), is considering frequencies in the Ka-band range (34 to 36 GHz) in order to achieve higher target resolution. Current commercial Ka-band sources are limited to power levels that range from hundreds of watts up to a kilowatt and, at the high-power end, tend to suffer from poor reliability. In either case, there is a clear need for stable Ka-band sources that can produce kilowatts of power with high reliability. In this article, we present a new concept for high-power, high-frequency generation (including Ka-band) that we refer to as the microwave frequency multiplier (MFM). The MFM is a two-cavity vacuum tube concept where low-frequency (2 to 8 GHz) power is fed into the input cavity to modulate and accelerate an electron beam. In the second cavity, the modulated electron beam excites and amplifies high-power microwaves at a frequency that is a multiple integer of the input cavity's frequency. Frequency multiplication factors in the 4 to 10 range are being considered for the current application, although higher multiplication factors are feasible. This novel beam-wave interaction allows the MFM to produce high-power, high-frequency radiation with high efficiency. A key feature of the MFM is that it uses significantly larger cavities than its klystron counterparts, thus greatly reducing power density and arcing

  12. The microwave absorption of ceramic-cup microwave ion source

    Institute of Scientific and Technical Information of China (English)


    An experiment system of ceramic-cup microwave ion source has been built here. Its microwave absorption efficiency as a function of the magnetic field and the pressure is presented. When the microwave incident power is 300~500W the microwave absorption efficiencies are more than 90% if the system is optimized and the magnetic field at the microwave window is 0.095T.

  13. Evaluating and managing Cold War era historic properties : the cultural significance of U.S. Air Force defensive radar systems.

    Energy Technology Data Exchange (ETDEWEB)

    Whorton, M.


    Aircraft and later missile radar early warning stations played an important role in the Cold War. They are associated with important technological, social, political, and military themes of the Cold War and are worthy of preservation. The scope and scale of these systems make physical preservation impractical, but the U.S. Air Force program of historical evaluation and documentation of these systems will provide valuable information to future generations studying this historic period.

  14. Human Respiration Rate Estimation Using Ultra-wideband Distributed Cognitive Radar System

    Institute of Scientific and Technical Information of China (English)

    Yifan Chen; Predrag Rapajic


    It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems,which shows promise in home healthcare, rescue, and security applications. In this paper, we first present a multi-ray propagation model for UWB signal, which is traveling through the human thorax and is reflected on the air/dry-skin/fat/muscle interfaces. A geometry-based statistical channel model is then developed for simulating the reception of UWB signals in the indoor propagation environment. This model enables replication of time-varying multipath profiles due to the displacement of a human chest. Subsequently,a UWB distributed cognitive radar system (UWB-DCRS) is developed for the robust detection of chest cavity motion and the accurate estimation of respiration rate. The analytical framework can serve as a basis in the planning and evaluation of future measurement programs. We also provide a case study on how the antenna beamwidth affects the estimation of respiration rate based on the proposed propagation models and system architecture.

  15. Quasi-Optical Control of Intense Microwave Transmission

    CERN Document Server

    Hirshfield, Jay L


    This volume assembles the texts of presentations given at the NATO-sponsored Advanced Research Workshop on Quasi-Optical Transmission of High-Power Microwaves, held in Nizhny Novgorod, Russia in February 2004. The presentations bridge a wide range of technical areas, but share common tools of analysis and design. Applications of quasi-optics extend to the use of high-power microwaves—including millimeter-waves— for radar and communications (especially deep space millimeter-wave systems, space debris detection radar, and radar for the detection of small targets moving over heavy clutter); particle accelerators (especially for a future high-acceleration-gradient electron-positron collider); plasma research (especially for controlled nuclear fusion and waste decontamination); and material processing (in particular, ceramic sintering with millimeter-waves, and the coating of metal surfaces with protective dielectric films.). Scientists and engineers working in any of these areas should benefit significantly f...

  16. Calibration of a Microwave Imaging System Using a Known Scatterer

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy


    the imaging capability of the system, it is of interest to remove it. In this work, a calibration procedure capable of removing a constant offset, i.e., the leakage, from the measured signals is presented. The calibration procedure is based on a comparison between the relative change observed between...... a measurement with an empty imaging system and a measurement with a simple known object in the system, i.e., a metal cylinder, and the relative change observed between simulations of the same two situations. Assuming that the simulation software is capable of accurately modeling the imaging system, some...... relatively simple considerations on the difference between the measured and simulated results lead to an expression for the offset. Once the offset is known, this can be subtracted from the measurement of the unknown object to be investigated (the breast). The main advantage of the calibration procedure...

  17. Analysis and design of coupled-oscillator arrays for microwave systems (United States)

    Moussounda, Renaud

    The concept of synchronized nonlinear coupled oscillators is applied to microwave and antenna engineering for the analysis and design of wireless communication and sensing systems operating at the microwave and/or millimeter (mm)-wave frequencies. The significance of such approach is justified from the potential gain in efficiency, weight, cost and functionality although technical challenges stand in the way. Unlike typical phased array systems, which are currently used to construct such systems, coupled-oscillator systems present additional challenges that mainly arise from maintaining stability and synchronization as the the coupled nonlinear system is operated. Linear systems do not present such stability issues and are consequently faster since they do not rely on any gradual synchronization mechanism in order to function. However, at significantly higher frequencies in the quasi-optical domain, coupled-oscillator systems can make up for the speed difference and present significant efficiency advantages over typical phased array architectures. In addition, coupled nonlinear systems possess inherent analog properties that can be used for a multitude of functions. This dissertation advances the topic of coupled-oscillator arrays by 1) developing an alternative set of techniques for designing the oscillating unit cells called active integrated antennas (AIAs) at microwave or mm-wave frequencies, 2) developing a more accurate description of the dynamics of the array, 3) developing and implementing a new topology for a coupling network that is able to extend stability, 4) implementing a fully non-reciprocally coupled array able to produce large scan angle without loss of stability, 5) proposing an architecture based on a single phase-locked loop (PLL) and containing a self-calibration mechanism, and finally 6) implementing a phase-boosting mechanism using simple circuits to amplify the phase difference between adjacent radiating antennas in order to increase

  18. Interaction of microwave radiation with the high mobility two-dimensional electron system in GaAs/AlGaAs heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ramanayaka, A.N.; Ye, Tianyu; Liu, H.-C. [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States); Wegscheider, W. [Laboratorium fuer Festkoerperphysik, ETH Zurich, 8093 Zurich (Switzerland); Mani, R.G., E-mail: [Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303 (United States)


    The influence of microwave excitation on the magnetotransport properties of the high mobility two-dimensional electron system (2DES) in the GaAs/AlGaAs heterostructure system is investigated by exploring (a) the dependence of the amplitude of the microwave-induced magnetoresistance-oscillations on the polarization direction of the linearly polarized microwaves and (b) the microwave reflection from the 2DES. The polarization study indicates that the amplitude of the magnetoresistance oscillations is remarkably responsive to the relative orientation between the linearly polarized microwaves and the current-axis in the specimen. At low microwave power, P, experiments indicate a strong sinusoidal variation in the diagonal resistance R{sub xx} vs. θ at the oscillatory extrema of the microwave-induced magnetoresistance oscillations. The reflection study indicates strong correlations between the microwave induced magnetoresistance oscillations and oscillatory features in the microwave reflection in a concurrent measurement of the magnetoresistance and the microwave magnetoreflection from the 2DES. The correlations are followed as a function of the microwave frequency and the microwave power, and the results are reported.

  19. A novel data association scheme for LEO space debris surveillance based on a double fence radar system (United States)

    Huang, Jian; Hu, Weidong; Xin, Qin; Guo, Weiwei


    The increasing amount of space debris threatens to seriously deteriorate and damage space-based instruments in Low Earth Orbit (LEO) environments. Therefore, LEO space debris surveillance systems must be developed to provide situational awareness in space and issue warnings of collisions with LEO space debris. In this paper, a double fence radar system is proposed as an emerging paradigm for LEO space debris surveillance. This system exhibits several unique and promising characteristics compared with existing surveillance systems. In this paper, we also investigate the data association scheme for LEO space debris surveillance based on a double fence radar system. We also perform a theoretical analysis of the performance of our proposed scheme. The superiority and the effectiveness of our novel data association scheme is demonstrated by experimental results. The data used in our experiments is the LEO space debris catalog produced by the North American Air Defense Command (NORAD) up to 2009, especially for scenarios with high densities of LEO space debris, which were primarily produced by the collisions between Iridium 33 and Cosmos 2251. We hope that our work will stimulate and benefit future work on LEO space debris surveillance approaches and enable construction of the double fence radar system.

  20. Space Radar Image of Kilauea Volcano, Hawaii (United States)


    This is a deformation map of the south flank of Kilauea volcano on the big island of Hawaii, centered at 19.5 degrees north latitude and 155.25 degrees west longitude. The map was created by combining interferometric radar data -- that is data acquired on different passes of the space shuttle which are then overlayed to obtain elevation information -- acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar during its first flight in April 1994 and its second flight in October 1994. The area shown is approximately 40 kilometers by 80 kilometers (25 miles by 50 miles). North is toward the upper left of the image. The colors indicate the displacement of the surface in the direction that the radar instrument was pointed (toward the right of the image) in the six months between images. The analysis of ground movement is preliminary, but appears consistent with the motions detected by the Global Positioning System ground receivers that have been used over the past five years. The south flank of the Kilauea volcano is among the most rapidly deforming terrains on Earth. Several regions show motions over the six-month time period. Most obvious is at the base of Hilina Pali, where 10 centimeters (4 inches) or more of crustal deformation can be seen in a concentrated area near the coastline. On a more localized scale, the currently active Pu'u O'o summit also shows about 10 centimeters (4 inches) of change near the vent area. Finally, there are indications of additional movement along the upper southwest rift zone, just below the Kilauea caldera in the image. Deformation of the south flank is believed to be the result of movements along faults deep beneath the surface of the volcano, as well as injections of magma, or molten rock, into the volcano's 'plumbing' system. Detection of ground motions from space has proven to be a unique capability of imaging radar technology. Scientists hope to use deformation data acquired by SIR-C/X-SAR and future imaging

  1. Studies of microwave scattering and canopy architecture for boreal forests (United States)

    Lockhart, G. Lance; Gogineni, S. P.


    This is an annual report on the project titled 'Study of Microwave Scattering and Canopy Architecture for Boreal Forests.' The objectives of our work are to study the interaction of microwave signals with vegetation components and to determine the radar's ability to provide accurate estimates of biophysical parameters such as biomass. Our research is aimed at refining the current microwave models and using these improvements to facilitate more accurate interpretations of SAR (synthetic aperture radar) imagery.

  2. Extra Wideband Polarimetry, Interferometry and Polarimetric Interferometry in Synthetic Aperture Remote Sensing(Special Issue on Advances in Radar Systems)


    Boerner, Wolfgang-Martin; Yamaguchi, Yoshio


    The development of Radar Polarimetry and Radar Interferometry is advancing rapidly. Whereas with radar polarimetry, the textural fine-structure, target orientation, symmetries and material constituents can be recovered with considerable improvement above that of standard amplitude-only radar; with radar interferometry the spatial(in depth)structure can be explored. In Polarimetric Interferometric Synthetic Aperture Radar(POL-IN-SAR)Imaging, it is possible to recover such co-registered textura...

  3. Large phased-array radars (United States)

    Brookner, Eli, Dr.


    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  4. A Real-Time Nowcast/Forecast System for Radar Electrojet Clutter Driven by Global Assimilative Models of the Ionosphere (United States)

    Carrano, C. S.; Alcala, C. M.; Liang, P.; Groves, K. M.; Donatelli, D. E.; Daniell, R. E.


    The Space-Based Radar Ionospheric Effects Simulation (SBR-IES) tool was developed to predict the degrading effects of the ionosphere on the performance of space-based radar systems. This presentation focuses on the technique used by the SBR-IES to predict radar electrojet clutter. The term electrojet clutter refers to backscatter from electron density irregularities that develop in response to unstable (two-stream) current systems in the auroral and equatorial electrojets. The two-stream instability is a dominant mechanism for the generation of electrojet clutter for radars operating in and above the VHF frequency band. The effects of these irregularities on the performance of ground- and space-based radars are discussed. The ionospheric clutter predictions are made using the approach developed for the Comprehensive E-Region Auroral Clutter (CERAC) model by SRI International and Rome Laboratory. The threshold velocity required for the generation of ionospheric irregularities by the two-stream instability is computed using nonlinear plasma wave theory. The streaming velocity, or the relative velocity between the electrons and ions, is calculated based on the ExB drift. When the streaming velocity exceeds the threshold, the clutter strength is estimated using an empirical relationship involving the radar frequency, electron density, magnetic aspect angle, and flow angle. A uniformly distributed layer of scattering irregularities is assumed. The ionospheric clutter predictions provided by the initial version of the SBR-IES tool were based on a climatological, or average, description of ionospheric conditions at the time of observation, driven by Kp, Ap, and the 10.7 cm solar flux. This approach, while having the advantage of requiring only a few geophysical input parameters to run, is limited by the use of overly simplified (smoothed) climatological models for the electric field, as well as electron, ion, and neutral densities and temperatures within the E

  5. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof


    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  6. System Realization of Broad Band Digital Beam Forming for Digital Array Radar

    Directory of Open Access Journals (Sweden)

    Wang Feng


    Full Text Available Broad band Digital Beam Forming (DBF is the key technique for the realization of Digital Array Radar (DAR. We propose the method of combination realization of the channel equalization and DBF time delay filter function by using adaptive Sample Matrix Inversion algorithm. The broad band DBF function is realized on a new DBF module based on parallel fiber optic engines and Field Program Gate Array (FPGA. Good performance is achieved when it is used to some radar products.

  7. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system. (United States)

    Rydfjord, Jonas; Svensson, Fredrik; Fagrell, Magnus; Sävmarker, Jonas; Thulin, Måns; Larhed, Mats


    In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe), thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  8. Microwave interrogation of an air plasma plume as a model system for hot spots in explosives (United States)

    Kane, Ronald J.; Tringe, Joseph W.; Klunder, Gregory L.; Baluyot, Emer V.; Densmore, John M.; Converse, Mark C.


    The evolution of hot spots within explosives is critical to understand for predicting how detonation waves form and propagate. However, it is challenging to observe hot spots directly because they are small (˜micron diameter), form quickly (much less than a microsecond), and many explosives of interest are optically opaque. Microwaves are well-suited to characterize hot spots because they readily penetrate most explosives. They also have sufficient temporal and spatial resolution to measure the coalescence of an ensemble of hot spots inside explosives. Here we employ 94 GHz microwaves to characterize the evolution of individual plasma plumes formed by laser ionization of air. We use interferometry to obtain plume diameter as a function of time. Although the plasma plumes are larger than individual hot spots in explosives, they expand rapidly and predictably, and their structure can be optically imaged. They are therefore useful model systems to establish the spatial and temporal limits of microwave interferometry (MI) for understanding more complex hot spot behavior in solid explosives.

  9. Microwave bone imaging: a preliminary scanning system for proof-of-concept. (United States)

    Ruvio, Giuseppe; Cuccaro, Antonio; Solimene, Raffaele; Brancaccio, Adriana; Basile, Bruno; Ammann, Max J


    This Letter introduces a feasibility study of a scanning system for applications in biomedical bone imaging operating in the microwave range 0.5-4 GHz. Mechanical uncertainties and data acquisition time are minimised by using a fully automated scanner that controls two antipodal Vivaldi antennas. Accurate antenna positioning and synchronisation with data acquisition enables a rigorous proof-of-concept for the microwave imaging procedure of a multi-layer phantom including skin, fat, muscle and bone tissues. The presence of a suitable coupling medium enables antenna miniaturisation and mitigates the impedance mismatch between antennas and phantom. The three-dimensional image of tibia and fibula is successfully reconstructed by scanning the multi-layer phantom due to the distinctive dielectric contrast between target and surrounding tissues. These results show the viability of a microwave bone imaging technology which is low cost, portable, non-ionising, and does not require specially trained personnel. In fact, as no a-priori characterisation of the antenna is required, the image formation procedure is very conveniently simplified.

  10. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    Directory of Open Access Journals (Sweden)

    Jonas Rydfjord


    Full Text Available In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe, thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  11. Car collision sensor based on a noise radar



    This article presents the study of a car collision radar system. Previous research led to a mock-up working in the10GHz band, based on a pseudo-noise and a correlation process. This current study started from a marketed microwave sensor (Transmitter-Receiver Unit) connected to an interface I/O and a processing module. As a first step, and to define the system architecture, the module was simulated on a LabView platform. Different modulations were tested to evaluate the main limitations of the...

  12. The NOAA Microwave Integrated Retrieval System (MiRS): Recent Science Improvements and Validation Results (United States)

    Grassotti, C.; Zhan, X.; Boukabara, S. A.; Chattopadhyay, M.; Smith, C. K.; Islam, T.; Davies, J. E.


    The Microwave Integrated Retrieval System (MiRS) has been the NOAA official operational microwave retrieval algorithm since 2007 and is currently run operationally on microwave data from NOAA-18, NOAA-19, MetopA, MetopB/AMSU-MHS, DMSP F-17, F-18/SSMIS, Suomi-NPP/ATMS, and Megha-Tropics/SAPHIR. It has also been run experimentally on data from TRMM/TMI, Aqua/AMSR-E, GCOM-W1/AMSR2, and GPM/GMI. Future plans include operational processing of JPSS-1/ATMS, DMSP F-19/SSMIS, and GPM/GMI data. The inversion within MiRS follows a 1D-variational methodology, in which the fundamental physical attributes affecting the microwave observations are retrieved physically, including the profile of atmospheric temperature, water vapor, liquid and frozen hydrometeors, as well as surface emissivity and temperature. The community radiative transfer model (CRTM) is used as the forward and Jacobian operator to simulate the radiances at each iteration prior to fitting the measurements to within the noise level. The retrieved surface properties are then used to determine surface physical characteristics, including, when appropriate, cryospheric parameters such as sea ice concentration, ice age, and snow water amount, using pre-determined relationships that link emissivity and effective skin temperature to these parameters. We present a review of science improvements included in the recently released MiRS v11.1 that have led to higher quality atmospheric and surface parameter retrievals, with the improvements quantified by comparison with relevant atmospheric and surface reference data.

  13. A Method for Combined Passive-Active Microwave Retrievals of Cloud and Precipitation Profiles. (United States)

    Olson, William S.; Kummerow, Christian D.; Heymsfield, Gerald M.; Giglio, Louis


    Three-dimensional tropical squall-line simulations from the Goddard cumulus ensemble (GCE) model are used as input to radiative computations of upwelling microwave brightness temperatures and radar reflectivities at selected microwave sensor frequencies. These cloud/radiative calculations form the basis of a physical cloud/precipitation profile retrieval method that yields estimates of the expected values of the hydrometeor water contents. Application of the retrieval method to simulated nadir-view observations of the aircraft-borne Advanced Microwave Precipitation Radiometer (AMPR) and NASA ER-2 Doppler radar (EDOP) produce random errors of 23%, 19%, and 53% in instantaneous estimates of integrated precipitating liquid, integrated precipitating ice, and surface rain rate, respectively.On 5 October 1993, during the Convection and Atmospheric Moisture Experiment (CAMEX), the AMPR and EDOP were used to observe convective systems in the vicinity of the Florida peninsula. Although the AMPR data alone could be used to retrieve cloud and precipitation vertical profiles over the ocean, retrievals of high-resolution vertical precipitation structure and profile information over land required the combination of AMPR and EDOP observations.No validation data are available for this study; however, the retrieved precipitation distributions from the convective systems are compatible with limited radar climatologies of such systems, as well as being radiometrically consistent with both the AMPR and EDOP observations. In the future, the retrieval method will be adapted to the passive and active microwave measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite sensors.

  14. The two dimensional electron system as a nanoantenna in the microwave and terahertz bands (United States)

    Iñarrea, Jesús


    We study the magnetoresistance of two-dimensional electron systems under several radiation sources of different frequencies for moderate power. We use the model of radiation-driven electron orbits extended to this regime. First, we consider the case of two different radiations and we find a regime of superposition or interference of harmonic motions, i.e., a modulated magnetoresistance response with pulses and beats. Finally, we consider a multiple photoexcitation case where we propose the two-dimensional electron system as a potential nanoantenna device or ultrasensitive detector for the microwave and terahertz bands. Thus, these results could be of special interest in nanophotonics and nanoelectronics.

  15. Dielectric properties measurement system at cryogenic temperatures and microwave frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Molla, J.; Ibarra, A.; Margineda, J.; Zamarro, J. M.; Hernandez, A.


    A system based on the resonant cavity method has been developed to measure the permittivity and loss tangent at 12-18 GHz over the temperature range 80 K to 300 K. Changes of permittivity as low as 0.01 % in the range 1 to 30, and 3 x 10{sup 6} for loss tangent values below 10{sup 2}, can be obtained without requiring temperature stability. The thermal expansion coefficient and resistivity factor of copper have been measured between 80 K and 300 K. Permittivity of sapphire and loss tangent of alumina of 99.9 % purity in the same temperature range are presented. (Author) 23 refs.

  16. An Approach for Predicting the Shape and Size of a Buried Basic Object on Surface Ground Penetrating Radar System

    Directory of Open Access Journals (Sweden)

    Nana Rachmana Syambas


    Full Text Available Surface ground-penetrating radar (GPR is one of the radar technology that is widely used in many applications. It is nondestructive remote sensing method to detect underground buried objects. However, the output target is only hyperbolic representation. This research develops a system to identify a buried object on surface GPR based on decision tree method. GPR data of many basic objects (with circular, triangular, and rectangular cross-section are classified and extracted to generate data training model as a unique template for each type of basic object. The pattern of object under test will be known by comparing its data with the training data using a decision tree method. A simple powerful algorithm to extract feature parameters of object which is based on linear extrapolation is proposed. The result showed that tested buried basic objects can be correctly predicted and the developed system works properly.

  17. A Novel Blind Source Separation Algorithm and Performance Analysis of Weak Signal against Strong Interference in Passive Radar Systems

    Directory of Open Access Journals (Sweden)

    Chengjie Li


    Full Text Available In Passive Radar System, obtaining the mixed weak object signal against the super power signal (jamming is still a challenging task. In this paper, a novel framework based on Passive Radar System is designed for weak object signal separation. Firstly, we propose an Interference Cancellation algorithm (IC-algorithm to extract the mixed weak object signals from the strong jamming. Then, an improved FastICA algorithm with K-means cluster is designed to separate each weak signal from the mixed weak object signals. At last, we discuss the performance of the proposed method and verify the novel method based on several simulations. The experimental results demonstrate the effectiveness of the proposed method.

  18. Radar cross-sectional study using noise radar (United States)

    Freundorfer, A. P.; Siddiqui, J. Y.; Antar, Y. M. M.


    A noise radar system is proposed with capabilities to measure and acquire the radar cross-section (RCS) of targets. The proposed system can cover a noise bandwidth of near DC to 50 GHz. The noise radar RCS measurements were conducted for selective targets like spheres and carpenter squares with and without dielectric bodies for a noise band of 400MHz-5000MHz. The bandwidth of operation was limited by the multiplier and the antennae used.

  19. Numerical techniques for electromagnetic applications in microelectronic and radar imaging systems (United States)

    Akerson, Jerome J.


    In this thesis, the application of numerical techniques to electromagnetic problems in microelectronic and radar imaging systems are investigated. In particular the following problems are studied: (1) Dielectric rib waveguide discontinuities are analyzed with the Finite Difference Time Domain (FDTD) method. The application of Berenger's Perfectly Matched Layer to multi-layered dielectrics is analyzed and the specific conditions needed to successfully match the multiple dielectric layers are determined and justified. An FDTD method to find the fundamental mode's spatial distribution is used to excite the discontinuity problem. It is shown that the computational domain can be reduced by twenty percent over Gaussian excitations. The effects of rib waveguide bend discontinuities and the effects of the rib geometry to the bend loss are presented. (2) An Impedance Boundary Condition (IBC) for two dimensional FDTD simulations containing thin, good conductor sheets is developed. The IBC uses a recursive convolution scheme based on approximating the conductor's impedance as a sum of exponentials. The effects of FDTD parameters such as grid size and time step on simulation accuracy are presented. The IBC is shown to accurately model the conductor loss over a wide frequency range. The verification is performed by comparing the quality factors of rectangular resonant structures determined by the FDTD simulation and analytical methods. (3) Phase unwrapping techniques for the inversion of terrain height using Synthetic Aperture Radar Interferometry (InSAR) data are analyzed. The weighted least squares and branch cut phase unwrapping techniques are specifically studied. An optimal branch cut method and a hybrid least squares/branch cut method are presented and used to unwrap the phase of both simulated and real SAR interferograms. When used to invert terrain height, these new SAR phase unwrapping methods offer over fifty percent reduction in root mean square (rms) height error

  20. High voltage systems (tube-type microwave)/low voltage system (solid-state microwave) power distribution (United States)

    Nussberger, A. A.; Woodcock, G. R.


    SPS satellite power distribution systems are described. The reference Satellite Power System (SPS) concept utilizes high-voltage klystrons to convert the onboard satellite power from dc to RF for transmission to the ground receiving station. The solar array generates this required high voltage and the power is delivered to the klystrons through a power distribution subsystem. An array switching of solar cell submodules is used to maintain bus voltage regulation. Individual klystron dc voltage conversion is performed by centralized converters. The on-board data processing system performs the necessary switching of submodules to maintain voltage regulation. Electrical power output from the solar panels is fed via switch gears into feeder buses and then into main distribution buses to the antenna. Power also is distributed to batteries so that critical functions can be provided through solar eclipses.