WorldWideScience

Sample records for microwave irradiation mechanism

  1. DFT studies on cobalt-catalyzed cyclotrimerization reactions: the mechanism and origin of reaction improvement under microwave irradiation.

    Science.gov (United States)

    Rodriguez, Antonio M; Cebrián, Cristina; Prieto, Pilar; García, José Ignacio; de la Hoz, Antonio; Díaz-Ortiz, Ángel

    2012-05-14

    A DFT computational mechanistic study of the [2+2+2] cyclotrimerization of a diyne with benzonitrile, catalyzed by a cobalt complex, has been carried out. Three alternative catalytic cycles have been examined together with the precatalytic step (responsible for the induction period). The favored mechanism takes place by means of an intramolecular metal-assisted [4+2] cycloaddition. The beneficial role of microwave activation has been studied. It is concluded that microwave irradiation can decrease the catalytic induction period through thermal effects and can also increase the triplet lifetime and promote the reaction, thus improving the final yield.

  2. In Situ Free Radical Growth Mechanism of Platinum Nanoparticles by Microwave Irradiation and Electrocatalytic Properties

    Science.gov (United States)

    Inwati, Gajendra Kumar; Rao, Yashvant; Singh, Man

    2016-10-01

    Microwave irradiation was employed for spherical-shaped platinum nanoparticle (Pt NPs) preparation. Spherical Pt NPs indexed with (111) facets were prepared using Pt(II) precursor salt, glycerol as solvent and reducing agent, and polyvinylpyrrolidone (PVP) as a shape directer under microwave irradiation for 3-5 min at 300 °C. Electron spin resonance (ESR) peak at 336.000 mT (milli Tesla) confirmed the free radical formation from aqueous glycerol solution which acted as reducing species under microwave. The 2-8-nm diameter of particles was obtained by high-resolution transmission electron microscope. Dynamic light scattering was used to optimize the microwave dose followed by 33 and 48 nm size and 51 and 67 mV zeta potential of Pt NPs, respectively. The PVP was demonstrated as shape controlling agent investigated by Fourier transmission infrared spectroscopy (FTIR). The electrocatalytic performance of as-prepared Pt colloids was investigated using cyclic voltammetry which showed a higher catalytic activity for ethanol redox reaction.

  3. Effect of modified graphene and microwave irradiation on the mechanical and thermal properties of poly(styrene-co-methyl methacrylate)/graphene nanocomposites

    KAUST Repository

    Zubair, Mukarram

    2014-08-04

    The effect of modified graphene (MG) and microwave irradiation on the interaction between graphene (G) and poly(styrene-co-methyl meth acrylate) [P(S-co-MMA)] polymer matrix has been studied in this article. Modification of graphene was performed using nitric acid. P(S-co-MMA) polymer was blended via melt blending with pristine and MG. The resultant nanocomposites were irradiated under microwave at three different time intervals (5, 10, and 20 min). Compared to pristine graphene, MG showed improved interaction with P(S-co-MMA) polymer (P) after melt mixing and microwave irradiation. The mechanism of improved dispersion and interaction of modified graphene with P(S-co-MMA) polymer matrix during melt mixing and microwave irradiation is due to the presence of oxygen functionalities on the surface of MG as confirmed from Fourier transform infrared spectroscopy. The formation of defects on modified graphene and free radicals on P(S-co-MMA) polymer chains after irradiation as explained by Raman spectroscopy and X-Ray diffraction studies. The nanocomposites with 0.1 wt% G and MG have shown a 26% and 38% increase in storage modulus. After irradiation (10 min), the storage modulus further improved to 11.9% and 27.6% of nanocomposites. The glass transition temperature of nanocomposites also improved considerably after melt mixing and microwave irradiation (but only for polymer MG nanocomposite). However, at higher irradiation time (20 min), degradation of polymer nanocomposites occurred. State of creation of crosslink network after 10 min of irradiation and degradation after 20 min of irradiation of nanocomposites was confirmed from SEM studies. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Enhanced biocatalysis mechanism under microwave irradiation in isoquercitrin production revealed by circular dichroism and surface plasmon resonance spectroscopy.

    Science.gov (United States)

    Gong, An; Zhu, Dan; Mei, Yi-Yuan; Xu, Xiao-Hui; Wu, Fu-An; Wang, Jun

    2016-04-01

    An efficient and rapid process for isoquercitrin production by hesperidinase-catalyzed hydrolysis of rutin was successfully developed under microwave irradiation detecting the affinity by circular dichroism (CD) and surface plasmon resonance (SPR) spectroscopy. A maximum isoquercitrin yield of 91.5±2.7% was obtained in 10min with the conditions of 10g/L hesperidinase, 2g/L rutin, 30°C and microwave power density 88.9W/L. Enzymatic reaction rate and Vm/Km in the microwave reactor were 6.34-fold higher than in a continuous flow microreactor and 1.24-fold higher than in a biphasic system. CD and SPR analysis results also showed that hesperidinase has a better selectivity and affinity (3.3-fold than in a batch reactor) to generate isoquercitrin under microwave irradiation. Microwave irradiation greatly improved the reaction efficiency and productivity, leading to a more positive economical assessment. The binding affinity indicates the presence of strong multivalent interactions between rutin and hesperidinase under microwave irradiation.

  5. Impact of modified graphene and microwave irradiation on thermal stability and degradation mechanism of poly (styrene-co-methyl meth acrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, Mukarram [Department of Environmental Engineering, University of Dammam, 31982 Dammam (Saudi Arabia); Shehzad, Farrukh [Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia, (Saudi Arabia); Al-Harthi, Mamdouh A., E-mail: mamdouh@kfupm.edu.sa [Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia, (Saudi Arabia); Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, 31261 Dhahran (Saudi Arabia)

    2016-06-10

    Highlights: • Modified graphene imparts thermal stability to Poly (styrene-co-methyl methacrylate) [P(st-mma)]. • The thermal stability of P(st-mma) decreased with microwave irradiation. • The thermal stability of P(st-mma)/MG nanocomposites increased with irradiation time up to 10 min and decreased subsequently. • The degradation of P(st-mma) and P(st-mma)/MG is governed by random scission model. - Abstract: Poly (styrene-co-methyl methacrylate) [P(st-mma)] composite containing 0.1 wt% modified graphene (MG) was prepared via melt blending. MG was prepared by oxidation method using nitric acid. The P(st-mma) and P(st-mma)MG composite were irradiated using microwave radiation. The degradation mechanism and thermal stability of the irradiated and un-irradiated samples was analyzed by TGA. P(st-mma)MG showed high thermal stability. The average activation energy of thermal degradation was found to be 200 kJ/mol for P(st-mma), 214 kJ/mol for P(st-mma)MG. The activation energy was highest for 10 min irradiated nanocomposites indicating an improvement in stability. The degradation mechanism was investigated by comparing the master plots constructed using the experimental data with theoretical master plots of various kinetic models. The thermal degradation of P(st-mma) and P(st-mma)MG composite before and after irradiation governs the random scission mechanism. SEM and TEM micrographs showed improved interactions and degradation of composites after 10 min and 20 min irradiation respectively.

  6. Synthesis of Coronene Using Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Bing YANG; Ying LI; Ming Gui XIE

    2003-01-01

    Using microwave irradiation, perylene was obtained from 3,4,9,10-perylenetetracar- boxylic dianhydride with copper powder in boiling quinoline. With the same method, 1,12- benzoperylene was synthesized from 1, 12-benzoperylene-1', 2'-dicarboxylic anhydride, and coronene was prepared from coronene-1, 2- dicarboxylic anhydride with good yield. Through Dields-Alder reaction, 1, 12-benzoperylene-1', 2'-dicarboxylic anhydride and coronene-1,2- dicarboxylic anhydride were also prepared using microwave irradiation.

  7. Synthesis of Novolacs under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Xia Chun; Li Yuancai; Zhang Yanfu

    2006-01-01

    Novolacs were successfully synthesized using oxalic acid as the catalyst in a self-designed device based on a domestic microwave oven. The fundamental characteristics of the synthesis of novolacs under microwave irradiation (MI) were investigated, and the properties of the resins polymerized and dehydrated under microwave irradiation and conventional heating (CH) were analyzed comparatively. The results show that MI reduced the polymerization and dehydration time greatly; and that the resins polymerized and dehydrated under MI presented longer flow distances (i. e. , higher flowability) and shorter cure time than those obtained under CH.

  8. Trade-off between the Mechanical Strength and Microwave Electrical Properties of Functionalized and Irradiated Carbon Nanotube Sheets.

    Science.gov (United States)

    Williams, Tiffany S; Orloff, Nathan D; Baker, James S; Miller, Sandi G; Natarajan, Bharath; Obrzut, Jan; McCorkle, Linda S; Lebron-Colón, Marisabel; Gaier, James; Meador, Michael A; Liddle, J Alexander

    2016-04-13

    Carbon nanotube (CNT) sheets represent a novel implementation of CNTs that enable the tailoring of electrical and mechanical properties for applications in the automotive and aerospace industries. Small molecule functionalization and postprocessing techniques, such as irradiation with high-energy particles, are methods that can enhance the mechanical properties of CNTs. However, the effect that these modifications have on the electrical conduction mechanisms has not been extensively explored. By characterizing the mechanical and electrical properties of multiwalled carbon nanotube (MWCNT) sheets with different functional groups and irradiation doses, we can expand our insights into the extent of the trade-off that exists between mechanical strength and electrical conductivity for commercially available CNT sheets. Such insights allow for the optimization of design pathways for engineering applications that require a balance of material property enhancements.

  9. Microwave Irradiation on Halloysite-Polypropylene Nanocomposites

    Science.gov (United States)

    Espino, Omar; Yust, Brian; Chipara, Dorina; Ajayan, Pullickel; Chipara, Alin; Chipara, Mircea; Utrgv Collaboration; Rice Collaboration

    Halloysite is an unique cyllindrical nanoclay characterized by poor electrical and thermal conductivity, which may become the filler of choice for the reinforcement of polymeric matrix, where electrical or thermal insulation are required. The main limits in the use of halloysite as replacement for carbon nanotube (CNT) are: 1. Smaller aspect ratio as halloysites are typically shorter than CNTs. 2. Smaller Young modulus of halloysites compared with CNTs. 3. Reduced thermal stability due to the loss of water upon heating. A research on halloysite dispersed within isotactic polypropylene is reported. To improve the interface between the halloysite and the polymeric matrix a microwave irradiation step has been considered. The local heating of the halloysite nanotubes is mediated by the absorbed/structural water content of the nanoclay. Nanocomposites loaded by various amounts of halloysite ranging from 0 % to 20 % wt. have been prepared by melt mixing by using a Haake RheoMixer. The as obtained nanocomposites have been subjected to microwave irradiation at 75 W in an Anton Paar Monowave 300 system and various irradiation times ranging from 5, 10, 15, 30, 45, and 60 minutes. The effect of microwave irradiation has been studied by Raman and FTIR spectroscopy

  10. Effects of microwave power and microwave irradiation time on pretreatment efficiency and characteristics of corn stover using combination of steam explosion and microwave irradiation (SE-MI) pretreatment.

    Science.gov (United States)

    Pang, Feng; Xue, Shulin; Yu, Shengshuan; Zhang, Chao; Li, Bing; Kang, Yong

    2012-08-01

    The effects of microwave power and microwave irradiation time on pretreatment efficiency and characteristics of corn stover were investigated based on a new process named combination of steam explosion and microwave irradiation (SE-MI) pretreatment. Results showed that with microwave power and microwave irradiation time increasing, glucose and xylose that released into hydrolyzate, as well as enzymatic hydrolysis yields and sugar yields of glucose and xylose were all slightly increased after SE-MI pretreatment. The maximum sugar yield was 72.1 g per 100 g glucose and xylose in feedstock, achieved at 540 W microwave power and 5 min microwave irradiation time. XRD analysis showed that the crystallinity of biomass was 15.6-19.9% lower for SE-MI pretreatment with microwave effect than that without microwave effect. However, low microwave power and short microwave irradiation time were favorable for SE-MI pretreatment considering energy consumption.

  11. Application of Microwave Irradiation to Rapid Organic Inclusion Complex

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Microwave irradiation has been used in chemical laboratories for moisture analysis and wet asking procedures of biological and geological materials for a number of years [1]. More recently the microwave irradiation also widely used for rapid organic synthesis [2]. However, there have not yet been any reports concerning the ultilisatioin of microwave ovens in the routine organic inclusion complex regularly in chemical research.

  12. Constant-dose microwave irradiation of insect pupae

    Science.gov (United States)

    Olsen, Richard G.

    Pupae of the yellow mealworm Tenebrio molitor L. were subjected to microwave irradiation for 1.5-24 hours at power density levels adjusted to produce a total dosage of approximately 1123 J/g in each insect for every experiment. Insects without visible blemishes were exposed in a standing wave irradiation system such that half of them were exposed in the plane of maximum electric field (E field) and the other half were exposed in the plane of maximum magnetic field (H field). Both E field and H field insects exhibited nearly the same specific absorption rate (SAR) for pupal orientation parallel to the magnetic field vector at 5.95 GHz. Irradiations were conducted both with and without the use of a ventilating fan to control the temperature rise in the irradiation chamber. Abnormal development as a result of the microwave exposure was seen only in the high-power, short-duration experiment without chamber ventilation. This result suggests a thermal interaction mechanism for explanation of observed microwave-induced abnormalities. A study of the time course of the average temperature rise in the irradiated insects indicates that teratological effects for this configuration have a temperature threshold of approximately 40°C.

  13. Allylation of Aromatic Aldehyde under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yu-Mei; JIA,Xue-Feng; WANG,Jin-Xian

    2004-01-01

    @@ Allylation of carbonyl compounds is one of the most interesting processes for the preparation of homoallylic alcohols. Over the past few decades, many reagents have been developed for such reactions[1~3]. In this paper, we first report allylic zinc reagent 1, which can be prepared from zinc dust and allyl bromide conveniently in THF, and reacted with aromatic aldehyde to give homo-allylic alcohols under microwave irradiation.

  14. Hydrolytic fragmentation of seed gums under microwave irradiation.

    Science.gov (United States)

    Singh, V; Tiwari, A

    2009-03-01

    The seed gum solutions of Ipomoea purga, Ipomoea palmata, Ipomoea dasysperma, Cyanaposis tetragonolobus (Guar gum) and Crotolaria medicaginea were microwave (MW) irradiated and their degradation to oligo and monosaccharides was investigated. The gum solutions were fragmented into oligosaccharides/constituent monosaccharides depending upon the length of MW exposure in presence of catalytic amount of mineral acid or even when no acid was used. A mechanism for the microwave induced hydrolytic degradation of the seed gums has been proposed. The MW exposure time required for the partial and complete degradation of the gums was found dependent on the types of the linkages and degree of the branching present in the gums.

  15. Smelting of Scandium by Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Satoshi Fujii

    2017-09-01

    Full Text Available Scandium is being explored as an alloying element for aluminum alloys, which are gaining importance as high-performance lightweight structural alloys in the transportation industry. A few years ago, Sc was also found to be suitable for use in electrical devices. High-Sc-content ScAlN thin films have attracted significant attention because of their strong piezoelectricity. The piezoelectric response of ScAlN suggests that ScAlN thin films formed on a hard substrate would be suitable surface acoustic wave wideband filters for next-generation wireless communication systems. However, it is often difficult to use ScAlN thin films in MEMS devices—including acoustic ones—because of the extremely high price of metallic Sc, given the difficulty associated with smelting it. Here, we propose a novel process for smelting Sc metal by microwave irradiation. Sc metal was able to be obtained successfully from ScF3 through a microwave-irradiation-based carbon reduction reaction. The reaction temperature for this reduction process was approximately 880°C, which is half of that for the conventional smelting process involving reduction with Ca. Thus, the proposed microwave irradiation process has significant potential for use in the smelting of Sc metal.

  16. Microwave Irradiation Treatment of Wood Flour and Its Application in PVC-Wood Flour Composites

    Institute of Scientific and Technical Information of China (English)

    HU Shengfei; CHEN Wen; LIU Weihua; LI Huaxing

    2007-01-01

    The technique of microwave irradiation induced free radical bulk- polyaddition reactions in porous wood flour was used to modify wood flour. The behaviors of the modified wood flour under microwave irradiation, such as thermal stability and moisture sorption properties, were studied. A kind of semiinterpenetrating polymer network wood four (Semi-IPN-WF) can be formed through polymerization of MMA in the porous wood flour by microwave irradiation, and the thermal decomposition temperature of the semi-IPN-WF is considerably increased. PVC/Semi-IPN-WF composites were prepared by melt mixing in double rolls,which exhibit improved rheological properties, lower water sorption properties and outstanding mechanical performances.

  17. Application of Microwave Irradiation to Rapid Organic Inclusion Complex

    Institute of Scientific and Technical Information of China (English)

    Yan; Xiaohua

    2001-01-01

    Microwave irradiation has been used in chemical laboratories for moisture analysis and wet asking procedures of biological and geological materials for a number of years [1]. More recently the microwave irradiation also widely used for rapid organic synthesis [2]. However, there have not yet been any reports concerning the ultilisatioin of microwave ovens in the routine organic inclusion complex regularly in chemical research.  ……

  18. Heat production in microwave-irradiated thermocouples.

    Science.gov (United States)

    Dunscombe, P B; McLellan, J; Malaker, K

    1986-01-01

    It has been known for some time that the irradiation of metallic thermometers by microwaves during clinical hyperthermia can lead to artifactual readings. We describe here a series of measurements in which this effect has been quantitatively studied. In particular, the data yield values for the conversion coefficient describing the rate of heat production per unit length of a thermocouple array per watt applied power which can be compared with the rate of heat production in the same volume of tissue. The degree of artifact in the temperature recording depends on the thermal resistance of the protective materials surrounding the array, and this thermal resistance has also been determined. It has been shown that measures taken to reduce the temperature artifact do not compromise the response time of the probe.

  19. Degradation of Tetracycline by Birnessite under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Meng Liu

    2014-01-01

    Full Text Available The efficiency and factors affecting tetracycline (TC degradation by birnessite under microwave irradiation (MI were investigated under different initial TC concentrations, solution pH, MI time, and MI power. The crystal structure, degradation efficiency, and reaction mechanism were investigated using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, and ultraviolet-visible spectroscopy (UV-Vis. The results showed that birnessite was an excellent microwave catalyst. The maximum TC removal efficiency by birnessite was 99% under MI at 400 W for 30 min in strongly acidic media. Under MI, the surface activity of birnessite increased, resulting in the ability to accelerate TC removal in high temperature.

  20. Using wet microalgae for direct biodiesel production via microwave irradiation.

    Science.gov (United States)

    Cheng, Jun; Yu, Tao; Li, Tao; Zhou, Junhu; Cen, Kefa

    2013-03-01

    To address the large energy consumption of microalgae dewatering and to simplify the conventional two-step method (cellular lipid extraction and lipid transesterification) for biodiesel production, a novel process for the direct conversion of wet microalgae biomass into biodiesel by microwave irradiation is proposed. The influences of conventional thermal heating and microwave irradiation on biodiesel production from wet microalgae biomass were investigated. The effects of using the one-step (simultaneous lipid extraction and transesterification) and two-step methods were also studied. Approximately 77.5% of the wet microalgal cell walls were disrupted under microwave irradiation. The biodiesel production rate and yield from wet microalgae biomass obtained through the one-step process using microwave irradiation were 6-fold and 1.3-fold higher than those from wet microalgae obtained through the two-step process using conventional heating.

  1. Deprotection of oximes using urea nitrate under microwave irradiation

    Indian Academy of Sciences (India)

    P T Perumal; M Anniyappan; D Muralidharan

    2004-08-01

    A new mild and efficient method for the cleavage of oximes to carbonyl compounds using readily available urea nitrate in acetonitrile-water (95 : 5), under microwave irradiation within 2 min, in good yields is reported.

  2. Inactivation of Clostridium difficile spores by microwave irradiation.

    Science.gov (United States)

    Ojha, Suvash Chandra; Chankhamhaengdecha, Surang; Singhakaew, Sombat; Ounjai, Puey; Janvilisri, Tavan

    2016-04-01

    Spores are a potent agent for Clostridium difficile transmission. Therefore, factors inhibiting spores have been of continued interest. In the present study, we investigated the influence of microwave irradiation in addition to conductive heating for C. difficile spore inactivation in aqueous suspension. The spores of 15 C. difficile isolates from different host origins were exposed to conductive heating and microwave irradiation. The complete inhibition of spore viability at 10(7) CFU/ml was encountered following microwave treatment at 800 W for 60 s, but was not observed in the conductive-heated spores at the same time-temperature exposure. The distinct patterns of ultrastructural alterations following microwave and conductive heat treatment were observed and the degree of damages by microwave was in the exposure time-dependent manner. Microwave would therefore be a simple and time-efficient tool to inactivate C. difficile spores, thus reducing the risk of C. difficile transmission.

  3. Microwave Irradiation Promoted Synthesis of Aryloxy Acetic Acids

    Institute of Scientific and Technical Information of China (English)

    LIN Min; ZHOU Jin-mei; XIA Hai-ping; YANG Rui-feng; LIN Chen

    2004-01-01

    Several aryloxy acetic acids were synthesized under microwave irradiation. The factors, which affect the reaction, were investigated and optimized. It was revealed that the best yields(92.7%-97.4%) were obtained when the molar ratio of the reactants was n(ArOH) : n(NaOH): n(ClCH2CO2H) =1: 2.5: 1.2 with microwave irradiation power of 640 W for 65-85 s.

  4. Cell response of Chlamydomonas actinochloris culture to repeated microwave irradiation

    Directory of Open Access Journals (Sweden)

    OLESIA O. GRYGORIEVA

    2015-05-01

    Full Text Available Abstract. Grygorieva OO, Berezovsjka MA, Dacenko OI. 2015. Cell response of Chlamydomonas actinochloris culture to repeated microwave irradiation. Nusantara Bioscience 7: 38-42. Two cultures of Chlamydomonas actinochloris Deason et Bold in the lag-phase were exposed to the microwave irradiation. One of them (culture 1 was not treated beforehand, whereas the other (culture 2 was irradiated by microwaves 2 years earlier. The measurement of cell quantity as well as measurement of change of intensities and spectra of cultures photoluminescence (PL in the range of chlorophyll a emission was regularly conducted during the cell cultures development. Cell concentration of culture 1 exposed to the microwave irradiation for the first time has quickly restored while cell concentration of culture 2 which was irradiated repeatedly has fallen significantly. The following increasing of cell concentration of culture 2 is negligible. Cell concentration reaches the steady-state level that is about a half of the cell concentration of control culture. Initially the PL efficiency of cells of both cultures decreases noticeable as a result of irradiation. Then there is the monotonic increase to the values which are significantly higher than the corresponding values in the control cultures. The ratio of the intensities at the maxima of the main emission bands of chlorophyll for control samples of both cultures remained approximately at the same level. At the same time effect of irradiation on the cell PL spectrum appears as a temporary reduction of this magnitude.

  5. Mutagenesis and Screening of High Yield Xylanase Production Strain of Aspergillus usamii by Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    李永泉; 陈时飞; 岑沛霖

    2003-01-01

    A high yield xylanase producing strain, A. usamii L336-23, was screened out from its parent strain A.usamii L336 after microwave irradiation. Its productivity of xylanase activity increased by 35.7% from 21000μ·m1-1 to 28500μ·m1-1 and was stable after frequent subcultures and storage for more than two months.The mechanism of microwave mutation was also discussed.

  6. Study of the degradation behaviour of dimethoate under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei [College of Chemistry and Chemical Engineering, Liaoning University, Shenyang 110036 (China)], E-mail: zhanglei63@126.com; Guo Xingjia; Yan Fei; Su Mingming; Li Ying [College of Chemistry and Chemical Engineering, Liaoning University, Shenyang 110036 (China)

    2007-11-19

    In this work, the degradation of dimethoate under microwave irradiation assisted advanced oxidation processes (MW/oxidants) were studied. The efficiencies of the degradation of dimethoate in dilute aqueous solutions for a variety of oxidants with or without MW irradiation were compared. The results showed that the synergistic effects between MW and K{sub 2}S{sub 2}O{sub 8} had high degradation efficiency for dimethoate. Simultaneously, UV/TiO{sub 2}/K{sub 2}S{sub 2}O{sub 8} photocatalytic oxidation degradation of dimethoate was investigated. The experimental results indicated that the method of microwave degradation of organic pollutants in the presence of oxidant could reduce reaction time and improve product yield. Microwave irradiation was an advisable choice for treating organic wastewaters and has a widely application perspective for non- or low-transparent and fuscous dye wastewaters.

  7. CATALYTIC PROPERTIES OF POLYMER-STABILIZED COLLOIDAL METAL NANOPARTICLES SYNTHESIZED BY MICROWAVE IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    Wei-xia Tu; Bao-lin He; Han-fan Liu; Xue-lan Luo; Xun Liang

    2005-01-01

    Catalytic properties of polymer-stabilized colloidal metal nanoparticles synthesized by microwave irradiation were studied in the selective hydrogenation of unsaturated aldehydes, o-chloronitrobenzene and the hydrogenation of alkenes. The results show that nanosized metal particles synthesized by microwave irradiation have similar catalytic performance in selective hydrogenation of unsaturated aldehydes, better selectivity to o-chloroaniline in hydrogenation of o-chloronitrobenzene and higher catalytic activities in hydrogenation of alkenes, compared with metal clusters prepared by conventional heating. The same apparent activation energy (Ea = 29 kJ mol-1) for hydrogenation of 1-heptene catalyzed with platinum nanoparticles prepared by both heating modes implied that the reaction followed the same mechanism.

  8. Bioethanol production from Ficus religiosa leaves using microwave irradiation.

    Science.gov (United States)

    Klein, Miri; Griess, Ofir; Pulidindi, Indra Neel; Perkas, Nina; Gedanken, Aharon

    2016-07-15

    A microwave assisted feasible process for the production of bioethanol from Ficus religiosa leaves was developed. Under the process conditions (8 min. microwave irradiation, 1 M HCl), 10.1 wt% glucose yield was obtained from the leaves. Microwave based hydrolysis process yielded higher glucose content (10.1 wt%) compared to the conventional hydrothermal process (4.1 wt%). Upon fermentation of the hydrolysate using Baker's yeast, 3 wt% (dry wt. basis) of bioethanol was produced.

  9. Orthodontic instrument sterilization with microwave irradiation

    Directory of Open Access Journals (Sweden)

    Arif Yezdani

    2015-01-01

    Full Text Available Objective: This study was designed to evaluate the efficiency of microwave sterilization of orthodontic instruments and molar bands immersed in plain distilled water with and without oral rinse, and to ascertain the minimum time of exposure required to sterilize. Materials and Methods: The orthodontic instruments (hinged and nonhinged, molar bands and mouth mirrors used in the patient′s mouth were selected for the study. The instruments were divided into two groups - Group I with oral rinse-set A (0.01% chlorhexidine gluconate and set B (0.025% betadine and Group II (included sets C and D without oral rinse. The instruments of set A, B and C were microwaved at 2,450 MHz, 800 W for 5 min, whereas, set D was microwaved for 10 min at the same above mentioned specifications. The efficacy of sterilization was assessed by stab inoculation of the instruments onto trypticase soya agar plates. The plates were checked for bacterial growth following incubation at 37°C for 24 h. For sterility control, Geobacillus stearothermophilus (MTCC 1518 was included. Results: No growth was observed in the plates that were inoculated with the microwaved orthodontic instruments of sets A, B and D, whereas scanty bacterial growth was observed in the plates inoculated with the microwaved set C instruments. Conclusion: Effective sterilization was achieved when the orthodontic instruments and molar bands were immersed in distilled water without oral rinse and microwaved for 10 min as also for those that were immersed in distilled water with oral rinse and microwaved for 5 min.

  10. Application of Intermittent Microwave Irradiation to Western Blot Analysis.

    Science.gov (United States)

    Liu, Yu-Ting; Toyokuni, Shinya

    2015-01-01

    We established a shortened protocol for Western blot analysis using intermittent microwave irradiation. With this method, the procedure is completed within 1 h after applying the primary antibody, and thus greatly saves time. This procedure appears to be applicable to any antibody based on our experience of several years.

  11. MICROWAVE IRRADIATION AND CROSS-LINKING OF COLLAGEN

    NARCIS (Netherlands)

    VISSER, CE; VOUTE, ABE; OOSTING, J; BOON, ME; KOK, LP

    1992-01-01

    In a multifactorial experiment, dermal sheep collagen was treated in diluted glutaraldehyde solutions, 70% ethyl alcohol, Cialit 1:5000, and distilled water for 1, 3 and 5 min, respectively, in combination with microwave irradiation at different temperature settings. The shrinkage temperature indica

  12. Fast preparation of dihydrocyclocitral from citronellal under solventless microwave irradiation

    DEFF Research Database (Denmark)

    Duus, Fritz; Doan, Nhuan Ngoc; Le, Thach Ngoc

    2005-01-01

    Dihydrocyclocitral, a useful reagent in organic synthesis, has been synthesized in high yield and with high stereoselectivity from citronellal under microwave irradiation in two steps, involving acetic anhydride under base catalysis, then p-toluene-sulfonic acid on silica gel under solventless...

  13. Fast preparation of dihydrocyclocitral from citronellal under solventless microwave irradiation

    DEFF Research Database (Denmark)

    Duus, Fritz; Doan, Nhuan Ngoc; Le, Thach Ngoc

    2005-01-01

    Dihydrocyclocitral, a useful reagent in organic synthesis, has been synthesized in high yield and with high stereoselectivity from citronellal under microwave irradiation in two steps, involving acetic anhydride under base catalysis, then p-toluene-sulfonic acid on silica gel under solventless...

  14. Facile Synthesis of 1, 2-Diazepine Derivatives under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Jin Xian WANG; Xiao Ning SHI; Ke Hu WANG; Xiu Qin MEN

    2004-01-01

    An efficient and convenient synthesis of 3, 5, 7-triaryl-4H-1, 2-diazepine from 2, 4, 6-triarylpyrylium salts and hydrazine in water under microwave irradiation is reported. The same reaction can be conducted using 2, 4, 6-triarylthiopyrylium salts and hydrazine.

  15. Synthesis of a 2-Furylpyrazoline Derivative Using Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Suban Syed Shafi

    2009-08-01

    Full Text Available A simple method for the synthesis of pyrazoline derivative containing furan moiety was developed. Thus, 5-(6-bromo-1,3-benzodioxol-5-yl-3-(2-furyl-1-(3-methyl-phenyl-4,5-dihydro-1H-pyrazole was synthesized using microwave irradiation and it was characterized by NMR, IR, and LCMS.

  16. Facile Synthesis of Hydantoin Derivatives under Microwave Irradiation

    OpenAIRE

    FAGHIHI, Khalil; ZAMANI, Khosrow; Mobinikhaledi, Akbar

    2004-01-01

    The rapid and highly efficient synthesis of hydantoin derivatives 3(a-f) was achieved under microwave irradiation by using a domestic microwave oven from the reactions of cyanohydrin derivatives 2(a-f) with ammonium carbonate. The reaction proceeded rapidly (2-5 min.), and as a result a series of hydantoin derivatives 3(a-f) were obtained in high yields. All of the synthesized compounds were fully characterized by their melting point, 1H-NMR, FTIR spectroscopy and elemental analyses....

  17. MICROWAVE IRRADIATED ALKYLATION OF DIETHYL ACETAMIDOMALONATE

    Institute of Scientific and Technical Information of China (English)

    张雅文; 沈宗旋; 陆军

    1995-01-01

    Ethyl acetamidomalonate was alkylated using three alkylating agents, both by microtwave irradiation of a mixture of the malonate,the alkylating agent, potassium carbonate,TEBA,and DMF for 0.5 to 1.5 min and by heating a solution of the malonate, sodium ethoxide, and the alkylatlng agent in ethanol for several hours. The two metlmds gave comparable results.

  18. Synthesis of nanosize BPO{sub 4} under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui, E-mail: wr_wrwr@163.com [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China); School of Chemical Engineering, Dalian University of Technology, Dalian 116023 (China); Jiang, Heng; Gong, Hong; Zhang, Jun [School of Chemistry and Materials Science, Liaoning Shihua University, Fushun 113001 (China)

    2012-08-15

    Highlights: ► Nanosize BPO{sub 4} are prepared under microwave-irradiation conditions. ► This reaction is only performed at less than 640 W power for 2.5–5 min. ► The particles of sample irradiated at 400 W are 40–90 nm in size and well dispersed. ► A simple, fast and green procedure for synthesis of nanosize BPO{sub 4} is developed. -- Abstract: Nanosize BPO{sub 4} was synthesized using H{sub 3}BO{sub 3} and H{sub 3}PO{sub 4} (85%) as raw materials under microwave irradiation. This reaction was performed at powers lower than 640 W and irradiation time ranging from 2.5 min to 5 min, which were only a fraction of the time required for conventional synthetic procedures. The structure of the as-prepared BPO{sub 4} is analogous to that of a high cristobalite. The particle sizes of the samples irradiated at 640 and 400 W range from 40 nm to 90 nm and 30 nm to 60 nm, respectively. The effects of different conditions on the experimental outcome are also discussed.

  19. Response of Aspergillus nidulans and Physarum polycephalum to microwave irradiation.

    Science.gov (United States)

    Mezykowski, T; Bal, J; Debiec, H; Kwarecki, K

    1980-06-01

    The influence of microwaves on genetic processes in Aspergillus nidulans and Physarum polycephalum was investigated. Suspensions of organisms were exposed in the far zone to 2450-MHz waves at 10 mW/cm2 for one hour in both CW and pulsed (1 microsecond, 600 pps) fields. Spores of A. nidulans were irradiated before and during germination. No changes in survival rate or in frequency of morphological mutation were found. Polycephalum under the influence of CW microwaves incorporated 3H-Thymine into DNA at a rate five times that of controls and twice that of thermal controls. The accelerated synthesis may reflect more efficient volume heating by microwaves, or in the presence of microthermal gradients in suspensions, or field-specific influences in concern with focal or volume heating.

  20. Fast transmethylation of serum lipids using microwave irradiation.

    Science.gov (United States)

    Lin, Yu Hong; Loewke, James D; Hyun, Duk Y; Leazer, Jay; Hibbeln, Joseph R

    2012-11-01

    Microwave irradiation as the energy source for one-step direct transesterification of fatty acids in human serum lipids was examined in a solvent system of methanol: hexane: acetyl chloride based on a Lepage & Roy assay. Innovative and explosion proof single-mode or multimode microwave accelerated reaction system was employed. Recoveries were calculated as the percentage of fatty acid concentrations measured by microwave assay to those by the reference method of the Lepage & Roy assay that utilized conductive heating at 100 °C for 60 min. Under conditions of 100 °C for 1 min in Single-mode (S4-100 × 1), or 125 °C for 5 min in Multimode (M5-125 × 5), the recoveries were 100-103 % for the total fatty acids and 96-106 % for each categorized fatty acid, including saturates, monounsaturates, n-6 PUFA, and n-3 PUFA. For individual PUFA, the mean recoveries were 102-105 % for 18:2n-6 and 18:3n-3; 99, 109, and 95 % for 20:4n-6, 20:5n-3, and 22:6n-3, respectively. Thus, fatty acid concentrations determined by microwave fatty acid assay were accurate to those results by the reference method, when the microwave conditions were optimal. In summary, the microwave irradiation could replace conductive heating in one-step direct transesterification, and reduce the duration from 60 min to 5 min or less. This methodology may be applied in both the absolute and relative quantification of serum total fatty acids.

  1. Nonthermal effect of microwave irradiation in nonaqueous enzymatic esterification.

    Science.gov (United States)

    Wan, Hui-da; Sun, Shi-yu; Hu, Xue-yi; Xia, Yong-mei

    2012-03-01

    Microwave has nonthermal effects on enzymatic reactions, mainly caused by the polarities of the solvents and substrates. In this experiment, a model reaction with caprylic acid and butanol that was catalyzed by lipase from Mucor miehei in alkanes or arenes was employed to investigate the nonthermal effect in nonaqueous enzymatic esterification. With the comparison of the esterification carried by conventional heating and consecutive microwave irradiation, the positive nonthermal effect on the initial reaction rates was found substrate concentration-dependent and could be vanished ostensibly when the substrate concentration was over 2.0 mol L(-1). The polar parameter log P well correlates the solvent polarity with the microwave effect, comparing to dielectric constant and assayed solvatochromic solvent polarity parameters. The log P rule presented in conventional heating-enzymatic esterification still fits in the microwaved enzymatic esterification. Alkanes or arenes with higher log P provided positive nonthermal effect in the range of 2 ≤ log P ≤ 4, but yielded a dramatic decrement after log P = 4. Isomers of same log P with higher dielectric constant received stronger positive nonthermal effect. With lower substrate concentration, the total log P of the reaction mixture has no obvious functional relation with the microwave effect.

  2. Traceless Synthesis of Hydantoin by Focused Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Lee Ming-juan; SUN Chung-ming

    2004-01-01

    Hydantoin analogs have shown versatile therapeutic applications and some of them have been approved by FDA as drugs. For example, Fosphenytoin as a sodium channel antagonist is used for the treatment of epilepsy. Phenytoin has antiarrhythmic, anticonvulsant and antineuralgic activities. Ethotoin and Mephenytoin both show anticonvulsant effect. Nilutamide is a non-steroidal orally-active antiandrogen in combination with surgical castration for the treatment of stage D2 metastatic prostate cancer. (Figure 1)An efficient, microwave-assisted method for the liquid-phase combinatorial synthesis of hydantoins is presented. Nucleophilic substitution of poly (ethylene glycol) immobilized chloroacetyl group with several primary amines is carried out in dichloromethane under microwave cavity. After introduction of various isocyanates, the cyclization/ cleavage step can be performed in mild basic condition by microwave flash heating. Compared to conventional thermal hearting,microwave irradiation decreased the reaction time on the support from several hours to several minutes. The coupling of microwave technology with liquid phase combinatorial synthesis constitutes a novel and attractive avenue for the rapid generation of structurally diverse libraries in good yield and high purity.

  3. Influence of microwave irradiation on the preparation of novolacs for the shell process

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this paper, the characteristics of the preparation of novolacs for the shell process under microwave irradiation are investigated. Both polymerization and dehydration of the resins under microwave irradiation are compared with those under conventional heating and further analysis is made. The results show that compared with those under conventional heating, the polymerization and dehydration time under microwave irradiation are shortened by 85.2% and 80.7% respectively; On the other hand, the polymerization and dehydration under microwave irradiation lead to a remarkable increase in flow distance of the resins. Furthermore, the polymerization under microwave irradiation leads to reduced cure time, while the dehydration under microwave irradiation causes a slight increase in cure time.

  4. Microstructure and of Mechanics Microwave Boriding

    Institute of Scientific and Technical Information of China (English)

    YE Weiping; HUANG Zilin; ZHANG Qiaoxin; ZHANG Qinyi

    2008-01-01

    Microwave boriding layer microstructure of carbon steels and its diffusion mechanics were studied.The results show that the existence of microwave field in the boriding can't change the growth mechanics of boriding layer. Compared with conventional boriding,if the treatment temperature and time remain constantly,the descend rate of the boriding layer thickness with the increase of carbon content of steel is smaller.The diffusion activation energy of T8 steel is 2.6× 105 J/mol between the temperature of 750 ℃and 900 ℃ in microwave field,which is in the same order ofconventional boriding.

  5. Microwave Irradiation of Nanohydroxyapatite from Chicken Eggshells and Duck Eggshells

    Directory of Open Access Journals (Sweden)

    Nor Adzliana Sajahan

    2014-01-01

    Full Text Available Due to similarity in composition to the mineral component of bones and human hard tissues, hydroxyapatite with chemical formula Ca10(PO46(OH2 has been widely used in medical field. Both chicken and duck eggshells are mainly composed of calcium carbonate. An attempt has been made to fabricate nanohydroxyapatite (nHA by chicken (CES and duck eggshells (DES as calcium carbonate source (CaCO3. CES and DES were reacted with diammonium hydrogen [(NH42HPO4] solution and subjected to microwave heating at 15 mins. Under the effect of microwave irradiation, nHA was produced directly in the solution and involved in crystallographic transformation. Sample characterization was done using by X-ray diffraction (XRD, fourier transform infrared spectroscopy (FTIR, and scanning electron microscopy (SEM.

  6. Recent applications of microwave irradiation to medicinal chemistry.

    Science.gov (United States)

    Alcázar, Jesús; Oehlrich, Daniel

    2010-02-01

    The demands made on the pharmaceutical industry are changing at an unprecedented pace, making modern drug discovery dependent on high speed organic synthesis. Over the last few years, different technologies have been introduced in medicinal chemistry laboratories in order to improve their productivity. Microwave-assisted organic synthesis is proving to be instrumental in the rapid synthesis of compounds with new and improved biological activities. This review highlights the application of this approach as a way to explore analogue synthesis in medicinal chemistry over the last 3 years. We describe a number of examples taken from the literature that are related to various targets within different therapeutic areas. Clearly microwave irradiation is becoming a fundamental tool for optimizing key steps in the synthesis of target compounds within the field of drug discovery.

  7. Degradation of N-nitrosodimethylamine (NDMA) and its precursor dimethylamine (DMA) in mineral micropores induced by microwave irradiation.

    Science.gov (United States)

    He, Yuanzhen; Cheng, Hefa

    2016-05-01

    Removal of N-nitrosodimethylamine (NDMA) in drinking water treatment poses a significant technical challenge due to its small molecular size, high polarity and water solubility, and poor biodegradability. Degradation of NDMA and its precursor, dimethylamine (DMA), was investigated by adsorbing them from aqueous solution using porous mineral sorbents, followed by destruction under microwave irradiation. Among the mineral sorbents evaluated, dealuminated ZSM-5 exhibited the highest sorption capacities for NDMA and DMA, which decreased with the density of surface cations present in the micropores. In contrast, the degradation rate of the sorbed NDMA increased with the density of surface cations under microwave irradiation. Evolutions of the degradation products and C/N ratio indicate that the sorbed NDMA and DMA could be eventually mineralized under continuous microwave irradiation. The degradation rate was strongly correlated with the bulk temperature of ZSM-5 and microwave power, which is consistent with the mechanism of pyrolysis caused by formation of micro-scale "hot spots" within the mineral micropores under microwave irradiation. Compared to existing treatment options for NDMA removal, microporous mineral sorption coupled with microwave-induced degradation has the unique advantages of being able to simultaneously remove NDMA and DMA and cause their full mineralization, and thus could serve as a promising alternative method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Efficient classical synthesis of aminoazines under microwave irradiation

    Directory of Open Access Journals (Sweden)

    Abbas Mohammadzadeh

    2014-04-01

    Full Text Available In the present study, aminoazines were prepared from the reaction of amidrazone hydroiodide with various aromatic aldehydes in the presence of a solid base under microwave irradiation with power level of 850 W for 2-7 min in high yields. The amidrazone hydroiodide can also be prepared by the reaction of S-methyl isothiobenzamide hydroiodide and hydrazine in methanol under nitrogen gas. All synthesized compounds were characterized on the basis of IR and 1H NMR spectral data. The significant features of this method are short reaction times, high yields of the products, solvent free reaction, easy work-up procedure, direct production of aminoazines.

  9. Response surface optimisation for activation of bentonite with microwave irradiation

    Directory of Open Access Journals (Sweden)

    Rožić Ljiljana S.

    2011-01-01

    Full Text Available In this study, the statistical design of the experimental method was applied on the acid activation process of bentonite with microwave irradiation. The influence of activation parameters (time, acid normality and microwave heating power on the selected process response of the activated bentonite samples was studied. The specific surface area was chosen for the process response, because the chemical, surface and structural properties of the activated clay determine and limit its potential applications. The relationship of various process parameters with the specific surface area of bentonite was examined. A mathematical model was developed using a second-order response surface model (RSM with a central composite design incorporating the above mentioned process parameters. The mathematical model developed helped in predicting the variation in specific surface area of activated bentonite with time (5-21 min, acid normality (2-7 N and microwave heating power (63-172 W. The calculated regression models were found to be statistically significant at the required range and presented little variability. Furthermore, high values of R2 (0.957 and R2 (adjusted (0.914 indicate a high dependence and correlation between the observed and the predicted values of the response. These high values also indicate that about 96% of the result of the total variation can be explained by this model. In addition, the model shows that increasing the time and acid normality improves the textural properties of bentonites, resulting in increased specific surface area. This model also can be useful for setting an optimum value of the activation parameters for achieving the maximum specific surface area. An optimum specific surface area of 142 m2g-1 was achieved with an acid normality of 5.2 N, activation time of 7.38 min and microwave power of 117 W. Acid activation of bentonite was found to occur faster with microwave irradiation than with conventional heating. Microwave

  10. Mechanical characterization of microwave sintered zinc oxide

    Indian Academy of Sciences (India)

    A K Mukhopadhyay; M Ray Chaudhuri; A Seal; S K Dalui; M Banerjee; K K Phani

    2001-04-01

    The mechanical characterization of microwave sintered zinc oxide disks is reported. The microwave sintering was done with a specially designed applicator placed in a domestic microwave oven operating at a frequency of 2.45 GHz to a maximum power output of 800 Watt. These samples with a wide variation of density and hence, of open pore volume percentage, were characterized in terms of its elastic modulus determination by ultrasonic time of flight measurement using a 15 MHz transducer. In addition, the load dependence of the microhardness was examined for the range of loads 0.1–20 N. Finally, the fracture toughness data (IC) was obtained using the indentation technique.

  11. Microwave irradiation biodiesel processing of waste cooking oil

    Science.gov (United States)

    Motasemi, Farough; Ani, Farid Nasir

    2012-06-01

    Major part of the world's total energy output is generated from fossil fuels, consequently its consumption has been continuously increased which accelerates the depletion of fossil fuel reserves and also increases the price of these valuable limited resources. Biodiesel is a renewable, non-toxic and biodegradable diesel fuel which it can be the best environmentally friendly and easily attainable alternative for fossil fuels. The costs of feedstock and production process are two important factors which are particularly against large-scale biodiesel production. This study is intended to optimize three critical reaction parameters including intensity of mixing, microwave exit power and reaction time from the transesterification of waste cooking oil by using microwave irradiation in an attempt to reduce the production cost of biodiesel. To arrest the reaction, similar quantities of methanol/oil molar ratio (6:1) and potassium hydroxide (2% wt) as the catalyst were used. The results showed that the best yield percentage (95%) was obtained using 300W microwave exit power, 300 rpm stirrer speed (intensity of mixing) and 78°C for 5 min. It was observed that increasing the intensity of mixing greatly ameliorates the yield percentage of biodiesel (up to 17%). Moreover, the results demonstrate that increasing the reaction time in the low microwave exit power (100W) improves the yield percentage of biodiesel, while it has a negative effect on the conversion yield in the higher microwave exit power (300W). From the obtained results it was clear that FAME was within the standards of biodiesel fuel.

  12. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Bastus Neus

    2008-01-01

    Full Text Available Abstract Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  13. 10MeV/20kW Electron Linac for Irradiation Microwave System

    Institute of Scientific and Technical Information of China (English)

    WU; Qing-feng; ZHU; Zhi-bin; WANG; Xiu-long; LIU; Bao-jie; HU; Tao

    2015-01-01

    Microwave system is one of main subsystems of 10 MeV/20kW electron irradiating linac.It provides accelerating tube with microwave power,and accelerates electron beam to design energy,high-energy electron beam is ultimately used for irradiation processing.In order to meet the requirements of the

  14. An Expedient Method for the Synthesis of Thiosemicarbazones under Microwave Irradiation in Solvent-free Medium

    Institute of Scientific and Technical Information of China (English)

    LI, Jian-Ping; ZHENG, Peng-Zhi; ZHU, Jun-Ge; LIU, Rui-Jie; QU, Gui-Rong

    2006-01-01

    A simple, efficient and eco-friendly method for the synthesis of thiosemicarbazones from thiosemicarbazides and aldehyde under microwave irradiation has been reported, and no solvent and catalyst were used. And the technique of microwave irradiation coupled with solvent-free condition proved to be a quite valuable method in the organic synthesis.

  15. Negative Feedback Effect of Microwave Irradiation in the Microwave-assisted Hydrothermal Synthesis of Bi2S3 Nanorods

    Institute of Scientific and Technical Information of China (English)

    TAO,Xiu-Cheng(陶秀成); SHAO,Ming-Wang(邵名望)

    2002-01-01

    The microwave-assisted hydrothermal synthesis of Bi2S3 nanorods was reported. The result showed that microwave irradiation can help to produce Bi2S3 nanorods in very short time.There is a negative feedback effect which increases the degree of crystallinity in the reaction.

  16. The influence of microwave irradiation on rocks for microwave-assisted underground excavation

    Directory of Open Access Journals (Sweden)

    Ferri Hassani

    2016-02-01

    Full Text Available Demand is growing for explosive-free rock breakage systems for civil and mining engineering, and space industry applications. This paper highlights the work being undertaken in the Geomechanics Laboratory of McGill University to make a real application of microwave-assisted mechanical rock breakage to full-face tunneling machines and drilling. Comprehensive laboratory tests investigated the effect of microwave radiation on temperature profiles and strength reduction in hard rocks (norite, granite, and basalt for a range of exposure times and microwave power levels. The heating rate on the surface of the rock specimens linearly decreased with distance between the sample and the microwave antenna, regardless of microwave power level and exposure time. Tensile and uniaxial compressive strengths were reduced with increasing exposure time and power level. Scanning electron micrographs (SEMs highlighted fracture development in treated basalt. It was concluded that the microwave power level has a strong positive influence on the amount of heat damage induced to the rock surface. Numerical simulations of electric field intensity and wave propagation conducted with COMSOL Multiphysics® software generated temperature profiles that were in close agreement with experimental results.

  17. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    S Mandal; A Seal; S K Dalui; A K Dey; S Ghatak; A K Mukhopadhyay

    2001-04-01

    The present work deals with the sintering of SiC with a low melting additive by microwave technique. The mechanical characteristics of the products were compared with that of conventionally sintered products. The failure stress of the microwave sintered products, in biaxial flexure, was superior to that of the products made by conventional sintering route in ambient condition. In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  18. Evaluation of the use of inorganic pigments and fillers in cure of epoxy resins by microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Daniel, E-mail: daniel.kersting@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais; Centro Tecnologico da Marinha (CTMSP), SP (Brazil); Wiebeck, Helio, E-mail: hwiebeck@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais

    2013-07-01

    The use of microwave in chemical processes began soon after the WW II. The mechanism of curing via microwave heating is independent of the thermal conductivity of the irradiated material and offers a good solution to operate with materials that do not have a good thermal conductivity, such as polymers. Despite these advantages, the use of multimode microwave ovens, the main source used today, indicates some challenges to overcome. Associated with the use of epoxy resins in various applications, the use of pigments and inorganic fillers has added more variables to be studied. Much of the inorganic fillers used commercially are good absorbers of microwave providing changes in the amount of radiation absorbed, and thus the amount of heat transferred to the epoxy resin curing process. After selecting the key fillers and pigments traditionally used in the production of parts with epoxy resins they were subjected to the same microwave irradiation for evaluation of their behavior alone. In order to observe the effect of mixtures 1, 2, and 5% by weight of filler were added to epoxy resin, and it was verified these effects in the curing process. The preliminary results are promising, because for the same cure cycle for different types of fillers added separately, gains in curing time were obtained, making the process of cure via microwave quick and efficient without substantial losses in thermal properties of the final products obtained. (author)

  19. Magnetically separable nanoferrite-anchored glutathione: Aqueous homocoupling of arylboronic acids under microwave irradiation

    Science.gov (United States)

    A highly active, stable and magnetically separable glutathione based organocatalyst provided good to excellent yields to symmetric biaryls in the homocoupling of arylboronic acids under microwave irradiation. Symmetrical biaryl motifs are present in a wide range of natural p...

  20. Selective oxidation of glycosyl sulfides to sulfoxides using magnesium monoperoxyphthalate and microwave irradiation.

    Science.gov (United States)

    Chen, Ming-Yi; Patkar, Laxmikant Narhari; Lin, Chun-Cheng

    2004-04-16

    A protocol that uses moist magnesium monoperoxyphthalate (MMPP) as an oxidant under microwave irradiation rapidly yields a variety of glycosyl sulfoxides from corresponding sulfides in high yields with high selectivity.

  1. A Rapid and Efficient Synthesis of 2, 4, 6-Triarylpyridines under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Xian Qiang HUANG; Hong Xia LI; Jin Xian WANG; Xue Feng JIA

    2005-01-01

    An rapid and efficient synthesis of 2, 4, 6-triarylpyridines is reported using substituted benzaldehydes, substituted acetophenones and ammonia as starting materials under microwave irradiation in the presence of PEG-400.

  2. APPLICATION OF MICROWAVE IRRADIATION FOR THE TREATMENT OF ADSORBED VOLATILE ORGANIC COMPOUNDS ON GRANULAR ACTIVATED CARBON

    National Research Council Canada - National Science Library

    A Dehdashti; A Khavanin; A Rezaee; H Assilian; M Motalebi

    2011-01-01

      The purpose of this laboratory scale experimental research was to investigate the application of integrated microwave irradiation and granular activated carbon adsorption for removing volatile organic compounds (VOCs...

  3. Hydrolysis of Straw in Ionic Liquids with Acid as Catalyst under Microwave Irradiation

    National Research Council Canada - National Science Library

    Zhang, Yuanjing; Wei, Gang; Yu, Guangyi; Qiao, Ning

    2015-01-01

      With ionic liquids as solvents and corn straw as raw material, different processes of lignocellulose pretreatment with acid as catalyst were studied under conventional heating/microwave irradiation...

  4. Facile and efficient synthesis of quinoline-4-carboxylic acids under microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A facile and efficient method for the preparation of 2-non-substituted quinoline-4-carboxylic acids is described via the Pfitzinger reaction of isatins with sodium pyruvate following consequent decarboxylation under microwave irradiation.

  5. TEM and EELS studies of microwave-irradiation synthesis of bimetallic platinum nanocatalysts

    CSIR Research Space (South Africa)

    Mathe, NR

    2014-01-01

    Full Text Available Microwave-irradiation (MW) synthesis of nanostructured materials provides for the synthesis of metal nanoparticles, using fast and uniform heating rates. This procedure affords better control of the shape and size of the nanoparticles when compared...

  6. Effect of microwave irradiation on parametric resonance in intrinsic Josephson junctions

    OpenAIRE

    Gaafar, Mahmoud; Shukrinov, Yury

    2012-01-01

    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We demonstrate the influence of microwave's amplitude variation on the current-voltage characteristics and on the time dependence (temporal oscillations) of the electric charge in the superconducting layers. A remarkable changing of the longitudinal plasma wavelength at parametric resonance is shown. We demonstrate an effect of the microwave radiation...

  7. INFLUENCE OF MICROWAVE IRRADIATION ON SOME VITALITY INDICES AND ELECTROCONDUCTIVITY OF ORNAMENTAL PERENNIAL CROPS

    Directory of Open Access Journals (Sweden)

    A ALADJADJIYAN

    2003-04-01

    Full Text Available The effect of microwave irradiation with a wavelength of 12 cm on the germinating energy and germination of seeds of Gleditschia triacanthos L., Caragana arborescens, Laburnum anagiroides Med., Robinia pseudoacacia L. has been studied. The specific electroconductivity of leaf extracts has been measured and its dependence on the microwave radiation power has been determined.

  8. Pyrazole synthesis under microwave irradiation and solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Buriol, Lilian; Frizzo, Clarissa P.; Marzari, Mara R.B.; Moreira, Dayse N.; Prola, Lizie D.T.; Zanatta, Nilo; Bonacorso, Helio G.; Martins, Marcos A.P., E-mail: mmartins@base.ufsm.b [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica. Nucleo de Quimica de Heterociclos

    2010-07-01

    This paper presents a study of solvent-free reaction conditions using microwave irradiation (MW) to obtain 4,5-dihydro-{sup 1}H-pyrazoles and dehydrated pyrazoles by the cyclocondensation reaction of 4-alkoxy-1,1,1-trifluoro-3-alken-2-ones [CF{sub 3}C(O)CH=C(R{sup 1})OR, where R/R{sup 1} Et/H, Me/Me and Me/Ph] with hydrazines [NH{sub 2}NH-R{sub 2}, where R{sub 2} = CO{sub 2}Me, Ph, CH{sub 2}CH{sub 2}OH]. Some reactions were performed under the same reaction conditions using methanol as solvent. The results obtained using MW equipment for synthesis under solvent-free conditions were also compared with those described in literature for conventional thermal heating and heating with a domestic MW oven. In general, the products furnished by reaction in MW equipment for synthesis presented better yields and shorter reaction times. In addition, it was demonstrated that the reaction temperature altered the formation of products for each hydrazine showing that MW equipment for synthesis is efficient for reacting hydrazines and 4-alkoxy-1,1,1-trifluoro-3-alken-2-ones to procedure the products 4,5-dihydro-{sup 1}H-pyrazoles and dehydrated pyrazoles. (author)

  9. Preparation of ultrafiltration membrane by phase separation coupled with microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Suryani, Puput Eka [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia); Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Purnama, Herry [Department of Chemical Engineering, Faculty of Engineering, UniversitasMuhammadiyah Surakarta Jl. Jendral Ahmad Yani, Surakarta 57102, Central Java (Indonesia); Susanto, Heru, E-mail: heru.susanto@undip.ac.id [Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Jl. Prof. Soedarto, Semarang 50275, Central Java (Indonesia)

    2015-12-29

    Preparation of low fouling ultrafiltration membrane is still a big challenge in the membrane field. In this paper, polyether sulfone (PES) ultrafiltration membranes were prepared by non-solvent-induced phase separation (NIPS) coupled with microwave irradiation. Polyethylene glycol (PEG) and polyethylene glycol methacrylate (PEGMA) were used as additives to improve membrane hydrophilicity. In this study, the concentration of additive, irradiation time and microwave power was varied. The membranes were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy, while the performances were tested by adsorptive and ultrafiltration fouling experiments. The results show that the irradiation time and irradiation power are very important parameter that influence the membrane characteristic. In addition, type and concentration of additive are other important parameters. The results suggest that microwave irradiation is the most important parameter influencing the membrane characteristic. Both pure water flux and fouling resistance increase with increasing irradiation time, power irradiation, and additive concentration. PES membrane with addition of 10% w/w PEG and irradiated by 130 W microwave power for 180 seconds is the best membrane performance.

  10. Microwave irradiation and instrumental behavior in rats: unitized irradiation and behavioral evaluation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lebovitz, R.M.; Seaman, R.L.

    1980-01-01

    A facility for the exposure of small animals to pulse-modulated microwave radiation (PM MWR) concurrent with their performance of operant behavioral tasks is described. The computer-managed facility comprises an array of 32 individual waveguide exposure cells, each enclosing instrumental conditioning apparatus within a plastic subhousing. The distribution of the microwave electric field intensity within the waveguide was measured by a nonperturbing probe and the modifications induced by the behavioral apparatus and animal within the waveguide determined. Input and interior voltage standing-wave ratios are presented to characterize the design of the chambers and to demonstrate the suitability of the chambers for whole-body irradiation of rat. The specific absorption rate (SAR) is presented utilizing data derived from incremental thermometric examination of saline loads and of selected sites in rat carcasses. This is compared with the whole-body SAR derived from the input/output energy balance equation for the waveguide. The results of continuous monitoring of the SAR by the latter method, while unrestrained rats were engaged in operant and exploratory behavior within the waveguide, are utilized to derive a relationship between chamber input power and the dose rate for adult rats behaviorally active within the waveguide. From these data, we conclude that the experimental array provides a practical method for exposing a large number of animals to PM MWR for long periods of time and coincident with the establishment and/or performance of complex operant behavior.

  11. The apoptotic effect and the plausible mechanism of microwave radiation on rat myocardial cells.

    Science.gov (United States)

    Zhu, Wenhe; Cui, Yan; Feng, Xianmin; Li, Yan; Zhang, Wei; Xu, Junjie; Wang, Huiyan; Lv, Shijie

    2016-08-01

    Microwaves may exert adverse biological effects on the cardiovascular system at the integrated system and cellular levels. However, the mechanism underlying such effects remains poorly understood. Here, we report a previously uncharacterized mechanism through which microwaves damage myocardial cells. Rats were treated with 2450 MHz microwave radiation at 50, 100, 150, or 200 mW/cm(2) for 6 min. Microwave treatment significantly enhanced the levels of various enzymes in serum. In addition, it increased the malondialdehyde content while decreasing the levels of antioxidative stress enzymes, activities of enzyme complexes I-IV, and ATP in myocardial tissues. Notably, irradiated myocardial cells exhibited structural damage and underwent apoptosis. Furthermore, Western blot analysis revealed significant changes in expression levels of proteins involved in oxidative stress regulation and apoptotic signaling pathways, indicating that microwave irradiation could induce myocardial cell apoptosis by interfering with oxidative stress and cardiac energy metabolism. Our findings provide useful insights into the mechanism of microwave-induced damage to the cardiovascular system.

  12. The influence of microwave irradiation power on current voltage characteristics of intrinsic Josephson junctions

    Science.gov (United States)

    Shukrinov, Yu M.; Mans, M.; Scherbel, J.; Seidel, P.

    2007-02-01

    The current-voltage characteristics of a micrometre bridge of intrinsic Josephson junctions under microwave irradiation are studied. The collective switching of the group of four junctions splits up as the AC signal amplitude is gradually increased. The switching current of the remaining group of junctions is increased with increasing radiation power. We consider that microwave irradiation injects an additional quasiparticle current into the Josephson junction array. We use ideas of breakdown of quasineutrality and quasiparticle charge imbalance in the superconducting layers and explain the experimental results by the competition between the 'current effect' and the effect of suppression of the switching current by irradiation.

  13. The influence of microwave irradiation power on current-voltage characteristics of intrinsic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu M [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation); Mans, M [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany); Scherbel, J [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany); Seidel, P [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany)

    2007-02-15

    The current-voltage characteristics of a micrometre bridge of intrinsic Josephson junctions under microwave irradiation are studied. The collective switching of the group of four junctions splits up as the AC signal amplitude is gradually increased. The switching current of the remaining group of junctions is increased with increasing radiation power. We consider that microwave irradiation injects an additional quasiparticle current into the Josephson junction array. We use ideas of breakdown of quasineutrality and quasiparticle charge imbalance in the superconducting layers and explain the experimental results by the competition between the 'current effect' and the effect of suppression of the switching current by irradiation.

  14. Nonlinear Correction to Absorption Spectrum under Irradiation of Microwave Field in Conventional BCS Superconductors

    Science.gov (United States)

    Jujo, Takanobu

    2017-02-01

    We investigate the absorption spectrum of s-wave superconductors under microwave pump field irradiation. The third-order response function is calculated in the dirty limit with the electron-phonon interaction included at finite temperatures. We find that the nonlinear correction to the linear absorption shows peculiar behavior when the pump field frequency is smaller than the superconducting gap. At finite temperatures, a negative nonlinear correction exists, which is caused by thermally excited quasiparticles. The vertex correction by impurity scattering is found to contain a dissipation mechanism by inelastic scattering (interaction between electrons and acoustic phonons) or nonlocality. We need this mechanism to obtain finite absorption in a nonequilibrium stationary state under a monochromatic external field. Although this term originates from the deformation of a one-particle state, there is also a final-state interaction (the amplitude mode). The latter term represents two-photon excitation and is almost independent of temperature.

  15. Effects of Normothermic Conditioned Microwave Irradiation on Cultured Cells Using an Irradiation System with Semiconductor Oscillator and Thermo-regulatory Applicator

    Science.gov (United States)

    Asano, Mamiko; Sakaguchi, Minoru; Tanaka, Satoshi; Kashimura, Keiichiro; Mitani, Tomohiko; Kawase, Masaya; Matsumura, Hitoshi; Yamaguchi, Takako; Fujita, Yoshikazu; Tabuse, Katsuyoshi

    2017-01-01

    We investigated the effects of microwave irradiation under normothermic conditions on cultured cells. For this study, we developed an irradiation system constituted with semiconductor microwave oscillator (2.45 GHz) and thermos-regulatory applicator, which could irradiate microwaves at varied output powers to maintain the temperature of cultured cells at 37 °C. Seven out of eight types of cultured cells were killed by microwave irradiation, where four were not affected by thermal treatment at 42.5 °C. Since the dielectric properties such as ε’, ε” and tanδ showed similar values at 2.45 GHz among cell types and media, the degree of microwave energy absorbed by cells might be almost the same among cell types. Thus, the vulnerability of cells to microwave irradiation might be different among cell types. In HL-60 cells, which were the most sensitive to microwave irradiation, the viability decreased as irradiation time and irradiation output increased; accordingly, the decrease in viability was correlated to an increase in total joule. However, when a high or low amount of joules per minute was supplied, the correlation between cellular viability and total joules became relatively weak. It is hypothesized that kinds of cancer cells are efficiently killed by respective specific output of microwave under normothermic cellular conditions. PMID:28145466

  16. Particle size effect on microwave absorbing of La0.67Ba0.33Mn0.94Ti0.06O3 powders prepared by mechanical alloying with the assistance of ultrasonic irradiation

    Science.gov (United States)

    Saptari, Sitti Ahmiatri; Manaf, Azwar; Kurniawan, Budhy

    2016-03-01

    Doped manganites have attracted substantial interest due to their unique chemical and physics properties, which makes it possible to be used for microwave absorbing materials. In this paper we report synthesizes and characterization of La0.67Ba0.33Mn0.94Ti0.06O3 powders prepared by mechanical alloying with the assistance of a high power ultrasonic treatment. After solid state reaction, the presence of single phase was confirmed by X-ray Diffraction (XRD). Refinement results showed that samples are single phase with monoclinic structure. It was found that powder materials derived from mechanical alloying results in large variation in the particle size. A significant improvement was obtained upon subjecting the mechanically milled powder materials to an ultrasonication treatment for a relatively short period of time. As determined by particle size analyzer (PSA), the mean particle size gradually decreased from the original size of 5.02 µm to 0.36 µm. Magnetic properties were characterized by VSM, and hysteresis loops results showed that samples are soft magnetic. It was found that when the mean particle size decreases, saturation was increases and coersitivity was decreases. Microwave absorption properties were investigated in the frequency range of 8-12 GHz using vector network analyzer. An optimal reflection loss of 24.44 dB is reached at 11.4 GHz.

  17. Mechanical response of proton beam irradiated nitinol

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Naveed [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan); Ghauri, I.M., E-mail: ijaz.phys@gmail.co [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan); Mubarik, F.E.; Amin, F. [Centre for Advanced Studies in Physics, GC University, Lahore (Pakistan)

    2011-01-01

    The present investigation deals with the study of mechanical behavior of proton beam irradiated nitinol at room temperature. The specimens in austenitic phase were irradiated over periods of 15, 30, 45 and 60 min at room temperature using 2 MeV proton beam obtained from Pelletron accelerator. The stress-strain curves of both unirradiated and irradiated specimens were obtained using a universal testing machine at room temperature. The results of the experiment show that an intermediate rhombohedral (R) phase has been introduced between austenite and martensite phase, which resulted in the suppression of direct transformation from austenite to martensite (A-M). Stresses required to start R-phase ({sigma}{sub RS}) and martensitic phase ({sigma}{sub MS}) were observed to decrease with increase in exposure time. The hardness tests of samples before and after irradiation were also carried out using Vickers hardness tester. The comparison reveals that the hardness is higher in irradiated specimens than that of the unirradiated one. The increase in hardness is quite sharp in specimens irradiated for 15 min, which then increases linearly as the exposure time is increased up to 60 min. The generation of R-phase, variations in the transformation stresses {sigma}{sub RS} and {sigma}{sub MS} and increase in hardness of irradiated nitinol may be attributed to lattice disorder and associated changes in crystal structure induced by proton beam irradiation.

  18. Microstructural and mechanical investigation of aluminium alloy (Al 1050) melted by microwave hybrid heating

    Science.gov (United States)

    Shashank Lingappa, M.; Srinath, M. S.; Amarendra, H. J.

    2017-07-01

    Microwave processing of metals is an emerging area. Melting of bulk metallic materials through microwave irradiation is still immature. In view of this, the present paper discusses the melting of bulk Al 1050 metallic material through microwave irradiation. The melting process is carried out successfully in a domestic microwave oven with 900 W power at 2450 MHz frequency. Metallurgical and mechanical characterization of the processed and as-received material is carried out. Aluminium phase is found to be dominant in processed material when tested through x-ray diffraction (XRD). Microstructure study of as-cast metal through scanning electron microscopy (SEM) reveals the formation of uniform hexagonal grain structure free from pores and cavities. The average tensile strength of the cast material is found to be around 21% higher, when compared to as-received material. Vickers’ microhardness of the as-cast metal is measured and is 10% higher than that of the as-received metal. Radiography on as-cast metal shows no significant defects. Al 1050 material melted through microwave irradiation has exhibited superior properties than the as-received Al 1050.

  19. Observation of bubble formation in water during microwave irradiation by dynamic light scattering

    Science.gov (United States)

    Asakuma, Yusuke; Munenaga, Takuya; Nakata, Ryosuke

    2016-09-01

    A microwave reactor was designed for in situ observation of nano- and micro-bubbles, and size profiles during and after irradiation were measured with respect to irradiation power and time. Bubble formation in water during irradiation was observed even at temperatures below the boiling point of water. The maximum size strongly depended on radiation power and time, even at a given temperature. Nano-particles in the dispersion medium were found to play an important role in achieving more stable nucleation of bubbles around particles, and stable size distributions were obtained from clear autocorrelation by a dynamic light scattering system. Moreover, a combination of microwave induction heating and the addition of nano-particles to the dispersion medium can prevent heterogeneous nucleation of bubbles on the cell wall. Quantitative nano-bubble size profiles obtained by in situ observation provide useful information regarding microwave-based industrial processes for nano-particle production.

  20. Conductivity magnetooscillations in 2D electron-impurity system under microwave irradiation: role of magnetoplasmons

    OpenAIRE

    Takhtamirov, E. E.; V. A. Volkov

    2005-01-01

    It is developed a many-electron approach to explain the recently observed conductivity magnetooscillations in very high mobility 2D electron systems under microwave irradiation. For the first time a theory takes into account the microwave-induced renormalization of the screened impurity potential. As a result this potential has singular, dynamic and non-linear in electric field nature. That changes the picture of scattering of electrons at impurities in a ``clean'' 2D system essentially: for ...

  1. Effect of microwave irradiation on parametric resonance in intrinsic Josephson junctions

    Science.gov (United States)

    Gaafar, Mahmoud; Shukrinov, Yury

    2013-08-01

    The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We demonstrate the influence of microwave’s amplitude variation on the current-voltage characteristics and on the time dependence (temporal oscillations) of the electric charge in the superconducting layers. A remarkable changing of the longitudinal plasma wavelength at parametric resonance is shown. We demonstrate an effect of the microwave radiation on the width of the parametric resonance region.

  2. Synthesis and Properties of Triazol-5-one Substituted Phthalocyanines by Microwave Irradiation

    OpenAIRE

    KAHVECİ, Bahittin; ŞAŞMAZ, Selami; ÖZİL, Musa; KANTAR, Cihan

    2006-01-01

    Triazol-5-one substituted phthalocyanines were prepared quickly by the reaction of 4-nitrophthalonitrile with anhydrous metal salts in DBU (1,8-diazabicyclo[5,4,0]undec-7-ene) and DMAE (dimethylaminoethanol) by microwave irradiation. Microwave yields were higher than those of the conventional synthesis methods. All of these complexes are insoluble in polar solvents such as ethanol, ethyl acetate and chloroform. The characterization of the compounds was accomplished by elemental anal...

  3. Stability of biomimetic ferrofluids established by a systematic study using microwave irradiation at defined wattages

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Soumya, E-mail: soumya_524@yahoo.in [Materials Science and Technology Division, National Metallurgical Laboratory, Council of Scientific and Industrial Research, Jamshedpur 831007 (India); Jenamoni, Krishna [Department of Biotechnology, Amity University, Sector-125, Noida 201303 (India); Nayar, Suprabha [Materials Science and Technology Division, National Metallurgical Laboratory, Council of Scientific and Industrial Research, Jamshedpur 831007 (India)

    2012-10-15

    An established biomimetic process for the synthesis of aqueous ferrofluids using polymers has been subjected to systematic microwave irradiation at different wattages primarily to see if the magnetization could be increased by microwave irradiation and if so how would it affect the stability of the fluid. Care has been taken to maintain ambient conditions of synthesis even after three cycles of microwave irradiation before oxidation and ten cycles after it, so as not to violate the basic principles of the process. Detailed characterization using, x-ray diffractometry, transmission electron microscopy, fourier transform infra-red spectroscopy, dynamic light scattering, thermo-gravimetric analysis, differential thermal analysis and vibrating sample magnetometry showed that these fluids containing iron oxide nanoparticles-poly(vinyl) alcohol nanocomposites are highly stable in the proportions established by us. Measurements at five different wattages double the saturation magnetization but the stability remains unaffected compared to the one without microwave irradiation, forcing us to believe that the incubation of the iron salt solution and the polymer in the right proportion before oxidation is what contributes to the stability and that increasing the number of cycles of microwave irradiation at this stage, perhaps, would have led to a more pronounced effect. - Highlights: Black-Right-Pointing-Pointer Single step biomimetic synthesis of aqueous ferrofluids. Black-Right-Pointing-Pointer Role of polyvinyl alcohol as a surfactant and as a template for nucleation and growth of iron oxide nanoparticles. Black-Right-Pointing-Pointer Heat treatment by microwave irradiation in a systematic and periodic manner. Black-Right-Pointing-Pointer High colloidal stability. Black-Right-Pointing-Pointer Increase in saturation magnetization with increasing wattage.

  4. [Research on degradation of methylene blue by coal bottom ash-microwave irradiation method].

    Science.gov (United States)

    Wu, Shi-Wei; Li, Na; Li, Guang-Zhe; Li, Guo-De

    2010-05-01

    Coal bottom ash is rich in metals and transition metals, and with microwave irradiation these metals can effectively degradate organic matter. Methylene blue degradation by coal bottom ash-microwave irradiation mainly through hydroxyl radicals to degrade organic matter, and metals and rare metals in bottom ash can be used as a catalyst for deep oxidation of organic matter, can reduce processing costs, and reduce environmental pollution. In the present paper the main parameters including the amount of coal bottom ash, H2O2 dosage and time of microwave irradiation were investigated. The UV-visible spectra of methylene blue were determined. The results show that: under coal bottom ash and H2O2 microwave condition the degeneration rate of methylene blue was almost 100%. The dosage of coal ash can accelerate the reaction process, speeding up the degradation of methylene blue. The increase of H2O2 may provide more * OH and speed up the reaction process, but when up to a certain amount, the influence is weakened. The lengthening of microwave time may enhance the reaction temperature, and urge the methylene blue to degrade completely. For 0.125 g x L(-1) of methylene blue, by adding 1.0 g coal bottom ash, 5 mL H2O2 and under mesotherm microwave temperature for 4 min, the methylene blue can be all degradated.

  5. An expendient method for the synthesis of bis(acylhydrazones) under microwave irradiation in solvent-free medium

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.P.; Zheng, P.Z.; Zhu, J.G.; Liu, R.J.; Qu, G.R. [Henan Normal University, Xinxiang (China). College of Chemical and Environmental Science. Key Lab. of Environmental Pollution Control Technology of Henan Province]. E-mail: jplig@163.com

    2007-10-15

    A simple, efficient and eco-friendly method for the synthesis of bis(acylhydrazones) from hexanediohydrazide and aldehydes under microwave irradiation without the use of solvent and catalyst is reported. The technique of microwave irradiation under solvent-free condition proved to be quite a valuable method in organic synthesis. (author)

  6. CONDENSATION OF 1,2-DIAMINES AND CARBOXYLICACIDS UNDER MICROWAVE IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    孟庆华; 黄德音; 田丰涛; 刘阳

    2001-01-01

    A facile method of preparation of benzimidazoles by microwave irradiation was described. The mixtures of o-phenylenediamine and carboxylic acids were heated by microwave irradiation, to give 2-substituted benzimidazoles with yields of 49%~93%. The reaction time was shortened to 3~6 min. However, the reaction of ethylenediamine with carboxylic acids did not give imidazoles but the N,N-diacyl ethylenediamines. The alphatic diamines lacked the activity to form imidazole ring. With adipic acid, intermolecular acylation took place to afford poly(ethylene adipamide).

  7. Solventless Lactam Synthesis by Intramolecular Cyclizations of α-Iminoester Derivatives under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Aicha Derdour

    2007-03-01

    Full Text Available We have previously reported a new synthesis of amides from esters and amines under microwave irradiation, offering much higher yields than those achieved with conventional heating [1]. We have now extended these studies to the ring closure of neat iminoesters I2, I3 and I4-I6 to give five- and six-membered ring lactams L5, L6 and larger lactams L7-L9 (where I means imine and L means lactam, respectively, under both classical heating conditions and microwave irradiation.

  8. Hydrolysis of Straw in Ionic Liquids with Acid as Catalyst under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Yuanjing Zhang

    2015-01-01

    Full Text Available With ionic liquids as solvents and corn straw as raw material, different processes of lignocellulose pretreatment with acid as catalyst were studied under conventional heating/microwave irradiation and the reducing sugar was measured. The results indicated that acid can accelerate hydrolysis reaction of corn straw into reducing sugar with ionic liquids as solvent, and microwave irradiation was more efficient in pretreatment of corn straw than conventional heating. The influences of different acid catalysts, the concentration of acid, temperature, mass ratio of straw/[Bmim]Cl, and the amount of refill water were mainly tested, and the optimum experimental conditions are thus determined.

  9. Rapid synthesis of biodegradable poly(epsilon-caprolactone-co-p-dioxanone) random copolymers under microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Biodegradable poly(epsilon-caprolactone-co-p-dioxanone)(PCDO) random copolymers have been synthesized by ring-opening polymerization of epsilon-caprolactone(CL) and p-dioxanone(PDO) under microwave irradiation.The effects of irradiation time and different CL/PDO molar feed ratios on the microwave-assisted ring-opening polymerization(MROP) of PCDO have been discussed.The resultant products were characterized by ~1H NMR,GPC and DSC.It was found that the polymerization was completed within 20 min at 140℃.In...

  10. Mechanical performance of gamma irradiated surgical sutures

    Energy Technology Data Exchange (ETDEWEB)

    Pino, Eddy S.; Rela, Paulo P. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    2000-07-01

    Surgical sutures are medical devices made of natural or synthetic polymeric materials that, due to its end-use, have to be sterilized. Historically, the sterilization by heat or using ethylene oxide had presented so numerous drawbacks that today the non-pollutant radiation sterilization has become a well established sterilization process, that brings, environmental, technical, and economical advantages. The amount of irradiation doses required for sterilization of health care products is 25 kGy in most instances to achieve the necessary sterility assurance level. As high energy radiation produces modifications in the molecular structure of organic materials with changes in its mechanical properties, the aim of this work was to evaluate the mechanical behavior of surgical sutures under irradiation. Silk, polyamide and catgut sutures were gamma irradiated up to doses of 50 kGy in an industrial irradiation sterilization plant. Afterwards, these sutures were mechanical tested for tensile strength under knot following the specifications of the NBR13904 draft standard, using the CTRD-INSTRON at IPEN. The mechanical lab results show that sutures made of Silk and Polyamide do not present any change in their mechanical performance up to the dose of 50 kGy. On the other hand, Catgut present mechanical stability up to 30 kGy and afterwards, a slight decrease in its tensile strength was detected. (author)

  11. Efficacy of Microwave Disinfection on Moist and Dry Dental Stone Casts with Different Irradiation Times

    Directory of Open Access Journals (Sweden)

    Mahmood Robati Anaraki

    2015-07-01

    Full Text Available Objectives: Dental practice contains the use of instruments and multiuse items that should be sterilized or disinfected properly. The aim of the current study was to investigate the effect of microwave irradiation on dental stone cast disinfection in moist and dry condition. Materials and Methods: In this in vitro study, 76 stone casts were prepared by a sterile method. The casts were contaminated by Pseudomonas aeruginosa (ATCC 9027, Staphylococcus aureus (ATCC 6538, Enterococcus faecalis (ATCC 29212 as well as Candida albicans (ATCC 10231. Half the samples were dried for two hours and the other half was studied while still moist. The samples were irradiated by a household microwave at 600 W for 3, 5 and 7 minutes. The microorganisms on the samples were extracted by immersion in tryptic soy broth and .001 ml of that was cultured in nutrient agar media, incubated overnight and counted and recorded as colony forming unit per milliliter (CFU/mL. Results: The findings showed that microorganisms reduced to 4.87 logarithm of CFU/mL value on dental cast within seven minutes in comparison with positive control. Although microbial count reduction was observed as a result of exposure time increase, comparison between moist and dried samples showed no significant difference. Conclusions: Seven-minute microwave irradiation at 600 W can effectively reduce the microbial load of dental stone casts. Wetting the casts does not seem to alter the efficacy of irradiation.   Keywords: Microwave Disinfection; Dental Stone Casts; Irradiation Times

  12. Comparative study on sulphur reduction from heavy petroleum - Solvent extraction and microwave irradiation approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Abdullahi Dyadya; Isah, Abubakar Garba; Umaru, Musa; Ahmed, Shehu [Department of Chemical Engineering, Federal University of Technology, P.M.B 65, Minna (Nigeria); Abdullahi, Yababa Nma [National Petroleum Investment Management Services (Nigeria National Petroleum Corporation), Lagos (Nigeria)

    2012-07-01

    Sulphur- containing compounds in heavy crude oils are undesirable in refining process as they affect the quality of the final product, cause catalyst poisoning and deactivation in catalytic converters as well as causing corrosion problems in oil pipelines, pumps and refining equipment aside environmental pollution from their combustion and high processing cost. Sulphur reduction has being studied using microwave irradiation set at 300W for 10 and 15minutes and oxidative- solvent extraction method using n- heptane and methanol by 1:1, 1:2 and 1:3 crude- solvent ratios after being oxidized with hydrogen peroxide, H2O2 oxidants. Percentage sulphur removal with n- heptane solvent by 1:1 and 1:2 are 81.73 and 85.47%; but extraction using methanol by different observed ratios gave less sulphur reduction. Indeed when microwave irradiated at 300W for 10 and 15minutes, 53.68 and 78.45% reduction were achieved. This indicates that microwave irradiation had caused oxidation by air in the oven cavity and results to formation of alkyl radicals and sulphoxide from sulphur compound in the petroleum. The prevailing sulphur found in the crude going by FT-IR results is sulphides which oxidized to sulphoxide or sulphones. It is clear that sulphur extraction with heptane is more efficient than microwave irradiation but economically due to demands for solvent and its industrial usage microwave irradiation can serve as alternative substitute for sulphur reduction in petroleum. Sulphur reduction by microwave radiation should be up- scaled from laboratory to a pilot plant without involving extraction column in the refining.

  13. Comparative study on sulphur reduction from heavy petroleum - Solvent extraction and microwave irradiation approach

    Directory of Open Access Journals (Sweden)

    Abdullahi Dyadya Mohammed, Abubakar Garba Isah, Musa Umaru, Shehu Ahmed, Yababa Nma Abdullahi

    2012-01-01

    Full Text Available Sulphur- containing compounds in heavy crude oils are undesirable in refining process as they affect the quality of the final product, cause catalyst poisoning and deactivation in catalytic converters as well as causing corrosion problems in oil pipelines, pumps and refining equipment aside environmental pollution from their combustion and high processing cost. Sulphur reduction has being studied using microwave irradiation set at 300W for 10 and 15minutes and oxidative- solvent extraction method using n- heptane and methanol by 1:1, 1:2 and 1:3 crude- solvent ratios after being oxidized with hydrogen peroxide, H2O2 oxidants. Percentage sulphur removal with n- heptane solvent by 1:1 and 1:2 are 81.73 and 85.47%; but extraction using methanol by different observed ratios gave less sulphur reduction. Indeed when microwave irradiated at 300W for 10 and 15minutes, 53.68 and 78.45% reduction were achieved. This indicates that microwave irradiation had caused oxidation by air in the oven cavity and results to formation of alkyl radicals and sulphoxide from sulphur compound in the petroleum. The prevailing sulphur found in the crude going by FT-IR results is sulphides which oxidized to sulphoxide or sulphones. It is clear that sulphur extraction with heptane is more efficient than microwave irradiation but economically due to demands for solvent and its industrial usage microwave irradiation can serve as alternative substitute for sulphur reduction in petroleum. Sulphur reduction by microwave radiation should be up- scaled from laboratory to a pilot plant without involving extraction column in the refining.

  14. Improvement of biomass char-CO{sub 2} gasification reactivity using microwave irradiation and natural catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lahijani, Pooya, E-mail: pooya.lahijani@gmail.com [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohammadi, Maedeh, E-mail: m.mohammadi@nit.ac.ir [Faculty of Chemical Engineering, Babol Noushirvani University of Technology, 47148 Babol (Iran, Islamic Republic of); Zainal, Zainal Alimuddin, E-mail: mezainal@eng.usm.my [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@usm.my [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-20

    Highlights: • We study microwave-induced gasification of EFB ash-loaded biomass char with CO{sub 2}. • Synergistic effect of microwave and catalyst resulted in CO{sub 2} conversion of 93%. • Gasification of pristine char using conventional heating gives CO{sub 2} conversion of 58%. • E{sub a} of 74 and 247 kJ/mol were obtained for microwave and conventional CO{sub 2} gasification. - Abstract: In char-CO{sub 2} gasification, the highly endothermic nature of the Boudouard reaction (CO{sub 2} (g) + C (s) ↔ 2CO (g)) dictates use of very high temperatures to shift the equilibrium towards CO production. In this study, such high temperature (750–900 °C) was provided by microwave irradiation. A microwave heating system was developed to perform the gasification tests by passing CO{sub 2} through a packed bed of oil palm shell (OPS) char. In order to speed up the microwave-induced CO{sub 2} gasification, ash of palm empty fruit bunch (EFB) was used as natural catalyst (rich in potassium) and incorporated into the skeleton of the OPS char. The synergistic effect of microwave and catalyst concluded to very encouraging results, where a CO{sub 2} conversion of 93% was achieved at 900 °C, within 60 min microwave gasification. In comparison, CO{sub 2} conversion in thermal gasification (conventional heating) of pristine OPS char was only 58% under the same operating condition.

  15. Cassava Pulp Hydrolysis under Microwave Irradiation with Oxalic Acid Catalyst for Ethanol Production

    Directory of Open Access Journals (Sweden)

    Euis Hermiati

    2014-07-01

    Full Text Available Microwave irradiation is an alternative method of starch hydrolysis that offers a rapid process. The aim of this research was to improve microwave-assisted hydrolysis of cassava pulp by using oxalic acid as a catalyst. Suspension of cassava pulp in 0.5% oxalic acid (1 g/20 mL was subjected to microwave irradiation at 140-230 °C for 5 minutes, with 4 minutes of pre-heating. One gram of fractured activated carbon made of coconut shell was added into a number of suspensions that were subjected to the same conditions of microwave irradiation. The soluble fraction of the hydrolysates was analyzed for its total soluble solids, malto-oligomer distribution, glucose content, pH value, and formation of brown compounds. The effects of the combined severity parameter at a substrate concentration of 5-12.5% on the glucose yield were also evaluated. The highest glucose yield (78% of dry matter was obtained after hydrolysis at 180 °C without activated carbon addition. Heating above 180 °C reduced the glucose yield and increased the pH and the formation of brown compounds. The use of activated carbon in microwave-assisted acid hydrolysis of cassava pulp reduced the glucose yield, but suppressed the formation of brown compounds. The highest glucose yield (70-80% of dry matter was attained at a severity parameter of 1.3-1.5.

  16. Structural Study of Inclusion Complex of Andrographolide with β-Cyclodextrin Prepared under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    An inclusion complex of β-cyclodextrin with andrographolide (Andro) was prepared by using a convenient method of microwave irradiation. The structure of the inclusion complex was determined by the 1H NMR, 2D NMR spectroscopy as well as the elemental analysis.

  17. A rapid and efficient synthesis of indoloquinolinone and its analogues under microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    Yu Jing Lu; Ning Sun; Zhi Shu Huang; Lian Quan Gu

    2008-01-01

    A rapid and efficient method was established for the synthesis of indoloquinolinone and its analogues using acid-promotedcyclization in the present of PPA. All the reactions were completed in good yields in 10min under microwave irradiation.? 2008 Zhi Shu Huang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  18. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  19. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  20. Synthesis of γ-Nitro Aliphatic Methyl Esters Via Michael Additions Promoted by Microwave Irradiation

    OpenAIRE

    Díaz-Coutiño, Francisco D.; Jaime Escalante

    2009-01-01

    A simple and efficient protocol has been developed for the direct synthesis of γ-nitrobutyric acid methyl esters under microwave irradiation. This methodology reduces reaction times from days to minutes, compared to conventional conditions. Additionally, these conditions increased yields and provided cleaner reactions.

  1. An Unexpected and Efficient Synthesis of Open-chain Derivatives of Bistetronic Acid under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    SHI Feng; MA Ning; ZHOU Dianxiang; ZHANG Ge; JIANG Bo; TU Shujiang

    2009-01-01

    An unexpected and efficient synthesis of novel open-chain derivatives of bistetronic acid has been successfully achieved in glyclol under microwave irradiation (MW).This method has the prominent advantages of short reaction time,high yield,operational simplicity as well as environmental friendliness.

  2. Effect of Microwave Irradiation on the Physicochemical and Digestive Properties of Lotus Seed Starch.

    Science.gov (United States)

    Zeng, Shaoxiao; Chen, Bingyan; Zeng, Hongliang; Guo, Zebin; Lu, Xu; Zhang, Yi; Zheng, Baodong

    2016-03-30

    The objective of this study is to investigate the effect of microwave irradiation on the physicochemical and digestive properties of lotus seed starch. The physicochemical properties of lotus seed starch were characterized by light microscopy, (1)H NMR, FT-IR spectroscopy, and HPSEC-MALLS-RI. The starch-water interaction and crystalline region increased due to the changed water distribution of starch granules and the increase of the double-helix structure. The swelling power, amylose leaching, molecular properties, and radius of gyration reduced with the increasing microwave power, which further affected the sensitivity of lotus seed starch to enzymatic degradation. Furthermore, the resistant starch and slowly digestible starch increased with the increasing microwave irradiation, which further resulted in their decreasing hydrolysis index and glycemic index. The digestive properties of lotus seed starch were mainly influenced by the reduced branching degree of amylopectin and the strong amylose-amylose interaction.

  3. Effect of microwave irradiation on parametric resonance in intrinsic Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Gaafar, Mahmoud, E-mail: futech_ma7moudgaafer@yahoo.com [BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Department of Physics, Faculty of Science, Menoufya University (Egypt); Shukrinov, Yury [BLTP, JINR, Dubna, Moscow Region 141980 (Russian Federation); Max-Planck-Institute for the Physics of Complex Systems, 01187 Dresden (Germany)

    2013-08-15

    Highlights: ► We investigated the effect of microwave irradiation on the phase dynamics of IJJs. ► A remarkable changing of the wavelength of LPW at parametric resonance is shown. ► Appearance of an additional parametric resonance before Shapiro step is observed. -- Abstract: The effect of microwave irradiation on the phase dynamics of intrinsic Josephson junctions in high temperature superconductors is investigated. We demonstrate the influence of microwave’s amplitude variation on the current–voltage characteristics and on the time dependence (temporal oscillations) of the electric charge in the superconducting layers. A remarkable changing of the longitudinal plasma wavelength at parametric resonance is shown. We demonstrate an effect of the microwave radiation on the width of the parametric resonance region.

  4. Microwave irradiation induced band gap tuning of MoS2-TiO2 nanocomposites

    Science.gov (United States)

    Shakya, Jyoti; Mohanty, T.

    2016-05-01

    The MoS2-TiO2 nanocomposites have been synthesized by sol-gel method and characterized by different microscopic and spectroscopic techniques. The crystallinity of these nanocomposites has been confirmed by X-ray diffraction (XRD) analysis. The Raman spectrum of MoS2-TiO2 nanocomposites consists of three distinct peaks (E1 g, E1 2g and A1g) which are associated with TiO2 and MoS2. The morphological study is carried out by scanning electron microscope. The effect of microwave irradiation on the band gap of MoS2-TiO2 nanocomposites has been investigated; it is observed that the microwave irradiation causes decrease in the band gap of MoS2-TiO2 nanocomposites. The microwave treated MoS2-TiO2 thin films offers a novel process route in treating thin films for commercial applications.

  5. Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation

    Directory of Open Access Journals (Sweden)

    Is Fatimah

    2016-11-01

    Full Text Available This paper reports an investigation of the microwave-assisted synthesis of silver nanoparticles (Ag NPs using extract of stinky bean (Parkia speciosa Hassk pods (BP. The formation of Ag NPs was identified by instrumental analysis consists of UV–vis spectrophotometry, Fourier-transform infrared (FTIR spectrophotometry, scanning electron microscopy (SEM, transmission electron microscopy (TEM and particle size analysis. Furthermore, Ag NPs were used as antibacterial agents against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The results indicate rapid formation of Ag NPs during microwave irradiation with similar properties to those obtained through the aging method. In general, the use of microwave irradiation yields larger particles, and it is affected by volume ratio of the extract to the AgNO3 solution. The prepared materials demonstrated antibacterial activity.

  6. Synthesis and mechanism of formation of oxadeazaflavines by microwave thermal cyclization of ortho-halobenzylidene barbiturates

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-Villar, J. Daniel; Oliveira, Sandra C.G. de, E-mail: figueroa@ime.eb.br [Grupo de Quimica Medicinal, Departamento de Quimica, Instituto Militar de Engenharia, Rio de Janeiro, RJ (Brazil)

    2011-09-15

    The thermal cyclization reaction of o-halobenzylidene barbiturates was developed as an efficient and simple method for the preparation of oxadeazaflavines. The use of solid state reaction conditions with microwave irradiation afforded the products in 5 min with 47 to 98% yield. Experimental synthetic results and thermogravimetric reaction analyses agree with the molecular modeling mechanism simulation, indicating that this reaction occurs through an intramolecular hetero-Diels-Alder cyclization followed by fast re-aromatization. (author)

  7. Mechanical performance of irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Dalle-Donne, M.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-01-01

    For the Helium Cooled Pebble Bed (HCPB) Blanket, which is one of the two reference concepts studied within the European Fusion Technology Programme, the neutron multiplier consists of a mixed bed of about 2 and 0.1-0.2 mm diameter beryllium pebbles. Beryllium has no structural function in the blanket, however microstructural and mechanical properties are important, as they might influence the material behavior under neutron irradiation. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating it. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from these irradiation experiments, emphasizing the effects of irradiation of essential material properties and trying to elucidate the processes controlling the property changes. The microstructure, the porosity distribution, the impurity content, the behavior under compression loads and the compatibility of the beryllium pebbles with lithium orthosilicate (Li{sub 4}SiO{sub 4}) during the in-pile irradiation are presented and critically discussed. Qualitative information on ductility and creep obtained by hardness-type measurements are also supplied. (author)

  8. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Barnett, L. R.; Chu, K. R., E-mail: krchu@yahoo.com.tw [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Tsai, Y. F.; Ko, C. C.; Yang, E. C. [Department of Entomology, National Taiwan University, Taipei, Taiwan (China); Jiang, J. A. [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan (China)

    2014-08-15

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  9. A microwave applicator for uniform irradiation by circularly polarized waves in an anechoic chamber

    Science.gov (United States)

    Chiang, W. Y.; Wu, M. H.; Wu, K. L.; Lin, M. H.; Teng, H. H.; Tsai, Y. F.; Ko, C. C.; Yang, E. C.; Jiang, J. A.; Barnett, L. R.; Chu, K. R.

    2014-08-01

    Microwave applicators are widely employed for materials heating in scientific research and industrial applications, such as food processing, wood drying, ceramic sintering, chemical synthesis, waste treatment, and insect control. For the majority of microwave applicators, materials are heated in the standing waves of a resonant cavity, which can be highly efficient in energy consumption, but often lacks the field uniformity and controllability required for a scientific study. Here, we report a microwave applicator for rapid heating of small samples by highly uniform irradiation. It features an anechoic chamber, a 24-GHz microwave source, and a linear-to-circular polarization converter. With a rather low energy efficiency, such an applicator functions mainly as a research tool. This paper discusses the significance of its special features and describes the structure, in situ diagnostic tools, calculated and measured field patterns, and a preliminary heating test of the overall system.

  10. Nitrogen-doped graphene nanosheets from bulk graphite using microwave irradiation.

    Science.gov (United States)

    Lee, Kwang Hoon; Oh, Jinwoo; Son, Jeong Gon; Kim, Heesuk; Lee, Sang-Soo

    2014-05-14

    Using simple microwave irradiation under the presence of sodium amide as a nitrogen source, preparation of nitrogen-doped graphene nanosheets has been successfully demonstrated. It is notable that exfoliation and nitrogen doping of graphite to nitrogen-doped graphene simultaneously occurred during the microwave irradiation within a minute, and nitrogen content of the doped graphene could reach up to 8.1%. It was also found that the binding configuration of nitrogen atom on graphitic layer consisted of various nitrogen-containing moieties such as pyridine-N, pyrrolic-N, and quaternary-N, and their composition was changed as a function of irradiation power. Although formation of undoped reduced graphene oxide by microwave irradiation resulted in slight increase of electrical conductivity because of the reductive recovery of oxidized graphite to graphene, nitrogen doping involved during irradiation induced much more notable increase of electrical conductivity more than 300 S cm(-1). Furthermore, nitrogen-doped graphene showed highly enhanced capacitive performance than that of undoped reduced graphene oxide, the specific capacitance of 200 F/g (current density of 0.5 A/g), which ascribes the pseudocapacitive effect from the incorporation of nitrogen atom on graphitic layer.

  11. Green Formation of Spherical and Dendritic Silver Nanostructures under Microwave Irradiation without Reducing Agent

    Directory of Open Access Journals (Sweden)

    Monir Noroozi

    2012-06-01

    Full Text Available The rapid and green formation of spherical and dendritic silver nanostructures based on microwave irradiation time was investigated. Silver nanoparticles were successfully fabricated by reduction of Ag+ in a water medium and using polyvinylpyrrolidone (PVP as the stabilizing agent and without the use of any other reducing agent, and were compared with those synthesized by conventional heating method. UV–vis absorption spectrometry, transmission electron microscopy (TEM, atomic absorption spectroscopy (AAS and photon correlation spectroscopy (PCS measurements, indicated that increasing the irradiation time enhanced the concentration of silver nanoparticles and slightly increased the particle size. There was a lack of large silver nanoparticles at a high concentration, but interestingly, the formation and growth of silver dendrite nanostructures appeared. Compared to conventional heating methods, the silver nanoparticle suspension produced by irradiated microwaves was more stable over a six-month period in aqueous solution without any signs of precipitation.

  12. Magnetocapacitance oscillations and thermoelectric effect in a two-dimensional electron gas irradiated by microwaves

    Science.gov (United States)

    Levin, A. D.; Gusev, G. M.; Raichev, O. E.; Momtaz, Z. S.; Bakarov, A. K.

    2016-07-01

    To study the influence of microwave irradiation on two-dimensional electrons, we apply a method based on capacitance measurements in GaAs quantum well samples where the gate covers a central part of the layer. We find that the capacitance oscillations at high magnetic fields, caused by the oscillations of thermodynamic density of states, are not essentially modified by microwaves. However, in the region of fields below 1 T, we observe another set of oscillations, with the period and the phase identical to those of microwave-induced resistance oscillations. The phenomenon of microwave-induced capacitance oscillations is explained in terms of violation of the Einstein relation between conductivity and the diffusion coefficient in the presence of microwaves, which leads to a dependence of the capacitor charging on the anomalous conductivity. We also observe microwave-induced oscillations in the capacitive response to periodic variations of external heating. These oscillations appear due to the thermoelectric effect and are in antiphase with microwave-induced resistance oscillations because of the Corbino-like geometry of our experimental setup.

  13. Improvement in gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors using microwave irradiation

    Science.gov (United States)

    Jo, Kwang-Won; Cho, Won-Ju

    2014-11-01

    In this study, we evaluated the effects of microwave irradiation (MWI) post-deposition-annealing (PDA) treatment on the gate bias stress instability of amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) and compared the results with a conventional thermal annealing PDA treatment. The MWI-PDA-treated a-IGZO TFTs exhibited enhanced electrical performance as well as improved long-term stability with increasing microwave power. The positive turn-on voltage shift (ΔVON) as a function of stress time with positive bias and varying temperature was precisely modeled on a stretched-exponential equation, suggesting that charge trapping is a dominant mechanism in the instability of MWI-PDA-treated a-IGZO TFTs. The characteristic trapping time and average effective barrier height for electron transport indicate that the MWI-PDA treatment effectively reduces the defects in a-IGZO TFTs, resulting in a superior resistance against gate bias stress.

  14. An Efficient Synthesis of Pyridoxal Oxime Derivatives under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Dajana Gašo-Sokač

    2014-06-01

    Full Text Available Quaternary salts of pyridoxal oxime have been synthesized by the quaternization of pyridoxal oxime with substituted phenacyl bromides using microwave heating. Microwave-assisted rapid synthesis was done both in solvent (acetone and under solvent-free conditions. Good to excellent yields (58%–94% were obtained in acetone in very short reaction times (3–5 min as well as in the solvent-free procedure (42%–78% in very short reaction times (7–10 min too. Effective metodologies for the preparation of pyridoxal oxime quaternary salts, having the advantagies of being eco-friendly, easy to handle, and performed in shorter reactions time are presented. The structure of compound 7, in which a 4-fluorophenacyl moiety is bonded to the pyridinium ring nitrogen atom, was unequivocally confirmed by the single-crystal X-ray diffraction method.

  15. Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand: Closed microwaves, open microwaves and ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Domini, Claudia E. [Departamento de Quimica, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Hidalgo, Montserrat [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, Apdo. 99, 03080 Alicante (Spain); Marken, Frank [Department of Chemistry, University of Bath, Bath BA2 7AY (United Kingdom); Canals, Antonio [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, Apdo. 99, 03080 Alicante (Spain)]. E-mail: a.canals@ua.es

    2006-03-02

    In the present work, experimental design was used for the fast optimization of three kinds of sample digestion procedures with the final aim of obtaining the COD value of wastewater samples. The digestion methods evaluated were 'closed microwave-assisted' (CMWD), 'open microwave-assisted' (OMWD) and 'ultrasound-assisted' (USD). Classical digestion was used as reference method. The optimum values for the different variables studied in each method were: 90 psi pressure, 475 W power and 4 min irradiation time (CMWD); 150 deg. C temperature and 4 min irradiation time (OMWD); 90% of maximum nominal power (180 W), 0.9 s (s{sup -1}) cycles and 1 min irradiation time (USD). In all cases, interference concentration that produces a deviation of 10% in COD values is 13.4, 23.4, 21.1 and 2819 mg/L for S{sup 2-}, Fe{sup 2+}, NO{sub 2} {sup -} and Cl{sup -}, respectively. Under optimum conditions, the proposed digestion methods have been successfully applied, with the exception of pyridine, to several pure organic compounds and COD recoveries for 10 real wastewater samples were ranged between 88 and 104% of the values obtained with the classical (open reflux) method used as reference, with R.S.D. lower than 4% in most cases. Thus, the use of ultrasound energy for COD determination seems to be an interesting and promising alternative to conventional open reflux and microwave-assisted digestion methods used for the same purpose since the instrumentation is simpler, cheaper and safer and the digestion step faster than the ones used for the same purpose.

  16. C{sub 2}{sup +} selectivity enhancement in oxidative coupling of methane over microwave-irradiated catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roussy, G.; Marchal, E.; Thiebaut, J.M.; Kiennemann, A.; Maire, G. [L.S.T.M. Universite Henri Poincare Nancy, Vandoeuvre-les-Nancy (France)

    1997-02-01

    The oxidative coupling of methane over Li/MgO and BaBiO{sub 3-x} catalysts irradiated by microwaves and classically heated is reported. Enhanced selectivities in C{sub 2}{sup +} products are observed at lower temperatures under microwave conditions, especially with the Li/MgO catalyst. The complex permittivity measurements of BaBiO{sub 3-x} show that the regeneration of the active oxygen species on the surface is lower under microwave irradiation than classical heating. X-ray diffraction analyses of the catalyst before and after catalytic reaction, when it is classically heated and when it is heated by microwave irradiation, corroborate these results. Therefore, the CH{sub 3}{sup -} carbanions are less oxidated at the catalyst surface under microwave irradiation. On the other hand, the quenching of the output gas probably decreases the oxidation of CH{sub 3}{sup 0} radicals in the gas phase when the Li/MgO catalyst is irradiated by microwaves. The quenching of the output gas is a unique consequence of microwave irradiation which heats the catalyst without heating the wall of the reactor. 26 refs., 9 figs.

  17. An efficient protocol for the solid-phase synthesis of glycopeptides under microwave irradiation.

    Science.gov (United States)

    Garcia-Martin, Fayna; Hinou, Hiroshi; Matsushita, Takahiko; Hayakawa, Shun; Nishimura, Shin-Ichiro

    2012-02-28

    A standardized and smooth protocol for solid-phase glycopeptides synthesis under microwave irradiation was developed. Double activation system was proved to allow for highly efficient coupling of Tn-Ser/Thr and bulky core 2-Ser/Thr derivatives. Versatility and robustness of the present strategy was demonstrated by constructing a Mucine-1 (MUC1) fragment and glycosylated fragments of tau protein. The success of this approach relies on the combination of microwave energy, a resin consisting totally of polyethylene glycol, a low excess of sugar amino acid and the "double activation" method.

  18. [Investigation on low power microwave irradiation-assisted enzymatic esterification in organic solvent by fluorescence spectroscopy].

    Science.gov (United States)

    Min, Rui; Fang, Yun; Xia, Yong-Mei

    2009-02-01

    The authors studied the fluorescence change of immobilized lipase from Rhizomucor miehei in the microwave assisted enzymatic esterification of caprylic acid and butanol in organic medium by investigating the fluorescence spectra in solvent or aqueous buffer after incubating the lipase with the solvent, caprylic acid and butanol under microwave irradiation, respectively. A comparison was made with the conventional heated enzymatic esterification in the solvents. Both of the heating modes, the microwave irradiation and conventional heating, can enhance the fluorescence intensity without shifting the emission wavelength of the lipase. In the circumstance that the irradiation can accelerate the esterification, the irradiation can enhance the exposure of the lipase protein molecules in the aqueous environment after incubating the lipase with solvents or the substrates. The effect of the reaction mixture on the fluorescence intensity was dominated by the solvents. The trend of the plot of log P versus the initial reaction rate was similar to that of log P versus fluorescence intensity of lipase in aqueous buffer after esterification; but was different from that of log P versus fluorescence intensity of lipase in organic medium.

  19. Effects of Microwave Irradiation on Embryonic Brain Tissue.

    Science.gov (United States)

    1979-03-01

    pregnant. The groups thus were too small to permit any valid comparisons. A third experiment on short-term irradiation of dated pregnancy rats morning...and afternoon was carried out from 14 and 15 January to .4 and 5 February 1976. Twenty-one Long-Evans dated pregnancy rats (mated on 1-14- 76) were

  20. Bone-like hydroxyapatite precipitated from 10×SBF-like solution by microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tolga Demirtaş, T.; Kaynak, Gökçe [Bioengineering Engineering Department, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Gümüşderelioğlu, Menemşe, E-mail: menemse@hacettepe.edu.tr [Bioengineering Engineering Department, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Chemical Engineering Department, Hacettepe University, 06800 Beytepe, Ankara (Turkey)

    2015-04-01

    Microwave-assisted methods have been frequently used in many processes owing to their numerous advantages such as performing fast, efficient and homogenous processes and reducing side reactions. In view of these benefits, in this study it was purposed to produce bone-like hydroxyapatite (HA) by inducing biomimetic process with microwave-irradiation. This is why, concentrated body fluid (SBF) i.e. 10×SBF-like solution was used and it was precipitated in different microwave powers i.e. 90 W, 360 W, 600 W, and 1200 W and in different exposure times. For comparison, precipitation process was also carried out at room temperature for 6 h and at 80 °C for 1 h. The obtained HA structures were characterized by appropriate instrumental techniques. As a result, microwave-induced precipitation at 600 W for 9 times 30 s was determined as the optimum condition for the production of HA which has similar properties to the cortical bone. At this condition, B-type HA with 9.22% (wt.) carbonate content, 1.61 Ca/P molar ratio and amorphous structure was obtained easily, rapidly and efficiently. So, this is the first time microwave technology has been used to precipitate HA from SBF solution. - Highlights: • Simple, rapid and efficient method was developed to produce bone-like HA. • Microwave radiation and biomimetic approach via 10×SBF-like solution were combined. • Microwave irradiation at 600 W for 9 × 30 s was determined as the optimum condition. • B-type HA (carbonate content: 9.22%; 1.61 Ca/P:1.61; amorph) was produced. • This method may be employed for the effective HA coating of 3D bone scaffolds.

  1. Kinetics mechanism of microwave sintering in ceramic materials

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the traditional sintering model incorporating the characteristic of microwave sintering, the ionic conductance diffusion mechanism in microwave sintering was studied. A flat-ball model was presented to describe the kinetics process in microwave sintering, and was applied to the sintering process of TZP and ZrO2-Al2O3 ceramics. The results indicate that the shrinkage rate of materials in microwave sintering is proportional to t2/3 and r-4/3, respectively, where t is the sintering time and r is the particle radius. Whereas, the shrinkage rate of materials in conventional sintering is proportional to sintering time t2/5. Our model suggests that microwave sintering is faster than conventional sintering, which shows a good agreement with the experimental observation in sintering process of TZP and ZrO2-Al2O3.

  2. Microstructural Characterization of Cermet Cladding Developed Through Microwave Irradiation

    Science.gov (United States)

    Gupta, Dheeraj; Sharma, Apurbba Kumar

    2012-10-01

    In the present work, cladding of hardfacing WC10Co2Ni powder on austenitic stainless steel has been developed through a novel processing technique. The clads were developed using microwave hybrid heating. The clad of average thickness ~2 mm has been developed through the exposure of microwave radiation at frequency 2.45 GHz and power 900 W for the duration of 360 s. The developed clads were characterized using field emission scanning electron microscope, X-ray elemental analysis, X-ray diffraction, and measurement of Vicker's microhardness. The microstructure study of the clad showed good metallurgical bonding with substrate and revealed that clads are free from any visible interface cracking. Clads were formed with partial dilution of a thin layer of the substrate. The cermet microstructure mainly consists of relatively soft metallic matrix phase and uniformly distributed hard carbide phase with skeleton-like structure. The developed clads exhibit an average microhardness of 1064 ± 99 Hv. The porosity of developed clad has been significantly less at approximately 0.89%.

  3. Facile preparation of super-hydrophilic poly(ethylene terephthalate) fabric using dilute sulfuric acid under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fang [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Guangxian, E-mail: zgx656472@sina.com.cn [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China); Zhang, Fengxiu [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang, Yuansong [College of Textiles and Garments, Southwest University, Chongqing 400715 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715 (China)

    2015-09-15

    Highlights: • A durable super-hydrophilic PET fabric was prepared using dilute H{sub 2}SO{sub 4} under microwave irradiation. • Dilute sulfuric acid was gradually concentrated enough to sulfonate PET fabric. • Microwave irradiation made PET fabric modification highly efficient. • The mechanical properties of modified PET fibers were kept well. • The method was novel, rapid, and eco-friendly. - Abstract: The hydrophilicity of a poly(ethylene terephthalate) (PET) fabric was greatly modified by using dilute sulfuric acid, which gradually became concentrated enough to sulfonate the fabric when microwave irradiation (MW) was applied. The modified PET fabric was super-hydrophilic. Modifying the fabric caused the water contact angle to decrease from 132.46 (for the unmodified fabric) to 0°, the water absorption rate to increase from 36.45 to 119.78%, and the capillary rise height to increase from 0.4 to 14.4 cm. The hydrophilicity of the modified PET fabric was not affected by washing it many times. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses showed that there were sulfonic acid groups on the modified fibers. Almost no difference between the surfaces of the unmodified and modified PET fibers was found using scanning electron microscopy. Analysis by differential scanning calorimetry showed that the unmodified and modified fabrics had similar thermostabilities. X-ray diffraction analysis of the crystalline structures of the unmodified and modified fibers showed that they were almost the same. The strength, elasticity, and rigidity of the unmodified fabric were retained by the modified fabric. The modified fabric had better dyeing properties than the unmodified fabric.

  4. A General,Highly Efficient Ullmann C-O Coupling Reaction under Microwave Irradiation and the Effects of Water

    Institute of Scientific and Technical Information of China (English)

    ZHU,Xin-Hai; CHEN,Gong; MA,Yan; SONG,Hua-Can; XU,Zun-Le; WAN,Yi-Qian

    2007-01-01

    A general,rapid and highly efficient method for the synthesis of diaryl ethers under the assistance of microwave irradiation was described.A series of diaryl ethers were prepared by direct coupling of phenols and aryl halides in good to excellent yields in anhydrous DMF or NMP at 150℃ within 20 min.The presence of water was found to have a significant impact on the Ullmann C-O coupling reaction between aryl halides and phenols under microwave irradiation.

  5. Solvent-Free Synthesis of Modified Pectin Compounds Promoted by Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Vittoria Vittoria

    2012-10-01

    Full Text Available Microwave-assisted solvent-free modification of pectin was successfully accomplished, consisting in the esterification of several fatty acids by pectin alcoholic functions. The reaction was performed by simply mixing the reagents with a catalytic amount of the inorganic base (potassium carbonate and irradiating the obtained mixture with microwaves for a short time (3–6 min. The replacement of the traditional heating with a microwave source allowed the development of a new synthetic protocol which provided increased yield of the final products, since it eliminates the small amount of degraded polysaccharide produced during traditional oil bath heating. The desired esters were fully characterized by FT-IR spectroscopy and thermogravimetric analysis.

  6. Negative Feedback Effect of Microwave Irradiation in the Microwave—assisted Hydrothermal Synthesis of Bi2S3 Nanorods

    Institute of Scientific and Technical Information of China (English)

    陶秀成; 邵名望

    2002-01-01

    The microwave-assisted hydrothermal synthesis of Bi2S3 nanorods was reported.The result showed that microwave irradiation can help to produce Bi2S3 nanorods in very short time.There is a negative feedback effcet which increases the degree of crystallinity in the reaction.

  7. Self-Oscillations of a spontaneous electric field in a nonequilibrium two-dimensional electron system under microwave irradiation

    Science.gov (United States)

    Dorozhkin, S. I.

    2015-07-01

    Self-oscillations of a microwave photovoltage with irregular interruptions have been discovered in the states with vanishing dc dissipation emerging in two-dimensional electron systems under microwave irradiation. The observed picture can be caused by transitions between a stable pole and a limiting cycle in the phase space of the systems (Andronov-Hopf bifurcation) that occur owing to fluctuations.

  8. Preparation of starch-poly-glutamic acid graft copolymers by microwave irradiation and the characterization of their properties

    Science.gov (United States)

    Graft copolymers of waxy maize starch and poly-y-glutamic acid (PGA) were produced in an aqueous solution using microwave irradiation. The microwave reaction conditions were optimized with regard to temperature and pH. The temperature of 180 deg C and pH 7.0 were the best reaction conditions resulti...

  9. A microwave-irradiated Streptococcus agalactiae vaccine provides partial protection against experimental challenge in Nile tilapia, Oreochromis niloticus

    Science.gov (United States)

    Microwave irradiation, as opposed to formalin exposure, has not routinely been used in the preparation of killed vaccines despite the advantages of decreased chemical toxicity, ability to kill cells quickly, ease of completion requiring only a standard microwave, and potential increased protein cons...

  10. Microwave Irradiation Assisted Preparation of Chitosan Composite Microsphere for Dye Adsorption

    OpenAIRE

    Xiaoyu Chen; Lindun He

    2017-01-01

    Chitosan-activated carbon composite microspheres were prepared by emulsion cross-linking method and its adsorption properties for methyl orange were studied. Chitosan solution was mixed with activated carbon powder and then chitosan was cross-linked by epichlorohydrin under microwave irradiation. SEM photos show that the composite microspheres have diameters of 200–400 μm and activated carbon powder dispersed on the surface of composite microsphere. FTIR spectrum indicates chitosan is success...

  11. Catalyst-free and solvent-free method for the synthesis of quinoxalines under microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    Jian Feng Zhou; Gui Xia Gong; Kun Bao Shi; San Jun Zhi

    2009-01-01

    A facile procedure for the synthesis.of quinoxalines is being reported starting from benzil and 1,2-diaminobenzene. Thereactions were carried out catalyst-free, solvent-free and under microwave irradiation conditions in high yield (84-98%) with short time (3-6 rain) and environmental benign, as well as convenient operation. The structures of all the compounds have been confirmed on the basis of their IR, 1H NMR, and/or 13C NMR, mass spectral data.

  12. Efficient microwave irradiation enhanced stereoselective synthesis and antitumor activity of indolylchalcones and their pyrazoline analogs

    Indian Academy of Sciences (India)

    Magdy A H Zahran; Hanan F Salama; Yasmin G Abdin; Amira M Gamal-Eldeen

    2010-07-01

    2-Aryl-1-indole-3-carbaldehyde derivatives underwent Claisen-Schmidt condensation with acetophenone derivatives under microwave irradiation condition compared with the conventional heating to afford excellent yields of trans substituted indolylchalcones which subjected to condensation reaction with phenylhydrazine to afford their indolylpyrazoline analogs. The antitumor activity of the synthesized compounds was examined and evaluated against human hepatocellular carcinoma cell line (Hep-G2) as well as the half maximal inhibitory concentration (IC50). Most of them showed high potent antitumor activity.

  13. Montmorillonite Clay-Promoted, Solvent-Free Cross-Aldol Condensations under Focused Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Damiano Rocchi

    2014-06-01

    Full Text Available An environmentally benign, clean and general protocol was developed for the synthesis of aryl and heteroaryl trans-chalcones. This method involved solvent-free reaction conditions under microwave irradiation in the presence of a clay-based catalyst, and afforded the target compounds in good yields and short reaction times. Furthermore, the same conditions allowed the synthesis of symmetrical, diarylmethylene-α,β-unsaturated ketones from aromatic aldehydes and ketones.

  14. Spin-Dependent Beats Created by Irradiation of Microwave Field Through a Quantum Dot

    Science.gov (United States)

    Tagani, M. Bagheri; Soleimani, H. Rahimpour

    We study spin-dependent transport through a quantum dot with Zeeman split levels coupled to ferromagnetic leads and under influence of microwave irradiation. Current polarization, spin current, spin accumulation and tunneling magnetoresistance are analyzed using nonequilibrium Green's function formalism and rate equations. Spin-dependent beats in spin resolved currents are observed. The effects of magnetic field, temperature and Coulomb interaction on these beats are studied.

  15. Whole Body Microwave Irradiation for Improved Dacarbazine Therapeutical Action in Cutaneous Melanoma Mouse Model

    Directory of Open Access Journals (Sweden)

    Monica Neagu

    2013-01-01

    Full Text Available A cutaneous melanoma mouse model was used to test the efficacy of a new therapeutical approach that uses low doses of cytostatics in conjunction with mild whole body microwave exposure of 2.45 GHz in order to enhance cytostatics antitumoral effect. Materials and Methods. A microwave exposure system for C57BL/6 mouse whole body microwave irradiation was designed; groups of 40 mice (males and females bearing experimental tumours were subjected to a combined therapy comprising low doses of dacarbazine in combination with mild whole body irradiation. Clinical parameters and serum cytokine testing using xMAP technology were performed. Results. The group that was subjected to combined therapy, microwave and cytostatic, had the best clinical evolution in terms of overall survival, tumour volume, and metastatic potential. At day 14 the untreated group had 100% mortality, while in the combined therapy group 40% of mice were surviving. Quantifying serum IL-1β, IL-6, IL-10, IL-12 (p70, IFN-γ, GM-CSF, TNF-α, MIP-1α, MCP-1, and KC during tumorigenesis and therapy found that the combined experimental therapy decreases all the inflammatory cytokines, except chemokine MCP-1 that was found increased, suggesting an increase of the anti-tumoral immune response triggered by the combined therapy. The overall metastatic process is decreased in the combined therapy group.

  16. Resonant Phase Escape from the First Resistive State of Bi2Sr2CaCu2Oy Intrinsic Josephson Junctions under Strong Microwave Irradiation

    Science.gov (United States)

    Takahashi, Yusaku; Kakehi, Daiki; Takekoshi, Shuho; Ishikawa, Kazuki; Ayukawa, Shin-ya; Kitano, Haruhisa

    2016-07-01

    We report a study of the phase escape in Bi2Sr2CaCu2Oy intrinsic Josephson junctions under the strong microwave irradiation, focusing on the switch from the first resistive state (2nd SW). The resonant double-peak structure is clearly observed in the switching current distributions below 10 K and is successfully explained by a quantum-mechanical model on the quantum phase escape under the strong microwave field. These results provide the first evidence for the formation of the energy level quantization for the 2nd SW, supporting that the macroscopic quantum tunneling for the 2nd SW survives up to ˜10 K.

  17. Equilibrium and thermodynamic parameters for heterogeneous esterification of butyric acid with methanol under microwave irradiation

    Directory of Open Access Journals (Sweden)

    P.N. Dange

    2017-03-01

    Full Text Available Synthesis of methyl butyrate was investigated in a microwave irradiated batch reactor in presence of acid ion-exchange resin catalyst, amberlyst-15. Methyl ester was heterogeneously produced by the reaction between butyric acid and methanol. Effect of reaction parameters of temperature (323–343 K, catalyst loading (0–10.5% w/w, alcohol to acid ratio, M (1–5, and amount of molecular sieves added (0–13.5% w/w on conversion were studied. Equilibrium conversion of 92.6% was achieved in 60 minutes under microwave irradiation. Equilibrium constants at varied temperatures and dependency of equilibrium constant on temperature were studied. Equilibrium constant and equilibrium conversion showed increase with the increase in temperature as expected as per le-Chatelier principle. Van't Hoff plot for esterification of butyric acid was linear with negative slope indicating that reaction was endothermic. Comparative study showed that microwave irradiated method for methyl butyrate synthesis to be very efficient and fast compared with conventional and ultrasound assisted routes under optimized reaction conditions.

  18. Destruction and Dechlorination of Aroclor1254 in Real Waste Transformer Oil Using Microwave Irradiation, Microwave Absorbent and Reactive Materials

    Directory of Open Access Journals (Sweden)

    Bahram Kamarehie

    2014-09-01

    Full Text Available Background: In this research, the decomposition of Aroclor 1254, including 20 kinds of poly chlorinated biphenyls (PCBs, in real waste transformer oil in the presence of PEG1000, NaOH, zero valent iron and H2O by microwave (MW irradiation was studied. Methods: Central composites design (CCD method was carried out for experimental design. The effects of microwave power levels (200- 1000 W, reaction time (30-600 s, polyethylene glycol (PEG (1.5-7.5 g, zero valent iron powder (0.3-1.5 g, NaOH (0.3-1.5 g and H2O (0.4-2 ml were surveyed on the decomposition efficiency of PCBs. Results: The results specified that polyethylene glycol and NaOH, as reactants, greatly influenced the decomposition of PCBs. Nevertheless, zero valent iron had no effect, and H2O decreased the decomposition efficiency of PCBs. Furthermore, experimental results showed that at the optimum amounts of variables (PEG = 5.34g, NaOH= 1.17g, Fe= 0.6g, H2O= 0.8 ml, microwave power 800 w, 93% of PCBs were decomposed over the reaction duration of 6 min. Therefore, PCBs degradation efficiency without water rose up to 99.99% under the MW at 6 min. Conclusion: The results indicated that MW, PEG and NaOH were important variables on PCBs degradation from real waste transformer oil. It is therefore suggested that microwave radiation with the assistance of PEG and alkali can be introduced as a potential technology for PCBs removal from real waste PCB-contaminated oil.

  19. Mechanical properties of UV irradiated rat tail tendon (RTT) collagen.

    Science.gov (United States)

    Sionkowska, Alina; Wess, Tim

    2004-04-01

    The mechanical properties of RTT collagen tendon before and after UV irradiation have been investigated by mechanical testing (Instron). Air-dried tendon were submitted to treatment with UV irradiation (wavelength 254 nm) for different time intervals. The changes in such mechanical properties as breaking strength and percentage elongation have been investigated. The results have shown, that the mechanical properties of the tendon were greatly affected by time of UV irradiation. Ultimate tensile strength and ultimate percentage elongation decreased after UV irradiation of the tendon. Increasing UV irradiation leads to a decrease in Young's modulus of the tendon.

  20. Amorphization within the tablet: Using microwave irradiation to form a glass solution in situ.

    Science.gov (United States)

    Doreth, Maria; Hussein, Murtadha Abdul; Priemel, Petra A; Grohganz, Holger; Holm, René; Lopez de Diego, Heidi; Rades, Thomas; Löbmann, Korbinian

    2017-03-15

    In situ amorphization is a concept that allows to amorphize a given drug in its final dosage form right before administration. Hence, this approach can potentially be used to circumvent recrystallization issues that other amorphous formulation approaches are facing during storage. In this study, the feasibility of microwave irradiation to prepare amorphous solid dispersions (glass solutions) in situ was investigated. Indomethacin (IND) and polyvinylpyrrolidone K12 (PVP) were tableted at a 1:2 (w/w) ratio. In order to study the influence of moisture content and energy input on the degree of amorphization, tablet formulations were stored at different relative humidity (32, 43 and 54% RH) and subsequently microwaved using nine different power-time combinations up to a maximum energy input of 90kJ. XRPD results showed that up to 80% (w/w) of IND could be amorphized within the tablet. mDSC measurements revealed that with increasing microwaving power and time, the fractions of crystalline IND and amorphous PVP reduced, whereas the amount of in situ formed IND-PVP glass solution increased. Intrinsic dissolution showed that the dissolution rate of the microwaved solid dispersion was similar to that of a quench cooled, fully amorphous glass solution even though the microwaved samples contained residual crystalline IND. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preparation and evaluation of swelling induced-orally disintegrating tablets by microwave irradiation.

    Science.gov (United States)

    Sano, Syusuke; Iwao, Yasunori; Kimura, Susumu; Itai, Shigeru

    2011-09-15

    A major challenge in the development of orally disintegrating tablets (ODTs) is to achieve a good balance between tablet hardness and disintegration time. In this study, an advanced method was demonstrated to improve these opposing properties in a molded tablet using a one-step procedure that exploits the swelling induced by microwave treatment. Wet molded tablets consisting of the delta form of mannitol and silicon dioxide were prepared and microwave-heated to generate water vapor inside the tablets. This induced either swelling or shrinking of tablets, in the extent of each being dependent on tablet formulation and manufacturing conditions. A two-level full factorial design method was used to evaluate the effects of several variables in formulation and manufacturing conditions on the tablet properties, hardness, disintegration time and change in shape. The variables investigated in this study were: ratio of silicon dioxide in formulation, water volume added in granulation, ratio of water absorbed by silicon dioxide prior to granulation, and microwave irradiation time. Swelling of tablet by microwave irradiation was observed in the batches with high ratio of silicon dioxide and low levels of water volume. The disintegration time was clearly shortened by induction of the swelling, while tablet hardness increased. We demonstrated that the water vapor generated by microwave irradiation promoted a change in the crystalline form of mannitol from delta to beta, and that this may have contributed to an increase in tablet hardness. Additionally, it was found that new solid bridges were formed between the granules in the tablet via the pathway from dissolution of mannitol in water vapor to congelation, resulting in an increase in tablet hardness. Thus, both tablet hardness and disintegration properties of the molded tablets were improved by the proposed one-step method and the appropriate ranges for variables are indicated. In addition, multiple regression modeling was

  2. Mechanism of microwave sterilization in the dry state.

    Science.gov (United States)

    Jeng, D K; Kaczmarek, K A; Woodworth, A G; Balasky, G

    1987-01-01

    With an automated computerized temperature control and a specialized temperature measurement system, dry spores of Bacillus subtilis subsp. niger were treated with heat simultaneously in a convection dry-heat oven and a microwave oven. The temperature of the microwave oven was monitored such that the temperature profiles of the spore samples in both heat sources were nearly identical. Under these experimental conditions, we unequivocally demonstrated that the mechanism of sporicidal action of the microwaves was caused solely by thermal effects. Nonthermal effects were not significant in a dry microwave sterilization process. Both heating systems showed that a dwelling time of more than 45 min was required to sterilize 10(5) inoculated spores in dry glass vials at 137 degrees C. The D values of both heating systems were 88, 14, and 7 min at 117, 130, and 137 degrees C, respectively. The Z value was estimated to be 18 degrees C. PMID:3118807

  3. Physico-chemical and mechanical modifications of polyethylene and polypropylene by ion implantation, micro-wave plasma, electron beam radiation and gamma ray irradiation; Modifications physico-chimiques et mecaniques du polyethylene et du polypropylene par implantation ionique, plasma micro-ondes, bombardement d`electrons et irradiation gamma

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.D.

    1995-03-29

    A polyolefin surface becomes wettable when treated by micro-wave plasma or low-dose nitrogen ion implantation. A short time argon plasma treatment is sufficient to obtain polarizable peroxides on a polyolefin. X-ray photoelectron spectroscopy analyses, paramagnetic electronic resonance analyses, peroxides decomposition, wettability measurements and infrared active spectra analyses have shown that oxidized structures obtained from different treatment techniques play an important role in the interpretation of surface chemical properties of the polymer. Micro-wave plasma treatment, and in particular argon plasma treatment, yields more polarizable groups than ion implantation and is interesting for grafting. Hardness and elasticity modulus, measured by nano-indentation on a polyolefin, increase with an appropriate ion implantation dose. A 1.4 x 10{sup 17} ions.cm{sup -2} dose can multiply by 15 the hardness of high molecular weight polyethylene, and by 7 the elasticity modulus for a 30 nm depth. The viscous-plastic to quasi-elastic transition is shown. The thickness of the modified layer is over 300 nm. The study of friction between a metal sphere and a polyethylene cupula shows that ion implantation in the polymer creates a reticulated hard and elastic layer which improves its mechanical properties and reduces the erosion rate. Surface treatments on polymers used as biomaterials allow to adapt the surface properties to specific applications. 107 refs., 66 figs., 19 tabs., 4 annexes.

  4. Synthesis of Modified β-Zeolite Under Microwave Irradiation and Its Use on Etherification

    Institute of Scientific and Technical Information of China (English)

    Ma Jun; Wang Haiyan; Hu Tingfang; Tian Yanwen; Zhou Tong; Qin Zhiwei

    2004-01-01

    β -zeolite was synthesized by using tetraethyl ammonium hydroxide as the template reagent and microwave radiation as the heat source. The effect of the sol composition and the radiation temperature on zeolite crystallinity was investigated. The zeolite was tested and compared with the commercial product, which was produced by conventional hydrothermal synthesis method. ,The physico-chemical properties of the synthesized samples, the specific surface area of the samples synthesized under microwave irradiation and pore volume measured by X-ray diffraction apparatus, were better than the conventional samples. The etherification experiment on FCC light naphtha in the presence of transition metals modified H β -zeolite, which was synthesized firstly under microwave irradiation, was studied in a fixed-bed reactor. The effect of catalyst preparation conditions on its activity, stability and the effect of reaction temperature, methanol/tertiary-carbon olefin molar ratio and liquid hourly space velocity on the etherification reaction were discussed. The experimental results showed that the different metals modified H β -zeolite had different etherification performances. And the conversion of tertiary carbon-olefins of the molybdenum modified H β zeolite, which was loaded at a concentration of 3 percents, was higher than that on 6.0 percent of H β zeolite. The modified H β zeolite catalysts possessed favorable prospects for its higher stability.

  5. Preparation and structural characterization of poly-mannose synthesized by phosphoric acid catalyzation under microwave irradiation.

    Science.gov (United States)

    Wang, Haisong; Cheng, Xiangrong; Shi, Yonghui; Le, Guowei

    2015-05-05

    Poly-mannose with molecular weight of 2.457 kDa was synthesized using d-mannose as substrate and phosphoric acid as catalyst under the condition of microwave irradiation for the first time. The optimum reaction conditions were microwave output power of 900 W, temperature 115°C, proton concentration 2.5 mol/L, and microwave irradiation time 5 min. The actual maximum yield was 91.46%. After purified by Sepherdex G-25 column chromatography, the structural features of poly-mannose were investigated by high-performance anion-exchange chromatography (HPAEC), high-performance gel-permeation chromatography (HPGPC), infrared (IR) spectroscopy, methylation analysis and NMR spectroscopy analysis ((1)H, (13)C, COSY, TOCSY, HMQC, and HMBC). HPAEC analysis showed that the composition of synthetic polysaccharides was d-mannose, its purity was demonstrated by HPGPC as a single symmetrical sharp peak, and additionally IR spectra demonstrated the polymerization of d-mannose. Methylation analysis and NMR spectroscopy revealed that the backbone of poly-mannose consisting of (1→3)-linked β-d-Manp, (1→3)-linked α-d-Manp, and (1→6)-linked α-d-Manp residues, and the main chain were branched at the O-2, O-3, O-4, O-6 position.

  6. Mechanical Test on Irradiated Welding X80/X02 Steel

    Institute of Scientific and Technical Information of China (English)

    LIU; Xin-peng; ZHANG; Chang-yi; NING; Guang-sheng; TONG; Zhen-feng; YANG; Wen

    2015-01-01

    The dedicated X80base metal,welding metal and X80/X02HAZ metal are irradiated in experimental reactor in order to evaluate the mechanical properties on the special condition.The cumulative irradiate dose(E>1 MeV)is 4×1016 cm-2,and irradiating temperature is below

  7. Selection of Lipases for the Synthesis of Biodiesel from Jatropha Oil and the Potential of Microwave Irradiation to Enhance the Reaction Rate

    National Research Council Canada - National Science Library

    Souza, Livia T. A; Mendes, Adriano A; Castro, Heizir F. de

    2016-01-01

    .... Purified biodiesel was characterized by different techniques. Transesterification reaction carried out under microwave irradiation exhibited higher yield and productivity than conventional heating...

  8. Peroxydisulfate initiated synthesis of potato starch-graft-poly(acrylonitrile under microwave irradiation

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Potato starch-graft-poly(acrylonitrile could be efficiently synthesized using small concentration of ammonium peroxydisulfate (0.0014M in aqueous medium under microwave irradiation. A representative microwave synthesized graft copolymer was characterized using Fourier Transform Infrared Spectroscopy, X-ray Diffraction, Scanning Electron Microscopy and Thermogravimetric Analysis. Under microwave conditions oxygen removal from the reaction vessel was not required and the graft copolymer was obtained in high yield using very small amount of ammonium peroxydisulfate, however using the same amount of ammonium peroxydisulfate (0.0014M on thermostatic water bath no grafting was observed up to 98°C (even in inert atmosphere. Raising the concentration of the initiator to 0.24 M resulted into 10% grafting at 50 °C but in inert atmosphere.The viscosity/shear stability of the grafted starch (aqueous solution and water/saline retention ability of the microwave synthesized graft copolymer were also studied and compared with that of the native potato starch.

  9. Photodegradation of formaldehyde by activated carbon loading TiO{sub 2} synthesized via microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fei; Wu, Zhansheng; Yan, Yujun; Ge, Xinyu; Tong, Yanbin [Shihezi University, Shihezi (China)

    2015-07-15

    A microwave-assisted synthetic method to form a series of AC/TiO{sub 2} for application as photocatalytic degradation of formaldehyde (HCHO) is presented. The influence of prepared conditions such as microwave power, microwave time, and the ratio of activated carbon and titanium dioxide sol (AC/TiO{sub 2}-sel) on the degradation of HCHO was investigated. HCHO conversion of 58.68% was achieved by AC/TiO{sub 2} at microwave power of 700W for 15 min with AC/TiO{sub 2}-sel ratio of 1 : 2, which maintained multiple properties including high content of anatase and TiO{sub 2} largely distributed on AC without reunion, and possessed abundant functional groups for degradation. The influence of operation parameters on the degradation was also investigated: increasing dosage of catalyst and decreasing the initial concentration of HCHO could increase the conversion of HCHO. Acidic conditions can promote degradation effect. Stronger intensity of UV irradiating could improve efficiency of photocatalytic conversion of HCHO.

  10. Sensory dynamics of intense microwave irradiation: A comparative study of aversive behaviors by mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D.R.

    1981-10-01

    The results of two experiments are reported, the first on 24 mice and 14 rats, all experimentally naive, that were observed for evidence of adventitious escape from faradic shock or from a potentially lethal, 2450-MHz microwave field in a multi-mode cavity. All of ten rats irradiated at a whole-body-averaged dose rate of 60 mW/g convulsed and expired, presumably from radiation-induced hyperpyrexia. Eight of ten mice irradiated at 60 mW/g survived the four sessions of irradiation, but reliable evidence of escape learning was not observed. The data of the second experiment, which was a pilot study of four rats with an extensive history of exposure to intense but intermittently applied microwave fields, revealed that the animals learned to thermoregulate behaviorally by locomoting in and out of the safe-area circle. A strong relation between dose rate (30, 60, and 120 mW/g) and proportion of time spent in the safe area was observed (r = .97). Post-exposure means of colonic temperature during three sets of sessions under the different rates of energy dosing were highly stable and averaged 39.6 deg C.

  11. Biosythesis of Silver Nanoparticles using Putri Malu (Mimosa pudica Leaves Extract and Microwave Irradiation Method

    Directory of Open Access Journals (Sweden)

    Is Fatimah

    2016-11-01

    Full Text Available In this paper, the biosynthesis of silver nanoparticles (AgNPs using Mimosa pudica extract is discussed. Mimosa pudica leaves extract using water as solvent was used as bio-reductor to an aqueous solution of silver nitrate (AgNO3 and in order to accelerate the reduction, microwave irradiation method was applied. The AgNPs obtained were characterized using UV-Vis spectrophotometry, FTIR spectrophotometry, XRD, SEM-EDX, and particle size analysis based on dynamic scattering method. Effect of preparation method to the formation of AgNPs is also evaluated in antibacterial activity towards E.coli and P. aeruginosa. Rapid and ecofriendly biosynthesis of stable silver nanoparticles was observed in this study. The characterization results and antibacterial assay indicated the uniform and smaller particle size of AgNPs obtained by using microwave method and positively enhance the antibacterial activity against tested bacteria.

  12. Electron thermalization and attachment in pulse-irradiated oxygen studied by time-resolved microwave conductivity

    Science.gov (United States)

    Warman, John M.; Cooper, Ronald

    The microwave conductivity of oxygen gas following nanosecond pulsed irradiation has been studied for pressures from 5 to 50 torr. The conductivity is found to decrease by a factor of approx. 20 in the early stages ( tN < 2 x 10 11 s cm -3) following the pulse. This is attributed to a decrease in the electron collision frequency as the initial excess energy of the electrons becomes degraded. A further decrease found at longer times is due to the three-body attachment of electrons to O 2 with a rate constant of 2.4 x 10 -30 cm 6s -1. Above a pressure of approx. 30 torr significant attachment begins to occur while electrons are still superthermal. The time at which the microwave signal is within 10% of the value corresponding to thermal energies is given by τ thP ≈ 15 μs.torr.

  13. Rapid Synthesis and Antiviral Activity of (Quinazolin-4-YlaminoMethyl-Phosphonates Through Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Baoan Song

    2012-06-01

    Full Text Available This study describes the simple synthesis of new (quinazolin-4-ylamino methylphosphonates via microwave irradiation. Substituted-2-aminobenzonitrile reacted with 1,1-dimethoxy-N,N-dimethylmethanamine at a reflux condition to obtain N'-(substituted-2-cyanophenyl-N,N-dimethylformamidine (1. The subsequent reaction of this intermediate product with α-aminophosphonate (2 in a solution containing glacial acetic acid in 2-propanol through microwave irradiation resulted in the formation of (quinazolin-4-ylaminomethyl-phosphonate derivatives 3a to 3x, which were unequivocally characterized by the spectral data and elemental analysis. The influence of the reaction conditions on the yield of 3a was investigated to optimize the synthetic conditions. The relative optimal conditions for the synthesis of 3a include a 1:1 molar ratio of N’-(2-cyanophenyl-N,N-dimethylformamidine to diethyl amino(phenylmethylphosphonate and a 4:1 volume ratio of isopropanol to HOAc in the solvent mixture, at a reaction temperature of 150 °C, with a microwave power of 100 W and a corresponding pressure of 150 psi for 20 min in the microwave synthesizer. The yield of 3a was approximately 79%, whereas those of 3b to 3x were approximately 77% to 86%. Some of the synthesized compounds displayed weak to good anti-Tobacco mosaic virus (TMV activity.

  14. Rapid Synthesis of Flavor Compound 4-Ethyloctanoic Acid under Microwave Irradiation

    Science.gov (United States)

    Liu, Yu-Ping; Yin, De-Cai; Chen, Hai-Tao; Sun, Bao-Guo

    2010-01-01

    Rapid synthesis of 4-ethyloctanoic acid by means of microwave irradiation is described. Diethyl malonate reacted with 2-ethyl-1-bromohexane in the presence of sodium ethoxide to give diethyl (2-ethylhexyl)malonate (1b). 1b was saponified in the solution of ethanol and potassium hydroxide and then acidified to form (2-ethylhexyl)propanedioic acid (1c), and 1c was heated and decarboxylized to give 4-ethyloctanoic acid (1d). The influence of reaction temperature and reaction time on the yield of 1b and the effect of reaction time on the yield of 1c and 1d were investigated in order to optimize the synthetic conditions. The relative optimal conditions for the synthesis of 1b were a mole ratio of sodium to diethyl malonate to 2-ethylhexyl bromide of 0.1:0.11:0.11, a reaction temperature of 80–85 °C, and a reaction time of 2–2.5 h. The yield of 1b was about 79%. 1b was saponified for 30 min and then acidified to form 1c, and the yield of 1c was 96%. 1c was heated for 16 min at 180°C to give 1d, and the yield of 1d was about 90%. The overall yield of 1d is 70% under microwave irradiation. The reaction time was reduced greatly. In order to compare the result of microwave irradiation with that of an oil bath, the reactions were also performed in an oil bath. The structures of intermediates, product and by-product were confirmed by HRMS, 1H NMR, 13C-NMR and IR. PMID:21152328

  15. Synthesis of 2-amino-4-chromene derivatives under microwave irradiation and their antimicrobial activity

    Indian Academy of Sciences (India)

    Nirav K Shah; Nimesh M Shah; Manish P Patel; Ranjan G Patel

    2013-05-01

    Libraries of 2-amino-4-chromenes, were efficiently synthesized via one-pot, three-component reactions of 5-chloro-3-methyl-1-aryl-4,5-dihydro-1-pyrazole-4-carbaldehyde (1a-c), 2-naphthols (2a-f) and malononitrile in the presence of catalytic amount of ammonium acetate under microwave irradiation. The protocol offers rapid synthesis of structurally diverse 2-amino-4-chromenes for biological screening. All the synthesized compounds were evaluated for their antimicrobial activity, and several compounds exhibited moderate to potent antimicrobial activity.

  16. Soft-mold-induced self-construction of polymer patterns under microwave irradiation

    Science.gov (United States)

    Ko, Fu-Hsiang; Wu, Chia-Tien; Chen, Mei-Fen; Chen, Jem-Kun; Chu, Tieh-Chi

    2007-05-01

    In this study, the authors used a soft-mold-induced self-construction method to fabricate three-dimensional patterns under microwave irradiation for 1min. The authors estimated the actual pattern growth temperature using a fluorescence probe technique. The temperature at which pattern growth originated was, by necessity, higher than the glass transition temperature of the novolak resist. Electrostatic forces and surface tension effects under the electromagnetic field contributed significantly to the pattern growth, and the use of an antisticking agent allowed easy demolding.

  17. Green chemistry: Efficient epoxides ring-opening with 1-butanol under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Vidal, Jesus A. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Campus Universitario, Avda. de Elvas, s/n, E-06071-Badajoz (Spain); Duran-Valle, Carlos J. [Departamento de Quimica Inorganica, Facultad de Ciencias, Universidad de Extremadura, Campus Universitario, Avda. de Elvas, s/n, E-06071-Badajoz (Spain)]. E-mail: carlosdv@unex.es; Ferrera-Escudero, Santiago [Departamento de Quimica Inorganica y Quimica Tecnica, Universidad Nacional de Educacion a Distancia, C/Senda del Rey, 9, E-28040 Madrid (Spain)

    2006-06-30

    Two activated carbons treated with mineral acids (HNO{sub 3} and sulfonitric mixture) have been tested as acid catalysts in the epoxides (1,2-epoxyhexane and styrene oxide) ring-opening reaction with 1-butanol under microwave (MW) irradiation. The mayor obtained product is that resulting of the alcohol addition to the most substituted carbon in the epoxide ring. The most active catalyst is that treated with sulfonitric mixture. The use of a MW oven allows achieving to the complete conversion of styrene oxide in only 2 min.

  18. Chemistry of the Enaminone of 1-Acetylnaphthalene under Microwave Irradiation Using Chitosan as a Green Catalyst

    Directory of Open Access Journals (Sweden)

    Huwaida M. E. Hassaneen

    2011-01-01

    Full Text Available Enaminone 1 was reacted with hydrazonoyl halides 2a-d to yield 3,4-disubstituted pyrazoles 6a-d. Coupling with arenediazonium chlorides afforded the 2-(arylhydrazono-3-(1-naphthalenyl-3-oxopropionaldehydes 13a-c. Compounds 13 could be utilized for the synthesis of a variety of arylpyrazoles, arylazolopyrimidines, and pyridazinones via reaction with hydrazines, aminoazoles, and active methylene derivatives, respectively. A comparative study of aforementioned reactions was carried out with chitosan as a basic ecofriendly catalyst under conventional heating as well as under pressurized microwave irradiation conditions.

  19. Influence of the Polyvinyl Pyrrolidone Concentration on Particle Size and Dispersion of ZnS Nanoparticles Synthesized by Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Nayereh Soltani

    2012-09-01

    Full Text Available Zinc sulfide semiconductor nanoparticles were synthesized in an aqueous solution of polyvinyl pyrrolidone via a simple microwave irradiation method. The effect of the polymer concentration and the type of sulfur source on the particle size and dispersion of the final ZnS nanoparticle product was carefully examined. Microwave heating generally occurs by two main mechanisms: dipolar polarization of water and ionic conduction of precursors. The introduction of the polymer affects the heating rate by restriction of the rotational motion of dipole molecules and immobilization of ions. Consequently, our results show that the presence of the polymer strongly affects the nucleation and growth rates of the ZnS nanoparticles and therefore determines the average particle size and the dispersion. Moreover, we found that PVP adsorbed on the surface of the ZnS nanoparticles by interaction of the C–N and C=O with the nanoparticle’s surface, thereby affording protection from agglomeration by steric hindrance. Generally, with increasing PVP concentration, mono-dispersed colloidal solutions were obtained and at the optimal PVP concentration (5%, sufficiently small size and narrow size distributions were obtained from both sodium sulfide and thioacetamide sulfur sources. Finally, the sulfur source directly influences the reaction mechanism and the final particle morphology, as well as the average size.

  20. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Catrin F., E-mail: williamscf@cardiff.ac.uk [School of Engineering, Cardiff University, Queen' s Buildings, Newport Road, Cardiff, CF24 3AA Wales (United Kingdom); School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales (United Kingdom); Geroni, Gilles M.; Pirog, Antoine; Lees, Jonathan; Porch, Adrian [School of Engineering, Cardiff University, Queen' s Buildings, Newport Road, Cardiff, CF24 3AA Wales (United Kingdom); Lloyd, David [School of Biosciences, Cardiff University, Main Building, Cathays Park, Cardiff, CF10 3AT Wales (United Kingdom)

    2016-08-29

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the “internet of things” is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  1. The separated electric and magnetic field responses of luminescent bacteria exposed to pulsed microwave irradiation

    Science.gov (United States)

    Williams, Catrin F.; Geroni, Gilles M.; Pirog, Antoine; Lloyd, David; Lees, Jonathan; Porch, Adrian

    2016-08-01

    Electromagnetic fields (EMFs) are ubiquitous in the digital world we inhabit, with microwave and millimetre wave sources of non-ionizing radiation employed extensively in electronics and communications, e.g., in mobile phones and Wi-Fi. Indeed, the advent of 5G systems and the "internet of things" is likely to lead to massive densification of wireless networks. Whilst the thermal effects of EMFs on biological systems are well characterised, their putative non-thermal effects remain a controversial subject. Here, we use the bioluminescent marine bacterium, Vibrio fischeri, to monitor the effects of pulsed microwave electromagnetic fields, of nominal frequency 2.5 GHz, on light emission. Separated electric and magnetic field effects were investigated using a resonant microwave cavity, within which the maxima of each field are separated. For pulsed electric field exposure, the bacteria gave reproducible responses and recovery in light emission. At the lowest pulsed duty cycle (1.25%) and after short durations (100 ms) of exposure to the electric field at power levels of 4.5 W rms, we observed an initial stimulation of bioluminescence, whereas successive microwave pulses became inhibitory. Much of this behaviour is due to thermal effects, as the bacterial light output is very sensitive to the local temperature. Conversely, magnetic field exposure gave no measurable short-term responses even at the highest power levels of 32 W rms. Thus, we were able to detect, de-convolute, and evaluate independently the effects of separated electric and magnetic fields on exposure of a luminescent biological system to microwave irradiation.

  2. Mechanical properties for irradiated face-centred cubic nanocrystalline metals

    Science.gov (United States)

    Xiao, X. Z.; Song, D. K.; Chu, H. J.; Xue, J. M.; Duan, H. L.

    2015-01-01

    In this paper, a self-consistent plasticity theory is proposed to model the mechanical behaviours of irradiated face-centred cubic nanocrystalline metals. At the grain level, a tensorial crystal model with both irradiation and grain size effects is applied for the grain interior (GI), whereas both grain boundary (GB) sliding with irradiation effect and GB diffusion are considered in modelling the behaviours of GBs. The elastic-viscoplastic self-consistent method with considering grain size distribution is developed to transit the microscopic behaviour of individual grains to the macroscopic properties of nanocrystals (NCs). The proposed theory is applied to model the mechanical properties of irradiated NC copper, and the feasibility and efficiency have been validated by comparing with experimental data. Numerical results show that: (i) irradiation-induced defects can lead to irradiation hardening in the GIs, but the hardening effect decreases with the grain size due to the increasing absorption of defects by GBs. Meanwhile, the absorbed defects would make the GBs softer than the unirradiated case. (ii) There exists a critical grain size for irradiated NC metals, which separates the grain size into the irradiation hardening dominant region (above the critical size) and irradiation softening dominant region (below the critical size). (iii) The distribution of grain size has a significant influence on the mechanical behaviours of both irradiated and unirradiated NCs. The proposed model can offer a valid theoretical foundation to study the irradiation effect on NC materials. PMID:27547091

  3. Factors Influencing Conversion of Pyritic Sulfur in Coal by Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    SUI Jian-cai; XU Ming-hou; QIU Ji-hua; CHENG Rong

    2005-01-01

    The high sulfur coal from southwest of China was used to examine the influence of different factors such as irradiation time, particle size of coal, and leachant (Na2CO3, NaOH and CuCl2.2H2O)on the conversion rate of pyrite to pyrrhotite by microwave irradiation. Single factor experiment was performed firstly, then orthogonal test method was used to explore these factors. The result shows that the optimal treating conditions for the conversion are a treatment time of 3 min, a particle size from 0.086 mm to 0.102 mm, and a favorable leachant of sodium hydroxide. Under these conditions the conversion rate of pyrite can reach 45.7 %.

  4. Using mechanics to convert between microwave and optical frequencies

    Science.gov (United States)

    Vainsencher, A.; Satzinger, K. J.; Peairs, G. A.; Cleland, A. N.

    2016-03-01

    We demonstrate unique piezoelectric optomechanical devices able to coherently transfer microwave electrical signals to modulated optical signals, and vice versa, transferring modulated optical signals to microwave electrical signals. This coherent bilateral transfer, demonstrated most recently in a single device design, holds promise for the eventual demonstration of coherent transfer in the quantum domain. The basis of design for the devices with which this was accomplished is an optomechanical crystal that supports co-located optical and mechanical resonant modes, coupled to one other via moving boundary (index of refraction) modulation, either induced by motion from energy in the mechanical mode, or by optical pressure due to energy in the optical mode. The basis for coupling microwave mechanical motion to microwave electrical signals is via the use of a piezoelectric material for the entire device, where transduction itself is accomplished using metal transducers remote from the optomechanical structure. This remote design minimizes the lossy interaction of any optical signals with the metal electrode structures, but introduces the need to couple the electromechanical transducer to the optomechanical transducer via itinerant phonons, which presents a new challenge.

  5. Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production.

    Science.gov (United States)

    Teo, Chee Loong; Idris, Ani

    2014-11-01

    The types of microalgae strains and the method used in lipid extraction have become crucial factors which influence the productivity of crude oil. In this paper, Nannochloropsis sp. and Tetraselmis sp. were chosen as the strains and four different methods were used to extract the lipids: Hara and Radin, Folch, Chen and Bligh and Dyer. These methods were performed by using conventional heating and microwave irradiation methods. Results revealed that highest lipid yield from the different species was obtained using different extraction methods; both under microwave irradiation. The lipid yield for Tetraselmis sp. and Nannochloropsis sp. was highest when Hara and Radin (8.19%), and Folch (8.47%) methods were used respectively under microwave irradiation. The lipids extracted were then transesterified to biodiesel and the quality of the biodiesel was analyzed using the gas chromatography. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Optimization of resistant starch formation from high amylose corn starch by microwave irradiation treatments and characterization of starch preparations.

    Science.gov (United States)

    Mutlu, Selime; Kahraman, Kevser; Öztürk, Serpil

    2017-02-01

    The effects of microwave irradiation on resistant starch (RS) formation and functional properties in high-amylose corn starch, Hylon VII, by applying microwave-storing cycles and drying processes were investigated. The Response Surface Methodology (RSM) was used to optimize the reaction conditions, microwave time (2-4min) and power (20-100%), for RS formation. The starch:water (1:10) mixtures were cooked and autoclaved and then different microwave-storing cycles and drying (oven or freeze drying) processes were applied. The RS contents of the samples increased with increasing microwave-storing cycle. The highest RS (43.4%) was obtained by oven drying after 3 cycles of microwave treatment at 20% power for 2min. The F, p (oven-dried samples applied by 1 and 3 cycles of microwave with regression coefficients of 0.65 and 0.62, respectively. Quadratic equation was obtained for freeze-dried samples applied by 3 cycles of microwave with a regression coefficient of 0.83. The solubility, water binding capacity (WBC) and RVA viscosity values of the microwave applied samples were higher than those of native Hylon VII. The WBC and viscosity values of the freeze-dried samples were higher than those of the oven-dried ones.

  7. Natural phosphate-supported palladium: A highly efficient and recyclable catalyst for the suzuki-miyaura coupling under microwave irradiation

    KAUST Repository

    Hassine, Ayoub

    2015-01-19

    This report explores Suzuki-Miyaura coupling under microwave irradiation, using a new generation of catalyst that is based on natural phosphate (NP) impregnated by palladium. This catalyst was prepared by the treatment of natural phosphate with bis(benzonitrile)palladium(II) chloride in acetone at room temperature. The catalyst displayed high catalytic activity for the Suzuki-Miyaura coupling of aryl bromides and chlorides with aryl boronic acids in pure water and with the use of microwave irradiation. The low-cost and availability of the solid support, mild reaction conditions, high yields of desired products, recyclability of the catalyst and short reaction times are the notable features of these methods.

  8. Microwave Irradiation Assisted Preparation of Chitosan Composite Microsphere for Dye Adsorption

    Directory of Open Access Journals (Sweden)

    Xiaoyu Chen

    2017-01-01

    Full Text Available Chitosan-activated carbon composite microspheres were prepared by emulsion cross-linking method and its adsorption properties for methyl orange were studied. Chitosan solution was mixed with activated carbon powder and then chitosan was cross-linked by epichlorohydrin under microwave irradiation. SEM photos show that the composite microspheres have diameters of 200–400 μm and activated carbon powder dispersed on the surface of composite microsphere. FTIR spectrum indicates chitosan is successfully cross-linked. Microwave irradiation can effectively shorten the cross-linking time. Composite microspheres have enhanced dye adsorption capacity for methyl orange compared to chitosan microspheres. Kinetic studies showed that the adsorption followed a pseudo-second-order model. Isotherm studies show that the isotherm adsorption equilibrium is better described by Freundlich isotherm. Regeneration results show that adsorption capacity of composite microsphere decreased about 5.51% after being reused for three times. These results indicated that chitosan-activated carbon composite microsphere has potential application in the removal of dye from wastewaters.

  9. Graft polymerization of guar gum with acryl amide irradiated by microwaves for colonic drug delivery.

    Science.gov (United States)

    Shahid, Muhammad; Bukhari, Shazia Anwer; Gul, Yousra; Munir, Hira; Anjum, Fozia; Zuber, Mohammad; Jamil, Tahir; Zia, Khalid Mahmood

    2013-11-01

    This article is aimed to discuss the modification of guar gum through microwave irradiation by varying the time of irradiation. The characterization of the modified products was carried out using FTIR spectroscopic analysis. The FT-IR spectrum of the pure guar gum (GG) sample showed a broad peak at 3298 cm(-1) while the modified GG sample displayed a peak at 1541 cm(-1) which was absent in the crude sample. The X-ray diffraction (XRD) analysis confirmed the increase in crystallinity due to grafting of the sample with polyacrylamide (GG-g-PAM). Scanning electron microscope (SEM) images revealed that granular form of guar gum was changed into fibrillar structure after grafting. Thermo-gravimetric analysis of the modified samples was also carried out and discussed. The role of guar gum as a matrix for controlled release of drug triamcinolone was evaluated. The GG-acrylamide grafted samples presented a correlation between drug release and time of microwave exposure. The results revealed that such modified product has potential applications in colonic drug delivery system.

  10. Microwave Irradiation Effect on the Dispersion and Thermal Stability of RGO Nanosheets within a Polystyrene Matrix

    Directory of Open Access Journals (Sweden)

    Edreese H. Alsharaeh

    2014-07-01

    Full Text Available Polystyrene-reduced graphene oxide (PSTY/RGO composites were prepared via the in situ bulk polymerization method using two different preparation techniques. The general approach is to use microwave irradiation (MWI to enhance the exfoliation and the dispersion of RGO nanosheets within the PSTY matrix. In the first approach, a mixture of GO and styrene monomers (STY were polymerized using a bulk polymerization method facilitated by microwave irradiation (MWI to obtain R-(GO-PSTY composites. In the second approach, a mixture of RGO and STY monomers were polymerized using a bulk polymerization method to obtain RGO-(PSTY composites. The two composites were characterized by FTIR, 1H-NMR, XRD, SEM, HRTEM, TGA and DSC. The results indicate that the composite obtained using the first approach, which involved MWI, had a better morphology and dispersion with enhanced thermal stability, compared with the composites prepared without MWI. Moreover, DSC results showed that the Tg value of the composites after loading the RGO significantly increased by 24.6 °C compared to the neat polystyrene.

  11. Synthesis, characterization, and comparative analysis of amylose-guest complexes prepared by microwave irradiation.

    Science.gov (United States)

    Ryno, Lisa M; Levine, Yael; Iovine, Peter M

    2014-01-13

    The preparation and characterization of amylose-small molecule complexes is a heavily researched area. There are few reports, however, that compare complexation efficiencies across a matrix of different amylose hosts and guests. We present herein a detailed account of using microwave irradiation to prepare amylose-small molecule complexes in water. Microwave heating reduced the time required to prepare these amylose complexes from hours to minutes. We characterized not only the quantity of complex for each amylose-guest pairing but also the loading of small molecule guest in that complex. Amylose-1-naphthol complexes were found to have the highest loading density compared with other hydrophobic guests studied; in the case of 1-naphthol, there was a linear dependence of guest loading on amylose molecular weight. In addition, complexes featuring 1-naphthol were the most ordered as judged by powder X-ray diffraction (XRD) and differential scanning calorimetry. Further, powder XRD analysis of the microwave-prepared complexes revealed that many contained mixtures of V-form (single helix) and B-form (double helical) amylose. Lastly, untreated Hylon VII complexed the widest variety of small molecules with the overall greatest efficiency.

  12. Discussion on Microwave-Matter Interaction Mechanisms by In Situ Observation of “Core-Shell” Microstructure during Microwave Sintering

    Directory of Open Access Journals (Sweden)

    Wenchao Liu

    2016-02-01

    Full Text Available This research aims to deepen the understanding of the interaction mechanisms between microwave and matter in a metal-ceramic system based on in situ synchrotron radiation computed tomography. A special internal “core-shell” microstructure was discovered for the first time and used as an indicator for the interaction mechanisms between microwave and matter. Firstly, it was proved that the microwave magnetic field acted on metal particles by way of inducing an eddy current in the surface of the metal particles, which led to the formation of a “core-shell” microstructure in the metal particles. On this basis, it was proposed that the ceramic particles could change the microwave field and open a way for the microwave, thereby leading to selective heating in the region around the ceramic particles, which was verified by the fact that all the “core-shell” microstructure was located around ceramic particles. Furthermore, it was indicated that the ceramic particles would gather the microwaves, and might lead to local heating in the metal-ceramic contact region. The focusing of the microwave was proved by the quantitative analysis of the evolution rate of the “core-shell” microstructure in a different region. This study will help to reveal the microwave-matter interaction mechanisms during microwave sintering.

  13. Synthesis of tungsten oxide (W{sub 18}O{sub 49}) nanosheets utilizing EDTA salt by microwave irradiation method

    Energy Technology Data Exchange (ETDEWEB)

    Hariharan, V.; Parthibavarman, M. [Centre for Nanoscience and Technology, Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); Sekar, C., E-mail: Sekar2025@gmail.com [Centre for Nanoscience and Technology, Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630 003, Tamilnadu (India)

    2011-04-07

    Research highlights: > We have synthesized tungsten oxide (WO{sub 3-{delta}}) nanoparticles by microwave irradiation method for the first time using EDTA as surface modulator. The variation in stoichiometric oxygen content of the annealed samples clearly indicates the role of EDTA in reaction medium. The variation in oxygen content also modified the transparency of the end product confirming the change in optical conductivity. - Abstract: We report the synthesis of crystalline W{sub 18}O{sub 49} with nanosheet like morphology by low cost microwave irradiation method without employing hydrothermal process for the first time. Initially, WO{sub 3}.H{sub 2}O was synthesized using ethylenediaminetetraacetic acid (EDTA) as surface modulator. The product was annealed at 600 {sup o}C for 6 h in ambient atmosphere in order to obtain anhydrous tungsten oxide W{sub 18}O{sub 49}. Powder X-ray diffraction results confirmed the as prepared WO{sub 3}.H{sub 2}O to be orthorhombic and W{sub 18}O{sub 49} to be monoclinic phase, respectively. Transmission electron micrographs (TEM) revealed that the W{sub 18}O{sub 49} nanosheets have the average dimensions of the order of 250 nm in length and around 150 nm in width. UV-visible diffusion reflectance spectroscopic (DRS) studies revealed the band gap energies to be 3.28 and 3.47 eV for WO{sub 3}.H{sub 2}O and W{sub 18}O{sub 49} samples, respectively. The growth mechanism of two dimensional W{sub 18}O{sub 49} nanosheets is discussed.

  14. Protectants against microwave irradiation: research advances%微波辐射防护药物的研究进展

    Institute of Scientific and Technical Information of China (English)

    王亚男; 周喆; 王升启

    2013-01-01

    微波辐射可致机体发生氧化应激,使氧化产物增多和抗氧化酶活性降低,甚至引起机体组织病理学改变.药物防护可以减轻微波辐射导致的氧化应激损伤,并对微波辐射所致组织病理学改变有所改善.近年来研究的抗微波辐射药物主要有卡尼汀、褪黑激素、咖啡酸苯乙酯、绿茶及其提取物、银杏叶提取物、阿的平,以及中成药芩丹扶正胶囊和安多霖等.本文综述了微波辐射对机体的氧化损伤机制,以及微波辐射防护药物的研究现状.%Microwave radiation can lead to oxidative stress, which may increase oxidation products, reduce activity of antioxi-dant enzymes and even cause pathological changes. Protectants against microwave irradiation can reverse these injuries and alleviate the pathological changes, which include carnitine, melatonin, caffeic acid phenethyl ester, green tea and its extract, Ginkgo biloba extract, quinacrine, and traditional Chinese formulae such as Qindanfuzheng and Anduolin, etc. In this paper, the mechanism of oxidative injury induced by microwave radiation and research progress in protectants are reviewed.

  15. On the Mechanism of Microwave Flash Sintering of Ceramics

    Directory of Open Access Journals (Sweden)

    Yury V. Bykov

    2016-08-01

    Full Text Available The results of a study of ultra-rapid (flash sintering of oxide ceramic materials under microwave heating with high absorbed power per unit volume of material (10–500 W/cm3 are presented. Ceramic samples of various compositions—Al2O3; Y2O3; MgAl2O4; and Yb(LaO2O3—were sintered using a 24 GHz gyrotron system to a density above 0.98–0.99 of the theoretical value in 0.5–5 min without isothermal hold. An analysis of the experimental data (microwave power; heating and cooling rates along with microstructure characterization provided an insight into the mechanism of flash sintering. Flash sintering occurs when the processing conditions—including the temperature of the sample; the properties of thermal insulation; and the intensity of microwave radiation—facilitate the development of thermal runaway due to an Arrhenius-type dependency of the material’s effective conductivity on temperature. The proper control over the thermal runaway effect is provided by fast regulation of the microwave power. The elevated concentration of defects and impurities in the boundary regions of the grains leads to localized preferential absorption of microwave radiation and results in grain boundary softening/pre-melting. The rapid densification of the granular medium with a reduced viscosity of the grain boundary phase occurs via rotation and sliding of the grains which accommodate their shape due to fast diffusion mass transport through the (quasi-liquid phase. The same mechanism based on a thermal runaway under volumetric heating can be relevant for the effect of flash sintering of various oxide ceramics under a dc/ac voltage applied to the sample.

  16. Mechanically Amplified Piezoelectric Tunable 3D Microwave Superconducting Cavity

    CERN Document Server

    Carvalho, N C; Tobar, M E

    2016-01-01

    In the context of hybrid quantum systems, there is a demand for superconducting tunable devices able to operate in the single-photon regime. In this work, we developed a 3D microwave reentrant cavity with such characteristics ready to provide a very fine-tuning of a high-Q resonant mode over a large dynamic range. This system has an electronic tuning mechanism based on a mechanically amplified piezoelectric actuator, which can set the cavity resonance with a large dynamic range of order 1 GHz at 10 mK. At elevated microwave power, nonlinear thermal e effects were observed to destroy the superconductivity of the cavity due to the large electric fields generated in the small gap of the reentrant cavity.

  17. Entangling mechanical motion with microwave fields.

    Science.gov (United States)

    Palomaki, T A; Teufel, J D; Simmonds, R W; Lehnert, K W

    2013-11-08

    When two physical systems share the quantum property of entanglement, measurements of one system appear to determine the state of the other. This peculiar property is used in optical, atomic, and electrical systems in an effort to exceed classical bounds when processing information. We extended the domain of this quantum resource by entangling the motion of a macroscopic mechanical oscillator with a propagating electrical signal and by storing one half of the entangled state in the mechanical oscillator. This result demonstrates an essential requirement for using compact and low-loss micromechanical oscillators in a quantum processor, can be extended to sense forces beyond the standard quantum limit, and may enable tests of quantum theory.

  18. Mechanical and microwave absorbing properties of carbon-filled polyurethane.

    Science.gov (United States)

    Kucerová, Z; Zajícková, L; Bursíková, V; Kudrle, V; Eliás, M; Jasek, O; Synek, P; Matejková, J; Bursík, J

    2009-01-01

    Polyurethane (PU) matrix composites were prepared with various carbon fillers at different filler contents in order to investigate their structure, mechanical and microwave absorbing properties. As fillers, flat carbon microparticles, carbon microfibers and multiwalled carbon nanotubes (MWNT) were used. The microstructure of the composite was examined by scanning electron microscopy and transmission electron microscopy. Mechanical properties, namely universal hardness, plastic hardness, elastic modulus and creep were assessed by means of depth sensing indentation test. Mechanical properties of PU composite filled with different fillers were investigated and the composite always exhibited higher hardness, elastic modulus and creep resistance than un-filled PU. Influence of filler shape, content and dispersion was also investigated.

  19. Effect of Cold Rolling on the Hydrogen Desorption Behavior of Binary Metal Hydride Powders under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Ivaldete da Silva Dupim

    2015-10-01

    Full Text Available In this paper we report that cold rolling could drastically improve hydrogen desorption kinetics under microwave irradiation. Samples of metal hydride powders (TiH2, ZrH2, and MgH2 in as-received conditions and after cold rolling were microwave irradiated in a vacuum using a simple experimental setup. After irradiation, the samples were characterized by X-ray diffraction in other to evaluate the effectiveness of microwave heating. The diffraction patterns indicated that only MgH2 could be fully decomposed (dehydrided in the as received state. TiH2 was only partially decomposed while no decomposition was observed for ZrH2. However, cold rolling the hydride powders prior to microwave heating led to a significant improvement of hydride decomposition, resulting in the complete dehydriding of TiH2 and extensive dehydriding of ZrH2. These results clearly indicated the positive effects of cold rolling on the microwave assisted desorption of the investigated binary hydrides.

  20. Erbium trifluoromethanesulfonate-catalyzed Friedel–Crafts acylation using aromatic carboxylic acids as acylating agents under monomode-microwave irradiation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hansen, Poul Erik; Nguyen, Hai Truong;

    2015-01-01

    Erbium trifluoromethanesulfonate is found to be a good catalyst for the Friedel–Crafts acylation of arenes containing electron-donating substituents using aromatic carboxylic acids as the acylating agents under microwave irradiation. An effective, rapid and waste-free method allows the preparation...

  1. Sulphamic acid-functionalized magnetic Fe3O4 nanoparticles as recyclable catalyst for synthesis of imidazoles under microwave irradiation

    Indian Academy of Sciences (India)

    Javad Safari; Zohre Zarnegar

    2013-07-01

    Trisubstituted imidazoles have been synthesized in high yield in the presence of sulphamic acidfunctionalized magnetic Fe3O4 nanoparticles (SA-MNPs) as a novel solid acid catalyst under solvent-free classical heating conditions or using microwave irradiation. The heterogeneous catalyst could be recovered easily and reused many times without significant loss of catalytic activity.

  2. Synthesis of N-Aryl-N′- (5-aryloxymethyl-1,3,4-thiadiazol-2-yl) ureas under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    CHAI Lan-Qin

    2003-01-01

    @@ The rapid heating effect of microwave irradiation has caught the attention of synthetic chemists in the recent times due to the remarkable reduction of reaction time. It is an efficient method because of its virtue of rapid heating capability, high yield and simple procedure. The superiority of these virtues goes beyond of traditional heating reaction.

  3. Application of bisphosphomide-palladium(II) pincer complex in Suzuki-Miyaura cross-coupling reaction under microwave irradiation

    Indian Academy of Sciences (India)

    Maruthai Kumaravel; Pawan Kumar; Maravanji S Balakrishna

    2014-05-01

    The bisphosphomide-based pincer complex [PdBr{2,6-{Ph2PC(O)}2(C6H3)}] (2) has shown very high catalytic activity in Suzuki-Miyaura cross coupling reaction under microwave irradiation for a variety of aryl bromides and aryl boronic acids. The complex showed the same efficiency for gram scale reactions.

  4. Regioselective Propargylation of Aldehydes with Propargyl Bromide Mediated by Sn-In in Aqueous Media under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Cheng Zhi GU; Qian Rong LI; Hao YIN

    2005-01-01

    Tin-indium were employed in the propargylations of various aldehydes with propargyl bromide in the presence of SnCl2 and C6 H5(CH3)3NBr under microwave irradiation to afford the corresponding homopropargyl alcohols exclusively in high yields. All the reactions were completed smoothly in predominantly aqueous media in 200 seconds only.

  5. One-pot synthesis of quinaldine derivatives by using microwave irradiation without any solvent - A green chemistry approach

    Indian Academy of Sciences (India)

    Javad Safari; Sayed Hossein Banitaba; Sepehr Sadegh Samiei

    2009-07-01

    A convenient and efficient procedure for synthesis of quinaldine derivatives has been developed by a simple one-pot reaction of aniline derivatives and acetaldehyde on the surface of neutral alumina impregnated with hydrochloric acid under microwave irradiation without any solvent according to green chemistry.

  6. Phenolic Content and Antioxidant Activity of Extracts from Whole Buckwheat (Fagopyrum esculentum Moench) With or Without Microwave Irradiation

    Science.gov (United States)

    The purpose of this study was to evaluate the effectiveness of extracting phenolic compounds and antioxidant activity from buckwheat with water, 50% aqueous ethanol, or 100% ethanol using microwave irradiation or a water bath for 15 min at various temperatures (23 – 150 °C). The phenolic content of...

  7. Microwave irradiation decreases ATP, increases free [Mg2+], and alters in vivo intracellular reactions in rat brain

    Science.gov (United States)

    Srivastava, Shireesh; Kashiwaya, Yoshihiro; Chen, Xuesong; Geiger, Jonathan D.; Pawlosky, Robert; Veech, Richard L.

    2012-01-01

    Rapid inactivation of metabolism is essential for accurately determining the concentrations of metabolic intermediates in the in vivo state. We compared a broad spectrum of energetic intermediate metabolites and neurotransmitters in brains obtained by microwave irradiation to those obtained by freeze blowing, the most rapid method of extracting and freezing rat brain. The concentrations of many intermediates, cytosolic free NAD(P)+/NAD(P)H ratios, as well as neurotransmitters were not affected by the microwave procedure. However, the brain concentrations of ATP were about 30% lower, whereas those of ADP, AMP, and GDP were higher in the microwave-irradiated compared with the freeze-blown brains. In addition, the hydrolysis of approximately 1 μmol/g of ATP, a major in vivo Mg2+-binding site, was related to approximately five-fold increase in free [Mg2+] (0.53 ± 0.07 mM in freeze blown vs. 2.91 mM ± 0.48 mM in microwaved brains), as determined from the ratio [citrate]/[isocitrate]. Consequently, many intracellular properties, such as the phosphorylation potential and the ΔG’ of ATP hydrolysis were significantly altered in microwaved tissue. The determinations of some glycolytic and TCA cycle metabolites, the phosphorylation potential, and the ΔG’ of ATP hydrolysis do not represent the in vivo state when using microwave-fixed brain tissue. PMID:23013291

  8. Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production.

    Science.gov (United States)

    Wahidin, Suzana; Idris, Ani; Shaleh, Sitti Raehanah Muhamad

    2016-04-01

    The wet biomass microalgae of Nannochloropsis sp. was converted to biodiesel using direct transesterification (DT) by microwave technique and ionic liquid (IL) as the green solvent. Three different ionic liquids; 1-butyl-3-metyhlimidazolium chloride ([BMIM][Cl], 1-ethyl-3-methylimmidazolium methyl sulphate [EMIM][MeSO4] and 1-butyl-3-methylimidazolium trifluoromethane sulfonate [BMIM][CF3SO3]) and organic solvents (hexane and methanol) were used as co-solvents under microwave irradiation and their performances in terms of percentage disruption, cell walls ruptured and biodiesel yields were compared at different reaction times (5, 10 and 15 min). [EMIM][MeSO4] showed highest percentage cell disruption (99.73%) and biodiesel yield (36.79% per dried biomass) after 15 min of simultaneous reaction. The results demonstrated that simultaneous extraction-transesterification using ILs and microwave irradiation is a potential alternative method for biodiesel production.

  9. Mechanisms Responsible for Microwave Properties in High Performance Dielectric Materials

    Science.gov (United States)

    Zhang, Shengke

    Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (tau f) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures, the microwave loss in these dielectric materials is dominated by electron paramagnetic resonance (EPR) loss, which results from the spin-excitations of d-shell electron spins in exchange-coupled clusters. We show that the origin of the observed magnetically-induced shifts in the dielectric resonator frequency originates from the same mechanism, as described by the Kramers-Kronig relations. The temperature coefficient of resonator frequency, tauf, is related to three material parameters according to the equation, tau f = - (½ tauepsilon + ½ taumu + alphaL), where tauepsilon, taumu , and alphaL are the temperature coefficient of dielectric constant, magnetic permeability, and lattice constant, respectively. Each of these parameters for dielectric materials of interest are measured experimentally. These results, in combination with density functional simulations, developed a much improved understanding of the fundamental mechanisms responsible for tau f. The same experimental methods have been used to characterize in-situ the physical nature and concentration of performance-degrading point defects in the dielectrics of superconducting planar microwave resonators.

  10. Microwave emission by nonlinear crystals irradiated with a high-intensity, mode-locked laser

    CERN Document Server

    Borghesani, A F; Guarise, M

    2016-01-01

    We report on the experimental investigation of the efficiency of some nonlinear crystals to generate microwave (RF) radiation as a result of optical rectification (OR) when irradiated with intense pulse trains delivered by a mode-locked laser at $1064\\,$nm. We have investigated lithium triborate (LBO), lithium niobate (LiNbO$_3$), zinc selenide (ZnSe), and also potassium titanyl orthophosphate (KTP) for comparison with previous measurements. The results are in good agreement with the theoretical predictions based on the form of the second-order nonlinear susceptibility tensor. For some crystals we investigated also the second harmonic generation (SHG) to cross check the theoretical model. We confirm the theoretical prediction that OR leads to the production of higher order RF harmonics that are overtones of the laser repetition rate.

  11. Efficient Synthesis of Boron-Containing α-Acyloxyamide Analogs via Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Po-Shen Pan

    2013-08-01

    Full Text Available In this report, a Passerini three-component reaction utilizing boron-containing carboxylic acids or aldehydes is discussed. The reaction was carried out in water and facilitated by the use of microwave irradiation. This methodology allowed for the efficient formation of a broad range of boron-containing α-acyloxyamides under mild conditions within a short time. Two series of boron-containing α-acyloxyamides were synthesized and subsequently screened for cytotoxicity using the MTT cell viability assay. Two potential lead compounds were found to have potent activity against the HepG2 cancer cell line, demonstrating the potential of this methodology for use in the development of novel pharmaceuticals.

  12. Microwave Irradiated Reactions of N-Phenacylpyridinium Chloride with Aromatic Aldehydes and Ketones

    Institute of Scientific and Technical Information of China (English)

    Ping WU; Xi Mei CAI; Rong YAO; Chao Guo YAN

    2006-01-01

    In the system of ammonium acetate and acetic acid and under microwave irradiation,N-phenacylpyridinium chloride 1 reacted with chalcone 2 to give 2,4,6-triarylpyrididnes 3a-g in high yields. 3a-g can also be prepared from one-pot reaction of 1 with aromatic aldehydes 4 and substituted acetophenones 5. Under the same conditions 1 can also react with pyridinecar boxaldehyde 6a-c and acetophenone to yield bipyridine derivatives 7a-c. 1 reacted with aromatic aldehyde and cyclohexanone 6 to yield 2,4-diaryltetrahydroquinolines 8a-d. At last 1 reacted with aromatic aldehydes to give 2,4,6-triarylpyrimidine 9a-i. The structure of the products was characterized with 1H NMR and IR and mass spectroscopy.

  13. Facile synthesis of allyl resinate monomer in an aqueous solution under microwave irradiation

    Indian Academy of Sciences (India)

    Yanju Lu; Mixia Wang; Zhendong Zhao; Yuxiang Chen; Shichao Xu; Jing Wang; Liangwu Bi

    2015-07-01

    We have developed a facile method for production of allyl resinate monomer (allyl rosin ester) via a phase transfer reaction under microwave irradiation. The synthesis of allyl resinate was conducted using allyl chloride and sodium resinate as starting materials in aqueous solution at 50°C for 30 min with a yield of 94.7%, which is 20% higher than conventional heating method. The products precipitated spontaneously from the aqueous phase after reaction, which significantly facilitated the subsequent separation of monomer products. The synthesized monomer product appeared as a viscous liquid, with a viscosity of 460 mPa·s at 25°C and a density of 1.0469 g/cm3. The physical and chemical properties suggested that the synthesized monomer has great potential for free radical polymerization.

  14. Estimations of local thermal impact on living organisms irradiated by non-thermal microwaves

    CERN Document Server

    Shatalov, Vladimir

    2013-01-01

    Pennes' differential equation for bioheat transfer and the heat transfer equation are solved for the temperature distribution in a living tissue with spherical inclusions, irradiated by microwave power. It is shown that relative temperature excess in a small inclusion in the tissue in some cases is inversely proportional to its radius and does not depend on the applied power. In pulsing RF fields the effect is amplified proportionally to the ratio of the pulse period to the pulse duration. The local temperature rise significantly outpaces the averaged one and therefore the Watt to Weight SAR limits may be insufficient to estimate the safety of RF radiation and the conventional division of the biological effects of electromagnetic fields on the thermal and non-thermal needs to be revised.

  15. Changes of amino acid gradients in brain tissues induced by microwave irradiation and other means

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, C.F.; Parsons, J.E.; Oh, C.C.; Wasterlain, C.G.; Baldwin, R.A. (Neurochem. Labs, V.A. Med. Ctr. Sepulveda, CA (USA))

    1989-09-01

    Focused microwave irradiation to the head (FMI) has been used extensively by neurochemists for rapid inactivation of enzymatic activity in brain tissues and the preservation, for in vitro analysis, of in vivo substrate concentrations. Periodically the suitability of this technique for regional studies has been questioned. Evidence has now been obtained, on the basis of altered concentration gradients for GABA and taurine from the Substantia Nigra (SN) to an Adjacent Dorsal Area (ADJ), that FMI not only inactivates enzymes, but also facilitates rapid diffusion of small molecules from areas of high concentrations to adjacent areas of lower concentration. To a lesser extent, the implantation of plastic injection cannulas also decreased these concentration gradients. These results offer clear evidence that FMI is ill suited and unreliable for studies designed to map and compare the in vivo regional concentrations of diffusible organic molecules (such as amino acids) in brain tissues. Any invasive technique that compromises membrane barriers is likely to produce smaller similar effects.

  16. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.

  17. Optimization of esterification activity of lipase from Candida rugosa immobilized using microwave irradiation

    Directory of Open Access Journals (Sweden)

    Mihailović Mladen D.

    2012-01-01

    Full Text Available Lipases are very efficient biocatalysts with wide application in synthesis of important ingredients of food, cosmetics and pharmaceutical products, due to their capacity to catalyze both, ester synthesis and ester hydrolysis. The preparation of stable and active immobilized derivatives of lipases is necessity for their application in industrial enzymatic processes. In this work, the optimization of lipase from C. rugosa immobilization by microwave irradiation was performed, since it was previously reported that immobilization process can be drastically accelerated by means of microwave irradiation, even resulting with slight increase of lipase activity. Eupergit®, commercial support with active epoxy groups, was used as immobilization support. In first stage of our study, the immobilization time and ionic strength of immobilization buffer were optimized. It was found out that the highest immobilized activity can be achieved at high ionic strengths (1 M buffer after 3 min, while further increase of immobilization time led to decrease of lipase activity. Then, the immobilized derivative obtained at optimum conditions was applied in synthesis of amyl isobutyrate in organic solvent. Key reaction factors (temperature, water concentration, immobilized lipase concentration, and substrate molar ratio were optimized using response surface methodology. The substrate conversion higher above 85% was achieved in our study. The statistical analysis revealed that each of analyzed factors had significant effect on yield of ester, with initial enzyme concentration and substrate molar ratio being the most prominent factors. The second-order regression model that describes the effect of all four factors on substrate conversion was established. The optimum values of factors were: temperature 50ºC, initial immobilized enzyme concentration 220 mg ml-1, added water concentration 0.1% (v/v, and molar ratio acid/alcohol 2.5.

  18. Comparative efficacy of microwave, visible light and ultrasound irradiation for green synthesis of dihydropyrimidinones in fruit juice medium

    Science.gov (United States)

    Pramanik, Tanay; Padan, Simarjit Kaur; Gupta, Richa; Bedi, Pooja; Singh, Gurinderpal

    2017-07-01

    Dihydropyrimidinones (DHPM) were synthesized via multi component condensation reaction employing urea, ethyl acetoacetate and aromatic aldehydes as reactants. Apple, pomegranate, grape juice were used individually as biodegradable, eco friendly, and green reaction medium whereas microwave, visible light and ultrasound irradiation were applied individually as green source of energy for carrying out the aforesaid reactions. It was observed that the reactions under microwave irradiation were taking minimum time to go for completion whereas the reactions under ultrasound and visible light irradiation were taking approximately same time duration to form products. This is the first of its kind study where the three different reaction methodologies based on three different sources of green energies were compared with each other for their effectiveness and efficiency towards multi component condensation reactions.

  19. Electron thermalization and attachment in pulse-irradiated oxygen studied by time-resolved microwave conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Warman, J.M. (Technische Univ., Delft (Netherlands). Dept. of Radiation Chemistry); Cooper, Ronald (Melbourne Univ., Parkville (Australia). Dept. of Physical Chemistry)

    1990-01-01

    The microwave conductivity of oxygen gas following nanosecond pulsed irradiation has been studied for pressures from 5 to 50 torr. The conductivity is found to decrease by a factor of approx. 20 in the early stages (tN < 2 x 10{sup 11} s cm{sup -3}) following the pulse. This is attributed to a decrease in the electron collision frequency as the initial excess energy of the electrons becomes degraded. A further decrease found at longer times is due to the three-body attachment of electrons to O{sub 2} with a rate constant of 2.4 x 10{sup -30} cm{sup 6}s{sup -1}. Above a pressure of approx. 30 torr significant attachment begins to occur while electrons are still superthermal. The time at which the microwave signal is within 10% of the value corresponding to thermal energies is given by {tau}{sub th}P approx = 15 {mu}s.torr. (author).

  20. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    Directory of Open Access Journals (Sweden)

    Palaniyandi Velusamy

    Full Text Available In the current study, facile synthesis of carboxymethyl cellulose (CMC and sodium alginate capped silver nanoparticles (AgNPs was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%, volumes of reducing agent (50, 100, 150 μL, and duration of heat treatment (30 s to 240 s. The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.

  1. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    Science.gov (United States)

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.

  2. Copolyacrylates with phenylalanine and anthracene entities prepared by ATRP and microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, E.C., E-mail: emilbur@icmpp.r [Romanian Academy, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi (Romania); Murariu, Mioara; Buruiana, Tinca [Romanian Academy, Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi (Romania)

    2010-10-15

    In this study, two amino acid copolymers containing anthracene incorporated either on the one end, poly(N-acryloyl-L-phenylalanine-co-methyl methacrylate)-1 or as pendant groups, poly-(N-acryloyl-L-phenylalanine-co-methyl methacrylate)-2 were prepared directly from N-acryloyl-L-phenylalanine (APhe) and methyl methacrylate (MMA) through atom transfer radical polymerization (ATRP) and microwave-assisted synthesis. In the first case, 9-(chloromethyl)anthracene was used as an ATRP-initiator to obtain a copolymer that contains amino acid sequences and anthracene end-capped units (0.03 molar fraction). Rapid synthesis of copolymer under microwave irradiation (250 W) in the presence of 1,1'-azobis(cyclohexanecarbonitrile) used as an initiator was followed of a functionalization of the formed copolymer with an anthracene derivative yielding copolyacrylate with pendant anthracene (0.02 molar fraction). The structure of the copolymers was verified by {sup 1}H NMR, UV-Vis and FTIR spectroscopy, gel permeation chromatography (GPC), and fluorescence spectroscopy. The fluorescence quenching process of anthracene which exists in copolymers by FeCl{sub 3}, cobalt acetate, nitrobenzene, maleic anhydride, diethylaniline and nitromethane in DMF solutions shows that this involves an electron transfer between the excited state anthracene and the present transitional metal cations, more efficiently being FeCl{sub 3} for poly-(APhe-co-MMA)-1 and cobalt acetate for the latter copolymer.

  3. Hydrophilic and blue fluorescent N-doped carbon dots from tartaric acid and various alkylol amines under microwave irradiation

    Science.gov (United States)

    Xu, Minghan; Xu, Shusheng; Yang, Zhi; Shu, Mengjun; He, Guili; Huang, Da; Zhang, Liling; Li, Li; Cui, Daxiang; Zhang, Yafei

    2015-09-01

    The desired control of particle size, doping element composition, and surface structure of carbon dots (CDs) are vital for understanding the fluorescence mechanism and exploring their potential applications. Herein, nitrogen-doped CDs (N-doped CDs) have been synthesized with tartaric acid and various alkylol amines (monoethanolamine, biethanolamine and triethanolamine) under microwave irradiation. A systematic investigation was performed to characterize the N-doped CDs. It is found that with increasing nitrogen proportion, the fluorescent quantum yield and lifetime of N-doped CDs increases, whereas cell toxicity decreases. In other words, N-doped CDs synthesized by tartaric acid and monoethanolamine have the highest nitrogen content, the highest fluorescent quantum yield, the longest lifetime and the lowest cell toxicity. A corresponding mechanism has been proposed. Moreover, as-synthesized N-doped CDs have been applied for selectively detecting the Fe3+ ion and writing letters as a fluorescent ink.The desired control of particle size, doping element composition, and surface structure of carbon dots (CDs) are vital for understanding the fluorescence mechanism and exploring their potential applications. Herein, nitrogen-doped CDs (N-doped CDs) have been synthesized with tartaric acid and various alkylol amines (monoethanolamine, biethanolamine and triethanolamine) under microwave irradiation. A systematic investigation was performed to characterize the N-doped CDs. It is found that with increasing nitrogen proportion, the fluorescent quantum yield and lifetime of N-doped CDs increases, whereas cell toxicity decreases. In other words, N-doped CDs synthesized by tartaric acid and monoethanolamine have the highest nitrogen content, the highest fluorescent quantum yield, the longest lifetime and the lowest cell toxicity. A corresponding mechanism has been proposed. Moreover, as-synthesized N-doped CDs have been applied for selectively detecting the Fe3+ ion and writing

  4. Synthesis and Characterization of CeO2-SiO2 Nanoparticles by Microwave-Assisted Irradiation Method for Photocatalytic Oxidation of Methylene Blue Dye

    Directory of Open Access Journals (Sweden)

    R. M. Mohamed

    2012-01-01

    Full Text Available CeO2-SiO2 nanoparticles were synthesized for the first time by a facile microwave-assisted irradiation process. The effect of irradiation time of microwave was studied. The materials were characterized by N2 adsorption, XRD, UV-vis/DR, and TEM. All solids showed mesoporous textures with high surface areas, relatively small pore size diameters, and large pore volume. The X-ray diffraction results indicated that the as-synthesized nanoparticles exhibited cubic CeO2 without impurities and amorphous silica. The transmission electron microscopy (TEM images revealed that the particle size of CeO2-SiO2 nanoparticles, which were prepared by microwave method for 30 min irradiation times, was around 8 nm. The photocatalytic activities were evaluated by the decomposition of methylene blue dye under UV light irradiations. The results showed that the irradiation under the microwave produced CeO2-SiO2 nanoparticles, which have the best crystallinity under a shorter irradiation time. This indicates that the introduction of the microwave really can save energy and time with faster kinetics of crystallization. The sample prepared by 30 min microwave irradiation time exhibited the highest photocatalytic activity. The photocatalytic activity of CeO2-SiO2 nanoparticles, which were prepared by 30 min irradiation times was found to have better performance than commercial reference P25.

  5. Loss mechanism and microwave absorption properties of hierarchical NiCo2O4 nanomaterial

    Science.gov (United States)

    Zhou, Min; Lu, Fei; Lv, Tianyi; Yang, Xing; Xia, Weiwei; Shen, Xiaoshuang; He, Hui; Zeng, Xianghua

    2015-06-01

    Understanding the loss mechanism of microwave absorption is of great significance for the design and fabrication of low-cost, high-efficient and light-weight microwave absorbing materials. In this study, the microwave absorption of a hierarchical NiCo2O4 nanomaterial synthesized via a hydrothermal method and a subsequent annealing process was investigated in detail. The effects of the annealing temperature on the phase evaluation and microwave absorption properties were also investigated to reveal the microwave loss mechanism of NiCo2O4 nanostructures. The results show that the Debye relaxation and superior electric conductivity of NiCo2O4 are beneficial to its excellent microwave absorption performance. This study will be useful for the fundamental understanding of microwave absorption in NiCo2O4 nanomaterial, and for the design of a novel microwave absorbent.

  6. Microwave irradiation induces neurite outgrowth in PC12m3 cells via the p38 mitogen-activated protein kinase pathway.

    Science.gov (United States)

    Inoue, Shigeki; Motoda, Hirotoshi; Koike, Yoshihisa; Kawamura, Kenji; Hiragami, Fukumi; Kano, Yoshio

    2008-02-13

    The increasing use of mobile phone communication has raised concerns about possible health hazard effects of microwave irradiation. We investigated damage and differentiation caused by microwave irradiation on drug-hypersensitive PC12 cell line (PC12m3). These cells showed enhancement of neurite outgrowth to various stimulants. The frequency of neurite outgrowth induced by 2.45 GHz (200 W) of microwave irradiation was approximately 10-fold greater than that of non-irradiated control cells. Incubation of PC12m3 cells with SB203580, a specific inhibitor of p38 MAPK, resulted in marked inhibition of the microwave radiation-induced neurite outgrowth. Also, activation of the transcription factor CREB induced by microwave irradiation was inhibited by SB203580. Heat shock treatment at 45 degrees C had a strong toxic effect on PC12m3 cells, whereas microwave treatment had no toxic effect on PC12m3 cells. These findings indicate that p38 MAPK is responsible for the survival of PC12m3 cells and might induce neurite outgrowth via a CREB signaling pathway when subjected to microwave irradiation.

  7. Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation.

    Science.gov (United States)

    Ranjan, Shivendu; Dasgupta, Nandita; Rajendran, Bhavapriya; Avadhani, Ganesh S; Ramalingam, Chidambaram; Kumar, Ashutosh

    2016-06-01

    Titanium dioxide nanoparticles (TNPs) are widely used in the pharmaceutical and cosmetics industries. It is used for protection against UV exposure due to its light-scattering properties and high refractive index. Though TNPs are increasingly used, the synthesis of TNPs is tedious and time consuming; therefore, in the present study, microwave-assisted hybrid chemical approach was used for TNP synthesis. In the present study, we demonstrated that TNPs can be synthesized only in 2.5 h; however, the commonly used chemical approach using muffle furnace takes 5 h. The activity of TNP depends on the synthetic protocol; therefore, the present study also determined the effect of microwave-assisted hybrid chemical approach synthetic protocol on microbial and cytotoxicity. The results showed that TNP has the best antibacterial activity in decreasing order from Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The IC50 values of TNP for HCT116 and A549 were found to be 6.43 and 6.04 ppm, respectively. Cell death was also confirmed from trypan blue exclusion assay and membrane integrity loss was observed. Therefore, the study determines that the microwave-assisted hybrid chemical approach is time-saving; hence, this technique can be upgraded from lab scale to industrial scale via pilot plant scale. Moreover, it is necessary to find the mechanism of action at the molecular level to establish the reason for greater bacterial and cytotoxicological toxicity. Graphical abstract A graphical representation of TNP synthesis.

  8. Anti-nutritional Factors and Ruminal Dry Matter and Crude Protein Degradability of Gamma and Microwave Irradiated Native Rapeseed

    Directory of Open Access Journals (Sweden)

    sayyed roohollah ebrahimimahmoudabad

    2016-08-01

    Full Text Available Introduction Native rapeseed (NRS is planted in some parts of Iran because of climatic condition. The consumption of NRS in animal nutrition is limited by anti-nutritional such as phytic acid and glucosinolate. Moreover, the protein of NRS is highly degraded by rumen microorganisms. Several processing methods have been used to enhance the nutritive value of whole oilseeds, including extrusion, roasting, toasting and Jet-Sploding. However, most heat processing methods adversely affect protein digestibility in the small intestine. Recently, other processing methods such as processing by gamma and microwave irradiation have been noticed. Therefore, this research was carried out to evaluate the effects of gamma irradiation (15, 30 and 45 kGy and microwave irradiation (800 W for 2, 4 and 6 min on ruminal dry matter (DM and crude protein (CP degradability, in vitro CP digestibility, anti-nutritional factors (glucosinolate and phytic acid and chemical composition of NRS. Materials and Methods Chemical composition (DM, CP, EE and Ash of untreated and irradiated NRS was determined by AOAC methods. Then, sufficient water was added to the sample to increase the moisture content to 250 g/kg. Gamma irradiation was completed by using a cobalt-60 irradiator at 20 ºC. The dose rate determined by Fricke dosimetry was 0.36 Gy/s. Another three samples (500 g each were subjected to microwave irradiation at a power of 800 W for 2, 4 and 6 min. Phytic acid and glucosinolate contents of untreated and irradiated samples were determined by standard methods. Degradation kinetics of DM or CP were determined according to in situ procedure. Six grams of untreated or irradiated NRS were incubated in the rumen of three ruminally fistulated Taleshi bulls for 0, 2, 4, 8, 16, 24 and 48 h. Bags were placed in the rumen just before the bulls were offered their first meal. After retrieval from the rumen, bags were thoroughly washed with tap water until the rinsing water was clear

  9. Mechanical properties of hydrogenated electron-irradiated graphene

    Science.gov (United States)

    Weerasinghe, Asanka; Muniz, Andre R.; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2016-09-01

    We report a systematic analysis on the effects of hydrogenation on the mechanical behavior of irradiated single-layer graphene sheets, including irradiation-induced amorphous graphene, based on molecular-dynamics simulations of uniaxial tensile straining tests and using an experimentally validated model of electron-irradiated graphene. We find that hydrogenation has a significant effect on the tensile strength of the irradiated sheets only if it changes the hybridization of the hydrogenated carbon atoms to sp3, causing a reduction in the strength of irradiation-induced amorphous graphene by ˜10 GPa. Hydrogenation also causes a substantial decrease in the failure strain of the defective sheets, regardless of the hybridization of the hydrogenated carbon atoms, and in their fracture toughness, which decreases with increasing hydrogenation for a given irradiation dose. We characterize in detail the fracture mechanisms of the hydrogenated irradiated graphene sheets and elucidate the role of hydrogen and the extent of hydrogenation in the deformation and fracture processes. Our study sets the stage for designing hydrogenation and other chemical functionalization strategies toward tailoring the properties of defect-engineered ductile graphene.

  10. 微波辐照技术的工艺特性及其在水处理中的应用%Characteristics of microwave irradiation technology and its application to water treatment

    Institute of Scientific and Technical Information of China (English)

    李亚峰; 王景新; 李志成; 冯朋

    2012-01-01

    The technological characteristics of microwave irradiation technology and its applied mechanisms in water treatment are analyzed. The research situation and application situation of microwave irradiation technology applied to wastewater treatment are introduced. The technological types of microwave irradiation technology used for treating wastewater and their reaction effects are summarized. Some problems existing in the developing stage of water treatment are analyzed, too. Corresponding opinion and suggestion are put forward. The development tendency of microwave irradiation technology of water treatment is forecast.%分析了微波辐照技术的工艺特性及其在水处理中的作用机理,介绍了微波辐照技术用于废水处理领域中的研究状况与应用情况,综述了微波辐照技术用于废水处理的工艺类型及反应效果.结合相关研究与工程应用情况,分析了微波辐照技术在水处理应用中存在的问题,并提出了相应的意见和建议.展望了微波辐照技术在水处理中的发展方向.

  11. Application of microwave irradiation for the removal of polychlorinated biphenyls from siloxane transformer and hydrocarbon engine oils.

    Science.gov (United States)

    Antonetti, Claudia; Licursi, Domenico; Raspolli Galletti, Anna Maria; Martinelli, Marco; Tellini, Filippo; Valentini, Giorgio; Gambineri, Francesca

    2016-09-01

    The removal of polychlorinated biphenyls (PCBs) both from siloxane transformer oil and hydrocarbon engine oil was investigated through the application of microwave (MW) irradiation and a reaction system based on polyethyleneglycol (PEG) and potassium hydroxide. The influence of the main reaction parameters (MW irradiation time, molecular weight of PEG, amount of added reactants and temperature) on the dechlorination behavior was studied. Promising performances were reached, allowing about 50% of dechlorination under the best experimental conditions, together time and energy saving compared to conventional heating systems. Moreover, an interesting dechlorination degree (up to 32%) was achieved for siloxane transformer oil when MW irradiation was employed as the unique driving force. To the best of our knowledge, this is the first time in which MW irradiation is tested as the single driving force for the dechlorination of these two types of PCB-contaminated oils.

  12. Atom-efficient coupling reaction of aryl bromideswith sodium tetraphenylborate catalyzed by reusable Pd/C in water under focused microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    Lin Bai

    2009-01-01

    A rapid and heterogeneous Pal/C-catalyzed atom-efficient phenylation of aryl bromides by sodium tetraphenylborate takes place under focused microwave irradiation in water.The palladium catalyst can be easily recovered and reused.

  13. Highly stereoselective synthesis of (Z,E)-1-halo-1,3-dienol esters via rearrangement of Fischer chromium chloro-carbenes using microwave irradiation.

    Science.gov (United States)

    Kashinath, Dhurke; Mioskowski, Charles; Falck, J R; Goli, Mohan; Meunier, Stéphane; Baati, Rachid; Wagner, Alain

    2009-05-07

    Functionalized (Z,E)-1-halo-1,3-dienol esters are synthesized in a highly stereoselective manner via CrCl2-mediated rearrangement of allylic trihalomethylcarbinol esters induced by microwave irradiation.

  14. Application of Sonication and Microwave Irradiation to Boost Continuous Fabrication of the Copper(II Oxide Sub-Micron Particles

    Directory of Open Access Journals (Sweden)

    Grzegorz Dzido

    2015-03-01

    Full Text Available Viability of the continuous-flow synthesis of rhomboidal copper(II oxide (CuO micro- and nanonoparticles was demonstrated. It has been shown that ultrasonic mixing of reactants, in the stage of Cu(OH2 synthesis, followed by microwave irradiation of the resulting suspension, gives very fine particles of CuO at high yield and within minutes. Near optimal parameters for the synthesis of fine particles in the continuous reactor were determined.

  15. Microbial short-chain fatty acid production and extracellular enzymes activities during in vitro fermentation of polysaccharides from the seeds of Plantago asiatica L. treated with microwave irradiation.

    Science.gov (United States)

    Hu, Jie-Lun; Nie, Shao-Ping; Li, Chang; Fu, Zhi-Hong; Xie, Ming-Yong

    2013-06-26

    Effects of microwave irradiation on microbial short-chain fatty acid production and the activites of extracellular enzymes during in vitro fermentation of the polysaccharide from Plantago asiatica L. were investigated in this study. It was found that the apparent viscosity, average molecular weight, and particle size of the polysaccharide decreased after microwave irradiation. Reducing sugar amount increased with molecular weight decrease, suggesting the degradation may derive from glycosidic bond rupture. The polysaccharide surface topography was changed from large flakelike structure to smaller chips. FT-IR showed that microwave irradiation did not alter the primary functional groups in the polysaccharide. However, short-chain fatty acid productions of the polysaccharide during in vitro fermentation significantly increased after microwave irradiation. Activities of microbial extracellular enzymes xylanase, arabinofuranosidase, xylosidase, and glucuronidase in fermentation cultures supplemented with microwave irradiation treated polysaccharide were also generally higher than those of untreated polysaccharide. This showed that microwave irradiation could be a promising degradation method for the production of value-added polysaccharides.

  16. Features of structural response of mechanically loaded crystallites to irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Korchuganov, Aleksandr V., E-mail: avkor@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    A molecular dynamics method is employed to investigate the origin and evolution of plastic deformation in elastically deformed iron and vanadium crystallites due to atomic displacement cascades. Elastic stress states of crystallites result from different degrees of specimen deformation. Crystallites are deformed under constant-volume conditions. Atomic displacement cascades with the primary knock-on atom energy up to 50 keV are generated in loaded specimens. It is shown that irradiation may cause not only the Frenkel pair formation but also large-scale structural rearrangements outside the irradiated area, which prove to be similar to rearrangements proceeding by the twinning mechanism in mechanically loaded specimens.

  17. Extractive-transesterification of algal lipids under microwave irradiation with hexane as solvent.

    Science.gov (United States)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar; Mondala, Andro; Holmes, William; Hernandez, Rafael

    2014-03-01

    This study describes the use of microwaves (MW) for enhanced extractive-transesterification of algal lipids from dry algal biomass (Chlorella sp.). Two different single-step extractive-transesterification methods under MW irradiation were evaluated: (1) with ethanol as solvent/reactant and sodium hydroxide catalyst; and (2) with ethanol as reactant and hexane as solvent (sodium hydroxide catalyst). Biodiesel (fatty-acid-ethyl-esters, FAEE) yields from these two methods were compared with the conventional Bligh and Dyer (BD) method which followed a two-step extraction-transesterification process. The maximum lipid yields for MW, MW with hexane and BD methods were 20.1%, 20.1%, and 13.9%, respectively; while the FAEE conversion of the algal lipids were 96.2%, 94.3%, and 78.1%, respectively. The algae-biomass:ethanol molar ratio of 1:250-500 and 2.0-2.5% catalyst with reaction times around 6min were determined as optimum conditions for both methods. This study confers that the single-step non-conventional methods can contribute to higher algal lipid and FAEE yields.

  18. The Synthesis of Alginate-Capped Silver Nanoparticles under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Foliatini

    2015-03-01

    Full Text Available Synthesis of silver nanoparticles (Ag-NP was successfully performed within a few minutes by microwave irradiation of the precursor salt (AgNO3 and alginate mixed solution in one pot. Herein, alginate molecules acted as both a reducing and stabilizing agent for the preparation of the silver nanoparticles. The obtained nanoparticles were characterized by ultraviolet-visible (UV-Vis spectroscopy, particle size analysis (PSA, Fourier transform infrared spectroscopy (FTIR, and transmission electron microscopy (TEM. The pH and concentration ratio of the alginate/metal precursor salt greatly influenced the particle size and its distribution of Ag-NP. The higher the pH the higher the nucleation rate and the larger the electrostatic stabilization, while both of them were responsible for producing a smaller particle size and a narrower size distribution. A higher concentration ratio also yielded a smaller particle size and a narrower size distribution, but above the optimum ratio, the trend was conversely changed due to the reducing capability of the alginate, which was dominant above the optimum ratio, thus creating a high density of nuclei, allowing aggregation to occur. A lower ratio not only led to a higher tendency to produce larger particles, but also a higher probability of anisotropic particle shape formation due to the lack of reducing capability of the alginates.

  19. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    WANG; JinXian

    2001-01-01

    Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.……

  20. Thermal and hydrothermal stability of ZrMCM-41 mesoporous molecular sieves obtained by microwave irradiation

    Indian Academy of Sciences (India)

    T S Jiang; Y H Li; X P Zhou; Q Zhao; H B Yin

    2010-05-01

    ZrMCM-41 mesoporous molecular sieves were synthesized by using the zirconium sulfate as zirconium source and using cetyltrimethyl ammonium bromide as a template under microwave irradiation condition. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), inductive coupled plasma (ICP) technique, Fourier transform infrared spectroscopy (FT-IR) and N2 physical adsorption, respectively. The effect of the different initial ZrO2 : SiO2 molar ratio, the different thermal treatment temperature and hydrothermal treatment time on textural property was investigated. The results show that the obtained products possess a typical mesoporous structure of MCM-41 and have specific surface areas in the range of 598.1 ∼ 971.4 m2/g and average pore sizes in the range of ca. 2.46 ∼ 3.43 nm. On the other hand, the BET specific surface area and pore volume of the synthesized ZrMCM-41 mesoporous molecular sieve decrease with the increased amount of zirconium incorporated in the starting material, the rise of thermal treatment temperature and the prolonging of hydrothermal treatment time, the mesoporous ordering deteriorates. The mesoporous structure of the ZrMCM-41 mesoporous molecular sieve still retains after calcination at 750°C for 3 h or hydrothermal treatment at 100°C for 6 days, however, the mesoporous ordering is poor.

  1. PREPARATION OF BIODEGRADABLE FLAX SHIVE CELLULOSE-BASED SUPERABSORBENT POLYMER UNDER MICROWAVE IRRADIATION

    Directory of Open Access Journals (Sweden)

    Hao Feng

    2010-05-01

    Full Text Available Superabsorbent polymer was prepared by graft polymerization of acrylic acid onto the chain of cellulose from flax shive by using potassium persulfate (KPS as an initiator and N,N’-methylenebisacrylamide (MBA as a crosslinker under microwave irradiation. SEM photographs were also studied for more information about the shive, cellulose from shive, and the superabsorbent polymer. The structure of the graft copolymer was confirmed by FT-IR spectroscopy and thermogravimetric analysis (TGA. The biodegradability in soil was measured at 32 and 40 oC. The polymer was porous, and thermal stability of the polymer was observed up to approximately 200 oC. FT-IR analysis indicated that acrylic acid in polymer was successfully grafted onto the cellulose. The graft copolymer was found to be an effective superabsorbent resin, rapidly absorbing water to almost 1000 times its own dry weight at pH around 7.3. The water absorbency in 0.9% NaCl, KCl, FeCl3 solutions and urine were 56.47 g/g, 54.71g/g, 9.89g/g and 797.21g/g, respectively. The product biologically degraded up to 40% at 40 oC in 54 days, which shows good biodegradability.

  2. Mechanism of Microwave Effects on Conductivity of Solution

    Institute of Scientific and Technical Information of China (English)

    Su Yongqing

    2006-01-01

    The relation between microwave conductivity and normal conductivity of solution is compared in this thesis. By building mathematical model and theoretical analyses, it indicates that the relationship of in situ conductivity of solution in microwave field and temperature is similar to that in non-microwave field. It can be expressed by quadratic equation but the values of both conductivities are different. Microwave field has effect on the mean path δ or hot vibrational frequency v of ions in solution. In microwave field, the mean energy barrier, which ions must surmount as they transit, is the function relation to temperature.

  3. Effect of microwave irradiation on hydrogen sorption properties of hand mixed MgH{sub 2} – 10 wt.% carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Awad, A.S. [Université de Bordeaux, ICMCB-CNRS, 87 Avenue du Dr Schweitzer, F-33600 Pessac (France); LCPM/PR2N, Université Libanaise, Faculté des Sciences 2, 90656 Jdeidet El Matn (Lebanon); Nakhl, M.; Zakhour, M. [LCPM/PR2N, Université Libanaise, Faculté des Sciences 2, 90656 Jdeidet El Matn (Lebanon); Santos, S.F.; Souza, F.L. [Universidade Federal do ABC, Avenida dos Estados 5001, 09210-580 Santo André – SP (Brazil); Bobet, J.-L., E-mail: jean-louis.bobet@u-bordeaux.fr [Université de Bordeaux, ICMCB-CNRS, 87 Avenue du Dr Schweitzer, F-33600 Pessac (France)

    2016-08-15

    The effect of microwave (MW) irradiation on the hydrogen sorption properties of magnesium powder is explored in the present work. MgH{sub 2} – 10 wt.% CFs (CFs = Carbons Fibers) was prepared by hand mixing, dehydrogenated under microwave irradiation for 20 s and then hydrogenated/dehydrogenated at about 300 °C – 1 MPa and 330 °C–0.03 MPa to investigate the effect of microwave irradiation on the solid/gas sorption properties. It has to be noted that the hydrogen absorption capacity and sorption kinetics of the MgH{sub 2} – 10 wt.% CFs mixture increased after dehydriding under MW irradiation. The MgH{sub 2} – 10 wt.% CFs mixture dehydrogenated by microwave irradiation can absorb about 5.8 wt.% and 5.3 wt.% H at 330 and 300 °C, respectively, within 2 h while the as-prepared MgH{sub 2} – 10 wt.% CFs mixture absorb only 4.6 wt.% H within the same duration. It is also demonstrated that MgH{sub 2} – 10 wt.% CFs mixture dehydrogenated by microwave irradiation exhibited good hydrogen desorption properties and, as an example, a microwave irradiated sample could release 5.8 wt.% H within 1 h at 330 °C in comparison to the as-prepared MgH{sub 2} – 10 wt.% CFs mixture which desorbed 4.4 wt.% H within 3 h. Scanning electron microscopy (SEM) images revealed that the particle sizes of the MW dehydrogenated mixture decreased after several solid/gas sorption cycles. This contribute to the improvement of hydrogen storage properties of the microwaves dehydrogenated MgH{sub 2} – 10 wt.% CFs mixture. In addition, the hydrogenated MgH{sub 2} – 10 wt.% CFs mixture show reproducible and better microwave-assisted dehydriding reaction during second microwaves cycle. - Highlights: • Dehydriding reaction of MgH{sub 2} by microwave method. • Effect of microwaves treatment on the hydrogen sorption properties of Mg. • Effect of discontinuous microwaves irradiation.

  4. Post Irradiation Mechanical Behaviour of Three EUROFER Joints

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; Leenaers, A.; Vandermeulen, W.

    2006-08-15

    The post-irradiation mechanical properties of three EUROFER joints (two diffusion joints and one TIG weld) have been characterized after irradiation to 1.8 dpa at 300 degrees Celsius in the BR-2 reactor. Tensile, KLST impact and fracture toughness tests have been performed. Based on the results obtained and on the comparison with data from EUROFER base material irradiated under similar conditions, the post-irradiation mechanical behaviour of both diffusion joints (laboratory and mock-up) appears similar to that of the base material. The properties of the TIG joint are affected by the lack of a post-weld heat treatment, which causes the material from the upper part of the weld to be significantly worse than that of the lower region. Thus, specimens from the upper layer exhibit extremely pronounced hardening and embrittlement caused by irradiation. The samples extracted from the lower layer show much better resistance to neutron exposure, although their measured properties do not match those of the diffusion joints. The results presented demonstrate that diffusion joining can be a very promising technique.

  5. Pigmi mechanical fabrication. [Pion Generator for Medical Irradiations (PIGMI)

    Energy Technology Data Exchange (ETDEWEB)

    Hart, V.E.

    1976-01-01

    A prime goal of the mechanical design effort associated with the PIGMI (Pion Generator for Medical Irradiations) program is to investigate new materials and fabrication techniques in an effort to obtain increased machine efficiency and reliability at a reasonable cost. A discussion is given dealing with the modeling program that LASL is pursuing for 450-MHz and 1350-MHz PIGMI development.

  6. Microstructure and mechanical properties of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, E.; Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Terai, T.; Tanaka, S.

    1998-01-01

    Microstructure and mechanical properties of the neutron irradiated beryllium with total fast neutron fluences of 1.3 - 4.3 x 10{sup 21} n/cm{sup 2} (E>1 MeV) at 327 - 616degC were studied. Swelling increased by high irradiation temperature, high fluence, and by the small grain size and high impurity. Obvious decreasing of the fracture stress was observed in the bending test and in small grain specimens which had many helium bubbles on the grain boundary. Decreasing of the fracture stress for small grain specimens was presumably caused by crack propagation on the grain boundaries which weekend by helium bubbles. (author)

  7. Microwave irradiation on carbon black: Studies on the transformation of particles into nano-balls, nano-sticks and nano-onion like structures

    Science.gov (United States)

    Asokan, Vijayshankar; Venkatachalapathy, Vishnukanthan; Rajavel, Krishnamoorthy; Madsen, Dorte Nørgaard

    2016-12-01

    The solid-state transformation behavior of carbon black (CB) nanoparticles after irradiated with microwave energy was studied with and without influence of a metal catalyst. The CB sample was exposed to microwave radiation at power of 900 W from the oven and collected after 15 min and after 30 min and 45 min of irradiation. The samples were characterized using X-ray diffraction measurements, Raman spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM) and thermogravimetric analysis. Characterization of the samples prepared without catalyst shows that microwave irradiation can transform CB nanoparticles into nano-balls and nano-stick like structures. While nanoballs of almost 300-500 nm diameter are visible in all the samples irrespective of microwave irradiation time, amorphous nano-stick like structure are present only in the sample collected after 30 min of microwave irradiation. CB irradiated together with a metal catalyst resulted in metal-encapsulated onion like structures with perfectly arranged graphene layers.

  8. Improved synthesis of 1,3,4-thiadiazolium-2-phenylamines using microwave and ultrasound irradiation and investigation of their cytotoxic activity

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Camilla Moretto dos; Miranda, Amanda Fraga; Echevarria, Aurea, E-mail: echevarr@ufrrj.b [Universidade Federal Rural do Rio de Janeiro (DQ/ICE/UFRRJ), Seropedica, RJ (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Echevarria-Lima, Juliana [Universidade Federal do Rio de Janeiro (DI/IMPG/UFRJ), RJ (Brazil). Inst. de Microbiologia Paulo de Goes. Dept. de Imunologia

    2011-07-01

    A new and efficient synthesis of eight 1,3,4-thiadiazolium-2-phenylamine derivatives (1-8, where 8 is novel in the literature) was performed using thionyl chloride or trimethylsilyl chloride as catalysts under microwave or ultrasound irradiation. The target compounds were obtained in good yields and remarkably short times, 5 min under microwave irradiation and 10 min under ultrasound irradiation, where compared to traditional methodology (24 to 48 h at room temperature standing). The best yields were obtained using the microwave irradiation and, in general way, using thionyl chloride instead trimethylsilyl chloride. The cytotoxicity against K562 human leukemia and Daudi lymphoma lines was evaluated and showed promising results from the 4-phenyl-5-(4'-nitro-styryl)-1,3,4-thiadiazolium-2-phenylamine chloride derivative. (author)

  9. Enhancement of Lipase Enzyme Activity in Non-Aqueous Media through a Rapid Three Phase Partitioning and Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2008-01-01

    Full Text Available Three phase partitioning is fast developing as a novel bio-separation strategy with a wide range of applications including enzyme stability and enhancement of its catalytic activity. pH tuning of enzyme is now well known for use in non-aqueous systems. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. With optimal condition of ammonium sulphate and t-butanol, the protein appeared as an interfacial precipitate between upper t-butanol and lower aqueous phases. In this study we report the results on the lipase which has been subjected to pH tuning and TPP, which clearly indicate the remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. Hence it is shown that microwave irradiation can be used in conjunction with other strategies (like pH tuning and TPP for enhancing initial reaction rates.

  10. Electronic and Mechanical Properties of Hydrogenated Irradiated and Amorphous Graphene

    Science.gov (United States)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    Defect engineering and chemical functionalization of graphene are promising routes for fabrication of carbon nanostructures and 2D metamaterials with unique properties and function. Here, we use hydrogenation of irradiated, including irradiation-induced amorphous, graphene as a means of studying chemical functionalization effects on its electronic structure and mechanical response. We use molecular-dynamics simulations based on a reliable bond-order potential to prepare the hydrogenated configurations and carry out dynamic deformation tests at constant strain rate and temperature. Our mechanical tests show that hydrogenation does not affect the ultimate tensile strength (UTS) of the irradiated graphene sheet if the hydrogenated C atoms remain sp2-hybridized; however, upon inducing sp3 hybridization of these C atoms, UTS decreases by about 10 GPa. Furthermore, the fracture strain of the irradiated structure decreases by up to 30% upon hydrogenation independent of the hybridization type. We also report results for the electronic structure of hydrogenated configurations based on a density-functional tight-binding approach and assess the potential for tuning the electronic properties of these defective, functionalized graphenes.

  11. Microwave-Mediated Synthesis of Lophine: Developing a Mechanism to Explain a Product

    Science.gov (United States)

    Crouch, R. David; Howard, Jessica L.; Zile, Jennifer L.; Barker, Kathryn H.

    2006-01-01

    The microwave-mediated preparation of lophine (2,4,5-triphenylimidazole) is described. This experiment allows for an introduction to the emerging technology of microwave-assisted organic synthesis while providing an opportunity for students to employ the principles of carbonyl chemistry in devising a mechanism to explain the formation of the…

  12. Peak effect at microwave frequencies in swift heavy ion irradiated YBa2Cu3O7- thin films

    Indian Academy of Sciences (India)

    Tamalika Banerjee; Avinash Bhangale; D Kanjilal; S P Pai; R Pinto

    2002-05-01

    The vortex dynamics at microwave frequencies in YBa2Cu3O7- (YBCO) films have been studied. We observe a peak in the microwave (4.88 and 9.55 GHz) surface resistance in some films in magnetic fields up to 0.8 T. This is associated with the `peak-effect’ phenomenon and reflects the order–disorder transformation of the flux line lattice near the transition temperature. Introduction of artificial pinning centers like columnar defects created as a result of irradiation with 200 MeV Ag ion (at a fluence of 4 × 1010 ions/cm2) leads to the suppression of the peak in films previously exhibiting `peak effect’.

  13. Phase selectivity in the synthesis of cobalt(II) 4-cyclohexene-1,2-dicarboxylates under microwave irradiation.

    Science.gov (United States)

    Seo, You-Kyong; Hundal, Geeta; Jeon, Da Hye; Lee, U-Hwang; Hwang, Young Kyu; Chang, Jong-San

    2013-04-01

    Different phases in hybrid complexes of Co(II) with cis-4-cyclohexene-1-2-dicarboxylicacid (C6H8-1,2-CO2H=Cy-H2) have been generated depending on the reaction conditions. By microwave-irradiation of the same reaction mixtures at different temperatures we have obtained two new phases Co(C8H8O4) x H2O and [Co2(OH)2.8(Cy-H)1.2]. These phases have been established by XRD, UV-DRS, IR and thermo-gravimetric studies as well as by comparison with the reported phases. In these phases the Cy is found in a cis conformation. It has been seen that microwave synthesis proves to be a rapid and clean method of obtaining new high temperature phases in high purity which are obtained, in an impure state after a long time of hydrothermal synthesis.

  14. Evaluation of microwave irradiation for analysis of carbonyl sulfide, carbon disulfide, cyanogen, ethyl formate, methyl bromide, sulfuryl fluoride, propylene oxide, and phosphine in hay.

    Science.gov (United States)

    Ren, Yonglin; Mahon, Daphne

    2007-01-10

    Fumigant residues in hay were "extracted" by microwave irradiation. Hay, in gastight glass flasks, was placed in a domestic microwave oven, and fumigants were released into the headspace by microwave irradiation. Power settings for maximum release of fumigants were determined for carbonyl sulfide (COS), carbon disulfide (CS(2)), cyanogen (C(2)N(2)), ethyl formate (EF), methyl bromide (CH(3)Br), sulfuryl fluoride (SF), propylene oxide (PPO), and phosphine (PH(3)). Recoveries of fortified samples were >91% for COS, CS(2), CH(3)Br, SF, PPO, and PH(3) and >76% for C(2)N(2) and EF. Completeness of extraction was assessed from the amount of fumigant retained by the microwaved hay. This amount was determined from further microwave irradiation and was always small (<5% of the amount obtained from the initial procedure). Limits of quantification were <0.1 mg/kg for COS, CS(2), C(2)N(2), EF, and PH(3) and <0.5 mg/kg for CH(3)Br, SF, and PPO. These low limits were essentially due to the absence of interference from solvents and no necessity to inject large-volume gas samples. The microwave method is rapid and solvent-free. However, care is required in selecting the appropriate power setting. The safety implications of heating sealed flasks in microwave ovens should be noted.

  15. Mechanism of interferon induction by uv-irradiated reovirus

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, D.R.; Joklik, W.K.

    1978-12-01

    When reovirus is irradiated with uv-light, its ability to induce interferon in rodent cells increases by a factor of about 200; for the group C mutant ts447 irradiation with uv-light increases its ability to induce interferon at 38/sup 0/ by a factor of more than 10/sup 4/. Titers of more than 5 x 10/sup 6/ international units of interferon/10/sup 7/ cells are readily achieved. The mechanism that causes uv-irradiation to become such a potent inducer of interferon has been investigated. Incomplete transcripts of reovirus ds RNA segments terminated at the site of a uv-hit were shown to be very unlikely candidates for interferon inducers since they are only formed in very small amounts and the dose-response relationships between uv-dose and synthesis of such incomplete transcripts on the one hand and ability to induce interferon on the other hand are quite different. By contrast, uv-irradiation has a profound labilizing effect on the inner reovirus capsid shell, as evidenced by developing inability of cores to resist digestion by chymotrypsin, accessibility of virion RNA to ribonuclease, and lability to concentrated salt solutions such as CsCl. These in vitro observations were shown to parallel the situation in vivo, where increasing doses of uv-irradiation caused increasing amounts of the dsRNA of infecting virus particles to be liberated into the interior of the cell. No doubt this was due to the increasing instability of the subviral particles to which parental reovirions are converted soon after infection. The dose-response relationships between uv- dose and amount of parental dsRNA liberated into the interior of the cell on the one hand and ability to induce maximal amounts of interferon on the other were the same. Reconstruction experiments with naked dsRNA showed that unirradiated and uv-irradiated dsRNA were equally potent as interferon inducers.

  16. The Behavioral Toxicology of High-Peak, Low Average Power, Pulsed Microwave Irradiation

    Science.gov (United States)

    1993-01-25

    chlordiazepoxide and diazepam combined with low-level microwaves. Neurobehavioral Toxicology, 2, 131-135. Thomas, J. R., Schrot, J.. and Banvard, R. A...229-272. Thomas, J. R., Burch, L. S., and Yeandle. S. S. (1979). Microwave radiation and chlordiazepoxide : Synergistic effects on fixed-interval

  17. Synthesis of Visible-Light-Responsive Cu and N-Codoped AC/TiO2 Photocatalyst Through Microwave Irradiation

    OpenAIRE

    Tian, Fei; Wu, Zhansheng; Yan, Yujun; Ye, Bang-Ce; Liu, Dandan

    2016-01-01

    N–Cu-activated carbon (AC)/TiO2 nanoparticles were prepared by the sol-gel technique through microwave irradiation to modify the visible-light response of TiO2. Their structure, surface chemical composition, and optical absorption properties were characterized. The results showed that the codoped particles had a higher surface area and smaller particle size than pure AC/TiO2 and monodoped AC/TiO2. X-ray photoelectron spectroscopy of N–Cu-AC/TiO2 showed that Cu atoms replaced Ti atom sites, wh...

  18. A Facile Synthesis of Arylazonicotinates for Dyeing Polyester Fabrics under Microwave Irradiation and Their Biological Activity Profiles

    Directory of Open Access Journals (Sweden)

    Saleh M. Al-Mousawi

    2012-09-01

    Full Text Available A as textile dyes and the fastness properties of the dyed samples were measured. Most of the dyed fabrics tested displayed very good washing and perspiration fastness and series of 2-hydroxy- and 2-amino-6-substituted-5-arylazonicotinate monoazo compounds 7a–e and 9a–c were prepared via condensation of 3-oxo-3-substituted-2-arylhydrazonals 2a–e with active methylene nitriles 3a–d using microwave irradiation as an energy source. These substances were then tested moderate light fastness. Finally, the biological activity of the synthesized compounds against Gram positive bacteria, Gram negative bacteria and yeast were evaluated.

  19. A facile synthesis of arylazonicotinates for dyeing polyester fabrics under microwave irradiation and their biological activity profiles.

    Science.gov (United States)

    Al-Mousawi, Saleh M; El-Apasery, Morsy A; Mahmoud, Huda M

    2012-09-27

    A as textile dyes and the fastness properties of the dyed samples were measured. Most of the dyed fabrics tested displayed very good washing and perspiration fastness and series of 2-hydroxy- and 2-amino-6-substituted-5-arylazonicotinate monoazo compounds 7a-e and 9a-c were prepared via condensation of 3-oxo-3-substituted-2-arylhydrazonals 2a-e with active methylene nitriles 3a-d using microwave irradiation as an energy source. These substances were then tested moderate light fastness. Finally, the biological activity of the synthesized compounds against gram positive bacteria, gram negative bacteria and yeast were evaluated.

  20. Solvent-free and catalyst-free method for the synthesis of 2,4,5-triarylimidazoles under microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    Jian Feng Zhou; Gui Xia Gong; Hui Qin Zhu; Feng Xia Zhu

    2009-01-01

    A facile procedure for the synthesis of 2,4,5-triarylimidazoles is being reported starting from benzil, aromatic aldehyde and ammonium acetate. The reactions were carried out with catalyst-free, solvent-free and under microwave irradiation conditions in high yield (80-99%) with short time (3-5 min) and environmental benign, as well as convenient operation. The structures of the compounds have been confirmed on the basis of their IR, ~1H NMR, and/or ~(13)C NMR, MS, and elemental analyzer.

  1. Mechanism of microwave synthesized BaTiO3

    Institute of Scientific and Technical Information of China (English)

    刘韩星; 李永伟; 张汉林; 欧阳世翕

    1997-01-01

    The difference of intermediate products,microstructure and element concentration in the particles between microwave synthesized samples and conventional samples was responsible for the existence of non-thermal effect in the microwave field.The diffusions of Ba2+,Ti4+ in the microwave field were enhanced,so that the diffusion of Ti4+ could not be neglected as in the conventional solid state reactions.The influences of the microwave field were mainly expressed as diffusion coefficient and the driving force of ionic motion.The intermediate phase Ba2TiO4 which occurred in the conventional solid reaction was not found during microwave syntheses.The quantity analyses based on XRD experimental data show that the reaction dynamics in microwave is suitable for the Carter equation.The activity energy for reaction of BaCO3 and TiO2 in the microwave field was 42.26 kJ/mol,which was only one fifth of the conventional reaction.

  2. Solid phase synthesis of fatty acid modified glucagon-like peptide-1(7-36) amide under thermal and controlled microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Fatty acid modified glucagon-like peptide-1(7-36) amide was synthesized efficiently on Rink-Amide-MBHA resin by microwave-assisted solid phase method.The method of thermal and controlled microwave irradiation provided impressive enhancements in product yield,selectivity,and reaction rate.The coupling time was dramatically decreased to 6 min,and the desired products were obtained in high yield and purity.

  3. A novel and an efficient catalyst for one-pot synthesis of 2,4,5-trisubstituted imidazoles by using microwave irradiation under solvent-free conditions

    Indian Academy of Sciences (India)

    Javad Safari; Shiva Dehghan Khalili; Sayed Hossein Banitaba

    2010-05-01

    (NH4)6Mo7O24.4H2O has been used as an efficient catalyst for an improved and rapid synthesis of 2,4,5-trisubstituted imidazoles by a three-component, one-pot condensation of benzil, aryl aldehydes and ammonium acetate in good yields under solvent-free conditions using microwave irradiation. The reactions in conventional heating conditions were compared with the microwave-assisted reactions.

  4. Microwave Assisted Synthesis and Characterization of Perovskite Oxides

    OpenAIRE

    Prado-Gonjal, Jesus; Schmidt, Rainer; Moran, Emilio

    2014-01-01

    The use of microwave irradiation is a promising alternative heat source for the synthesis of inorganic materials such as perovskite oxides. The method offers massive energy and time savings as compared to the traditional ceramic method. In this work we review the basic principles of the microwave heating mechanism based on interactions between dipoles in the material and the electromagnetic microwave. Furthermore, we comment on and classify all different sub-types of microwave synthesis such ...

  5. Microstructural and mechanical properties of camel longissimus dorsi muscle during roasting, braising and microwave heating.

    Science.gov (United States)

    Yarmand, M S; Nikmaram, P; Djomeh, Z Emam; Homayouni, A

    2013-10-01

    This study was conducted to investigate the effects of various heating methods, including roasting, braising and microwave heating, on mechanical properties and microstructure of longissimus dorsi (LD) muscle of the camel. Shear value and compression force increased during microwave heating more than roasting and braising. Results obtained from scanning electron microscopy (SEM) showed more damage from roasting than in either braising or microwave heating. Granulation and fragmentation were clear in muscle fibers after roasting. The perimysium membrane of connective tissue was damaged during braising, while roasting left the perimysium membrane largely intact. The mechanical properties and microstructure of muscle can be affected by changes in water content during cooking.

  6. Mechanical and physical properties of irradiated type 348 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Beeston, J.M.

    1980-01-01

    A type 348 stainless steel in-pile tube irradiated to a fluence of 3 x 10/sup 22/ n/cm/sup 2/, E > 1 MeV (57 dpa), was destructively examined. The service had resulted in a maximum total creep of 1.8% at the high fluence. The metal temperature ranged between 623 and 652/sup 0/K, hence the thermal creep portion of the total was negligible. Total creep was greater than had been anticipated from creep data for austenitic stainless steels irradiated in other reactors. The objectives of the destructive examination were to determine the service-induced changes of mechanical and physical properties, and to assess the possibility of adverse effects of both these changes and the greater total creep on the prospective service life of other tubes.

  7. Facile synthesis of lead iodide nanostructures by microwave irradiation technique and their structural, morphological, photoluminescence and dielectric studies

    Science.gov (United States)

    Shkir, Mohd.; Yahia, I. S.; AlFaify, S.; Abutalib, M. M.; Muhammad, Shabbir

    2016-04-01

    Lead iodide (PbI2) nanostructures have been synthesized by co-precipitation, hydrothermal and rapidly by microwave irradiation techniques. SEM analysis indicated the formation of well aligned nanocrystals and nanorods of average diameter between 100 nm and 400 nm. The powder X-ray diffraction and FT-Raman spectroscopic analysis confirms the formation of a 2H-PbI2 polytypic predominantly. These studies also show that there is no extra phase due to impurity in the synthesized nanostructures. The optical energy band gap of nanostructures prepared by co-precipitation, hydrothermal and microwave irradiation techniques were found to be 2.283, 2.493, 2.542 eV and 2.331. 2.350, 2.375 eV calculated from UV-Vis absorption and diffuse reflectance data, respectively, which shows a clear blue shift in the wavelength due to confinement effect. Photoluminescence spectrum was recorded at different excitation wavelengths and shows clear blue shift in the emission peak which is due to the recombination of free excitons with band to band type transition and also may be due to confinement effect. Further the dielectric studies have been performed and a good enhancement in the dielectric constant has been observed due to small size of the fabricated nanostructures in comparison to bulk material.

  8. 微波加速Ullmann反应的研究%Advances in Investigation of Ullmann Reaction Accelerated by Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    肖尚友; 朱俊; 穆小静; 李正华

    2013-01-01

    Ullmann反应被广泛用于有机中间体的合成,包括C-C,C-O,C-S,C-N键的形成.近年的研究表明,微波能加速Ullmann反应,并能明显提高其反应产率.因此,微波在Ullmann反应中的应用日益受到人们的重视.围绕C-C,C-O,C-S,C-N键的形成,对微波在反应中的应用进展进行了综述.%The Ullmann reaction has been extensively applied in the synthesis of organic intermediates,especially in the formation of carbon-carbon bond,carbon-oxygen bond,carbon-sulfur bond and carbon-nitrogen bond.It has been demonstrated that microwave irradiation can obviously accelerate the Ullmann reaction and improve the yields,so the application of microwave in the Ullmann reaction has caught increasing attention in recent years.The application of microwave in the Ullmarm reaction and the progresses in the formation of carbon-carbon bond,carbon-oxygen bond,carbon-sulfur bond and carbon-nitrogen bond are reviewed in this paper.

  9. PROCESS INTENSIFICATION: OXIDATION OF BENZYL ALCOHOL USING A CONTINUOUS ISOTHERMAL REACTOR UNDER MICROWAVE IRRADIATION

    Science.gov (United States)

    In the past two decades, several investigations have been carried out using microwave radiation for performing chemical transformations. These transformations have been largely performed in conventional batch reactors with limited mixing and heat transfer capabilities. The reacti...

  10. The Rapid Synthesis of Schiff—Base withou Solvent under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    HaiJianYANG; WenHauSUN; 等

    2002-01-01

    A microwave-assisted preparation of a series of Schiff-base via efficient condensation of salicylaldehyde and aryl amines without solvent is described in high yield as well as environmental friendship reaction in organic synthesis.

  11. The Rapid Synthesis of Schiff-Base without Solvent under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A microwave-assisted preparation of a series of Schiff-base via efficient condensation of salicylaldehyde and aryl amines without solvent is described in high yield as well as environmental friendship reaction in organic synthesis.

  12. Confirmation of hydroxyl radicals ({sup •} OH) generated in the presence of TiO{sub 2} supported on AC under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhaohong, E-mail: lnuhjhx@163.com [School of Environmental Science, Liaoning University, Shenyang 110036 (China); Yu, Fengyang; Huang, Lirong; Jiatieli, Jianaerguli; Li, Yuanyuan; Song, Lijun [School of Environmental Science, Liaoning University, Shenyang 110036 (China); Yu, Ning [Experiment Center of Environmental Monitoring of Liaoning Province, Shenyang 110161 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2014-08-15

    Graphical abstract: - Highlights: • Generation of {sup •} OH in MW integrated with loaded TiO{sub 2}/AC system was confirmed. • Confirmation of {sup •} OH was conducted using radical scavenger such as BHT, MT and VC. • More {sup •} OH was formed using anatase TiO{sub 2}/AC than rutile TiO{sub 2}/AC under MW irradiation. • Effect of mass ratio, irradiation time, catalyst dose and DPCI on {sup •} OH was studied. - Abstract: In order to study the degradation mechanism of technology of microwave (MW) combined with TiO{sub 2} supported on activated carbon (TiO{sub 2}/AC), the reactive oxygen species (ROS) was explored through oxidation of 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). Furthermore, 2,6-di-tert-butyl-4-methylphenol (BHT), Mannitol (MT) and Vitamin C (VC) were used as radical scavengers to confirm the generation of the hydroxyl radicals ({sup •} OH). In addition, the influence of some parameters such as TiO{sub 2} mass ratio content, irradiation time, material dose, DPCI concentration and MW power on the determination of {sup •} OH were examined. The results showed that the {sup •} OH could be generated under MW combined with loaded TiO{sub 2}/AC. Also, anatase TiO{sub 2}/AC can generate more {sup •} OH radicals than rutile TiO{sub 2}/AC under MW irradiation. This work would provide new mechanistic insights on the enhanced degradation effect of organic pollutants in water using the supported TiO{sub 2}/AC coupled with MW technology.

  13. Chelant-induced reclamation of indium from the spent liquid crystal display panels with the aid of microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Hiroshi, E-mail: hhiroshi@t.kanazawa-u.ac.jp [Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Rahman, Ismail M.M., E-mail: I.M.M.Rahman@gmail.com [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Department of Applied and Environmental Chemistry, University of Chittagong, Chittagong 4331 (Bangladesh); Egawa, Yuji; Sawai, Hikaru; Begum, Zinnat A. [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Maki, Teruya [Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Mizutani, Satoshi [Graduate School of Engineering, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-Ku, Osaka 558-8585 (Japan)

    2013-06-15

    Highlights: • A new process for indium recovery from end-of-life LCD panels. • Chelants are used for the dissolution of indium from the waste LCD panels. • Indium extraction with chelant is enhanced with the aid of microwave irradiation. • Extraction rate is quantitative in the hyperbaric high-temperature environment. -- Abstract: Indium is a rare metal that is mostly consumed as indium tin oxide (ITO) in the fabrication process of liquid crystal display (LCD) panels. The spent LCD panels, termed as LCD-waste hereafter, is an increasing contributor of electronic waste burden worldwide and can be an impending secondary source of indium. The present work reports a new technique for the reclamation of indium from the unground LCD-waste using aminopolycarboxylate chelants (APCs) as the solvent in a hyperbaric environment and at a high-temperature. Microwave irradiation was used to create the desired system conditions, and a substantial abstraction of indium (≥80%) from the LCD-waste with the APCs (EDTA or NTA) was attained in the acidic pH region (up to pH 5) at the temperature of ≥120 °C and the pressure of ∼50 bar. The unique point of the reported process is the almost quantitative recovery of indium from the LCD-waste that ensured via the combination of the reaction facilitatory effect of microwave exposure and the metal extraction capability of APCs. A method for the selective isolation of indium from the extractant solution and recycle of the chelant in solution is also described.

  14. Effect of swift heavy ion irradiation on surface resistance of DyBa2Cu3O7- thin films at microwave frequencies

    Indian Academy of Sciences (India)

    Ujwala Ail; Tamalika Banerjee; A R Bhangale; D Kanjilal; R Pinto

    2002-05-01

    We report the observation of a pronounced peak in surface resistance at microwave frequencies of 4.88 GHz and 9.55 GHz and its disappearance after irradiation with swift ions in laser ablated DyBa2Cu3O7- (DBCO) thin films. The measurements were carried out in zero field as well as in the presence of magnetic fields (up to 0.8 T). The films were irradiated using 90 MeV oxygen ions at Nuclear Science Centre, New Delhi at a fluence of 3 × 1013 ions/cm2. Introduction of point defects and extended defects after irradiation suppresses the peak at 9.55 GHz whereas no suppression is observed at 4.88 GHz. These results and the vortex dynamics in the films at microwave frequencies before and after irradiation are discussed.

  15. A comparison of γ-irradiation and microwave treatments on the lipids and microbiological pattern of beef liver

    Directory of Open Access Journals (Sweden)

    Daw, Z. Y.

    2001-02-01

    Full Text Available The effects of γ-irradiation (0, 2.5, 5 and, 10 kGy and microwaves (generated from an oven at low and defrost settings for 0.5, 1 and 2 min treatments on the chemical composition and microbiological aspects of beef liver samples were studied. The chemical and microbiological analyses were performed on the non-treated and treated beef liver immediately after treatments and during frozen storage (-18ºC for 3 months. The chemical analyses of beef liver lipids showed that acid, peroxide and TBA values were slightly increased after irradiation treatments and also during frozen storage (-18ºC. On the contrary, iodine value of the treated beef liver was decreased. Irradiation treatments remarkably reduced the total bacterial counts in beef liver. The percent reduction of bacterial load for beef liver exposed to microwaves generated from an oven at defrost mode for 2 min and after 3 months at -18ºC was 62%. The bacterial load for beef liver exposed to γ-irradiation at 10 kGy after 3 months at -18ºC was decreased by 98%. Hence, γ-irradiation treatment was far better than microwave treatment for reduction of the associated microorganisms with beef liver. Salmonellae was not detected in non-irradiated and irradiated beef liver throughout the storage period.Se estudiaron los efectos de los tratamientos por irradiación γ (0, 2.5, 5 y 10 kGy y microondas (generados en un horno a nivel bajo y de descongelación durante 0.5, 1 y 2 min sobre la composición química y aspectos microbiológicos de las muestras de hígado de vaca. Los análisis químicos y microbiológicos se llevaron a cabo en hígado de vaca tratado y no tratado al inicio y durante el almacenamiento en congelador a -18ºC durante 3 meses. Los análisis químicos de los lípidos de hígado de vaca mostraron que los índices de acidez, peróxido y TBA se incrementaron ligeramente después de los tratamientos por irradiación y durante el almacenamiento en congelador (-18

  16. Mechanism of low-level microwave radiation effect on nervous system.

    Science.gov (United States)

    Hinrikus, Hiie; Bachmann, Maie; Karai, Denis; Lass, Jaanus

    2017-01-01

    The aim of this study is to explain the mechanism of the effect of low-level modulated microwave radiation on brain bioelectrical oscillations. The proposed model of excitation by low-level microwave radiation bases on the influence of water polarization on hydrogen bonding forces between water molecules, caused by this the enhancement of diffusion and consequences on neurotransmitters transit time and neuron resting potential. Modulated microwave radiation causes periodic alteration of the neurophysiologic parameters and parametric excitation of brain bioelectric oscillations. The experiments to detect logical outcome of the mechanism on physiological level were carried out on 15 human volunteers. The 450-MHz microwave radiation modulated at 7, 40 and 1000 Hz frequencies was applied at the field power density of 0.16 mW/cm(2). A relative change in the EEG power with and without radiation during 10 cycles was used as a quantitative measure. Experimental data demonstrated that modulated at 40 Hz microwave radiation enhanced EEG power in EEG alpha and beta frequency bands. No significant alterations were detected at 7 and 1000 Hz modulation frequencies. These results are in good agreement with the theory of parametric excitation of the brain bioelectric oscillations caused by the periodic alteration of neurophysiologic parameters and support the proposed mechanism. The proposed theoretical framework has been shown to predict the results of experimental study. The suggested mechanism, free of the restrictions related to field strength or time constant, is the first one providing explanation of low-level microwave radiation effects.

  17. 微波辐照实现PVC-PS之间的Friedel-Crafts接枝反应%FRIEDEL-CRAFTS REACTION GRAFTING OF PVC AND PS THROUGH MICROWAVE IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    李侃社; 黄虎; 李锦; 牛红梅; 闫兰英

    2013-01-01

    With tetrahydrofuran or cyclohexanone as dissolvent, Friedel-Crafts reaction grafting of polyvinyl chloride and polystyrene was realized through microwave irradiation. Graft of PVC-g-PS was successfully prepared. Influence of heating method, reaction temperature, type and mass fraction of catalyst on grafting reaction and grafting ratio was investigated. Graft structure of PVC-g-PS was characterized through FTIR,the mechanism and features were discussed. Results showed that Friedel-Crafts reaction grafting of polyvinyl chloride and polystyrene can carry out through heating by oil bath or microwave irradiation. Under heating with oil bath the graft of PVC-g-PS occurs at the meta position of the benzene ring, and the graft ratio is only 0. 27% ; while in the case of microwave irradiation,the graft of PVC-g-PS occurs at ortho-para positions of the benzene ring,and the graft ratio reaches up to 23%. Anhydrous AlCl3 ,FeCl3 or SnCl4 can all catalyze Friedel-Crafts reaction grafting of polyvinyl chloride and polystyrene, but the best catalytic activity is observed for anhydrous AlCl3. When the mass fraction of anhydrous AlCl3 is 3% ,the highest graft ratio reaches up to 29% , but when mass fraction of anhydrous AlCl3 is over 3% ,the graft ratio declines, PVC begins degradation and produces olefinic bonds. Research results demonstrate that microwave irradiation is an effective way of realizing Friedel-Crafts reaction grafting of polyvinyl chloride and polystyrene.%在四氢呋喃、环己酮等溶液中实现了聚氯乙烯(PVC)与聚苯乙烯(PS)的Friedel-Crafts接枝反应,考察了加热方式、反应温度、催化剂种类、催化剂用量对接枝反应的影响,通过FTIR表征了PVC-g-PS接枝物的结构,探讨了反应的机理和特点.研究发现,油浴加热和微波辐照都能使PVC和PS发生接枝反应,但微波辐照效果更好,油浴加热,接枝率仅0.27%,而微波辐照接枝率高达23%;油浴加热时产物少且多为间位,微波辐照

  18. Microwave Nano-abacus Electro-mechanical Oscillator

    Science.gov (United States)

    Peng, Haibing; Chang, C. W.; Aloni, S.; Yuzvinsky, T. D.; Zettl, A.

    2007-03-01

    We describe nanoscale electromechanical oscillators capable of operating in ambient-pressure air at room temperature with unprecedented fundamental resonance frequency of ˜4 GHz. The devices, created from suspended carbon nanotubes loaded abacus-style with inertial metal clamps yielding short effective beam lengths, open windows for immediate practical microwave frequency nanoelectromechanical systems (NEMS) applications.

  19. Experimental approach and micro-mechanical modeling of the mechanical behavior of irradiated zirconium alloys; Approche experimentale et modelisation micromecanique du comportement des alliages de zirconium irradies

    Energy Technology Data Exchange (ETDEWEB)

    Onimus, F

    2003-12-01

    Zirconium alloys cladding tubes containing nuclear fuel of the Pressurized Water Reactors constitute the first safety barrier against the dissemination of radioactive elements. Thus, it is essential to predict the mechanical behavior of the material in-reactor conditions. This study aims, on the one hand, to identify and characterize the mechanisms of the plastic deformation of irradiated zirconium alloys and, on the other hand, to propose a micro-mechanical modeling based on these mechanisms. The experimental analysis shows that, for the irradiated material, the plastic deformation occurs by dislocation channeling. For transverse tensile test and internal pressure test this channeling occurs in the basal planes. However, for axial tensile test, the study revealed that the plastic deformation also occurs by channeling but in the prismatic and pyramidal planes. In addition, the study of the macroscopic mechanical behavior, compared to the deformation mechanisms observed by TEM, suggested that the internal stress is higher in the case of irradiated material than in the case of non-irradiated material, because of the very heterogeneous character of the plastic deformation. This analysis led to a coherent interpretation of the mechanical behavior of irradiated materials, in terms of deformation mechanisms. The mechanical behavior of irradiated materials was finally modeled by applying homogenization methods for heterogeneous materials. This model is able to reproduce adequately the mechanical behavior of the irradiated material, in agreement with the TEM observations. (author)

  20. Confirmation of hydroxyl radicals (•OH) generated in the presence of TiO2 supported on AC under microwave irradiation.

    Science.gov (United States)

    Zhang, Zhaohong; Yu, Fengyang; Huang, Lirong; Jiatieli, Jianaerguli; Li, Yuanyuan; Song, Lijun; Yu, Ning; Dionysiou, Dionysios D

    2014-08-15

    In order to study the degradation mechanism of technology of microwave (MW) combined with TiO2 supported on activated carbon (TiO2/AC), the reactive oxygen species (ROS) was explored through oxidation of 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). Furthermore, 2,6-di-tert-butyl-4-methylphenol (BHT), Mannitol (MT) and Vitamin C (VC) were used as radical scavengers to confirm the generation of the hydroxyl radicals ((•)OH). In addition, the influence of some parameters such as TiO2 mass ratio content, irradiation time, material dose, DPCI concentration and MW power on the determination of (•)OH were examined. The results showed that the (•)OH could be generated under MW combined with loaded TiO2/AC. Also, anatase TiO2/AC can generate more (•)OH radicals than rutile TiO2/AC under MW irradiation. This work would provide new mechanistic insights on the enhanced degradation effect of organic pollutants in water using the supported TiO2/AC coupled with MW technology.

  1. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    Energy Technology Data Exchange (ETDEWEB)

    Aman, A., E-mail: alexander.aman@ovgu.de [Department of Engineering, Brandenburg University of Applied Science, 14470 Brandenburg an derHavel (Germany); Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Majcherek, S. [Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Hirsch, S. [Department of Engineering, Brandenburg University of Applied Science, 14470 Brandenburg an derHavel (Germany); Schmidt, B. [Chair of Micorsystem Technology, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany)

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression and restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.

  2. Synthesis of 3-substituted 5-arylidene-1-methyl-2-Thiohydantoins under microwave irradiation

    DEFF Research Database (Denmark)

    Khodair, Ahmed I.; Nielsen, John

    2002-01-01

    A mono-modal microwave oven was used to expedite the synthesis of small libraries of 3-substituted 1-methyl-2-thiohydantoins and 3-substituted 5-arylidene-1-methyl-2-thiohydantoins. In comparison with the traditional reflux methods, similar or higher yields were obtained.......A mono-modal microwave oven was used to expedite the synthesis of small libraries of 3-substituted 1-methyl-2-thiohydantoins and 3-substituted 5-arylidene-1-methyl-2-thiohydantoins. In comparison with the traditional reflux methods, similar or higher yields were obtained....

  3. Synthesis of 3-substituted 5-arylidene-1-methyl-2-thiohydantoins under microwave irradiation

    DEFF Research Database (Denmark)

    Khodari, A.I.; Nielsen, John

    2002-01-01

    A mono-modal microwave oven was used to expedite the synthesis of small libraries of 3-substituted 1-methyl-2-thiohydantoins and 3-substituted 5-arylidene-1-methyl-2-thiohydantoins. In comparison with the traditional reflux methods, similar or higher yields were obtained.......A mono-modal microwave oven was used to expedite the synthesis of small libraries of 3-substituted 1-methyl-2-thiohydantoins and 3-substituted 5-arylidene-1-methyl-2-thiohydantoins. In comparison with the traditional reflux methods, similar or higher yields were obtained....

  4. Plasma-enhanced microwave solid-state synthesis of cadmium sulfide: reaction mechanism and optical properties.

    Science.gov (United States)

    Du, Ke-zhao; Chaturvedi, Apoorva; Wang, Xing-zhi; Zhao, Yi; Zhang, Ke-ke; Iqbal Bakti Utama, M; Hu, Peng; Jiang, Hui; Xiong, Qi-hua; Kloc, Christian

    2015-08-14

    CdS synthesis by plasma-enhanced microwave physical vapor transport (PMPVT) has been developed in this work. The photoluminescence (PL), absorbance, Raman spectra and the mechanism of CdS crystal growth have been investigated. Furthermore, plasma-enhanced microwave chemical vapour transport (PMCVT) synthesis of CdS with additional chemical transport agents has been explored. In addition, other II-VI chalcogenides were also synthesized by PMPVT.

  5. One—pot Synthesis of 3,4—dihydropyrimidin—2(1H)—one Using TsOH as a Catalyst under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    屠树江; 房芳; 缪春宝; 蒋虹; 史达清

    2003-01-01

    A series of Biginelli compounds was synthesized using TsOH as a catalyst under microwave irradiation.This simple method provided the title compounds in 86%-98% yields by the reaction of aromatic aldehydes with 1,3-carbonyl compound and urea.The structure of 40 was determined by single crystal Xray diffraction analysis.

  6. EFFECT OF POLY (ETHYLENE GLYCOL) ON THE FORMATION OF NANOSTRUCTURES: A FACILE SUSTAINABLE APPROACH FOR THE SYNTHESIS OF SILVER NANORODS USING MICROWAVE IRRADIATION

    Science.gov (United States)

    Bulk synthesis of silver nanorods employing poly (ethylene glycol) (PEG) under microwave irradiation is reported. The formation of nanorods or particulate morphology is dependent on the PEG concentration. This greener method uses no surfactants or reducing agents and employs a b...

  7. One-pot Synthesis of 1- Aryloxyacety l - 4- (4′-nitrophenyloxyacetyl) - thiosemicarbazides under Phase Transfer Catalysis and Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The 1-aryloxyacetyl-4-(4′-nitrophenyloxyacetyl)-thiosemicarbazides (3a-h) are synthe- sized via reaction of 4-nitrophenyloxyacetyl chloride with ammonium thiocyanate and aryloxyacetic hydrazides (2a-h) under phase transfer catalysis and microwave irradiation in excellent yield.

  8. Effect of swift heavy ion irradiation on surface resistance of DyBa2Cu3O7−δ thin films at microwave frequencies

    NARCIS (Netherlands)

    Ail, Ujwala; Banerjee, Tamalika; Bhangale, A.R.; Kanjilal, D.

    2002-01-01

    We report the observation of a pronounced peak in surface resistance at microwave frequencies of 4.88 GHz and 9.55 GHz and its disappearance after irradiation with swift ions in laser ablated DyBa2Cu3O7−δ (DBCO) thin films. The measurements were carried out in zero field as well as in the presence

  9. H-Y-zeolites induced heterocyclization: Highly efficient synthesis of substituted-quinazolin-4(3H)ones under microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    M. Bakavoli; O. Sabzevari; M. Rahimizadeh

    2007-01-01

    A highly efficient synthesis of 2-amino-N-substituted-benzamides was performed by the condensation of isatoic anhydride with several amines in solvent-free conditions under microwave irradiation. H-Y-zeolites induced heterocyclization of these products with ortho-esters under similar conditions afforded the relevant substituted-quinazolin-4(3H)ones in high yields.

  10. Water promoted,microwave-assisted oxidative novel deamination of N-aminoquinazolinones

    Institute of Scientific and Technical Information of China (English)

    M.Arfan; Rasool Khan; Shazia Anjum; Shabir Ahmad; M.Iqbal Choudhary

    2008-01-01

    A novel deamination of 2-alkyl/aryl 3-amino-4(3H)-qninazolinones series using aqueous KMnO4 under thermal condition and microwave irradiation is described.Compared to thermal condition,significantly higher yields in much shorter times were observedfor reactions under microwave irradiation.A plausible mechanism has been proposed for the oxidative water-promoted deamination.

  11. Minimizing the self-heating artefacts due to the microwave irradiation of thermocouples.

    Science.gov (United States)

    Dunscombe, P B; Constable, R T; McLellan, J

    1988-01-01

    The self-heating of metallic thermocouples in therapeutic microwave fields has long been recognized as a source of temperature artefacts in clinical hyperthermia dosimetry. We examine several techniques by which the probe and tissue heating artefacts resulting from self-heating may be quantitatively assessed, and discuss these in the context of their applicability to clinical hyperthermia.

  12. Rapid conversion of sorbitol to isosorbide in hydrophobic ionic liquids under microwave irradiation.

    Science.gov (United States)

    Kamimura, Akio; Murata, Kengo; Tanaka, Yoshiki; Okagawa, Tomoki; Matsumoto, Hiroshi; Kaiso, Kouji; Yoshimoto, Makoto

    2014-12-01

    Sorbitol was effectively converted to isosorbide by treatment with [TMPA][NTf2 ] in the presence of catalytic amounts of TsOH under microwave heating at 180 °C. The reaction completed within 10 min and isosorbide was isolated to about 60%. Ionic liquids were readily recovered by an extraction treatment and reused several times.

  13. Synthesis of 3-substituted 5-arylidene-1-methyl-2-thiohydantoins under microwave irradiation

    DEFF Research Database (Denmark)

    Khodari, A.I.; Nielsen, John

    2002-01-01

    A mono-modal microwave oven was used to expedite the synthesis of small libraries of 3-substituted 1-methyl-2-thiohydantoins and 3-substituted 5-arylidene-1-methyl-2-thiohydantoins. In comparison with the traditional reflux methods, similar or higher yields were obtained....

  14. Synthesis of 3-substituted 5-arylidene-1-methyl-2-Thiohydantoins under microwave irradiation

    DEFF Research Database (Denmark)

    Khodair, Ahmed I.; Nielsen, John

    2002-01-01

    A mono-modal microwave oven was used to expedite the synthesis of small libraries of 3-substituted 1-methyl-2-thiohydantoins and 3-substituted 5-arylidene-1-methyl-2-thiohydantoins. In comparison with the traditional reflux methods, similar or higher yields were obtained....

  15. MICROWAVE IRRADIATION IN BENIGN SYNTHESIS OF ORGANIC MOLECULES, NOBLE NANOMETALS AND NANOCOMPOSITES

    Science.gov (United States)

    A brief historic account of reactions involving microwave (MW) exposure of neat reactants or catalyzed by mineral support surfaces, such as alumina, silica, clay, or their ‘doped’ versions, for the rapid one-pot assembly of heterocyclic compounds [1] from in situ generated reacti...

  16. MICROWAVE IRRADIATION IN BENIGN SYNTHESIS OF HETEROCYCLES, NOBLE NANOMETALS AND NANOCOMPOSITES

    Science.gov (United States)

    A brief historic account of reactions involving microwave (MW) exposure of neat reactants or catalyzed by mineral support surfaces, such as alumina, silica, clay, or their ‘doped’ versions, for the rapid one-pot assembly of heterocyclic compounds [1] from in situ generated reacti...

  17. Expeditious synthesis of noble metal nanoparticles using Vitamin B12 under microwave irradiation

    Science.gov (United States)

    A greener synthesis protocol for noble nanometals is developed using vitamin B12 as a reducing and capping agent in conjunction with the use of microwaves. Successful assembly of nanoparticles or microparticles with varied shapes and sizes have been demonstrated. The synthesized ...

  18. Expeditious synthesis of noble metal nanoparticles using Vitamin B12 under microwave irradiation

    Science.gov (United States)

    A greener synthesis protocol for noble nanometals is developed using vitamin B12 as a reducing and capping agent in conjunction with the use of microwaves. Successful assembly of nanoparticles or microparticles with varied shapes and sizes have been demonstrated. The synthesized ...

  19. BULK SYNTHESIS OF SILVER NANORODS IN POLY(ETHYLENE GLYCOL) USING MICROWAVE IRRADIATION

    Science.gov (United States)

    Microwave-assisted (MW), surfactantless, greener approach to bulk synthesis of silver nanorods employing poly (ethylene glycol) (PEG) is described. An aqueous solution of silver nitrate (AgNO-3,- 0.1 M, 4 mL) and 4 mL of PEG (molecular weight 300) were mixed at room temperature t...

  20. A Novel Method for Preparation of Gold NanoBipyramids Using Microwave Irradiation and Its Application in Immunosensors

    Science.gov (United States)

    Huynh, Trong Phat; Ngo, Vo Ke Thanh; Nguyen, Dang Giang; Nguyen, Hoang Phuong Uyen; Nghiem, Quoc Dat; Lam, Quang Vinh; Huynh, Thanh Dat

    2016-05-01

    Gold nanobipyramids (NBPs) have attracted attention for producing smart sensing devices as diagnostic tools in biotechnological and medical applications, because they show more advantageous plasmonic properties than comparable gold nanorods. Normally, NBPs were synthesized using seed-mediated growth process at room temperature. In this report, our group describes a method for synthesising of NBPs using microwave irradiation with ascorbic acid reduction and cetyltrimethylammonium bromide + silver nitrate (AgNO3) as capping agents. The advantages of this method are a highly effective approach to fast and uniform NBPs. The product was characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and x-ray powder diffraction. As an application in quartz crystal microbalance immunosensors, NBPs is conjugated with the chloramphenicol antibodies for signal amplification to detect chloramphenicol residuals in the QCM system.

  1. On the acid-base properties of microwave irradiated hydrotalcite-like compounds containing Zn2+ and Mn2+.

    Science.gov (United States)

    Sampieri, Alvaro; Lima, Enrique

    2009-04-09

    Microwave irradiated lamellar double hydroxides containing different divalent metals (Mn2+, Zn2+, or Mg2+) were prepared with Al3+ as the trivalent metal. Samples containing Mn2+ and Zn2+ were unstable at 400 degrees C, leading to formation of mixed oxides and spinel phases. Acid-base properties of the samples were characterized by nitromethane and CO2 adsorption followed by FTIR spectroscopy. Decomposition of adsorbed nitromethane leads to isocyanate species that acts as probe molecules of acid-base sites at the surface. These properties determine the ability of materials to retain CO2. Indeed, whereas Mn-O sites are able to interact directly with CO2 molecules, Mg-O and Zn-O are able to form carbonate species as a result of the CO2 sorption.

  2. One-Pot Synthesis of Disperse Dyes Under Microwave Irradiation: Dyebath Reuse in Dyeing of Polyester Fabrics

    Directory of Open Access Journals (Sweden)

    Huda M. Mahmoud

    2012-04-01

    Full Text Available A series of 4-hydroxyphenylazopyrazolopyrimidine disperse dyes were prepared via one-pot reactions of p-hydroxyphenylhydrazone, hydrazine hydrate, and acetylacetone or enaminones using microwave irradiation as an energy source. Structural assignments of the dyes were confirmed by X-ray crystallographic structure determination. Instead of discharging the dyebath after each dyeing cycle, the residual dyebath was spectrophotometrically analyzed and then pH readjusted for a repeat dyeing with longer time. Fastness of the dyed samples was measured after each recycle. Most of the dyed fabrics tested displayed good light fastness and excellent fastness to washing and perspiration. Finally, the biological activity of the synthesized dyes against Gram positive bacteria, Gram negative bacteria and yeast were evaluated.

  3. One-pot synthesis of disperse dyes under microwave irradiation: dyebath reuse in dyeing of polyester fabrics.

    Science.gov (United States)

    Al-Etaibi, Alya M; El-Apasery, Morsy A; Mahmoud, Huda M; Al-Awadi, Nouria A

    2012-04-10

    A series of 4-hydroxyphenylazopyrazolopyrimidine disperse dyes were prepared via one-pot reactions of p-hydroxyphenylhydrazone, hydrazine hydrate, and acetylacetone or enaminones using microwave irradiation as an energy source. Structural assignments of the dyes were confirmed by X-ray crystallographic structure determination. Instead of discharging the dyebath after each dyeing cycle, the residual dyebath was spectrophotometrically analyzed and then pH readjusted for a repeat dyeing with longer time. Fastness of the dyed samples was measured after each recycle. Most of the dyed fabrics tested displayed good light fastness and excellent fastness to washing and perspiration. Finally, the biological activity of the synthesized dyes against Gram positive bacteria, Gram negative bacteria and yeast were evaluated.

  4. SYNTHESIS THROUGH MICROWAVE IRRADIATION, CHARACTERIZATION AND EVALUATION OF ANTIMICROBIAL ACTIVITY OF 2-PHENYL-1, 3-BENZOXAZOLE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Tariq Sana

    2012-09-01

    Full Text Available A series of 2-phenyl-1,3-benzoxazoles were synthesized by the reaction of 2-aminophenol and acyl chlorides using microwave irradiation. Purity of compounds was determined by TLC. All the synthesized compounds were characterized by spectral analysis (FTIR, 1H-NMR . The compounds were evaluated for in vitro antimicrobial activity against Bacillus pumilus, Bacillus subtilis (Gram positive; Escherichia coli, Pseudomonas aeruginosa (Gram negative and Candida albicans and Aspergillus niger by agar-well diffusion method at 2.5, 5, 10mg/ml. Compounds 2-(2-methoxyphenyl-1,3-benzoxazole, 2-(4-bromophenyl-1,3-benzoxazole, 2-(3-cholorophenyl-1,3-benzoxazole, 2-(2-nitrophenyl-1,3-benzoxazole have been found to have good antibacterial activity. Compounds 2-pheny-1,3-benzoxazole, 2-(4-bromophenyl-1,3-benzoxazole, were potent antifungal compounds amongst the series.

  5. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation.

    Science.gov (United States)

    Chu, Gang; Zhao, Jing; Chen, Fangyuan; Dong, Xudong; Zhou, Dandan; Liang, Ni; Wu, Min; Pan, Bo; Steinberg, Christian E W

    2017-08-01

    Microwave irradiation (MW) is an effective technique in heating and pyrolysis. This study compared the properties of peanut shell-biochars produced using MW and muffle furnace (FN). At the same pyrolysis temperature, MW biochars preserved more biomass (as indicated by their higher yields and higher abundance of functional groups) and possessed larger surface areas due to the high abundance of micropores. MW biochars generally exhibited higher adsorption of carbamazepine (CBZ) and bisphenol A (BPA) than FN biochars. However, their surface area-normalized sorption was lower, suggesting that the inner pores may not be fully available to CBZ and BPA sorption. We observed significant free radical signals in both types of biochars. Although CBZ and BPA did not degrade in the biochar sorption systems, the potential role of stronger free radical signals in MW biochars for organic contaminant control may not be overlooked in studies with other chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. TL/OSL properties of beta irradiated Al2O3 Nanophosphor synthesized by microwave combustion method

    Science.gov (United States)

    Reddy, S. Satyanarayana; Nagabhushana, K. R.; Chauhan, Naveen; Singh, Fouran

    2017-05-01

    Stable α-phase of Al2O3 is synthesized by combustion method usingtemperature controlled microwave oven. Crystalline phase is analyzed by X-ray diffraction (XRD)and average crystallite size is found to be 75 nm. Thermoluminescence (TL) glow curve of Al2O3 is studied in UV, blue and open (visible) windows after beta irradiation. A prominent TL glow with peak at 472 K along with shoulders at 416 and 513 K are observed in all three windows. These peaks may be ascribed to F, F2 and F+- centers. Highest TL intensity isobserved inopen window. Optically stimulated luminescence (OSL) studies in UV and blue windows shows highest intensityin UV window. TL/OSL of phosphor shows linearresponse with beta dose upto 6.16 Gy.TL/OSL properties viz fading,repeatabilityand MDDare studied. TL kinetic parameters are estimated by deconvolution with computerized glow curve deconvolution (CGCD) techniques.

  7. Synthesis and Characterization of the in Situ Bulk Polymerization of PMMA Containing Graphene Sheets Using Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Mohammad A. Aldosari

    2013-03-01

    Full Text Available Polymethylmethacrylate–graphene (PMMA/RGO nanocomposites were prepared via in situ bulk polymerization using two different preparation techniques. In the first approach, a mixture of graphite oxide (GO and methylmethacrylate monomers (MMA were polymerized using a bulk polymerization method with a free radical initiator. After the addition of the reducing agent hydrazine hydrate (HH, the product was reduced via microwave irradiation (MWI to obtain R-(GO-PMMA composites. In the second approach, a mixture of graphite sheets (RGO and MMA monomers were polymerized using a bulk polymerization method with a free radical initiator to obtain RGO-(PMMA composites. The composites were characterized by FTIR, 1H-NMR and Raman spectroscopy and XRD, SEM, TEM, TGA and DSC. The results indicate that the composite obtained using the first approach, which involved MWI, had a better morphology and dispersion with enhanced thermal stability compared with the composites prepared without MWI.

  8. Mechanisms of Microwave Absorption in Carbon Compounds from Shungite

    Directory of Open Access Journals (Sweden)

    S. Emelyanov

    2013-12-01

    Full Text Available According to SEM, X-ray phase analysis, Raman scattering data features of nanostructural changes in shungite carbon structure were found when processing shungite in 52 % hydrofluoric acid. It is found that conductivity increases up to the values of electrical graphite and absorption of microwave radiation also increases at frequencies up to 40 GHz, which, along with dielectric losses, is due to intense processes of both scattering at laminar carbon structures and absorption of electromagnetic energy.

  9. Mechanisms of Microwave Absorption in Carbon Compounds from Shungite

    OpenAIRE

    S. Emelyanov; A. Kuzmenko; V. Rodionov; M. Dobromyslov

    2013-01-01

    According to SEM, X-ray phase analysis, Raman scattering data features of nanostructural changes in shungite carbon structure were found when processing shungite in 52 % hydrofluoric acid. It is found that conductivity increases up to the values of electrical graphite and absorption of microwave radiation also increases at frequencies up to 40 GHz, which, along with dielectric losses, is due to intense processes of both scattering at laminar carbon structures and absorption of electromagnetic...

  10. Plasma relaxation mechanics of pulsed high power microwave surface flashover

    Energy Technology Data Exchange (ETDEWEB)

    Beeson, S.; Dickens, J.; Neuber, A. [Center for Pulsed Power and Power Electronics, Department of Electrical and Computer Engineering and Department of Physics, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-09-15

    Microwave transmission and reflection characteristics of pulsed radio frequency field generated plasmas are elucidated for air, N{sub 2}, and He environments under pressure conditions ranging from 10 to 600 torr. The pulsed, low temperature plasma is generated along the atmospheric side of the dielectric boundary between the source (under vacuum) and the radiating environment with a thickness on the order of 5 mm and a cross sectional area just smaller than that of the waveguide. Utilizing custom multi-standard waveguide couplers and a continuous low power probing source, the scattering parameters were measured before, during, and after the high power microwave pulse with emphasis on the latter. From these scattering parameters, temporal electron density estimations (specifically the longitudinal integral of the density) were calculated using a 1D plane wave-excited model for analysis of the relaxation processes associated. These relaxation characteristics ultimately determine the maximum repetition rate for many pulsed electric field applications and thus are applicable to a much larger scope in the plasma community than just those related to high power microwaves. This manuscript discusses the diagnostic setup for acquiring the power measurements along with a detailed description of the kinematic and chemical behavior of the plasma as it decays down to its undisturbed state under various gas type and pressure conditions.

  11. The thermal and mechanical properties of electron beam-irradiated polylactide

    Energy Technology Data Exchange (ETDEWEB)

    Kuk, In Seol; Jung, Chan Hee; Hwang, In Tae; Choi, Jae Hak; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2010-06-15

    The effect of electron beam irradiation on the thermal and mechanical properties of polylactide (PLA) was investigated in this research. PLA films were irradiated by electron beams at different absorption doses ranging from 20 to 200 kGy. The thermal and mechanical properties of the irradiated PLA films were investigated by means of differential scanning calorimeter, thermogravimetric analyzer, universal testing machine, dynamic mechanical analyzer, and thermal mechanical analyzer. The results revealed that the chain scission of the PLA predominated over the crosslinking during the irradiation, which considerably deteriorated the thermal and mechanical properties of the PLA.

  12. Highly efficient, quick and green synthesis of biarlys with chitosan supported catalyst using microwave irradiation in the absence of solvent.

    Science.gov (United States)

    Baran, Talat; Açıksöz, Eda; Menteş, Ayfer

    2016-05-20

    The aim of this study was to develop a quick reaction that had high activity with a small amount of catalyst, which could be an eco-friendly alternative technique for the synthesis of biarlys in Suzuki coupling reactions. First, a novel chitosan Schiff base supported Pd(II) catalyst was synthesized, and its structure was illuminated with FTIR, (1)H NMR, (13)C NMR, TG/DTG, SEM/EDAX, XRD, ICP-OES, UV-vis, magnetic moment, and molar conductivity techniques. Subsequently, the catalytic activity of the catalyst was tested in Suzuki C-C reactions under microwave irradiation using a solvent-free reaction condition. The catalytic tests showed an excellent activity with a small load of the catalyst (0.02 mol%) in 4 min. The catalyst showed seven runs without loss of activity, and high values of turnover numbers (TON) and turnover frequency (TOF) were obtained. The novel biopolymer supported Pd(II) catalyst provided much faster reaction times, higher yields, and reusability under microwave heating compared to classic heating methods.

  13. Preparation of starch-poly-glutamic acid graft copolymers by microwave irradiation and the characterization of their properties.

    Science.gov (United States)

    Xu, Jingyuan; Krietemeyer, Elizabeth F; Finkenstadt, Victoria L; Solaiman, Daniel; Ashby, Richard D; Garcia, Rafael A

    2016-04-20

    Graft copolymers of waxy maize starch and poly-γ-glutamic acid (PGA) were produced in an aqueous solution using microwave irradiation. The microwave reaction conditions were optimized with regard to temperature and pH. The temperature of 180°C and pH7.0 were the best reaction conditions resulting in a PGA graft of 0.45% based on nitrogen analysis. The average graft content and graft efficiency for the starch-PGA graft copolymer prepared at 180°C and pH7.0 were 4.20% and 2.73%, respectively. The starch-PGA graft copolymer produced at 180°C and pH7.0 could absorb more than 20 times its own weight amount of water and form a gel. The preliminary rheology study revealed that the starch-PGA graft copolymer gel exhibited viscoelastic solid behavior while the control sample of waxy starch showed viscoelastic liquid behavior. Published by Elsevier Ltd.

  14. Rapid growth of nanotubes and nanorods of würtzite ZnO through microwave-irradiation of a metalorganic complex of zinc and a surfactant in solution

    Indian Academy of Sciences (India)

    Sanjaya Brahma; Kalya Jagannatha Rao; Srinivasarao Shivashankar

    2010-04-01

    Large quantities of single-crystalline ZnO nanorods and nanotubes have been prepared by the microwave irradiation of a metalorganic complex of zinc, in the presence of a surfactant. The method is simple, fast, and inexpensive (as it uses a domestic microwave oven), and yields pure nanostructures of the hexagonal würtzite phase of ZnO in min, and requires no conventional templating. The ZnO nanotubes formed have a hollow core with inner diameter varying from 140–160 nm and a wall of thickness, 40–50 nm. The length of nanorods and nanotubes varies in the narrow range of 500–600 nm. These nanostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The ZnO nanorods and nanotubes are found by SAED to be single-crystalline. The growth process of ZnO nanorods and nanotubes has been investigated by varying the surfactant concentration and microwave irradiation time. Based on the various results obtained, a tentative and plausible mechanism for the formation of ZnO nanostructures is proposed.

  15. Effect of tumor therapeutic irradiation on the mechanical properties of teeth tissue

    Energy Technology Data Exchange (ETDEWEB)

    Fraenzel, W. [Dept. of Physics, Martin Luther Univ. Halle (Germany); Gerlach, R. [Univ. Clinic and Policlinic for Radiation Therapy, Martin Luther Univ. Halle (Germany); Hein, H.J. [Univ. Clinic and Policlinic for Orthopaedics and Physical Medicine, Martin Luther Univ. Halle (Germany); Schaller, H.G. [Dept. of Operative Dentistry and Periodontology, Martin Luther Univ. Halle (Germany)

    2006-07-01

    Tumor irradiation of the head-neck area is accompanied by the development of a so-called radiation caries in the treated patients. In spite of conservative therapeutic measures, the process results in tooth destruction. The present study investigated the effects of irradiation on the demineralization and remineralization of the dental tissue. For this purpose, retained third molars were prepared and assigned either to a test group, which was exposed to fractional irradiation up to 60 Gy, or to a non-irradiated control group. Irradiated and non-irradiated teeth were then demineralized using acidic hydroxyl-cellulose gel; afterwards the teeth were remineralized using either Bifluorid12 {sup registered} or elmex gelee {sup registered}. The nanoindentation technique was used to measure the mechanical properties, hardness and elasticity, of the teeth in each of the conditions. The values were compared to the non-irradiated control group. Irradiation decreased dramatically the mechanical parameters of enamel and dentine. In non-irradiated teeth, demineralization had nearly the same effects of irradiation on the mechanical properties. In irradiated teeth, the effects of demineralization were negligible in comparison to non-irradiated teeth. Remineralization with Bifluorid12 {sup registered} or elmex gelee {sup registered} led to a partial improvement of the mechanical properties of the teeth. The enamel was more positively affected, by remineralization than the dentine. (orig.)

  16. 微波暴露对大鼠海马脑区热休克蛋白70表达的影响%Effects of occupational microwave irradiation on heat shock protein 70 expressions in rat hippocampns

    Institute of Scientific and Technical Information of China (English)

    郝玉通; 裴莉萍; 陈纯海; 杨学森; 张广斌; 邓朝晖; 余争平

    2009-01-01

    目的 研究微波暴露对大鼠海马脑区热休克蛋白(HSP)70表达的变化,为阐明微波的生物效应与机制提供线索.方法 采用峰值功率密度为90、5 W/cm2的微波全身一次性辐照大鼠20min,采用反转录-聚合酶链反应(RT-PCR)法观察微波辐照后不同时相点大鼠海马脑区hsp70 mRNA表达的变化;采用免疫印迹(Western-blot)法观察微波辐照后HSP70蛋白水平的变化.结果 90、5W/cm2微波辐照后,大鼠的肛温[分别为(40.40±0.19)、(38.22±0.68)℃]以及比吸收率(SAR)值[分别为(15.09±0.81)、(5.56±0.31)W/kg]明显升高.2个微波暴露组在20 min暴露后均可见hsp70 mRNA和蛋白水平表达上调.结论 微波辐照有明显的热效应,是hsp70合成极为敏感的诱因,并可能启动了脑的内源性保护机制.%Objective To study the change of heat shock protein(HSP)70 expression after exposure to occupational microwave in rats hippocampus, and explore the role of HSP70 in the mechanism of bio-effect of microwave irradiation. Methods The animal model was established by whole body exposures in 90, 5 W/cm2 microwave irradiation field for 20 min in rats. Changes of the mRNA of hsp70 expressions in rat hippocampus at different time were studied by RT-PCR, and the protein change by Western blot. Results The mRNA and protein expression of hsp70 in rat hippocampus increased after 90 W/cm2 and 5 W/cm2 microwave irradiation for 20 min. The anal temperature and the value of SAR increased significantly. These changes were positively correlated with power and irradiation time of microwave. The results indicated that microwave irradiation led to HSP70 syntheses effectively. Conclusion Microwave irradiation can obviously induce the thermal effect and activate HSP70, and initiate the endogens protective mechanism of central nervous system.

  17. VUV irradiance measurement of a 2.45 GHz microwave-driven hydrogen discharge

    CERN Document Server

    Komppula, J; Kalvas, T; Koivisto, H; Kronholm, R; Laulainen, J; Myllyperkiö, P

    2015-01-01

    Absolute values of VUV-emission of a 2.45 GHz microwave-driven hydrogen discharge are reported. The measurements were performed with a robust and straightforward method based on a photodiode and optical filters. It was found that the volumetric photon emission rate in the VUV-range (80-250 nm) is $10^{16}$-$10^{17}$ 1/cm$^3$s, which corresponds to approximately 8% dissipation of injected microwave power by VUV photon emission. The volumetric emission of characteristic emission bands was utilized to diagnostics of molecular plasma processes including volumetric rates of ionization, dissociation and excitation to high vibrational levels and metastable states. The estimated reaction rates imply that each injected molecule experiences several inelastic electron impact collisions. The upper limit for the total density of metastable neutrals ($2S$ atoms and $c^3\\Pi_u$ molecules) was estimated to be approximately 0.5% of the neutral gas density.

  18. Synthesis of novel chalcone derivatives by conventional and microwave irradiation methods and their pharmacological activities

    Directory of Open Access Journals (Sweden)

    Mohammed Rayees Ahmad

    2016-09-01

    Full Text Available Chalcones are abundant in edible plants and are considered to be the precursors of flavonoids and isoflavonoids. Chalcones belong to an important class of flavonoids, which may be prepared by Claisen–Schmidt condensation. They possess a wide range of biological activities and industrial applications. The cytotoxicity against tumour cell lines may be the result of disruption of the cell cycle, inhibition of angiogenesis, interference with p53-MDM2 interaction, mitochondrial uncoupling or induction of apoptosis. Chalcones are synthesized by conventional and microwave assisted synthesis methods. By microwave assisted synthesis, a considerable increase in the reaction rate has been observed and that too, with better yields. The compounds have been screened for cytotoxic activity and antioxidant activity.

  19. Acid-catalysed deuterium exchange of aromatic protons. Pt. 3; Accelerated exchange by microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Koeves, G.J. (Centre of Forensic Sciences, Toronto, ON (Canada))

    1994-03-01

    Conventional acid-catalysed [sup 2]H/[sup 1]H exchange in aromatic rings requires long reaction times, high temperatures and pressure. This paper reports that accelerated deuterium exchange can be achieved in a microwave oven. Experiments were carried out on benzodiazepines, tricyclic antidepressants and phenothiazines. The reaction time was decreased from days to minutes, the preparatory work was simpler than with conventional heating and the labelled products were cleaner. (author).

  20. Quantum mechanics. Mechanically detecting and avoiding the quantum fluctuations of a microwave field.

    Science.gov (United States)

    Suh, J; Weinstein, A J; Lei, C U; Wollman, E E; Steinke, S K; Meystre, P; Clerk, A A; Schwab, K C

    2014-06-13

    Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.

  1. Application of microwave irradiation for the synthesis of tetraorganodistannoxane%微波辐射促进四烃基二锡氧烷的合成

    Institute of Scientific and Technical Information of China (English)

    兰支利; 吕妍; 刘准; 李靖; 谢庆兰

    2002-01-01

      利用R2SnO与R'2SnCl2的反应合成了系列不同烃基的四烃基二锡氧烷,对比了常规加热回流与微波辐射条件下的反应时间与产物得率,比较了固相反应与液相反应,微波功率与使用溶剂间的关系。结果表明微波对这类化合物的合成有较好的促进作用。%  A series of tetraorganodistannoxane have been synthesized from the reaction of R2SnO and R'2SnX2 by microwave. Results of conventional heating and microwave activation have been presented. Microwave irradiation reaction in the presence of solvent and in the absence of solvent has been compared, influence of microwave power and solvent has been studied. Microwave irradiation has significant rate enhancements to the synthesis of distannoxane.

  2. Microwave effect on diffusion: a possible mechanism for non-thermal effect.

    Science.gov (United States)

    Hinrikus, Hiie; Lass, Jaanus; Karai, Denis; Pilt, Kristjan; Bachmann, Maie

    2015-01-01

    In this study, we assume that microwave radiation affects hydrogen bonding between dipolar water molecules and through that diffusion in water at constant temperature. The experimental study was performed on the setup of two identical reservoirs filled with pure water and 0.9% NaCl solution and connected by a thin tube. Alterations of NaCl concentration in the reservoir initially filled with pure water were measured using the resistance of the solution as an indicator. The applied 450 MHz continuous-wave microwave field had the maximal specific absorption rate of 0.4 W/kg on the connecting tube. The standard deviation of water temperature in the setup was 0.02 °C during an experiment. Our experimental data demonstrated that microwave exposure makes faster the process of diffusion in water. The time required for reduction of initial resistance of the solution by 10% was 1.7 times shorter with microwave. This result is consistent with the proposed mechanism of low-level microwave effect: microwave radiation, rotating dipolar water molecules, causes high-frequency alterations of hydrogen bonds between water molecules, thereby affects its viscosity and makes faster diffusion.

  3. Synergistic effect of graphene-oxide-doping and microwave-curing on mechanical strength of cement

    Science.gov (United States)

    Qin, Hao; Wei, Wei; Hang Hu, Yun

    2017-04-01

    In this communication, efficient reinforcement of cement matrix was obtained by graphene-oxide (GO) doping and curing treatments. The compressive strength of plain cement is 14.3±0.2 MPa. When the cement contained 0.5 wt% GO, its strength reached 19.4±0.9 MPa. The strength can be further enhanced by curing, which follows the sequence: Microwave-cured GO-cement > Microwave and water-cured GO-cement > Water-cured GO-cement > GO-cement without curing. The highest compressive strength (32.4±0.7 MPa), which was achieved by combining GO-doping and microwave curing, is 126.6±8.1% higher than that without GO-doping and microwave curing. This demonstrates a synergistic effect of GO doping and microwave-curing on the strength of cement composite materials. Furthermore, X-ray diffraction (XRD), Fourier transform Infrared Spectroscopy (FTIR), and field emission scanning electron microscope (FESEM) characterizations revealed that the combination of GO doping and microwave-curing remarkably accelerated cement hydration, leading to the regular and compact structure and thus a high compressive strength. This work provides a new way to improve the mechanical properties of cement composites.

  4. Rapid Synthesis of New Poly(amide-imide)s Based on N-(4-Carboxy phenyl) trimellitimide and Hydantoin Derivatives under Microwave Irradiation

    OpenAIRE

    GHOLIZADEH, Khalil FAGHIHI and Mohammad

    2009-01-01

    Six new poly (amide-imide)s (6a-f) were prepared under microwave irradiation by polycondensation reaction of diacid chloride (4) with 6 different derivatives of hydantoins (5a-f) using O-cresol as a microwave absorbent. These new PAIs were obtained in high yield and with inherent viscosities between 0.15 and 0.25 dL/g. The resulting poly(amide-imide)s were characterized by elemental analysis, viscosity measurements, thermal gravimetric analysis (TGA & DTG), solubility test, and F...

  5. Cu-ZSM-11 catalysts prepared with microwave irradiation ion-exchange method and direct decomposition of NO over MeOx/Cu-ZSM-11 with microwave irradiation%微波离子交换法制备Cu-ZSM-11及微波辐照MeOx/Cu-ZSM-11催化分解NO

    Institute of Scientific and Technical Information of China (English)

    罗羽裳; 周继承; 徐文涛; 游志敏; 龙伟; 蒋沧海

    2016-01-01

    Cu-ZSM-11 molecular sieve was prepared by the microwave ion-exchange method. The heating behavior of several kinds of metal oxides under microwave irradiation was investigated. Some metal oxide (MnO2>CuO>Ni2O3)which is of good absorption property for microwave was selected to be used for mixing with Cu-ZSM-11 catalyst to prepare the microwave catalysts. Direct decomposition of NO over the microwave catalyst MeOx/Cu-ZSM-11 was conducted with microwave irradiation, and their performance was investigated under microwave irradiation and traditional heating modes respectively. The results show that the conversion rate of decomposing NO is significantly higher under microwave irradiation than under traditional heating; and at catalyst bed temperature 350℃, the NO conversion is achieved up to 99.30% and N2 selectivity 99.9%. Furthermore, under microwave irradiation, the conversion of decomposing NO is higher for the mixture catalyst MeOx/Cu-ZSM-11 than for alone metal oxides and alone Cu-ZSM-11, indicating that microwave irradiation plays important role in catalytic decomposition of nitrogen oxide. The results indicate also that over MeOx/Cu-ZSM-11 with microwave irradiation, oxygen concentration in steam has almost no influences on its catalytic activity for NO decomposition,i.e. microwave irradiation can remove oxygen inhibition in decomposition reaction and keep unique selective effect. Similarly, the influence of water vapor in stream is also much less under microwave irradiation. The exit gas temperature is almost not change for Microwave–assisted reaction, and is the same as the reaction temperature 500—600℃ for conventional heating mode reaction.%用微波辐照离子交换法制备了Cu-ZSM-11,制备的Cu-ZSM-11和金属氧化物(MeOx)机械混合制备了微波催化剂 MeOx/Cu-ZSM-11。考察了 MeOx 在微波辐照下的升温行为,筛选出吸波性能好的 MeOx (MnO2>CuO>Ni2O3)为吸波组分。分别考察了微波辐

  6. [Spectroscopic study on CdS nanoparticles prepared by microwave irradiation].

    Science.gov (United States)

    Cheng, Wei-qing; Liu, Di; Yan, Zheng-yu

    2008-06-01

    CdS nanoparticles capped by mercaptoacetic acid have been successfully synthesized by microwave method employing thioacetamide as sulfur source, which was proved to be a simple, rapid and specific mothod compared with traditional synthetical methods, such as precipitation, sol-gel, solvo-thermal method and so on. The concrete procedure synthesizing CdS nanoparticles was as follows: Cd(NO3)2 (40 mL, 5 mmol c L(-1)) was titrated with mercaptoacetic acid to pH 2.0, resulting in a turbid blue solution. NaOH (0.1 mol x L(-1)) was then added dropwise until the pH was 7 and the solution was again colorless. While quickly stirring the solution, 40 mL of 5 mmol x L(-1) CH3CSNH2 was added. Subsequently, the solution was adjusted to pH 9.0 and placed in a microwave oven for 25 min with power 30% (it means that if microwave works in a 30 s regime, it works 6 s, and does not work 24 s. This is some kind of pulse regime, but the totalpower is still 100%). This kind of nanoparticles were water-soluble and symmetrical. The diameter of CdS nanoparticles which have a spherical morphology was determined to be 12 nm by transmission electron microscopy(TEM), which posess perfect uniforminty. According to literatures report, there are two kinds of emission peak: one is edge-emission peak, and the other is surface blemish emission. In contrast to edge-emission peak, the surface blemish emission shows red shift on fluorescence spectra. In the present paper, the prominent peak of CdS QDs fluorescence spectrum was located at 490 nm, the humpbacked peak caused by surface blemish of CdS nanoparticles was located at 565 nm. However, the surface blemish emission was unconspicuous, thus we can conclude that the synthetical CdS QDs possesses excellent luminescence capability and favorable structure. The size and absorption and fluorescence spectra of CdS nanoparticles at different microwave power, pH value, reaction time and different sulfur source were investigated. The result showed that the

  7. Teratology, survival, and reversal learning after fetal irradiation of mice by 2450-MHz microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Chernovetz, M.E. (Univ. of Tulsa, OK); Justesen, D.R.; King, N.W.; Wagner, J.E.

    1975-12-01

    Eighty primigravid mice of the C3H-HeJ strain were subjected to 2450-MHz sinusoidally modulated microwave radiation or to sham radiation (with or without an accompanying injection of 5 mg of cortisone as a teratological marker) on the 11th, 12th, 13th or 14th day of gestation. The radiation treatment consisted of a single intense dosing of microwave energy (38 mW/g for 600 sec = 22.8 J/g) in a multi-mode cavity. On the 19th day of gestation fetuses were taken via Caesarean section and were observed for gross structural abnormalities. While radiation of dams failed reliably to increase the incidence of fetal mortality or morbidity above that of controls, the dams treated with cortisone gave birth to reliably greater numbers of stillborn and deformed fetuses. During their 14th day of gestation 60 primigravid mice received the radiation or sham-radiation treatment, half with and half without the accompanying injection of cortisone. A virtually complete failure to survive to weaning characterized the pups born of the sham-radiated cortisone-treated group of dams, but the incidence of cortisone-induced mortality was reliably reduced in pups whose dams were also radiated by microwave energy. No differences in maze performances were observed in the mice as a function of their placement in the control or the radiation condition, but offspring of cortisone-treated, radiated dams made reliably more errors. Careful measurement of elevations of colonic temperatures of radiated dams shortly after treatment with cortisone revealed an averaged ..delta..T that is close to that observed in a comparably radiated volume of water of equivalent mass. If the finding has generality beyond the gravid mouse--if, that is, cortisone effectively and reversibly renders the mammal ectothermic--an important advance in biological dosimetry of non-ionizing radiation may be at hand.

  8. A Simple and Efficient Process for Large Scale Glycerol Oligomerization by Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Rémi Nguyen

    2017-04-01

    Full Text Available Herein, an optimized method for 100 g scale synthesis of glycerol oligomers using a microwave multimode source and the low priced K2CO3 as catalyst is reported. This method allows the complete conversion of glycerol to its oligomers in only 30 min, yielding molecular weights up to 1000 g mol−1. Furthermore, a simple iterative purification process, involving the precipitation of the crude product in acetone and methanol, affords a final product composed of larger oligomers with a narrow dispersity (D < 1.5.

  9. Expeditious Synthesis of Noble Metal Nanoparticles Using Vitamin B12 under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Changseok Han

    2015-08-01

    Full Text Available A greener synthesis protocol for noble nanometals is developed using vitamin B12 as a reducing and capping agent in conjunction with the use of microwaves. Successful assembly of nanoparticles or microparticles with varied shapes and sizes have been demonstrated. The synthesized Ag, Au, and Pd samples were thoroughly characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high resolution transmission microscopy, and UV-visible spectrophotometry, confirming that metallic Ag, Au, and Pd were synthesized by the green chemistry method.

  10. Multicomponent reactions for synthesis of bioactive polyheterocyclic ring systems under controlled microwave irradiation

    Directory of Open Access Journals (Sweden)

    Eman M.H. Abbas

    2014-11-01

    Full Text Available The multi-component reaction of 1-benzothiopyran-4-ones with heterocyclic amines and dimethylformamide-dimethylacetal (DMFDMA in DMF at 150 °C under controlled microwave heating afforded novel poly-heterocyclic ring systems. Also, reaction of 3-dimethylaminomethylene-1-benzothiopyran-4-one with activemethylene derivatives was investigated. The structure of all products was established on the bases of spectral data and elemental analyses and alternative synthesis if possible. The prepared compounds were screened for their antitumor activity against HCT-116 “colon” cancer cell line and some derivatives showed promising activity.

  11. Effect of grain boundary on the mechanical behaviors of irradiated metals: a review

    Science.gov (United States)

    Xiao, XiaZi; Chu, HaiJian; Duan, HuiLing

    2016-06-01

    The design of high irradiation-resistant materials is very important for the development of next-generation nuclear reactors. Grain boundaries acting as effective defect sinks are thought to be able to moderate the deterioration of mechanical behaviors of irradiated materials, and have drawn increasing attention in recent years. The study of the effect of grain boundaries on the mechanical behaviors of irradiated materials is a multi-scale problem. At the atomic level, grain boundaries can effectively affect the production and formation of irradiation-induced point defects in grain interiors, which leads to the change of density, size distribution and evolution of defect clusters at grain level. The change of microstructure would influence the macroscopic mechanical properties of the irradiated polycrystal. Here we give a brief review about the effect of grain boundaries on the mechanical behaviors of irradiated metals from three scales: microscopic scale, mesoscopic scale and macroscopic scale.

  12. Loss mechanisms in superconducting thin film microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan, E-mail: jan.goetz@wmi.badw.de; Haeberlein, Max; Wulschner, Friedrich; Zollitsch, Christoph W.; Meier, Sebastian; Fischer, Michael; Fedorov, Kirill G.; Menzel, Edwin P. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Deppe, Frank; Eder, Peter; Xie, Edwar; Gross, Rudolf, E-mail: rudolf.gross@wmi.badw.de [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Marx, Achim [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-01-07

    We present a systematic analysis of the internal losses of superconducting coplanar waveguide microwave resonators based on niobium thin films on silicon substrates. In particular, we investigate losses introduced by Nb/Al interfaces in the center conductor, which is important for experiments where Al based Josephson junctions are integrated into Nb based circuits. We find that these interfaces can be a strong source for two-level state (TLS) losses, when the interfaces are not positioned at current nodes of the resonator. In addition to TLS losses, for resonators including Al, quasiparticle losses become relevant above 200 mK. Finally, we investigate how losses generated by eddy currents in conductive material on the backside of the substrate can be minimized by using thick enough substrates or metals with high conductivity on the substrate backside.

  13. Mechanical property and cutting rate of microwave treated granite rock

    Directory of Open Access Journals (Sweden)

    Lek Sikong

    2009-10-01

    Full Text Available The purpose of this study is to investigate the effect of microwave treatment, especially at low power level on compressive strength and cutting rate of granite rock by using multimodal cavity. The power level and cooling rate of treated samples were found to have an effect on the compressive strength, and the cutting rate. This effect is due to the induction of the plastic zones and micro cracks in the rock matrix, especially at the grain boundaries induced by the thermal stresses of rock forming minerals which have the difference in dielectric properties after microwave heating for a certain exposure time together with the thermal-shock treatment after the heating. It was found that the strength of treated granite is less than 60% of the original after 30 minutes of exposure.The dry heated samples with a water quenching seem to be the most affected samples. They exhibit a significant decrease in compressive strength up to 70% and cutting rate up to 38% after 30-minute treatment at the power of 850W, and after 10-minute treatment at the power of 600W respectively. Prolonged treatment causes the relaxation of induced thermal stresses in the rock mass, leading to a slight increase in compressive strength, and a slight decrease in cutting rate. For dry samples, the cutting rate can be enhanced because of a decrease in hardness of rock mass dropped from 61.5 to 55.4 HRC afterthe 10-minute heating at 600W with thermal shock treatment.The absorbed water in the pores of rock mass also has an effect on a decrease in compressive strength. Because micro cracks developed by the water vapor generated by heat which escapes through open pores. However, it seems to have less effect on the cutting rate because it causes a slight decrease in the hardness.

  14. Mechanism of electrical conductivity in an irradiated polyimide

    Science.gov (United States)

    Ries, H. R.; Harries, W. L.; Long, S. A. T.; Long, E. R., Jr.

    1989-01-01

    A polyimide was exposed to 1.0 MeV electron radiation. The radiation-induced radical density and dc conductivity were measured at various post-irradiation times. The radiation-induced radical density was found to be correlated to the increased dc conductivity through a hopping model of conductivity. The post-irradiation radical species were identified.

  15. Preparation of Pd supported on La(Sr)-Mn-O Perovskite by microwave Irradiation Method and Its Catalytic Performances for the Methane Combustion

    Science.gov (United States)

    Wang, Wei; Yuan, Fulong; Niu, Xiaoyu; Zhu, Yujun

    2016-01-01

    In this work, a series of palladium supported on the La0.8Sr0.2MnO3.15 perovskite catalysts (Pd/LSM-x) with different Pd loading were prepared by microwave irradiation processing plus incipient wetness impregnation method and characterized by XRD, TEM, H2-TPR and XPS. These catalysts were evaluated on the lean CH4 combustion. The results show that the Pd/LSM-x samples prepared by microwave irradiation processing possess relative higher surface areas than LSM catalyst. The addition of Pd to the LSM leads to the increase in the oxygen vacancy content and the enhancement in the mobility of lattice oxygen which play an important role on the methane combustion. The Pd/LSM-3 catalysts with 4.2wt% Pd loading exhibited the best performance for CH4 combustion that temperature for 10% and 90% of CH4 conversion is 315 and 520 °C.

  16. Preparation of Pd supported on La(Sr)-Mn-O Perovskite by microwave Irradiation Method and Its Catalytic Performances for the Methane Combustion.

    Science.gov (United States)

    Wang, Wei; Yuan, Fulong; Niu, Xiaoyu; Zhu, Yujun

    2016-01-19

    In this work, a series of palladium supported on the La0.8Sr0.2MnO3.15 perovskite catalysts (Pd/LSM-x) with different Pd loading were prepared by microwave irradiation processing plus incipient wetness impregnation method and characterized by XRD, TEM, H2-TPR and XPS. These catalysts were evaluated on the lean CH4 combustion. The results show that the Pd/LSM-x samples prepared by microwave irradiation processing possess relative higher surface areas than LSM catalyst. The addition of Pd to the LSM leads to the increase in the oxygen vacancy content and the enhancement in the mobility of lattice oxygen which play an important role on the methane combustion. The Pd/LSM-3 catalysts with 4.2wt% Pd loading exhibited the best performance for CH4 combustion that temperature for 10% and 90% of CH4 conversion is 315 and 520 °C.

  17. Pyrolysis of oil palm empty fruit bunch biomass pellets using multimode microwave irradiation.

    Science.gov (United States)

    Salema, Arshad Adam; Ani, Farid Nasir

    2012-12-01

    Oil palm empty fruit bunch pellets were subjected to pyrolysis in a multimode microwave (MW) system (1 kW and 2.45 GHz frequency) with and without the MW absorber, activated carbon. The ratio of biomass to MW absorber not only affected the temperature profiles of the EFB but also pyrolysis products such as bio-oil, char, and gas. The highest bio-oil yield of about 21 wt.% was obtained with 25% MW absorber. The bio-oil consisted of phenolic compounds of about 60-70 area% as detected by GC-MS and confirmed by FT-IR analysis. Ball lightning (plasma arc) occurred due to residual palm oil in the EFB biomass without using an MW absorber. The bio-char can be utilized as potential alternative fuel because of its heating value (25 MJ/kg).

  18. Local mechanical stress relaxation of Gunn diodes irradiated by protons

    Science.gov (United States)

    Gradoboev, A. V.; Tesleva, E. P.

    2017-05-01

    The aim of the work is studying the impact of Gunn diodes thermocompression bonding conditions upon their resistance to being radiated with protons of various energies. It was established that the tough conditions of Gunn diodes thermocompression bonding results in local mechanic stresses introduced into the active layer of the device, reduction of electron mobility because of the faults introduction and, subsequently, to reduction of operating current, power of UHF generation, percentage of qualitative units production and general reduction of production efficiency of the devices with required characteristics. Irradiation of Gunn diodes produced under the tough conditions of thermocompression bonding with protons which energy is (40-60) MeV with an absorbed dose of (1-6)·102 Gy does not practically reduce the radiation resistance of Gunn diodes produced with application of the given technique. This technique can be recommended for all semiconductor devices on the base of GaAs, which parameters depend significantly upon the mobility of the electrons, to increase the efficiency of production.

  19. Mechanical properties of irradiated nanowires – A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Emilio [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Departamento de Física, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800002 (Chile); Tramontina, Diego [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina); Instituto de Bioingeniería, Universidad de Mendoza, 5500 Mendoza (Argentina); Gutiérrez, Gonzalo, E-mail: gonzalo@fisica.ciencias.uchile.cl [Grupo de NanoMateriales, Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago (Chile); Bringa, Eduardo [Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza (Argentina)

    2015-12-15

    In this work we study, by means of molecular dynamics simulation, the change in the mechanical properties of a gold nanowire with pre-existing radiation damage. The gold nanowire is used as a simple model for a nanofoam, made of connected nanowires. Radiation damage by keV ions leads to the formation of a stacking fault tetrahedron (SFT), and this defect leads to a reduced plastic threshold, as expected, when the nanowire is subjected to tension. We quantify dislocation and twin density during the deformation, and find that the early activation of the SFT as a dislocation source leads to reduced dislocation densities compared to the case without radiation damage. In addition, we observed a total destruction of the SFT, as opposed to a recent simulation study where it was postulated that SFTs might act as self-generating dislocation sources. The flow stress at large deformation is also found to be slightly larger for the irradiated case, in agreement with recent experiments. - Highlights: • Stacking Fault Tetrahedra (SFT) formation proceeds by cascades, containing typically a vacancy cluster and interstitials. • Applied tension leads to the destruction of the SFT, in contrast to a recently reported case of a SFT which soften the NW. • After the initial dislocation activity, strength is controlled by a few surviving dislocations.

  20. Microwave irradiated synthesis and characterization of 1, 4-phenylene bis-oxazoline form bis-(2-hydroxyethyl) terephthalamide obtained by depolymerization of poly (ethylene terephthalate) (PET) bottle wastes

    OpenAIRE

    Yogesh S. Parab; Rikhil V. Shah; Sanjeev R. Shukla

    2012-01-01

    The aminolytic depolymerization of PET bottle waste with ethanolamine by conventional heating and microwave irradiation heating method was attempted with heterogeneous, recyclable acid catalysts such as beta zeolite (SiO2/ AlO2= 15 Na- form) and montmorillonite KSF. The pure product bis-(2-hydroxyethyl) terephthalamide (BHETA) of aminolysis was obtained in good yield (85- 88%). The BHETA, thus obtained, was subjected to cyclization reaction by heating with polyphosphoric acid as well as by ch...

  1. Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically Catalyst Clay Called Maghnite-H+ (Algerian MMT) Under Microwave Irradiation.

    OpenAIRE

    Rahmouni Abdelkader; Belbachir Mohammed

    2016-01-01

    In this study, a novel green cationic hydrogel of cationic polyacrylamide composite have been prepared and investigated. The synthesis of green cationic polyacrylamide composite was evaluated for its solubility in water. The reactions were performed using acrylamide monomer, solvent, catalyst (clay fin called maghnite) and solution of  H2SO4 (0.25 M), with the system under microwave irradiation (160 ºC) for 4 min. Major factors affecting the polymerization reaction were studied with a view to...

  2. Polarity-enhanced gas-sensing performance of Au-loaded ZnO nanospindles synthesized via precipitation and microwave irradiation

    Science.gov (United States)

    Li, Yan; Lv, Tan; Zhao, Fang-Xian; Lian, Xiao-Xue; Zou, Yun-Ling; Wang, Qiong

    2016-05-01

    Loading noble metal and exploring suitable morphology to achieve excellent gas-sensing performance is very crucial for the fabrication of gas sensors. We have successfully synthesized Au-loaded ZnO (Au/ZnO) nanospindles (NSs) through a really facile procedure involving a precipitation and subsequent microwave irradiation. The as-prepared products have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM). The formation and gas-sensing mechanism of Au/ZnO NSs were discussed. The SEM micrographs revealed an interesting morphological evolution of the Au/ZnO NSs with Au-loading content ranging from 0 at. % to 7 at. %. The nanostructures were employed for gas-sensing measurement toward various gases. It indicated that the Au/ZnO NSs based sensor showed a highly enhanced response (226.81) to 400 ppm acetone gas at a relatively low working temperature (270°C), and exhibited a fast response (1 s) and recovery speed (10 s). The highly enhanced acetone gas sensitivity of Au/ZnO NSs based sensor could be attributed to its enhanced polarity owing to the peculiar morphology, Schottcky barriers, as well as catalytic effect of Au NPs. [Figure not available: see fulltext.

  3. Changes in the physical and mechanical properties of graphite on irradiation in ditolylmethane

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilin, A.I.; Lebedev, I.G.; Sudakova, N.V.; Rizvanov, V.K.

    1987-05-01

    Results are presented from the irradiation and mechanical and structural testing of four grades of graphite - GMZ, VPG, MPG-6, and PG-50 - for use as moderator materials in organic cooled and graphite moderated reactors. Irradiation was carried out in the ARBUS-AST-1 reactor. Photomicrography was used to determine pore structure and ultimate strength in bending and compression was determined mechanically. Irradiation was found to increase the strength of GMZ, PMG-6, and PG-50 considerably, due to the healing of microdefects as a result of the pores filling with radiolysis products from the coolant, ditolylmethane. Conversely, VPG graphite, which has closed porosity, lost strength on irradiation.

  4. Synthesis of Visible-Light-Responsive Cu and N-Codoped AC/TiO2 Photocatalyst Through Microwave Irradiation.

    Science.gov (United States)

    Tian, Fei; Wu, Zhansheng; Yan, Yujun; Ye, Bang-Ce; Liu, Dandan

    2016-12-01

    N-Cu-activated carbon (AC)/TiO2 nanoparticles were prepared by the sol-gel technique through microwave irradiation to modify the visible-light response of TiO2. Their structure, surface chemical composition, and optical absorption properties were characterized. The results showed that the codoped particles had a higher surface area and smaller particle size than pure AC/TiO2 and monodoped AC/TiO2. X-ray photoelectron spectroscopy of N-Cu-AC/TiO2 showed that Cu atoms replaced Ti atom sites, whereas N atoms occupied the O atom sites and interstitial sites in the TiO2 lattice, which changed the electric and band-gap structures of the photocatalyst. N or Cu monodoping of AC/TiO2 reduced the energy band gap of TiO2 from 2.86 eV to 2.81 or 2.61 eV, respectively. In (N, Cu)-codoped AC/TiO2, N and Cu were incorporated into the TiO2 framework and narrowed the band gap of TiO2 to 2.47 eV, causing a large red shift and enhancing visible-light utilization efficiency. Photocatalytic activities were further examined by formaldehyde degradation under visible-light irradiation. N-Cu-AC/TiO2 was found to have the highest activity (ca. 94.4 % formaldehyde degradation efficiency) and to be easily recyclable. These results show an important and innovative method of improving AC/TiO2 activity by modifying the nonmetallic and metallic species.

  5. 微波催化合成乙二醇单硬脂酸酯%Synthesis of glycol monostearate under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    樊友

    2011-01-01

    Glycol monostearate was rapidly prepared by esterification of glycol with stearic acid in the presence of catalyst p - amino - benzenesulfonic acid under microwave irradiation. Effects of dosage of the catalyst, irradiation time, microwave power and molar ratio of glycol to stearic acid on the esterification was investigated. The optimum reaction conditions were glycol to stearic acid 1.1 : 1 ( moL/mol), dosage of catalyst 0.3 % ( wt), microwave power 800W, irradiation time 16 min.%在微波辐射条件下,以对氨基苯磺酸为催化剂,乙二醇和硬脂酸为原料合成了乙二醇单硬脂酸酯。考察了催化剂用量、微波辐射时间、微波功率和醇酸比对反应的影响。得出较佳反应条件为:乙二醇:硬脂酸为1.1:1(mol/mol)、催化剂用量0.3%(质量分数)、微波功率800W、反应时间16min。

  6. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chunghao [ORNL; Katoh, Yutai [ORNL; Snead, Lance Lewis [ORNL; Steinbeck, John [ORNL

    2013-01-01

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/ mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  7. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Chunghao, E-mail: shihc@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Katoh, Yutai, E-mail: katohy@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Snead, Lance L., E-mail: sneadll@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Steinbeck, John, E-mail: jws@psicorp.com [Physical Science Inc., Andover MA (United States)

    2013-08-15

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 °C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (−54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  8. The effect of neutron irradiation on the mechanical properties of C/SiC composites

    Science.gov (United States)

    Shih, Chunghao; Katoh, Yutai; Snead, Lance L.; Steinbeck, John

    2013-08-01

    The effects of neutron irradiation to 3.5 and 9.5 dpa at 730 °C on a 2D plain woven carbon fiber reinforced polymer derived SiC matrix composite are presented. For both fluences, the irradiation caused in-plane contraction and trans-plane expansion. Irradiation also caused substantial reduction in composite flexural strength (-54%) and increase in flexural tangent modulus (+85%). The extents of dimensional/mechanical property changes were greater for the higher fluence irradiated samples. Those changes suggest the instability of the polymer derived SiC matrix following irradiation. The nature of the mechanical property changes suggest increased clamping stress between the fiber and the matrix. The composite property changes are explained in terms of irradiation effects on composite constituents and are compared with carbon fiber reinforced carbon matrix composite as a reference material.

  9. Investigation of microstructure and mechanical properties of proton irradiated Zircaloy 2

    Science.gov (United States)

    Sarkar, Apu; Kumar, Ajay; Mukherjee, S.; Sharma, S. K.; Dutta, D.; Pujari, P. K.; Agarwal, A.; Gupta, S. K.; Singh, P.; Chakravartty, J. K.

    2016-10-01

    Samples of Zircaloy 2 have been irradiated with 4 MeV protons to two different doses. Microstructures of the unirradiated and irradiated samples have been characterized by Electron Back Scatter Diffraction (EBSD), X-ray diffraction line profile analysis (XRDLPA), Positron Annihilation Lifetime Spectroscopy (PALS) and Coincident Doppler Broadening (CDB) Spectroscopy. Tensile tests and micro hardness measurements have been carried out at room temperature to assess the changes in mechanical properties of Zircaloy 2 due to proton irradiation. The correlation of dislocation density, grain size and yield stress of the irradiated samples indicated that an increase in dislocation density due to irradiation is responsible for the change in mechanical behavior of irradiated Zircaloy.

  10. Changes in mechanical and chemical wood properties by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Thomas, E-mail: thomas.schnabel@fh-salzburg.ac.at [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Huber, Hermann [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); Grünewald, Tilman A. [BOKU University of Natural Resources and Life Sciences, Institute of Physics and Materials Science, Peter Jordan Straße 82, 1190 Vienna (Austria); Petutschnigg, Alexander [Salzburg University of Applied Sciences, Department of Forest Products Technology and Wood Constructions, Marktstraße 136a, 5431 Kuchl (Austria); BOKU University of Natural Resources and Life Sciences, Konrad Lorenzstraße 24, 3430 Tulln (Austria)

    2015-03-30

    Highlights: • Changes in wood due to electron beam irradiations (EBI) were evaluated. • Wood components undergo different altering mechanisms due to the irradiation. • Chemical reactions in wood lead to better surface hardness of low irradiated wood. - Abstract: This study deals with the influence of various electron beam irradiation (EBI) dosages on the Brinell hardness of Norway spruce. The results of the hardness measurements and the FT-IR spectroscopic analysis show different effects of the EBI at dosages of 25, 50, 100 and 200 kGy. It was assumed that the lignin and carbohydrates undergo different altering mechanisms due to the EBI treatment. New cleavage products and condensation reactions of lignin and carbohydrates lead to better surface hardness of low irradiated wood samples. These results provide a useful basis for further investigations on the changes in wood chemistry and material properties due to electron beam irradiations.

  11. Surfactant free rapid synthesis of hydroxyapatite nanorods by a microwave irradiation method for the treatment of bone infection

    Energy Technology Data Exchange (ETDEWEB)

    Vani, R; Sridevi, T S; Kalkura, S Narayana [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Raja, Subramaniya Bharathi; Savithri, K; Devaraj, S Niranjali [Department of Biochemistry, University of Madras, Chennai 600 025 (India); Girija, E K [Department of Physics, Periyar University, Salem 636 011 (India); Thamizhavel, A, E-mail: kalkurasn@annauniv.edu, E-mail: kalkura@yahoo.com [Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2011-07-15

    Mesoporous nanocrystalline hydroxyapatite (nHAp) rods of size 40-75 nm long and 25 nm wide (resembling bone mineral) were synthesized under microwave irradiation without using any surfactants or modifiers. The surface area and average pore size of the nHAp were found to be 32 m{sup 2} g{sup -1} and 4 nm, respectively. Rifampicin (RIF) and ciprofloxacin (CPF) loaded nHAp displayed an initial burst followed by controlled release (zero order kinetics). Combination of CPF and RIF loaded nHAp showed enhanced bacterial growth inhibition against Staphylococcus aureus (S aureus), Staphylococcus epidermidis (S epidermidis) and Escherichia coli (E coli) compared to individual agent loaded nHAp and pure nHAp. In addition, decreased bacterial adhesion (90%) was observed on the surface of CPF plus RIF loaded nHAp. The biocompatibility test toward MG63 cells infected with micro-organisms showed better cell viability and alkaline phosphatase activity (ALP) for the combination of CPF and RIF loaded nHAp. The influence on cell viability of infected MG63 cells was attributed to the simultaneous and controlled release of CPF and RIF from nHAp, which prevented the emergence of subpopulations that were resistant to each other. Hence, apart from the issue of the rapid synthesis of nHAp without surfactants or modifiers, the simultaneous and controlled release of dual drugs from nHAp would be a simple, non-toxic and cost-effective method to treat bone infections.

  12. Novel synthesis of holey reduced graphene oxide (HRGO) by microwave irradiation method for anode in lithium-ion batteries

    Science.gov (United States)

    Alsharaeh, Edreese; Ahmed, Faheem; Aldawsari, Yazeed; Khasawneh, Majdi; Abuhimd, Hatem; Alshahrani, Mohammad

    2016-07-01

    In this work, holey reduced graphene oxide (HRGO) was synthesized by the deposition of silver (Ag) nanoparticles onto the reduced graphene oxide (RGO) sheets followed by nitric acid treatment to remove Ag nanoparticles by microwave irradiation to form a porous structure. The HRGO were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), ultra violet-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), and Raman spectroscopy. These novel HRGO exhibited high rate capability with excellent cycling stability as an anode material for lithium-ion batteries. The results have shown an excellent electrochemical response in terms of charge/discharge capacity (423 mAh/g at 100 mA/g). The cyclic performance was also exceptional as a high reversible capacity (400 mAh/g at 100 mA/g) was retained for 100 charge/discharge cycles. This fascinating electrochemical performance can be ascribed to their specific porous structure (2–5 nm pores) and high surface area (457 m2/g), providing numerous active sites for Li+ insertion, high electrical conductivity, low charge-transfer resistance across the electrolyte–electrode interface, and improved structural stability against the local volume change during Li+ insertion–extraction. Such electrodes are envisioned to be mass scalable with relatively simple and low-cost fabrication procedures, thereby providing a clear pathway toward commercialization.

  13. Synthesis of silver nanoparticles on reduced graphene oxide under microwave irradiation with starch as an ideal reductant and stabilizer

    Science.gov (United States)

    Han, Yujie; Luo, Zhimin; Yuwen, Lihui; Tian, Jing; Zhu, Xingrong; Wang, Lianhui

    2013-02-01

    A facile aqueous solution procedure has been developed to synthesize silver nanoparticles (Ag NPs) on reduced graphene oxide (RGO) (RGO/Ag NPs) with starch as an ideal reductant and stabilizer in one pot under microwave irradiation. Graphene oxide and Ag(NH3)2+ were reduced simultaneously by starch in the process of forming Ag NPs. The size of Ag NPs decorated on the RGO sheets is about 20-50 nm and the average size of Ag NPs on RGO is 34 nm calculated by X-ray diffraction. RGO and RGO/Ag NPs prepared with starch show good stability in aqueous solution. With the decoration of Ag NPs on RGO, Raman intensity of RGO increased evidently. Antimicrobial activity of RGO/Ag NPs was investigated against the gram negative bacteria Pseudomonous aeruginosa. The minimum inhibitory concentration (MIC) of RGO/Ag NPs is 0.2 wt%. The antimicrobial activity of RGO/Ag NPs is stronger than Ag NPs because of the synergic effect of RGO and Ag NPs.

  14. High-sensitivity humidity sensor based on SnO{sub 2} nanoparticles synthesized by microwave irradiation method

    Energy Technology Data Exchange (ETDEWEB)

    Parthibavarman, M.; Hariharan, V. [Centre for Nanoscience and Technology, Department of Physics, Periyar University, Salem - 636 011, T.N. (India); Sekar, C., E-mail: Sekar2025@gmail.com [Centre for Nanoscience and Technology, Department of Physics, Periyar University, Salem - 636 011, T.N. (India); Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi - 630 003 (India)

    2011-07-20

    Tin oxide hexagonal-shaped nanodiscs (SnO) and spherical nanoparticles (SnO{sub 2}) have been prepared by using a simple household microwave irradiation method with an operating frequency of 2.45 GHz. This technique permits us to produce gram quantity of homogeneous nanoparticles in just 10 min. The crystallite size was evaluated from powder X-ray diffraction (XRD) studies and was in the 20 to 25 nm range. Transmission electron microscopy (TEM) analysis showed that the as prepared SnO form as hexagonal-shaped nanodiscs and upon subsequent annealing at 500 deg. C for 5 h in air, the SnO gets converted to spherical-shaped nanoparticles of SnO{sub 2}. The SnO{sub 2} sample shows good sensitivity towards the relative humidity. The calculated response and recovery time were found to be 32 s and 25 s respectively. These results indicate promising applications of SnO{sub 2} nanoparticles in a highly sensitive environmental monitoring and humidity controlled electronic devices. The samples were further subjected to thermal analyses (TG-DTA) and UV-VIS diffusion reflectance spectroscopy (DRS) studies.

  15. Highly Sensitive Ethanol Sensor Based on Au-Decorated SnO2 Nanoparticles Synthesized Through Precipitation and Microwave Irradiation

    Science.gov (United States)

    Li, Yan; Zhao, Fang-Xian; Lian, Xiao-Xue; Zou, Yun-Ling; Wang, Qiong; Zhou, Qing-Jun

    2016-06-01

    Gold (Au)-decorated SnO2 nanoparticles (NPs) were synthesized through a precipitation and microwave irradiation process. The as-prepared products were characterized by x-ray diffraction and scanning electron microscopy. The results indicated that the as-prepared products consisted of nanometer-scale tetragonal crystalline SnO2 and face-centered cubic gold metal NPs. The gas sensing measurements showed that the sensor based on Au-decorated SnO2 NPs exhibited an extremely high response (239.5) toward 500-ppm ethanol at a relatively low working temperature (220°C). In addition, the response and recovery times of this sensor to ethanol were 1 s and 31 s, respectively. The excellent gas sensing performance of the synthesized NPs in terms of high response, fast response-recovery, superior selectivity, and good stability was attributed to the small nanometer size of the particles, Schottky barrier, and Au NP catalysis. Finally, we demonstrated that our Au-decorated SnO2 NPs could be a potential candidate for use in highly sensitive and selective gas sensors for ethanol.

  16. Polystyrene-Poly(methyl methacrylate Silver Nanocomposites: Significant Modification of the Thermal and Electrical Properties by Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Edreese H. Alsharaeh

    2016-06-01

    Full Text Available This work compares the preparation of nanocomposites of polystyrene (PS, poly(methyl methacrylate (PMMA, and PSMMA co-polymer containing silver nanoparticles (AgNPs using in situ bulk polymerization with and without microwave irradiation (MWI. The AgNPs prepared were embedded within the polymer matrix. A modification in the thermal stability of the PS/Ag, PMMA/Ag, and PSMMA/Ag nanocomposites using MWI and in situ was observed compared with that of neat PSMMA, PS, and PMMA. In particular, PS/Ag, and PSMMA/Ag nanocomposites used in situ showed better thermal stability than MWI, while PMMA/Ag nanocomposites showed improved thermal stability. The electrical conductivity of the PS/Ag, PMMA/Ag, and PSMMA/Ag composites prepared by MWI revealed a percolation behavior when 20% AgNPs were used as a filler, and the conductivity of the nanocomposites increased to 103 S/cm, 33 S/cm, and 40 mS/cm, respectively. This enhancement might be due to the good dispersion of the AgNPs within the polymer matrix, which increased the interfacial interaction between the polymer and AgNPs. The polymer/Ag nanocomposites developed with tunable thermal and electrical properties could be used as conductive materials for electronic device applications.

  17. Mechanical properties of irradiated 9Cr-2WVTa steel

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L.; Alexander, D.J. [Oak Ridge National Lab., TN (United States); Rieth, M. [Forschungszentrum Karlsruhe (Germany). Inst. fuer Materialforschung II

    1998-09-01

    An Fe-9Cr-2W-0.25V-0.07Ta-0.1C (9Cr-2WVTa) steel has excellent strength and impact toughness before and after irradiation in the Fast Flux Test Facility and the High Flux Reactor (HFR). The ductile-brittle transition temperature (DBTT) increased only 32 C after 28 dpa at 365 C in FFTF, compared to a shift of {approx}60 C for a 9Cr-2WV steel--the same as the 9Cr-2WVTa steel but without tantalum. This difference occurred despite the two steels having similar tensile but without tantalum. This difference occurred despite the two steels having similar tensile properties before and after irradiation. The 9Cr-2WVTa steel has a smaller prior-austenite grain size, but otherwise microstructures are similar before irradiation and show similar changes during irradiation. The irradiation behavior of the 9Cr-2WVTa steel differs from the 9Cr-2WV steel and other similar steels in two ways: (1) the shift in DBTT of the 9Cr-2WVTa steel irradiated in FFTF does not saturate with fluence by {approx}28 dpa, whereas for the 9Cr-2WV steel and most similar steels, saturation occurs at <10 dpa, and (2) the shift in DBTT for 9Cr-2WVTa steel irradiated in FFTF and HFR increased with irradiation temperature, whereas it decreased for the 9Cr-2WV steel, as it does for most similar steels. The improved properties of the 9Cr-2WVTa steel and the differences with other steels were attributed to tantalum in solution.

  18. Doping dependent properties of Cr-doped ZnO nanostructures prepared by microwave irradiation.

    Science.gov (United States)

    Ahmed, Faheem; Arshi, Nishat; Anwar, M S; Koo, Bon Heun

    2014-11-01

    In this work, undoped and Cr-doped single-crystalline ZnO nanorods were prepared by a facile microwave assisted solution method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that Cr-doped ZnO was comprised of single phase nature with hexagonal wurtzite structure up to 5% Cr doping, however, secondary phase ZnCr2O4 appeared upon further increasing the Cr dopant concentration. Field emission scanning electron microscopy (FESEM) and TEM micrographs suggested that the undoped nanorods with an average length of -~2 μm and a diameter in the range of 150-200 nm, respectively were observed. Interestingly, the size of nanorods decreased with the increase of Cr concentration in ZnO. Optical studies depicted that the energy bandgap was decreased with the increase of Cr concentration. Raman scattering spectra of Cr-doped ZnO revealed the lower frequency shift of E2(high) phonon mode with the increase in concentration of Cr dopant, suggested the successful doping of Cr into Zn site in ZnO. Magnetic studies showed that Cr-doped ZnO exhibited room temperature ferromagnetism (RTFM) and the value of magnetization was continuously decreased with the increase in Cr doping.

  19. Joule-heating-supported plasma filamentation and branching during subcritical microwave irradiation

    Science.gov (United States)

    Takahashi, Masayuki; Kageyama, Yoshiaki; Ohnishi, Naofumi

    2017-05-01

    Breakdown physics induced by a subcritical microwave was numerically reproduced by using a two-dimensional effective diffusion model for plasma transport and combining it with Maxwell's equations and a neutral gas dynamics equation. A discrete plasma structure was obtained when E0,rms/Ec ≧0.69 , where E0,rms is the root-mean-square of the incident electric field and Ec is the breakdown threshold, because an overcritical field that exceeded the breakdown threshold was formed in a region away from the bulk plasma by the wave reflection when the plasma reflectivity was increased by joule heating. However, a continuous plasma structure with a branching pattern was formed when E0,rms/Ec <0.69 because the enhanced electric-field region away from the bulk plasma never exceeded the breakdown threshold even when the plasma reflectivity increased. The propagation speed of the plasma front drastically decreased when E0,rms/Ec <0.69 because the plasma propagation was sustained by strong gas expansion, which required more time than wave-reflection and ionization processes.

  20. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950`s are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  1. Reactor Materials Program: Mechanical properties of irradiated Types 304 and 304L stainless steel weldment components

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.L.; Caskey, G.R. Jr.

    1991-12-01

    The vessels (reactor tanks) of the Savannah River Site nuclear production reactors constructed in the 1950's are comprised of Type 304 stainless steel with Type 308 stainless steel weld filler. Irradiation exposure to the reactor tank sidewalls through reactor operation has caused a change in the mechanical properties of these materials. A database of as-irradiated mechanical properties for site-specific materials and irradiation conditions has been produced for reactor tank structural analyses and to quantify the effects of radiation-induced materials degradation for evaluating reactor service life. The data has been collected from the SRL Reactor Materials Program (RMP) irradiations and testing of archival stainless steel weldment components and from previous SRL programs to measure properties of irradiated reactor Thermal Shield weldments and reactor tank (R-tank) sidewall material. Irradiation programs of the RMP are designed to quantify mechanical properties at tank operating temperatures following irradiation to present and future tank wall maximum exposure conditions. The exposure conditions are characterized in terms of fast neutron fluence (E{sub n} > 0.1 MeV) and displacements per atom (dpa){sup 3}. Tensile properties, Charpy-V notch toughness, and elastic-plastic fracture toughness were measured for base, weld, and weld heat-affected zone (HAZ) weldment components from archival piping specimens following a Screening Irradiation in the University of Buffalo Reactor (UBR) and following a Full-Term Irradiation in the High Flux Isotope Reactor (HFIR).

  2. Detoxification mechanism of asbestos materials by microwave treatment.

    Science.gov (United States)

    Yoshikawa, N; Kashimura, K; Hashiguchi, M; Sato, M; Horikoshi, S; Mitani, T; Shinohara, N

    2015-03-02

    The detoxification mechanism of asbestos materials was investigated through simulations and experiments. The permittivities of pure CaO and Mg3Si4O12, as quasi-asbestos materials, were measured using the cavity perturbation method. The real and imaginary parts of the relative permittivity (ɛr' and ɛr″) of CaO are functions of temperature, and numerical simulations revealed the thermal distributions in an electromagnetic field with respect to both asbestos shape and material configuration based on permittivity. Optical microscopic observation revealed that the thickness of chrysotile fibers decreased as a result of CaO heating. The heating mechanism of asbestos materials has been determined using CaO phase, and the detoxification mechanism of asbestos materials was discussed based on the heating mechanism.

  3. Kinetics of Catalytic Synthesis of Ethyl Acetate under Microwave Irradiation%微波作用下的乙酸乙酯合成反应动力学

    Institute of Scientific and Technical Information of China (English)

    丁志伟; 丁辉; 侯钧

    2012-01-01

    为揭示微波辐射效应对非均相酯化反应动力学的影响,研究了微波加热催化合成乙酸乙酯的酯化反应动力学,并与常规动力学作了对比.在自制微波功率连续可调、红外测温已校正的反应装置中,重复测定了反应温度为60,65,70和75℃时的正、逆反应速率常数,得到了Arrhenius方程参数.微波加热下的反应活化能为51.719 kJ/mol,指前因子为582.9:常规水浴加热下的反应活化能为48.581 kJ/mol,指前因子为169.2.研究结果表明,在研究的反应温度范围内,微波改变了反应动力学,加快了反应速率,存在微波非热效应,但并不改变反应平衡常数.%In order to reveal the microwave irradiation effect on the heterogeneous esterification reactions, the kinetics of catalytic synthesis of ethyl acetate under microwave irradiation was studied, and then comparison was made with the conventional kinetics. A set of microwave reaction apparatus was designed with a continuously adjustable microwave power and an infrared temperature sensor. Experiments were carried out at the reaction temperature of 60, 65, 70 and 75℃, and the rate constants and Arrhenius parameters were then obtained. Under the microwave heating, the activation energy is 51.719 kJ/mol and the pre-exponential factor is 582.9; while under conventional waterbath heating, the reaction activation energy and pre-exponential factor are 48.581 kJ/mol and 169.2, respectively. The experimental results show that under microwave heating, the reaction kinetics has been changed, and the reaction rate is enhanced within certain reaction temperature range, which indicates the existence of microwave non-thermal effect. However, the reaction equilibrium constant is not changed between the microwave and conventional heating.

  4. Irradiation creep of 3C-SiC and microstructural understanding of the underlying mechanisms

    Science.gov (United States)

    Kondo, Sosuke; Koyanagi, Takaaki; Hinoki, Tatsuya

    2014-05-01

    Irradiation-induced creep in high-purity silicon carbide was studied by an ion-irradiation method under various irradiation conditions. The tensioned surfaces of bent thin specimens were irradiated with 5.1 MeV Si2+ ions up to 3 dpa at 280-1200 °C, which is referred to as a single-ion experiment. Additional He+ ions were irradiated simultaneously in the dual-ion experiment to study the effects of transmuted helium on irradiation creep. Irradiation creep was observed above 400 °C in the single-ion case, where a linear relationship between irradiation creep and swelling (C/S) was observed at 400-800 °C for all stress levels (150, 225, and 300 MPa). The proportional constant of the C/S relationship was strongly dependent on temperature and stress. A rapid reduction in creep strain was observed above 1000 °C. On the basis of the microstructural analysis, anisotropic distribution of self-interstitial atom (SIA) clusters was suspected to be the primary creep mechanism. Some interesting results were obtained from re-irradiation under stress after the irradiation without stress. The creep strain was significantly retarded by pre-irradiation to even 0.01 dpa at 400 and 600 °C. This implies that the loop orientation was determined very early in the irradiation regime. For the dual-ion cases, irradiation creep was absent or very limited at all irradiation temperatures studied (400-800 °C). Microstructural analysis indicated that helium inhibited the stable growth of SIA clusters and prevented them from exhibiting anisotropic distribution.

  5. Restricting the ageing degradation of the mechanical properties of gamma irradiated UHMWPE using MWCNTs.

    Science.gov (United States)

    Rama Sreekanth, P S; Kanagaraj, S

    2013-05-01

    Property degradation of the medical grade polymers after gamma irradiation is the primary concern that limits longevity of them. Though the conventional antioxidant material helps to reduce the degradation but it limits the degree of crosslinking of the polymer. The objective of the present work is to study the influence of multi walled carbon nanotubes (MWCNTs) on restricting the degradation of mechanical properties of medical grade ultra high molecular weight polyethylene (UHMWPE) after its irradiation. UHMWPE was reinforced by chemically treated MWCNTs at different concentrations such as 0.5, 1.0, 1.5, and 2.0 wt%. The test samples were then subjected to Co⁶⁰ gamma irradiation with an integral dose of 25, 50, 75 and 100 kGy in air. The mechanical properties of irradiated samples were evaluated within 10 days, 60 and 120 days after irradiation. It was observed that the mechanical properties of virgin UHMWPE and nanocomposites were enhanced immediately after irradiation but they were found to be reduced at later stages. It was also observed that the presence of MWCNTs limited the ageing degradation of the mechanical properties of UHMWPE. Raman spectroscopic and TEM studies confirmed the formation of irradiation induced defects on the MWCNTs. Electron spin resonance studies showed that the relative radical intensity of virgin UHWMPE was reduced significantly with an increase of MWCNTs concentration confirming the radical scavenging ability of them. It is concluded that MWCNTs restricted the ageing degradation of irradiated UHMWPE.

  6. Effects of low-temperature neutron irradiation on the mechanical properties of BCC metals

    Science.gov (United States)

    Kitajima, K.; Abe, H.; Aono, Y.; Kuramoto, E.; Takamura, S.

    1982-08-01

    Tensile properties, together with the effects of point-irradiation annealings on them, were measured on single crystals of pure iron, iron containing 200 at. ppm carbon, and pure molybdenum, which were irradiated at 5 K in reactor JRR-3 and stored at 77 K, at the test temperatures of 4.2-800 K. Their measurements were compared with those irradiated by 2.5 and 28 MeV electrons at 77 K to elucidate the characteristics of neutron irradiation. Interpretations were then presented for the mechanisms of softening and hardening based on the interactions of defects and defect clusters formed in various annealing stages with screw dislocation in bcc metals.

  7. Proton irradiation effects on advanced digital and microwave III-V components

    Energy Technology Data Exchange (ETDEWEB)

    Hash, G.L.; Schwank, J.R.; Shaneyfelt, M.R.; Sandoval, C.E.; Connors, M.P.; Sheridan, T.J.; Sexton, F.W.; Slayton, E.M.; Heise, J.A. [Sandia National Labs., Albuquerque, NM (United States); Foster, C. [Indiana University Cyclotron Facility, Bloomington, IN (United States)

    1994-09-01

    A wide range of advanced III-V components suitable for use in high-speed satellite communication systems were evaluated for displacement damage and single-event effects in high-energy, high-fluence proton environments. Transistors and integrated circuits (both digital and MMIC) were irradiated with protons at energies from 41 to 197 MeV and at fluences from 10{sup 10} to 2 {times} 10{sup 14} protons/cm{sup 2}. Large soft-error rates were measured for digital GaAs MESFET (3 {times} 10{sup {minus}5} errors/bit-day) and heterojunction bipolar circuits (10{sup {minus}5} errors/bit-day). No transient signals were detected from MMIC circuits. The largest degradation in transistor response caused by displacement damage was observed for 1.0-{mu}m depletion- and enhancement-mode MESFET transistors. Shorter gate length MESFET transistors and HEMT transistors exhibited less displacement-induced damage. These results show that memory-intensive GaAs digital circuits may result in significant system degradation due to single-event upset in natural and man-made space environments. However, displacement damage effects should not be a limiting factor for fluence levels up to 10{sup 14} protons/cm{sup 2} [equivalent to total doses in excess of 10 Mrad(GaAs)].

  8. Metamaterials in microwaves, optics, mechanics, thermodynamics, and transport

    Science.gov (United States)

    Koschny, Thomas; Soukoulis, Costas M.; Wegener, Martin

    2017-08-01

    We review the status of metamaterials on the occasion of the 15th birthday of the field with particular emphasis on our own contributions. Metamaterials in electromagnetism, mechanics, thermodynamics, and transport are covered. We emphasize that 3D printing, also known as additive manufacturing, inspires metamaterials—and vice versa.

  9. Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening

    Science.gov (United States)

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; Vo, Hi T.; Maloy, Stuart A.; Hosemann, Peter; Mara, Nathan A.

    2017-09-01

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current work focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-induced increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa-30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. The disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.

  10. Mechanism of Irradiation Assisted Cracking of Core Components in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary S; Atzmon, Michael; Wang, Lumin

    2003-04-28

    The overall goal of the project is to determine the mechanism of irradiation assisted stress corrosion cracking (IASCC). IASCC has been linked to hardening, microstructural and microchemical changes during irradiation. Unfortunately, all of these changes occur simultaneously and at similar rates during irradiation, making attribution of IASCC to any one of these features nearly impossible to determine. The strategy set forth in this project is to develop means to separate microstructural from microchemical changes to evaluate each separately for their effect on IASCC. In the first part, post irradiation annealing (PIA) treatments are used to anneal the irradiated microstructure, leaving only radiation induced segregation (RIS) for evaluation for its contribution to IASCC. The second part of the strategy is to use low temperature irradiation to produce a radiation damage dislocation loop microstructure without radiation induced segregation in order to evaluate the effect of the dislocation microstructure alone.

  11. Cosmological perturbations of quantum-mechanical origin and anisotropy of the microwave background

    Science.gov (United States)

    Grishchuk, L. P.

    1993-01-01

    Cosmological perturbations generated quantum mechanically (as a particular case, during inflation) possess statistical properties of squeezed quantum states. The power spectra of the perturbations are modulated and the angular distribution of the produced temperature fluctuations of the cosmic microwave background radiation is quite specific. An exact formula is derived for the angular correlation function of the temperature fluctuations caused by squeezed gravitational waves. The predicted angular pattern can, in principle, be revealed by observations like those by the Cosmic Background Explorer.

  12. SYNTHESIS OF ISOAMYL SALICYLATE UNDER MICROWAVE IRRADIATION%微波辐射催化合成水杨酸异戊酯

    Institute of Scientific and Technical Information of China (English)

    曹汉迪; 丁淮军; 陈赞安; 吴旭辉; 张立庆

    2011-01-01

    以水杨酸和异戊醇为原料,运用微波辐射催化合成水杨酸异戊酯.通过L16 (44)正交实验,用Matlab对实验数据进行最优化处理,讨论了各因素对收率的影响.结果表明:在n(水杨酸):n(异戊醇)=1:5,V(催化剂)=1.5 mL,微波输出功率325 W,辐射时间40 min条件下,水杨酸异戊酯收率为84.9%.%Isoamyl salicylate was synthesized with salicylic acid and isoamyl alcohol as raw materials under microwave irradiation. Using L16 (44) orthogonally arranged experiments with the Matlab optimization, the factors influencing the synthesis were discussed. The results by the orthogonally arranged experiments showed that the optimal conditions were: the molar ratio of salicylic acid to Isoamyl alcohol of 1:5, 1. 5 mL sulfuric acid as catalyst, microwave power 325 W and microwave irradiation time 40 min. Under these conditions, the esterification yield could reach 84. 9%.

  13. Standard Practice for Measurement of Mechanical Properties During Charged-Particle Irradiation

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This practice covers the performance of mechanical tests on materials being irradiated with charged particles. These tests are designed to simulate or provide understanding of, or both, the mechanical behavior of materials during exposure to neutron irradiation. Practices are described that govern the test material, the particle beam, the experimental technique, and the damage calculations. Reference should be made to other ASTM standards, especially Practice E 521. Procedures are described that are applicable to creep and creep rupture tests made in tension and torsion test modes. 1.2 The word simulation is used here in a broad sense to imply an approximation of the relevant neutron irradiation environment. The degree of conformity can range from poor to nearly exact. The intent is to produce a correspondence between one or more aspects of the neutron and charged particle irradiations such that fundamental relationships are established between irradiation or material parameters and the material respons...

  14. Comparative effects of extremely high power microwave pulses and a brief CW irradiation on pacemaker function in isolated frog heart slices.

    Science.gov (United States)

    Pakhomov, A G; Mathur, S P; Doyle, J; Stuck, B E; Kiel, J L; Murphy, M R

    2000-05-01

    The existence of specific bioeffects due to high peak power microwaves and their potential health hazards are among the most debated but least explored problems in microwave biology. The present study attempted to reveal such effects by comparing the bioeffects of short trains of extremely high power microwave pulses (EHPP, 1 micros width, 250-350 kW/g, 9.2 GHz) with those of relatively low power pulses (LPP, 0.5-10 s width, 3-30 W/g, 9.2 GHz). EHPP train duration and average power were made equal to those of an LPP; therefore both exposure modalities produced the same temperature rise. Bioeffects were studied in isolated, spontaneously beating slices of the frog heart. In most cases, a single EHPP train or LPP immediately decreased the inter-beat interval (IBI). The effect was proportional to microwave heating, fully reversible, and easily reproducible. The magnitude and time course of EHPP- and LPP-induced changes always were the same. No delayed or irreversible effects of irradiation were observed. The same effect could be repeated in a single preparation numerous times with no signs of adaptation, sensitization, lasting functional alteration, or damage. A qualitatively different effect, namely, a temporary arrest of preparation beats, could be observed when microwave heating exceeded physiologically tolerable limits. This effect also did not depend on whether the critical temperature rise was produced by LPP or EHPP exposure. Within the studied limits, we found no indications of EHPP-specific bioeffects. EHPP- and LPP-induced changes in the pacemaker rhythm of isolated frog heart preparation were identical and could be entirely attributed to microwave heating.

  15. Fluorescence, Decay Time, and Structural Change of Laser Dye Cresyl Violet in Solution due to Microwave Irradiation at GSM 900/1800 Mobile Phone Frequencies

    Directory of Open Access Journals (Sweden)

    Fuat Bayrakceken

    2012-01-01

    Full Text Available Microwave irradiation at GSM 900/1800 MHz mobile phone frequencies affects the electronic structure of cresyl violet in solution. These changes are important because laser-dye cresyl violet strongly bonds to DNA- and RNA-rich cell compounds in nerve tissues. The irradiation effects on the electronic structure of cresyl violet and its fluorescence data were all obtained experimentally at room temperature. For most laser dyes, this is not a trivial task because laser dye molecules possess a relatively complex structure. They usually consist of an extended system of conjugated double or aromatic π-bonds with attached auxochromic (electron donating groups shifting the absorption band further towards longer wavelength. Because of the intrinsically high degree of conjugation, the vibrational modes of the molecular units couple strongly with each other. We found that the fluorescence quantum yield was increased from to due to intramolecular energy hopping of cresyl violet in solution which is exposed to microwave irradiation at mobile phone frequencies, and the photonic product cannot be used as a laser dye anymore.

  16. Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Alsabbagh, Ahmad, E-mail: ahalsabb@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Sarkar, Apu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Miller, Brandon [ATR National Scientific User Facility, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Burns, Jatuporn [Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Squires, Leah; Porter, Douglas; Cole, James I. [ATR National Scientific User Facility, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Murty, K.L. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2014-10-06

    Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) have been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.37 dpa. Atom probe tomography revealed manganese and silicon-enriched clusters in both UFG and CG steel after neutron irradiation. Mechanical properties were characterized using microhardness and tensile tests, and irradiation of UFG carbon steel revealed minute radiation effects in contrast to the distinct radiation hardening and reduction of ductility in its CG counterpart. After irradiation, micro hardness indicated increases of around 9% for UFG versus 62% for CG steel. Similarly, tensile strength revealed increases of 8% and 94% respectively for UFG and CG steels while corresponding decreases in ductility were 56% versus 82%. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation while no significant change was observed in UFG steel, revealing better radiation tolerance. Quantitative correlations between experimental results and modeling were demonstrated based on irradiation induced precipitate strengthening and dislocation forest hardening mechanisms.

  17. Microwave Assisted Synthesis of ZnO Nanoparticles: Effect of Precursor Reagents, Temperature, Irradiation Time, and Additives on Nano-ZnO Morphology Development

    Directory of Open Access Journals (Sweden)

    Gastón P. Barreto

    2013-01-01

    Full Text Available The effect of different variables (precursor reagents, temperature, irradiation time, microwave radiation power, and additives addition on the final morphology of nano-ZnO obtained through the microwave assisted technique has been investigated. The characterization of the samples has been carried out by field emission scanning electron microscopy (FE-SEM in transmission mode, infrared (FTIR, UV-Vis spectroscopy, and powder X-ray diffraction (XRD. The results showed that all the above-mentioned variables influenced to some extent the shape and/or size of the synthetized nanoparticles. In particular, the addition of an anionic surfactant (sodium di-2-ethylhexyl-sulfosuccinate (AOT to the reaction mixture allowed the synthesis of smaller hexagonal prismatic particles (100 nm, which show a significant increase in UV absorption.

  18. Effect of e-beam irradiation and microwave heating on the fatty acid composition and volatile compound profile of grass carp surimi

    Science.gov (United States)

    Zhang, Hongfei; Wang, Wei; Wang, Haiyan; Ye, Qingfu

    2017-01-01

    In this study, we evaluated the effects of e-beam irradiation(1-7 kGy) and irradiation coupled to microwave heating (e-I-MC, 70 °C internal temperature) on the fatty acid composition and volatile compound profile of grass carp surimi. Compared to control samples, e-beam irradiation generated three novel volatile compounds (heptane, 2,6-dimethyl-nonane, and dimethyl disulfide) and increased the relative proportions of alcohols, aldehydes, and ketones. Meanwhile, e-I-MC significantly increased aldehyde levels and generated five heterocyclic compounds along with these three novel compounds. No significant difference in volatile compounds were detected in e-I-MC samples with increasing irradiation dose (p>0.05), comparing to the control group. E-beam irradiation at 5 and 7 kGy increased the levels of saturated fatty acids (SFAs) and decreased the levels of unsaturated fatty acids (p≤0.05), but did not affect the content of trans fatty acid levels (p>0.05). Irradiation, which had no significant effects on (Eicosapentaenoic acid) EPA, decreased (Docose Hexaenoie Acid) DHA levels. In the e-I-MC group, SFA levels increased and PUFA levels decreased. Additionally, MUFA levels were unaffected and trans fatty acid levels increased slightly following e-I-MC.

  19. Preparation of Orally Disintegrating Tablets Containing Powdered Tea Leaves with Enriched Levels of Bioactive Compounds by Means of Microwave Irradiation Technique.

    Science.gov (United States)

    Tanaka, Hironori; Iwao, Yasunori; Izumikawa, Masahiro; Sano, Syusuke; Ishida, Hitoshi; Noguchi, Shuji; Itai, Shigeru

    2016-01-01

    In the present study, a microwave treatment process has been applied to prepare orally disintegrating tablets (ODTs) containing powdered tea leaves with enriched levels of the anti-inflammatory compounds such as chafuroside A (CFA) and chafuroside B (CFB). The use of distilled water as the adsorbed and granulation solvents in this preparation process afforded tablets with a long disintegration time (more than 120 s). The CFA and CFB contents of these tablets did not also change after 4 min of microwave irradiation due to the tablet temperature, which only increased to 100°C. In contrast, the tablet temperature increased up to 140°C after 3 min of microwave irradiation when a 1.68 M Na2HPO4 solution instead of distilled water. Notably, the disintegration time of these tablets was considerably improved (less than 20 s) compared with the microwave-untreated tablets, and there were 7- and 11-fold increases in their CFA and CFB contents. In addition, the operational conditions for the preparation of the tablets were optimized by face-centered composite design based on the following criteria: tablet hardness greater than 13 N, disintegration time less than 30 s and friability less than 0.5%. The requirements translated into X1 (the amount of granulation solvent), X2 (tableting pressure) and X3 (content of the powdered tea leaves) values of 45%, 0.43 kN and 32%, respectively, and the ODTs containing powdered tea leaves prepared under these optimized conditions were found to show excellent tablet properties and contain enriched levels of CFA and CFB.

  20. Low dose of continuous-wave microwave irradiation did not cause temperature increase in muscles tissue adjacent to titanium alloy implants--an animal study.

    Science.gov (United States)

    Ye, Dongmei; Xu, Yiming; Fu, Tengfei; Zhang, Han; Feng, Xianxuan; Wang, Gang; Jiang, Lan; Bai, Yuehong

    2013-12-23

    Research studies on the influence of radiofrequency electromagnetic radiation on implants in vitro have failed to investigate temperature changes in the tissues adjacent to the implants under microwave therapy. We therefore, used a rabbit model in an effort to determine the impact of microwave therapy on temperature changes in tissues adjacent to the titanium alloy implants and the safety profile thereof. Titanium alloy internal fixation plates were implanted in New Zealand rabbits in the middle of femur. Microwave therapy was performed by a 2450 MHz microwave generator 3 days after the surgery. Temperature changes of muscles adjacent to the implants were recorded under exposure to dose-gradient microwave radiation from 20w to 60w. Significant difference between control and microwave treatment group at peak temperatures (T(peak)) and temperature gap (T(gap) = T(peak)-T(vally)) were observed in deep muscles (T(peak), 41.63 ± 0.21°C vs. 44.40 ± 0.17°C, P muscles (T(peak), 41.53 ± 0.15°C vs. 42.03 ± 0.23°C, P = 0.04; T(gap), 5.23 ± 0.21°C vs. 5.80 ± 0.17°C, P = 0.013) under 60 w, and deep muscles (T(peak), 40.93 ± 0.25°C vs. 41.87 ± 0.23°C, P = 0.01; T(gap), 4.73 ± 0.20°C vs. 5.63 ± 0.35°C, P = 0.037) under 50w, but not under 20, 30 and 40w. Our results suggest that low-dose (20w-40w) continuous-wave microwave irradiation delivered by a 2450 MHz microwave generator might be a promising treatment for patients with titanium alloy internal fixation, as it did not raise temperature in muscle tissues adjacent to the titanium alloy implant.

  1. Cosmological perturbations of quantum mechanical origin and anisotropy of the microwave background radiation

    CERN Document Server

    Grishchuk, L P

    1994-01-01

    A theory of quantum-mechanical generation of cosmological perturbations is considered. The conclusion of this study is that if the large-angular-scale anisotropy in the cosmic microwave background radiation is caused by the long-wavelength cosmological perturbations of quantum mechanical origin, they are, most likely, gravitational waves, rather than density perturbations or rotational perturbations. Some disagreements with previous publications are clarified. This contribution to the Proceedings is based on Reference~[34]. NOTE: To generate an output, please extract and save the file crckapb.sty which appear at the beginning of the main file.

  2. Mechanical behavior of styrene grafted PVC films by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Jessica R.; Moura, Eduardo; Somessari, Elisabeth S.R.; Silveira, Carlos G.; Paes, Helio A.; Souza, Carlos A.; Manzoli, Jose E.; Geraldo, Aurea B.C., E-mail: ageraldo@ipen.br, E-mail: jmanzoli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The polyvinyl chloride (PVC) is a technological and low cost polymer, however it presents high sensitivity to high energy irradiation because of the weakness of carbon-chloride bond face to carbon-carbon and carbon-hydrogen bonds. Grafting is a type of co-polymerization process that can allow it an increase of mechanical characteristics. The aim of this work is to evaluate the mechanical properties of styrene grafted PVC by electron beam irradiation using mutual and pre-irradiation methods to verify the mechanical resistance changes of obtained product whether grafting process is applied from non-irradiated or from pre-irradiated substrates. The irradiation procedures were performed in atmosphere air or inert atmosphere and the irradiation conditions comprised doses from 10 kGy to 100 kGy and dose rates of 2.2 kGy/s and 22.4 kGy/s. The styrene grafted samples were analyzed by gravimetry to determinate the grafting yield; the final values have been averaged from a series of three measurements. The Mid-A TR-FTIR was the spectrophotometer technique used for qualitative/semi-quantitative analysis of grafted samples. The Young's module and tensile strength of pre-irradiated and grafted PVC samples at both methods were measured at a Lloyd LXR tensile tester at a cross-head speed of 10.00 mm/min. We observed the decrease of Young's module and tensile strength with the increase of absorbed dose at pre-irradiated PVC samples. These mechanical parameters results are discussed. (author)

  3. Synthesis of 14-Fluorophenyl-14H-Dibenzo[a,j]xanthenes and Their Derivatives under Microwave Irradiation and Solvent-free Conditions%Synthesis of 14-Fluorophenyl-14H-Dibenzo[a,j]xanthenes and Their Derivatives under Microwave Irradiation and Solvent-free Conditions

    Institute of Scientific and Technical Information of China (English)

    金见安; 章健民; 商文丽; 朱仕正

    2011-01-01

    A facile and efficient synthesis of 14-fluorophenyl-14H-dibenzo[a,j]xanthenes has been developed by one-pot condensation of fluorinated benzaldehydes with β-naphthol in the presence of p-TSA·H2O under microwave irradiation and solvent-free conditions. These products are conveniently oxidized to 14-fluorophenyl-14-hydroxydibenzo[a,j]xanthenes by PbO2 in acetic acid in good yields.

  4. Theoretical analysis on efficient microwave heating of materials with various square cross sections in the presence of lateral and radial irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Tanmay [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)], E-mail: tanmay@iitm.ac.in

    2008-02-21

    A theoretical analysis has been carried out to analyse the efficient heating process of long rectangular samples with various orientations of square cross sections in the presence of lateral and radial irradiation. Lateral irradiation represents the sample incident at one direction with the source at infinity whereas radial irradiation represents the situation where the sample is incident with microwave radiation from the coaxial cylindrical cavity at infinity. Electric field equations have been solved with a hypothetical circular domain which surrounds the square cross sections and facilitates the solution of field equations with the radiation boundary condition. The electric field and temperature have been solved using the finite element method for the composite domain. Generalized characteristics on power absorption and temperature distribution as functions of the wave number (N{sub w}) and the penetration number (N{sub p}) have been obtained. Radial irradiation gives a larger power absorption for N{sub w} {<=} 0.56 and either lateral or radial irradiation is favoured for N{sub w} {>=} 0.56 based on various N{sub p} values. The aligned square cross section is found to give larger heating rates in the presence of dominant lateral irradiation. The detailed spatial distributions of power and temperature are extensively studied and the suitability of either radial or lateral irradiation for a specific cross section has been recommended. The large heating rate as well as minimal thermal runaway become the competing factors for the selection of a specific heating strategy. The case studies are demonstrated for high and low lossy substances (beef and bread)

  5. 微波法合成烯基膦酸酯类化合物%Synthesis of Vinylphosphonates under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    李盛男; 徐兰婷; 何菱

    2011-01-01

    以β-硝基芳基乙烯和亚磷酸三乙酯为原料,二氯甲烷为溶剂,利用微波法合成了一系列烯基膦酸酯类化合物,其结构经H NMR,C NMR和HR-MS确证.%A series of vinylphosphonates were synthesized from β-nitro-arylethylene and triethyl phosphite in CH2Cl2 under microwave irradiation. The structures were confirmed by 1H NMR, 13C NMR and HR-MS.

  6. 1-Methylimidazolium trifluoroacetate [Hmim]Tfa: Mild and efficient Brønsted acidic ionic liquid for Hantzsch reaction under microwave irradiation

    Indian Academy of Sciences (India)

    Jemin R Avalani; Devji S Patel; Dipak K Raval

    2012-09-01

    One pot synthesis of 1,4-dihydropyridine derivatives was achieved via condensation of various -ketoesters with aromatic/aliphatic aldehydes and ammonium acetate. The reaction was catalysed by a stable and reusable Brønsted acidic ionic liquid (IL), 1-methyl-imidazolium trifluoroacetate ([Hmim]Tfa), under microwave (MW) irradiation. The synergistic combination ofMWwith IL can potentially go a long way tomeet the increasing demand for chemical processes. This homogeneous catalytic procedure is simple and efficient. The catalyst can be reused at least four times with almost complete retention in its activity.

  7. InCl3-Catalyzed [2+3] Cycloaddition Reaction: A Rapid Synthesis of 5-Substituted 1H-tetrazole under Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Vijay S. Patil

    2012-01-01

    Full Text Available A series of 5-substituted 1H-tetrazole were efficiently prepared by InCl3 catalyzed (10 mol % from structurally divert organic nitriles with sodium azide under the influence of microwave irradiation. The present protocol was successfully applied to the aliphatic, aryl, benzylic and heterocyclic nitriles and corresponding 5-substituted 1H-tetrazole were obtained in good to excellent yield (70-96%. This method gives remarkable advantages such as short reaction time, simple work-up procedure and economical beneficial.

  8. Selective oxidation of rhodinol to citral using H{sub 2}O{sub 2}-platinum black system under microwave irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chong, D. J. W.; Latip, J.; Hasbullah, S. A. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Sastrohamidjojo, H. [Department of Chemistry, Gadjah Mada University, Yogyakarta (Indonesia)

    2014-09-03

    The oxidation method utilising H{sub 2}O{sub 2}-Pt black system was successfully adapted in the oxidation of rhodinol which is a mixture form of geraniol and citronellol. This green oxidation found to be selectively converted geraniol to citral using conventional method. The implementation of microwave irradiation (175 Watt, 90°C, 30 mins) and a higher molar of H{sub 2}O{sub 2} further improved the conversion rate (72.6%) and selectivity (81%) as compared to the conventional method.

  9. Regiospecific one-pot synthesis of pyrimido[4,5-d]pyrimidine derivatives in the solid state under microwave irradiations.

    Science.gov (United States)

    Prajapati, Dipak; Gohain, Mukut; Thakur, Ashim J

    2006-07-01

    Electron rich 6-[(dimethylamino)methylene]amino uracil 1, undergoes [4+2] cycloaddition reactions with various in situ generated glyoxylate imine and imine oxides 6 to provide novel pyrimido[4,5-d]pyrimidine derivatives of biological significance, after elimination of dimethylamine from the (1:1) cycloadducts and oxidative aromatisation. This procedure provides a convenient method for the direct synthesis of pyrimido[4,5-d]pyrimidines in excellent yields when carried out in the solid state and under microwave irradiations.

  10. Protective effects of quinacrine on lung injury induced by microwave irradiation in mice%阿的平对高功率微波辐射小鼠肺损伤的保护作用

    Institute of Scientific and Technical Information of China (English)

    吴燕; 刘淑红; 林凯; 葛学铭; 王飞; 苏振涛; 周红梅; 赵永岐; 范明

    2012-01-01

    Objective: To investigate the effect of quinacrine on lung injury induced by microwave irradiation in mice. Methods: One hundred and thirty BALB/c mice were randomly divided into four groups: normal control group ( n = 10) , radiation control group (re = 40), quinacrine low-dose group (12.6 mg/kg, re = 40) and quinacrine high-dose group (50.4 mg/kg, re = 40). Mice of the two quinacrine groups received quinacrine by gavage (20 ml/kg) 1 hour before microwave irradiation, and normal saline was given instead of quinacrine in the radiation control group. All animals, except those of normal control group, received 50 mW/cm2 microwave irradiation for 30 minutes. Pathological changes in lung were observed immediately after irradiation, and 1 day, 2 days, 7 days after irradiation in radiation control group and quinacrine groups, and 7 days after irradiation experiment in normal control group. Meanwhile, heat shock protein 70 (HSP70) protein expression in lung was analyzed using Western Blot. Results: Pathological examination showed that 50 mW/cm2 microwave irradiation for 30 minutes induced lung damages as manifested by blood stasis, alveolar epithelial cell shedding, alveolar septal thinning and fracture, and bronchial congestion in mice lungs. However, in quinacrine groups, reduction in lung septal fracture and attenuation of lung tissue congestion were found compared with radiation control group. The improvement were more markedly at 2 days after irradiation, especially in quinacrine high dose group. Microwave irradiation up-regulated the expression of HSP70 to certain degree in lung, while quinacrine pretreatment further up-regulated the expression of HSP70, especially in quinacrine high dose group. Conclusions;The mechanism of quinacrine protection on lung injury induced by microwave irradiation may be attributed to an increase of HSP70 expression.%目的:探讨阿的平对高功率微波辐射小鼠肺组织的保护作用.方法:130只BALB/c小鼠随机分为4组:

  11. Influence of post irradiation annealing on the mechanical properties and defect structure of AISI 304 steel

    Energy Technology Data Exchange (ETDEWEB)

    Van Renterghem, W.; Van Dyck, S. [SCK-CEN, Mol (Belgium); Al Mazouzi, A. [EDF, Site les renardieres, Moret-sur-Loing (France)

    2011-07-01

    The effect of post irradiation annealing on the mechanical properties and the radiation induced defect structure was investigated on stainless steel, of type AISI 304, that was irradiated up to 24 dpa in the decommissioned Chooz A reactor. The material has been investigated both in the as-irradiated state as well as after post irradiation annealing. In the as-irradiated specimen the typical radiation induced defects were found as well as precipitates, most probably (Ni3Si), are present. Martensite phases with a bcc crystal structure were found near the grain boundaries. Annealing at 400 C had almost no effect on the radiation induced defects, but annealing at 500 C resulted in the immediate un-faulting of the Frank loops. As to the mechanical properties, annealing at 400 C did not strongly affect the yield strength and the ductility of the material, although the fraction of intergranular fracture during slow strain rate tensile tests (SSRT), under pressurised water reactor (PWR) condition, was significantly reduced. Annealing at 500 C did reduce the yield strength and restored substantially the ductility and the strain hardening capability of the material. The microstructure investigated by transmission electron microscopy correlates to the mechanical test results. It was found that the observed defect changes after post irradiation annealing provide a reasonable explanation for the observed changes of the mechanical properties obtained from SSRT under PWR chemical conditions. (authors)

  12. Influence of post irradiation annealing on the mechanical properties and defect structure of AISI 304 steel

    Energy Technology Data Exchange (ETDEWEB)

    Van Renterghem, W., E-mail: wvrenter@sckcen.be [SCK-CEN, Nuclear Materials Science, Boeretang 200, 2400 Mol (Belgium); Al Mazouzi, A.; Van Dyck, S. [SCK-CEN, Nuclear Materials Science, Boeretang 200, 2400 Mol (Belgium)

    2011-06-15

    The effect of post irradiation annealing on the mechanical properties and the radiation induced defect structure was investigated on stainless steel, of type AISI 304, that was irradiated up to 24 dpa in the decommissioned Chooz A reactor. The material was investigated both in the as-irradiated state as well as after post irradiation annealing. In the as-irradiated specimen the typical radiation induced defects were found as well as {gamma}'-precipitates (Ni{sub 3}Si). Annealing at 400 deg. C had almost no effect on the radiation induced defects, but annealing at 500 deg. C resulted in the immediate unfaulting of the Frank loops. As to the mechanical properties, annealing at 400 deg. C did not strongly affect the yield strength and the ductility of the material, although the fraction of intergranular fracture during slow strain rate tensile tests under pressurised water reactor conditions, was significantly reduced. Annealing at 500 deg. C did reduce the yield strength and restored substantially the ductility and the strain hardening capability of the material. The microstructure investigated by transmission electron microscopy correlates to the mechanical test results. It was found that the observed defect changes after post irradiation annealing provide a reasonable explanation for the observed changes of the mechanical properties.

  13. Preparation of nickel ferrite/carbon nanotubes composite by microwave irradiation technique for use as catalyst in photo-fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Foletto, E.L.; Rigo, C.; Severo, E.C.; Mazutti, M.A.; Dotto, G.L.; Jahn, S.L.; Sales, J.C. [Universidade Federal de Santa Maria (UFSM), RS (Brazil); Chiavone-Filho, O. [Universidade Federal do Rio Grande do Sul (UFRGS), RS (Brazil); Gundel, A.; Lucchese, M. [Universidade Federal do Pampa (UNIPAMPA), Bage, RS (Brazil)

    2016-07-01

    Full text: Nickel ferrite/multi-walled carbon nanotubes (NiFe2O4/MWCNTs) composite has been rapidly synthesized via microwave irradiation technique. The structural properties of the formed product was investigated by X-ray diffraction (XRD), N2 adsorption/desorption isotherms, thermogravimetric analysis (TGA), Raman spectroscopy and, scanning electron microscopy (SEM). The catalytic behavior of composite material was evaluated by the degradation of Amaranth dye in the photo-Fenton reaction under visible light irradiation. The overall results showed that the prepared composite was successfully synthesized, demonstrating good performance in the dye degradation, with higher degradation rate compared to the NiFe2O4. The high efficiency in dye degradation can be attributed to synergism between NiFe2O4 and MWCNTs. Therefore, NiFe2O4/MWCNTs composite can be used as promising photo-Fenton catalyst to degrade Amaranth dye from aqueous solutions. (author)

  14. The neutron irradiation effect on the mechanical properties and structure of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Fabritsiev, S.A. [D.V. Efremov Scientific Research Inst., St. Petersburg (Russian Federation); Pokrovsky, A.S.; Bagautdinov, R.M. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation)

    1999-10-01

    The neutron irradiation effect on the mechanical properties and structure of beryllium are presented. Irradiation was performed in the BOR-60 reactor up to doses of 0.7--1.1 {times} 10{sup 22} n/cm{sup 2} (E > 0.1 MeV) at irradiation temperatures of 350 C, 400 C, 520 C, 780 C. Two modifications of RF beryllium, i.e., DShG-200 and TShG-56, were chosen for investigation. For irradiation at temperatures of 350--400 C Be hardening due to the accumulation of radiation defect complexes. Hardening is accompanied with a sharp drop in plasticity at T{sub test} {le} 300 C. The fracture of samples is of brittle, mainly transcrystallite, type. High-temperature irradiation (T{sub irr} = 780 C) gives rise to large helium pores over the grain boundaries and smaller pores in the grain body. Fracture is brittle and intercrystalline at T{sub test} {ge} 600 C. Helium embrittlement is also accompanied with a drop in the Be mechanical properties. The conclusion is made that the irradiation temperature range, where irradiated beryllium has a satisfactory level of properties, is rather narrow: 300 C {le} T {le} 500 C.

  15. Mechanism of untargeted mutagenesis in UV-irradiated yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C.W.; Christensen, R.B.

    1982-06-01

    The SOS error-prone repair hypothesis proposes that untargeted and targeted mutations in E. coli both result from the inhibition of polymerase functions that normally maintain fidelity, and that this is a necessary precondition for translesion synthesis. Using mating experiments with excision deficient strains of Bakers' yeast, Saccharomyces cerevisiae, we find that up to 40% of cycl-91 revertants induced by UV are untargeted, showing that a reduction in fidelity is also found in irradiated cells of this organism. We are, however, unable to detect the induction or activation of any diffusible factor capable of inhibiting fidelity, and therefore suggest that untargeted and targeted mutations are the consequence of largely different processes. We propose that these observations are best explained in terms of a limited fidelity model. Untargeted mutations are thought to result from the limited capacity of processes which normally maintain fidelity, which are active during replication on both irradiated and unirradiated templates. Even moderate UV fluences saturate this capacity, leading to competition for the limited resource. Targeted mutations are believed to result from the limited, though far from negligible, capacity of lesions like pyrimidine dimers to form Watson-Crick base pairs.

  16. Mechanism of untargeted mutagenesis in UV-irradiated yeast

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C.W.; Christensen, R.B.

    1982-01-01

    The SOS error-prone repair hypothesis proposes that untargeted and targeted mutations in E. coli both result from the inhibition of polymerase functions that normally maintain fidelity, and that this is a necessary precondition for translesion synthesis. Using mating experiments with excision deficient strains of Bakers' yeast, Saccharomyces cerevisiae, we find that up to 40% of cycl-91 revertants induced by uv are untargeted, showing that a reduction in fidelity is also found in irradiated cells of this organism. We are, however, unable to detect the induction or activation of any diffusible factor capable of inhibiting fidelity, and therefore suggest that untargeted and targeted mutations are the consequence of largely different processes. We propose that these observations are best explained in terms of a limited fidelity model. Untargeted mutations are thought to result from the limited capacity of processes which normally maintain fidelity, which are active during replication on both irradiated and unirradiated templates. Targeted mutations are believed to result from the limited, though far from negligible, capacity of lesions like pyrimidine dimers to form Watson-Crick base pairs.

  17. γ-Ray irradiation stability and damage mechanism of glycidyl amine epoxy resin

    Science.gov (United States)

    Diao, Feiyu; Zhang, Yan; Liu, Yujian; Fang, Jun; Luan, Weilin

    2016-09-01

    Irradiation stability of triglycidyl-p-aminophenol (TGPAP) epoxy resins was evaluated according to the changes of physico-chemical and mechanical properties under 60Co γ-ray irradiation with a dose rate of 10 kGy/h. The result shows that with the increase of radiation dose, bending strength, thermal stability, free radical concentration and storage modulus of epoxy resin decrease first, then increase slightly, and decline sharply at the end with a dose of 960 kGy, due to competition effects between radiation-induced degradation and cross-linking reaction. The damage mechanism was derived by analyzing structure and composition change of AFG-90 resins after irradiation via IR and XPS. Irradiation will result in weak bond breaking such as Csbnd C and Csbnd N bond, and new bond forming like Cdbnd C and Cdbnd O.

  18. Studies on mechanical, thermal and morphological properties of irradiated recycled polyamide and waste rubber powder blends

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Medhat M., E-mail: medhat_smh@yahoo.co [National Center for Radiation Research and Technology, Nasr City, Cairo 11731 (Egypt); Badway, Nagwa A.; Gamal, Azza M. [Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo (Egypt); Elnaggar, Mona Y.; Hegazy, El-Sayed A. [National Center for Radiation Research and Technology, Nasr City, Cairo 11731 (Egypt)

    2010-05-01

    The aim of this article was to show the effect of gamma irradiation on mechanical and thermal properties of recycled polyamide (rPA) copolymer blended with different content of waste rubber powder (WRP). In order to study the structural modifications of prepared blends have been subjected to irradiation doses up to 200 kGy were applied to all samples. Non-irradiated blends were used as control samples. Mechanical properties, namely, tensile strength (TS), elastic modulus, elongation at break and hardness have been followed up as a function of irradiation dose and degree of loading with rubber content. Furthermore, the influence of radiation dose in the thermal parameters, melting temperature, heat of fusion, DELTAH{sub f} of the recycled PA and its blend with waste rubber powder (WRP) was also investigated.

  19. Microwave Rapid Sintering of Al-Metal Matrix Composites: A Review on the Effect of Reinforcements, Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Penchal Reddy Matli

    2016-06-01

    Full Text Available Aluminum metal matrix composites (AMMCs are light-weight materials having wide-spread use in the automobile and aerospace industries due to their attractive physical and mechanical properties. The promising mechanical properties of AMMCs are ascribed to the size and distribution of the reinforcement, as well as to the grain size of the matrix. Microwave rapid sintering involves internal heating of aluminum compacts by passing microwave energy through them. The main features of the microwave sintering technique are a short processing time and a low energy consumption. The aim of this review article is to briefly present the microwave rapid sintering process and to summarize the recent published work on the sintering and properties of pure Al and Al-based matrix composites containing different reinforcements.

  20. Mechanical and microstructural properties of neutron irradiated Fe-Cr-C alloys

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinovic, M.J.; Renterghem, W. van; Matijasevic, M.; Minov, B.; Lambrecht, M.; Chiapetto, M.; Malerba, L. [Studiecentrum voor Kernenergie/Centre d' Etude de l' Energie Nucleaire (SCK-CEN), Mol (Belgium); Toyama, T. [Institute for Materials Research, Tohoku University, Sendai (Japan)

    2016-11-15

    Defect properties of neutron irradiated Fe-Cr-C alloys and their influence on the mechanical behavior are studied by combining mechanical tests, microstructural examination, and the results of models. It is found that the initial microstructure of these alloys, determined by the Cr and C concentrations, as well as by the thermal treatment, can account for different defect formation and distribution after neutron irradiation. On the basis of these results, a correlation between defect properties and macroscopic mechanical behavior is proposed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. The influence of conventional heating and microwave irradiation on the resolution of (RS)-sec-butylamine catalyzed by free or immobilized lipases

    Energy Technology Data Exchange (ETDEWEB)

    Pilissao, Cristiane; Nascimento, Maria da Graca, E-mail: maria.nascimento@ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis,SC (Brazil); Carvalho, Patricia de Oliveira [Curso de Farmacia, Universidade Sao Francisco, Braganca Paulista, SP (Brazil)

    2012-09-15

    The lipases CAL-B, PSL, PSL-C, PSL-D, and A. niger lipase, free or immobilized in starch (obtained from two types of yam, known in Brazil as 'cara' (Discorea alata L.) and 'inhame' (Colocasia esculenta (L.) Schott) or gelatin films, were used in the acylation of (RS)-sec-butylamine with different acyl donors in various organic solvents applying conventional heating (CH) or microwave (MW) irradiation. In the case of free A. niger lipase, the conversion degrees were three times higher using MW irradiation when compared to conventional heating at 35 deg C. Using free A. niger lipase, the (R)-amide was obtained with a conversion degree of 21%, resulting in ee{sub p}> 99% and E-value (enantioselectivity value) > 200, in 1 min of reaction under MW irradiation. When the A. niger lipase was immobilized in yam starch films, the (R)-amide was obtained in moderate conversions of 8-25% after 3 or 5 min of reaction under MW irradiation, but with higher selectivity (eep > 99% and E > 200) in comparison with the free form (conversion degree of 45%, eep 81% and E value of 18). (author)

  2. Mechanical technologies for PIGMI. [Pion Generator for Medical Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Hansborough, L.D.

    1979-01-01

    PIGMI (Pion Generator for Medical Irradiations) is a compact linear proton accelerator designed for a hospital environment. The prototype of the low energy section of PIGMI has been designed and is being fabricated at the Los Alamos Scientific Laboratory. It is an accelerator design which makes use of several advanced or innovative technologies. The PIGMI Prototype consists of a 250 keV injector, a double harmonic buncher, a tape-wound 13 KG solenoid magnet, and four accelerator tanks with a total of 63 drift tubes of which 18 contain strong focusing quadrupoles of permanent magnets. The accelerator tanks are mild steel, copper-plated using a bright acid leveling technique. Drift tubes are stainless steel, fabricated using electron beam welding, shaped in a lathe and then copper plated. Drift tubes loaded with permanent magnets are sealed using laser welding. The samarium cobalt magnets are shaped by cutting and grinding techniques developed at Los Alamos.

  3. Microwave heating and the acceleration of polymerization processes

    Science.gov (United States)

    Parodi, Fabrizio

    1999-12-01

    Microwave power irradiation of dielectrics is nowadays well recognized and extensively used as an exceptionally efficient and versatile heating technique. Besides this, it revealed since the early 1980s an unexpected, and still far from being elucidated, capacity of causing reaction and yield enhancements in a great variety of chemical processes. These phenomena are currently referred to as specific or nonthermal effects of microwaves. An overview of them and their interpretations given to date in achievements in the microwave processing of slow-curing thermosetting resins is also given. Tailored, quaternary cyanoalkoxyalkyl ammonium halide catalysts, further emphasizing the microwave enhancements of curing kinetics of isocyanate/epoxy and epoxy/anhydride resin systems, are here presented. Their catalytic efficiency under microwave irradiation, microwave heatability, and dielectric properties are discussed and interpreted by the aid of the result of semi-empirical quantum mechanics calculations and molecule dynamics simulations in vacuo. An ion-hopping conduction mechanism has been recognized as the dominant source of the microwave absorption capacities of these catalysts. Dipolar relaxation losses by their strongly dipolar cations, viceversa, would preferably be responsible for the peculiar catalytic effects displayed under microwave heating. This would occur through a well-focused, molecular microwave overheating of intermediate reactive anionic groupings, they could indirectly cause as the nearest neighbors of such negatively-charged molecular sites.

  4. 微波辐射下固相反应合成二苯基甲基醚%Synthesis of Bis(diphenyl methyl)ether by Dry Reaction under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    路建美; 纪顺俊; 朱秀林; 程振平

    2000-01-01

    Bis(diphenyl methyl)ether was synthesized under microwave irradiation by dryreaction at ambient pressure. The rate of reaction was dramatically accelerated and high yield was obtained, comparing with that of methods using organic solvent as medium or using dry reaction by conventional heating. Keywords Diphenyl ketone, Bis (diphenyl methyl) ether, Microwave irradiation, Solid state.%在常压下用微波辐射固相反应的方法合成了二苯基甲基醚,与用有机溶剂为介质及传统的热固相反应方法相比,其反应速率快,产率高.

  5. Cadmium (II) pyrrolidine dithiocarbamate complex as single source precursor for the preparation of CdS nanocrystals by microwave irradiation and conventional heating process

    Science.gov (United States)

    Marx Nirmal, R.; Pandian, K.; Sivakumar, K.

    2011-01-01

    The complex of cadmium with pyrrolidine dithiocarbamate Cd(pdtc)2 has been used as single source precursor for the synthesis of CdS nanoparticles. The formation of CdS nanostructures was achieved by thermal decomposition of the complex under microwave irradiation and conventional heating in presence of hexadecylamine. The CdS nanoparticles with disordered close-packed structure were obtained under microwave irradiation, whereas wurtzite hexagonal phase CdS nanorods were obtained by conventional heating method (up to 150 °C). Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and high resolution transmission electron microscopy (HRTEM) studies also were carried out to study the structure and morphology of nanoparticles. The optical property of the CdS nanoparticles was studied by UV-visible and fluorescence emission spectral studies. Fluorescence measurements on the CdS nanoparticles show a strong emission spectrum with two sub bands that are attributed to band-edge and surface-defect emissions. The reduction of a suitable cadmium metal complex is considered to be one of the single pot methods to generate CdS semiconductor nanoparticles with different shapes and high yield.

  6. Cadmium (II) pyrrolidine dithiocarbamate complex as single source precursor for the preparation of CdS nanocrystals by microwave irradiation and conventional heating process

    Energy Technology Data Exchange (ETDEWEB)

    Marx Nirmal, R. [Department of Physics, Anna University Chennai, Chennai, Tamil Nadu 600025 (India); Pandian, K. [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai 600025 (India); Sivakumar, K., E-mail: ksivakumar@annauniv.edu [Department of Physics, Anna University Chennai, Chennai, Tamil Nadu 600025 (India)

    2011-01-15

    The complex of cadmium with pyrrolidine dithiocarbamate Cd(pdtc){sub 2} has been used as single source precursor for the synthesis of CdS nanoparticles. The formation of CdS nanostructures was achieved by thermal decomposition of the complex under microwave irradiation and conventional heating in presence of hexadecylamine. The CdS nanoparticles with disordered close-packed structure were obtained under microwave irradiation, whereas wurtzite hexagonal phase CdS nanorods were obtained by conventional heating method (up to 150 deg. C). Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and high resolution transmission electron microscopy (HRTEM) studies also were carried out to study the structure and morphology of nanoparticles. The optical property of the CdS nanoparticles was studied by UV-visible and fluorescence emission spectral studies. Fluorescence measurements on the CdS nanoparticles show a strong emission spectrum with two sub bands that are attributed to band-edge and surface-defect emissions. The reduction of a suitable cadmium metal complex is considered to be one of the single pot methods to generate CdS semiconductor nanoparticles with different shapes and high yield.

  7. Microwave irradiated synthesis and characterization of 1, 4-phenylene bis-oxazoline form bis-(2-hydroxyethyl terephthalamide obtained by depolymerization of poly (ethylene terephthalate (PET bottle wastes

    Directory of Open Access Journals (Sweden)

    Yogesh S. Parab

    2012-04-01

    Full Text Available The aminolytic depolymerization of PET bottle waste with ethanolamine by conventional heating and microwave irradiation heating method was attempted with heterogeneous, recyclable acid catalysts such as beta zeolite (SiO2/ AlO2= 15 Na- form and montmorillonite KSF. The pure product bis-(2-hydroxyethyl terephthalamide (BHETA of aminolysis was obtained in good yield (85- 88%. The BHETA, thus obtained, was subjected to cyclization reaction by heating with polyphosphoric acid as well as by chlorination (using phosphoryl chloride, bromination (using red phosphorous and liquid bromine and nitration (conc. HNO3 + conc. H2SO4 followed by conventional and microwave irradiation heating in N,N- dimethyl formamide/ potassium carbonate solution. The product so obtained was 2, 2’-(1,4-phenylene–bis-(2-oxazoline (PBO, which has applications in polymer synthesis as a chain extender/ chain coupling agent or a cross linker. The productswere analyzed by FTIR, DSC, Mass and NMR (1H and 13C NMR.

  8. Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically Catalyst Clay Called Maghnite-H+ (Algerian MMT Under Microwave Irradiation.

    Directory of Open Access Journals (Sweden)

    Rahmouni Abdelkader

    2016-08-01

    Full Text Available In this study, a novel green cationic hydrogel of cationic polyacrylamide composite have been prepared and investigated. The synthesis of green cationic polyacrylamide composite was evaluated for its solubility in water. The reactions were performed using acrylamide monomer, solvent, catalyst (clay fin called maghnite and solution of  H2SO4 (0.25 M, with the system under microwave irradiation (160 ºC for 4 min. Major factors affecting the polymerization reaction were studied with a view to discover appropriate conditions for preparation of the composite. The cationic polyacrylamide obtained is the subject of future studies of modification and transformation. The resulting polymer has been characterized by a variety of characterization techniques, such as: Fourier Transform Infrared Spectra and 1H NMR spectra.  Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th June 2015; Revised: 2nd September 2015; Accepted: 5th January 2016 How to Cite: Abdelkader, R., Mohammed, B. (2016. Green Synthesis of Cationic Polyacrylamide Composite Catalyzed by An Ecologically  Catalyst Clay Called Maghnite-H+ (Algerian MMT Under Microwave Irradiation. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 170-175 (doi:10.9767/bcrec.11.2.543.170-175 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.543.170-175

  9. Microwave irradiation induced changes in protein molecular structures of barley grains: relationship to changes in protein chemical profile, protein subfractions, and digestion in dairy cows.

    Science.gov (United States)

    Yan, Xiaogang; Khan, Nazir A; Zhang, Fangyu; Yang, Ling; Yu, Peiqiang

    2014-07-16

    The objectives of this study were to evaluate microwave irradiation (MIR) induced changes in crude protein (CP) subfraction profiles, ruminal CP degradation characteristics and intestinal digestibility of rumen undegraded protein (RUP), and protein molecular structures in barley (Hordeum vulgare) grains. Samples from hulled (n = 1) and hulless cultivars (n = 2) of barley, harvested from four replicate plots in two consecutive years, were evaluated. The samples were either kept as raw or irradiated in a microwave for 3 min (MIR3) or 5 min (MIR5). Compared to raw grains, MIR5 decreased the contents of rapidly degradable CP subfraction (from 45.22 to 6.36% CP) and the ruminal degradation rate (from 8.16 to 3.53%/h) of potentially degradable subfraction. As a consequence, the effective ruminal degradability of CP decreased (from 55.70 to 34.08% CP) and RUP supply (from 43.31 to 65.92% CP) to the postruminal tract increased. The MIR decreased the spectral intensities of amide 1, amide II, α-helix, and β-sheet and increased their ratios. The changes in protein spectral intensities were strongly correlated with the changes in CP subfractions and digestive kinetics. These results show that MIR for a short period (5 min) with a lower energy input can improve the nutritive value and utilization of CP in barely grains.

  10. 微波照射在多肽化学合成领域的应用%Progress of Application of Microwave Irradiation in Polypeptide Synthesis

    Institute of Scientific and Technical Information of China (English)

    杨频; 宋宇飞

    2003-01-01

      The principle and effect of the microwave irradiation, and its application in chemical synthesis are introduced in this paper. The new research method combining microwave irradiation with solid-phase synthetic instrument to synthesize polypeptides is described.%  介绍了微波仪的原理及其在化学合成领域的应用,论述了在多肽链的耦合过程中,使用不同的耦合方法,从反应时间、产品的产率等因素考虑,对多种不同的耦合试剂在什么样的条件下使用进行了比较、分析。并将微波照射结合固相合成仪用于多肽合成这一近年来发展起来的新的研究手段作了简介。

  11. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction.

    Science.gov (United States)

    Cheng, Jun; Huang, Rui; Yu, Tao; Li, Tao; Zhou, Junhu; Cen, Kefa

    2014-01-01

    A cogeneration process of biodiesel and bio-crude was proposed to make full use of wet microalgae biomass. High-grade biodiesel was first produced from lipids in wet microalgae through extraction and transesterification with microwave irradiation. Then, low-grade bio-crude was produced from proteins and carbohydrates in the algal residue through hydrothermal liquefaction. The total yield (40.19%) and the total energy recovery (67.73%) of the cogenerated biodiesel and bio-crude were almost equal to those of the bio-oil obtained from raw microalgae through direct hydrothermal liquefaction. Upon microwave irradiation, proteins were partially hydrolyzed and the hydrolysates were apt for deaminization under the hydrothermal condition of the algal residue. Hence, the total remaining nitrogen (16.02%) in the cogenerated biodiesel and bio-crude was lower than that (27.06%) in the bio-oil. The cogeneration process prevented lipids and proteins from reacting to produce low-grade amides and other long-chain nitrogen compounds during the direct hydrothermal liquefaction of microalgae.

  12. Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties.

    Science.gov (United States)

    Bose, Susmita; Dasgupta, Sudip; Tarafder, Solaiman; Bandyopadhyay, Amit

    2010-09-01

    Despite the excellent bioactivity of hydroxyapatite (HA) ceramics, poor mechanical strength has limited the applications of these materials primarily to coatings and other non-load-bearing areas as bone grafts. Using synthesized HA nanopowder, dense compacts with grain sizes in the nanometer to micrometer range were processed via microwave sintering between 1000 and 1150 degrees C for 20 min. Here we demonstrate that the mechanical properties, such as compressive strength, hardness and indentation fracture toughness, of HA compacts increased with a decrease in grain size. HA with 168 +/- 86 nm grain size showed the highest compressive strength of 395 +/- 42 MPa, hardness of 8.4+/-0.4 GPa and indentation fracture toughness of 1.9 +/- 0.2 MPa m(1/2). To study the in vitro biological properties, HA compacts with grain size between 168 nm and 1.16 microm were assessed for in vitro bone cell-material interactions with human osteoblast cell line. Vinculin protein expression for cell attachment and bone cell proliferation using MTT assay showed that surfaces with finer grains provided better bone cell-material interactions than coarse-grained samples. Our results indicate simultaneous improvements in mechanical and biological properties in microwave sintered HA compacts with nanoscale grain size.

  13. The evolution of mechanical property change in irradiated austenitic stainless steels

    Science.gov (United States)

    Lucas, G. E.

    1993-11-01

    The evolution of mechanical properties in austenitic stainless steels during irradiation is reviewed. Changes in strength, ductility and fracture toughness are strongly related to the evolution of the damage microstructure and microstructurally-based models for strengthening reasonably correlate the data. Irradiation-induced defects promote work softening and flow localization which in turn leads to significant reductions in ductility and fracture toughness beyond about 10 dpa. The effects of irradiation on fatigue appear to be modest except at high temperature where helium embrittlement becomes important. The swelling-independent component of irradiation creep strain increases linearly with dose and is relatively insensitive to material variables and irradiation temperature, except at low temperatures where accelerated creep may occur as a result of low vacancy mobility. Creep rupture life is a strong function of helium content, but is less sensitive to metallurgical conditions. Irradiation-induced stress corrosion cracking appears to be related to the evolution of radiation-induced segregation/depletion at grain boundaries, and hence may not be significant at low irradiation temperatures.

  14. Detection of irradiated ingredients included in low quantity in non-irradiated food matrix. 1. Extraction and ESR analysis of bones from mechanically recovered poultry meat.

    Science.gov (United States)

    Marchioni, Eric; Horvatovich, Péter; Charon, Helène; Kuntz, Florent

    2005-05-18

    Protocol EN 1786 for the detection of irradiated food by electron spin resonance (ESR) spectroscopy was not conceived for the detection of irradiated bone-containing ingredients included in low concentration in non-irradiated food. An enzymatic hydrolysis method, realized at 55 degrees C, has been developed for the extraction of the bone fraction. When followed by a purification of the extracts by an aqueous solution of sodium polytungstate, this method made possible the detection of irradiated mechanically recovered poultry meat at very low inclusions (0.5%, wt/wt by ESR) in various meals (quenelles and precooked meals).

  15. Study of the effect of gamma irradiation on a commercial polycyclooctene I. Thermal and mechanical properties

    Science.gov (United States)

    García-Huete, N.; Laza, J. M.; Cuevas, J. M.; Vilas, J. L.; Bilbao, E.; León, L. M.

    2014-09-01

    A gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical, chemical and mechanical properties. Gamma irradiation originates free radicals able to induce chain scission or recombination of radicals, which induces annihilation, branching or crosslinking processes. The aim of this work is to research the structural, thermal and mechanical changes induced on a commercial polycyclooctene (PCO) when it is irradiated with a gamma source of 60Co at different doses (25-200 kGy). After gamma irradiation, gel content was determined by Soxhlet extraction in cyclohexane. Furthermore, thermal properties were evaluated before and after Soxhlet extraction by means of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC), as well as mechanical properties were measured by Dynamic Mechanical Thermal Analysis (DMTA). The results showed the variations of the properties depending on the irradiation dose. Finally, a first approach to evaluate qualitatively the shape memory behaviour of all irradiated PCO samples was performed by a visually monitoring shape recovery process.

  16. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Science.gov (United States)

    Ahmad, Shahbaz; Bashir, Shazia; Ali, Nisar; Umm-i-Kalsoom; Yousaf, Daniel; Faizan-ul-Haq; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 1012 to 26 × 1013 ions/cm2. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation, augmentation, recombination and annihilation of the ion-induced defects.

  17. Effect of irradiation on mechanical properties of symmetrical grain boundaries investigated by atomic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X. Y.; Gao, N.; Setyawan, W.; Xu, B.; Liu, W.; Wang, Z. G.

    2017-08-01

    Tensile response of irradiated symmetric grain boundaries to externally applied strain has been studied using atomic simulation methods. The absorption of irradiation induced defects by grain boundaries has been confirmed to degrade the mechanical properties of grain boundaries through the change of its under- taken deformation mechanism. Atomic rearrangement, the formations of a stress accumulation region and vacancy-rich zone and the nucleation and movement of dislocations under stress effect have been observed after the displacement cascades in grain boundaries, which are considered as main reasons to induce above degradation. These results suggest the necessity of considering both trap- ping efficiency to defects and the mechanical property change of irradiated grain boundaries for further development of radiation resistant materials.

  18. Effect of irradiation on mechanical properties of symmetrical grain boundaries investigated by atomic simulations

    Science.gov (United States)

    Wang, X. Y.; Gao, N.; Setyawan, W.; Xu, B.; Liu, W.; Wang, Z. G.

    2017-08-01

    Tensile response of irradiated symmetric grain boundaries to the externally applied strain has been studied using atomic simulation methods. The absorption of irradiation induced defects by grain boundaries has been confirmed to degrade the mechanical properties of grain boundaries through the change of its undertaken deformation mechanism. Atomic rearrangement, the formations of a stress accumulation region and vacancy-rich zone and the nucleation and movement of dislocations under stress effect have been observed after the displacement cascades in grain boundaries, which are considered as main reasons to induce above degradation. These results suggest the necessity of considering both trapping efficiency to defects and the mechanical property change of irradiated grain boundaries for further development of radiation resistant materials.

  19. Evolution of microstructure and mechanical properties of VVER-1000 RPV steels under re-irradiation

    Science.gov (United States)

    Gurovich, B.; Kuleshova, E.; Shtrombakh, Ya.; Fedotova, S.; Erak, D.; Zhurko, D.

    2015-01-01

    This is a comprehensive study of microstructure and mechanical properties evolution at re-irradiation after recovery annealing of VVER-1000 RPV weld and base metals as well as the effect of annealing on the microstructure and properties of base metal in the zone of the temperature gradient that is implemented during annealing using special heating device. It is shown that the level of radiation-induced microstructural changes under accelerated re-irradiation of weld and base metal is not higher than for the primary irradiation. Thus, we can predict that re-embrittlement of VVER-1000 RPV materials considering the flux effect will not exceed the typical embrittlement rate for the primary irradiation.

  20. Systematization of the Mechanism by Which Plasma Irradiation Causes Cell Growth and Tumor Cell Death

    Science.gov (United States)

    Shimizu, Nobuyuki

    2015-09-01

    New methods and technologies have improved minimally invasive surgical treatment and saved numerous patients. Recently, plasma irradiation has been demonstrated that might be useful in medical field and the plasma irradiation device is expected to become practically applicable. Mild plasma coagulator showed some advantages such as hemostasis and adhesion reduction in experimental animal model, but the mechanism of plasma irradiation remains unclear. Our study group aim to clarify the mechanism of plasma irradiation effects, mainly focusing on oxidative stress using cultured cell lines and small animal model. First, a study using cultured cell lines showed that the culture medium that was activated by plasma irradiation (we called this kind of medium as ``PAM'' -plasma activated medium-) induced tumor cell death. Although this effect was mainly found to be due to hydrogen peroxide, the remaining portion was considered as the specific effect of the plasma irradiation and we are now studying focusing on this effect. Second, we established a mouse intra-peritoneal adhesion model and checked biological reaction that occurred in the adhesion part. Histopathological study showed inflammatory cells infiltration into adhesion part and the expression of PTX3 that might involve tissue repair around adhesion part. We also confirmed that cytokines IL-6 and IL-10 might be useful as a marker of adhesion formation in this model. Applying ``PAM'' or mild plasma irradiation in this model, we examine the effects of plasma on inflamed cells. The samples in these experiments would be applied to targeted proteomics analysis, and we aim to demonstrate the systematization of the cell's reaction by plasma irradiation.

  1. A Study on Preparation of Fructose from Inulin Hydrolyzed by Acid Under Microwave Irradiation%微波酸解菊粉制备果糖的研究

    Institute of Scientific and Technical Information of China (English)

    吴金山; 赵芬利

    2015-01-01

    Inulin hydrolyzed by acid-catalyzed under microwave irradiation was researched and its operating conditions were optimized. The fructose production under microwave irradiation was studied from concentration of inu-lin, temperature, pH value, and reaction time. The optimum reaction conditions were:inulin solution 15%, temper-ture 55℃, pH 5 and reaction time 15min. Under those conditions above, the yield of fructose production was 92. 3%. Compared with conventional heating technics, micorwave irradiation not only accelerate acid hydrolysis of inu-lin, but also decrease the by-product and result in a higher yield.%研究了微波条件下酸解菊粉的方法制备果糖,采用单因素试验研究了菊粉浓度,温度,pH值,反应时间对微波条件下酸解菊粉制备果糖的影响,再通过正交优化试验确定了菊粉水解的最佳工艺条件:菊粉浓度15%,温度为55℃,溶液pH值为5,微波辐照时间15 min,在该条件下果糖产率高达92.3%。与传统加热工艺相比,微波条件下酸解菊粉制备果糖,反应速率快、能量消耗少、所用的酸量也大大降低、副反应少,目标产物收率提高。

  2. Effects of the high doses of irradiation on the mechanical properties of PS/PP blends

    Energy Technology Data Exchange (ETDEWEB)

    Albano, C. E-mail: calbano@ivic.vealbanoc@camelot.rect.ucv.ve; Reyes, J.; Ichazo, M.N.; Gonzalez, J.; Rodriguez, M

    2003-08-01

    The effect of gamma irradiation on the tensile behavior of the polystyrene/polypropylene (PS/PP) blend (80/20) without and with styrene-butadiene-styrene (SBS) points to a deterioration of the mechanical properties of the blends due to the scission and crosslinking reactions resulting from irradiation. A kinetic analysis of the behavior of mixtures of PS/PP with SBS shows that a radiation dose between 70 and 400 kGy, the dominant process is the chain scission meanwhile at higher doses appear a competitive mechanisms (chain scission and crosslinking) with a sensitive decrease of the properties in the break point.

  3. Mechanism of degradation of electrolyte solutions for dye-sensitized solar cells under ultraviolet light irradiation

    Science.gov (United States)

    Nakajima, Shohei; Katoh, Ryuzi

    2015-01-01

    We studied the mechanism of the degradation of I-/I3--containing electrolyte solutions for dye-sensitized solar cells under UV light irradiation. The yellow electrolyte solutions underwent achromatization during irradiation, indicating the reduction of I3-. We propose a mechanism involving the production of holes in TiO2, reaction of the holes with solvent molecules, and subsequent reduction of I3- by electrons remaining in the TiO2. Although the quantum yield of the photodegradation reaction is estimated to be low (3 × 10-3), this reaction can nevertheless be expected to affect the long-term stability of dye-sensitized solar cell devices.

  4. Release of hydrogen sulfide during microwave pyrolysis of sewage sludge: Effect of operating parameters and mechanism.

    Science.gov (United States)

    Zhang, Jun; Zuo, Wei; Tian, Yu; Yin, Linlin; Gong, Zhenlong; Zhang, Jie

    2017-06-05

    The effects of sludge characteristics, pyrolysis temperature, heating rate and catalysts on the release of H2S and mechanism of H2S formation during sludge pyrolysis were investigated in a microwave heating reactor (MHR). The evolution of sulfur-containing compounds in the pyrolysis chars obtained at temperature range of 400-800°C was characterized by XPS. For a given temperature, the maximum concentration of H2S appeared at moisture content of 80%. Compared to the influence of heating rate on the H2S yields, pyrolysis temperature and catalyst played a more significant role on the release of H2S during microwave pyrolysis process. The H2S concentration increased with increasing temperature from 400°C to 800°C while decreased with increasing heating rate. Both the Nickel-based catalyst and Dolomite displayed significant desulfurization effect and Ni-based catalyst exhibited the larger desulfurization capability than that of Dolomite. The organic sulfur compounds accounted for about 60% of the total sulfur in the sludge which was the main reason for the formation of H2S. The mechanism analysis indicated that the cleavage reactions of mercaptan and aromatic-S compounds at temperatures below 600°C and the cracking reaction of sulfate above 700°C respectively were responsible for the H2S release during sludge pyrolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator.

    Science.gov (United States)

    Liu, Li; Yang, Yue; Li, Zhihua; Jin, Xing; Mo, Wenqin; Liu, Xing

    2017-01-23

    We propose and experimentally demonstrate a continuously tunable all-optical microwave filter using a silicon opto-mechanical microring resonator (MRR). By finely adjusting the pump light with submilliwatt power level, transmission spectrum of the MRR could be continuously shifted based on the nonlinear effects, including the opto-mechanical effect and thermo-optic effect. Therefore, in the case of optical single sideband (OSSB) modulation, the frequency intervals between the optical carrier (near one MRR resonance) and the corresponding resonance could be flexibly manipulated, which is the critical factor to achieve continuously tunable microwave photonic filter (MPF). In the experiment, the central frequency of the MPF could be continuously tuned from 6 GHz to 19 GHz with the pump power lower than -2.5 dBm. The proposed opto-mechanical device is competent to process microwave signals with dominant advantages, such as compact footprint, all-optical control and low power consumption. In the future, using light to control light, the opto-mechanical structure on silicon platforms might have many other potential applications in microwave systems, such as microwave switch.

  6. Microstructure evolution and degradation mechanisms of reactor internal steel irradiated with heavy ions

    Science.gov (United States)

    Borodin, O. V.; Bryk, V. V.; Kalchenko, A. S.; Parkhomenko, A. A.; Shilyaev, B. A.; Tolstolutskaya, G. D.; Voyevodin, V. N.

    2009-03-01

    Structure evolution and degradation mechanisms during irradiation of 18Cr-10Ni-Ti steel (material of VVER-1000 reactor internals are investigated). Using accelerator irradiations with Cr3+ and Ar+ ions allowed studying effects of dose rate, different initial structure state and implanted ions on features of structure evolution and main mechanisms of degradation including low temperature swelling and embrittlement of the 18Cr-10Ni-Ti steel. It is shown that differences in dose rate at most irradiation temperatures mainly exert their influence on the duration of the swelling transient regime. Calculations of possible transmutation products during irradiation of this steel in a VVER-1000 spectrum were performed. It is shown that gaseous atoms (He and H), which are generated simultaneously with radiation defects, stabilize the elements of radiation microstructure and influence the swelling. The nature of deformation under different temperatures of irradiation and of mechanical testing is investigated. It is shown that the temperature sensitivity of swelling behaviour in the investigated steel, with different initial structures can be connected with the dynamic behaviour of point defect sinks.

  7. Mechanical-property changes of polymeric and composite materials after low-temperature proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Snead, C.L. Jr.; Czajkowski, C.J.; Skaritka, J. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Morena, J. [Ace Inc., Stuart, FL (United States)

    1999-02-01

    The mechanical properties of polymeric and composite materials are known to be sensitive to ionizing radiation. Most of the existing data, however, is the result of near-room-temperature irradiations, most commonly with {sup 60}Co gamma irradiation. For use of these materials in applications such as for magnetic fusion magnets, where operation will be at cryogenic temperatures in sometimes severe radiation fields, knowledge of the materials` radiation response to low-temperature irradiations is required. This paper reports the results of mechanical-property-change measurements made at 4.2K on a number of potential magnet materials following 200-MeV-proton irradiation at temperatures below 20K. Standard three-point bend tests were performed at 4.2K for short-beam shear determinations in the laminate materials and for shear strength in the remainder of the specimens. Specimens were warmed to room temperature for one week prior to the mechanical testing in order to emulate the expected the expected mechanical state of the material assuming room-temperature cycling in the expected magnet applications. Data are presented in the form of yield stresses before and after irradiations with percentages of change. There were five specimens per test dose for each material. Data are presented for exposures ranging from nominally 10{sup 7} to 10{sup 9} rad. Results of the mechanical tests range from complete delamination and distortion of the specimens at 10{sup 9} rad to an increase in the yield stress of 63% after 10{sup 9} rad. The latter specimen did, however, evidence significant embrittlement. The phenomenon of irradiation-induced strengthening due to enhanced cross linking in undercured polymers was observed in some cases.

  8. Electron irradiation-induced change of structure and damage mechanisms in multi-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    杨剑群; 李兴冀; 刘超铭; 马国亮; 高峰

    2015-01-01

    Owing to their unique structure and excellent electrical property, carbon nanotubes (CNTs) as an ideal candidate for making future electronic components have great application potentiality. In order to meet the requirements for space appli-cation in electronic components, it is necessary to study structural changes and damage mechanisms of multi-walled carbon nanotubes (MWCNTs), caused by the irradiations of 70 and 110 keV electrons. In the paper, the changes of structure and damage mechanisms in the irradiated MWCNTs, induced by the irradiations of 70 and 110 keV electrons, are investigated. The changes in surface morphology and structure of the irradiated MWCNT film are characterized using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, x-ray diffraction analysis (XRD), and electron paramagnetic resonance (EPR) spectroscopy. It is found that the MWCNTs show different behaviors in structural changes after 70 and 110 keV electron irradiation due to different damage mechanisms. SEM results reveal that the irra-diation of 70 keV electrons does not change surface morphology of the MWCNT film, while the irradiation of 110 keV electrons with a high fluence of 5 × 1015 cm−2 leads to evident morphological changes, such as the formation of a rough surface, the entanglement of nanotubes and the shrinkage of nanotubes. Based on Raman spectroscopy, XPS, and XRD analyses, it is confirmed that the irradiation of 70 keV electrons increases the interlayer spacing of the MWCNTs and disorders their structure through electronic excitations and ionization effects, while the irradiation of 110 keV electrons obviously reduces the interlayer spacing of the MWCNTs and improves their graphitic order through knock-on atom dis-placements. The improvement of the irradiated MWCNTs by 110 keV electrons is attributed to the restructuring of defect sites induced by knock-on atom displacements. EPR spectroscopic analyses reveal that the MWCNTs

  9. Comparison of dispersion behavior of agglomerated particles in liquid between ultrasonic irradiation and mechanical stirring.

    Science.gov (United States)

    Sumitomo, Syunsuke; Koizumi, Hayato; Uddin, Md Azhar; Kato, Yoshiei

    2018-01-01

    The particle dispersion behavior was compared for ultrasonic irradiation and mechanical stirring. The experiment and calculation were carried out with polymethylmethacrylate (PMMA) particles. The dispersion rate of the agglomerated particles increased with the decreasing ultrasonic frequency and the increasing electric power, whereas it increased with the increasing rotation speed for the mechanical stirring. The temporal change in the particle dispersion proceeded stably after passage of a long time. The dispersion of the ultrasonic irradiation was suggested to occur by the erosion from the surface of the cluster one by one due to the bulk cavitation as well as the division into smaller particles because of the inner cavitation, and that of the mechanical stirring mainly by the division into smaller clusters due to the shear stress flow. Based on the experimental results, mathematical models for the ultrasonic irradiation and mechanical stirring were developed with the dispersion and agglomeration terms and the calculation of the temporal change in the total cluster number at the different operational factors agreed with the experiments. The dispersion efficiency of the ultrasonic irradiation was larger than that of the mechanical stirring at the lower input power, but it was reversed at the higher input power. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of neutron irradiation on the mechanical properties of weld overlay cladding for reactor pressure vessel

    Science.gov (United States)

    Tobita, Tohru; Udagawa, Makoto; Chimi, Yasuhiro; Nishiyama, Yutaka; Onizawa, Kunio

    2014-09-01

    This study investigates the effects of high fluence neutron irradiation on the mechanical properties of two types of cladding materials fabricated using the submerged-arc welding and electroslag welding methods. The tensile tests, Charpy impact tests, and fracture toughness tests were conducted before and after the neutron irradiation with a fluence of 1 × 1024 n/m2 at 290 °C. With neutron irradiation, we could observe an increase in the yield strength and ultimate strength, and a decrease in the total elongation. All cladding materials exhibited ductile-to-brittle transition behavior during the Charpy impact tests. A reduction in the Charpy upper-shelf energy and an increase in the ductile-to-brittle transition temperature was observed with neutron irradiation. There was no obvious decrease in the elastic-plastic fracture toughness (JIc) of the cladding materials upon irradiation with high neutron fluence. The tearing modulus was found to decrease with neutron irradiation; the submerged-arc-welded cladding materials exhibited low JIc values at high temperatures.

  11. Effect of neutron irradiation on the mechanical properties of weld overlay cladding for reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Tobita, Tohru, E-mail: tobita.tohru@jaea.go.jp; Udagawa, Makoto; Chimi, Yasuhiro; Nishiyama, Yutaka; Onizawa, Kunio

    2014-09-15

    This study investigates the effects of high fluence neutron irradiation on the mechanical properties of two types of cladding materials fabricated using the submerged-arc welding and electroslag welding methods. The tensile tests, Charpy impact tests, and fracture toughness tests were conducted before and after the neutron irradiation with a fluence of 1 × 10{sup 24} n/m{sup 2} at 290 °C. With neutron irradiation, we could observe an increase in the yield strength and ultimate strength, and a decrease in the total elongation. All cladding materials exhibited ductile-to-brittle transition behavior during the Charpy impact tests. A reduction in the Charpy upper-shelf energy and an increase in the ductile-to-brittle transition temperature was observed with neutron irradiation. There was no obvious decrease in the elastic–plastic fracture toughness (J{sub Ic}) of the cladding materials upon irradiation with high neutron fluence. The tearing modulus was found to decrease with neutron irradiation; the submerged-arc-welded cladding materials exhibited low J{sub Ic} values at high temperatures.

  12. 小麦网腥黑穗病菌微波处理技术研究%Effect of Microwave Irradiation on Tilletia caries in Wheat

    Institute of Scientific and Technical Information of China (English)

    刘涛; 李丽; 曲海霞; 王跃进

    2011-01-01

    该文系统测定了不同功率、不同时间组合的微波处理对小麦网腥黑穗病菌(Tilletia caries)的杀灭效果,并分析了微波处理对小麦品质的影响.毒力测定结果表明,800W处理30s,640W处理40s,480W处理50s,320W处理80s和160W处理180s这5种剂量,可完全杀灭小麦中的网腥黑穗病菌;温度检测结果表明,热效应是微波杀菌的主要因素,微波加热到90℃才能完全杀灭网腥黑穗病菌菌瘿;品质检测结果表明,上述条件的微波处理能显著降低小麦的含水率和发芽率,对千粒质量无影响,同时能显著提高小麦的还原糖和脂肪酸质量分数.上述结果表明微波处理在杀灭小麦网腥黑穗病菌菌瘿的同时能保持小麦的贮藏品质,因而在储粮检疫处理中极具应用前景.%Microwave irradiation at different dosages against Tilletia caries was performed and its effects on the quality parameters of treated wheat were analyzed.Toxicity assay showed that T caries was completely killed after microwave treatments at the dosages of 800 W 30 s,640 W 40 s,480 W 50 s,320 W 80 s and 160 W 180 s.Temperature measurement indicated that 90 ℃ was necessary to achieve 100% mortality,suggesting that thermal effect was the dominant effect of microwave to control the fungus.Quality analysis showed that the moisture content and germination rate of the treated wheat seeds were greatly reduced,the contents of reducing sugar and free fatty acids were increased,and no significant change was detected in 1000-grain-weight.These results indicated that T.caries can be controlled by microwave irradiation with no adverse effects on wheat.

  13. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Jeremy T [ORNL; Gussev, Maxim N [ORNL

    2011-04-01

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be

  14. Low-intensity microwave irradiation does not substantially alter gene expression in late larval and adult Caenorhabditis elegans.

    OpenAIRE

    2009-01-01

    Reports that low-intensity microwave radiation induces heat-shock reporter gene expression in the nematode, Caenorhabditis elegans, have recently been reinterpreted as a subtle thermal effect caused by slight heating. This study used a microwave exposure system (1.0 GHz, 0.5 W power input; SAR 0.9-3 mW kg-1 for 6-well plates) that minimises temperature differentials between sham and exposed conditions (≤0.1 °C). Parallel measurement and simulation studies of SAR distribution within this exp...

  15. An Efficient and Green Synthesis of 5-Oxo-5,6,7,8-tetrahydro 4H-benzo-[b]-pyran Derivatives Promoted by InCl3·4H2O Under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Xue Yuan HU; Xue Sen FAN; Xin Ying ZHANG; Gui Rong QU; Yan Zhen LI

    2005-01-01

    A rapid and facile preparation of benzo-[b]-pyran derivatives through condensation of chalcone and 5, 5-dimethyl-1,3-cyclohexandione under microwave irradiation in the presence of simplicity and environmental benignancy, this method may provide a useful alternative for the preparation of benzo-[b]-pyran derivatives.

  16. Mechanical properties and microstructure of neutron irradiated cold worked Al-6063 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Munitz, A.; Shtechman, A.; Cotler, C.; Dahan, S. [Nuclear Res. Center-Negev, Beer-Sheva (Israel); Talianker, M. [Ben-Gurion Univ., Beer-Sheva (Israel). Dept. of Materials Science

    1998-01-01

    The impact of neutron irradiation on the mechanical properties and fracture morphology of cold worked Al-6063 were studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens (50 mm long and 6 mm wide gauge sections) were punched out from an Al-6063 23% cold worked tubes, which had been exposed to prolonged neutron irradiation of up to 4.5 x 10{sup 25} thermal neutrons/m{sup 2} (E < 0.625 eV). The temperature ranged between 41 and 52 C. The tensile specimens were then tensioned till fracture in an Instron tensiometer with strain rate of 2 x 10{sup -3} s{sup -1}. The uniform elongation and the ultimate tensile strength increase as functions of fluence. Metallographic examination and fractography reveal a decrease in the local area reduction of the final fracture necking. This reduction is accompanied with a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. No voids could be observed up to the maximum fluence. The dislocation density of cold worked Al decreases with the thermal neutron fluence. Prolonged annealing of unirradiated cold worked Al-6063 at 52 C revealed similar results. It thus appears that under our irradiation conditions the temperature during irradiation is the major factor influencing the mechanical properties and the microstructure during irradiation. (orig.). 23 refs.

  17. Mechanical properties and microstructure of neutron irradiated cold worked Al-6063 alloy

    Science.gov (United States)

    Munitz, A.; Shtechman, A.; Cotler, C.; Talianker, M.; Dahan, S.

    1998-01-01

    The impact of neutron irradiation on the mechanical properties and fracture morphology of cold worked Al-6063 were studied, using scanning and transmission electron microscopy, and tensile measurements. Specimens (50 mm long and 6 mm wide gauge sections) were punched out from an Al-6063 23% cold worked tubes, which had been exposed to prolonged neutron irradiation of up to 4.5 × 10 25 thermal neutrons/m 2 ( E < 0.625 eV). The temperature ranged between 41 and 52°C. The tensile specimens were then tensioned till fracture in an Instron tensiometer with strain rate of 2 × 10 -3 s -1. The uniform elongation and the ultimate tensile strength increase as functions of fluence. Metallographic examination and fractography reveal a decrease in the local area reduction of the final fracture necking. This reduction is accompanied with a morphology transition from ductile transgranular shear rupture to a combination of transgranular shear with intergranular dimpled rupture. The intergranular rupture area increases with fluence. No voids could be observed up to the maximum fluence. The dislocation density of cold worked Al decreases with the thermal neutron fluence. Prolonged annealing of unirradiated cold worked Al-6063 at 52°C revealed similar results. It thus appears that under our irradiation conditions the temperature during irradiation is the major factor influencing the mechanical properties and the microstructure during irradiation.

  18. Consequences of Ultra-Violet Irradiation on the Mechanical Properties of Spider Silk.

    Science.gov (United States)

    Lai, Wee Loong; Goh, Kheng Lim

    2015-09-10

    The outstanding combination of high tensile strength and extensibility of spider silk is believed to contribute to the material's toughness. Thus, there is great interest in engineering silk for biomedical products such as suture or implants. Additionally, over the years, many studies have also sought to enhance the mechanical properties of spider silk for wider applicability, e.g., by irradiating the material using ultra-violet radiation. However, the limitations surrounding the use of ultra-violet radiation for enhancing the mechanical properties of spider silk are not well-understood. Here, we have analyzed the mechanical properties of spider silk at short ultra-violet irradiation duration. Specimens of spider silk were subjected to ultra-violet irradiation (254-nm wavelength, i.e. UVC) for 10, 20, and 30 min, respectively, followed by tensile test to rupture to determine the strength (maximum stress), extensibility (rupture strain), and toughness (strain energy density to rupture). Controls, i.e., specimens that did not received UVC, were also subjected to tensile test to rupture to determine the respective mechanical properties. One-way analysis of variance reveals that these properties decrease significantly (p < 0.05) with increasing irradiation duration. Among the three mechanical parameters, the strength of the spider silk degrades most rapidly; the extensibility of the spider silk degrades the slowest. Overall, these changes correspond to the observed surface modifications as well as the bond rupture between the peptide chains of the treated silk. Altogether, this simple but comprehensive study provides some key insights into the dependence of the mechanical properties on ultra-violet irradiation duration.

  19. Consequences of Ultra-Violet Irradiation on the Mechanical Properties of Spider Silk

    Directory of Open Access Journals (Sweden)

    Wee Loong Lai

    2015-09-01

    Full Text Available The outstanding combination of high tensile strength and extensibility of spider silk is believed to contribute to the material’s toughness. Thus, there is great interest in engineering silk for biomedical products such as suture or implants. Additionally, over the years, many studies have also sought to enhance the mechanical properties of spider silk for wider applicability, e.g., by irradiating the material using ultra-violet radiation. However, the limitations surrounding the use of ultra-violet radiation for enhancing the mechanical properties of spider silk are not well-understood. Here, we have analyzed the mechanical properties of spider silk at short ultra-violet irradiation duration. Specimens of spider silk were subjected to ultra-violet irradiation (254-nm wavelength, i.e. UVC for 10, 20, and 30 min, respectively, followed by tensile test to rupture to determine the strength (maximum stress, extensibility (rupture strain, and toughness (strain energy density to rupture. Controls, i.e., specimens that did not received UVC, were also subjected to tensile test to rupture to determine the respective mechanical properties. One-way analysis of variance reveals that these properties decrease significantly (p < 0.05 with increasing irradiation duration. Among the three mechanical parameters, the strength of the spider silk degrades most rapidly; the extensibility of the spider silk degrades the slowest. Overall, these changes correspond to the observed surface modifications as well as the bond rupture between the peptide chains of the treated silk. Altogether, this simple but comprehensive study provides some key insights into the dependence of the mechanical properties on ultra-violet irradiation duration.

  20. Synergetic effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone.

    Science.gov (United States)

    Cornu, Olivier; Boquet, Jérome; Nonclercq, Olivier; Docquier, Pierre-Louis; Van Tomme, John; Delloye, Christian; Banse, Xavier

    2011-11-01

    Freeze-drying and irradiation are common process used by tissue banks to preserve and sterilize bone allografts. Freeze dried irradiated bone is known to be more brittle. Whether bone brittleness is due to irradiation alone, temperature during irradiation or to a synergetic effect of the freeze-drying-irradiation process was not yet assessed. Using a left-right femoral head symmetry model, 822 compression tests were performed to assess the influence of sequences of a 25 kGy irradiation with and without freeze-drying compared to the unprocessed counterpart. Irradiation of frozen bone did not cause any significant reduction in ultimate strength, stiffness and work to failure. The addition of the freeze-drying process before or after irradiation resulted in a mean drop of 35 and 31% in ultimate strength, 14 and 37% in stiffness and 46 and 37% in work to failure. Unlike irradiation at room temperature, irradiation under dry ice of solvent-detergent treated bone seemed to have no detrimental effect on mechanical properties of cancellous bone. Freeze-drying bone without irradiation had no influence on mechanical parameters, but the addition of irradiation to the freeze-drying step or the reverse sequence showed a detrimental effect and supports the idea of a negative synergetic effect of both procedures. These findings may have important implications for bone banking.

  1. New mechanism of irradiation creep based on the radiation-induced vacancy emission from dislocations

    NARCIS (Netherlands)

    Dubinko, [No Value

    2005-01-01

    A new mechanism of irradiation creep is proposed, which is based on the radiation and stress induced difference in emission ( RSIDE) of vacancies from dislocations of different orientations with respect to the external stress. This phenomenon is due to the difference in vacancy formation energies, w

  2. Degradation mechanism of silicone glues under UV irradiation and options for designing materials with increased stability

    NARCIS (Netherlands)

    Fischer, H.R.; Semprimoschnig, C.; Mooney, C.; Rohr, T.; Eck, E.R.H. van; Verkuijlen, M.H.W.

    2013-01-01

    The degradation of silicone glues used, for example, in the assembly of solar modules for use in space, has been investigated and possible mechanisms which lead to colouration and possible embrittlement are analysed. Both effects are connected to the generation of radicals upon exposure to UV irradi

  3. Non-thermal mechanism of weak microwave fields influence on neurons

    Science.gov (United States)

    Shneider, M. N.; Pekker, M.

    2013-09-01

    A non-thermal mechanism of weak microwave field impact on a nerve fiber is proposed. It is shown that in the range of about 30-300 GHz, there are strongly pronounced resonances associated with the excitation of ultrasonic vibrations in the membrane as a result of interaction with electromagnetic radiation. The viscous dissipation limits the resonances and results in their broadening. These forced vibrations create acoustic pressure, which may lead to the redistribution of the protein transmembrane channels, and thus changing the threshold of the action potential excitation in the axons of the neural network. The influence of the electromagnetic microwave radiation on various specific areas of myelin nerve fibers was analyzed: the nodes of Ranvier, and the initial segment—the area between the neuron hillock and the first part of the axon covered with the myelin layer. It was shown that the initial segment is the most sensitive area of the myelined neurons from which the action potential normally starts.

  4. Rapid microwave-assisted nonaqueous synthesis and growth mechanism of AgCl/Ag, and its daylight-driven plasmonic photocatalysis.

    Science.gov (United States)

    Jiang, Jing; Zhang, Lizhi

    2011-03-21

    We report on a rapid microwave-assisted nonaqueous synthesis and the growth mechanism of AgCl/Ag with controlled size and shape. By rationally varying the reaction temperature and the microwave irradiation time, we achieved the transformation of nanocubes to rounded triangular pyramids by a combined process of "oriented attachment" and Ostwald ripening. The surface plasmon resonance (SPR) properties of the as-prepared AgCl/Ag have been found to be somewhat dependent on the size, morphology, and composition. The as-prepared AgCl/Ag exhibits high photocatalytic activity and good reusability for decomposing organic pollutants (such as methyl orange (MO), rhodamine B (RhB), and pentachlorophenol (PCP)) under indoor artificial daylight illumination (ca. 1 mW cm(-2)). The AgCl/Ag has also been found to display a superior ability to harvest diffuse indoor daylight (ca. 5 mW cm(-2)), and could complete the degradation of 10 mg  L(-1) MO within 15 min. Experiments involving the trapping of active species have shown that the photocatalytic degradation of organic pollutants in the AgCl/Ag system may proceed through direct hole transfer. This study has revealed that plasmonic daylight photocatalysis may open a new frontier for indoor pollutant control around the clock under fluorescent lamp illumination. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low-intensity microwave irradiation does not substantially alter gene expression in late larval and adult Caenorhabditis elegans.

    Science.gov (United States)

    Dawe, Adam S; Bodhicharla, Rakesh K; Graham, Neil S; May, Sean T; Reader, Tom; Loader, Benjamin; Gregory, Andrew; Swicord, Mays; Bit-Babik, Giorgi; de Pomerai, David I

    2009-12-01

    Reports that low-intensity microwave radiation induces heat-shock reporter gene expression in the nematode, Caenorhabditis elegans, have recently been reinterpreted as a subtle thermal effect caused by slight heating. This study used a microwave exposure system (1.0 GHz, 0.5 W power input; SAR 0.9-3 mW kg(-1) for 6-well plates) that minimises temperature differentials between sham and exposed conditions (microwave-exposed worms (taken from the same source population in each run). No genes showed consistent expression changes across all five comparisons, and all expression changes appeared modest after normalisation (microwave radiation; the minor changes observed in this study could well be false positives. As a positive control, we compared RNA samples from N2 worms subjected to a mild heat-shock treatment (30 degrees C) against controls at 26 degrees C (two gene arrays per condition). As expected, heat-shock genes are strongly up-regulated at 30 degrees C, particularly an hsp-70 family member (C12C8.1) and hsp-16.2. Under these heat-shock conditions, we confirmed that an hsp-16.2::GFP transgene was strongly up-regulated, whereas two non-heat-inducible transgenes (daf-16::GFP; cyp-34A9::GFP) showed little change in expression.

  6. Solvent-and catalyst-free synthesis of dihydropyrimidinthiones in one-pot under focused microwave irradiation conditions

    Institute of Scientific and Technical Information of China (English)

    Hong Wen Zhan; Jin Xian Wang; Xi Tian Wang

    2008-01-01

    Fifteen dihydropyrimidinthiones have been synthesized by microwave-assisted Biginelli reactions without any solvent of catalyst.The advantages of this novel protocol include the excellent yield,operational simplicity,short time and the avoidance of the use of organic solvents and catalysts.

  7. Reaction mechanisms in irradiated, precipitated, and mesoporous silica.

    Science.gov (United States)

    Dondi, D; Buttafava, A; Zeffiro, A; Bracco, S; Sozzani, P; Faucitano, A

    2013-04-25

    A matrix EPR spectroscopy study of the low temperature γ radiolysis of precipitated (Zeosil) and mesoporous high surface silica has afforded evidence of the formation of trapped H-atoms, H-atom centers, siloxy radicals ≡Si-O(•), anomalous silyl peroxy radicals ≡Si-OO(•) with reduced g tensor anisotropy, siloxy radical-cations (≡Si-O-Si≡)(+•), E' centers, and two species from Ge impurity. Coordination of peroxyl radicals with diamagnetic ≡Si(+) centers is proposed and tested by DFT computations in order to justify the observed g tensor. Coordination of H-atoms to ≡Si(+) centers is also proposed for the structure of the H-atom centers as an alternative model not requiring the intervention of Ge, Sn, or CO impurities. The DFT method has been employed to assess the electronic structure of siloxy radical-cations and its similarity with that of the carbon radical-cation analogues; the results have prompted a revision of the structures proposed in the literature for ST1 and ST2 centers. The comparison between the two types of silica has afforded evidence of different radiolysis mechanisms leading to a greater yield of trapped H-atoms and H-atom centers in zeosil silica, which is reckoned with the 4-fold greater concentration of silanol groups. Parallel radiolysis experiments carried out by using both types of silica with polybutadiene oligomers as adsorbate have afforded evidence of free valence and energy migration phenomena leading to irreversible linking of polybutadiene chains onto silica. Reaction mechanisms are proposed based on the detection of SiO2-bonded free radicals whose structure has been defined by EPR.

  8. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Shahbaz; Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk; Ali, Nisar; Umm-i-Kalsoom,; Yousaf, Daniel; Faizan-ul-Haq,; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Highlights: • Brass targets were exposed to carbon ions of energy 2 MeV. • The effect of ion dose has been investigated. • The surface morphology is investigated by SEM analysis. • XRD analysis is performed to reveal structural modification. • Mechanical properties were investigated by tensile testing and microhardness testing. - Abstract: Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 10{sup 12} to 26 × 10{sup 13} ions/cm{sup 2}. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation

  9. Direct imaging of mechanical and chemical gradients across the thickness of graded organosilicone microwave PECVD coatings.

    Science.gov (United States)

    Hall, Colin J; Murphy, Peter J; Griesser, Hans J

    2014-01-22

    The characterization of variations in the chemical composition and ensuing mechanical properties across the thickness of coatings with continuously varying compositions through their thickness (graded coatings) presents considerable challenges for current analytical techniques in materials science. We report here the direct imaging of nanomechanical and chemical gradients across cross-sections of an organosilicone coating fabricated via microwave plasma enhanced chemical vapor deposition (PECVD). Cross-sectional nanoindentation was used to determine the mechanical properties of uniform and graded organosilicone coatings. Both hardness and modulus across the coatings were directly measured. Additionally, "modulus mapping" on cross-sections was used to map the complex modulus. For the graded coating, it was found that variations in the complex modulus was predominantly due to varying storage modulus. It was observed that at the interface with the substrate there was a low storage modulus, which linearly increased to a relatively high storage modulus at the surface. It is proposed that the increase in stiffness, from the substrate interface to the outer surface, is due to the increasing content of a cross-linked O-Si-O network. This mechanical gradient has been linked to a change in the Si:O ratio via direct compositional mapping using ToF-SIMS. Direct mapping of the mechanical and compositional gradients across these protective coatings provides insight into the changes in properties with depth and supports optimization of the critical mechanical performance of PECVD graded coatings.

  10. Effects of 3 MeV proton irradiation on the mechanical properties of polyimide films

    Science.gov (United States)

    Hill, David J. T.; Hopewell, Jefferson L.

    1996-11-01

    The effects of 3 MeV proton irradiation on the elongation to break, fracture energy and Young's Modulus have been investigated for films of Kapton and Ultem over the dose range 0-75 MGy at ambient temperature. The results have been compared with those reported by other workers for irradiation by 60Co gamma rays and 2 MeV electron beams under similar conditions, and little difference was found between the damage to the mechanical properties of the films induced by these three beam types.

  11. Polyacrylonitrile-based fiber modified with thiosemicarbazide by microwave irradiation and its adsorption behavior for Cd(II) and Pb(II)

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Sheng [State Key Laboratory of Urban Water Resource and Environment, Harbin 150090 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Wang, Peng, E-mail: pwang73@vip.sina.com [State Key Laboratory of Urban Water Resource and Environment, Harbin 150090 (China); School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Zhang, Guangshan, E-mail: gszhanghit@gmail.com [School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090 (China); Dou, Yuan [Shanxi Research Academy of Environmental Science, Taiyuan 030027 (China)

    2016-04-15

    Highlights: • Thiosemicarbazide modified fibrous adsorbents were prepared by MW irradiation. • Compared with conventional method, MW irradiation showed higher efficiency and yield. • The PAN{sub MW}–TSC fiber exhibited high adsorption capacities for Cd(II) and Pb(II). • The PAN{sub MW}–TSC fibers can be readily regenerated by 0.5 M HNO{sub 3} solution. - Abstract: A novel thiosemicarbazide modified adsorbent (PAN{sub MW}–TSC) based on polyacrylonitrile fiber was successfully synthesized under microwave irradiation, which was applied for the uptake of Cd(II) and Pb(II) from aqueous solution subsequently. Microwave irradiation method is a new approach to achieve the modification and it turns out that just a 30 min process is enough for the anchoring of functional groups in the fiber matrix. The surface characterization was performed by fourier transform infrared spectroscopy (FT–IR), scanning electron microscopy (SEM) elemental analysis (EA) and thermogravimetric analysis (TGA), indicating that the modification was successfully accomplished. Batch adsorption experiments including equilibrium isotherms, kinetics and the effects of pH and temperature on the adsorption of Cd(II) and Pb(II) were systematically studied. Among three kinetic models, the pseudo-second-order kinetic model provides the best correlation for the process. The nonlinear resolution of the Langmuir isotherm equation has been found to show the closest fit to the equilibrium date. Thermodynamic parameters, involving △G, △H and △S were also calculated from graphical interpretation of the experimental data, which suggest that metal ions adsorption onto PAN{sub MW}–TSC fibers is spontaneous and exothermic. Regeneration of PAN{sub MW}–TSC fibers loaded with metal ions was efficiently done with 0.5 M HNO{sub 3}, by which the investigated adsorbent could be used reproductively for five times with a small decrease in sorption capacity. The feasible preparation of PAN{sub MW

  12. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    Science.gov (United States)

    Beer, Neil Reginald

    2015-03-03

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carrier fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.

  13. Microwave heating of aqueous samples on a micro-optical-electro-mechanical system

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald

    2016-04-12

    Apparatus for heating a sample includes a microchip; a microchannel flow channel in the microchip, the microchannel flow channel containing the sample; a microwave source that directs microwaves onto the sample for heating the sample; a wall section of the microchannel flow channel that receives the microwaves and enables the microwaves to pass through wall section of the microchannel flow channel, the wall section the microchannel flow channel being made of a material that is not appreciably heated by the microwaves; a carrier fluid within the microchannel flow channel for moving the sample in the microchannel flow channel, the carrier fluid being made of a material that is not appreciably heated by the microwaves; wherein the microwaves pass through wall section of the microchannel flow channel and heat the sample.

  14. A novel method for the synthesis of coumarin laser dyes derived from 3-(1H-benzoimidazol-2-yl coumarin-2-one under microwave irradiation

    Directory of Open Access Journals (Sweden)

    Ghasem Bakhtiari

    2014-12-01

    Full Text Available We want to achieve the synthesis of 3-(1H-benzoimidazol-2-yl-7-(diethylamino coumarin-2-one (1, 3-(1H-benzoimidazol-2-yl-7-(dimethylamino coumarin-2-one (2, 3-(1H-benzoimidazol-2-yl coumarin-2-one (3 that are important dyes in industries (Soko owska et al., 2001. Methods for the synthesis of some of these compounds have been the title in some pervious patents, but enough information about separation and purification of them was not clearly indicated. We carried out several methods for the synthesis of the mentioned compound and purification with different yields. Now, we can synthesise these dyes under microwave irradiation in solid phase and solvent free methods with 80% yield, which is a high and remarkable percentage.

  15. Free Reducing Agent, One Pot, and Two Steps Synthesis of Ag@SiO2 Core-shells using Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    M. Karimipour

    2016-10-01

    Full Text Available In this work a new method for the fabrication of Ag@SiO2 nanoparticles have been proposed that is completely different from Stober method. Ag nanoparticles were synthesized using microwave irradiation. polyvinylpyrrolidone was used as stabilizer and capping agent, 3-Aminopropyltriethoxysilane as functionalizer of silver particles in fully ethanol solution. The Ag nanoparticles were used subsequently without any subtraction and treatment in the preparation of Ag@SiO2 core-shell nanoparticles. UV-Vis spectroscopy shows a characteristic plasmon peak at 400 nm and 430 nm for Ag nanoparticles and Ag@SiO2 core-shells. Transmission electron microscope images show that Ag nanoparticles have the average size of 10 nm. It is also depicted that SiO2 shell structure was formed uniformly with the average size of 10 nm. The application of 3-Aminopropyltriethoxysilane in the preparation of core-shells yields single Ag core structure.

  16. Cu{sub 2}ZnSnS{sub 4} nanoflakes prepared by one step microwave irradiation technique: Effect of Cu concentration

    Energy Technology Data Exchange (ETDEWEB)

    Kandare, S. P.; Dhole, S. D.; Bhoraskar, V. N.; Dahiwale, S. S., E-mail: ssd@physics.unipune.ac.in [Department of Physic, Savitribai Phule Pune University, Pune, 411007 (India)

    2016-05-23

    Cu{sub 2}ZnSnS{sub 4} (CZTS) nanoflakes were synthesized in one step by microwave irradiation method. Controlling the secondary phases in Copper Zinc Tin Sulfide (CZTS) material is critical, but it is necessary to control secondary phases in order to achieve the high efficiency solar cells made from CZTS. In the recent years, CZTS has shown its growing importance in thin film photovoltaic application because of its favorable optical and electrical properties. In this work, a systematic study has been carried out by properly controlling the copper concentration to get the pure phase of CZTS. X-ray diffraction shows the CZTS kesterite structure. Optical band gap estimated from UV-Visible spectroscopy was around 1.37eV. Systematic Raman study reveals the suppression of Cu{sub 2}S peak with variation in copper concentration which otherwise was not clear from XRD and UV-visible data.

  17. Efficient synthesis of zinc-containing mesoporous silicas by microwave irradiation method and their high activities in acetylation of 1,2-dimethoxybenzene with acetic anhydride

    Directory of Open Access Journals (Sweden)

    K. Bachari

    2016-09-01

    Full Text Available A series of acid zinc-containing mesoporous materials have been synthesized by microwave irradiation method with different Si/Zn ratios (Si/Zn = 100, 65, 15 and characterized by several spectroscopic techniques such as: N2 physical adsorption, ICP, XRD, TEM, FT-IR and a temperature-programmed-desorption (TPD of pyridine. The liquid phase of acetylation of 1,2-dimethoxybenzene with acetic anhydride has been investigated over this series of catalysts. In fact, the catalyst Zn-JLU-15 (15 showed bigger performance in the acid-catalyzed acetylation of 1,2-dimethoxybenzene employing acetic anhydride as an acylating agent. Furthermore, the kinetics of the acetylation of 1,2-dimethoxybenzene over these catalysts have also been investigated.

  18. Screening of lipases for the synthesis of xylitol monoesters by chemoenzymatic esterification and the potential of microwave and ultrasound irradiations to enhance the reaction rate.

    Science.gov (United States)

    Rufino, Alessandra R; Biaggio, Francisco C; Santos, Julio C; de Castro, Heizir F

    2010-07-01

    Lipases from different sources, Pseudomonas fluorescens (AK lipase), Burkholderia cepacia (PS lipase), Penicillium camembertii (lipase G) and Porcine pancreas lipase (PPL), previously immobilized on epoxy SiO(2)-PVA, were screened for the synthesis of xylitol monoesters by esterification of the protected xylitol using oleic acid as acyl donor group. Among all immobilized derivatives, the highest esterification yield was achieved by P. camembertii lipase, showing to be attractive alternative to bulk chemical routes to satisfy increasing commercial demands. Further experiments were performed to determine the influence of fatty acids chain size on the reaction yield and the feasibility of using non-conventional heating systems (microwave and ultrasound irradiations) to enhance the reaction rate.

  19. Effect of different sulphur precursors on morphology and band-gap on the formation of Cu2ZnSnS4 (CZTS) particles with microwave irradiation

    Science.gov (United States)

    Patro, Bharati; Vijaylakshmi, S.; Sharma, Pratibha

    2016-05-01

    Cu2ZnSnS4 (CZTS) is a promising semiconductor material for ecological cost effective thin film Photovoltaic (PV) devices. As it contains earth abundant and non-toxic elements, it has the advantages over commercially available CIGS and CdTe thin film PV devices. In the present work, the pure phase Cu2ZnSnS4 particles were successfully synthesised with microwave irradiation. The morphology and phase study was carried out for the samples prepared with two different sulphur precursors viz. thiourea and thioacetamide (TAA). CZTS particles with thiourea as sulphur precursor are more crystalline than CZTS particles with TAA. The band gap of 1.654eV and 1.713eV were calculated for the samples prepared with thiourea and TAA respectively.

  20. Testing zinc chloride as a new catalyst for direct synthesis of cellulose di- and tri-acetate in a solvent free system under microwave irradiation.

    Science.gov (United States)

    El Nemr, Ahmed; Ragab, Safaa; El Sikaily, Amany

    2016-10-20

    This research demonstrates the effect of ZnCl2 as a catalyst on the esterification of commercial cotton cellulose using acetic anhydride in order to obtain di- and tri-cellulose acetates under microwave irradiation. It was discovered that microwave irradiation significantly increased the yield and reduced the reaction time. It was found that the maximum yield for cellulose triacetates was 95.83% under the reaction conditions that were as follows: 3min reaction time, 200mg of ZnCl2 catalyst and 20ml of Ac2O for 5g cellulose. However, the cellulose acetate obtained in this manner had the highest DS (2.87). The cellulose di-acetate was produced with the maximum yield of 89.97% and with the highest DS (2.69) using 25ml Ac2O, 200mg of ZnCl2 for 5g cellulose and in 3min reaction time. The effect of some factors such as the amount of used catalyst, the quantity of acetic acid anhydride and the reaction time of the esterification process have been investigated. The production of di- and tri-cellulose acetate and the degree of substitution were confirmed using Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR). The thermal stability was investigated using thermo gravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). The molecular weight and the degree of polymerization were obtained using Gel Permeation Chromatography (GPC). The analysis confirmed the successful synthesis of di- and tri-cellulose acetate without degradation during the reaction; these results were found to be in contrast to some recent studies. The present study reveals that ZnCl2 is a new catalyst; it is effective as well as inexpensive and is a low toxicity catalyst for usage in cellulose esterification.

  1. Selection of Lipases for the Synthesis of Biodiesel from Jatropha Oil and the Potential of Microwave Irradiation to Enhance the Reaction Rate

    Directory of Open Access Journals (Sweden)

    Livia T. A. Souza

    2016-01-01

    Full Text Available The present study deals with the enzymatic synthesis of biodiesel by transesterification of Jatropha oil (Jatropha curcas L. with ethanol in a solvent-free system. Seven commercial lipase preparations immobilized by covalent attachment on epoxy-polysiloxane-polyvinyl alcohol composite (epoxy-SiO2-PVA were tested as biocatalysts. Among them, immobilized lipases from Pseudomonas fluorescens (lipase AK and Burkholderia cepacia (lipase PS were the most active biocatalysts in biodiesel synthesis, reaching ethyl ester yields (FAEE of 91.1 and 98.3% at 72 h of reaction, respectively. The latter biocatalyst exhibited similar performance compared to Novozym® 435. Purified biodiesel was characterized by different techniques. Transesterification reaction carried out under microwave irradiation exhibited higher yield and productivity than conventional heating. The operational stability of immobilized lipase PS was determined in repeated batch runs under conventional and microwave heating systems, revealing half-life times of 430.4 h and 23.5 h, respectively.

  2. RAPID SYNTHESIS OF NOVEL OPTICALLY ACTIVE POLY(AMIDE-IMIDE)S DERIVED FROM N,N'-(PYROMELLITOYL)-BIS-L-ALANINE DIACID CHLORIDE AND HYDANTOIN DERIVATIVES UNDER MICROWAVE IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    Khalil Faghihi; Azizollah Mirsamie

    2005-01-01

    Eight novel poly(amide-imide)s were synthesized under microwave irradiation by using a domestic microwave oven from the polycondensation reactions of N,N'-(pyromellitoyl)-bis-L-alanine diacid chloride (1) with eight different derivatives of hydantoin compounds (2a-h) in the presence of a small amount of a polar organic medium such as o-cresol.The polycondensation proceeded rapidly, compared with the conventional solution polycondensation and was completed within 8-10 min, producing a series of new poly(amide-imide)s (3a-h) with inherent viscosities about 0.35-0.68 dL/g in high yields. The obtained PAIs (3a-h) were fully characterized by means of FT-IR spectroscopy, elemental analyses, inherent viscosity (ηinh), solubility and specific rotation measurements. All of the resulting polymers show optical rotation and are optically active. Thermal properties of the poly(amide-imide)s were investigated by using thermal gravimetric analysis(TGA).

  3. Microwave synthesis and mechanical characterization of functionally graded material for applications in fusion devices

    Indian Academy of Sciences (India)

    Charu Lata Dube; Yashashri Patil; Shailesh Kanpara; Samir S Khirwadkar; Subhash C Kashyap

    2014-12-01

    Functionally graded tungsten–copper bimetallic compact with fine microstructure and good mechanical property has been synthesized by employing microwave heating method at a temperature of 800 °C and in a short processing time of 30 min. Scanning electron microscopy and energy dispersive X-ray analysis revealed the graded structure of synthesized sample. The fine microstructure of tungsten in each layer is caused by arrested grain growth because of the short sintering time. The overall relative density of the W/Cu functionally graded sample has reached 87% of the theoretical density. Vickers microhardness measurements, across the length of a compact, show increase in hardness value of the sample with the increase in tungsten content. The experimental hardness values match well with the theoretically calculated hardness values.

  4. Mechanical properties and microstructure of advanced ferritic-martensitic steels used under high dose neutron irradiation

    Science.gov (United States)

    Shamardin, V. K.; Golovanov, V. N.; Bulanova, T. M.; Povstianko, A. V.; Fedoseev, A. E.; Goncharenko, Yu. D.; Ostrovsky, Z. E.

    Some results of the study of mechanical properties and structure of ferritic-martensitic chromium steels with 13% and 9% chromium, irradiated in the BOR-60 reactor up to different damage doses are presented in this report. Results concerning the behaviour of commercial steels, containing to molybdenum, vanadium and niobium, and developed for the use in fusion reactors, are compared to low-activation steels in which W and Ta replaced Mo and Nb. It is shown that after irradiation to the dose of ˜10 dpa at 400°C 0.1C-9Cr-1W, V, Ta steels are prone to lower embrittlement as deduced from fracture surface observations of tensile specimens. Peculiarities of fine structure and fracture mode, composition and precipitation reactions in steels during irradiation are discussed.

  5. Regulation mechanism of EM parameters in natural ferrite and its application in microwave absorbing materials

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Yongchun; WANG; Shijie; FENG; Junming; LI; Chunlai; OUYANG; Ziyuan; LIU; Jianzhong; LI; Xiaobiao

    2006-01-01

    Electromagnetic (EM) parameters (ε', ε″,μ', μ″ ) of several M2+Fe2O4 and Fe2O3 type natural ferrites with different geological occurrences are measured in this paper. The measurement results show that EM parameters of a magmatic-occurring natural ferrite is very different from other types occurring from sedimentary-metamorphic iron deposit, hydrothermal vein iron deposit, outer contact of magmatic iron deposit. It has potential to be used as magnetic absorbent in microwave absorbing materials. After mineral separation and concentration, this magmatic-occurring natural ferrite was processed into type A ferrite absorbent. Type A natural ferrite absorbent is a kind of magnetic material with low dielectric constants, high magnetic conductivity and high EM loss. Its EM parameters areε' = 58.60, ε″ = 10.0, μ' = 1.2-1.5, μ″ = 1.0-1.2, respectively. In order to illuminate the regulation mechanism of EM parameters, we studied the chemical and mineral composition of type A ferrite absorbent. There is high concentration of natural impurities, which regulate the EM parameters of type A ferrite greatly. For comparison, the other types of natural ferrite, single-phase magnetite and two-phase iron minerals (ilmenite and magnetite), have few impurity. Thus regulation mechanism of EM parameters was absent in these ferrites. As a result, the regulation of EM parameters is advantageous to develop type A natural ferrite as excellent absorbent, lowers the reflectivity coefficients and enhances the absorbing efficiency of MAM made from it. Furthermore, the impurities in type A natural ferrite and its effects on EM parameters are very difficult to simulate in the synthesize ferrite. The carbonyl-iron powder is another kind of absorbent that is used extensively in MAM. To compare the absorbing properties of these two absorbent, type A natural ferrite and carbonyl-iron powder were mixed with rubber and processed into microwave absorbing sheets with the same procedures and

  6. Mechanical response of UO{sub 2} single crystals submitted to low-energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tien-Hien [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud – CNRS/IN2P3, Université Paris-Saclay, Bâtiment 108, 91405 Orsay Cedex (France); Department of Physics, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi (Viet Nam); Debelle, Aurélien, E-mail: aurelien.debelle@u-psud.fr [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud – CNRS/IN2P3, Université Paris-Saclay, Bâtiment 108, 91405 Orsay Cedex (France); Boulle, Alexandre [Science des Procédés Céramiques et de Traitements de Surface CNRS UMR 7315, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges (France); Garrido, Frédérico; Thomé, Lionel [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud – CNRS/IN2P3, Université Paris-Saclay, Bâtiment 108, 91405 Orsay Cedex (France); Demange, Valérie [Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, 263 avenue du Général Leclerc, Campus de Beaulieu – Bâtiment 10B, 35042 Rennes Cedex (France)

    2015-12-15

    {111}- and {100}-oriented UO{sub 2} single crystals were irradiated with 500-keV Ce{sup 3+} ions in the 10{sup 14}–9 × 10{sup 14} cm{sup −2} fluence range. The irradiation-induced strain was monitored using high-resolution X-ray diffraction. A mechanical modelling dedicated to thin irradiated layers was applied to account for the reaction of the unirradiated part of the crystals. The elastic strain, which is confined along the surface normal of the samples, increases with ion fluence until it is dramatically relieved. This behaviour is observed for both orientations. While the measured elastic strain depends on the crystallographic direction, the strain due to irradiation defects only is found to be equal for both directions, with a maximum value of ∼0.5%. Strain relaxation takes place at the damage peak, but the in-plane lattice parameter of the irradiated layer remains unchanged and equal to that of the pristine material. Meanwhile, the strain at the damaged/pristine interface continues to increase.

  7. Size-dependent crystalline fluctuation and growth mechanism of bismuth nanoparticles under electron beam irradiation

    Science.gov (United States)

    Wu, Sujuan; Jiang, Yi; Hu, Lijun; Sun, Jianguo; Wan, Piaopiao; Sun, Lidong

    2016-06-01

    Advanced nanofabrication requires accurate tailoring of various nanostructures with the assistance of electron or ion beam irradiation. However, evolution of the nanostructures under the beam irradiation significantly affects the fabrication process. It is thus of paramount importance to study the evolution behaviors and growth mechanism of the nanostructures. In this study, bismuth nanoparticles were selected to investigate crystalline fluctuation under electron beam irradiation via transmission electron microscopy. The results disclose size-dependent crystalline fluctuation of the nanoparticles. The particles exhibit crystalline and non-crystalline features for sizes of above 15 and below 4 nm, respectively, while a mixture of the two states is observed with sizes in between. The crystalline fluctuation facilitates the growth process of the particles when a crystalline particle is in contact with another non-crystalline one. This is promising for applications in nanofabrication where high quality interfaces are desired between two joining parts.Advanced nanofabrication requires accurate tailoring of various nanostructures with the assistance of electron or ion beam irradiation. However, evolution of the nanostructures under the beam irradiation significantly affects the fabrication process. It is thus of paramount importance to study the evolution behaviors and growth mechanism of the nanostructures. In this study, bismuth nanoparticles were selected to investigate crystalline fluctuation under electron beam irradiation via transmission electron microscopy. The results disclose size-dependent crystalline fluctuation of the nanoparticles. The particles exhibit crystalline and non-crystalline features for sizes of above 15 and below 4 nm, respectively, while a mixture of the two states is observed with sizes in between. The crystalline fluctuation facilitates the growth process of the particles when a crystalline particle is in contact with another non

  8. The signal transduction mechanisms on the intestinal mucosa of rat following irradiation

    Energy Technology Data Exchange (ETDEWEB)

    You, J. H.; Kim, S. S.; Lee, K. J.; Lee, J. S. [Ewha Womans Univ., Seoul (Korea, Republic of). Coll. of Medicine

    1997-06-01

    Phospholipase C(PLC) isozymes play significant roles in signal transduction mechanism. The exact mechanisms of these signal transduction following irradiation, however, were not clearly documented. Thus, this study was planned to determine the biological significance of PLC, ras oncoprotein, EGFR, and PKC in damage and regeneration of rat intestinal mucosa following irradiation. Sixty Sprague-Dawley rats were irradiated to entire body with a single dose of 8Gy. The rats were divided into 5 groups according to the sacrifice days after irradiation. The expression of PLC, ras oncoprotein, EGRF PKC in each group were examined by the immunoblotting and immunohistochemistry. The histopathologic findings were observed using H and E stain, and the mitoses for the evidence of regeneration were counted using the light microscopy and PCNA kit. The phosphoinositide(PI) hydrolyzing activity assay was also done for the indirect evaluation of PLC-{gamma}1 activity. In the immunohistochemistry, the expression of PLC-{beta} was negative for all groups. The expression of PLC-{gamma}1 was highest in the group III followed by group II in the proliferative zone of mucosa. The expression of PKC-{delta}1 was strongly positive in group I followed by group II in the damaged surface epithelium. The above findings were also confirmed in the immunoblotting study. In the immunoblotting study, the expressions of PLC-{beta}, PLC-{gamma}1, and PLC-{delta}1 were the same as the results of immunohistochemistry. The expression of ras oncoprotein was weakly positive in groups II, III and IV and the expression of PKC was weakly positive in the group II and III. PLC-{gamma}1 mediated signal transduction including ras oncoprotein, EGFR, and PKC play a significant role in mucosal regeneration after irradiation. PLC-{delta}1 mediated signal transduction might have an important role in mucosal damage after irradiation. Further studies will be necessary to confirm the signal transduction mediating the PLC

  9. Mechanical and thermal properties of irradiated films based on Tilapia (Oreochromis niloticus) proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sabato, S.F. [Radiation Technology Center, IPEN-CNEN/SP, Av. Lineu Prestes 2242, 05508 900 Sao Paulo, SP (Brazil)], E-mail: sfsabato@ipen.br; Nakamurakare, N.; Sobral, P.J.A. [Food Engineering Department, ZEA/FZEA/USP, Av. Duque de Caxias Norte 225, 13635 900 Pirassununga, SP (Brazil)

    2007-11-15

    Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia (Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction.

  10. Mechanical and thermal properties of irradiated films based on Tilapia ( Oreochromis niloticus) proteins

    Science.gov (United States)

    Sabato, S. F.; Nakamurakare, N.; Sobral, P. J. A.

    2007-11-01

    Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia ( Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction.

  11. Regulation mechanisms of the FLT3-ligand after irradiation; Mecanismes de regulation du FLT3-ligand apres irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Prat-Lepesant, M

    2005-06-15

    The hematopoietic compartment is one of the most severely damaged after chemotherapy, radiotherapy or accidental irradiations. Whatever its origin, the resulting damage to the bone marrow remains difficult to evaluate. Thus, it would be of great interest to get a biological indicator of residual hematopoiesis in order to adapt the treatment to each clinical situation. Recent results indicated that the plasma Flt3 ligand concentration was increased in patients suffering from either acquired or induced aplasia, suggesting that Flt3 ligand might be useful as a biological indicator of bone marrow status. We thus followed in a mouse model as well as in several clinical situations the variations in plasma Flt3 ligand concentration, after either homogeneous or heterogeneous irradiations. These variations were correlated to the number of hematopoietic progenitors and to other parameters such as duration and depth of pancytopenia. The results indicated that the concentration of Flt3 ligand in the blood reflects the bone marrow status, and that the follow-up of plasma Flt3 ligand concentration could give predictive information about the bone marrow function and the duration and severity of pancytopenia and thrombocytopenia. Nevertheless, the clinical use of Flt3 ligand as a biological indicator of bone marrow damage require the knowledge of the mechanisms regulating the variations in plasma Flt3 ligand concentration. We thus developed a study in the mouse model. The results indicated that the variations in plasma Flt3 ligand variations were not solely due to a balance between its production by lymphoid cells and its consumption by hematopoietic cells. Moreover, we showed that T lymphocytes are not the main regulator of plasma Flt3 ligand concentration as previously suggested, and that other cell types, possibly including bone marrow stromal cells, might be strongly implicated. These results also suggest that the Flt3 ligand is a main systemic regulator of hematopoiesis

  12. Application of D-optimal design to extract the pectin from lime bagasse using microwave green irradiation.

    Science.gov (United States)

    Thirugnanasambandham, K; Sivakumar, V

    2015-01-01

    The main objective of the present study is to extract the pectin from lime bagasse under various extraction conditions such as microwave power, extraction time, temperature, pH and mass of the sample. RSM coupled with D-optimal experimental design was used to optimize and investigate the extraction conditions on the pectin yield. Second order polynomial equation was developed and its adequacy was analyzed by analysis of variance (ANOVA). The optimal extraction was found to be as follows; microwave power of 400 W, extraction time of 500 s, temperature of 30 °C, pH of 1 and mass of the sample of 6g. Under these optimal scheme, 7.8 g/100g of pectin was extracted. Molecular weight of the pectin polymer and the distribution of the pectin compounds were determined by gel filtration chromatography.

  13. A process to preserve valuable compounds and acquire essential oils from pomelo flavedo using a microwave irradiation treatment.

    Science.gov (United States)

    Liu, Zaizhi; Zu, Yuangang; Yang, Lei

    2017-06-01

    A microwave pretreatment method was developed to preserve pectin, naringin, and limonin contents in pomelo flavedo to allow for longer storage times and subsequent extraction of pomelo essential oil. In terms of the essential oil, microwave pretreatment performed better than hydrodistillation with respect to extraction efficiency (1.88±0.06% in 24min versus 1.91±0.08% in 240min), oxygenation fraction (48.59±1.32% versus 29.63±1.02%), energy consumption (0.15kWh versus 1.54kWh), and environmental impact (123.20g CO2 versus 1232g CO2). Microwave-pretreated samples retained higher amounts of pectin, naringin, and limonin compared with non-pretreated samples. No obvious change in the degree of pectin esterification was observed. This study shows that the proposed process is a promising methodology for both preserving valuable compounds in pomelo flavedo during storage and acquiring essential oils.

  14. Influence of γ-irradiation and temperature on the mechanical properties of EPDM cable insulation

    Science.gov (United States)

    Šarac, T.; Quiévy, N.; Gusarov, A.; Konstantinović, M. J.

    2016-08-01

    The mechanical properties of EPDM polymers, degraded as a result of extensive thermal and radiochemical aging treatment, are studied. The focus is given to dose rate effects in polymer insulation materials extracted from industrial cables in use in Belgian nuclear power plants. All studied mechanical characteristics such as the ultimate tensile stress, the Young's modulus, and the total elongation (or elongation at break) are found to be strongly affected by the irradiation dose. The ultimate tensile stress and Young's modulus are clearly exhibiting the dose rate effect, which originated from oxidation mediated interplay of polymer cross-linking and chain scission processes. The change of crossover between these two processes is found to be gradual, without critical dose rate or temperature values. On the contrary, the total elongation is observed not to be sensitive neither to irradiation temperature nor to the dose rate. Both cross-linking and chain scission seem to affect the total elongation in a similar way by reducing the average polymers chain length. This idea is confirmed by the model which shows that all total elongation data as a function of irradiation time can be reproduced by varying a single parameter, the pre-exponential factor of the irradiation rate constant.

  15. Preparation of a sol-gel-derived carbon nanotube ceramic electrode by microwave irradiation and its application for the determination of adenine and guanine

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspour, Abdolkarim, E-mail: abbaspour@chem.susc.ac.i [Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars 71456-85464 (Iran, Islamic Republic of); Ghaffarinejad, Ali [Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Fars 71456-85464 (Iran, Islamic Republic of)

    2010-01-01

    In this study, microwave irradiation was used for the fast preparation (min) of a sol-gel-derived carbon nanotube ceramic electrode (MW-CNCE). For confirmation of the preparation of the ceramic by MW irradiation, Fourier transform infrared, X-ray diffraction spectra and scanning electron microscopy images of the produced ceramic were compared with those of conventional ceramic (which is produced by drying the ceramic in air for 48 h). The electrochemical behavior of MW-CNCE in nicotinamide adenine dinucleotide, L-cysteine, adenine and guanine was compared with that of a conventional sol-gel-derived carbon nanotube ceramic electrode (CNCE). In all systems, similar peak potentials and lower background currents were obtained with respect to CNCE. Finally, the MW-CNCE was used for the simultaneous determination of adenine and guanine using differential pulse voltammetry. The linear ranges of 0.1-10 and 0.1-20 muM were obtained for adenine and guanine, respectively. These results are comparable with some modified electrodes that have recently been reported for the determination of adenine and guanine, with the advantage that the proposed electrode did not contain modifier. In addition, the proposed electrode was successfully used for the oxidation of adenine and guanine in DNA, and the detection limit for this measurement was 0.05 mug mL{sup -1} DNA.

  16. Optimization of bio-diesel production from soybean and wastes of cooked oil: combining dielectric microwave irradiation and a SrO catalyst.

    Science.gov (United States)

    Koberg, Miri; Abu-Much, Riam; Gedanken, Aharon

    2011-01-01

    This work offers an optimized method in the transesterification of pristine (soybean) oil and cooked oil to bio-diesel, based on microwave dielectric irradiation as a driving force for the transesterification reaction and SrO as a catalyst. This combination has demonstrated excellent catalytic activity and stability. The transesterification was carried out with and without stirring. According to 1H NMR spectroscopy and TLC results, this combination accelerates the reaction (to less than 60 s), maintaining a very high conversion (99%) and high efficiency. The catalytic activity of SrO under atmospheric pressure in the presence of air and under the argon atmosphere is demonstrated. The optimum conversion of cooked oil (99.8%) is achieved under MW irradiation of 1100 W output with magnetic stirring after only 10 s. The optimum method decreases the cost of bio-diesel production and has the potential for industrial application in the transesterification of cooked oil to bio-diesel. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Efficient mineralization of antibiotic ciprofloxacin in acid aqueous medium by a novel photoelectro-Fenton process using a microwave discharge electrodeless lamp irradiation.

    Science.gov (United States)

    Wang, Aimin; Zhang, Yanyu; Zhong, Huihui; Chen, Yu; Tian, Xiujun; Li, Desheng; Li, Jiuyi

    2017-08-26

    In this study, a novel photoelectro-Fenton (PEF) process using microwave discharge electrodeless lamp (MDEL) as a UV irradiation source was developed for the removal of antibiotic ciprofloxacin (CIP) in water. Comparative degradation of 200mgL(-1) CIP was studied by direct MDEL photolysis, anodic oxidation (AO), AO in presence of electrogenerated H2O2 (AO-H2O2), AO-H2O2 under MDEL irradiation (MDEL-AO-H2O2), electro-Fenton (EF) and MDEL-PEF processes. Higher oxidation power was found in the sequence: MDEL photolysis removal in MDEL-PEF process were examined, and the optimal conditions were ascertained. The releases of three inorganic ions (F(-), NH4(+) and NO3(-)) and two carboxylic acids (oxalic and formic acids) were qualified. Seven aromatic intermediates mainly generated from hydroxylation, dealkylation and defluorination of CIP were detected by UPLC-QTOF-MS/MS technology. Therefore, plausible degradation sequences for CIP degradation in MDEL-PEF process including all detected products were proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Synthesis and absorbing mechanism of two-layer microwave absorbers containing polycrystalline iron fibers and carbonyl iron

    Science.gov (United States)

    Ding, Qingwei; Zhang, Mingang; Zhang, Cunrui; Qian, Tianwei

    2013-04-01

    Polycrystalline iron fibers were fabricated by α-FeOOH fiber precursors. Two-layer microwave absorber had been prepared by as-prepared polycrystalline iron fibers and carbonyl iron. The structure, morphology and properties of the composites were characterized with X-ray diffraction, scanning electron microscope and Network Analyzer. The complex permittivity and reflection loss (dB) of the composites were measured employing vector network analyzer model PNA 3629D vector in the frequency range between 30 and 6000 MHz. The thickness effect of the carbonyl iron layer on the microwave loss properties of the composites was investigated. A possible microwave-absorbing mechanism of polycrystalline iron fibers/carbonyl iron composite was proposed. The polycrystalline iron fibers/carbonyl iron composite can find applications in suppression of electromagnetic interference, and reduction of radar signature.

  19. Microwave Enhanced Reactive Distillation

    NARCIS (Netherlands)

    Altman, E.

    2011-01-01

    The application of electromagnetic irradiation in form of microwaves (MW) has gathered the attention of the scientific community in recent years. MW used as an alternative energy source for chemical syntheses (microwave chemistry) can provide clear advantages over conventional heating methods in ter

  20. High-dose neutron irradiation of Hi-Nicalon Type S silicon carbide composites. Part 2: Mechanical and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai, E-mail: katohy@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Nozawa, Takashi [Japan Atomic Energy Agency, Rokkasho, Aomori-ken (Japan); Shih, Chunghao [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Ozawa, Kazumi [Japan Atomic Energy Agency, Rokkasho, Aomori-ken (Japan); Koyanagi, Takaaki; Porter, Wally; Snead, Lance L. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2015-07-15

    Nuclear-grade silicon carbide (SiC) composite material was examined for mechanical and thermophysical properties following high-dose neutron irradiation in the High Flux Isotope Reactor at a temperature range of 573–1073 K. The material was chemical vapor-infiltrated SiC-matrix composite with a two-dimensional satin weave Hi-Nicalon Type S SiC fiber reinforcement and a multilayered pyrocarbon/SiC interphase. Moderate (1073 K) to very severe (573 K) degradation in mechanical properties was found after irradiation to >70 dpa, whereas no evidence was found for progressive evolution in swelling and thermal conductivity. The swelling was found to recover upon annealing beyond the irradiation temperature, indicating the irradiation temperature, but only to a limited extent. The observed strength degradation is attributed primarily to fiber damage for all irradiation temperatures, particularly a combination of severe fiber degradation and likely interphase damage at relatively low irradiation temperatures.

  1. Investigation of the mechanisms by which UV irradiation activates the tyrosinase gene

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Y

    2000-04-01

    Tyrosinase, tyrosinase related protein-1 (TRP-1) and tyrosinase related protein-2 (TRP-2) are the enzymes involved in melanin pigment synthesis. They are expressed specifically in melanocytic cells. UV irradiation is the major physiological stimulant of melanogenesis. Tyrosinase is the rate-limiting enzyme in melanin synthesis and its activity is regulated by UV irradiation in melanocytes. The molecular mechanism underlying the activation of tyrosinase by UV is still not clear. In this thesis, the effects of UV irradiation on tyrosinase, TRP-1 and TRP-2 gene expression in mouse B16 melanoma cells were studied as well as the effects of UV irradiation on the activity of the tyrosinase promoter in mouse, and human melanoma cells. UV irradiation caused an increase in tyrosinase mRNA level, without change in either TRP-1 or TRP-2 mRNA levels, as determined by Northern blot analysis. In order to determine whether UV- induced increase of tyrosinase mRNA expression involved modulation of tyrosinase promoter activity, transient transfection approaches involving a series of constructs containing either chloramphenicol acetyl transferase (CAT) or luciferase reporter genes linked to different lengths of the tyrosinase gene- promoter were used. UV irradiation specifically induced CAT gene expression from both the mouse and the human tyrosinase promoters, suggesting that UV irradiation induced the transcription of the tyrosinase gene. These observations indicated that the promoter region between -250 and -150 bp of the human tyrosinase promoter may contain important cis-regulatory elements involved in the UV response. To localise the cis-regulatory elements responsible for the UV response of the tyrosinase promoter, the 100-bp between -250 bp and -150 bp of the tyrosinase promoter was inserted upstream of a CAT reporter. It was shown that transcription from the 100-bp promoter fragment was activated by UV irradiation. Mutations of a potential cAMP response element (CRE) motif

  2. Effects of neutron irradiation on microstructure and mechanical properties of pure iron

    DEFF Research Database (Denmark)

    Singh, B.N.; Horsewell, Andy; Toft, P.

    1999-01-01

    tensile tested at the irradiation temperatures. Microstructures of the as-irradiated and irradiated and tensile tested specimens were investigated by transmission electron microscopy. Fracture surfaces of tensile tested specimens in unirradiated and irradiated conditions were examined in a scanning...

  3. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    Science.gov (United States)

    Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.

    2017-07-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.

  4. 常压连续微波辐射法合成聚乳酸-聚乙二醇共聚物%Continuous Microwave-Irradiated Synthesis of Poly (D,L-Lactide)-co-Poly(Ethylene Glycol) Copolymer Under Atmosphere

    Institute of Scientific and Technical Information of China (English)

    张英民; 王鹏; 李悦; 雷海芬; 焦春艳; 韩宁

    2007-01-01

    Poly(D,L-lactide)-co-poly(ethylene glycol) copolymer(PELA) of Intrinsic viscosity 0.51 dL·g-1 had been prepared under continuous microwave-irradiation power of 90 W for 8 min at atmosphere. Effects of poly(ethylene glycol)(PEG) content, polymerization time on intrinsic viscosity and yield of PELA had been discussed. Furthermore, temperature rising behavior in reactants system was studied through copolymerization under continuous microwave oven and domestic microwave oven. The results showed that temperature of reactants system evolved smoothly without step under continuous microwave irradiation, which occurred under intermittent microwave irradiation in domestic microwave oven.%常压条件下、连续微波辐射功率90W,辐射时间 8min,合成了特性粘度为0.51 dL·g-1的聚乳酸-聚乙二醇共聚物(PELA).考察了聚乙二醇(PEG)浓度、聚合时间对共聚物特性粘度和收率的影响.此外,实验研究了连续微波炉与家用微波炉中反应体系的温升曲线.结果显示,相比于家用微波炉中的间歇微波辐射,连续微波辐射下反应体系温度上升平稳无突跃.

  5. 兔胸部微波照射中的温度监测与照射方式优化%Temperature monitoring and model optimization of rabbit chest extracorporeal microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    张正平; 张殿忠; 裘秀春; 文艳华; 刘云燕; 范清宇

    2008-01-01

    Objective To clarify the temperature curve of the irradiation target area,its adjacent tissue and the whole body during extracorpereal microwave irradiation, then to compare and optimize different irradiation models. Methods Different parts of the chest of adult New Zealand white rabbit were irradiated using different extracorporeal microwave irradiation models. The temperature of the irradiated skin, the subcutaneous and deep parts, the adjacent tissues and the anus was measured. The experiment was bi-factor and multi-level designed according to the repeatedly measured data and the rabbits was divided into group a,b,c and d. Results The increase rate of the surface temperature in the dorsal lung was similar between group d and group b1(F=10.04,P0.05);腹侧肺表面温度升高较慢,10 min后该部位所测温度平均值低于b1组(F=10.04,P<0.01);而肛温升高较快,10 min后该部位所测温度平均值高于b1组(F=7.04,P<0.01)结论多发射源阵列照射方式可安全地获得满意照射深度及合适治疗温度,在良好控制下微波照射是理想热疗手段.

  6. Microstructure and mechanical properties of neutron irradiated OFHC-copper before and after post-irradiation annealing

    DEFF Research Database (Denmark)

    Singh, B.N.; Edwards, D.J.; Toft, P.

    2001-01-01

    Tensile specimens of OFHC-copper were irradiated with fission neutrons in the DR-3 reactor at Risø National Laboratory at 100 deg. C to different displacement dose levels in the range of 0.01 to 0.3 dpa (NRT). Some of the specimens were tensile tested inthe as-irradiated condition at 100 deg. C...

  7. Effects of electron irradiation in space environment on thermal and mechanical properties of carbon fiber/bismaleimide composite

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Qi, E-mail: yuqi1027@126.com [Liaoning Key Laboratory of Advanced Polymer Matrix Composites and Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136 (China); Chen, Ping, E-mail: chenping_898@126.com [Liaoning Key Laboratory of Advanced Polymer Matrix Composites and Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136 (China); State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Gao, Yu; Ma, Keming; Lu, Chun; Xiong, Xuhai [Liaoning Key Laboratory of Advanced Polymer Matrix Composites and Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136 (China)

    2014-10-01

    Highlights: •Electron irradiation decreased the storage modulus finally. •T{sub g} decreased first and then increased and finally decreased. •The thermal stability was reduced and then improved and finally decreased. •The changing trend of flexural strength and ILSS are consistent. -- Abstract: The effects of electron irradiation in simulated space environment on thermal and mechanical properties of high performance carbon fiber/bismaleimide composites were investigated. The dynamic mechanical properties of the composites exposed to different fluences of electron irradiation were evaluated by Dynamic mechanical analysis (DMA). Thermogravimetric analysis was applied to investigate the changes in thermal stability of the resin matrix after exposure to electron irradiation. The changes in mechanical properties of the composites were evaluated by flexural strength and interlaminar shear strength (ILSS). The results indicated that electron irradiation in high vacuum had an impact on thermal and mechanical properties of CF/BMI composites, which depends on irradiation fluence. At lower irradiation fluences less than 5 × 10{sup 15} cm{sup −2}, the dynamic storage modulus, cross-linking degree, thermal stability and mechanical properties that were determined by a competing effect between chain scission and cross-linking process, decreased firstly and then increased. While at higher fluences beyond 5 × 10{sup 15} cm{sup −2}, the chain scission process was dominant and thus led to the degradation in thermal and mechanical properties of the composites.

  8. A REVIEW ON: A SIGNIFICANCE OF MICROWAVE ASSIST TECHNIQUE IN GREEN CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Manoj S. Charde

    2012-05-01

    Full Text Available Microwave Assisted Synthesis is rapidly becoming the method of choice in modern synthesis and discovery chemistry laboratories. Microwave-assisted synthesis improves both throughput and turn-around time for chemists by offering the benefits of drastically reduced reaction times, increased yields, and purer products. In this type of synthesis we applying microwave irradiation to chemical reactions. The fundamental mechanism of microwave heating involves agitation of polar molecules or ions that oscillate under the effect of an oscillating electric or magnetic field. In the presence of an oscillating field, particles try to orient themselves or be in phase with the field. Only materials that absorb microwave radiation are relevant to microwave chemistry. These materials can be categorized according to the three main mechanisms of heating, namely. Dipolar polarization, Conduction mechanism, Interfacial polarization. Microwave chemistry apparatus are classified: Single-mode apparatus and Multi-mode apparatus. Although occasionally known by such acronyms as 'MEC' (Microwave-Enhanced Chemistry or ‘MORE’ synthesis (Microwave-organic Reaction Enhancement, these acronyms have had little acceptance outside a small number of groups. The ability to combine microwave technology with in-situ reaction monitoring as an analytical tools will offer opportunities for chemists to optimize the reaction conditions. Different compounds convert microwave radiation to heat by different amounts. This selectivity allows some parts of the object being heated to heat more quickly or more slowly than others (particularly the reaction vessel.

  9. Post Irradiation Examination of a Thermo-Mechanically Improved Version of EUROFER ODS

    Energy Technology Data Exchange (ETDEWEB)

    Lucon, E.; Leenaers, A.; Vandermeulen, W.

    2006-08-15

    EUROFER is a 9Cr-1W-0.2V-0.1Ta reduced activation ferritic/martensitic (RAFM) steel, presently considered within the European Union as the primary candidate structural material in a fusion power plant. Its mechanical strength properties currently prevent its use at temperatures higher than 500-550 degrees Celsius. In an effort to extend the range of operating temperatures to 600-650 degrees Celsius and therefore enhance the efficiency of the machine, a different production route, Oxide Dispersion Strengthening (ODS), is being investigated. The characteristics of different versions of EUROFER ODS have been assessed in recent years, leading to the improvement of the material by a combination of optimized production process and post-thermal treatment. Until recently, the mechanical properties of EUROFER ODS had only been investigated in the unirradiated condition, and no information was available for the irradiation response of the material. However, mechanical samples have been irradiated during 2004-2005 at 300 degrees Celsius in the Belgian Reactor 2 (BR2) in Mol to an accumulated dose of 1.73 dpa; tensile, Charpy impact and fracture toughness tests have been performed in the hot cell laboratories of the Belgian Nuclear Centre (SCK-CEN). Metallographic and microstructural investigations were also performed on the investigated material in both the unirradiated and irradiated condition.

  10. Influence of some crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide

    Energy Technology Data Exchange (ETDEWEB)

    Rytlewski, Piotr, E-mail: prytlewski@ukw.edu.p [Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Malinowski, RafaL [Institute for Engineering of Polymer Materials and Dyes, ul. M. SkLodowskiej-Curie 55, 87-100 Torun (Poland); Moraczewski, Krzysztof [Department of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz (Poland); Zenkiewicz, Marian [Institute for Engineering of Polymer Materials and Dyes, ul. M. SkLodowskiej-Curie 55, 87-100 Torun (Poland)

    2010-10-15

    The aim of this article was to determine and compare the influence of trimethylopropane trimethacylate (TMPTA) and trially isocyanurate (TAIC) crosslinking agents on thermal and mechanical properties of electron beam irradiated polylactide (PLA). The blends were made of PLA mixed with 3 wt% of TMPTA (PLA/TMPTA), and PLA mixed with 3 wt% of TAIC (PLA/TAIC). Injection moulded samples were irradiated with the use of high energy (10 MeV) electron beam at various radiation doses to crosslinking PLA macromolecules. Thermal and mechanical properties were investigated by means of differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile strength, and impact strength measurements. The samples were also characterized by Fourier transform infrared spectroscopy (FTIR). It was found that under the influence of electron irradiation PLA/TMPTA samples underwent degradation while PLA/TAIC samples became crosslinked. Tensile and impact strengths of PLA/TMPTA samples decreased with increasing radiation dose while an enhancement of these properties for PLA/TAIC samples was observed.

  11. Optical and mechanical properties of diamond like carbon films deposited by microwave ECR plasma CVD

    Indian Academy of Sciences (India)

    S B Singh; M Pandey; N Chand; A Biswas; D Bhattacharya; S Dash; A K Tyagi; R M Dey; S K Kulkarni; D S Patil

    2008-10-01

    Diamond like carbon (DLC) films were deposited on Si (111) substrates by microwave electron cyclotron resonance (ECR) plasma chemical vapour deposition (CVD) process using plasma of argon and methane gases. During deposition, a d.c. self-bias was applied to the substrates by application of 13.56 MHz rf power. DLC films deposited at three different bias voltages (–60 V, –100 V and –150 V) were characterized by FTIR, Raman spectroscopy and spectroscopic ellipsometry to study the variation in the bonding and optical properties of the deposited coatings with process parameters. The mechanical properties such as hardness and elastic modulus were measured by load depth sensing indentation technique. The DLC film deposited at –100 V bias exhibit high hardness (∼ 19 GPa), high elastic modulus (∼ 160 GPa) and high refractive index (∼ 2.16–2.26) as compared to films deposited at –60 V and –150 V substrate bias. This study clearly shows the significance of substrate bias in controlling the optical and mechanical properties of DLC films.

  12. The effect of helium, radiation damage and irradiation temperature on the mechanical properties of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Fabritsiev, S.A. [D.V. Efremov Scientific Research Inst., St. Petersburg (Russian Federation); Pokrovsky, A.S.

    1998-01-01

    In this work different RF beryllium grades were irradiated in the BOR-60 reactor to a dose of {approx}5-10 dpa at irradiation temperatures 350, 420, 500, 800degC. Irradiation at temperatures of 350-400degC is shown to result in Be hardening due to the accumulation of radiation defect complexes. Hardening is accompanied with a sharp drop in plasticity at T{sub test} {<=} 300degC. A strong anisotropy in plasticity has been found at a mechanical testing temperature of 400degC and this parameter may be preferable when the samples are cut crosswise to the pressing direction. High-temperature irradiation (T{sub irr} = 780degC) gives rise to large helium pores over the grain boundaries and smaller pores in the grain body. Fracture is brittle and intercrystallite at T{sub test} {>=} 600degC. Helium embrittlement is accompanied as well with a drop in the Be strength properties. (author)

  13. Helium effects on mechanical properties and microstructure of high fluence ion-irradiated RAFM steel

    Science.gov (United States)

    Ogiwara, H.; Kohyama, A.; Tanigawa, H.; Sakasegawa, H.

    2007-08-01

    Reduced-activation ferritic/martensitic steels, RAFS, are leading candidates for the blanket and first wall of fusion reactors, and effects of displacement damage and helium production on mechanical properties and microstructures are important to these applications. Because it is the most effective way to obtain systematic and accurate information about microstructural response under fusion environment, single-(Fe 3+) and dual-(Fe 3+ + He +) irradiations were performed followed by TEM observation and nano-indentation hardness measurement. Dual-ion irradiation at 420 °C induced finer defect clusters compared to single-ion irradiation. These fine defect clusters caused large differences in the hardness increase between these irradiations. TEM analysis clarified that radiation induced precipitates were MX precipitates (M: Ta, W). Small defects invisible to TEM possibly caused the large increase in hardness, in addition to the hardness increment produced by radiation induced MX. In this work, radiation hardening and microstructural evolution accompanied by the synergistic effects to high fluences are discussed.

  14. Enhanced microwave absorption properties and mechanism of core/shell structured magnetic nanoparticles/carbon-based nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Xiaosi, E-mail: sci.xsqi@gzu.edu.cn [Physics Department, Guizhou University, Guiyang 550025 (China); Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); Hu, Qi; Xu, Jianle; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie [Physics Department, Guizhou University, Guiyang 550025 (China); Zhong, Wei, E-mail: wzhong@nju.edu.cn [Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China); Du, Youwei [Nanjing National Laboratory of Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093 (China)

    2016-09-15

    Graphical abstract: In the article, core/shell Fe{sub 3}O{sub 4}/C, Fe/helical carbon nanotubes were synthesized selectively. The results indicated that the optimum reflection loss (RL) could reach −47.1 dB at 17.39 GHz with a matching thickness of 1.39 mm. The absorption bandwidth with the RL below −20 dB was up to 11.59 GHz. Moreover, based on the obtained results, the possibly enhanced microwave absorption mechanisms were also discussed in detail. - Highlights: • An efficient scheme was designed to synthesize core/shell magnetic nanoparticles/carbon-based hybrids. • By controlling the temperature, different categories of core/shell nanohybrids were synthesized. • The obtained Fe/CNT hybrid exhibits enhanced microwave absorption property. • Enhanced microwave absorbing mechanism was discussed in detail. - Abstract: An efficient scheme was designed to selectively synthesize different categories of core/shell structured magnetic nanoparticles/carbon-based nanohybrids such as Fe{sub 3}O{sub 4}/C and Fe/helical carbon nanotubes (HCNTs) through the decomposition of acetylene directly over Fe{sub 2}O{sub 3} nanotubes by controlling the pyrolysis temperature. The measured electromagnetic parameters indicated that the Fe/HCNT nanohybrids exhibited enhanced microwave absorption properties, which may be related to their special structures. The optimum reflection loss (RL) could reach −47.1 dB at 17.39 GHz with a matching thickness of 1.39 mm. The absorption bandwidth with the RL values below −20 dB was up to 11.59 GHz. Moreover, based on the obtained results, the possible enhanced EM absorption mechanisms were also discussed in detail. The results show excellent microwave absorption materials that are lightweight, have strong absorption and a wide absorption frequency band may be realized in these nanohybrids.

  15. Effects of Silane Coupling Agent on Microstructure and Mechanical Properties of EPDM/Carbonyl Iron Microwave Absorbing Patch

    Institute of Scientific and Technical Information of China (English)

    FENG Yongbao; QIU Tai; ZHANG Jun; SHEN Chunying

    2006-01-01

    The effects of types and amounts of silane coupling agent on mechanical properties of vulcanized rubber microwave absorbing patch (VRMAP) were studied. The mechanisms of silane coupling agent's effects on mechanical properties of rubber microwave absorbing patch (RMAP) and microwave absorbing patch's ( MAP's ) microstructure were also discussed by using SEM and FT-IR. The experimental resalts show that the tensile strength of RMAP could be increased through adding the filler of carbonyl iron powder (CIP) modified by silane coupling agent. RMAP filled with CIP, which was treated by silane coupling agent KH550, possessed a high tensile strength of 11.5 Mpa, which was 448% more than that of MAP whose filler was not modified by any coupling agent. It was found that the optimal amount of KH550 was 1.0 phr to 100.0 phr carbonyl iron powder. The effects of different modifying techniques on RMAP's mechanical properties were also investigated. It is indicated that MAP whose filler is modified by the wet process has the highest tensile strength, but it is not the optimal modifying technique due to complicated wet process. On the contrary, the dry process was very simple, and VRMAP possessed fairly high mechanical properties, therefore, it was the perfect modifying process.

  16. Formation Mechanism of Micropores on the Surface of Pure Aluminum Induced by High-Current Pulsed Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZOU Yang; CAI Jie; WAN Ming-Zhen; LV Peng; GUAN Qing-Feng

    2011-01-01

    The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained. It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation. The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along gra,in boundaries and/or dislocations towards the irradiated surface. It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.%The mechanism of micropores formed on the surface of polycrystalline pure aluminum under high-current pulsed electron beam (HCPEB) irradiation is explained.It is discovered that dispersed micropores with sizes of 0.1-1μm on the irradiated surface of pure aluminum can be successfully fabricated after HCPEB irradiation.The dominant formation mechanism of the surface micropores should be attributed to the formation of supersaturation vacancies within the near surface during the HCPEB irradiation and the migration of vacancies along grain boundaries and/or dislocations towards the irradiated surface.It is expected that the HCPEB technique will become a new method for the rapid synthesis of surface porous materials.High-current pulsed electron beams (HCPEBs)have attracted much attention in the field of material surface modification.[1-7] During the transient bombardment process a high energy (108-109 W·cm-2) is deposited only in a very thin layer (less than tens of micrometers) within a very short time (a few microseconds) and thereby causes ultrafast heating and cooling on the irradiated surface of materials.The dynamic stress fields induced in these processes can induce intense deformation on the material surface.

  17. Nδ-保护鸟氨酸的微波合成研究%Synthesis of Nδ-protective Ornithine under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    张玲; 凌心; 安琳; 薛运生; 郑友广; 贾根光; 史豪; 刘毅

    2011-01-01

    [ Objective] To synthesis Nδ-protective ornithine under microwave irradiation. [ Method ] L-ornithine monohydrochloride was first reacted with basic curpic carbonate to give L-ornithine copper complexes. Subsequently, the δ-amino was protected with tert-butoxycarbonyl (Boc), benzyloxycarbonyl ( Z), fluorenylmethyloxycarbonyl (Fmoc ), acetyl ( Acetyl ) and phthaloyl (Phthalyl) , after the use of EDTA-2Na for copper removal, the Nδ-benzyloxycarbonyl ornithine ( H-Orn (Z) -OH), Nδ-tert-butoxycarbonyl ornithine ( H-Orn ( Boc ) -OH), Nδ-fluorenylmethyloxycarbonyl ornithine ( H-Orn (Fmoc )-OH ), Nδ-acetyl ornithine ( H-Orn ( Acetyl ) -OH ) and Nδ-phthaloyl ornithine ( H-Orn (Phthalyl) -OH) were obtained. Finally, the microwave irradiation technology was applied for the removal of copper to explore the effects of microwave radiation power, time and the proportion of materials on yield. [ Result ] The optimal conditions were obtained as follows: n (Nδprotective ornithine copper complexes): n (EDTA) = 1∶1.1 - 1∶1.2, microwave power was 250 - 300 W, reaction time was 4 - 6 min. The yield of Nδ-benzyloxycarbonyl-L-Ornithine , Nδ-tert-butyloxycarbonyl-L-Ornithine , Nδ-fluorenylmethyl-oxycarbonyl-L-Ornithine , Nδ-acetyl-L-Ornithine and Nδ-phthalyl-L-Ornithine were 93.2%, 86.2%, 88.7%, 86.3% and 86.4% respectively. The structure of aimed compounds was confirmed by elementary analysis and 1 H NMR. [ Conclusion] The improved synthetic route was environment friendly and convenient in operation with better product yield and purity.%[目的]用微波法合成Nδ-保护鸟氧酸.[方法]以L-鸟氨酸盐酸盐为原料,与碱式碳酸铜反应得到L-鸟氨酸铜络合物,在δ-氨基上分别引入苄氧羰基、叔丁氧羰基、芴甲氧羰基、乙酰基和邻苯二甲酰基,得到了Nδ-保护鸟氨酸铜络合物,微波辐射下用EDTA-2Na脱去铜离子,得到了Nδ-苄氧羰基鸟氨酸、Nδ-叔丁氧羰基鸟氨酸、Nδ-芴甲氧羰基鸟氨酸

  18. Clinical indications and biological mechanisms of splenic irradiation in autoimmune diseases

    Energy Technology Data Exchange (ETDEWEB)

    Weinmann, M.; Becker, G. [Tuebingen Univ. (Germany). Abt. fuer Strahlenonkologie; Einsele, H.; Bamberg, M. [Tuebingen Univ. (Germany). Abt. fuer Innere Medizin 2

    2001-02-01

    Background: Splenic irradiation (SI) is a fairly unknown treatment modality in autoimmune disorders like autoimmune thrombocytopenia (AIT) or autoimmune hemolytic anemia (AIHA), which may provide an effective, low toxic and cost-effective treatment for selected patients. Patients, Materials and Methods: This article reviews the limited experiences on splenic irradiation in autoimmune thrombocytopenia by analyzing the current studies including 71 patients and some preliminary reports on splenic irradiation in autoimmune hemolytic anemia. Results: In autoimmune thrombocytopenia between 40 and 90% of all patients responded, but most of them relapsed within 4 to 6 months after splenic irradiation. Between 10 and 20% of all patients had a sustained response. The efficacy of splenic irradiation in HIV-associated cases of thrombocytopenia is probably lower than in other forms of autoimmune thrombocytopenia, but especially in this group immunosuppressive drug treatment of autoimmune thrombocytopenia exposes some problems. In autoimmune hemolytic anemia there are some case reports about efficacy of splenic irradiation. Toxicity of splenic irradiation in both diseases was very moderate. Conclusions: For HIV patients, for elderly patients or patients at high risk for complications following splenectomy splenic irradiation might be a treatment option. Splenic irradiation as preoperative treatment in patients not responding to or not suitable for immunosuppressive drugs prior to splenectomy may be a promising new application of splenic irradiation to reduce adverse effects of splenectomy in thrombocytopenic patients. A further analysis of the biological mechanisms underlying splenic irradiation may help to improve patient selection, to optimize dose concepts and treatment schedules and will improve understanding of radiotherapy as an immunomodulatory treatment modality. (orig.) [German] Hintergrund: Die Bestrahlung der Milz zur Behandlung von haematologischen

  19. Mechanism of red-luminescence flash in CdS single crystals irradiated by electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanyuk, N.S.; Galushka, A.P.; Ostapenko, S.S.; Shejnkman, M.K. (AN Ukrainskoj SSR, Kiev. Inst. Poluprovodnikov)

    1984-02-01

    Results of investigations into ''red''-luminescence flash (lambdasub(x)=720 nm) in cadmium sulfide, irradiated by electrons at 77 K, are presented. Measurement of spectra of stationary photoluminescence and its excitation, as well as flash luminescence, its pumping and stimulation along with temperature flash dependences enabled to suggest a new mechanism of optical luminescence stimulation, based on the model of complex center of flash luminescense. The mechanism consists in modulation of probabilities of intercenter electron transitions, when charge state of one of components of the complex center changes.

  20. Microwave-assisted synthesis of carbon-supported carbides catalysts for hydrous hydrazine decomposition

    Science.gov (United States)

    Mnatsakanyan, Raman; Zhurnachyan, Alina R.; Matyshak, Valery A.; Manukyan, Khachatur V.; Mukasyan, Alexander S.

    2016-09-01

    Microwave-assisted synthesis of carbon-supported Mo2C and WC nanomaterials was studied. Two different routes were utilized to prepare MoO3 (WO3) - C precursors that were then subjected to microwave irradiation in an inert atmosphere. The effect of synthesis conditions, such as irradiation time and gas environment, was investigated. The structure and formation mechanism of the carbide phases were explored. As-synthesized nanomaterials exhibited catalytic activity for hydrous hydrazine (N2H4·H2O) decomposition at 30-70 °C. It was shown that the catalyst activity significantly increases if microwave irradiation is applied during the decomposition process. Such conditions permit complete conversion of hydrazine to ammonia and nitrogen within minutes. This effect can be attributed to the unique nanostructure of the catalysts that includes microwave absorbing carbon and active carbide constituents.

  1. Synthetic Development of New 3-(4-Arylmethylaminobutyl-5-arylidene-rhodanines under Microwave Irradiation and Their Effects on Tumor Cell Lines and against Protein Kinases

    Directory of Open Access Journals (Sweden)

    Camille Déliko Dago

    2015-07-01

    Full Text Available A new route to 3-(4-arylmethylaminobutyl-5-arylidene-2-thioxo-1,3-thiazolidine-4-one 9 was developed in six steps from commercial 1,4-diaminobutane 1 as starting material. The key step of this multi-step synthesis involved a solution phase “one-pot two-steps” approach assisted by microwave dielectric from N-(arylmethylbutane-1,4-diamine hydrochloride 6a–f (as source of the first point diversity and commercial bis-(carboxymethyl-trithiocarbonate reagent 7 for construction of the rhodanine platform. This platform was immediately functionalized by Knoevenagel condensation under microwave irradiation with a series of aromatic aldehydes 3 as second point of diversity. These new compounds were prepared in moderate to good yields and the fourteen synthetic products 9a–n have been obtained with a Z-geometry about their exocyclic double bond. These new 5-arylidene rhodanines derivatives 9a–n were tested for their kinase inhibitory potencies against four protein kinases: Human cyclin-dependent kinase 5-p25, HsCDK5-p25; porcine Glycogen Synthase Kinase-3, GSK-3α/β; porcine Casein Kinase 1, SsCK1 and human HsHaspin. They have also been evaluated for their in vitro inhibition of cell proliferation (HuH7 D12, Caco 2, MDA-MB 231, HCT 116, PC3, NCI-H727, HaCat and fibroblasts. Among of all these compounds, 9j presented selective micromolar inhibition activity on SsCK1 and 9i exhibited antitumor activities in the HuH7 D12, MDA-MBD231 cell lines.

  2. Influence of electron beam irradiation on mechanical and thermal properties of polypropylene/polyamide blend

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Shigeya, E-mail: shi-nakamura@hitachi-chem.co.jp [Hitachi Chemical Co., Ltd., 1150 Goshomiya, Chikusei, Ibaraki 308-8524, Japan and Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, 522-8533, Shiga (Japan); Tokumitsu, Katsuhisa [Department of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, 522-8533, Shiga (Japan)

    2014-05-15

    The effects of electron beam irradiation on the mechanical and thermal properties of polypropylene (PP) and polyamide6 (PA6) blends-with talc 20 wt% as filler, SEBS-g-MAH as compatibilizer, and triallyl isocyanurate as crosslinking agent-were investigated. Although the tensile and flexural moduli and strengths of the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC could be increased by the application of electron beam irradiation, the impact strength was decreased. Ddifferential scanning calorimetryer measurements showed that the melting temperatures of all PP/PA6 blends were decreased with increases in the electron beam irradiationdose. From dynamic mechanical analyzer results, a storage modulus curve in the plateau region was observed only in the PP/PA6 blends with talc, SEBS-g-MAH, and TAIC; the storage modulus increased with increasing electron beam irradiation dose, indicating that the three-dimensional network developed gradually in the more amorphous PA6. As a result, the most significant improvement observed in heat distortion tests under high load (1.8 MPa) occurred at 200 kGy.

  3. Vestibular function disorders and potential mechanisms in irradiation nasopharyngeal carcinoma patients.

    Science.gov (United States)

    Sun, Dianshui; Zhao, Miaoqing; Yin, Jinjun; Xu, Ying; Zhang, Hao; Xia, Ming

    2016-08-01

    Vestibular function disorders were widespread among nasopharyngeal carcinoma (NPC) patients. The radiation doses to the inner ears were associated with the incidence of vestibular function disorders, but the correlations were mild. The inflammatory responses and possible resolution obstacles of inflammation participated in persistent vestibular function disorders after irradiation. To investigate the incidence of vestibular function disorders in NPC patients after irradiation and potential mechanisms. Patients who received radical intensity-modulated radiotherapy for their NPC were recruited. The serum levels of IL-6 and IL-17 were detected by ELISA method. Vestibular evoked myogenic potential (VEMP) tests were used to evaluate vestibular function and correlation analyses were used to analyze the potential mechanisms of vestibular function disorders. Thirty-eight patients were included. The incidences of abnormal ocular VEMP (oVEMP) and cervical VEMP (cVEMP) were 65.79% and 80.26% at the time of completion of radiotherapy, and 61.84% and 71.05% at 3 months after radiotherapy. The mean and maximum radiation doses to the inner ears were both significantly associated with abnormal oVEMP and cVEMP (p < 0.05, all), but the correlations were all mild. The serum levels of IL-6 and IL-17 were both significantly associated with abnormal oVEMP and cVEMP after irradiation (p < 0.05, all).

  4. Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of (50-400)°C

    Science.gov (United States)

    Kuleshova, E. A.; Gurovich, B. A.; Bukina, Z. V.; Frolov, A. S.; Maltsev, D. A.; Krikun, E. V.; Zhurko, D. A.; Zhuchkov, G. M.

    2017-07-01

    This work summarizes and analyzes our recent research results on the effect of irradiation temperature within the range of (50-400)°C on microstructure and properties of 15Kh2NMFAA class 1 steel (VVER-1000 reactor pressure vessel (RPV) base metal). The paper considers the influence of accelerated irradiation with different temperature up to different fluences on the carbide and irradiation-induced phases, radiation defects, yield strength changes and critical brittleness temperature shift (ΔTK) as well as on changes of the fraction of brittle intergranular fracture and segregation processes in the steel. Low temperature irradiation resulted solely in formation of radiation defects - dislocation loops of high number density, the latter increased with increase in irradiation temperature while their size decreased. In this regard high embrittlement rate observed at low temperature irradiation is only due to the hardening mechanism of radiation embrittlement. Accelerated irradiation at VVER-1000 RPV operating temperature (∼300 °C) caused formation of radiation-induced precipitates and dislocation loops, as well as some increase in phosphorus grain boundary segregation. The observed ΔTK shift being within the regulatory curve for VVER-1000 RPV base metal is due to both hardening and non-hardening mechanisms of radiation embrittlement. Irradiation at elevated temperature caused more intense phosphorus grain boundary segregation, but no formation of radiation-induced precipitates or dislocation loops in contrast to irradiation at 300 °C. Carbide transformations observed only after irradiation at 400 °C caused increase in yield strength and, along with a contribution of the non-hardening mechanism, resulted in the lowest ΔTK shift in the studied range of irradiation temperature and fluence.

  5. The Effects of Electron Beam Irradiation Dose on the Mechanical Performance of Red Maple (Acer rubrum

    Directory of Open Access Journals (Sweden)

    Timothy Starr

    2014-12-01

    Full Text Available To understand how electron beam irradiation affects wood physically and chemically, irradiated maple beams (Acer rubrum and veneers were examined using three-point bend tests, dynamic mechanical analysis (DMA, and NIR- and FTIR- spectroscopy. The MOR from the bending tests revealed a significant decline in the red maple’s strength after a dose of 80 kGy. DMA results showed evidence of crosslinking of the amorphous content of the wood at low doses, followed by degradation at higher doses, with the change in response occurring around 80 kGy. Infrared spectroscopy revealed that the components of wood that were most impacted were the phenolic hydroxyl structures of lignin and cellulose hydroxyls, with the greatest effects being seen after 80 kGy.

  6. Influence of reactor irradiation on the mechanical behavior of ITER TF coil candidate insulation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bittner-Rohrhofer, K. E-mail: kbittner@ati.ac.at; Humer, K.; Fillunger, H.; Maix, R.K.; Wang, Z.D.; Weber, H.W

    2003-09-01

    Extensive material tests have to be performed in order to obtain information on the radiation induced change in the mechanical behavior of insulating materials for the ITER Toroidal Field (TF) coil. The investigated insulation systems are R-glass fiber reinforced tapes, vacuum impregnated with a DGEBA epoxy resin and interleafed with Kapton H-foils. According to the actual operating conditions of ITER-FEAT, the systems were irradiated in the TRIGA reactor (Vienna, Austria) to neutron fluences of 5x10{sup 21} and 1x10{sup 22} m{sup -2} (E>0.1 MeV). Static tensile, short-beam-shear (SBS) as well as double-lap-shear (DLS) tests were carried out at 77 K prior to and after irradiation. Furthermore, results on swelling and weight loss as well as on the material properties under tension-tension fatigue loading conditions are presented.

  7. Effects of ionic conduction on hydrothermal hydrolysis of corn starch and crystalline cellulose induced by microwave irradiation.

    Science.gov (United States)

    Tsubaki, Shuntaro; Oono, Kiriyo; Onda, Ayumu; Yanagisawa, Kazumichi; Mitani, Tomohiko; Azuma, Jun-Ichi

    2016-02-10

    This study investigated the effects of ionic conduction of electrolytes under microwave field to facilitate hydrothermal hydrolysis of corn starch and crystalline cellulose (Avicel), typical model biomass substrates. Addition of 0.1M NaCl was effective to improve reducing sugar yield by 1.61-fold at unit energy (kJ) level. Although Avicel cellulose was highly recalcitrant to hydrothermal hydrolysis, addition of 0.1M MgCl2 improved reducing sugar yield by 6.94-fold at unit energy (kJ). Dielectric measurement of the mixture of corn starch/water/electrolyte revealed that ionic conduction of electrolytes were strongly involved in facilitating hydrothermal hydrolysis of polysaccharides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. POLYMERIZATION OF N,N′-(PYROMELLITOYL)-BIS-L-LEUCINE DIACID CHLORIDE WITH HYDANTOIN DERIVATIVES BY MICROWAVE IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    Khalil Faghihi

    2004-01-01

    Facile and rapid polycondensation reactions of N,N′-(pyromellitoyl)-bis-L-leucine diacid chloride 1 with eight different derivatives of hydantoin compounds 2a-h were developed by using a domestic microwave oven in the presence ora small amount of polar organic medium such as o-cresol. The polycondensation reactions proceeded rapidly, compared with the conventional solution polycondensation, and was completed within 7-10 min, producing a series of novel optically active poly(amide-imide)s 3a-h with high yield and inherent viscosity of 0.35-0.65 dL/g. All of the above polymers were fully characterized by FT-IR, elemental analyses, inherent viscosity (ηiaa), solubility test and specific rotation. Some structural characterization and physical properties of these optically active poly(amide-imide)s are reported.

  9. Effects of electron irradiation in space environment on thermal and mechanical properties of carbon fiber/bismaleimide composite

    Science.gov (United States)

    Yu, Qi; Chen, Ping; Gao, Yu; Ma, Keming; Lu, Chun; Xiong, Xuhai

    2014-10-01

    The effects of electron irradiation in simulated space environment on thermal and mechanical properties of high performance carbon fiber/bismaleimide composites were investigated. The dynamic mechanical properties of the composites exposed to different fluences of electron irradiation were evaluated by Dynamic mechanical analysis (DMA). Thermogravimetric analysis was applied to investigate the changes in thermal stability of the resin matrix after exposure to electron irradiation. The changes in mechanical properties of the composites were evaluated by flexural strength and interlaminar shear strength (ILSS). The results indicated that electron irradiation in high vacuum had an impact on thermal and mechanical properties of CF/BMI composites, which depends on irradiation fluence. At lower irradiation fluences less than 5 × 1015 cm-2, the dynamic storage modulus, cross-linking degree, thermal stability and mechanical properties that were determined by a competing effect between chain scission and cross-linking process, decreased firstly and then increased. While at higher fluences beyond 5 × 1015 cm-2, the chain scission process was dominant and thus led to the degradation in thermal and mechanical properties of the composites.

  10. Facile synthesis of 1,3,4-benzotriazepines and 1-arylamide-1H-indazoles via palladium-catalyzed cyclization of aryl isocyanates and aryl hydrazones under microwave irradiation.

    Science.gov (United States)

    Dong, Chune; Xie, Lingli; Mou, Xiaohong; Zhong, Yashan; Su, Wei

    2010-11-07

    A strategy involving palladium-catalyzed cyclization of halo-phenyl hydrazones and aryl isocyanates provides a convenient approach to the synthesis of 1,3,4-benzotriazepines (4) or 1-arylamide-1H-indazoles (5) in good isolated yields. Microwave irradiation was found to afford high reaction efficiency, while the choice of halophenyl hydrazone had an effect on the pathway of the reaction.

  11. Two New 1,1,3,3-Tetramethylguanidinium Halochromates (C5H14N3CrO3X (X: Cl, F: Efficient Reagents for Oxidation of Organic Substrates under Solvent-Free Conditions and Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Kıvılcım Şendıl

    2016-01-01

    Full Text Available Two new mild oxidizing agents 1,1,3,3-tetramethylguanidinium fluorochromate (TMGFC and 1,1,3,3-tetramethylguanidinium chlorochromate (TMGCC were prepared in high yields by reacting tetramethylguanidine with CrO3 and related acid. These reagents are suitable to oxidize various primary and secondary alcohols and oximes to the corresponding carbonyl compounds under solvent-free conditions and microwave irradiation.

  12. Nano Fe2O3, clinoptilolite and H3PW12O40 as efficient catalysts for solvent-free synthesis of 5(4H)-isoxazolone under microwave irradiation conditions

    OpenAIRE

    Fozooni,Samieh; Hosseinzadeh,Nasrin Gholam; Hamidian, Hooshang; Akhgar,Mohammad Reza

    2013-01-01

    A quick and solvent-free approach involving the exposure of neat reactants to microwave irradiation in conjunction with the use of clinoptilolite, H3PW12O40 and Fe2O3 nanoparticle catalysts is described. In this work, condensation of hydroxylamine hydrochloride, sodium acetate, acetoacetic or benzoyl acetic ethyl ester and appropriate aldehydes by employing catalysts gave 5(4H)-isoxazolone only in one step. Catalyst amount, temperature effects and catalysts reusability were monitored. Among t...

  13. Microwave sintering of ceramic materials

    Science.gov (United States)

    Karayannis, V. G.

    2016-11-01

    In the present study, the potential of microwave irradiation as an innovative energy- efficient alternative to conventional heating technologies in ceramic manufacturing is reviewed, addressing the advantages/disadvantages, while also commenting on future applications of possible commercial interest. Ceramic materials have been extensively studied and used due to several advantages they exhibit. Sintering ceramics using microwave radiation, a novel technology widely employed in various fields, can be an efficient, economic and environmentally-friendlier approach, to improve the consolidation efficiency and reduce the processing cycle-time, in order to attain substantial energy and cost savings. Microwave sintering provides efficient internal heating, as energy is supplied directly and penetrates the material. Since energy transfer occurs at a molecular level, heat is generated throughout the material, thus avoiding significant temperature gradients between the surface and the interior, which are frequently encountered at high heating rates upon conventional sintering. Thus, rapid, volumetric and uniform heating of various raw materials and secondary resources for ceramic production is possible, with limited grain coarsening, leading to accelerated densification, and uniform and fine-grained microstructures, with enhanced mechanical performance. This is particularly important for manufacturing large-size ceramic products of quality, and also for specialty ceramic materials such as bioceramics and electroceramics. Critical parameters for the process optimization, including the electromagnetic field distribution, microwave-material interaction, heat transfer mechanisms and material transformations, should be taken into consideration.

  14. The use of microwave irradiation as a pretreatment to in situ hybridization for the detection of measles virus and chicken anaemia virus in formalin-fixed paraffin-embedded tissue

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, J.; McQuaid, S. [Royal Group of Hospitals, Belfast (United Kingdom). Neuropathology Lab.]|[Queen`s Univ., Belfast, Northern Ireland (United Kingdom)

    1996-03-01

    Microwave irradiation was investigated as a pretreatment to in situ hybridization on formalin-fixed, paraffin-embedded tissue. Two probe/tissue systems were used: a single-stranded RNA probe for the detection of measles virus nucleocapsid genome in subacute sclerosing panencephalitis brain tissue, and a double stranded DNA probe for chicken anaemia virus in thymus of chicken infected with the virus. Microwaving, when used as sold pretreatment, was not as effective as the more traditional enzyme pretreatments for in situ hybridization. However, when used in combination with existing pretreatments, a significant increase was found in hybridization signal in both brain and thymus tissue. This was emphasized when combination enzyme/microwave pretreatments were used prior to detection of measles virus by in situ hybridization in a series of five archival subacute sclerosing panencephalitis cases. The use of microwave irradiation would be recommended as a means of supplementing in situ hybridization methods, especially when using long-term formalin fixed paraffin-embedded tissue. (Author).

  15. Preparation of N-TiO2 Using a Microwave/Sol-Gel Method and Its Photocatalytic Activity for Bisphenol A under Visible-Light and Sunlight Irradiation

    Directory of Open Access Journals (Sweden)

    Chung-Hsin Wu

    2013-01-01

    Full Text Available This study applied the microwave/sol-gel method to prepare nitrogen-doped TiO2 (N-TiO2. The N-TiO2 was immobilized in glass balls to form N-TiO2/glass beads and applied to degrade Bisphenol A (BPA under visible-light and sunlight irradiation. The characteristics of the prepared photocatalysts were analyzed by X-ray diffraction (XRD, UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR, and X-ray photoelectron spectroscopy (XPS. Experimental results demonstrate that the percentage of anatase increased as the amount of N in N-TiO2 increased. Compared with the undoped TiO2 (420 nm, spectra show that the absorption edge shifted to a longer wavelength (445 nm after N doping. The XPS characterization confirms the substitution of crystal lattice O to N species in N-TiO2, forming Ti–O–N and N–Ti–O. With an increased N/Ti ratio, photodegradation efficiency increased and then decreased; moreover, the optimal amount for N doping was determined as an N/Ti mole ratio of 0.08 (0.1 NT. The efficiency of 0.1 NT in doing BPA photodegradation was greater than that of Degussa P25. After reaction for 61 min, the mineralization percentage of 0.1 NT under visible-light irradiation reached 41%. Photocatalyst efficiency decreased as the number of repeats increased in the visible-light/N-TiO2 system; however, these systems were stable during reaction.

  16. Effects of dehulling, steam-cooking and microwave-irradiation on digestive value of white lupin (Lupinus albus) seed meal for rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Saez, Patricio; Borquez, Aliro; Dantagnan, Patricio; Hernández, Adrián

    2015-01-01

    A digestibility trial was conducted to assess the effect of dehulling, steam-cooking and microwave-irradiation on the apparent digestibility of nutrients in white lupin (Lupinus albus) seed meal when fed to rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Six ingredients, whole lupin seed meal (LSM), dehulled LSM, dehulled LSM steam-cooked for 15 or 45 min (SC15 and SC45, respectively) and LSM microwave-irradiated at 375 or 750 W (MW375 and MW750, respectively), were evaluated for digestibility of dry matter, crude protein (CP), lipids, nitrogen-free extractives (NFE) and gross energy (GE). The diet-substitution approach was used (70% reference diet + 30% test ingredient). Faeces from each tank were collected using a settlement column. Dehulled LSM showed higher levels of proximate components (except for NFE and crude fibre), GE and phosphorus in comparison to whole LSM. Furthermore, SC15, SC45, MW375 and MW750 showed slight variations of chemical composition in comparison to dehulled LSM. Results from the digestibility trial indicated that dehulled LSM, SC15, SC45 and MW375 are suitable processing methods for the improvement of nutrients' apparent digestibility coefficient (ADC) in whole LSM. MW750 showed a lower ADC of nutrients (except for CP and lipids for rainbow trout) in comparison with MW350 for rainbow trout and Atlantic salmon, suggesting a heat damage of the ingredient when microwave-irradiation exceeded 350 W.

  17. 微波辐射技术在含硫杂环化合物中的应用%The Application of Microwave Irradiation in the Synthesis of Sulfur Heterocyclic Compounds

    Institute of Scientific and Technical Information of China (English)

    冯俊娜; 杜忠文; 彭绍辉; 苏红; 朱涛; 赵闻; 徐雪斌; 田晓磊; 吕靓磊

    2015-01-01

    Microwave irradiation is widely used in various fields and has important significance to improve the level of social development and human life as a new technology.In chemistry, especially in organic synthesis, microwave irradiation is showing advantages compared with the traditional heating method, such as short reaction time, simple operation, simple after treatment, environmental protection, etc.Heterocyclic sulfur compounds have important applications in medicine, industry and agriculture.The recent application of microwave irradiation in the synthesis of sulfur heterocyclic compounds was reviewed.%微波辐射作为一种新型技术,广泛应用在各个领域,对社会发展和人类生活水平的提高有重要意义。在化学方面,特别是在有机合成中,微波辐射技术与传统加热方法相比,显示出独特的优势,如反应时间短、操作简便、后处理简单、绿色环保等。含硫杂环化合物在医药、工业、农业等领域有重要应用,本文评述了近年来微波辐射技术在硫杂环化合物合成中的应用。

  18. Mechanical properties and microstructural evolution of alumina-zirconia nanocomposites by microwave sintering

    OpenAIRE

    Benavente Martínez, Rut; Salvador Moya, Mª Dolores; Penaranda-Foix, Felipe L.; Pallone, Eliria; Borrell Tomás, María Amparo

    2014-01-01

    Microwave sintering has emerged in recent years as a novel method for sintering a variety of materials that have shown significant advantages against conventional sintering procedures. This work involved an investigation of microwave hybrid fast firing of alumina–zirconia nanocomposites using commercial alumina powder and monoclinic nanometric zirconia. The suspensions were prepared separately in order to obtain 5, 10 and 15 vol% of ZrO2 in the alumina matrix. The samples were sinter...

  19. Investigation of mechanical properties and proton irradiation behaviors of SA-738 Gr.B steel used as reactor containment

    Directory of Open Access Journals (Sweden)

    Ma Yongzheng

    2016-08-01

    Full Text Available The proton irradiation behaviors of two kinds of SA-738Gr.B steels prepared by different heat treatment used as AP1000 reactor containment were investigated by transmission electron microscopy and positron annihilation lifetime spectrum (PAS. The mechanical properties of as-received steels were also measured. In the unirradiated conditions, the SA-738Gr.B steels had high tensile strength and excellent impact fracture toughness, which met the performance requirements of ASME codes. Both kinds of SA-738Gr.B steels were irradiated by 400keV proton from 1.07×1017H+/cm2 to 5.37×1017H+/cm2 fluence at 150 ºC. Some voids and dislocation loops with several nanometers were observed in the cross-section irradiated samples prepared by electroplating and then twin-jet electropolishing technology. The number of irradiation defects increased with increasing of displacement damage, as well as for the mean positron lifetimes. The stress-relief annealing treatment improved irradiation resistance based on open volume defect analysis from proton irradiation. SA-738Gr.B (SR steel had higher proton irradiation resistance ability than that of SA-738Gr.B (QT steel. The mechanism of irradiation behaviors were also analyzed and discussed.

  20. Coupled microwave/photoassisted methods for environmental remediation.

    Science.gov (United States)

    Horikoshi, Satoshi; Serpone, Nick

    2014-11-05

    The microwave-induced acceleration of photocatalytic reactions was discovered serendipitously in the late 1990s. The activity of photocatalysts is enhanced significantly by both microwave radiation and UV light. Particularly relevant, other than as a heat source, was the enigmatic phenomenon of the non-thermal effect(s) of the microwave radiation that facilitated photocatalyzed reactions, as evidenced when examining various model contaminants in aqueous media. Results led to an examination of the possible mechanism(s) of the microwave effect(s). In the present article we contend that the microwaves' non-thermal effect(s) is an important factor in the enhancement of TiO2-photoassisted reactions involving the decomposition of organic pollutants in model wastewaters by an integrated (coupled) microwave-/UV-illumination method (UV/MW). Moreover, such coupling of no less than two irradiation methods led to the fabrication and ultimate investigation of microwave discharged electrodeless lamps (MDELs) as optimal light sources; their use is also described. The review focuses on the enhanced activity of photocatalytic reactions when subjected to microwave radiation and concentrates on the authors' research of the past few years.