WorldWideScience

Sample records for microscopy x-ray microanalysis

  1. Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Forslind, B.

    1984-01-01

    Scanning electron microscopy is frequently applied to dermatological problems, as is evident from a review of the recent literature. In this paper, preparation methods and new techniques allowing experimental studies on the integumentary system are emphasized. Quantitative analysis in the electron microscope by use of energy-dispersive X-ray microanalysis (EDX) has become an important accessory technique. EDX can, for instance, be used to study problems involving physiological changes induced in skin by agents causing contact reactions. Recently, it has been shown that treatment with DNCB, chromate and nickel causes changes in elemental distribution in guinea-pig skin. In addition, elemental uptake in the integumentary system and in pathological inclusions in skin can be analyzed.

  2. Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology

    International Nuclear Information System (INIS)

    Forslind, B.

    1984-01-01

    Scanning electron microscopy is frequently applied to dermatological problems, as is evident from a review of the recent literature. In this paper, preparation methods and new techniques allowing experimental studies on the integumentary system are emphasized. Quantitative analysis in the electron microscope by use of energy-dispersive X-ray microanalysis (EDX) has become an important accessory technique. EDX can, for instance, be used to study problems involving physiological changes induced in skin by agents causing contact reactions. Recently, it has been shown that treatment with DNCB, chromate and nickel causes changes in elemental distribution in guinea-pig skin. In addition, elemental uptake in the integumentary system and in pathological inclusions in skin can be analyzed

  3. Use of backscattered electron imaging, X-ray microanalysis and X-ray microscopy in demonstrating physiological cell death

    International Nuclear Information System (INIS)

    Bowen, I.D.; Worrill, N.A.; Winters, C.A.; Mullarkey, K.

    1988-01-01

    The cytochemical localization of enzymatic activity by means of backscattered electron imaging (BEI) is reviewed and the application of BEI to changes in acid phosphatase and ATPase distribution during physiological (programmed) cell death in Heliothis midgut is explored. Programmed cell death entails the release of nascent free acid phosphatase as extracisternal hydrolase. This shift can readily be detected by means of the atomic number contrast imparted by BEI of the lead phosphatase reaction product, thus enabling the distribution of dying cells to be mapped. BEI is particularly useful in this context as it allows the examination of bulk specimens at low magnification. Death of cells is also accompanied by a collapse in ATPase activity which shows up as cytochemically negative areas in the X-ray microscope and by means of BEI. Acid phosphatase in normal cells is localized in the apical microvilli and lysosomes. Senescent or dying cells, however, clearly show a basally situated free hydrolase which migrates throughout the cell. Parallel TEM results confirm that this enzyme is ribosomal and extracisternal rather than lysosomal in origin. ATPase activity is largely limited to the apical microvilli, although there is some activity associated with the basal plasma membranes. The apical ATPase, however is partially resistant to ouabain. Young and mature cells are positive although in the latter case some microvilli may be lost as the cells acquire a negative cap or dome. Inhibition by bromotetramizole indicates that apical activity is not to any significant extent contributed to by alkaline phosphatase. Degenerate or dead cells are negative and can be seen as a mozaic of black patches among normal cells when imaged by means of BEI or X-ray microscopy

  4. Characterisation of archaeological glass mosaics by electron microscopy and X-ray microanalysis

    International Nuclear Information System (INIS)

    Roe, M; Plant, S; Henderson, J; Andreescu-Treadgold, I; Brown, P D

    2006-01-01

    The combined techniques of scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy (TEM) and selected area electron diffraction are used to characterise the microstructures of opaque coloured glass mosaics from a mediaeval church in Torcello, Italy. Comparison of MgO/K 2 O ratios allows distinction between mediaeval and modern glass artefacts to be made. TEM investigation of inclusions indicates that relict silica is responsible for the speckled appearance of an impure mediaeval glass artefact, whilst a fine scale dispersion of elemental Cu nanoparticles is considered responsible for the orange-red colouration of a modern glass artefact

  5. X-ray microanalysis in plant physiology

    International Nuclear Information System (INIS)

    Neumann, D.

    1979-01-01

    X-ray microanalysis represents a highly sensitive and modern method for the measurement of ions in the very small compartments of the cell. The limitations of X-ray microanalysis in biological objects exist in the preparation of the tissues and the quantitation of the results. In plant physiology this method has provided several surprising results and new insights for further investigations. (author)

  6. X-ray microanalysis of black piedra.

    Science.gov (United States)

    Figueras, M J; Guarro, J

    1997-11-01

    The elements present in the fungal structures produced by Piedraia hortae in vivo and in vitro have been investigated using electron microscopy X-ray microanalysis. Phosphorus, sulphur and calcium were detected in the nodules which developed on hair and on colonies on culture. These elements belong to the extracellular material that compacts the pseudoparenchymatous organization of the fungus. They may be present due to the capacity of melanin-like pigments to sequester ions and/or they may form part of the sulphates and phosphates of the polyanionic mucopolysaccharides that constitute the extracellular material. Environmental contaminants such as aluminium, silicon and iron were detected exclusively on the surface of the nodule. They were deposited or linked to the residual molecules produced during the breakdown of the cuticular keratin. The advantages of these techniques for elucidating the chemical nature of fungal structures are discussed.

  7. Analysis of individual environmental particles using modern methods of electron microscopy and X-ray microanalysis

    International Nuclear Information System (INIS)

    Laskin, A.; Cowin, J.P.; Iedema, M.J.

    2006-01-01

    Understanding the composition of particles in the atmosphere is critical because of their health effects and their direct and indirect effects on radiative forcing, and hence on climate. In this manuscript, we demonstrate the utility of single particle off-line analysis to investigate the chemistry of individual atmospheric particles using modern, state-of-the-art electron microscopy and time-of-flight secondary ionization mass spectrometry techniques. We show that these methods provide specific, detailed data on particle composition, chemistry, morphology, phase and internal structure. This information is crucial for evaluating hygroscopic properties of aerosols, understanding aerosol aging and reactivity, and correlating the characteristics of aerosols with their optical properties. The manuscript presents a number of analytical advances in methods of electron probe particle analysis along with a brief review of a number of the research projects carried out in the authors' laboratory on the chemical characterization of environmental particles. The obtained data offers a rich set of qualitative and quantitative information on the particle chemistry, composition and the mechanisms of gas-particle interactions which are of high importance to atmospheric processes involving particulate matter and air pollution

  8. Chemical and structural composition study through transmission and reflection electron microscopy and X-ray microanalysis of damaged duramater cardiac valves

    International Nuclear Information System (INIS)

    Verginelli, G.; Didio, L.J.A.; Puig, L.B.; Allen, D.J.; Highinson, G.H.; Zerbini, E.J.

    1982-01-01

    Ten malfunctioning durameter aortic prosthesis, excised surgically after 44 to 54 months of implantation were studied through transmission and reflection electron microscopy and X-ray microanalysis. Duramater extracted at necropsy but not used for valve prosthesis and duramater aortic prosthesis not implanted in patients were used as controls. It was concluded that homologous duramater valves present subcellular changes following implantation, with degenerating and proliferating areas which could correspond either to normal adaptation or consequence of degeneration - rebuilding which begins with implantation; it is also emphazised the need for ultramicroscopic studies in evaluating biological tissues and establishing its applicability in cardiac surgery. (M.A.C.) [pt

  9. Demonstration of iron and thorium in autopsy tissues by x-ray microanalysis

    International Nuclear Information System (INIS)

    Landas, S.; Turner, J.W.; Moore, K.C.; Mitros, F.A.

    1984-01-01

    We performed x-ray microanalysis of autopsy specimens using a scanning-transmission electron microscopy mode. Tissues were obtained at necropsy from a patient with history of angiography using thorium dioxide and from a patient with hemochromatosis. X-ray microanalysis confirmed the presence of thorium and iron in their respective tissues. Effects of staining reagents were examined

  10. Rigorous quantitative elemental microanalysis by scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) with spectrum processing by NIST DTSA-II

    Science.gov (United States)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2014-09-01

    Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  11. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study

    International Nuclear Information System (INIS)

    Caiazza, S.; Falcinelli, G.; Pintucci, S.

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations, given the enhanced antibiotic-resistence of bacteria, is emphasized

  12. Exceptional case of bone resorption in an osteo-odonto-keratoprosthesis. A scanning electron microscopy and X-ray microanalysis study

    Energy Technology Data Exchange (ETDEWEB)

    Caiazza, S.; Falcinelli, G.; Pintucci, S. (Istituto Superiore di Sanita, Rome (Italy))

    1990-01-01

    This article reports the findings of investigations on an osteo-odonto-keratoprosthesis in an eye that was enucleated owing to severe complications 12 years after implantation. Scanning electron microscopy and electron probe X-ray microanalysis showed extensive resorption of the bone that was used as a supporting element in the kind of transcorneal prosthesis developed by Strampelli. The destructive process, in addition to surgical trauma, has been associated with the early and recurrent bacterial infections relating to the presence of Staphylococcus epidermidis. The need to control the occurrence of primary bacterial infections in traumatized tissues during operations as well as further infectious situations, given the enhanced antibiotic-resistence of bacteria, is emphasized.

  13. X-ray microanalysis of psoriatic skin

    International Nuclear Information System (INIS)

    Grundin, T.G.; Roomans, G.M.; Forslind, B.; Lindberg, M.; Werner, Y.

    1985-01-01

    Electron probe x-ray microanalysis was used to study elemental distribution in uninvolved and involved skin from patients with psoriasis, and in skin from healthy controls. Significant differences were found between the involved and uninvolved psoriatic skin. In the involved skin, the concentrations of Mg, P, and K were higher in the stratum germinativum, spinosum, and granulosum, compared to the corresponding strata in uninvolved skin. Neither involved nor uninvolved psoriatic stratum germinativum differed markedly from nonpsoriatic control stratum germinativum. In uninvolved psoriatic skin only a lower level of K was noted. In comparison to uninvolved psoriatic skin, the elemental composition of the various strata of involved psoriatic skin shows a pattern typical for highly proliferative, nonneoplastic cells

  14. Automated scanning electron microscopy and x-ray microanalysis for in situ quantification of gadolinium deposits in skin

    International Nuclear Information System (INIS)

    Thakral, Charu; Abraham, Jerrold L.

    2007-01-01

    Gadolinium (Gd) has been identified as a possible causative agent of an emerging cutaneous and systemic fibrosing disorder, nephrogenic systemic fibrosis (NSF), which can cause serious disability and even death. To date, there are only two known associations with this disorder - renal insufficiency and Gd enhanced magnetic resonance imaging (MRI). We developed an automated quantitative scanning electron microscopy (SEM) and Energy dispersive x-ray spectroscopy (EDS) method for Gd in tissue of NSF patients. Freshly cut paraffin block surfaces examined using the variable pressure mode under standardized conditions and random search of the tissue area allow in situ detection and semiquantitative morphometric (volumetric) analysis of insoluble higher atomic number features using backscattered electron imaging. We detected Gd ranging from 1 to 2270 cps/mm 2 in 57 cutaneous biopsies of NSF. Gd was associated with P, Ca, and usually Na in tissue deposits. Our method reproducibly determines the elemental composition, relative concentration, and spatial distribution of detected features within the tissue. However, we cannot detect features below our spatial resolution, nor concentrations below the detection limit of our SEM/EDS system. The findings confirm transmetallation and release of toxic Gd ions in NSF and allow dose-response analysis at the histologic level. (author)

  15. Characterization of leaf-level particulate matter for an industrial city using electron microscopy and X-ray microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sgrigna, G., E-mail: gregorio.sgrigna@ibaf.cnr.it [University of Molise (UniMol), Department of Biosciences and Territory, Contrada Fonte Lappone Pesche (Italy); Institute of Agro Environmental and Forest Biology, National Research Council (IBAF–CNR), Via Marconi, 2 Porano & Via Castellino 111, Napoli (Italy); Baldacchini, C., E-mail: chiara.baldacchini@ibaf.cnr.it [Institute of Agro Environmental and Forest Biology, National Research Council (IBAF–CNR), Via Marconi, 2 Porano & Via Castellino 111, Napoli (Italy); Esposito, R., E-mail: raffaela.esposito@ibaf.cnr.it [Institute of Agro Environmental and Forest Biology, National Research Council (IBAF–CNR), Via Marconi, 2 Porano & Via Castellino 111, Napoli (Italy); Calandrelli, R., E-mail: roberto.calandrelli@ibaf.cnr.it [Institute of Agro Environmental and Forest Biology, National Research Council (IBAF–CNR), Via Marconi, 2 Porano & Via Castellino 111, Napoli (Italy); Tiwary, A., E-mail: a.tiwary@soton.ac.uk [Faculty of Engineering and the Environment, University of Southampton, Highfield Campus, Southampton SO17 1BJ (United Kingdom); Calfapietra, C., E-mail: carlo.calfapietra@ibaf.cnr.it [Institute of Agro Environmental and Forest Biology, National Research Council (IBAF–CNR), Via Marconi, 2 Porano & Via Castellino 111, Napoli (Italy); Global Change Research Centre, Academy of Sciences of the Czech Republic, v. v. i., Bělidla 986/4a, 603 00 Brno (Czech Republic)

    2016-04-01

    This study reports application of monitoring and characterization protocol for particulate matter (PM) deposited on tree leaves, using Quercus ilex as a case study species. The study area is located in the industrial city of Terni in central Italy, with high PM concentrations. Four trees were selected as representative of distinct pollution environments based on their proximity to a steel factory and a street. Wash off from leaves onto cellulose filters were characterized using scanning electron microscopy and energy dispersive X-ray spectroscopy, inferring the associations between particle sizes, chemical composition, and sampling location. Modeling of particle size distributions showed a tri-modal fingerprint, with the three modes centered at 0.6 (factory related), 1.2 (urban background), and 2.6 μm (traffic related). Chemical detection identified 23 elements abundant in the PM samples. Principal component analysis recognized iron and copper as source-specific PM markers, attributed mainly to industrial and heavy traffic pollution respectively. Upscaling these results on leaf area basis provided a useful indicator for strategic evaluation of harmful PM pollutants using tree leaves. - Highlights: • Urban tree leaves were used for passive PM{sub 10} monitoring combining SEM and EDX analyses. • Particle mean diameter distributions were modeled by multimode lognormal functions. • Site-specific PM{sub 10} elemental composition was evaluated by principal component analysis. • PM profile (size and composition) was used to distinguish site-specific urban sources. • PM size and relative content of Cu and Fe emerged as possible pollutant source markers.

  16. Recent applications of X-ray microanalysis in muscle pathology

    International Nuclear Information System (INIS)

    Wroblewski, R.; Edstrom, L.

    1984-01-01

    X-ray microanalysis of single muscle fibres visualized in the scanning- and scanning-transmission mode of electron microscopy has been applied to human muscle biopsies to quantify changes of intracellular elements in different muscle disorders. To detect elements representing diffusible ions, cryofixation and cryosectioning was performed and analyses were conducted on freeze-dried cryosections 6μm thick. Changes in the concentration of elements were found to differentiate certain muscular disorders. A large increase in sodium (Na) and chlorine (Cl), and a decrease in potassium (K) was typical of myotubular myopathy, while a moderate increase in Na and Cl was found in central core disease and nemaline myopathy

  17. X-Ray Microanalysis of Human Cementum

    Science.gov (United States)

    Alvarez-Pérez, Marco Antonio; Alvarez-Fregoso, Octavio; Ortiz-López, Jaime; Arzate, Higinio

    2005-08-01

    An energy dispersive x-ray microanalysis study was performed throughout the total length of cementum on five impacted human teeth. Mineral content of calcium, phosphorous, and magnesium were determined with an electron probe from the cemento-enamel junction to the root apex on the external surface of the cementum. The concentration profiles for calcium, phosphorous, and magnesium were compared by using Ca/P and Mg/Ca atomic percent ratio. Our findings demonstrated that the Ca/P ratio at the cemento-enamel junction showed the highest values (1.8 2.2). However, the area corresponding to the acellular extrinsic fiber cementum (AEFC) usually located on the coronal one-third of the root surface showed a Ca/P media value of 1.65. Nevertheless, on the area representing the fulcrum of the root there is an abrupt change in the Ca/P ratio, which decreases to 1.3. Our results revealed that Mg2+ distribution throughout the length of human cementum reached its maximum Mg/Ca ratio value of 1.3 1.4 at.% around the fulcrum of the root and an average value of 0.03%. A remarkable finding was that the Mg/Ca ratio pattern distribution showed that in the region where the Ca/P ratio showed a decreasing tendency, the Mg/Ca ratio reached its maximum value, showing a negative correlation. In conclusion, this study has established that clear compositional differences exist between AEFC and cellular mixed stratified cementum varieties and adds new knowledge about Mg2+ distribution and suggests its provocative role regulating human cementum metabolism.

  18. Study of the carburization of an austenitic steel through optical and scanning electron microscopy, microhardness and X ray microanalysis of C

    International Nuclear Information System (INIS)

    Champigny, Michel; Gauvain, Danielle; Meny, Lucienne

    1977-01-01

    Carburization tests of 316 L stainless steel have been performed in liquid sodium at 550, 600 and 650 0 C; the depth of penetration of carbon is of the order of 300 μm. The structure of the carburized layer has been studied through optical and scanning electron microscopy: the carbides precipitate first within the grain boundaries, making a nearly continuous superficial carbide layer. The Vickers and Knoop (under 50 g load) microhardness measurements determine the depth of carburization with an error of +-50μm. Though the tensile strength does not vary much with the carburization, the striction, and then the deformation capability, is highly decreased. The variation of the concentration in carbon versus distance has been measured by quantitative X ray microanalysis, using diamond as a standard; the best experimental conditions, regarding the overlapping of the Cr 2 Lα and Ni 3 Lα lines with CK line have been chosen, and the minimum contamination during the measurements has been performed. The results have been confirmed by the analysis of carbon in Fe Ni standards containing less than 1 w/o carbon. The results are discussed with the published data. This work shows that: the increase of microhardness is not related in a simple way with the carbon content of the stainless steel; the carbon concentration can be measured quickly with an error of +-5% when 0,2 [fr

  19. Quantitative energy-dispersive electron probe X-ray microanalysis ...

    Indian Academy of Sciences (India)

    Abstract. An energy-dispersive electron probe X-ray microanalysis (ED-EPMA) technique us- ing an energy-dispersive X-ray detector with an ultra-thin window, designated as low-Z particle. EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such ...

  20. Localization of lead within leaf cells of Rhytidiadelphus squarrosus (Hedw. ) Warnst. by means of transmission electron microscopy and X-ray microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Ophus, E M; Gullvag, B M

    1974-01-01

    Results of ultrastructural studies and transmission electron microscope microanalysis of leaves of the bryophyte Rhytidiadelphus squarrosus collected from a park in Trondheim are presented. The lead content of these leaves primarily derives from motor traffic exhaust gases. A fine structural examination of the leaf cells revealed that detectable amounts of lead had entered the cytoplasm and could be recognized as electron-dense precipitates localized inside the plasma membrane, within vesicles or vacuoles, chloroplasts, mitochondria, microbodies and plasmodesmata. Control material, fixed only in glutaraledhyde and not post-stained, showed that these precipitates must be due to metallic elements having great electron-scattering properties. TEM-X-ray microanalysis indicated the definite presence of lead and phosphorus within both the nuclear and chloroplast inclusions. The possible presence of some other metals is also discussed.

  1. X-ray microanalysis with microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Isaila, C. [Technische Universitaet Muenchen, Physik Department E15, James Franck Strasse, 85748 Garching (Germany)]. E-mail: cisaila@ph.tum.de; Feilitzsch, F. von [Technische Universitaet Muenchen, Physik Department E15, James Franck Strasse, 85748 Garching (Germany); Hoehne, J. [VeriCold Technologies GmbH, Bahnhofstrasse 21, 85737 Ismaning (Germany); Hollerith, C. [Technische Universitaet Muenchen, Physik Department E15, James Franck Strasse, 85748 Garching (Germany); Infineon Technologies AG, Failure Analysis FA5, Munich (Germany); Phelan, K. [VeriCold Technologies GmbH, Bahnhofstrasse 21, 85737 Ismaning (Germany); Simmnacher, B. [Infineon Technologies AG, Failure Analysis FA5, Munich (Germany); Weiland, R. [Infineon Technologies AG, Failure Analysis FA5, Munich (Germany); Wernicke, D. [Technische Universitaet Muenchen, Physik Department E15, James Franck Strasse, 85748 Garching (Germany); VeriCold Technologies GmbH, Bahnhofstrasse 21, 85737 Ismaning (Germany)

    2006-04-15

    The combination of high-energy-resolution spectrometers with high-spatial-resolution scanning electron microscopes provides a powerful tool for material analysis. X-ray spectrometers based on superconducting transition edge sensors combine the advantages of commonly used energy- and wavelength-dispersive spectrometers, i.e. a fast spectrum acquisition and a high-energy-resolution over a wide energy range. While the energies of the characteristic lines present in a spectrum contain the qualitative composition of the analyzed material, the corresponding mass fractions can be obtained from their intensities. In this work first quantitative measurements performed with the POLARIS spectrometer system are presented.

  2. Calcium detection in secretion granules of avian oviduct by scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX)

    International Nuclear Information System (INIS)

    Makita, T.; Hatsuoka, M.; Sugi, Y.

    1983-01-01

    Secretion granules in the shell gland, isthmus, and albumin-secreting region of the hen oviduct were analyzed with WET-scanning electron microscopy (SEM) and EDX, a combination of wide-angle backscattered electron detector (BED) and energy-dispersive X-ray microanalyzer (EDX). Glutaraldehyde-fixed but unhydrated, unstained, and uncoated samples were analyzed; Ca was localized in all secretion granules in all three sections of the hen oviduct studied

  3. Quantitative X-ray microanalysis of biological specimens

    International Nuclear Information System (INIS)

    Roomans, G.M.

    1988-01-01

    Qualitative X-ray microanalysis of biological specimens requires an approach that is somewhat different from that used in the materials sciences. The first step is deconvolution and background subtraction on the obtained spectrum. The further treatment depends on the type of specimen: thin, thick, or semithick. For thin sections, the continuum method of quantitation is most often used, but it should be combined with an accurate correction for extraneous background. However, alternative methods to determine local mass should also be considered. In the analysis of biological bulk specimens, the ZAF-correction method appears to be less useful, primarily because of the uneven surface of biological specimens. The peak-to-local background model may be a more adequate method for thick specimens that are not mounted on a thick substrate. Quantitative X-ray microanalysis of biological specimens generally requires the use of standards that preferably should resemble the specimen in chemical and physical properties. Special problems in biological microanalysis include low count rates, specimen instability and mass loss, extraneous contributions to the spectrum, and preparative artifacts affecting quantitation. A relatively recent development in X-ray microanalysis of biological specimens is the quantitative determination of local water content

  4. X-ray microanalysis of single and cultured cells

    International Nuclear Information System (INIS)

    Wroblewski, J.; Roomans, G.M.

    1984-01-01

    X-ray microanalysis of single or cultured cells is often a useful alternative or complement to the analysis of the corresponding tissue. It also allows the analysis of individual cells in a cell population. Preparation for X-ray microanalysis poses a number of typical problems. Suspensions of single cells can be prepared by either of two pathways: (1) washing - mounting - drying, or (2) centrifugation - freezing or fixation - sectioning. The washing step in the preparation of single or cultured cells presents the most severe problems. Cultured cells are generally grown on a substrate that is compatible with both the analysis and the culture, washed and dried. In some cases, sectioning of cultured cell monolayers has been performed. Special problems in quantitative analysis occur in those cases where the cells are analyzed on a thick substrate, since the substrate contributes to the spectral background

  5. Scanning Electron Microscopy and Energy-Dispersive X-Ray Microanalysis of Set CEM Cement after Application of Different Bleaching Agents.

    Science.gov (United States)

    Samiei, Mohammad; Janani, Maryam; Vahdati, Amin; Alemzadeh, Yalda; Bahari, Mahmoud

    2017-01-01

    The present study evaluated the element distribution in completely set calcium-enriched mixture (CEM) cement after application of 35% carbamide peroxide, 40% hydrogen peroxide and sodium perborate as commercial bleaching agents using an energy-dispersive x-ray microanalysis (EDX) system. The surface structure was also observed using the scanning electron microscope (SEM). Twenty completely set CEM cement samples, measuring 4×4 mm 2 , were prepared in the present in vitro study and randomly divided into 4 groups based on the preparation technique as follows: the control group; 35% carbamide peroxide group in contact for 30-60 min for 4 times; 40% hydrogen peroxide group with contact time of 15-20 min for 3 times; and sodium perborate group, where the powder and liquid were mixed and placed on CEM cement surface 4 times. Data were analyzed at a significance level of 0.05 through the one Way ANOVA and Tukey's post hoc tests. EDX showed similar element distribution of oxygen, sodium, calcium and carbon in CEM cement with the use of carbamide peroxide and hydroxide peroxide; however, the distribution of silicon was different ( P structure. Sodium perborate was similar to control group due to its weak oxidizing properties. Globular structures and numerous woodpecker holes were observed on the even surface on the carbamide peroxide group. The mean elemental distribution of completely set CEM cement was different when exposed to sodium perborate, carbamide peroxide and hydrogen peroxide.

  6. Investigation of the human spleen by X-ray microanalysis

    International Nuclear Information System (INIS)

    Kopani, M.; Jakubovsky, J.; Polak, S.

    2001-01-01

    Qualitative and quantitative topographic analysis using X-ray fluorescence (XRF), X-ray powder diffraction (XRD) and scanning electron microscopy was performed in tissue samples of rat and human spleens. The presence of silico-aluminium and silico-calcareous particles of various sizes could be seen. The presence of the inorganic substances mentioned in the human red pulp cords is assumed to be a consequence of the purifying function of the spleen. (Authors)

  7. X-ray microscopy in Aarhus

    International Nuclear Information System (INIS)

    Uggerhoej, Erik; Abraham-Peskir, Joanna V.

    2000-01-01

    The Aarhus imaging soft X-ray microscope is now a busy multi-user facility. The optical set-up will be described and project highlights discussed. a) Metal-induced structural changes in whole cells in solution. The effects of aluminum, copper, nickel and zinc on protozoa investigated by using a combination of light microscopy, confocal scanning laser microscopy and X-ray microscopy. b) Botanical studies by X-ray microscopy used to compliment electron microscopy studies. c) Sludge morphology and iron precipitation in Danish freshwater plants by combining X-ray, scanning electron and transmission electron microscopy

  8. Scanning Electron Microscopy and X-Ray Microanalysis for Chemical and Morphological Characterisation of the Inorganic Component of Gunshot Residue: Selected Problems

    Directory of Open Access Journals (Sweden)

    Zuzanna Brożek-Mucha

    2014-01-01

    Full Text Available Chosen aspects of examinations of inorganic gunshot particles by means of scanning electron microscopy and energy dispersive X-ray spectrometry technique are presented. The research methodology of particles was worked out, which included a precise and repeatable procedure of the automatic detection and identification of particles as well as the representation of the obtained analytical data in the form of the frequencies of occurrence of particles of certain chemical or morphological class within the whole population of particles revealed in a specimen. On this basis, there were established relationships between the chemical and morphological properties of populations of particles and factors, such as the type of ammunition, the distance from the gun muzzle to the target, the type of a substrate the particles sediment on, and the time between shooting and collecting the specimens. Each of these aspects of examinations of particles revealed a great potential of being utilised in casework, while establishing various circumstances of shooting incidents leads to the reconstruction of the course of the studied incident.

  9. X-ray microanalysis of freeze-dried and frozen-hydrated cryosections

    International Nuclear Information System (INIS)

    Zierold, K.

    1988-01-01

    The elemental composition and the ultrastructure of biological cells were studied by scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray microanalysis. The preparation technique involves cryofixation, cryoultramicrotomy, cryotransfer, and freeze-drying of samples. Freeze-dried cryosections 100-nm thick appeared to be appropriate for measuring the distribution of diffusible elements and water in different compartments of the cells. The lateral analytical resolution was less than 50 nm, depending on ice crystal damage and section thickness. The detection limit was in the range of 10 mmol/kg dry weight for all elements with an atomic number higher than 12; for sodium and magnesium the detection limits were about 30 and 20 mmol/kg dry weight, respectively. The darkfield intensity in STEM is linearly related to the mass thickness. Thus, it becomes possible to measure the water content in intracellular compartments by using the darkfield signal of the dry mass remaining after freeze-drying. By combining the X-ray microanalytical data expressed as dry weight concentrations with the measurements of the water content, physiologically more meaningful wet weight concentrations of elements were determined. In comparison to freeze-dried cryosections frozen-hydrated sections showed poor contrast and were very sensitive against radiation damage, resulting in mass loss. The high electron exposure required for recording X-ray spectra made reproducible microanalysis of ultrathin (about 100-nm thick) frozen-hydrated sections impossible. The mass loss could be reduced by carbon coating; however, the improvement achieved thus far is still insufficient for applications in X-ray microanalysis. Therefore, at present only bulk specimens or at least 1-micron thick sections can be used for X-ray microanalysis of frozen-hydrated biological samples

  10. Limitations of ZAF correction factors in the determination of calcium/phosphorus ratios: Important forensic science considerations relevant to the analysis of bone fragments using scanning electron microscopy and energy-dispersive x-ray microanalysis

    International Nuclear Information System (INIS)

    Payne, C.M.; Cromey, D.W.

    1990-01-01

    A series of calcium phosphate standards having calcium/phosphorus (Ca/P) molar ratios of 0.50, 1.00, 1.50, and 1.67, respectively, was prepared for bulk specimen analysis using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDXA). The standards were mounted on carbon planchettes as either pure crystals or crystals embedded in epoxy resin. Ten different samples of each embedded and non-embedded standard were analyzed in a JEOL 100 CX electron microscope interfaced with a Kevex 8000 EDXA system using a lithium-drifted silicon detector and a multichannel analyzer. The Ca/P ratios were determined by calculating both net peak intensities without matrix corrections and atomic kappa-ratios using the MAGIC V computer program with ZAF correction factors for quantitative analysis. There was such extensive absorption of phosphorus X-rays in standards embedded in an epoxy matrix that the observed Ca/P ratios were statistically compatible with four different standards ranging in theoretical Ca/P ratios from 1.0 to 1.67. Although the non-embedded crystals showed a greater separation in the Ca/P ratios, both methods of preparation produced serious flaws in analysis. Direct application of the discovery of this caveat to the identification of suspected bone fragments for forensic science purposes is discussed

  11. Physical methods for studying minerals and solid materials: X-ray, electron and neutron diffraction; scanning and transmission electron microscopy; X-ray, electron and ion spectrometry

    International Nuclear Information System (INIS)

    Eberhart, J.-P.

    1976-01-01

    The following topics are discussed: theoretical aspects of radiation-matter interactions; production and measurement of radiations (X rays, electrons, neutrons); applications of radiation interactions to the study of crystalline materials. The following techniques are presented: X-ray and neutron diffraction, electron microscopy, electron diffraction, X-ray fluorescence analysis, electron probe microanalysis, surface analysis by electron emission spectrometry (ESCA and Auger electrons), scanning electron microscopy, secondary ion emission analysis [fr

  12. The lack of age-pigments and the alterations in intracellular monovalent electrolytes in spontaneously hypertensive, stroke-prone (SHRsp) rats as revealed by electron microscopy and X-ray microanalysis

    International Nuclear Information System (INIS)

    Nagy, I.; Nagy, V.; Casoli, T.; Lustyik, G.

    1989-01-01

    Male, spontaneously hypertensive, stroke-prone (SHRsp) rats established by Okamoto et al. were studied. About 80% of the males of this strain have a particularly short life span (33-41 weeks); they display a considerable hypertension (above 220 mmHg) and a tendency for plurifocal brain strokes. Hypertension and strokes can be provoked in an accelerated and synchronized fashion by supplementing 1% NaCl into their drinking water. Symptoms of the appearance of brain strokes can be judged from characteristic signs of motor disorders, and can be established also by pathohistology. Since hypertension and arteriosclerosis are frequently involved in aging, the question we intended to answer was whether these animals may represent a model of the normal aging process or not. Two approaches are described: (1) Accumulation of lipofuscin granules in their brain, liver and myocardium was followed by transmission electron microscopy before and after the appearance of strokes. It has been established that these tissues do not show any typical accumulation of lipofuscin granules, although submicroscopic signs of an enhanced damage of cell organelles (especially of mitochondria in liver and brain cells, but not in myocardium) were encountered. (2) The intracellular monovalent composition in the brain and liver was measured by using bulk-specimen X-ray microanalysis. The intracellular Na-content (mEq/kg water) was significantly higher (170-200%) in both the brain and liver cells, whereas the K-content increased only moderately (118-130%). The results suggest that although the SHRsp rats do not represent a direct model for the normal aging process from the point of view of lipofuscin accumulation, the shifts of the monovalent electrolyte contents in the brain and liver cells observed already in the youngest ages, are similar to those observed in aged normal rats

  13. X-ray microscopy of human malaria

    Energy Technology Data Exchange (ETDEWEB)

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.

  14. X-ray microscopy of human malaria

    International Nuclear Information System (INIS)

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W.

    1997-01-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease

  15. Progress in x-ray microanalysis in the analytical electron microscope

    International Nuclear Information System (INIS)

    Williams, D.B.

    1987-01-01

    Analytical electron microscopes (AEM) consisting of x-ray energy dispersive spectrometers (EDS) interfaced to scanning transmission electron microscopes have been available for more than a decade. During that time, progress towards reaching the fundamental limits of the technique has been slow. The progress of x-ray microanalysis in AEM is examined in terms of x-ray detector technology; the EDS/AEM interface; accuracy of microanalysis; and spatial resolution and detectability limits. X-ray microanalysis in the AEM has substantial room for improvement in terms of the interface between the detector and the microscope. Advances in microscope design and software should permit 10nm resolution with detectability limits approaching 0.01wt percent. 16 refs., 2 figs., 1 tab

  16. X-ray microanalysis of Zn in the taste organ of the teleost Ameiurus nebulosus

    International Nuclear Information System (INIS)

    Reutter, K.

    1983-01-01

    The trace metal Zn seems to be essential for the normal functioning of the gustatory sense. It was tried to localize Zn within the peripheral and central parts of the bullhead's gustatory system by the use of scanning electron microscopy and X-ray microanalysis. In freeze dried preparations of the bullhead's barbel taste buds (and the taste buds of rabbits) Zn is found in randomly distributed granules, which cannot be related to distinct taste bud regions. Furthermore, Zn occurs in subunits of the central gustatory nuclei, the vagal and facial lobe of the rhombencephalon. Therefore Zn appears to be essential for intact peripheral as well as central gustatory processes, at least in lower vertebrates. (author)

  17. Electron-probe microanalysis: x-ray spectroscopy

    International Nuclear Information System (INIS)

    1987-01-01

    The main principles on X-ray, energy and wave length dispersive spectroscopy are reviewed. In order to allow the choice of the best operating conditions, the importance of the regulation and control systems is underlined. Emission theory, X-rays nature and its interaction with matter and electrons in the matter is shown. The structure, operating procedures and necessary electronics (single channel - analysis chain) automatic-control system for the threshold-energies discrimination and the energy distribution visualization) associated to the wavelength dispersive spectroscopy are described. The focusing control, resolution, influence of chemical bonds and multilayer-structure monochromators relaled to wavelength dispersive spectroscopy are studied. Concerning the energy-dispersive spectroscopy, the detector, preamplifier, amplifier, analog-digital converter, as well as the utilization and control of the spectrometer are described. Problems and instrumental progress on energy-dispersive spectroscopy related to the electronic-noise control, charge collection and light-elements detection are discussed [fr

  18. Choice and preparation of standard samples for X-ray spectral microanalysis

    International Nuclear Information System (INIS)

    Gavrilenko, I.S.; Surzhko, V.F.

    1989-01-01

    Choice, preparation and certification of standard samples for X-ray spectral microanalysis are considered. Requirements for standard samples in terms of concentration and volume, porosity, corrosion, conductivity distribution are formulated. Stages of sample preparation process, including composition choice, heat treatment, section production, certification, are considered in detail. The choice of composition is based on studying phase equilibrium diagrams, subdivided into 6 types

  19. Electronprobe X-ray microanalysis of biological specimens improvement of a number of quantification procedures

    International Nuclear Information System (INIS)

    Boekestein, A.

    1984-01-01

    In this thesis an investigation is described to establish which quantification procedures can be used in the X-ray microanalysis of biological specimens. Two classes of specimens have been distinguished from each other, i.e. thick specimens (opaque to the beam electrons) and thin specimens (transparent to the beam electrons). (Auth.)

  20. The method of quantitative X-ray microanalysis of fine inclusions in copper

    International Nuclear Information System (INIS)

    Morawiec, H.; Kubica, L.; Piszczek, J.

    1978-01-01

    The method of correction for the matrix effect in quantitative x-ray microanalysis was presented. The application of the method was discussed on the example of quantitative analysis of fine inclusions of Cu 2 S and Cu 2 O in copper. (author)

  1. Use of X-ray microanalysis for study of cation distribution in potassium deficient pumpkin roots

    Directory of Open Access Journals (Sweden)

    Natalia Burmistrova

    2014-01-01

    Full Text Available Ice slices of root tissues were investigated by X-ray microanalysis. It is shown that the cytoplasm of the meristematic and differentiated cells of potassium dificiest roots maintains a high potassium level. The vacuoles of various root cells loose more K and accumulate more Na and Mg than does the cytoplasm.

  2. Energy-dispersive X-ray microanalysis of elements' content and ...

    African Journals Online (AJOL)

    This study was designed to investigate elements' content and anti-microbial effects of two Malaysian plants, Pereskia bleo and Goniothalamus umbrosus. Elements' analysis was carried out using Energy Dispersive X-ray Microanalysis combined with Variable Pressure Scanning Electron Microscope (EDX, VPSEM).

  3. Measurement of total calcium in neurons by electron probe X-ray microanalysis.

    Science.gov (United States)

    Pivovarova, Natalia B; Andrews, S Brian

    2013-11-20

    In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis

  4. Low temperature x-ray microanalysis of highly mineralised biological samples

    International Nuclear Information System (INIS)

    Clode, P.L.; Marshall, A.T.

    2002-01-01

    Full text: Scleractinian corals are highly calcified animals that possess a massive CaCO 3 skeleton, which is associated with a thin, two-layered epithelium. The presence of the skeleton often precludes the use of conventional techniques for examination of the tissue by light and electron microscopy and necessitates an innovative approach to specimen preparation and analysis. Using a preparatory technique devised by the current authors (Clode and Marshall, 2001), we have applied low temperature x-ray microanalysis to frozen-hydrated preparations of the highly mineralised scleractinian coral Galaxea fascicularis. This has allowed us to identify sites of Ca accumulation and to suggest possible modes of Ca movement across the tissue prior to deposition within the skeleton. Mucocytes, seawater (SW) zones, symbiotic algae (zooxanthellae) and lipid were all found to contain high concentrations of Ca. A significant Ca gradient that increased inwardly, from the oral ectoderm toward the skeleton, was evident within each of these features except lipid. This data suggests that Ca uptake and accumulation occurs via an active, transcellular route. The presence of high S, K and Ca concentrations in the SW immediately adjacent to the external surface of the polyp is indicative of a mucous layer creating a Donnan matrix. This matrix may facilitate Ca uptake from the surrounding SW into the tissue, and is also likely to selectively influence diffusional properties at the SW - oral ectodermal interface. Copyright (2002) Australian Society for Electron Microscopy Inc

  5. Cryotomography x-ray microscopy state

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  6. The MicroAnalysis Toolkit: X-ray Fluorescence Image Processing Software

    International Nuclear Information System (INIS)

    Webb, S. M.

    2011-01-01

    The MicroAnalysis Toolkit is an analysis suite designed for the processing of x-ray fluorescence microprobe data. The program contains a wide variety of analysis tools, including image maps, correlation plots, simple image math, image filtering, multiple energy image fitting, semi-quantitative elemental analysis, x-ray fluorescence spectrum analysis, principle component analysis, and tomographic reconstructions. To be as widely useful as possible, data formats from many synchrotron sources can be read by the program with more formats available by request. An overview of the most common features will be presented.

  7. Sweat gland toxicity induced by bis (tributyltin) oxide: an ultrastructural and X-ray microanalysis study

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, O. [Univ. of Occupational and Environmental Health Japan, Kitakyushu (Japan). Dept. of Dermatology and Occupational Dermatopathology; Doi, Y.; Kudo, H.; Fujimoto, S. [Univ. of Occupational and Environmental Health Japan, Kitakyushu (Japan). Dept. of Anatomy; Yoshizuka, M. [Kurume Univ. (Japan). Dept. of Anatomy

    2000-12-01

    Acute toxicity of bis (tributyltin) oxide in the sweat glands in the rat footpad was investigated by electron microscopy and an energy-dispersive X-ray microanalyzer. Male Wistar rats received an intramuscular injection of 0.5 ml/kg bis (tributyltin) oxide. After 6-8 h, swelling of mitochondria appeared in the secretory cells of the sweat glands. After 12 h, the secretory cells began to show intracytoplasmic edema. After 16-20 h, secretory cells in some sweat glands showed marked hydropic degeneration with swollen cytoplasm. Using X-ray microanalysis, tin peaks were preferentially obtained from the swollen mitochondria of the affected secretory cells. Mitochondria dysfunction due to the toxic effects of bis (tributyltin) oxide induced changes in the secretory cells of rat sweat glands contained three types of cells: degenerating dark cells, regenerating cells carrying injured mitochondria, and light cells which were morphologically very similar to the cells in the transitional portion of the sweat gland. These light cells appeared to differentiate into active secretory cells after settling down in the secretory portion. Based on these observations, we concluded that the cells in the transitional portion could play an important role at least as reserve cells against secretory cell toxicity. In association with the regenerating process of the damaged secretory portions, increased mitotic activities were seen in different areas of all the dermal sweat ducts. The above-mentioned morphological observations for cell damage and subsequent regeneration and renewal of secretory cells in sweat gland intoxication have not been reported so far. (orig.)

  8. Correlated microradiography, X-ray microbeam diffraction and electron probe microanalysis of calcifications in an odontoma

    International Nuclear Information System (INIS)

    Aoba, T.; Yoshioka, C.; Yagi, T.

    1980-01-01

    Using microradiography, X-ray microbeam diffraction and electron probe microanalysis, a correlated morphologic and crystallographic study was performed on dysplastic enamel in a compound odontoma. The tumor was found in the lateral incisor-canine region of the left mandible of a 36-year-old woman. A conspicuous feature was the presence of hypomineralized areas, which were situated in the proximity of enamel surface and distinctly demarcated from the adjacent enamel. X-ray microbeam diffraction and electron microanalysis showed that these lesions have a lower crystallinity and a higher concentration of magnesium as compared with the adjacent enamel. In addition, the present study revealed the presence of two other types of calcifications: 1) calcified structures within the fissure or on the enamel surface, which include lacunae of varying size and which resemble a form of coronal cementum, and 2) spherical calcifications which may be an epithelial product. (author)

  9. SEM and X-ray microanalysis of human prostatic calculi

    International Nuclear Information System (INIS)

    Vilches, J.; Lopez, A.; De Palacio, L.; Munoz, C.; Gomez, J.

    1982-01-01

    Calculi removed from human prostates affected with nodular hyperplasia were analyzed with scanning electron microscopy and EDAX system. The general spectrum was made up of Na, Al, Mg, S, P, Ca and Zn. Two types of stone were identified morphostructurally and microanalytically: calculi type I of nodular surface with high peaks of S, and calculi type II polyfaceted with high peaks of P and Ca. Their formation from corpora amylacea and/or exogenous constituents is discussed. The superficial deposit of Zn suggests its incorporation from the prostatic liquid and does not seem to play an important role in the genesis

  10. Utility of replica techniques for x-ray microanalysis of second phase particles

    International Nuclear Information System (INIS)

    Bentley, J.

    1984-01-01

    X-ray microanalysis of second phase particles in ion-milled or electropolished thin foils is often complicated by the presence of the matrix nearby. Extraction replica techniques provide a means to avoid many of the complications of thin-foil analyses. In this paper, three examples of the analysis of second phase particles are described and illustrate the improvement obtained by the use of extraction replicas for qualitative analysis, quantitative analysis, and analysis of radioactive specimens

  11. Application of X-ray microanalysis to the study of drug uptake in cell culture

    International Nuclear Information System (INIS)

    Reasor, M.J.; Lee, P.; Kirk, R.G.

    1990-01-01

    X-ray microanalysis has been used previously to study the accumulation of iodine in alveolar macrophages of rats treated with the iodinated drug, amiodarone. Due to metabolism of the drug in vivo, primarily to desethylamiodarone, it was not possible to identify the source of the iodine signal. In the present study we have utilized primary cell cultures of alveolar macrophages to study the intracellular accumulation of each of these drug species in vitro. Neither drug is metabolized by these cells in culture, permitting characterization of the accumulation of each independent of the other. Cells were incubated with equimolar concentrations of either amiodarone or desethylamiodarone for 42 hr, and X-ray microanalysis of freeze-dried cryosections of cells was used to quantify accumulation by monitoring the iodine signal associated with each drug. For both drug exposures, the highest iodine content was present in amorphous bodies and dense granules, consistent with the pattern following in vivo exposure. Higher levels of desethylamiodarone, compared to amiodarone, were measured in all compartments of the cells. The results of the in vitro investigation further demonstrate the utility of X-ray microanalysis in the study of the cellular response to amiodarone and desethylamiodarone

  12. X-ray Tomographic Microscopy at TOMCAT

    Energy Technology Data Exchange (ETDEWEB)

    Marone, F; Hintermueller, C; McDonald, S; Abela, R; Mikuljan, G; Isenegger, A; Stampanoni, M, E-mail: federica.marone@psi.c [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2009-09-01

    Synchrotron-based X-ray Tomographic Microscopy is a powerful technique for fast non-destructive, high resolution quantitative volumetric investigations on diverse samples. At the TOMCAT (TOmographic Microscopy and Coherent rAdiology experimenTs) beamline at the Swiss Light Source, synchrotron light is delivered by a 2.9 T superbend. The main optical component, a Double Crystal Multilayer Monochromator, covers an energy range between 8 and 45 keV. The standard TOMCAT detector offers field of views ranging from 0.75x0.75 mm{sup 2} up to 12.1x12.1 mm{sup 2} with a pixel size of 0.37 {mu}m and 5.92 {mu}m, respectively. In addition to routine measurements, which exploit the absorption contrast, the high coherence of the source also enables phase contrast tomography, implemented with two complementary techniques (Modified Transport of Intensity approach and Grating Interferometry). Typical acquisition times for a tomogram are in the order of few minutes, ensuring high throughput and allowing for semi-dynamical investigations. Raw data are automatically post-processed online and full reconstructed volumes are available shortly after a scan with minimal user intervention.

  13. Extending the methodology of X-ray crystallography to allow X-ray microscopy without X-ray optics

    International Nuclear Information System (INIS)

    Miao Jianwei; Kirz, Janos; Sayre, David; Charalambous, Pambos

    2000-01-01

    We demonstrate that the soft X-ray diffraction pattern from a micron-size noncrystalline specimen can be recorded and inverted to form a high-resolution image. The phase problem is overcome by oversampling the diffraction pattern. The image is obtained using an iterative algorithm. The technique provides a method for X-ray microscopy requiring no high-resolution X-ray optical elements or detectors. In the present work, a resolution of approximately 60 nm was obtained, but we believe that considerably higher resolution can be achieved

  14. Development of X-ray excitable luminescent probes for scanning X-ray microscopy

    International Nuclear Information System (INIS)

    Moronne, M.M.

    1999-01-01

    Transmission soft X-ray microscopy is now capable of achieving resolutions that are typically 5 times better than the best-visible light microscopes. With expected improvements in zone plate optics, an additional factor of two may be realized within the next few years. Despite the high resolution now available with X-ray microscopes and the high X-ray contrast provided by biological molecules in the soft X-ray region (λ=2-5 nm), molecular probes for localizing specific biological targets have been lacking. To circumvent this problem, X-ray excitable molecular probes are needed that can target unique biological features. In this paper we report our initial results on the development of lanthanide-based fluorescent probes for biological labeling. Using scanning luminescence X-ray microscopy (SLXM, Jacobsen et al., J. Microscopy 172 (1993) 121-129), we show that lanthanide organo-polychelate complexes are sufficiently bright and radiation resistant to be the basis of a new class of X-ray excitable molecular probes capable of providing at least a fivefold improvement in resolution over visible light microscopy. Lanthanide probes, able to bind 80-100 metal ions per molecule, were found to give strong luminescent signals with X-ray doses exceeding 10 8 Gy, and were used to label actin stress fibers and in vitro preparations of polymerized tubulin. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  15. Dark field X-ray microscopy for studies of recrystallization

    DEFF Research Database (Denmark)

    Ahl, Sonja Rosenlund; Simons, Hugh; Jakobsen, Anders Clemen

    2015-01-01

    We present the recently developed technique of Dark Field X-Ray Microscopy that utilizes the diffraction of hard X-rays from individual grains or subgrains at the (sub)micrometre- scale embedded within mm-sized samples. By magnifying the diffracted signal, 3D mapping of orientations and strains...... external influences. The capabilities of Dark Field X- Ray Microscopy are illustrated by examples from an ongoing study of recrystallization of 50% cold-rolled Al1050 specimens....

  16. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1993-01-01

    "Transmission Electron Microscopy" presents the theory of image and contrastformation, and the analytical modes in transmission electron microscopy Theprinciples of particle and wave optics of electrons are described Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast Also analysed are the kinetical and dynamical theories of electron diffraction and their applications for crystal-structure determination and imaging of lattices and their defects X-ray microanalysis and electron energy-loss spectroscopy are treated as analytical methods The third edition includes a brief discussionof Schottky emission guns, some clarification of minor details, and references to the recent literature

  17. Optimization of an analytical electron microscope for x-ray microanalysis: instrumental problems

    International Nuclear Information System (INIS)

    Bentley, J.; Zaluzec, N.J.; Kenik, E.A.; Carpenter, R.W.

    1979-01-01

    The addition of an energy dispersive x-ray spectrometer to a modern transmission or scanning transmission electron microscope can provide a powerful tool in the characterization of the materials. Unfortunately this seemingly simple modification can lead to a host of instrumental problems with respect to the accuracy, validity, and quality of the recorded information. This tutorial reviews the complications which can arise in performing x-ray microanalysis in current analytical electron microscopes. The first topic treated in depth is fluorescence by uncollimated radiation. The source, distinguishing characteristics, effects on quantitative analysis and schemes for elimination or minimization as applicable to TEM/STEMs, D-STEMs and HVEMs are discussed. The local specimen environment is considered in the second major section where again detrimental effects on quantitative analysis and remedial procedures, particularly the use of low-background specimen holers, are highlighted. Finally, the detrimental aspects of specimen contamination, insofar as they affect x-ray microanalysis, are discussed. It is concluded that if the described preventive measures are implemented, reliable quantitative analysis is possible

  18. A simple method to improve the quantification accuracy of energy-dispersive X-ray microanalysis

    International Nuclear Information System (INIS)

    Walther, T

    2008-01-01

    Energy-dispersive X-ray spectroscopy in a transmission electron microscope is a standard tool for chemical microanalysis and routinely provides qualitative information on the presence of all major elements above Z=5 (boron) in a sample. Spectrum quantification relies on suitable corrections for absorption and fluorescence, in particular for thick samples and soft X-rays. A brief presentation is given of an easy way to improve quantification accuracy by evaluating the intensity ratio of two measurements acquired at different detector take-off angles. As the take-off angle determines the effective sample thickness seen by the detector this method corresponds to taking two measurements from the same position at two different thicknesses, which allows to correct absorption and fluorescence more reliably. An analytical solution for determining the depth of a feature embedded in the specimen foil is also provided.

  19. X ray microanalysis of leaf and seed elemental composition among four species of living fossil gymnosperm

    International Nuclear Information System (INIS)

    Chang Chongyan; Li Yongliang; Chen Xiaoduan; Liu Jinying; Zhou Yunlong

    2002-01-01

    The leaf and seed elemental composition and average mass fraction are analysed or four species of living fossil gymnosperm: Ginkgo biloba L., Cathaya argyrophylla Chun et Kuang, Glyptostrobus pensilis (D. Don) Koch and Metasequoia glyptostroboides Hu et Cheng by SEM X ray microanalysis method. The results show that the elemental composition is different and the elemental average mass fraction is evidently different between the seed and leaf for the same species. The elemental composition and average mass fraction between seed and seed wing is different in Cathaya argyrophylla and Metasequoia glyptostroboides. Among three type leaf of Glyptostrobus pensilis, the elemental composition is the same, but average mass fraction is very different

  20. Practical applications of energy dispersive X-ray microanalysis in diagnostic oral pathology

    International Nuclear Information System (INIS)

    Daley, T.D.; Gibson, D.

    1990-01-01

    Energy dispersive X-ray microanalysis is a powerful tool that can reveal the presence and relative quantities of elements in minute particles in biologic materials. Although this technique has been used in some aspects of dental research, it has rarely been applied to diagnostic oral pathology. The purpose of this paper is to inform practicing dentists and oral specialists about the diagnostic potential of this procedure by presenting three case reports. The first case involved the identification of flakes of a metallic material claimed by a 14-year-old girl to appear periodically between her mandibular molars. In the second case, a periodontist was spared a lawsuit when a freely mobile mass in the antrum of his patient was found to be a calcium-phosphorus compound not related to the periodontal packing that had been used. The third case involved the differential diagnosis of amalgam tattoo and graphite tattoo in a pigmented lesion of the hard palate mucosa. The results of the analyses were significant and indicate a role for this technique in the assessment of selected cases. Potential for wider use of energy dispersive X-ray microanalysis in diagnostic oral pathology exists as research progresses

  1. Laboratory manual on sample preparation procedures for x-ray micro-analysis

    International Nuclear Information System (INIS)

    1997-01-01

    X-ray micro fluorescence is a non-destructive and sensitive method for studying the microscopic distribution of different elements in almost all kinds of samples. Since the beginning of this century, x-rays and electrons have been used for the analysis of many different kinds of material. Techniques which rely on electrons are mainly developed for microscopic studies, and are used in conventional Electron Microscopy (EM) or Scanning Electron Microscopy (SEM), while x-rays are widely used for chemical analysis at the microscopic level. The first chemical analysis by fluorescence spectroscopy using small x-ray beams was conducted in 1928 by Glockner and Schreiber. Since then much work has been devoted to developing different types of optical systems for focusing an x-ray beam, but the efficiency of these systems is still inferior to the conventional electron optical systems. However, even with a poor optical efficiency, the x-ray microbeam has many advantages compared with electron or proton induced x-ray emission methods. These include: The analyses are non-destructive, losses of mass are negligible, and due to the low thermal loading of x-rays, materials which may be thermally degraded can be analysed; Samples can be analysed in air, and no vacuum is required, therefore specimens with volatile components such as water in biological samples, can be imaged at normal pressure and temperature; No charging occurs during analysis and therefore coating of the sample with a conductive layer is not necessary; With these advantages, simpler sample preparation procedures including mounting and preservation can be used

  2. A hard X-ray nanoprobe beamline for nanoscale microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Winarski, Robert P., E-mail: winarski@anl.gov; Holt, Martin V. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States); Rose, Volker [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States); Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States); Maser, Jörg [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60441 (United States)

    2012-11-01

    The Hard X-ray Nanoprobe Beamline is a precision platform for scanning probe and full-field microscopy with 3–30 keV X-rays. A combination of high-stability X-ray optics and precision motion sensing and control enables detailed studies of the internal features of samples with resolutions approaching 30 nm. The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals.

  3. X-ray shadow projection microscopy of microwires

    International Nuclear Information System (INIS)

    Kasatkin, Yu.I.; Kasyuga, L.Z.; Kasyuga, P.I.; Kozyrev, A.S.; Khanonkin, A.A.

    1981-01-01

    The X-ray shadow projection microscopy as a method for testing geometrical parameters of microwires is considered. Two X-ray-optical circuits for measuring geometrical parameters of wires are described. It is shown that the coefficient of increase of the circuits does not depend on geometrical parameters of the wire under testing, and it is determined solely by the construction peculiarities of the circuits. The testability of geometric parameters of a wire, using DRON-2.0 X-ray diffractometer or its like, is discussed [ru

  4. X-ray microscopy and spectromicroscopy - tools for environmental studies

    International Nuclear Information System (INIS)

    Thieme, J.

    2002-01-01

    Full text: X-ray microscopy achieves a much higher resolution than light microscopy. This is due to the much shorter wavelength of X-rays compared to visible light. The smallest structures that can be seen in an X-ray microscope at present are about 20 nm in size. X-ray microscopy is also capable of imaging specimens directly in aqueous media. By choosing the wavelength of the X-radiation appropriately, it is possible to perform spectromicroscopy studies. Comprising, it is a tool very well suited to study colloidal structures in the environment. X-ray microscopy can be performed with two types of instruments. An X-ray microscope quickly takes high-resolution images of objects to be studied, whereas a scanning X-ray microscope is an analytical instrument for spectromicroscopy. Here, an object can be imaged using energies above and below the absorption edge of an element. Dividing both images gives rise to a map of the distribution of this element in the sample. Using near-edge resonances it is possible to conduct NEXAFS studies. As the X-ray energy is raised to match the absorption edge resonances are found, that reflect the chemical bonding state of the element. Therefore, it is possible with X-ray microscopy to combine high spatial resolution with high spectral resolution for studies of colloidal structures. The Institute of X-ray physics builds up an X-ray microscopy beamline at the electron storage ring BESSY II with both, an X-ray microscope and a scanning X-ray microscope. The status of this beamline will be presented in this talk. Colloidal structures play an important role in the environment. Due to their surface activity they are involved in various processes. Substances can be bound and immobilized or transported, colloids can attach to microorganisms building up microhabitats, and organic substances as humics can flocculate due the interaction with metals. A great variety of colloidal structures from the environment have been studied using X-ray

  5. Prospects of X-ray microanalysis in the study of pathophysiology of myocardial contraction

    International Nuclear Information System (INIS)

    Wendt-Gallitelli, M.F.; Schwegler, M.; Holubarsch, C.; Jacob, R.; Wolburg, H.; Schlote, W.

    1980-01-01

    X-ray microanalysis was used to compare chemically untreated cryosections of quick-frozen myocardial tissue in 'caffeine contracture' with cryosections of normal muscle. Our goal was to find out if it is possible by this method to detect changes in the calcium compartmentalization of the myocardial cell occurring by changes in its functional state. While it is possible to quantitate calcium in the cisternae of sarcoplasmic reticulum of the control muscle preparation, calcium could never be detected in these compartments of caffeine-contracted muscles. In active microsomal fraction of ventricular myocardium it is possible to quantitate calcium and also to distinguish two components on account of their different ability to accumulate this element. The calcium content is different in the two components of the fraction. (orig.) [de

  6. Semi-quantitative X-ray microanalysis of bronchoalveolar lavage samples from silica-exposed and nonexposed subjects

    International Nuclear Information System (INIS)

    Lusuardi, M.; Capelli, A.; Donner, C.F.; Capelli, O.; Velluti, G.

    1992-01-01

    To evaluate the possibility of quantifying alveolar dust burden in conditions of exposure to silica, four groups of subjects were submitted to bronchoalveolar lavage (BAL): 10 healthy control subjects and 39 patients affected by diffuse interstitial lung disease (DILD) never exposed to dust, 23 silicotic patients and 12 chronic bronchitis patients with a history of occupational exposure to silica dust. Five to ten million BAL recovered cells were analysed with an energy-dispersive X-ray microanalysis (EDXA) system to determine the silicon content, expressed in a semi-quantitative way as silicon to sulphur (Si/S) ratio. The results were independent of smoking habit. The Si/S median values (interquartile range in brackets) for the four groups were 0.53 (0.5-0.65), 0.60 (0.41-0.8), 1.23 (1.06-1.39); 1.31 (1.11-1.97), respectively. Silicotics and simply exposed individuals did not show a significant discrepancy, but they were both significantly different in comparison with normal and DILD patients without history of exposure (p<0.001). 14.3% false negative cases were found, and 4.1% false positive cases (none among normal subjects). We did not se any significant relationships between the amount of silicon and the duration of exposure or the degree of chest X-ray involvement. A study of cytocentrifuge slides from the same subjects by polarizing light microscopy revealed a lower sensitivity (34% false negative cases). (au)

  7. PREFACE: 22nd International Congress on X-Ray Optics and Microanalysis

    Science.gov (United States)

    Falkenberg, Gerald; Schroer, Christian G.

    2014-04-01

    ICXOM22 The 22nd edition of the International Congress on X-ray Optics and Microanalysis (ICXOM 22) was held from 2-6 September 2013, in Hamburg, Germany. The congress was organized by scientists from DESY in collaboration with TU Dresden and Helmholtz-Zentrum Geesthacht, who also formed the scientific advisory board. The congress was hosted in the historical lecture hall building of the University of Hamburg located in the city center. ICXOM22 was attended by about 210 registered participants, including 67 students, and was open for listeners. The attendance was split between 26 countries (Germany 120, rest of Europe 57, America 20, Asia 8, Australia 6). The ICXOM series is a forum for the discussion of new developments in instrumentation, methods and applications in the fields of micro- and nano-analysis by means of X-ray beams. Following the trend of the last 10 years, the conference focusses more and more on synchrotron radiation rather than X-ray laboratory sources. Besides micro-beam X-ray fluorescence and absorption spectroscopy, different methods based on diffraction and full-field imaging were covered. Newly introduced to the ICXOM series was scanning coherent X-ray diffraction imaging, which was shown to evolve into a mature method for the imaging of nanostructures, defects and strain fields. New developments on fast X-ray detectors were discussed (Lambda, Maia) and advances in X-ray optics — like the generation of a sub 5nm point focus by Multilayer Zone plates — were presented. Talks on micro- and nano-analysis applications were distributed in special sessions on bio-imaging, Earth and environmental sciences, and Cultural heritage. The congress featured nine keynote and ten plenary talks, 56 talks in 14 parallel sessions and about 120 posters in three afternoon sessions. Seventeen commercial exhibitors exposed related X-ray instrumentation products, and two luncheon seminars on detector electronics were given. This allowed us to keep the student

  8. Soft X-ray microscopy and lithography with synchrotron radiation

    International Nuclear Information System (INIS)

    Gudat, W.

    1977-12-01

    Considerable progress in the technique microscopy with soft X-ray radiation has been achieved in particular through the application of synchrotron radiation. Various methods which are currently being studied theoretically or already being used practically will be described briefly. Attention is focussed on the method of contact microscopy. Various biological specimens have been investigated by this method with a resolution as good as 100 A. X-ray lithography which in the technical procedure is very similar to contact microscopy gives promise for the fabrication of high quality submicron structures in electronic device production. Important factors limiting the resolution and determining the performance of contact microscopy and X-ray lithography will be discussed. (orig.) [de

  9. Spatially resolved quantification of agrochemicals on plant surfaces using energy dispersive X-ray microanalysis.

    Science.gov (United States)

    Hunsche, Mauricio; Noga, Georg

    2009-12-01

    In the present study the principle of energy dispersive X-ray microanalysis (EDX), i.e. the detection of elements based on their characteristic X-rays, was used to localise and quantify organic and inorganic pesticides on enzymatically isolated fruit cuticles. Pesticides could be discriminated from the plant surface because of their distinctive elemental composition. Findings confirm the close relation between net intensity (NI) and area covered by the active ingredient (AI area). Using wide and narrow concentration ranges of glyphosate and glufosinate, respectively, results showed that quantification of AI requires the selection of appropriate regression equations while considering NI, peak-to-background (P/B) ratio, and AI area. The use of selected internal standards (ISs) such as Ca(NO(3))(2) improved the accuracy of the quantification slightly but led to the formation of particular, non-typical microstructured deposits. The suitability of SEM-EDX as a general technique to quantify pesticides was evaluated additionally on 14 agrochemicals applied at diluted or regular concentration. Among the pesticides tested, spatial localisation and quantification of AI amount could be done for inorganic copper and sulfur as well for the organic agrochemicals glyphosate, glufosinate, bromoxynil and mancozeb. (c) 2009 Society of Chemical Industry.

  10. Source Apportionment of Atmospheric Particles by Electron Probe X-Ray Microanalysis and Receptor Models.

    Science.gov (United States)

    van Borm, Werner August

    Electron probe X-ray microanalysis (EPXMA) in combination with an automation system and an energy-dispersive X-ray detection system was used to analyse thousands of microscopical particles, originating from the ambient atmosphere. The huge amount of data was processed by a newly developed X-ray correction method and a number of data reduction procedures. A standardless ZAF procedure for EPXMA was developed for quick semi-quantitative analysis of particles starting from simple corrections, valid for bulk samples and modified taking into account the particle finit diameter, assuming a spherical shape. Tested on a limited database of bulk and particulate samples, the compromise between calculation speed and accuracy yielded for elements with Z > 14 accuracies on concentrations less than 10% while absolute deviations remained below 4 weight%, thus being only important for low concentrations. Next, the possibilities for the use of supervised and unsupervised multivariate particle classification were investigated for source apportionment of individual particles. In a detailed study of the unsupervised cluster analysis technique several aspects were considered, that have a severe influence on the final cluster analysis results, i.e. data acquisition, X-ray peak identification, data normalization, scaling, variable selection, similarity measure, cluster strategy, cluster significance and error propagation. A supervised approach was developed using an expert system-like approach in which identification rules are builded to describe the particle classes in a unique manner. Applications are presented for particles sampled (1) near a zinc smelter (Vieille-Montagne, Balen, Belgium), analyzed for heavy metals, (2) in an urban aerosol (Antwerp, Belgium), analyzed for over 20 elements and (3) in a rural aerosol originating from a swiss mountain area (Bern). Thus is was possible to pinpoint a number of known and unknown sources and characterize their emissions in terms of particles

  11. Quantitative X-ray spectral microanalysis of bioorganic films by means of a crystal-diffraction spectrometer

    International Nuclear Information System (INIS)

    Pogorelov, A.G.; Pogorelova, V.N.; Khrenova, E.V.; Gol'dshtejn, D.V.; Aksirov, A.M.; Kantor, G.M.

    2005-01-01

    The details of the quantitative X-ray spectral microanalysis performed with a wave dispersive spectrometer are described. Hydration of biological tissues, light element composition, low concentration of analyzed elements and their nonuniform distribution are the specific features of bioorganic film and tissue section. This paper is aimed to discuss the general approaches to both preparation technique and quantitative analysis principles [ru

  12. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  13. X-ray microscopy using collimated and focussed synchrotron radiation

    International Nuclear Information System (INIS)

    Jones, K.W.; Kwiatek, W.M.; Gordon, B.M.

    1987-01-01

    X-ray microscopy is a field that has developed rapidly in recent years. Two different approaches have been used. Zone plates have been employed to produce focused beams with sizes as low as 0.07 μm for x-ray energies below 1 keV. Images of biological materials and elemental maps for major and minor low Z have been produced using above and below absorption edge differences. At higher energies collimators and focusing mirrors have been used to make small diameter beams for excitation of characteristic K- or L-x rays of all elements in the periodic table. The practicality of a single instrument combining all the features of these two approaches is unclear. The use of high-energy x rays for x-ray microscopy has intrinsic value for characterization of thick samples and determination of trace amounts of most elements. A summary of work done on the X-26 beam line at the National Synchrotron Light Source (NSLS) with collimated and focused x rays with energies above 4 keV is given here. 6 refs., 5 figs., 1 tab

  14. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  15. Recent trends of projection X-ray microscopy in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yada, K. [Tohken CO., LTD. 2-27-7 Tamagawa Chofu, Tokyo 182-0025 (Japan)], E-mail: kyada@tohken.co.jp

    2009-08-15

    Recent activities of projection X-ray microscopy in Japan are reviewed. 1) By employing high brightness Schottky electron gun, resolution of 0.1 {mu}m is realized by Tohken CO. group and some application examples are shown. 2) Deblurring of Fresnel diffracted image formed by synchrotron orbital radiation (SOR) X-rays is successfully tried by Chiba University group. Remarkable Fresnel fringes appearing at HeLa cell are mostly reconstructed by an iteration method. 3) Element analysis is carried out by Meiji University group utilizing absorption-edge characteristics between two kinds of X-ray targets without X-ray spectrometer. Actually, Cu and Ni targets are used with an inter-changeable system for elemental analysis of Fe{sub 2}O{sub 3} particles and iron component in a mosquito larva.

  16. Developments in contact X-ray microscopy in biomedical research

    International Nuclear Information System (INIS)

    Davies, R.L.; Flores, N.A.; Pye, J.K.

    1985-01-01

    Contact X-ray microscopy (microradiography) is a method of studying the microstructure of biological tissue. These techniques have been used to study the historadiological details of human breast tissue and sections of human ear ossicles. X-ray microscopy can also be used to demonstrate variations in structural densities seen in histological specimens including the detection of microcalcification. A modification of existing apparatus is described which has resulted in improved image-contrast and detail. The ability of X-rays to penetrate relatively thick sections of tissue makes it an ideal method for studying the morphology of biological structures, particularly in calcified tissue. The tissues may be further examined by conventional histology, elemental analysis, etc. The technique has a complementary role to alternative methods of tissue microscopy. (author)

  17. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  18. The X-ray microscopy project at saga SLS

    International Nuclear Information System (INIS)

    Yasumoto, M.; Ishiguro, E.; Takemoto, K.; Kihara, H.; Kamijo, N.; Tomimasu, T.; Tsurushima, T.; Takahara, A.; Hara, K.; Chikaura, Y.

    2002-01-01

    A new high resolution X-ray microscopy project has been proposed at Saga synchrotron light source, which is a third generation synchrotron light facility in Japan. Two microscopy beamlines are planned for this project. One is a scanning microscope in the water window region, and the other is a full-field imaging microscope in the multi-keV X-ray energy region. To demonstrate the feasibility of the project, the optical layout of the scanning microscope was designed. The beamline mainly consists of a 3.5 cm periodical undulator, a varied line-spacing plane grating monochromator (600 lines/mm) and an end-station including a zone plate. Thus, the calculated X-ray properties focused on the sample position are as follows: the spot size is ∼ 70 nm, the monochromaticity is ∼2000, and the photon flux is 10 9 ∼ 10 10 photons/sec. (authors)

  19. Laboratory soft x-ray microscopy and tomography

    International Nuclear Information System (INIS)

    Bertilson, Michael

    2011-01-01

    Soft x-ray microscopy in the water-window (λ = 2.28 nm - 4.36 nm) is based on zone-plate optics and allows high-resolution imaging of, e.g., cells and soils in their natural or near-natural environment. Three-dimensional imaging is provided via tomographic techniques, soft x-ray cryo tomography. However, soft x-ray microscopes with such capabilities have been based on large-scale synchrotron x-ray facilities, thereby limiting their accessibility for a wider scientific community. This Thesis describes the development of the Stockholm laboratory soft x-ray microscope to three-dimensional cryo tomography and to new optics-based contrast mechanisms. The microscope relies on a methanol or nitrogen liquid-jet laser-plasma source, normal-incidence multilayer or zone-plate condenser optics, in-house fabricated zone-plate objectives, and allows operation at two wavelengths in the water-window, λ = 2.48 nm and λ = 2.48 nm. With the implementation of a new state-of-the-art normal-incidence multilayer condenser for operation at λ = 2.48 nm and a tiltable cryogenic sample stage the microscope now allows imaging of dry, wet or cryo-fixed samples. This arrangement was used for the first demonstration of laboratory soft x-ray cryo microscopy and tomography. The performance of the microscope has been demonstrated in a number of experiments described in this Thesis, including, tomographic imaging with a resolution of 140 nm, cryo microscopy and tomography of various cells and parasites, and for studies of aqueous soils and clays. The Thesis also describes the development and implementation of single-element differential-interference and Zernike phase-contrast zone-plate objectives. The enhanced contrast provided by these optics reduce exposure times or lowers the dose in samples and are of major importance for harder x-ray microscopy. The implementation of a high-resolution 50 nm compound zone-plate objective for sub-25-nm resolution imaging is also described. All experiments

  20. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    Science.gov (United States)

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (3D images of cryo-preserved cells. The relatively low X-ray energy (3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    International Nuclear Information System (INIS)

    Liu, Y.; Andrews, J. C.; Mehta, A.; Pianetta, P.; Meirer, F.; Gil, S. Carrasco; Sciau, P.; Mester, Z.

    2011-01-01

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  2. Applications of Hard X-ray Full-Field Transmission X-ray Microscopy at SSRL

    Science.gov (United States)

    Liu, Y.; Andrews, J. C.; Meirer, F.; Mehta, A.; Gil, S. Carrasco; Sciau, P.; Mester, Z.; Pianetta, P.

    2011-09-01

    State-of-the-art hard x-ray full-field transmission x-ray microscopy (TXM) at beamline 6-2C of Stanford Synchrotron Radiation Lightsource has been applied to various research fields including biological, environmental, and material studies. With the capability of imaging a 32-micron field-of-view at 30-nm resolution using both absorption mode and Zernike phase contrast, the 3D morphology of yeast cells grown in gold-rich media was investigated. Quantitative evaluation of the absorption coefficient was performed for mercury nanoparticles in alfalfa roots exposed to mercury. Combining XANES and TXM, we also performed XANES-imaging on an ancient pottery sample from the Roman pottery workshop at LaGraufesenque (Aveyron).

  3. Scanning electron microscopy-energy dispersive X-ray spectrometer ...

    African Journals Online (AJOL)

    The distribution of arsenic (As) and cadmium (Cd) in himematsutake was analyzed using scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX). The atomic percentage of the metals was confirmed by inductively coupled plasma-mass spectrometer (ICP-MS). Results show that the accumulation of ...

  4. A review on the use of bulk specimen X-ray microanalysis in cancer research

    International Nuclear Information System (INIS)

    Zs-Nagy, I.

    1989-01-01

    The freeze-fracture, freeze-drying (FFFD) method of biological bulk specimen preparation combined with quantitative X-ray microanalysis is suitable for the measurement of intracellular concentrations of biologically relevant elements in human biopsy or experimental animal materials. Especially useful information can be obtained regarding the intracellular Na+/K+ ratios being independent of the actual (and unknown) water content of the cytoplasm. The sustained increase of this ratio indicates a sustained depolarization of the cell membrane. These data are of importance from the point of view of the membrane hypothesis of mitogenesis (MHM). It has been revealed that the distribution histograms of the intracellular Na+/K+ ratio display a very significant broadening and an increase of the average values in human urogenital, thyroid and laryngeal tumors, as well as in experimentally induced cell proliferation models. Although MHM has been claimed to be invalid on the basis of some atomic absorption measurements of the intracellular monovalent ion concentrations as well as of some in vitro results obtained with amiloride, this review paper demonstrates that MHM may still be a valid hypothesis for the explanation of mitotic regulation.97 references

  5. Electron probe X-ray microanalysis of boar and inobuta testes after the Fukushima accident

    International Nuclear Information System (INIS)

    Yamashiro, Hideaki; Abe, Yasuyuki; Hayashi, Gohei; Urushihara, Yusuke; Kuwahara, Yoshikazu; Suzuki, Masatoshi; Kobayashi, Jin; Kino, Yasuyuki; Fukuda, Tomokazu; Tong, Bin; Takino, Sachio; Sugano, Yukou; Sugimura, Satoshi; Yamada, Takahisa; Isogai, Emiko; Fukumoto, Manabu

    2015-01-01

    We aimed to investigate the effect of chronic radiation exposure associated with the Fukushima Daiichi Nuclear Power Plant (FNPP) accident on the testes of boar and inobuta (a hybrid of Sus scrofa and Sus scrofa domestica). This study examined the contamination levels of radioactive caesium (Cs), especially 134 Cs and 137 Cs, in the testis of both boar and inobuta during 2012, after the Fukushima accident. Morphological analysis and electron-probe X-ray microanalysis (EPMA) were also undertaken on the testes. The 134 Cs and 137 Cs levels were 6430 ± 23 and 6820 ± 32 Bq/kg in the boar testes, and 755 ± 13 and 747 ± 17 Bq/kg in the inobuta testes, respectively. The internal and external exposure of total 134 Cs and 137 Cs in the boar testes were 47.1 mGy and 176.2 mGy, respectively, whereas in the inobuta testes, these levels were 6.09 mGy and 59.8 mGy, respectively. Defective spermatogenesis was not detected by the histochemical analysis of radiation-exposed testes for either animal. In neither animal were Cs molecules detected, using EPMA. In conclusion, we showed that adverse radiation-induced effects were not detected in the examined boar and inobuta testes following the chronic radiation exposure associated with the FNPP accident

  6. X-ray microanalysis of elements present in the matrix of cnidarian nematocysts.

    Science.gov (United States)

    Tardent, P; Zierold, K; Klug, M; Weber, J

    1990-01-01

    The composition and concentration of elements, in particular those of metallic cations, present in the intracapsular matrix and the wall of nematocysts of various cnidarian species have been recorded by means of X-ray microanalysis performed on 100nm thick cryosections. The predominant cation detected in the nematocyst matrix of the hydrozoan Podocoryne carnea (medusa), the scyphozoan Aurelia aurita (scyphopolyp) and the anthozoan Calliactis parasitica (tentacles and acontia) is K(+). Mg(2+) prevails in tentacular cysts of Anthopleura elegantissima, Actinia equina and Anemonia viridis, whereas, the acrorhagial cysts of A. elegantissima and A. equina contain Ca(2+) instead of Mg(2+). The acrorhagial cysts of A. viridis contain Mg(2+) like those of the tentacles. In the tentacular nematocysts of Podocoryne carnea polyps (Hydrozoa) on the other hand ambiguous element contents were found indicating that the cysts of this species has no preference for a particular cation. The high values of sulfur recorded in the matrix and particularly the wall of all the cysts are reflecting the presence of numerous protein disulfide bonds within the structural components (wall, shaft, tubule) of the nematocysts.

  7. Element concentrations in the intestinal mucosa of the mouse as measured by X-ray microanalysis

    International Nuclear Information System (INIS)

    Zglinicki, T. von; Roomans, G.M.

    1989-01-01

    Subcellular ion distribution in villus, crypt, Paneth and smooth muscle cells of the mouse small intestine under resting conditions was investigated by X-ray microanalysis of ultrathin cryosections. In addition, the mass distribution was estimated by measuring the optical transmission of the compartments in transmission electron micrographs. Each cell type is characterized by a special composition in terms of the major monovalent ions Na, K, and Cl. In particular, among crypt epithelial cells, those cells containing small secretion granula (termed crypt A cells) also display cytoplasmic ion concentrations significantly different from crypt epithelial cells lacking secretion granula (crypt B cells). Monovalent ion concentrations in the cytoplasm of Paneth cells, muscle cells, and crypt epithelial cells lacking secretion granula are higher than expected from osmotic considerations. Hence, significant binding of ions to cytoplasmic polyelectrolytes is assumed in these cells. There are gradients of dry mass and K concentration from the luminal to the basal side of the cell, both in crypt and in villus cells. The terminal web in these cells is rich in Na and Cl. The elemental composition of the large, dark secretion granula in Paneth cells is similar to that of the small dark granula in crypt cells. However, the two morphologically different types of granula within the Paneth cells have a significantly different elemental composition, which might reflect maturation of secretion granula

  8. X-ray microanalysis in cryosections of natively frozen Paramecium caudatum with regard to ion distribution in ciliates

    International Nuclear Information System (INIS)

    Schmitz, M.; Meyer, R.; Zierold, K.

    1985-01-01

    Cells of Paramecium caudatum were shock-frozen without pretreatment for cryoultramicrotomy and freeze-dried for subsequent X-ray microanalysis. Na, Mg, P, S, Cl, K, and Ca were detected in different amounts in several subcellular compartments. In particular, calcium was localized below the cell surface (pellicle). Trichocysts were found to contain significant amounts of Na in their base but not in the tip. Na, Mg, P, S, Cl, K, Ca were found in electron dense deposits within the lumen of the contractile vacuole. A small K concentration was found in the cytoplasm and in the mitochondria. X-ray microanalysis of the element distribution in different subcellular compartments provides information for the understanding of cellular functions such as exocytosis, locomotion, and ion regulation

  9. Metal X-ray microanalysis in the olfactory system of rainbow trout exposed to low level of copper

    International Nuclear Information System (INIS)

    Julliard, A.K.; Astic, L.; Saucier, D.

    1995-01-01

    It has recently been shown that a chronic copper exposure induces specific degeneration of olfactory receptor cells in rainbow trout; however, the exact mechanism of action of the metal is not yet known. Using X-ray microanalysis in transmission electron microscopy, we have studied the distribution of metal in the olfactory system of fish exposed for 15,30 and 60 days to 20 μg/l of copper. This was done in order to determine if it was accumulated in receptor cells and transported into the central nervous system via the olfactory nerve. No copper accumulation was detected either in the olfactory epithelium, in the olfactory nerve or in the olfactory bulb. The heavy metal was exclusively found within melanosomes of melanophores located in the lamina propria. After 60 days of exposure, the copper content in melanosomes was about two-fold higher than that in controls. As far as some morphological recovery took place in the olfactory organ during the metal exposure, which lets us suppose that some detoxication mechanism occurs, it could be suggested that metanophores might be somehow involved in such a mechanism. (authors). 57 refs., 15 figs

  10. Genomics and X-ray microanalysis indicate that Ca2+ and thiols mediate the aggregation and adhesion of Xylella fastidiosa

    Directory of Open Access Journals (Sweden)

    Leite B.

    2002-01-01

    Full Text Available The availability of the genome sequence of the bacterial plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, is accelerating important investigations concerning its pathogenicity. Plant vessel occlusion is critical for symptom development. The objective of the present study was to search for information that would help to explain the adhesion of X. fastidiosa cells to the xylem. Scanning electron microscopy revealed that adhesion may occur without the fastidium gum, an exopolysaccharide produced by X. fastidiosa, and X-ray microanalysis demonstrated the presence of elemental sulfur both in cells grown in vitro and in cells found inside plant vessels, indicating that the sulfur signal is generated by the pathogen surface. Calcium and magnesium peaks were detected in association with sulfur in occluded vessels. We propose an explanation for the adhesion and aggregation process. Thiol groups, maintained by the enzyme peptide methionine sulfoxide reductase, could be active on the surface of the bacteria and appear to promote cell-cell aggregation by forming disulfide bonds with thiol groups on the surface of adjacent cells. The enzyme methionine sulfoxide reductase has been shown to be an auxiliary component in the adhesiveness of some human pathogens. The negative charge conferred by the ionized thiol group could of itself constitute a mechanism of adhesion by allowing the formation of divalent cation bridges between the negatively charged bacteria and predominantly negatively charged xylem walls.

  11. Study on methods of quantitative analysis of the biological thin samples in EM X-ray microanalysis

    International Nuclear Information System (INIS)

    Zhang Detian; Zhang Xuemin; He Kun; Yang Yi; Zhang Sa; Wang Baozhen

    2000-01-01

    Objective: To study the methods of quantitative analysis of the biological thin samples. Methods: Hall theory was used to study the qualitative analysis, background subtraction, peel off overlap peaks; external radiation and aberrance of spectra. Results: The results of reliable qualitative analysis and precise quantitative analysis were achieved. Conclusion: The methods for analysis of the biological thin samples in EM X-ray microanalysis can be used in biomedical research

  12. Calcified-tissue investigations using synchrotron x-ray microscopy

    International Nuclear Information System (INIS)

    Jones, K.W.; Spanne, P.; Schidlovsky, G.; Dejun, X.; Bockman, R.S.; Hammond, P.B.; Bornschein, R.L.; Hoeltzel, D.A.

    1990-10-01

    Synchrotron x-ray microscopy (SXRM) in both emission and absorption modes has been used to examine elemental distributions in specimens of rat tibia, human deciduous teeth, and an orthopedic implant phantom. The work was performed with a spatial resolution of 8 μm for the emission work and 25 μm for the absorption work. The results illustrate the usefulness of SXRM for measurements of different types of calcified tissue. 3 figs

  13. Identification of 5'-adenylylimidodiphosphate-hydrolyzing enzyme activity in rabbit taste bud cells using X-ray microanalysis

    International Nuclear Information System (INIS)

    Asanuma, N.

    1990-01-01

    X-ray microanalysis has been used to characterize the enzyme activity hydrolyzing the ATP analogue 5'-adenylylimidodiphosphate (AMP-PNP) in taste bud cells. Rabbit foliate papillae fixed with paraformaldehyde and glutaraldehyde were incubated cytochemically with AMP-PNP as the substrate and lead ion as capture agent. The reaction product which appeared on the microvilli of taste bud cells was examined using an energy dispersive X-ray microanalyzer connected to an analytical electron microscope. The X-ray spectrum thus obtained was compared with that obtained from the product obtained from the demonstration of ATPase activity. Comparison of the phosphorus/lead ratios in the two products showed that twice as much phosphorus was released from an AMP-PNP molecule by the activity in question compared with that released from an ATP molecule by ATPase activity. This indicates that the enzyme hydrolyzes AMP-PNP into AMP and imidodiphosphate and that the enzyme is adenylate cyclase or ATP pyrophosphohydrolase, which possesses a similar hydrolytic property, but not ATPase or alkaline phosphatase, which hydrolyzes AMP-PNP into ADP-NH2 and orthophosphate. This paper provides an example of the use of X-ray microanalysis as a tool for enzyme distinction. The method is applicable to a variety of enzymes and tissues

  14. X-ray microanalysis of rotavirus-infected mouse intestine: A new concept of diarrhoeal secretion

    International Nuclear Information System (INIS)

    Spencer, A.J.; Osborne, M.P.; Haddon, S.J.; Collins, J.; Starkey, W.G.; Candy, D.C.; Stephen, J.

    1990-01-01

    Neonatal mice were infected at 7 days of age with rotavirus [epizootic diarrhea of infant mice (EDIM) virus] and killed at 24-h intervals postinfection (PI). Cytoplasmic concentrations of Na, Mg, P, S, Cl, K, and Ca intestinal epithelial cells from infected and age-matched control animals were measured by x-ray microanalysis. In villus tip cells, Ca concentration increased at 24-96 h PI; Na concentration increased at 24-72 h PI; Ca and Na concentrations were near normal by 168 h PI. K concentration decreased 24-72 h PI, and Cl concentration decreased 48-96 h PI. In crypt cells, changes were observed without a discernible pattern: at 96 h PI, Na, Mg, S, and Cl concentrations increased and K concentration decreased; at 120 h PI, the concentrations of all elements except Na and Ca increased. In villus base cells, the mean concentrations of all elements except Ca peaked at 48-72 h PI and at 120 h PI. Na and Cl concentrations increased dramatically in some cells from 48 h PI onward. All the above concentration values were obtained from freeze-dried specimens and expressed in millimoles per kilogram of dry weight. Conversion of a limited number of data, pertaining to villus base cells, from dry weight to wet weight was possible. This conversion revealed that villus base cells in infected animals were more hydrated than corresponding cells from control animals. Also, the Na and Cl concentrations in mmol/kg H2O were significantly higher in villus base cells from infected animals than in those from corresponding controls: 137 +/- 7 versus 38 +/- 4 (Na) and 121 +/- 5 versus 89 +/- 6 (Cl). Wet weight concentrations of other elements were either the same (Mg) or lower (P, S, and K) after infection with virus

  15. X-ray microanalysis of rotavirus-infected mouse intestine: A new concept of diarrhoeal secretion

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, A.J.; Osborne, M.P.; Haddon, S.J.; Collins, J.; Starkey, W.G.; Candy, D.C.; Stephen, J. (Univ. of Birmingham (England))

    1990-05-01

    Neonatal mice were infected at 7 days of age with rotavirus (epizootic diarrhea of infant mice (EDIM) virus) and killed at 24-h intervals postinfection (PI). Cytoplasmic concentrations of Na, Mg, P, S, Cl, K, and Ca intestinal epithelial cells from infected and age-matched control animals were measured by x-ray microanalysis. In villus tip cells, Ca concentration increased at 24-96 h PI; Na concentration increased at 24-72 h PI; Ca and Na concentrations were near normal by 168 h PI. K concentration decreased 24-72 h PI, and Cl concentration decreased 48-96 h PI. In crypt cells, changes were observed without a discernible pattern: at 96 h PI, Na, Mg, S, and Cl concentrations increased and K concentration decreased; at 120 h PI, the concentrations of all elements except Na and Ca increased. In villus base cells, the mean concentrations of all elements except Ca peaked at 48-72 h PI and at 120 h PI. Na and Cl concentrations increased dramatically in some cells from 48 h PI onward. All the above concentration values were obtained from freeze-dried specimens and expressed in millimoles per kilogram of dry weight. Conversion of a limited number of data, pertaining to villus base cells, from dry weight to wet weight was possible. This conversion revealed that villus base cells in infected animals were more hydrated than corresponding cells from control animals. Also, the Na and Cl concentrations in mmol/kg H2O were significantly higher in villus base cells from infected animals than in those from corresponding controls: 137 +/- 7 versus 38 +/- 4 (Na) and 121 +/- 5 versus 89 +/- 6 (Cl). Wet weight concentrations of other elements were either the same (Mg) or lower (P, S, and K) after infection with virus.

  16. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A. P., E-mail: aph@mcmaster.ca; Lee, V.; Wu, J.; Cooper, G. [Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1 (Canada); West, M. M.; Berejnov, V. [Faculty of Health Sciences Electron Microscopy, McMaster University, Hamilton, ON L8N 3Z5 (Canada); Soboleva, T.; Susac, D.; Stumper, J. [Automotive Fuel Cell Cooperation Corp., Burnaby BC V5J 5J8 (Canada)

    2016-01-28

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined.

  17. Characterizing automotive fuel cell materials by soft x-ray scanning transmission x-ray microscopy

    International Nuclear Information System (INIS)

    Hitchcock, A. P.; Lee, V.; Wu, J.; Cooper, G.; West, M. M.; Berejnov, V.; Soboleva, T.; Susac, D.; Stumper, J.

    2016-01-01

    Proton-Exchange Membrane Fuel Cell (PEM-FC) based engines are being developed rapidly for near-term implementation in hydrogen fueled, mass production, personal automobiles. Research is focused on understanding and controlling various degradation processes (carbon corrosion, Pt migration, cold start), and reducing cost by reducing or eliminating Pt catalyst. We are using soft X-ray scanning transmission X-ray microscopy (STXM) at the S 2p, C 1s, O 1s and F 1s edges to study a variety of issues related to optimization of PEM-FC materials for automotive applications. A method to efficiently and accurately measure perfluorosulfonic acid distributions was developed and is being used to better understand how different loadings and preparation methods affect the ionomer distribution in the cathode. Progress towards an environmental cell capable of controlling the temperature and humidity of a PEM-FC sample in the STXM is described. Methods for studying the 3D chemical structure of PEM-FC are outlined

  18. Clinical applications of scanning electron microscopy and energy dispersive X-ray analysis in dermatology--an up-date

    International Nuclear Information System (INIS)

    Forslind, B.

    1988-01-01

    Dermatological papers comprising scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis data published 1983 through 1986 in international journals are reviewed, as an update to our 1984 paper on Clinical applications of scanning electron microscopy and X-ray microanalysis in dermatology. The present paper not only deals with a review of recent publications in this area but also presents the application of microincineration to hair and cryosectioned freeze-dried skin specimens. Examples of the increased contrast obtained in hair cross sections are presented and a discussion on the feasibility of microincineration at analysis of hair and skin cross sections is given. Particle probe analysis (EDX: energy dispersive X-ray analysis and PMP: proton microprobe analysis) as applied to hair and skin samples are presented with stress put on the proton probe analysis. The complementarity of EDX and PMP is demonstrated and future applications are suggested. 75 references

  19. Imaging bacterial spores by soft-x-ray microscopy

    International Nuclear Information System (INIS)

    Stead, A.D.; Ford, T.W.; Judge, J.

    1997-01-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark

  20. Imaging bacterial spores by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W. [Univ. of London, Surrey (United Kingdom); Judge, J. [Unilever plc, Sharnbrook (United Kingdom)] [and others

    1997-04-01

    Bacterial spores are able to survive dehydration, but neither the physiological nor structural basis of this have been fully elucidated. Furthermore, once hydrated, spores often require activation before they will germinate. Several treatments can be used to activate spores, but in the case of Bacillus subtlis the most effective is heat treatment. The physiological mechanism associated with activation is also not understood, but some workers suggest that the loss of calcium from the spores may be critical. However, just prior to germination, the spores change from being phase bright to phase dark when viewed by light microscopy. Imaging spores by soft x-ray microscopy is possible without fixation. Thus, in contrast to electron microscopy, it is possible to compare the structure of dehydrated and hydrated spores in a manner not possible previously. A further advantage is that it is possible to monitor individual spores by phase contrast light microscopy immediately prior to imaging with soft x-rays; whereas, with both electron microscopy and biochemical studies, it is a population of spores being studied without knowledge of the phase characteristics of individual spores. This study has therefore tried to compare dehydrated and hydrated spores and to determine if there is a mass loss from individual spores as they pass the transition from being phase bright to phase dark.

  1. Scanning X-ray microscopy of superconductor/ferromagnet bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Claudia; Ruoss, Stephen; Weigand, Markus; Schuetz, Gisela [Max Planck Institute for Intelligent Systems, Stuttgart (Germany); Zahn, Patrick; Bayer, Jonas [Max Planck Institute for Intelligent Systems, Stuttgart (Germany); Research Institute for Innovative Surfaces, FINO, Aalen University (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University (Germany)

    2016-07-01

    The magnetic flux distribution arising from a high-T{sub c} superconductor is detected and visualized with high spatial resolution using scanning x-ray microscopy (SXM). Therefore, we introduce a sensor layer, namely, an amorphous, soft-magnetic CoFeB cover layer. The magnetic stray fields of the supercurrents lead to a local reorientation of the magnetic moments in the ferromagnet, which is visualized using the large x-ray magnetic circular dichroism (XMCD) effect of the Co and Fe L3-edge. We show that the XMCD contrast in the sensor layer corresponds to the in-plane magnetic flux distribution of the superconductor and can hence be used to image magnetic structures in superconductors with high spatial resolution. Using the total electron yield (TEY) mode the surface structure and the magnetic domains can be imaged simultaneously and can be correlated. The measurements are carried out at our scanning x-ray microscope MAXYMUS at Bessy II, Berlin with the new low temperature setup.

  2. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    Science.gov (United States)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  3. X-Ray Microscopy Conference 2016 (XRM 2016)

    International Nuclear Information System (INIS)

    2017-01-01

    Preface On behalf of the Program Committee I would like to thank all the participants of the 13th International X-ray Microscopy Conference, XRM2016, for their contributions. The conference was hosted by the Diamond Light Source and took place in the nearby historic city of Oxford, United Kingdom from the 15th to the19th August, 2016. The goal of this biennial conference is to address the most recent advances in X-ray microscopy by bringing together experts in the development and the application of X-ray microscopes. The conference also explored the position of X-ray microscopy alongside related techniques and disciplines. The present proceedings contain over 60 contributions, providing a representative selection of the conference content. Overall there were more than 380 participants in this conference, with a total of 72 oral presentations and 250 posters contributed. In addition we had three sessions of early career flash talks, which were well received. The manuscripts submitted for these proceedings were reviewed by a large team of referees. I thank them for their rapid and thorough work on the manuscripts as well as the authors for their contributions. The conference contained ten different topics. They are categorized into four groups here for a better overview: - Bio-imaging, Multi-modal imaging, Environmental and geosciences - Elemental contrast and chemistry, Energy and materials - Diffraction imaging - New sources and facilities, Novel techniques and applications, Optics, detectors and instrumentation, Data processing. Following the tradition of the XRM conference series, the Werner Meyer-Ilse Memorial Award (WIMA) rewards young scientists for exceptional contributions to the advancement of X-ray microscopy. The WIMA committee awarded the prize to Junjing Deng (Northwestern University, USA) and Matias Kagias (ETH Zurich / PSI, Switzerland). The winners for the poster prizes, who presented their work during the early career flash talk sessions, were Burcu

  4. A flexible and accurate quantification algorithm for electron probe X-ray microanalysis based on thin-film element yields

    Science.gov (United States)

    Schalm, O.; Janssens, K.

    2003-04-01

    Quantitative analysis by means of electron probe X-ray microanalysis (EPXMA) of low Z materials such as silicate glasses can be hampered by the fact that ice or other contaminants build up on the Si(Li) detector beryllium window or (in the case of a windowless detector) on the Si(Li) crystal itself. These layers act as an additional absorber in front of the detector crystal, decreasing the detection efficiency at low energies (philosophy often employed in quantitative analysis of X-ray fluorescence (XRF) and proton-induced X-ray emission (PIXE) data. This approach is based on the (experimental) determination of thin-film element yields, rather than starting from infinitely thick and single element calibration standards. These thin-film sensitivity coefficients can also be interpolated to allow quantification of elements for which no suitable standards are available. The change in detector efficiency can be monitored by collecting an X-ray spectrum of one multi-element glass standard. This information is used to adapt the previously determined thin-film sensitivity coefficients to the actual detector efficiency conditions valid on the day that the experiments were carried out. The main advantage of this method is that spectra collected from the standards and from the unknown samples should not be acquired within a short period of time. This new approach is evaluated for glass and metal matrices and is compared with a standard ZAF method.

  5. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2013-01-01

    Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. © Wiley Periodicals, Inc.

  6. Chemometric classification of gunshot residues based on energy dispersive X-ray microanalysis and inductively coupled plasma analysis with mass-spectrometric detection

    International Nuclear Information System (INIS)

    Steffen, S.; Otto, M.; Niewoehner, L.; Barth, M.; Brozek-Mucha, Z.; Biegstraaten, J.; Horvath, R.

    2007-01-01

    A gunshot residue sample that was collected from an object or a suspected person is automatically searched for gunshot residue relevant particles. Particle data (such as size, morphology, position on the sample for manual relocation, etc.) as well as the corresponding X-ray spectra and images are stored. According to these data, particles are classified by the analysis-software into different groups: 'gunshot residue characteristic', 'consistent with gunshot residue' and environmental particles, respectively. Potential gunshot residue particles are manually checked and - if necessary - confirmed by the operating forensic scientist. As there are continuing developments on the ammunition market worldwide, it becomes more and more difficult to assign a detected particle to a particular ammunition brand. As well, the differentiation towards environmental particles similar to gunshot residue is getting more complex. To keep external conditions unchanged, gunshot residue particles were collected using a specially designed shooting device for the test shots revealing defined shooting distances between the weapon's muzzle and the target. The data obtained as X-ray spectra of a number of particles (3000 per ammunition brand) were reduced by Fast Fourier Transformation and subjected to a chemometric evaluation by means of regularized discriminant analysis. In addition to the scanning electron microscopy in combination with energy dispersive X-ray microanalysis results, isotope ratio measurements based on inductively coupled plasma analysis with mass-spectrometric detection were carried out to provide a supplementary feature for an even lower risk of misclassification

  7. Chemometric classification of gunshot residues based on energy dispersive X-ray microanalysis and inductively coupled plasma analysis with mass-spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, S. [Bundeskriminalamt (BKA), Forensic Science Institute KT23, Thaerstr. 11, D - 65193 Wiesbaden (Germany); Otto, M. [TU Bergakademie Freiberg (TU BAF), Institute for Analytical Chemistry, Leipziger Str. 29, D - 09599 Freiberg (Germany)], E-mail: matthias.otto@chemie.tu-freiberg.de; Niewoehner, L.; Barth, M. [Bundeskriminalamt (BKA), Forensic Science Institute KT23, Thaerstr. 11, D - 65193 Wiesbaden (Germany); Brozek-Mucha, Z. [Instytut Ekspertyz Sadowych (IES), Westerplatte St. 9, PL - 31-033 Krakow (Poland); Biegstraaten, J. [Nederlands Forensisch Instituut (NFI), Fysische Technologie, Laan van Ypenburg 6, NL-2497 GB Den Haag (Netherlands); Horvath, R. [Kriminalisticky a Expertizny Ustav (KEU PZ), Institute of Forensic Science, Sklabinska 1, SK - 812 72 Bratislava (Slovakia)

    2007-09-15

    A gunshot residue sample that was collected from an object or a suspected person is automatically searched for gunshot residue relevant particles. Particle data (such as size, morphology, position on the sample for manual relocation, etc.) as well as the corresponding X-ray spectra and images are stored. According to these data, particles are classified by the analysis-software into different groups: 'gunshot residue characteristic', 'consistent with gunshot residue' and environmental particles, respectively. Potential gunshot residue particles are manually checked and - if necessary - confirmed by the operating forensic scientist. As there are continuing developments on the ammunition market worldwide, it becomes more and more difficult to assign a detected particle to a particular ammunition brand. As well, the differentiation towards environmental particles similar to gunshot residue is getting more complex. To keep external conditions unchanged, gunshot residue particles were collected using a specially designed shooting device for the test shots revealing defined shooting distances between the weapon's muzzle and the target. The data obtained as X-ray spectra of a number of particles (3000 per ammunition brand) were reduced by Fast Fourier Transformation and subjected to a chemometric evaluation by means of regularized discriminant analysis. In addition to the scanning electron microscopy in combination with energy dispersive X-ray microanalysis results, isotope ratio measurements based on inductively coupled plasma analysis with mass-spectrometric detection were carried out to provide a supplementary feature for an even lower risk of misclassification.

  8. X-ray microscopy using grazing-incidence reflections optics

    International Nuclear Information System (INIS)

    Price, R.H.

    1983-01-01

    The role of Kirkpatrick-Baez microscopes as the workhorse of the x-ray imaging devices is discussed. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics

  9. X-ray microscopy using grazing-incidence reflection optics

    International Nuclear Information System (INIS)

    Price, R.H.

    1981-01-01

    The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics

  10. Preparation of tissue samples for X-ray fluorescence microscopy

    International Nuclear Information System (INIS)

    Chwiej, Joanna; Szczerbowska-Boruchowska, Magdalena; Lankosz, Marek; Wojcik, Slawomir; Falkenberg, Gerald; Stegowski, Zdzislaw; Setkowicz, Zuzanna

    2005-01-01

    As is well-known, trace elements, especially metals, play an important role in the pathogenesis of many disorders. The topographic and quantitative elemental analysis of pathologically changed tissues may shed some new light on processes leading to the degeneration of cells in the case of selected diseases. An ideal and powerful tool for such purpose is the Synchrotron Microbeam X-ray Fluorescence technique. It enables the carrying out of investigations of the elemental composition of tissues even at the single cell level. The tissue samples for histopathological investigations are routinely fixed and embedded in paraffin. The authors try to verify the usefulness of such prepared tissue sections for elemental analysis with the use of X-ray fluorescence microscopy. Studies were performed on rat brain samples. Changes in elemental composition caused by fixation in formalin or paraformaldehyde and embedding in paraffin were examined. Measurements were carried out at the bending magnet beamline L of the Hamburger Synchrotronstrahlungslabor HASYLAB in Hamburg. The decrease in mass per unit area of K, Br and the increase in P, S, Fe, Cu and Zn in the tissue were observed as a result of the fixation. For the samples embedded in paraffin, a lower level of most elements was observed. Additionally, for these samples, changes in the composition of some elements were not uniform for different analyzed areas of rat brain

  11. Preparation of tissue samples for X-ray fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chwiej, Joanna [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)]. E-mail: jchwiej@novell.ftj.agh.edu.pl; Szczerbowska-Boruchowska, Magdalena [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Lankosz, Marek [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Wojcik, Slawomir [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Falkenberg, Gerald [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron, Notkestr. 85, Hamburg (Germany); Stegowski, Zdzislaw [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Setkowicz, Zuzanna [Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Cracow (Poland)

    2005-12-15

    As is well-known, trace elements, especially metals, play an important role in the pathogenesis of many disorders. The topographic and quantitative elemental analysis of pathologically changed tissues may shed some new light on processes leading to the degeneration of cells in the case of selected diseases. An ideal and powerful tool for such purpose is the Synchrotron Microbeam X-ray Fluorescence technique. It enables the carrying out of investigations of the elemental composition of tissues even at the single cell level. The tissue samples for histopathological investigations are routinely fixed and embedded in paraffin. The authors try to verify the usefulness of such prepared tissue sections for elemental analysis with the use of X-ray fluorescence microscopy. Studies were performed on rat brain samples. Changes in elemental composition caused by fixation in formalin or paraformaldehyde and embedding in paraffin were examined. Measurements were carried out at the bending magnet beamline L of the Hamburger Synchrotronstrahlungslabor HASYLAB in Hamburg. The decrease in mass per unit area of K, Br and the increase in P, S, Fe, Cu and Zn in the tissue were observed as a result of the fixation. For the samples embedded in paraffin, a lower level of most elements was observed. Additionally, for these samples, changes in the composition of some elements were not uniform for different analyzed areas of rat brain.

  12. Hard-x-ray phase-difference microscopy with a low-brilliance laboratory x-ray source

    International Nuclear Information System (INIS)

    Kuwabara, Hiroaki; Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Mizutani, Haruo

    2011-01-01

    We have developed a hard-X-ray phase-imaging microscopy method using a low-brilliance X-ray source. The microscope consists of a sample, a Fresnel zone plate, a transmission grating, and a source grating creating an array of mutually incoherent X-ray sources. The microscope generates an image exhibiting twin features of the sample with opposite signs separated by a distance, which is processed to generate a phase image. The method is quantitative even for non-weak-phase objects that are difficult to be quantitatively examined by the widely used Zernike phase-contrast microscopy, and it has potentially broad applications in the material and biological science fields. (author)

  13. Assessment of homogeneity of candidate reference material at the nanogram level and investigation on representativeness of single particle analysis using electron probe X ray microanalysis

    International Nuclear Information System (INIS)

    Ro, Chul-Un; Hoornaerta, S.; Griekena, R. van

    2002-01-01

    Particulate samples of a candidate reference material are evaluated on their homogeneity from bottle to bottle using electron probe X ray microanalysis technique. The evaluation on the homogeneity is done by the utilization of the Kolmogorov-Smirnov statistics to the processing of the quantitative electron probe X ray microanalysis data. Due to a limitation, existing even in computer controlled electron probe X ray microanalysis, in terms of analysis time and expenses, the number of particles analyzed is much smaller compared to that in the sample. Therefore, it is investigated whether this technique provides representative analysis results for the characteristics of the sample, even though a very small portion of the sample is really analyzed. Furthermore, the required number of particles for the analysis, to insure a certain level of reproducibility, e.g. 5% relative standard deviation, is determined by the application of the Ingamells sampling theory. (author)

  14. Quantitative x-ray microanalysis in an AEM: instrumental considerations and applications to materials science

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    1979-01-01

    There are a wide variety of instrumental problems which are present to some degree in all AEM instruments. The nature and magnitude of these artifacts can in some instances preclude the simple quantitative interpretation of the recorded x-ray emission spectrum using a thin-film electron excitation model; however, by judicious modifications to the instrument these complications can be effectively eliminated. The specific operating conditions of the microscope necessarily vary from one analysis to another depending on the type of specimen and experiment being performed. In general, however, the overall performance of the AEM system during x-ray analysis is optimized using the highest attainable incident electron energy; selecting the maximum probe diameter and probe current consistent with experimental limitations; and positioning the x-ray detector in a geometry such that it records information from the electron entrance surface of the specimen

  15. Scanning and transmission electron microscopy of a craniopharyngioma: x-ray microanalytical study of the intratumoral mineralized deposits

    Energy Technology Data Exchange (ETDEWEB)

    Vilches, J.; Lopez, A.; Martinez, M.C.; Gomez, J.; Barbera, J.

    This paper discusses the value of scanning electron microscopy (SEM) and x-ray microanalysis in the classification of craniopharyngiomas. This neoplasm shows epithelial nest, cords of cuboid cells, foci of squamous metaplasia, and microcystic degeneration. SEM reveals that the epithelial cysts are lined with elongated cells that possess numerous microvilli and blebs and that some cysts are lined with polyhedral cells. The microvilli are interpreted as characteristic of the fast growing craniopharyngiomas. A microanalytical study of the calcified areas reveals the presence of magnesium, phosphorus, and calcium.

  16. Microanalysis of old violin varnishes by total-reflection X-ray fluorescence

    Science.gov (United States)

    von Bohlen, Alex; Meyer, Friedrich

    1997-07-01

    Total reflection X-ray fluorescence was used to characterize elements (with Z>13) contained in varnishes applied by prominent violin makers during the last five centuries. Direct analyses of small flakes with masses varnish. Higher amounts of Fe, As and Pb were found in old products, Mn, Co, Cu, Zn and Pb were used in more recent varnishes.

  17. Oxidation states by X-ray fluorescence and electron probe microanalysis techniques

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Riveros, J.A.

    1987-01-01

    Many years ago, several studies showed the effect of a chemical state in X-ray spectra. The effect, however, has rarely been utilized in quantitative chemical analysis. The purpose of this work is to show observed shifts due to different chemical states in iron compounds. (Author) [es

  18. Application of X-ray microdiffraction in non-destructive microanalysis of colour layers and microtraces

    Czech Academy of Sciences Publication Activity Database

    Grünwaldová, Veronika; Kotrlý, M.; Bezdička, Petr; Kotulanová, Eva; Hradil, David

    2006-01-01

    Roč. 13, č. 3 (2006), s. 152-153 ISSN 1210-8529 R&D Projects: GA MV RN20052005001 Institutional research plan: CEZ:AV0Z40320502 Keywords : X-ray powder microdiffraction * pigments * colour layers of artworks Subject RIV: CA - Inorganic Chemistry

  19. A flexible and accurate quantification algorithm for electron probe X-ray microanalysis based on thin-film element yields

    International Nuclear Information System (INIS)

    Schalm, O.; Janssens, K.

    2003-01-01

    Quantitative analysis by means of electron probe X-ray microanalysis (EPXMA) of low Z materials such as silicate glasses can be hampered by the fact that ice or other contaminants build up on the Si(Li) detector beryllium window or (in the case of a windowless detector) on the Si(Li) crystal itself. These layers act as an additional absorber in front of the detector crystal, decreasing the detection efficiency at low energies (<5 keV). Since the layer thickness gradually changes with time, also the detector efficiency in the low energy region is not constant. Using the normal ZAF approach to quantification of EPXMA data is cumbersome in these conditions, because spectra from reference materials and from unknown samples must be acquired within a fairly short period of time in order to avoid the effect of the change in efficiency. To avoid this problem, an alternative approach to quantification of EPXMA data is proposed, following a philosophy often employed in quantitative analysis of X-ray fluorescence (XRF) and proton-induced X-ray emission (PIXE) data. This approach is based on the (experimental) determination of thin-film element yields, rather than starting from infinitely thick and single element calibration standards. These thin-film sensitivity coefficients can also be interpolated to allow quantification of elements for which no suitable standards are available. The change in detector efficiency can be monitored by collecting an X-ray spectrum of one multi-element glass standard. This information is used to adapt the previously determined thin-film sensitivity coefficients to the actual detector efficiency conditions valid on the day that the experiments were carried out. The main advantage of this method is that spectra collected from the standards and from the unknown samples should not be acquired within a short period of time. This new approach is evaluated for glass and metal matrices and is compared with a standard ZAF method

  20. PREFACE: 9th International Conference on X-Ray Microscopy

    Science.gov (United States)

    Quitmann, Christoph; David, Christian; Nolting, Frithjof; Pfeiffer, Franz; Stampanoni, Marco

    2009-09-01

    Conference logo This volume compiles the contributions to the International Conference on X-Ray Microscopy (XRM2008) held on 20-25 July 2008 in Zurich, Switzerland. The conference was the ninth in a series which started in Göttingen in 1984. Over the years the XRM conference series has served as a forum bringing together all relevant players working on the development of methods, building instrumentation, and applying x-ray microscopy to challenging issues in materials science, condensed matter research, environmental science and biology. XRM2008 was attended by about 300 participants who followed 44 oral presentations and presented 220 posters. Conference photograph Figure 1: Participants of the XRM2008 conference gathered in front of the main building of the ETH-Zurich. The conference showed that x-ray microscopy has become a mature field resting on three pillars. The first are workhorse instruments available even to non-specialist users. These exist at synchrotron sources world-wide as well as in laboratories. They allow the application of established microscopy methods to solve scientific projects in areas as diverse as soil science, the investigation of cometary dust particles, magnetic materials, and the analysis of ancient parchments. Examples of all of these projects can be found in this volume. These instruments have become so well understood that now they are also commercially available. The second pillar is the continued development of methods. Methods like stroboscopic imaging, wet cells or high and low temperature environments add versatility to the experiments. Methods like phase retrieval and ptychographic imaging allow the retrieval of information which hitero was thought to be inaccessible. The third pillar is the extension of such instruments and methods to new photon sources. With x-ray free electron lasers on the horizon the XRM community is working to transfer their know-how to these novel sources which will offer unprecedented brightness and

  1. Sodium lauryl sulfate enhances nickel penetration through guinea-pig skin. Studies with energy dispersive X-ray microanalysis

    International Nuclear Information System (INIS)

    Lindberg, M.; Sagstroem, S.R.; Roomans, G.M.; Forslind, B.

    1989-01-01

    The effect of sodium lauryl sulphate (SLS), a common ingredient of detergents, on the penetration of nickel through the stratum corneum in the guinea-pig skin model was studied with energy dispersive X-ray microanalysis (EDX) to evaluate the barrier-damaging properties of this common detergent. The EDX technique allows a simultaneous determination of physiologically important elements, e.g., Na, Mg, P, Cl, K, Ca and S in addition to Ni at each point of measurement in epidermal cell strata. Our results show that SLS reduces the barrier function to Ni-ion penetration of the stratum corneum. In addition we have shown that EDX allows analysis of the influence of different factors involved in nickel penetration through the skin by giving data on the physiological effects on the epidermal cells caused by the applied substances

  2. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, K.; Adams, F. [Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry; Rivers, M.L.; Jones, K.W. [Brookhaven National Lab., Upton, NY (United States)

    1992-10-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ({mu}-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  3. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, K.; Adams, F. (Universitaire Instelling Antwerpen, Antwerp (Belgium). Dept. of Chemistry); Rivers, M.L.; Jones, K.W. (Brookhaven National Lab., Upton, NY (United States))

    1992-01-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis ([mu]-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed.

  4. Synchrotron radiation induced x-ray micro analysis: A realistic alternative for electron- and ion beam microscopy?

    International Nuclear Information System (INIS)

    Janssens, K.; Adams, F.

    1992-01-01

    Synchrotron Radiation induced X-ray micro Fluorescence analysis (μ-SRXRF) is compared with more conventional microanalytical techniques such as Secondary Ion Microscopy (SIMS) and Electron Probe X-ray Microanalysis (EPXMA) for two typical microanalytical applications. SRXRF and EPXMA are employed for the analysis of individual particles, showing the complementary character of both techniques. By means of element mapping of trace constituents in a heterogeneous feldspar, the strong and weak points of SRXRF in comparison to EPXMA and SIMS are illustrated. The most striking difference between SRXRF and the other two microanalytical methods is the ability of SRXRF to probe deep into the investigated Material, whereas SIMS and EPXMA only investigate the upper surface of the material. The possibilities of SRXRF at third generation synchrotron rings is also briefly discussed

  5. Biological imaging by soft X-ray diffraction microscopy

    Science.gov (United States)

    Shapiro, David

    We have developed a microscope for soft x-ray diffraction imaging of dry or frozen hydrated biological specimens. This lensless imaging system does not suffer from the resolution or specimen thickness limitations that other short wavelength microscopes experience. The microscope, currently situated at beamline 9.0.1 of the Advanced Light Source, can collect diffraction data to 12 nm resolution with 750 eV photons and 17 nm resolution with 520 eV photons. The specimen can be rotated with a precision goniometer through an angle of 160 degrees allowing for the collection of nearly complete three-dimensional diffraction data. The microscope is fully computer controlled through a graphical user interface and a scripting language automates the collection of both two-dimensional and three-dimensional data. Diffraction data from a freeze-dried dwarf yeast cell, Saccharomyces cerevisiae carrying the CLN3-1 mutation, was collected to 12 run resolution from 8 specimen orientations spanning a total rotation of 8 degrees. The diffraction data was phased using the difference map algorithm and the reconstructions provide real space images of the cell to 30 nm resolution from each of the orientations. The agreement of the different reconstructions provides confidence in the recovered, and previously unknown, structure and indicates the three dimensionality of the cell. This work represents the first imaging of the natural complex refractive contrast from a whole unstained cell by the diffraction microscopy method and has achieved a resolution superior to lens based x-ray tomographic reconstructions of similar specimens. Studies of the effects of exposure to large radiation doses were also carried out. It was determined that the freeze-dried cell suffers from an initial collapse, which is followed by a uniform, but slow, shrinkage. This structural damage to the cell is not accompanied by a diminished ability to see small features in the specimen. Preliminary measurements on frozen

  6. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    Science.gov (United States)

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed.

  7. Studies of amyotrophic lateral sclerosis by neutron activation analysis and x-ray microanalysis

    International Nuclear Information System (INIS)

    Iwata, Shiro; Sasajima, Kazuhisa; Yase, Yoshio; Uebayashi, Yushiro; Yoshida, Sohei.

    1976-01-01

    As a mean to elucidate the cause of ALS, the neutron activation method was employed in the analysis of metals contained in environmental samples obtained from areas of high incidence of the disease and in CNS tissue samples of the ALS cases. The X-ray microanalytical method was used to detect the distribution of certain elements including Ca, Al and Mn in spinal cord tissue samples of ALS and control autopsied cases. The results of these studies indicated a possible participation of these metal elements in the microscopic calcification occuring in the degenerated areas of the CNS, and this calcifying mechanism was discussed. (auth.)

  8. Preparation of biological samples for transmission X-ray microanalysis: a review of alternative procedures to the use of sectioned material

    International Nuclear Information System (INIS)

    Sigee, D.C.

    1988-01-01

    Although transmission X-ray microanalysis of biological material has traditionally been carried out mainly on sectioned preparations, a number of alternative procedures exist. These are considered under three major headings - whole cell preparations, analysis of cell homogenates and biological fluids, and applications of the technique to microsamples of purified biochemicals. These three aspects provide a continuous range of investigative level - from the cellular to the molecular. The use of X-ray microanalysis with whole cell preparations is considered in reference to eukaryote (animal) cells and prokaryotes - where it has particular potential in environmental studies on bacteria. In the case of cell homogenates and biological fluids, the technique has been used mainly with microdroplets of animal material. The use of X-ray microanalysis with purified biochemicals is considered in relation to both particulate and non-particulate samples. In the latter category, the application of this technique for analysis of thin films of metalloprotein is particularly emphasised. It is concluded that wider use could be made of the range of preparative techniques available - both within a particular investigation, and in diverse fields of study. Transmission X-ray microanalysis has implications for environmental, physiological and molecular biology as well as cell biology

  9. Contact microscopy with a soft x-ray laser

    International Nuclear Information System (INIS)

    DiCicco, D.S.; Kim, D.; Rosser, R.J.; Skinner, C.H.; Suckewer, S.; Gupta, A.P.; Hirschberg, J.G.

    1989-03-01

    A soft x-ray laser of output energy 1-3 mJ at 19.2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. We also present a Composite Optical X- ray Laser Microscope ''COXRALM'' of novel design. 14 refs., 8 figs., 1 tab

  10. Quantitative microanalysis in the analytical electronmicroscope using an HPGe-x ray detector

    International Nuclear Information System (INIS)

    Grogger, W.

    1994-01-01

    Energy dispersive x-ray spectrometry (EDX) is a routine method for determining the chemical composition of a sample in the analytical electronmicroscope. Since some years high purity germanium x-ray detectors (HPGe) are commercially available for use in EDX. This new type of detector offers some advantages over the commonly used Si (Li) detector: better energy resolution, better detector efficiency for high energy lines (> 30 keV) and better stability against exterior influences. For quantitative analysis one needs sensitivity factors (k-factors), which correlate the measured intensity to the concentration of a specific element. These k-factors can be calculated or determined experimentally. For a precise quantitative analysis of light elements measured k-factors are absolutely necessary. In this study k-factors were measured with an HPGe detector using standards. The accuracy of the k-factors was proved using some examples of practical relevance. Additionally some special features of the HPGe detector were examined, which lead to a better understanding of EDX spectrometry using an HPGe detector (escape lines, icing of the detector, artifacts). (author)

  11. Electron channeling X-ray microanalysis for cation configuration in irradiate magnesium alimate spinel

    International Nuclear Information System (INIS)

    Matsumura, S.; Soeda, T.; Zaluzec, N. J.; Kinoshita, C.

    1999-01-01

    High angular resolution electron channeling X-ray spectroscopy (HARECXS) was examined as a practical tool to locate lattice-ions in spinel crystals. The orientation dependent intensity distribution of emitted X-rays obtained by HARECXS is so sensitive to lattice-ion configuration in the illuminated areas that the occupation probabilities on specific positions in the crystal lattice can be determined accurately through comparison with the theoretical rocking curves. HARECXS measurements have revealed partially disordered cation arrangement in MgO·nAl 2 O 3 with n = 1.0 and 2.4. Most Al 3+ lattice-ions occupy the octahedral (VIII) sites, while Mg 2 lattice-ions reside on both the tetrahedral (IV) and the octahedral (VIII) sites. The structural vacancies are enriched in the IV-sites. Further evacuation of cations from the IV-sites to the VIII-sites is recognized in a disordering process induced by irradiation with 1 MeV Ne + ions up to 8.9 dpa at 870 K

  12. Microbial biofilm study by synchrotron X-ray microscopy

    International Nuclear Information System (INIS)

    Pennafirme, S.; Lima, I.; Bitencourt, J.A.; Crapez, M.A.C.; Lopes, R.T.

    2015-01-01

    Microbial biofilm has already being used to remove metals and other pollutants from wastewater. In this sense, our proposal was to isolate and cultivate bacteria consortia from mangrove’s sediment resistant to Zn (II) and Cu (II) at 50 mg L −1 and to observe, through synchrotron X-ray fluorescence microscopy (microXRF), whether the biofilm sequestered the metal. The biofilm area analyzed was 1 mm 2 and a 2D map was generated (pixel size 20×20 μm 2 , counting time 5 s/point). The biofilm formation and retention followed the sequence Zn>Cu. Bacterial consortium zinc resistant formed dense biofilm and retained 63.83% of zinc, while the bacterial consortium copper resistant retained 3.21% of copper, with lower biofilm formation. Dehydrogenase activity of Zn resistant bacterial consortium was not negatively affect by 50 mg ml −1 zinc input, whereas copper resistant bacterial consortium showed a significant decrease on dehydrogenase activity (50 mg mL −1 of Cu input). In conclusion, biofilm may protect bacterial cells, acting as barrier against metal toxicity. The bacterial consortia Zn resistant, composed by Nitratireductor spp. and Pseudomonas spp formed dense biofilm and sequestered metal from water, decreasing the metal bioavailability. These bacterial consortia can be used in bioreactors and in bioremediation programs. - Highlights: • We studied bacterial bioremediation by microXRF. • Dense biofilm may act sequestering metal while protecting bacterial metabolism. • Nitratireductor spp. and Pseudomonas spp decreased seawater metal bioavailability. • Bacterial consortia from polluted areas may be used in bioremediation programs.

  13. Final Report on Small Particle Speciation for Forensics Analysis by Soft X-ray Scanning Transmission X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pacold, J. I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Altman, A. B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Donald, S B [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dai, Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Davisson, M. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holliday, K S [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Knight, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kristo, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Minasian, S. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nelson, A J [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tyliszczak, T [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Booth, C. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shuh, D. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-30

    Materials of interest for nuclear forensic science are often highly heterogeneous, containing complex mixtures of actinide compounds in a wide variety of matrices. Scanning transmission X-ray microscopy (STXM) is ideally suited to study such materials, as it can be used to chemically image specimens by acquiring X-ray absorption near-edge spectroscopy (XANES) data with 25 nm spatial resolution. In particular, STXM in the soft X-ray synchrotron radiation regime (approximately 120 – 2000 eV) can collect spectroscopic information from the actinides and light elements in a single experiment. Thus, STXM combines the chemical sensitivity of X-ray absorption spectroscopy with high spatial resolution in a single non-destructive characterization method. This report describes the application of STXM to a broad range of nuclear materials. Where possible, the spectroscopic images obtained by STXM are compared with information derived from other analytical methods, and used to make inferences about the process history of each material. STXM measurements can yield information including the morphology of a sample, “elemental maps” showing the spatial distribution of major chemical constituents, and XANES spectra from localized regions of a sample, which may show spatial variations in chemical composition.

  14. Quantitative microanalysis of hafnium - zirconium system by X-ray fluorescence

    International Nuclear Information System (INIS)

    Majid, C.A.; Hussain, M.A.; Saeed, K.

    1986-01-01

    X-ray fluorescence technique has been used for the analysis of Hf in the presence of Zr by developing a method. In this method the spectral interference of Hf lines by Zr is eliminated completely and the Hf detection is accomplished using the most efficient Li line of its L-series. The principle of the method is based on the extinction properties of crystals for some orders of reflection. Ge(III) is used as the analyzing crystal. This method can be used accurately to detect Hf in any concentration of Zr at least from about 20 ppm to 100%. Also no information about the expected range of the analyte sample, is required in advance. (authors)

  15. Histochemical applications of x-ray microanalysis: the simultaneous assessment of mitosis and cell death

    International Nuclear Information System (INIS)

    Bowen, I.D.; Lewis, G.H.

    1980-01-01

    The principles of x-ray microanalytical histochemistry are reviewed. The use of labelling and precipitation techniques are examined, and particular attention is paid to the localization of enzymatic activity. A new method is described for the simultaneous assessment of mitosis as represented by the incorporation of ( 3 H) thymidine, and cell death as represented by the localization of free acid phosphatase, in the same tissue section. The thymidine incorporation is demonstrated by the appearance of topographically and microanalytically detectable silver grains in an overlying emulsion and the cell lysis associated acid phosphatase activity is detected optically and microanalytically by means of a bromine-rich azo dye deposited as a result of coupling naphthol AS BI, enzymatically released from naphthyl AS BI phosphoric acid, with diazotized 2,5-dibromoaniline

  16. Synchrotron radiation X-ray tomographic microscopy (SRXTM) of brachiopod shell interiors for taxonomy: Preliminary report

    OpenAIRE

    Motchurova-Dekova Neda; Harper David A.T.

    2010-01-01

    Synchrotron radiation X-ray tomographic microscopy (SRXTM) is a non-destructive technique for the investigation and visualization of the internal features of solid opaque objects, which allows reconstruction of a complete three-dimensional image of internal structures by recording of the differences in the effects on the passage of waves of energy reacting with those structures. Contrary to X-rays, produced in a conventional X-ray tube, the intense synchrot...

  17. X-ray microanalysis of chloride in nails from cystic fibrosis and control patients

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, A.L.; Fegley, B.; Cho, C.T. (Department of Anatomy, KUMC Electron Microscopy Research Center, and Department of Pediatrics, University of Kansas Medical Center, USA)

    1984-01-01

    Nail clippings from 60 individuals were examined. There were 34 ''old'' (>16 years) controls, 16 ''young'' controls and 10 CF patients. In regard to elements found, Si and Al were considered as exogenous contamination. Other elements examined were variable in both control and CF. Examination of the Cl levels among the 3 groups showed a highly significant difference between the mean Cl integral values of the young controls (619 integral) and the CF patients (2956 integral) The results of the older control population ranged from 0-905 integral with a mean of 269 integral. We found no age or sex difference in the amount of Cl or any other element from either the CF or control population. Results show that the x-ray energy dispersive system (EDS) is very useful in studying the Cl in nails. We found that examination of nails frozen in liquid nitrogen followed by fracturing without prior washing was the preferred method. Although the results of this study clearly show statistically the value of EDS analysis of Cl in the diagnosis of CF, we must await further study of a larger group of patients to determine its usefulness in evaluating individual patients, particularly newborns.

  18. Ultrastructural localization of uranium biosorption in Penicillium digitatum by stem x-ray microanalysis

    International Nuclear Information System (INIS)

    Galun, M.; Galun, E.

    1987-01-01

    When Penicillium digitatum Saccardo cultures are exposed to aqueous solutions containing soluble uranium salts, considerable amounts of this element are accumulated in the fungal mycelium. The accumulated uranium is retained after thorough rinsing with distilled water but is removed by alkali carbonate solutions. Analysis of thick sections (0.5 μm) of the fungal hyphae with TEM, after incubation in UO 2 Cl 2 solutions of varying concentrations under both light and dark conditions, revealed conspicuous crystal-like deposits in UO 2 Cl 2 -exposed hyphae, but none in the control hyphae. Thick sections were necessary for crystal visualization. Using energy-dispersive X-ray analysis, uranium was detected as the only heavy element in these crystals. Uranium crystal biosorption was localized on the outside surface of the hyphal cell wall (following short exposures to relatively low uranium concentrations) or inside the cell wall (following long exposure to relatively high uranium concentrations). In some cases, crystal-like deposits of uranium salts were located on the outside surface as well as inside the cell. (author)

  19. SYNCHROTRON X-RAY MICROTOMOGRAPHY, ELECTRON PROBE MICROANALYSIS, AND NMR OF TOLUENE WASTE IN CEMENT

    International Nuclear Information System (INIS)

    Butler, L.G.

    1999-01-01

    Synchrotron X-ray microtomography shows vesicular structures for toluene/cement mixtures, prepared with 1.22 to 3.58 wt% toluene. Three-dimensional imaging of the cured samples shows spherical vesicles, with diameters ranging from 20 to 250 microm; a search with EPMA for vesicles in the range of 1-20 microm proved negative. However, the total vesicle volume, as computed from the microtomography images, accounts for less than 10% of initial toluene. Since the cements were cured in sealed bottles, the larger portion of toluene must be dispersed within the cement matrix. Evidence for toluene in the cement matrix comes from 29 Si MAS NMR spectroscopy, which shows a reduction in chain silicates with added toluene. Also, 2 H NMR of d 8 -toluene/cement samples shows high mobility for all, toluene and thus no toluene/cement binding. A model that accounts for all observations follows: For loadings below about 3 wt%, most toluene is dispersed in the cement matrix, with a small fraction of the initial toluene phase separating from the cement paste and forming vesicular structures that are preserved in the cured cement. Furthermore, at loadings above 3 wt%, the abundance of vesicles formed during toluene/cement paste mixing leads to macroscopic phase separation (most toluene floats to the surface of the cement paste)

  20. Evolutionary developments in x ray and electron energy loss microanalysis instrumentation for the analytical electron microscope

    Science.gov (United States)

    Zaluzec, Nester J.

    Developments in instrumentation for both X ray Dispersive and Electron Energy Loss Spectroscopy (XEDS/EELS) over the last ten years have given the experimentalist a greatly enhanced set of analytical tools for characterization. Microanalysts have waited for nearly two decades now in the hope of getting a true analytical microscope and the development of 300 to 400 kV instruments should have allowed us to attain this goal. Unfortunately, this has not generally been the case. While there have been some major improvements in the techniques, there has also been some devolution in the modern AEM (Analytical Electron Microscope). In XEDS, the majority of today's instruments are still plagued by the hole count effect, which was first described in detail over fifteen years ago. The magnitude of this problem can still reach the 20 percent level for medium atomic number species in a conventional off-the-shelf intermediate voltage AEM. This is an absurd situation and the manufacturers should be severely criticized. Part of the blame, however, also rests on the AEM community for not having come up with a universally agreed upon standard test procedure. Fortunately, such a test procedure is in the early stages of refinement. The proposed test specimen consists of an evaporated Cr film approx. 500 to 1000A thick supported upon a 3mm diameter Molybdenum 200 micron aperture.

  1. Progress and prospects in soft x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Howells, M.R.; Jacobsen, C.; Kirz, J.; McQuaid, K.; Rothman, S.S.

    1987-12-01

    We report some of the latest developments in x-ray holography experiments and make some speculations about the limits of performance of the approaches currently in use. We also make some suggestions about where the technique can (and cannot) go in the future. 32 refs., 5 figs., 1 tab

  2. Soft X-ray contact microscopy of nematode Caenorhabditis elegans

    Czech Academy of Sciences Publication Activity Database

    Poletti, G.; Orsini, F.; Batani, D.; Bernadinello, A.; Desai, T.; Ullschmied, Jiří; Skála, Jiří; Králiková, Božena; Krouský, Eduard; Juha, Libor; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomáš; Präg R., Ansgar; Renner, Oldřich; Cotelli, F.; Lamia, C. L.; Zullini, A.

    2004-01-01

    Roč. 30, č. 2 (2004), s. 235-241 ISSN 1434-6060 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z2043910 Keywords : soft X-ray Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.692, year: 2004

  3. Atomic force microscopy employed as the final imaging stage for soft x-ray contact microscopy

    International Nuclear Information System (INIS)

    Cotton, R.A.; Stead, A.D.; Ford, T.W.; Fletcher, J.H.

    1993-01-01

    Soft X-ray contact microscopy (SXCM) enables a high resolution image of a living biological specimen to be recorded in an X-ray sensitive photoresist at unity magnification. Until recently scanning electron microscopes (SEM) have been employed to obtain the final magnified image. Although this has been successful in producing many high resolution images, this method of viewing the resist has several disadvantages. Firstly, a metallic coating has to be applied to the resist surface to provide electrical conductivity, rendering further development of the resist impossible. Also, electron beam damage to the resist surface can occur, in addition to poor resolution and image quality. Atomic force microscopy (AFM) allows uncoated resists to be imaged at a superior resolution, without damage to the surface. The use of AFM is seen as a major advancement in SXCM. The advantages and disadvantages of the two technologies are discussed, with illustrations from recent studies of a wide variety of hydrated biological specimens imaged using SXCM

  4. X-ray microscopy resource center at the Advanced Light Source

    International Nuclear Information System (INIS)

    Meyer-Ilse, W.; Koike, M.; Beguiristain, R.; Maser, J.; Attwood, D.

    1992-07-01

    An x-ray microscopy resource center for biological x-ray imaging vvill be built at the Advanced Light Source (ALS) in Berkeley. The unique high brightness of the ALS allows short exposure times and high image quality. Two microscopes, an x-ray microscope (XM) and a scanning x-ray microscope (SXM) are planned. These microscopes serve complementary needs. The XM gives images in parallel at comparable short exposure times, and the SXM is optimized for low radiation doses applied to the sample. The microscopes extend visible light microscopy towards significantly higher resolution and permit images of objects in an aqueous medium. High resolution is accomplished by the use of Fresnel zone plates. Design considerations to serve the needs of biological x-ray microscopy are given. Also the preliminary design of the microscopes is presented. Multiple wavelength and multiple view images will provide elemental contrast and some degree of 3D information

  5. A simple methodology for obtaining X-ray color images in scanning electron microscopy

    International Nuclear Information System (INIS)

    Veiga, M.M. da; Pietroluongo, L.R.V.

    1985-01-01

    A simple methodology for obtaining at least 3 elements X-ray images in only one photography is described. The fluorescent X-ray image is obtained from scanning electron microscopy with energy dispersion analysis system. The change of detector analytic channels, color cellophane foils and color films are used sequentially. (M.C.K.) [pt

  6. Scanning tunneling microscopy studies of thin foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Besenbacher, Flemming; Garnaes, Jorgen

    1990-01-01

    In this paper scanning tunneling microscopy (STM) measurements of x-ray mirrors are presented. The x-ray mirrors are 0.3 mm thick dip-lacquered aluminum foils coated with gold by evaporation, as well as state-of-the-art polished surfaces coated with gold, platinum, or iridium. The measurements...

  7. Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment

    NARCIS (Netherlands)

    Mom, R.V.; Onderwaater, W.G.; Rost, M.J.; Jankowski, M.; Wenzel, S.; Jacobse, L.; Alkemade, P.F.A.; Vandalon, V.; van Spronsen, M.A.; van Weeren, M.; Crama, B.; van der Tuijn, P.; Felici, R.; Kessels, W.M.M.; Carlà, F.; Frenken, J.W.M.; Groot, I.M.N.

    2017-01-01

    A combined X-ray and scanning tunneling microscopy (STM) instrument is presented that enables the local detection of X-ray absorption on surfaces in a gas environment. To suppress the collection of ion currents generated in the gas phase, coaxially shielded STM tips were used. The conductive outer

  8. X-ray magnetic microscopy for correlations between magnetic domains and crystal structure

    International Nuclear Information System (INIS)

    Denbeaux, G.; Anderson, E.; Bates, B.; Chao, W.; Liddle, J.A.; Harteneck, B.; Pearson, A.; Salmassi, F.; Schneider, G.; Fischer, P.; Eimuller, T.; Taylor, S.; Chang, H.; Kusinski, G.J.

    2002-01-01

    Accurately determining the resolution of x-ray microscopes has been a challenge because good test patterns for x-ray microscopy have been hard to make. We report on a sputter-deposited multilayer imaged in cross section as a test pattern with small features and high aspect ratios. One application of high-resolution imaging is magnetic materials. Off-axis bend magnet radiation is known to have a component of circular polarization which can be used for x-ray magnetic circular dichroism. We calculate the integrated circular polarization collected by the illumination optics in the XM-1 full-field x-ray microscope. (authors)

  9. Bulk specimen X-ray microanalysis of freeze-fractured, freeze-dried tissues in gerontological research

    International Nuclear Information System (INIS)

    Nagy, I.

    1988-01-01

    The rationale for choosing the freeze-fracture freeze-drying (FFFD) method of biological bulk specimen preparation as well as the theoretical and practical problems of this method are treated. FFFD specimens are suitable for quantitative X-ray microanalysis of biologically relevant elements. Although the spatial resolution of this analytical technique is low, the application of properly selected bulk standard crystals as well as the measurement of the intracellular water and dry mass content by means of another method developed in the same laboratory, allow us to obtain useful information about the age-dependent changes of ionic composition in the main intracellular compartments. The paper summarizes the problems with regard to specimen preparation, beam penetration and the quantitative analysis of FFFD specimens. The method has been applied so far mainly for the analysis of intranuclear and intracytoplasmic concentrations of Na, C1 and K in various types of cells and has resulted in a significant contribution to our understanding of the cellular mechanisms of aging. 84 references

  10. Composition of nasal airway surface liquid in cystic fibrosis and other airway diseases determined by X-ray microanalysis.

    Science.gov (United States)

    Vanthanouvong, V; Kozlova, I; Johannesson, M; Nääs, E; Nordvall, S L; Dragomir, A; Roomans, G M

    2006-04-01

    The ionic composition of the airway surface liquid (ASL) in healthy individuals and in patients with cystic fibrosis (CF) has been debated. Ion transport properties of the upper airway epithelium are similar to those of the lower airways and it is easier to collect nasal ASL from the nose. ASL was collected with ion exchange beads, and the elemental composition of nasal fluid was determined by X-ray microanalysis in healthy subjects, CF patients, CF heterozygotes, patients with rhinitis, and with primary ciliary dyskinesia (PCD). In healthy subjects, the ionic concentrations were approximately isotonic. In CF patients, CF heterozygotes, rhinitis, and PCD patients, [Na] and [Cl] were significantly higher compared when compared with those in controls. [K] was significantly higher in CF and PCD patients compared with that in controls. Severely affected CF patients had higher ionic concentrations in their nasal ASL than in patients with mild or moderate symptoms. Female CF patients had higher levels of Na, Cl, and K than male patients. As higher salt concentrations in the ASL are also found in other patients with airway diseases involving chronic inflammation, it appears likely that inflammation-induced epithelial damage is important in determining the ionic composition of the ASL. Copyright (c) 2006 Wiley-Liss, Inc.

  11. Ultrastructural localization of lead in Stigeoclonium tenue (chlorophyceae, ulotrichales) as demonstrated by cytochemical and x-ray microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Silverberg, B A

    1975-12-01

    Results of ultrastructural studies and TEM-X-ray microanalysis of the ulotrichalean alga Stigeoclonium tenue experimentally exposed to increasing concentrations of lead nitrate are presented. A fine-structural examination of the cells revealed that detectable amounts of lead (Pb) had entered the cytoplasm and could be recognized most easily as electron-dense precipitates localized on the cell wall and within the two large peripheral vacuoles. Dense deposits were never observed in mitochondria, plastids or nuclei. Pinocytotic vacuoles containing lead spheroids are removed endocytotically to the cytoplasmic vacuoles, rendering the Pb innocuous. The evidence suggests that the cell wall and vacuoles are important structures in maintaining a relatively low cytoplasmic concentration of lead, thereby reducing the toxic effects of lead ions on sensitive cellular functions. At high concentrations, ranging from 0.15 to 0.5 mg Pb/l, noticeable alterations in the fine structure of the chloroplast are evident. A method is described for the visualization of Pb deposits in fresh, chemically fixed and plastic-embedded material using a saturated solution of sodium rhodizonate.

  12. Transmission X-ray microscopy for full-field nano-imaging of biomaterials

    Science.gov (United States)

    ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO

    2010-01-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414

  13. Transmission X-ray microscopy for full-field nano imaging of biomaterials.

    Science.gov (United States)

    Andrews, Joy C; Meirer, Florian; Liu, Yijin; Mester, Zoltan; Pianetta, Piero

    2011-07-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure imaging. These techniques are discussed and compared in light of results from the imaging of biological materials including microorganisms, bone and mineralized tissue, and plants, with a focus on hard X-ray TXM at ≤ 40-nm resolution. Copyright © 2010 Wiley-Liss, Inc.

  14. Application of X-ray synchrotron microscopy instrumentation in biology

    International Nuclear Information System (INIS)

    Gasperini, F. M.; Pereira, G. R.; Granjeiro, J. M.; Calasans-Maia, M. D.; Rossi, A. M.; Perez, C. A.; Lopes, R. T.; Lima, I.

    2011-01-01

    X-ray micro-fluorescence imaging technique has been used as a significant tool in order to investigate minerals contents in some kinds of materials. The aim of this study was to evaluate the elemental distribution of calcium and zinc in bone substitute materials (nano-hydroxyapatite spheres) and cortical bones through X-Ray Micro-fluorescence analysis with the increment of Synchrotron Radiation in order to evaluate the characteristics of the newly formed bone and its interface, the preexisting bone and biomaterials by the arrangement of collagen fibers and its birefringence. The elemental mapping was carried out at Brazilian Synchrotron Light Laboratory, Campinas - Sao Paulo, Brazil working at D09-XRF beam line. Based on this study, the results suggest that hydroxyapatite-based biomaterials are biocompatible, promote osteo-conduction and favored bone repair. (authors)

  15. Bulk sensitive hard x-ray photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Weber, N.; Escher, M.; Merkel, M. [Focus GmbH, Neukirchner Str. 2, D-65510 Hünstetten (Germany); Gloskovskii, A.; Drube, W. [DESY Photon Science, Deutsches Elektronen-Synchrotron, D-22603 Hamburg (Germany); Schneider, C. M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-11-15

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. The high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.

  16. Monte Carlo simulation of the electron and X-ray depth distribution for quantitative electron probe microanalysis of PWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Electron probe microanalysis requires several corrections to quantify an element of a specimen. The X-rays produced by the primary beam are created at some depth in the specimen. This distribution is usually represented as the function {Phi}(pz), and it is possible to calculate the correction factors for atomic number and absorption effects. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to quantify some elements of the PWR spent fuel with 50 GWd/tU of burnup and 2 years of cooling time

  17. Monte Carlo simulation of the electron and X-ray depth distribution for quantitative electron probe microanalysis of PWR spent fuels

    International Nuclear Information System (INIS)

    Kwon, Hyoung Mun; Lee, Hyung Kwon; Son, Young Zoon; Chun, Yong Bum

    2011-01-01

    Electron probe microanalysis requires several corrections to quantify an element of a specimen. The X-rays produced by the primary beam are created at some depth in the specimen. This distribution is usually represented as the function Φ(pz), and it is possible to calculate the correction factors for atomic number and absorption effects. The electron and X-ray depth distributions for a quantitative electron probe micro analysis were simulated by the CASINO Monte Carlo program to quantify some elements of the PWR spent fuel with 50 GWd/tU of burnup and 2 years of cooling time

  18. Hard X-ray Microscopy with Elemental, Chemical and Structural Contrast

    International Nuclear Information System (INIS)

    Schroer, C.G.; Boye, P.; Feldkamp, J.P.

    2010-01-01

    We review hard X-ray microscopy techniques with a focus on scanning microscopy with synchrotron radiation. Its strength compared to other microscopies is the large penetration depth of hard x rays in matter that allows one to investigate the interior of an object without destructive sample preparation. In combination with tomography, local information from inside of a specimen can be obtained, even from inside special non-ambient sample environments. Different X-ray analytical techniques can be used to produce contrast, such as X-ray absorption, fluorescence, and diffraction, to yield chemical, elemental, and structural information about the sample, respectively. This makes X-ray microscopy attractive to many fields of science, ranging from physics and chemistry to materials, geo-, and environmental science, biomedicine, and nanotechnology. Our scanning microscope based on nanofocusing refractive X-ray lenses has a routine spatial resolution of about 100 nm and supports the contrast mechanisms mentioned above. In combination with coherent X-ray diffraction imaging, the spatial resolution can be improved to the 10 nm range. The current state-of-the-art of this technique is illustrated by several examples, and future prospects of the technique are given. (author)

  19. Multiscale 3D characterization with dark-field x-ray microscopy

    DEFF Research Database (Denmark)

    Simons, Hugh; Jakobsen, Anders Clemen; Ahl, Sonja Rosenlund

    2016-01-01

    Dark-field x-ray microscopy is a new way to three-dimensionally map lattice strain and orientation in crystalline matter. It is analogous to dark-field electron microscopy in that an objective lens magnifies diffracting features of the sample; however, the use of high-energy synchrotron x-rays me......, multiscale phenomena in situ is a key step toward formulating and validating multiscale models that account for the entire heterogeneity of materials....

  20. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hao, E-mail: hc000211@ohio.edu [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Kersell, Heath; Hla, Saw-Wai [Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rose, Volker, E-mail: vrose@anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2016-01-28

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  1. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    Science.gov (United States)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-06-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions.

  2. Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries

    Science.gov (United States)

    Pietsch, Patrick; Hess, Michael; Ludwig, Wolfgang; Eller, Jens; Wood, Vanessa

    2016-01-01

    We present an operando study of a lithium ion battery combining scanning X-ray diffraction (SXRD) and synchrotron radiation X-ray tomographic microscopy (SRXTM) simultaneously for the first time. This combination of techniques facilitates the investigation of dynamic processes in lithium ion batteries containing amorphous and/or weakly attenuating active materials. While amorphous materials pose a challenge for diffraction techniques, weakly attenuating material systems pose a challenge for attenuation-contrast tomography. Furthermore, combining SXRD and SRXTM can be used to correlate processes occurring at the atomic level in the crystal lattices of the active materials with those at the scale of electrode microstructure. To demonstrate the benefits of this approach, we investigate a silicon powder electrode in lithium metal half-cell configuration. Combining SXRD and SRXTM, we are able to (i) quantify the dissolution of the metallic lithium electrode and the expansion of the silicon electrode, (ii) better understand the formation of the Li15Si4 phase, and (iii) non-invasively probe kinetic limitations within the silicon electrode. A simple model based on the 1D diffusion equation allows us to qualitatively understand the observed kinetics and demonstrates why high-capacity electrodes are more prone to inhomogeneous lithiation reactions. PMID:27324109

  3. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    International Nuclear Information System (INIS)

    Stead, A.D.; Ford, T.W.; Page, A.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called open-quotes water windowclose quotes area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition

  4. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stead, A.D.; Ford, T.W.; Page, A.M. [Univ. of London (United Kingdom); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examined the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.

  5. The X-ray microscopy beamline UE46-PGM2 at BESSY

    International Nuclear Information System (INIS)

    Follath, R.; Schmidt, J. S.; Weigand, M.; Fauth, K.

    2010-01-01

    The Max Planck Institute for Metal Physics in Stuttgart and the Helmholtz Center Berlin operate a soft X-ray microscopy beamline at the storage ring BESSY II. A collimated PGM serves as monochromator for a scanning X-ray microscope and a full field X-ray microscope at the helical undulator UE46. The selection between both instruments is accomplished via two switchable focusing mirrors. The scanning microscope (SM) is based on the ALS STXM microscope and fabricated by the ACCEL company. The full field microscope (FFM) is currently in operation at the U41-SGM beamline and will be relocated to its final location this year.

  6. X-ray holographic microscopy experiments at the Brookhaven synchrotron light source

    International Nuclear Information System (INIS)

    Howells, M.R.; Iarocci, M.; Kenney, J.; Kirz, J.; Rarback, H.

    1983-01-01

    Soft x-ray holographic microscopy is discussed from an experimental point of view. Three series of measurements have been carried out using the Brookhaven 750 MeV storage ring as an x-ray source. Young slits fringes, Gabor (in line) holograms and various data pertaining to the soft x-ray performance of photographic plates are reported. The measurements are discussed in terms of the technique for recording them and the experimental limitations in effect. Some discussion is also given of the issues involved in reconstruction using visible light

  7. Evaluation of In-Vacuum Imaging Plate Detector for X-Ray Diffraction Microscopy

    International Nuclear Information System (INIS)

    Nishino, Yoshinori; Takahashi, Yukio; Yamamoto, Masaki; Ishikawa, Tetsuya

    2007-01-01

    We performed evaluation tests of a newly developed in-vacuum imaging plate (IP) detector for x-ray diffraction microscopy. IP detectors have advantages over direct x-ray detection charge-coupled device (CCD) detectors, which have been commonly used in x-ray diffraction microscopy experiments, in the capabilities for a high photon count and for a wide area. The detector system contains two IPs to make measurement efficient by recording data with the one while reading or erasing the other. We compared speckled diffraction patterns of single particles taken with the IP and a direct x-ray detection CCD. The IP was inferior to the CCD in spatial resolution and in signal-to-noise ratio at a low photon count

  8. The X-Ray Microscopy And Micro-Spectroscopy Facility At The ESRF

    International Nuclear Information System (INIS)

    Susini, J.; Somogyi, A.; Barrett, R.; Salome, M.; Bohic, S.; Fayard, B.; Eichert, D.; Dhez, O.; Bleuet, P.; Martinez-Criado, G.; Tucoulou, R.

    2004-01-01

    Among the 40 beamlines in operation at the European Synchrotron Radiation Facility, three beamlines are fully dedicated to X-ray microscopy and micro-spectroscopy techniques in the multi-keV range. Offering a unique combination of non destructive analytical techniques which aim to satisfy the growing demand from experimental research fields such as medicine, geology, archaeology, earth, planetary and environmental sciences. Following a brief discussion on the strengths and weaknesses of X-ray microscopy and spectro-microscopy techniques in the 1-20keV range, characteristics of the beamlines are briefly described. Examples of applications are given in the reference list

  9. X-ray microscopy with high resolution zone plates -- Recent developments

    International Nuclear Information System (INIS)

    Schneider, G.; Wilhein, T.; Niemann, B.; Guttmann, P.

    1995-01-01

    In order to expand the applications of X-ray microscopy, developments in the fields of zone plate technology, specimen preparation and imaging techniques have been made. A new cross-linked polymer chain electron beam resist allows to record zone plate pattern down to 19 nm outermost zone width. High resolution zone plates in germanium with outermost zone widths down to 19 nm have been developed. In addition, phase zone plates in nickel down to 30 nm zone width have been made by electroplating. In order to enhance the image contrast for weak absorbing objects, the phase contrast method for X-ray microscopy was developed and implemented on the Goettingen X-ray microscope at BESSY. The effects of X-ray absorption on the structure of biological specimen limits the maximum applicable radiation dose and therefore the achievable signal to noise ratio for an artifact-free X-ray image. To improve the stability especially of biological specimen, a cryogenic object chamber has been developed and tested. It turns out that at the operating temperature T ≤ 130 K unfixed biological specimen can be exposed to a radiation dose of 10 9 --10 10 Gy without any observable structural changes. A multiple-angle viewing stage allows to take stereoscopic images with the X-ray microscope, giving a 3D-impression of the object

  10. Electromigration in integrated circuit interconnects studied by X-ray microscopy

    CERN Document Server

    Schneider, G; Anderson, E; Bates, W; Salmassi, F; Nachimuthu, P; Pearson, A; Richardson, D; Hambach, D; Hoffmann, N; Hasse, W; Hoffmann, K

    2003-01-01

    To study mass transport phenomena in advanced microelectronic devices with X-rays requires penetration of dielectric and Si layers up to 30 mu m thick. X-ray imaging at 1.8 keV photon energy provides a high amplitude contrast between Cu or Al interconnects and dielectric layers and can penetrate through the required thickness. To perform X-ray microscopy at 1.8 keV, a new Ru/Si multilayer was designed for the transmission X-ray microscope XM-1 installed at the Advanced Light Source in Berkeley. The mass flow in a passivated Cu interconnect was studied at current densities up to 10 sup 7 A/cm sup 2. In addition, we demonstrated the high material contrast from different elements in integrated circuits with a resolution of about 40 nm.

  11. Electromigration in integrated circuit interconnects studied by X-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, G. E-mail: gschnei1@gwdg.de; Denbeaux, G.; Anderson, E.; Bates, W.; Salmassi, F.; Nachimuthu, P.; Pearson, A.; Richardson, D.; Hambach, D.; Hoffmann, N.; Hasse, W.; Hoffmann, K

    2003-01-01

    To study mass transport phenomena in advanced microelectronic devices with X-rays requires penetration of dielectric and Si layers up to 30 {mu}m thick. X-ray imaging at 1.8 keV photon energy provides a high amplitude contrast between Cu or Al interconnects and dielectric layers and can penetrate through the required thickness. To perform X-ray microscopy at 1.8 keV, a new Ru/Si multilayer was designed for the transmission X-ray microscope XM-1 installed at the Advanced Light Source in Berkeley. The mass flow in a passivated Cu interconnect was studied at current densities up to 10{sup 7} A/cm{sup 2}. In addition, we demonstrated the high material contrast from different elements in integrated circuits with a resolution of about 40 nm.

  12. Laboratory source based full-field x-ray microscopy at 9 keV

    Energy Technology Data Exchange (ETDEWEB)

    Fella, C.; Balles, A.; Wiest, W. [Lehrstuhl für Röntgenmikroskopie, Julius-Maximilians-Universität, 97074 Würzburg (Germany); Zabler, S.; Hanke, R. [Lehrstuhl für Röntgenmikroskopie, Julius-Maximilians-Universität, 97074 Würzburg (Germany); Fraunhofer Development Center X-Ray Technology (EZRT), Flugplatzstrasse 75, 90768 Fürth (Germany)

    2016-01-28

    In the past decade, hard x-ray transmission microscopy experienced tremendous developments. With the avail-ability of efficient Fresnel zone plates, even set-ups utilizing laboratory sources were developed [1]. In order to improve the performance of these x-ray microscopes, novel approaches to fabricate optical elements [2] and brighter x-ray tubes [3] are promising candidates. We are currently building a laboratory transmission x-ray microscope for 9.25 keV, using an electron impact liquid-metal-jet anode source. Up to now, the further elements of our setup are: a polycapillary condenser, a tungsten zone plate, and a scintillator which is optically coupled to a CMOS camera. However, further variations in terms of optical elements are intended. Here we present the current status of our work, as well as first experimental results.

  13. Simultaneous scanning tunneling microscopy and synchrotron X-ray measurements in a gas environment.

    Science.gov (United States)

    Mom, Rik V; Onderwaater, Willem G; Rost, Marcel J; Jankowski, Maciej; Wenzel, Sabine; Jacobse, Leon; Alkemade, Paul F A; Vandalon, Vincent; van Spronsen, Matthijs A; van Weeren, Matthijs; Crama, Bert; van der Tuijn, Peter; Felici, Roberto; Kessels, Wilhelmus M M; Carlà, Francesco; Frenken, Joost W M; Groot, Irene M N

    2017-11-01

    A combined X-ray and scanning tunneling microscopy (STM) instrument is presented that enables the local detection of X-ray absorption on surfaces in a gas environment. To suppress the collection of ion currents generated in the gas phase, coaxially shielded STM tips were used. The conductive outer shield of the coaxial tips can be biased to deflect ions away from the tip core. When tunneling, the X-ray-induced current is separated from the regular, 'topographic' tunneling current using a novel high-speed separation scheme. We demonstrate the capabilities of the instrument by measuring the local X-ray-induced current on Au(1 1 1) in 800 mbar Ar. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. X-ray diffraction microscopy based on refractive optics

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis; Jakobsen, A. C.; Simons, Hugh

    2017-01-01

    A formalism is presented for dark‐field X‐ray microscopy using refractive optics. The new technique can produce three‐dimensional maps of lattice orientation and axial strain within millimetre‐sized sampling volumes and is particularly suited to in situ studies of materials at hard X‐ray energies....... An objective lens in the diffracted beam magnifies the image and acts as a very efficient filter in reciprocal space, enabling the imaging of individual domains of interest with a resolution of 100 nm. Analytical expressions for optical parameters such as numerical aperture, vignetting, and the resolution...

  15. 2nd International Multidisciplinary Microscopy and Microanalysis Congress

    CERN Document Server

    Oral, Ahmet; Ozer, Mehmet

    2015-01-01

    The 2nd International Multidisciplinary Microscopy and Microanalysis Congress & Exhibition (InterM 2014) was held on 16–19 October 2014 in Oludeniz, Fethiye/ Mugla, Turkey. The aim of the congress was to gather scientists from various branches and discuss the latest improvements in the field of microscopy. The focus of the congress has been widened in an "interdisciplinary" manner, so as to allow all scientists working on several related subjects to participate and present their work. These proceedings include 33 peer-reviewed technical papers, submitted by leading academic and research institutions from over 17 countries and representing some of the most cutting-edge research available. The papers were presented at the congress in the following sessions: ·         Applications of Microscopy in the Physical Sciences ·         Applications of Microscopy in the Biological Sciences.

  16. X-ray imaging and spectroscopy of individual cobalt nanoparticles using photoemission electron microscopy

    International Nuclear Information System (INIS)

    Fraile Rodriguez, A.; Nolting, F.; Bansmann, J.; Kleibert, A.; Heyderman, L.J.

    2007-01-01

    Photoemission electron microscopy (PEEM) was employed for X-ray imaging and absorption spectroscopy of individual cobalt nanoparticles as small as 8 nm grown using an arc ion cluster source. Using lithographic markers on the samples we were able to identify the same particles with PEEM and scanning electron microscopy. Significant variations in the shape of the X-ray absorption spectra between different cobalt particles were detected. Furthermore, our data suggest that distinctive spectral information about the individual particles, such as the quenching of oxide-related features and changes in the cobalt L 3 -edge intensity, cancel out and cannot be detected in the measurement over an ensemble of particles

  17. Recent achievements in multi-keV x-ray microscopy

    International Nuclear Information System (INIS)

    Susini, J.; Barrett, R.; Salome, M.; Kaulich, B.

    2002-01-01

    X-ray microscopy (XRM) techniques are emerging as powerful and complementary tools for sub-micron investigations. Soft XRM traditionally offers the possibility to form direct images of thick hydrated biological material in near-native environments, at a spatial resolution well beyond that achievable with visible light microscopy. Natural contrast is available in the soft X-ray region, in the so-called 'water-window', due to the presence of absorption edges of the major constituents (C,N,O). Recent advances in manufacturing techniques have enlarged the accessible energy range of micro-focusing optics and offer new applications in a broad range of disciplines. XRM in the 1-20 keV energy range is better suited to map trace elements in fluorescence yield, 3-D tomographic imaging and in micro-diffraction. After a brief introduction to the principles and methods, the main attributes of X-ray microscopy will be presented. This presentation will be biased towards sub-micron microscopy developed at the ESRF in the 2-10 keV energy. Strengths and weaknesses of X-ray microscopy and spectro-microscopy techniques will be discussed and illustrated by examples in biology, materials sciences and geology. (authors)

  18. Energy dispersive X-ray microanalysis of zinc and calcium in organelles of insulin-producing cells of the mouse, rat, and a fish

    Energy Technology Data Exchange (ETDEWEB)

    Falkmer, S; Odselius, R [Lund Univ. (Sweden); Blondel, B; Prentki, M; Wollheim, C B [Geneva Univ. (Switzerland)

    1985-01-01

    By means of energy dispersive X-ray microanalysis in the scanning-transmission electron microscope, spectra were obtained from quick-frozen, cryo-ultramicrotome-cut, freeze-dried sections of insulin cells from a fish and a mouse. It was shown that both zinc and calcium are present in significant quantities in native islet cell ..beta.. granules. In the ..beta.. granules of the rat RINm5F insuloma cells calcium, but not zinc, seemed to accumulate; the zinc contents in the secretion granules of these neoplastic ..beta.. cells were probably below the detection limit.

  19. Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Isaure, Marie-Pierre [Section d' Application des Traceurs, LITEN, CEA-Grenoble, 17, rue des Martyrs, 38054 Grenoble cedex 9 (France) and Environmental Geochemistry Group, LGIT, UMR 5559, Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France)]. E-mail: mpisaure@ujf-grenoble.fr; Fayard, Barbara [Laboratoire de Physique des Solides, UMR 8502 Universite Paris Sud, 91405 Orsay (France); European Synchrotron Radiation Facility, ID-21, BP220, 38043 Grenoble (France); Sarret, Geraldine [Environmental Geochemistry Group, LGIT, UMR 5559, Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Pairis, Sebastien [Laboratoire de Cristallographie, UPR 5031, 25 Avenue des Martyrs, BP 166, 38042 Grenoble cedex 9 (France); Bourguignon, Jacques [Laboratoire de Physiologie Cellulaire Vegetale, UMR 5168 CEA/CNRS/INRA/UJF, DRDC, CEA-Grenoble, 17 Avenue des Martyrs, 38054 Grenoble cedex 9 (France)

    2006-12-15

    Cadmium (Cd) is a metal of high toxicity for plants. Resolving its distribution and speciation in plants is essential for understanding the mechanisms involved in Cd tolerance, trafficking and accumulation. The model plant Arabidopsis thaliana was exposed to cadmium under controlled conditions. Elemental distributions in the roots and in the leaves were determined using scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX), and synchrotron-based micro X-ray fluorescence ({mu}-XRF), which offers a better sensitivity. The chemical form(s) of cadmium was investigated using Cd L{sub III}-edge (3538 eV) micro X-ray absorption near edge structure ({mu}-XANES) spectroscopy. Plant {mu}-XANES spectra were fitted by linear combination of Cd reference spectra. Biological sample preparation and conditioning is a critical point because of possible artifacts. In this work we compared freeze-dried samples analyzed at ambient temperature and frozen hydrated samples analyzed at -170 deg. C. Our results suggest that in the roots Cd is localized in vascular bundles, and coordinated to S ligands. In the leaves, trichomes (epidermal hairs) represent the main compartment of Cd accumulation. In these specialized cells, {mu}-XANES results show that the majority of Cd is bound to O/N ligands likely provided by the cell wall, and a minor fraction could be bound to S-containing ligands. No significant difference in Cd speciation was observed between freeze-dried and frozen hydrated samples. This work illustrates the interest and the sensitivity of Cd L{sub III}-edge XANES spectroscopy, which is applied here for the first time to plant samples. Combining {mu}-XRF and Cd L{sub III}-edge {mu}-XANES spectroscopy offers promising tools to study Cd storage and trafficking mechanisms in plants and other biological samples.

  20. X-ray microscopy study of track membranes and biological objects

    International Nuclear Information System (INIS)

    Artioukov, I.A.; Levashov, V.E.; Struk, I.I.; Vinogradov, A.V.; Asadchikov, V.E.; Mchedlishvili, B.V.; Postnov, A.A.; Vilensky, A.I.; Zagorsky, D.L.; Gulimova, V.I.; Saveliev, S.V.; Kurohtin, A.N.; Popov, A.V.

    2000-01-01

    The development of two types of X-ray microscopy applying to the organic objects investigation (biological samples and polymer matrix) is reported. Polymer track membranes were investigated using Schwarzchild X-ray microscope with 20 nm wavelength. Pore diameters down to 0.2 μm were clearly imaged. Contact X-ray microscopy at 0.229 nm wavelength was used to obtain clear images of inner structure of native biological samples. High contrast together with the high resolution (about 2-3 μm) allowed us to use this method for quantitative analysis of demineralization process taking place in the skeleton of amphibious after several weeks of weightlessness on biosputnik board

  1. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    Energy Technology Data Exchange (ETDEWEB)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  2. In Depth Analyses of LEDs by a Combination of X-ray Computed Tomography (CT) and Light Microscopy (LM) Correlated with Scanning Electron Microscopy (SEM).

    Science.gov (United States)

    Meyer, Jörg; Thomas, Christian; Tappe, Frank; Ogbazghi, Tekie

    2016-06-16

    In failure analysis, device characterization and reverse engineering of light emitting diodes (LEDs), and similar electronic components of micro-characterization, plays an important role. Commonly, different techniques like X-ray computed tomography (CT), light microscopy (LM) and scanning electron microscopy (SEM) are used separately. Similarly, the results have to be treated for each technique independently. Here a comprehensive study is shown which demonstrates the potentials leveraged by linking CT, LM and SEM. In depth characterization is performed on a white emitting LED, which can be operated throughout all characterization steps. Major advantages are: planned preparation of defined cross sections, correlation of optical properties to structural and compositional information, as well as reliable identification of different functional regions. This results from the breadth of information available from identical regions of interest (ROIs): polarization contrast, bright and dark-field LM images, as well as optical images of the LED cross section in operation. This is supplemented by SEM imaging techniques and micro-analysis using energy dispersive X-ray spectroscopy.

  3. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs

  4. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography (CMT). The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits (MDLs) obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source (APS)

  5. Visualization of magnetic dipolar interaction based on scanning transmission X-ray microscopy

    International Nuclear Information System (INIS)

    Ohtori, Hiroyuki; Iwano, Kaoru; Takeichi, Yasuo; Ono, Kanta; Mitsumata, Chiharu; Yano, Masao; Kato, Akira; Miyamoto, Noritaka; Shoji, Tetsuya; Manabe, Akira

    2014-01-01

    Using scanning transmission X-ray microscopy (STXM), in this report we visualized the magnetic dipolar interactions in nanocrystalline Nd-Fe-B magnets and imaged their magnetization distributions at various applied fields. We calculated the magnetic dipolar interaction by analyzing the interaction between the magnetization at each point and those at the other points on the STXM image.

  6. Investigations of Caenorhabditis Elegans Using Soft X-ray Contact Microscopy

    Czech Academy of Sciences Publication Activity Database

    Desai, T.; Batani, D.; Bernardinello, A.; Poletti, G.; Orsini, F.; Ullschmied, Jiří; Skála, Jiří; Králiková, Božena; Krouský, Eduard; Mocek, Karel; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomáš; Präg R., Ansgar; Renner, Oldřich; Juha, Libor; Cotelli, F.; Lamia, C. L.; Zullini, A.

    2004-01-01

    Roč. 20, č. 3 (2004), s. 121-125 ISSN 1120-1797 R&D Projects: GA MŠk LN00A100 Keywords : C. elegans * soft X-ray contact microscopy * intense laser plasma * gold target Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.341, year: 2004

  7. Localization of proteins and nucleic acids using soft x-ray microscopy

    International Nuclear Information System (INIS)

    Larabell, Carolyn A.; Yager, Deborah; Meyer-Ilse, Werner

    2000-01-01

    The high-resolution soft x-ray microscope (XM-1) at the Advanced Light Source was used to examine whole, hydrated mammalian cells, both chemically fixed and rapidly frozen and viewed in a cryostage. Using x-ray microscopy, high contrast information about the organization of the cytoplasm and nucleus of these cells was revealed at unsurpassed resolution. It is important to note that cryo-fixed cells have been examined in a state that most closely resembles their natural environment in that the cells were not exposed to chemical fixatives or chemical contrast enhancement reagents. We also used the power of soft x-ray microscopy to examine the localization of proteins and nucleic acids in whole, hydrated cells using silver-enhanced, immunogold labeling techniques. With this approach, we have obtained information about the distribution of such molecules with respect to cellular ultrastructure at five times better resolution than light microscopy. The power of soft x-ray microscopy to provide superb resolution information about the subcellular localization of proteins and nucleic acids places it in a commanding position to contribute to our understanding of the numerous molecules being identified through modern molecular biology techniques

  8. Dark-field X-ray microscopy for multiscale structural characterization

    DEFF Research Database (Denmark)

    Simons, Hugh; King, A.; Ludwig, W.

    2015-01-01

    of the interactions between crystalline elements is a key step towards the formulation and validation of multiscale models that account for the entire heterogeneity of a material. Furthermore, dark-field X-ray microscopy is well suited to applied topics, where the structural evolution of internal nanoscale elements...

  9. Surface x-ray scattering and scanning tunneling microscopy studies at the Au(111) electrode

    International Nuclear Information System (INIS)

    Ocko, B.M.; Magnussen, O.M.; Wang, J.X.; Adzic, R.R.

    1993-01-01

    This chapter reviews Surface X-ray Scattering and Scanning Tunneling Microscopy results carried out at the Au(111) surface under electrochemical conditions. Results are presented for the reconstructed surface, and for bromide and thallium monolayers. These examples are used to illustrate the complementary nature of the techniques

  10. Secondary sulfate minerals from Alum Cave Bluff: Microscopy and microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Lauf, R.J.

    1997-07-01

    Microcrystals of secondary sulfate minerals from Alum Cave Bluff, Great Smoky Mountains National Park, were examined by scanning electron microscopy and identified by X-ray fluorescence (XRF) in the SEM. Among the samples the author discovered three new rare-earth sulfates: coskrenite-(Ce), levinsonite-(Y), and zugshunstite-(Ce). Other minerals illustrated in this report include sulfur, tschermigite, gypsum, epsomite, melanterite, halotrichite, apjohnite, jarosite, slavikite, magnesiocopiapite, and diadochite. Additional specimens whose identification is more tentative include pickeringite, aluminite, basaluminite, and botryogen. Alum Cave is a ``Dana locality`` for apjohnite and potash alum, and is the first documented North American occurrence of slavikite.

  11. New generation quantitative x-ray microscopy encompassing phase-contrast

    International Nuclear Information System (INIS)

    Wilkins, S.W.; Mayo, S.C.; Gureyev, T.E.; Miller, P.R.; Pogany, A.; Stevenson, A.W.; Gao, D.; Davis, T.J.; Parry, D.J.; Paganin, D.

    2000-01-01

    Full text: We briefly outline a new approach to X-ray ultramicroscopy using projection imaging in a scanning electron microscope (SEM). Compared to earlier approaches, the new approach offers spatial resolution of ≤0.1 micron and includes novel features such as: i) phase contrast to give additional sample information over a wide energy range, rapid phase/amplitude extraction algorithms to enable new real-time modes of microscopic imaging widespread applications are envisaged to fields such as materials science, biomedical research, and microelectronics device inspection. Some illustrative examples are presented. The quantitative methods described here are also very relevant to X-ray projection microscopy using synchrotron sources

  12. An introduction to three-dimensional X-ray diffraction microscopy

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis

    2012-01-01

    Three-dimensional X-ray diffraction microscopy is a fast and nondestructive structural characterization technique aimed at studies of the individual crystalline elements (grains or subgrains) within millimetre-sized polycrystalline specimens. It is based on two principles: the use of highly...... penetrating hard X-rays from a synchrotron source and the application of tomographic reconstruction algorithms for the analysis of the diffraction data. In favourable cases, the position, morphology, phase and crystallographic orientation can be derived for up to 1000 elements simultaneously. For each grain...

  13. Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Gleber, S.-C.; Thieme, J.; Chao, W.; Fischer, P.

    2008-09-01

    The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.

  14. 3-D Cellular Ultrastructure Can Be Resolved by X-ray Microscopy | Center for Cancer Research

    Science.gov (United States)

    X-ray microscopy (XRM) is more rapid than cryoelectron tomography or super-resolution fluorescence microscopy and could fill an important gap in current technologies used to investigate in situ three-dimensional structure of cells. New XRM methods developed by first author Gerd Schneider, Ph.D., working with James McNally. Ph.D., and a team of colleagues, is capable of revealing full cellular ultrastructure without requiring fixation, staining, or sectioning.

  15. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy.

    Science.gov (United States)

    Withers, P J

    2015-03-06

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored.

  16. X-ray optics for scanning fluorescence microscopy and other applications

    International Nuclear Information System (INIS)

    Ryon, R.W.; Warburton, W.K.

    1992-05-01

    Scanning x-ray fluorescence microscopy is analogous to scanning electron microscopy. Maps of chemical element distribution are produced by scanning with a very small x-ray beam. Goal is to perform such scanning microscopy with resolution in the range of <1 to 10 μm, using standard laboratory x-ray tubes. We are investigating mirror optics in the Kirkpatrick-Baez (K-B) configuration. K-B optics uses two curved mirrors mounted orthogonally along the optical axis. The first mirror provides vertical focus, the second mirror provides horizontal focus. We have used two types of mirrors: synthetic multilayers and crystals. Multilayer mirrors are used with lower energy radiation such as Cu Kα. At higher energies such as Ag Kα, silicon wafers are used in order to increase the incidence angles and thereby the photon collection efficiency. In order to increase the surface area of multilayers which reflects x-rays at the Bragg angle, we have designed mirrors with the spacing between layers graded along the optic axis in order to compensate for the changing angle of incidence. Likewise, to achieve a large reflecting surface with silicon, the wafers are placed on a specially designed lever arm which is bent into a log spiral by applying force at one end. In this way, the same diffracting angle is maintained over the entire surface of the wafer, providing a large solid angle for photon collection

  17. 3D elemental sensitive imaging using transmission X-ray microscopy.

    Science.gov (United States)

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.

  18. Characterization of LiF-based soft X-ray imaging detectors by confocal fluorescence microscopy

    International Nuclear Information System (INIS)

    Bonfigli, F; Gaudio, P; Lupelli, I; Nichelatti, E; Richetta, M; Vincenti, M A; Montereali, R M

    2010-01-01

    X-ray microscopy represents a powerful tool to obtain images of samples with very high spatial resolution. The main limitation of this technique is represented by the poor spatial resolution of standard imaging detectors. We proposed an innovative high-performance X-ray imaging detector based on the visible photoluminescence of colour centres in lithium fluoride. In this work, a confocal microscope in fluorescence mode was used to characterize LiF-based imaging detectors measuring CC integrated visible fluorescence signals of LiF crystals and films (grown on several kinds of substrates) irradiated by soft X-rays produced by a laser plasma source in different exposure conditions. The results are compared with the CC photoluminescence spectra measured on the same samples and discussed.

  19. Synchrotron radiation X-ray tomographic microscopy (SRXTM of brachiopod shell interiors for taxonomy: Preliminary report

    Directory of Open Access Journals (Sweden)

    Motchurova-Dekova Neda

    2010-01-01

    Full Text Available Synchrotron radiation X-ray tomographic microscopy (SRXTM is a non-destructive technique for the investigation and visualization of the internal features of solid opaque objects, which allows reconstruction of a complete three-dimensional image of internal structures by recording of the differences in the effects on the passage of waves of energy reacting with those structures. Contrary to X-rays, produced in a conventional X-ray tube, the intense synchrotron light beams are sharply focused like a laser beam. We report encouraging results from the use of SRXTM for purely taxonomic purposes in brachiopods: an attempt to find a non-destructive and more efficient alternative to serial sectioning and several other methods of dissection together with the non-destructive method of X-ray computerised micro-tomography. Two brachiopod samples were investigated using SRXTM. In “Rhynchonella” flustracea it was possible to visualise the 3D shape of the crura and dental plates. In Terebratulina imbricata it was possible to reveal the form of the brachidium. It is encouraging that we have obtained such promising results using SRXTM with our very first two fortuitous samples, which had respectively fine-grained limestone and marl as infilling sediment, in contrast to the discouraging results communicated to us by some colleagues who have tested specimens with such infillings using X-ray micro-tomography. In future the holotypes, rare museum specimens or delicate Recent material may be preferentially subjected to this mode of analysis.

  20. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.

    Science.gov (United States)

    Di Fabrizio, Enzo; Cojoc, Dan; Emiliani, Valentina; Cabrini, Stefano; Coppey-Moisan, Maite; Ferrari, Enrico; Garbin, Valeria; Altissimo, Matteo

    2004-11-01

    The aim of this report is to demonstrate a unified version of microscopy through the use of advanced diffractive optics. The unified scheme derives from the technical possibility of realizing front wave engineering in a wide range of electromagnetic spectrum. The unified treatment is realized through the design and nanofabrication of phase diffractive elements (PDE) through which wave front beam shaping is obtained. In particular, we will show applications, by using biological samples, ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy combined with X-ray fluorescence. We report some details on the design and physical implementation of diffractive elements that besides focusing also perform other optical functions: beam splitting, beam intensity, and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of micro-beads surrounding a cell as an array of tweezers and for arraying and sorting microscopic size biological samples. Another application is the Gauss to Laguerre-Gauss mode conversion, which allows for trapping and transfering orbital angular momentum of light to micro-particles immersed in a fluid. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for diffractive optics implementation. High-resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in x-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field x-ray microscopy. Besides the topographic information, fluorescence allows detection of certain chemical elements (Cl, P, Sc, K) in the same setup, by changing the photon energy of the x-ray beam. (c) 2005 Wiley-Liss, Inc.

  1. The Changes of Elements Composition in Aspergillus niger and Aspergillus terreus at Different Co2+, Cd2+ and Pb2+ Concentrations Using X-rays Microanalysis

    International Nuclear Information System (INIS)

    Ouda, S.M.

    2010-01-01

    X-ray microanalysis in electron microscope allows simultaneous detection and quantitative analysis of several elements so it contributes to understand the role of ions in physiological processes. Energy dispersive X-ray (EDX) analysis used to detect the changes in elements levels in Aspergillus niger and Aspergillus terreus when allowing to grow on Czapek's Dox liquid media amended with different Co 2+ , Cd 2+ and Pb 2+ concentrations and these changes may play a role in fungal uptake for these heavy metal ions. Results showed that Ca, Zn and Cu levels in both fungal isolates significantly decreased (P<0.05) when concentrations of used metal ions increased, also O, Na, Cl and K levels for A. niger and C and P for A. terreus recorded significant reduction (P<0.05) in their percentages. Also, the results revealed that, C and P for A. niger and O, Na, Mg, Cl and K levels for A. terreus significantly increased (P<0.05) as a result of increasing metal ions concentrations. Lack of Cd and Pb peaks in X-ray spectrum for A. terreus led this work to conclude that, A. niger was more effective than A. terreus in Co, Cd, Pb uptake into fungal biomass. The increase or decrease of levels of detected elements could be related to the difference between two fungal isolates in uptake certain heavy metal ion (Co, Cd, Pb)

  2. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1997-01-01

    Transmission Electron Microscopy presents the theory of image and contrast formation, and the analytical modes in transmission electron microscopy. The principles of particle and wave optics of electrons are described. Electron-specimen interactions are discussed for evaluating the theory of scattering and phase contrast. Also discussed are the kinematical and dynamical theories of electron diffraction and their applications for crystal-structure analysis and imaging of lattices and their defects. X-ray micronanalysis and electron energy-loss spectroscopy are treated as analytical methods. Specimen damage and contamination by electron irradiation limits the resolution for biological and some inorganic specimens. This fourth edition includes discussion of recent progress, especially in the area of Schottky emission guns, convergent-beam electron diffraction, electron tomography, holography and the high resolution of crystal lattices.

  3. Possibilities and Challenges of Scanning Hard X-ray Spectro-microscopy Techniques in Material Sciences

    Directory of Open Access Journals (Sweden)

    Andrea Somogyi

    2015-06-01

    Full Text Available Scanning hard X-ray spectro-microscopic imaging opens unprecedented possibilities in the study of inhomogeneous samples at different length-scales. It gives insight into the spatial variation of the major and minor components, impurities and dopants of the sample, and their chemical and electronic states at micro- and nano-meter scales. Measuring, modelling and understanding novel properties of laterally confined structures are now attainable. The large penetration depth of hard X-rays (several keV to several 10 keV beam energy makes the study of layered and buried structures possible also in in situ and in operando conditions. The combination of different X-ray analytical techniques complementary to scanning spectro-microscopy, such as X-ray diffraction, X-ray excited optical luminescence, secondary ion mass spectrometry (SIMS and nano-SIMS, provides access to optical characteristics and strain and stress distributions. Complex sample environments (temperature, pressure, controlled atmosphere/vacuum, chemical environment are also possible and were demonstrated, and allow as well the combination with other analysis techniques (Raman spectroscopy, infrared imaging, mechanical tensile devices, etc. on precisely the very same area of the sample. The use of the coherence properties of X-rays from synchrotron sources is triggering emerging experimental imaging approaches with nanometer lateral resolution. New fast analytical possibilities pave the way towards statistically significant studies at multi- length-scales and three dimensional tomographic investigations. This paper gives an overview of these techniques and their recent achievements in the field of material sciences.

  4. X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures

    International Nuclear Information System (INIS)

    Scholl, Andreas; Ohldag, Hendrik; Nolting, Frithjof; Stohr, Joachim; Padmore, Howard A.

    2001-01-01

    X-ray Photoemission Electron Microscopy unites the chemical specificity and magnetic sensitivity of soft x-ray absorption techniques with the high spatial resolution of electron microscopy. The discussed instrument possesses a spatial resolution of better than 50 nm and is located at a bending magnet beamline at the Advanced Light Source, providing linearly and circularly polarized radiation between 250 and 1300 eV. We will present examples which demonstrate the power of this technique applied to problems in the field of thin film magnetism. The chemical and elemental specificity is of particular importance for the study of magnetic exchange coupling because it allows separating the signal of the different layers and interfaces in complex multi-layered structures

  5. Schottky barrier measurements on individual GaAs nanowires by X-ray photoemission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Di Mario, Lorenzo [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Turchini, Stefano, E-mail: stefano.turchini@cnr.it [ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Zamborlini, Giovanni; Feyer, Vitaly [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich (Germany); Tian, Lin [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Schneider, Claus M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich (Germany); Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany); Rubini, Silvia [IOM-CNR, TASC Laboratory, Basovizza 34149, Trieste (Italy); Martelli, Faustino, E-mail: faustino.martelli@cnr.it [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy)

    2016-11-15

    Highlights: • The Schottky barrier at the interface between Cu and GaAs nanowires was measured. • Individual nanowires were investigated by X-ray Photoemission Microscopy. • The Schottky barrier at different positions along the nanowire was evaluated. - Abstract: We present measurements of the Schottky barrier height on individual GaAs nanowires by means of x-ray photoelectron emission microscopy (XPEEM). Values of 0.73 and 0.51 eV, averaged over the entire wires, were measured on Cu-covered n-doped and p-doped GaAs nanowires, respectively, in agreement with results obtained on bulk material. Our measurements show that XPEEM can become a feasible and reliable investigation tool of interface formation at the nanoscale and pave the way towards the study of size-dependent effects on semiconductor-based structures.

  6. Micro-fresnel structures for microscopy of laser generated bright x-ray sources

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Shavers, D.C.; Flanders, D.C.; Smith, H.I.

    1979-01-01

    A brief parametric survey of the x-ray characteristics of a gold micro-disk irradiated at 3 x 10 14 watt/cm 2 by a 1 nsec Nd-glass laser pulse has been provided as an example of a laser generated bright x-ray source. It was shown that a simple phenomenological model of the laser generated x-ray source as a microscopic equilibrium plasma radiating as a blackbody for a finite time determined by its hydrodynamic disassembly and radiation losses, serves to provide an adequate approximation to the x-ray characteristics of such sources. The current state of x-ray microscopy within the LLL laser fusion program was briefly reviewed. Kirpatrick--Baez grazing incidence reflection x-ray microscopes are being used to provide 3 to 5 μm resolution, broadband images (ΔE/E approx. 0.3) over a spectral range from .6 keV to 3.5 keV. Zone Plate Coded Imaging is used to provide 5 to 10 μm resolution, broadband (ΔE/E approx. 0.5) images over a spectral range from 3 keV to 50 keV. Efficient x-ray lensing elements with anticipated submicron resolution are being developed for narrowband (ΔE/E approx. 10 -2 ) imaging applications over a spectral range .1 keV to 8 keV. The x-ray lens design is that of a transmission blazed Fresnel phase plate. Micro--Fresnel zone plates with 3200 A minimum linewidth have been fabricated and preliminary resolution tests begun. The first resolution test pattern, having minimum linewidth of 2.5 μm, was imaged in lambda = 8.34 A light with no difficulty. Newer test patterns with submicron minimum line are being prepared for the next stage of resolution testing. An off-axis Fresnel zone plate with 1600 A minimum linewidth is presently being fabricated for use as an imaging spectrometer in order to provide spatially separated, chromatically distinct images of characteristic line emissions from laser fusion targets

  7. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis

    OpenAIRE

    Kehr, Sebastian; Malinouski, Mikalai; Finney, Lydia; Vogt, Stefan; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Carlson, Bradley A.; Zhou, You; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2009-01-01

    Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular and subcellular topography of Se. We applied this techn...

  8. High-energy x-ray microscopy with multilayer reflectors (invited)

    International Nuclear Information System (INIS)

    Underwood, J.H.

    1986-01-01

    A knowledge of the spatial distribution of the x rays emitted by the hot plasma region is a key element in the study of the physical processes occurring in laser-produced plasmas and complements other diagnostics such as spectroscopy and temporal studies. X-ray microscopy with reflection microscopes offers the most direct means of obtaining this information. Until recently, the two types of microscopes that had been developed for this purpose, the Kirkpatrick--Baez and the Wolter, operated at relatively low energies (about 4--5 keV) and had very little spectral selectivity, relying on filters for coarse spectral resolution. With the development of x-ray reflecting multilayer mirrors, the energy response of such microscopes can be extended to 10 keV or higher, with good spectral selectivity. In addition, it is possible to reduce some of the optical aberrations to obtain improved spatial resolution. This paper describes some of the recent progress in making and evaluating x-ray reflectors, and outlines the optical design considerations for multilayer-coated microscopes. Results from a prototype multilayer K--B microscope are presented

  9. Cytochemical and x-ray microanalysis studies of intracellular calcium pools in scale-bearing cells of the coccolithophorid emiliana huxleyi

    International Nuclear Information System (INIS)

    Wal, P. van der; Bruijn, W.C. de; Westbroek, P.

    1985-01-01

    Emiliania huxleyi is a coccolithophorid with a life cycle including a stage characterized by the occurrence of a scale-bearing cell type. The scales are composed of organic material and are produced in the cisternae of the Golgi apparatus. The present report deals with the ultrastructural calcium localization in scale-bearing cells using cation-precipitating agents. Cations were precipitated either with potassium carbonate, or potassium phosphate, and then with potassium pyroantimonate. The distribution of electron-opaque deposits was the same when visualized by all four techniques. The most extensive deposits occurred in the Golgi apparatus, the 'peripheral space' (a cellular compartment totally encompassing the protoplast), the multivesicular bodies, and the cell vacuole. X-ray microanalysis revealed that calcium was a constituent of the electron-opaque deposits. The uptake and transport of calcium, as universal functions of the Golgi apparatus, are discussed. (Author)

  10. Structure of ordered polyelectrolyte films from atomic-force microscopy and X-ray reflectivity data

    International Nuclear Information System (INIS)

    Belyaev, V.V.; Tolstikhina, A.L.; Stepina, N.D.; Kayushina, R.L.

    1998-01-01

    The possible application of atomic-force microscopy and X-ray reflectometry methods to structural studies of polyelectrolyte films obtained due to alternating adsorption of oppositely charged polyanion [sodium polysterenesulfonate (PSS)] and polycation [poly(allylamine) hydrochloride (PAA)] layers on solid substrates has been considered. The atomic-force microscopy study has revealed the characteristic features of the surface topography of samples consisting of different numbers of polyelectrolyte layers deposited from solutions characterized by different ionic strength values. It is shown that the shape of the reflectivity curves obtained from thin polyelectrolyte films depends on their surface structure

  11. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission x-ray microscopy.

    Directory of Open Access Journals (Sweden)

    Garry R Brock

    Full Text Available Microdamage occurs in bone through repeated and excessive loading. Accumulation of microdamage weakens bone, leading to a loss of strength, stiffness and energy dissipation in the tissue. Imaging techniques used to examine microdamage have typically been limited to the microscale. In the current study microdamage was examined at the nanoscale using transmission x-ray microscopy with an x-ray negative stain, lead-uranyl acetate. Microdamage was generated in notched and unnotched beams of sheep cortical bone (2×2×20 mm, with monotonic and fatigue loading. Bulk sections were removed from beams and stained with lead-uranyl acetate to identify microdamage. Samples were sectioned to 50 microns and imaged using transmission x-ray microscopy producing projection images of microdamage with nanoscale resolution. Staining indicated microdamage occurred in both the tensile and compressive regions. A comparison between monotonic and fatigue loading indicated a statistically significant greater amount of stain present in fatigue loaded sections. Microdamage occurred in three forms: staining to existing bone structures, cross hatch damage and a single crack extending from the notch tip. Comparison to microcomputed tomography demonstrated differences in damage morphology and total damage between the microscale and nanoscale. This method has future applications for understanding the underlying mechanisms for microdamage formation as well as three-dimensional nanoscale examination of microdamage.

  12. Soft X-ray microscopy to 25 nm with applications to biology and magnetic materials

    CERN Document Server

    Denbeaux, G; Chao, W; Eimueller, T; Johnson, L; Köhler, M; Larabell, C; Legros, M; Fischer, P; Pearson, A; Schuetz, G; Yager, D; Attwood, D

    2001-01-01

    We report both technical advances in soft X-ray microscopy (XRM) and applications furthered by these advances. With new zone plate lenses we record test pattern features with good modulation to 25 nm and smaller. In combination with fast cryofixation, sub-cellular images show very fine detail previously seen only in electron microscopy, but seen here in thick, hydrated, and unstained samples. The magnetic domain structure is studied at high spatial resolution with X-ray magnetic circular dichroism (X-MCD) as a huge element-specific magnetic contrast mechanism, occurring e.g. at the L sub 2 sub , sub 3 edges of transition metals. It can be used to distinguish between in-plane and out-of-plane contributions by tilting the sample. As XRM is a photon based technique, the magnetic images can be obtained in unlimited varying external magnetic fields. The images discussed have been obtained at the XM-1 soft X-ray microscope on beamline 6.1 at the Advanced Light Source in Berkeley.

  13. Using Dark Field X-Ray Microscopy To Study In-Operando Yttria Stabilized Zirconia Electrolyte Supported Solid Oxide Cell

    DEFF Research Database (Denmark)

    Sierra, J. X.; Poulsen, H. F.; Jørgensen, P. S.

    Dark Field X-Ray Microscopy is a promising technique to study the structure of materials in nanometer length scale. In combination with x-ray diffraction technique, the microstructure evolution of Yttria Stabilized Zirconia electrolyte based solid oxide cell was studied running at extreme operating...

  14. Iron speciation of airborne subway particles by the combined use of energy dispersive electron probe X-ray microanalysis and Raman microspectrometry.

    Science.gov (United States)

    Eom, Hyo-Jin; Jung, Hae-Jin; Sobanska, Sophie; Chung, Sang-Gwi; Son, Youn-Suk; Kim, Jo-Chun; Sunwoo, Young; Ro, Chul-Un

    2013-11-05

    Quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), known as low-Z particle EPMA, and Raman microspectrometry (RMS) were applied in combination for an analysis of the iron species in airborne PM10 particles collected in underground subway tunnels. Iron species have been reported to be a major chemical species in underground subway particles generated mainly from mechanical wear and friction processes. In particular, iron-containing particles in subway tunnels are expected to be generated with minimal outdoor influence on the particle composition. Because iron-containing particles have different toxicity and magnetic properties depending on their oxidation states, it is important to determine the iron species of underground subway particles in the context of both indoor public health and control measures. A recently developed analytical methodology, i.e., the combined use of low-Z particle EPMA and RMS, was used to identify the chemical species of the same individual subway particles on a single particle basis, and the bulk iron compositions of airborne subway particles were also analyzed by X-ray diffraction. The majority of airborne subway particles collected in the underground tunnels were found to be magnetite, hematite, and iron metal. All the particles collected in the tunnels of underground subway stations were attracted to permanent magnets due mainly to the almost ubiquitous ferrimagnetic magnetite, indicating that airborne subway particles can be removed using magnets as a control measure.

  15. Microscale reconstruction of biogeochemical substrates using multimode X-ray tomography and scanning electron microscopy

    Science.gov (United States)

    Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.

    2012-12-01

    X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine

  16. Hard X-ray Microscopy with sub 30 nm Spatial Resolution

    International Nuclear Information System (INIS)

    Tang, M.-T.; Song, Y.-F.; Yin, G.-C.; Chen, J.-H.; Chen, Y.-M.; Liang, Keng S.; Chen, F.-R.; Duewer, F.; Yun Wenbing

    2007-01-01

    A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC

  17. 3D imaging of a rice pollen grain using transmission X-ray microscopy.

    Science.gov (United States)

    Wang, Shengxiang; Wang, Dajiang; Wu, Qiao; Gao, Kun; Wang, Zhili; Wu, Ziyu

    2015-07-01

    For the first time, the three-dimensional (3D) ultrastructure of an intact rice pollen cell has been obtained using a full-field transmission hard X-ray microscope operated in Zernike phase contrast mode. After reconstruction and segmentation from a series of projection images, complete 3D structural information of a 35 µm rice pollen grain is presented at a resolution of ∼100 nm. The reconstruction allows a clear differentiation of various subcellular structures within the rice pollen grain, including aperture, lipid body, mitochondrion, nucleus and vacuole. Furthermore, quantitative information was obtained about the distribution of cytoplasmic organelles and the volume percentage of each kind of organelle. These results demonstrate that transmission X-ray microscopy can be quite powerful for non-destructive investigation of 3D structures of whole eukaryotic cells.

  18. Fresnel diffraction correction by phase-considered iteration procedure in soft X-ray projection microscopy

    International Nuclear Information System (INIS)

    Shiina, Tatsuo; Suzuki, Tsuyoshi; Honda, Toshio; Ito, Atsushi; Kinjo, Yasuhito; Yoshimura, Hideyuki; Yada, Keiji; Shinohara, Kunio

    2009-01-01

    In soft X-ray projection microscopy, it is easy to alter the magnification by changing the distance between the pinhole and the specimen, while the image is blurred because the soft X-rays are diffracted through the propagation from specimen to CCD detector. We corrected the blurred image by the iteration procedure of Fresnel to inverse Fresnel transformation taking phase distribution of the specimen into account. The experiments were conducted at the BL-11A of the Photon Factory, KEK, Japan for the specimens such as glass-capillaries, latex-particles, dried mammalian cells and human chromosomes. Many of those blurred images were corrected adequately by the iteration procedure, though some images such as those which have high-contrast or are overlapped by small cells still remain to be improved.

  19. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  20. Instrumentation for in situ flow electrochemical Scanning Transmission X-ray Microscopy (STXM)

    Science.gov (United States)

    Prabu, Vinod; Obst, Martin; Hosseinkhannazer, Hooman; Reynolds, Matthew; Rosendahl, Scott; Wang, Jian; Hitchcock, Adam P.

    2018-06-01

    We report the design and performance of a 3-electrode device for real time in situ scanning transmission X-ray microscopy studies of electrochemical processes under both static (sealed, non-flow) conditions and with a continuous flow of electrolytes. The device was made using a combination of silicon microfabrication and 3D printing technologies. The performance is illustrated by results of a study of copper deposition and stripping at a gold working electrode. X-ray absorption spectromicroscopy at the Cu 2p edge was used to follow the evolution as a function of potential and time of the spatial distributions of Cu(0) and Cu(i) species electro-deposited from an aqueous solution of copper sulphate. The results are interpreted in terms of competing mechanisms for the reduction of Cu(ii).

  1. Magnetic imaging with full-field soft X-ray microscopies

    International Nuclear Information System (INIS)

    Fischer, Peter; Im, Mi-Young; Baldasseroni, Chloe; Bordel, Catherine; Hellman, Frances; Lee, Jong-Soo; Fadley, Charles S.

    2013-01-01

    Progress toward a fundamental understanding of magnetism continues to be of great scientific interest and high technological relevance. To control magnetization on the nanoscale, external magnetic fields and spin polarized currents are commonly used. In addition, novel concepts based on spin manipulation by electric fields or photons are emerging which benefit from advances in tailoring complex magnetic materials. Although the nanoscale is at the very origin of magnetic behavior, there is a new trend toward investigating mesoscale magnetic phenomena, thus adding complexity and functionality, both of which will become crucial for future magnetic devices. Advanced analytical tools are thus needed for the characterization of magnetic properties spanning the nano- to the meso-scale. Imaging magnetic structures with high spatial and temporal resolution over a large field of view and in three dimensions is therefore a key challenge. A variety of spectromicroscopic techniques address this challenge by taking advantage of variable-polarization soft X-rays, thus enabling X-ray dichroism effects provide magnetic contrast. These techniques are also capable of quantifying in an element-, valence- and site-sensitive way the basic properties of ferro(i)- and antiferro-magnetic systems, such as spin and orbital moments, spin configurations from the nano- to the meso-scale and spin dynamics with sub-ns time resolution. This paper reviews current achievements and outlines future trends with one of these spectromicroscopies, magnetic full field transmission soft X-ray microscopy (MTXM) using a few selected examples of recent research on nano- and meso-scale magnetic phenomena. The complementarity of MTXM to X-ray photoemission electron microscopy (X-PEEM) is also emphasized

  2. Magnetic imaging with full-field soft X-ray microscopies

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter, E-mail: PJFischer@lbl.gov [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Im, Mi-Young [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Baldasseroni, Chloe [Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720 (United States); Bordel, Catherine; Hellman, Frances [Department of Physics, University of California Berkeley, Berkeley, CA 94720 (United States); Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270 (United States); Lee, Jong-Soo [Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Fadley, Charles S. [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270 (United States)

    2013-08-15

    Progress toward a fundamental understanding of magnetism continues to be of great scientific interest and high technological relevance. To control magnetization on the nanoscale, external magnetic fields and spin polarized currents are commonly used. In addition, novel concepts based on spin manipulation by electric fields or photons are emerging which benefit from advances in tailoring complex magnetic materials. Although the nanoscale is at the very origin of magnetic behavior, there is a new trend toward investigating mesoscale magnetic phenomena, thus adding complexity and functionality, both of which will become crucial for future magnetic devices. Advanced analytical tools are thus needed for the characterization of magnetic properties spanning the nano- to the meso-scale. Imaging magnetic structures with high spatial and temporal resolution over a large field of view and in three dimensions is therefore a key challenge. A variety of spectromicroscopic techniques address this challenge by taking advantage of variable-polarization soft X-rays, thus enabling X-ray dichroism effects provide magnetic contrast. These techniques are also capable of quantifying in an element-, valence- and site-sensitive way the basic properties of ferro(i)- and antiferro-magnetic systems, such as spin and orbital moments, spin configurations from the nano- to the meso-scale and spin dynamics with sub-ns time resolution. This paper reviews current achievements and outlines future trends with one of these spectromicroscopies, magnetic full field transmission soft X-ray microscopy (MTXM) using a few selected examples of recent research on nano- and meso-scale magnetic phenomena. The complementarity of MTXM to X-ray photoemission electron microscopy (X-PEEM) is also emphasized.

  3. X-ray microanalysis with transition edge sensors. The future of material analysis with scanning electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Hollerith, C.

    2006-07-05

    In current experiments and technical applications the demand for new and advanced concepts for the detection of radiation and particle is increasing. Low temperature detectors such as Transition Edge Sensors (TES) have been developed as ultrahigh-resolution radiation and particle detectors offering advantages in manifold applications. They were designed primarily for astrophysical experiments such as the dark matter search. In material analysis they have been introduced to revolutionize mass spectroscopy of biological molecules and Energy Dispersive X-ray Spectroscopy (EDS). EDS is the determination of the elemental constitution of samples in scanning electron microscopes (SEMs) with characteristic X-ray radiation excited by the electron beam. The use of TES detectors improves the EDS analysis of small volumes such as particles or thin layers. This is especially important for the semiconductor industry because of the continual shrinking of device size. Current structure sizes of 65 nm are already demanding new approaches in analytic methodology. In this thesis the introduction and improvement of a fully automated TES detector system in the industrial environment of a semiconductor failure analysis lab is described. This system, marketed under the trade name of 'Polaris' by the manufacturer, is based on a mechanical pulse tube cooler in combination with an adiabatic demagnetization refrigerator (ADR) for cooling the TES detector to its operating temperature. Several large improvements had to be made to the system during the total system integration. The energy resolution could be improved significantly thus enabling a better peak separation and the measurement of chemical shifts. Due to the small area of TES detectors compared with conventional EDS detectors the efficiency of the system proved to be too low for everyday use. A polycapillary X-ray lens was added to the system in order to solve this problem. The application of the lens, however, brought its

  4. Scanning electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1985-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions, imaging modes, the interpretation of micrographs and the use of quantitative modes "in scanning electron microscopy (SEM). lt forms a counterpart to Transmission Electron Microscopy (Vol. 36 of this Springer Series in Optical Sciences) . The book evolved from lectures delivered at the University of Münster and from a German text entitled Raster-Elektronenmikroskopie (Springer-Verlag), published in collaboration with my colleague Gerhard Pfefferkorn. In the introductory chapter, the principles of the SEM and of electron­ specimen interactions are described, the most important imaging modes and their associated contrast are summarized, and general aspects of eiemental analysis by x-ray and Auger electron emission are discussed. The electron gun and electron optics are discussed in Chap. 2 in order to show how an electron probe of small diameter can be formed, how the elec­ tron beam can be blanked at high fre...

  5. Present status of research and development on X-ray microprobe

    International Nuclear Information System (INIS)

    Koike, Masaki; Suzuki, I.H.

    1991-01-01

    X-ray beam micro-analysis has advanced rapidly in these years in conjunction with the development of powerful X-ray sources. Among a variety of methods being attempted, the method using a collimated narrow beam has been important because of high brightness, and of usability in both regions of soft and hard X-rays. In the soft X-ray region, the focused beam is formed by a fresnel zone plate or a Schwaltzschild mirror assembly, and can be used for scanning transmission microscope or scanning photoelectron microscope. In the hard X-ray region, the beam is formed by grazing incidence mirrors, and can be used for X-ray fluorescence micro-analysis for obtaining elemental mapping. In this report, the recent progress on the soft X-ray scanning microscopy and the X-ray microprobe has been surveyed, together with the improvement on the related optical elements. (author) 84 refs

  6. Non-destructive trace element microanalysis of as-received cometary nucleus samples using synchrotron x ray fluorescence

    International Nuclear Information System (INIS)

    Sutton, S.R.

    1989-01-01

    The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique

  7. Time-resolved X-ray transmission microscopy on magnetic microstructures; Zeitaufloesende Roentgentransmissionsmikroskopie an magnetischen Mikrostrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Puzic, Aleksandar

    2007-10-23

    Three excitation schemes were designed for stroboscopic imaging of magnetization dynamics with time-resolved magnetic transmission X-ray microscopy (TR-MTXM). These techniques were implemented into two types of X-ray microscopes, namely the imaging transmission X-ray microscope (ITXM) and the scanning transmission X-ray microscope (STXM), both installed at the electron storage ring of the Advanced Light Source in Berkeley, USA. Circular diffraction gratings (Fresnel zone plates) used in both microscopes as focusing and imaging elements presently allow for lateral resolution down to 30 nm. Magnetic imaging is performed by using the X-ray magnetic circular dichroism (XMCD) as element specific contrast mechanism. The developed methods have been successfully applied to the experimental investigation of magnetization dynamics in ferromagnetic microstructures. A temporal resolution well below 100 ps was achieved. A conventional pump-probe technique was implemented first. The dynamic response of the magnetization excited by a broadband pulsed magnetic field was imaged spatially resolved using focused X-ray flashes. As a complementary method, the spatially resolved ferromagnetic resonance (SR-FMR) technique was developed for experimental study of magnetization dynamics in the frequency domain. As a third excitation mode, the burst excitation was implemented. The performance and efficiency of the developed methods have been demonstrated by imaging the local magnetization dynamics in laterally patterned ferromagnetic thin-film elements and three-layer stacks. The existence of multiple eigenmodes in the excitation spectra of ferromagnetic microstructures has been verified by using the pump-probe technique. Magnetostatic spin waves were selectively excited and detected with a time resolution of 50 ps using the SR-FMR technique. Thorough analysis of 20 in most cases independently prepared samples has verified that vortices which exhibit a low-amplitude switching of their core

  8. Time-resolved X-ray transmission microscopy on magnetic microstructures

    International Nuclear Information System (INIS)

    Puzic, Aleksandar

    2007-01-01

    Three excitation schemes were designed for stroboscopic imaging of magnetization dynamics with time-resolved magnetic transmission X-ray microscopy (TR-MTXM). These techniques were implemented into two types of X-ray microscopes, namely the imaging transmission X-ray microscope (ITXM) and the scanning transmission X-ray microscope (STXM), both installed at the electron storage ring of the Advanced Light Source in Berkeley, USA. Circular diffraction gratings (Fresnel zone plates) used in both microscopes as focusing and imaging elements presently allow for lateral resolution down to 30 nm. Magnetic imaging is performed by using the X-ray magnetic circular dichroism (XMCD) as element specific contrast mechanism. The developed methods have been successfully applied to the experimental investigation of magnetization dynamics in ferromagnetic microstructures. A temporal resolution well below 100 ps was achieved. A conventional pump-probe technique was implemented first. The dynamic response of the magnetization excited by a broadband pulsed magnetic field was imaged spatially resolved using focused X-ray flashes. As a complementary method, the spatially resolved ferromagnetic resonance (SR-FMR) technique was developed for experimental study of magnetization dynamics in the frequency domain. As a third excitation mode, the burst excitation was implemented. The performance and efficiency of the developed methods have been demonstrated by imaging the local magnetization dynamics in laterally patterned ferromagnetic thin-film elements and three-layer stacks. The existence of multiple eigenmodes in the excitation spectra of ferromagnetic microstructures has been verified by using the pump-probe technique. Magnetostatic spin waves were selectively excited and detected with a time resolution of 50 ps using the SR-FMR technique. Thorough analysis of 20 in most cases independently prepared samples has verified that vortices which exhibit a low-amplitude switching of their core

  9. Transmission x-ray microscopy at Diamond-Manchester I13 Imaging Branchline

    Energy Technology Data Exchange (ETDEWEB)

    Vila-Comamala, Joan, E-mail: joan.vila.comamala@gmail.com; Wagner, Ulrich; Bodey, Andrew J.; Garcia-Fernandez, Miryam; Rau, Christoph [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Bosgra, Jeroen; David, Christian [Paul Scherrer Institut, 5232 PSI-Villigen (Switzerland); Eastwood, David S. [Manchester X-ray Imaging Facility, School of Materials, University of Manchester, Manchester M13 9PL, UK and Research Complex at Harwell, Harwell Campus, Didcot OX11 0FA (United Kingdom)

    2016-01-28

    Full-field Transmission X-ray Microscopy (TXM) has been shown to be a powerful method for obtaining quantitative internal structural and chemical information from materials at the nanoscale. The installation of a Full-field TXM station will extend the current microtomographic capabilities of the Diamond-Manchester I13 Imaging Branchline at Diamond Light Source (UK) into the sub-100 nm spatial resolution range using photon energies from 8 to 14 keV. The dedicated Full-field TXM station will be built in-house with contributions of Diamond Light Source support divisions and via collaboration with the X-ray Optics Group of Paul Scherrer Institut (Switzerland) which will develop state-of-the-art diffractive X-ray optical elements. Preliminary results of the I13 Full-field TXM station are shown. The Full-field TXM will become an important Diamond Light Source direct imaging asset for material science, energy science and biology at the nanoscale.

  10. Transmission x-ray microscopy at Diamond-Manchester I13 Imaging Branchline

    International Nuclear Information System (INIS)

    Vila-Comamala, Joan; Wagner, Ulrich; Bodey, Andrew J.; Garcia-Fernandez, Miryam; Rau, Christoph; Bosgra, Jeroen; David, Christian; Eastwood, David S.

    2016-01-01

    Full-field Transmission X-ray Microscopy (TXM) has been shown to be a powerful method for obtaining quantitative internal structural and chemical information from materials at the nanoscale. The installation of a Full-field TXM station will extend the current microtomographic capabilities of the Diamond-Manchester I13 Imaging Branchline at Diamond Light Source (UK) into the sub-100 nm spatial resolution range using photon energies from 8 to 14 keV. The dedicated Full-field TXM station will be built in-house with contributions of Diamond Light Source support divisions and via collaboration with the X-ray Optics Group of Paul Scherrer Institut (Switzerland) which will develop state-of-the-art diffractive X-ray optical elements. Preliminary results of the I13 Full-field TXM station are shown. The Full-field TXM will become an important Diamond Light Source direct imaging asset for material science, energy science and biology at the nanoscale

  11. Transmission x-ray microscopy at Diamond-Manchester I13 Imaging Branchline

    Science.gov (United States)

    Vila-Comamala, Joan; Bosgra, Jeroen; Eastwood, David S.; Wagner, Ulrich; Bodey, Andrew J.; Garcia-Fernandez, Miryam; David, Christian; Rau, Christoph

    2016-01-01

    Full-field Transmission X-ray Microscopy (TXM) has been shown to be a powerful method for obtaining quantitative internal structural and chemical information from materials at the nanoscale. The installation of a Full-field TXM station will extend the current microtomographic capabilities of the Diamond-Manchester I13 Imaging Branchline at Diamond Light Source (UK) into the sub-100 nm spatial resolution range using photon energies from 8 to 14 keV. The dedicated Full-field TXM station will be built in-house with contributions of Diamond Light Source support divisions and via collaboration with the X-ray Optics Group of Paul Scherrer Institut (Switzerland) which will develop state-of-the-art diffractive X-ray optical elements. Preliminary results of the I13 Full-field TXM station are shown. The Full-field TXM will become an important Diamond Light Source direct imaging asset for material science, energy science and biology at the nanoscale.

  12. An environmental sample chamber for reliable scanning transmission x-ray microscopy measurements under water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Stephen T.; Nigge, Pascal; Prakash, Shruti; Gilles, Mary K. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Laskin, Alexander; Wang, Bingbing [William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Tyliszczak, Tolek [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Leone, Stephen R. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Chemistry and Department of Physics, University of California, Berkeley, California 94720 (United States)

    2013-07-15

    We have designed, fabricated, and tested a compact gas-phase reactor for performing in situ soft x-ray scanning transmission x-ray microscopy (STXM) measurements. The reactor mounts directly to the existing sample holder used in the majority of STXM instruments around the world and installs with minimal instrument reconfiguration. The reactor accommodates many gas atmospheres, but was designed specifically to address the needs of measurements under water vapor. An on-board sensor measures the relative humidity and temperature inside the reactor, minimizing uncertainties associated with measuring these quantities outside the instrument. The reactor reduces x-ray absorption from the process gas by over 85% compared to analogous experiments with the entire STXM instrument filled with process gas. Reduced absorption by the process gas allows data collection at full instrumental resolution, minimizes radiation dose to the sample, and results in much more stable imaging conditions. The reactor is in use at the STXM instruments at beamlines 11.0.2 and 5.3.2.2 at the Advanced Light Source.

  13. Monte Carlo Simulation of Complete X-Ray Spectra for Use in Scanning Electron Microscopy Analysis

    International Nuclear Information System (INIS)

    Roet, David; Van Espen, Piet

    2003-01-01

    Full Text: The interactions of keV electrons and photons with matter can be simulated accurately with the aid of the Monte Carlo (MC) technique. In scanning electron microscopy x-ray analysis (SEM-EDX) such simulations can be used to perform quantitative analysis using a Reverse Monte Carlo method even if the samples have irregular geometry. Alternatively the MC technique can generate spectra of standards for use in quantization with partial least squares regression. The feasibility of these alternatives to the more classical ZAF or phi-rho-Z quantification methods has been proven already. In order to be applicable for these purposes the MC-code needs to generate accurately only the characteristic K and L x-ray lines, but also the Bremsstrahlung continuum, i.e. the complete x-ray spectrum need to be simulated. Currently two types of MC simulation codes are available. Programs like Electron Flight Simulator and CASINO simulate characteristic x-rays due to electron interaction in a fast and efficient way but lack provision for the simulation of the continuum. On the other hand, programs like EGS4, MCNP4 and PENELOPE, originally developed for high energy (MeV- GeV) applications, are more complete but difficult to use and still slow, even on todays fastest computers. We therefore started the development of a dedicated MC simulation code for use in quantitative SEM-EDX work. The selection of the most appropriate cross section for the different interactions will be discussed and the results obtained will be compared with those obtained with existing MC programs. Examples of the application of MC simulations for quantitative analysis of samples with various composition will be given

  14. X-ray holographic microscopy using the atomic-force microscope

    International Nuclear Information System (INIS)

    Howells, M.R.; Jacobsen, C.J.; Lindaas, S.

    1993-09-01

    The present authors have been seeking for some time to improve the resolution of holographic microscopy and have engaged in a continuing series of experiments using the X1A soft x-ray undulator beam line at Brookhaven. The principle strategy for pushing the resolution lower in these experiments has been the use of polymer resists as x-ray detectors and the primary goal has been to develop the technique to become useful for examining wet biological material. In the present paper the authors report on progress in the use of resist for high-spatial-resolution x-ray detection. This is the key step in in-line holography and the one which sets the ultimate limit to the image resolution. The actual recording has always been quite easy, given a high-brightness undulator source, but the difficult step was the readout of the recorded pattern. The authors describe in what follows how they have built a special instrument: an atomic force microscope (AFM) to read holograms recorded in resist. They report the technical reasons for building, rather than buying, such an instrument and they give details of the design and performance of the device. The authors also describe the first attempts to use the system for real holography and the authors show results of both recorded holograms and the corresponding reconstructed images. Finally, the authors try to analyze the effect that these advances are likely to have on the future prospects for success in applications of x-ray holography and the degree to which the other technical systems that are needed for such success are available or within reach

  15. Application of soft X-ray microscopy to environmental microbiology of hydrosphere

    International Nuclear Information System (INIS)

    Takemoto, K; Yoshimura, M; Namba, H; Kihara, H; Ohigashi, T; Inagaki, Y

    2017-01-01

    Microstructures of unprocessed filamentous cyanobacterium, Pseudanabaena foetida sp., producing a musty smell were observed using soft X-ray microscopy. Carbon-enriched structures and granules as well as oxygen-enriched granules which have been already reported were observed. Except for early log growth phase, the oxygen-enriched granules were observed. However, the carbon-enriched structures were observed throughout log growth phase. The result suggests there is a relationship between the oxygen-enriched granules and 2-methylisoborneol (2-MIB) productivity, since the 2-MIB productivity of each cell is increased depending on the culture period in log growth phase. (paper)

  16. Epitaxial clusters studied by synchrotron x-ray diffraction and scanning tunneling microscopy

    DEFF Research Database (Denmark)

    Nielsen, M.; Feidenhans'l, R.; Rasmussen, F.B.

    1998-01-01

    Nanoscale clusters are often formed during heteroepitaxial crystal growth. Misfit between the lattice parameter of the substrate and the adsorbate stimulates the formation of regular clusters with a characteristic size. The well-known "hut-clusters" formed during the growth of Ge on Si(001) are a...... similar to the "hut clusters". We demonstrate that X-ray diffraction in combination with scanning tunneling microscopy can be used to determine the fundamental properties of such clusters. (C) 1998 Elsevier Science B.V. All rights reserved....

  17. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Soo In; George, Graham N.; Lawrence, John R.; Kaminskyj, Susan G. W.; Dynes, James J.; Lai, Barry; Pickering, Ingrid J.

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.

  18. Analyzer-based x-ray phase-contrast microscopy combining channel-cut and asymmetrically cut crystals

    International Nuclear Information System (INIS)

    Hoennicke, M. G.; Cusatis, C.

    2007-01-01

    An analyzer-based x-ray phase-contrast microscopy (ABM) setup combining a standard analyzer-based x-ray phase-contrast imaging (ABI) setup [nondispersive 4-crystal setup (Bonse-Hart setup)] and diffraction by asymmetrically cut crystals is presented here. An attenuation-contrast microscopy setup with conventional x-ray source and asymmetrically cut crystals is first analyzed. Edge-enhanced effects attributed to phase jumps or refraction/total external reflection on the fiber borders were detected. However, the long exposure times and the possibility to achieve high contrast microscopies by using extremely low attenuation-contrast samples motivated us to assemble the ABM setup using a synchrotron source. This setup was found to be useful for low contrast attenuation samples due to the low exposure time, high contrast, and spatial resolution found. Moreover, thanks to the combination with the nondispersive ABI setup, the diffraction-enhanced x-ray imaging algorithm could be applied

  19. Advancement of Solidification Processing Technology Through Real Time X-Ray Transmission Microscopy: Sample Preparation

    Science.gov (United States)

    Stefanescu, D. M.; Curreri, P. A.

    1996-01-01

    Two types of samples were prepared for the real time X-ray transmission microscopy (XTM) characterization. In the first series directional solidification experiments were carried out to evaluate the critical velocity of engulfment of zirconia particles in the Al and Al-Ni eutectic matrix under ground (l-g) conditions. The particle distribution in the samples was recorded on video before and after the samples were directionally solidified. In the second series samples of the above two type of composites were prepared for directional solidification runs to be carried out on the Advanced Gradient Heating Facility (AGHF) aboard the space shuttle during the LMS mission in June 1996. X-ray microscopy proved to be an invaluable tool for characterizing the particle distribution in the metal matrix samples. This kind of analysis helped in determining accurately the critical velocity of engulfment of ceramic particles by the melt interface in the opaque metal matrix composites. The quality of the cast samples with respect to porosity and instrumented thermocouple sheath breakage or shift could be easily viewed and thus helped in selecting samples for the space shuttle experiments. Summarizing the merits of this technique it can be stated that this technique enabled the use of cast metal matrix composite samples since the particle location was known prior to the experiment.

  20. Evaluation of noise limits to improve image processing in soft X-ray projection microscopy.

    Science.gov (United States)

    Jamsranjav, Erdenetogtokh; Kuge, Kenichi; Ito, Atsushi; Kinjo, Yasuhito; Shiina, Tatsuo

    2017-03-03

    Soft X-ray microscopy has been developed for high resolution imaging of hydrated biological specimens due to the availability of water window region. In particular, a projection type microscopy has advantages in wide viewing area, easy zooming function and easy extensibility to computed tomography (CT). The blur of projection image due to the Fresnel diffraction of X-rays, which eventually reduces spatial resolution, could be corrected by an iteration procedure, i.e., repetition of Fresnel and inverse Fresnel transformations. However, it was found that the correction is not enough to be effective for all images, especially for images with low contrast. In order to improve the effectiveness of image correction by computer processing, we in this study evaluated the influence of background noise in the iteration procedure through a simulation study. In the study, images of model specimen with known morphology were used as a substitute for the chromosome images, one of the targets of our microscope. Under the condition that artificial noise was distributed on the images randomly, we introduced two different parameters to evaluate noise effects according to each situation where the iteration procedure was not successful, and proposed an upper limit of the noise within which the effective iteration procedure for the chromosome images was possible. The study indicated that applying the new simulation and noise evaluation method was useful for image processing where background noises cannot be ignored compared with specimen images.

  1. FIB preparation of a NiO Wedge-Lamella and STEM X-ray microanalysis for the determination of the experimental k(O-Ni) Cliff-Lorimer coefficient.

    Science.gov (United States)

    Armigliato, Aldo; Frabboni, Stefano; Gazzadi, Gian Carlo; Rosa, Rodolfo

    2013-02-01

    A method for the fabrication of a wedge-shaped thin NiO lamella by focused ion beam is reported. The starting sample is an oxidized bulk single crystalline, oriented, Ni commercial standard. The lamella is employed for the determination, by analytical electron microscopy at 200 kV of the experimental k(O-Ni) Cliff-Lorimer (G. Cliff & G.W. Lorimer, J Microsc 103, 203-207, 1975) coefficient, according to the extrapolation method by Van Cappellen (E. Van Cappellen, Microsc Microstruct Microanal 1, 1-22, 1990). The result thus obtained is compared to the theoretical k(O-Ni) values either implemented into the commercial software for X-ray microanalysis quantification of the scanning transmission electron microscopy/energy dispersive spectrometry equipment or calculated by the Monte Carlo method. Significant differences among the three values are found. This confirms that for a reliable quantification of binary alloys containing light elements, the choice of the Cliff-Lorimer coefficients is crucial and experimental values are recommended.

  2. Mass determination based on electron scattering in electron probe X-ray microanalysis of thin biological specimens

    International Nuclear Information System (INIS)

    Linders, P.W.J.

    1984-01-01

    This thesis describes the development of a method for mass determination of thin biological objects by quantitative electron microscopy. The practical realization of the mass determination consists of photographical recording with subsequent densitometry. (Auth.)

  3. Ultrastructural imaging and molecular modeling of live bacteria using soft x-ray contact microscopy with nanoseconds laser plasma radiation

    International Nuclear Information System (INIS)

    Kado, M.; Richardson, M.C.; Gabel, K.; Torres, D.; Rajyaguru, J.; Muszynski, M.J.

    1995-01-01

    Detection for clinical diagnosis and study of microbial cell is performed by a combination of low magnification optical microscopy and direct and indirect labeling techniques. Visual ultrastructural studies on subcellular organelles are possible with variations of electron microscopy (thin section, scanning and freeze fracture), although specimen preparation steps such as fixation, dehydration, resin embedding, ultra-thin sectioning, coating and staining are very specialized, extensive and may introduce artifacts in the original sample. The development of high resolution x-ray microscopy is a new technique well suited to observe the intact structure of a biological specimen at high resolution without any artifacts. Here, x ray images of the various live bacteria, such as Staphylococcus and Streptococcus, and micromolecule such as chromosomal DNA from Escherichia coli, and Lipopolysaccharide from Burkholderia cepacia, are obtained with soft x-ray contact microscopy. A compact tabletop type glass laser system is used to produce x rays from Al, Si, and Au targets. The PMMA photoresists are used to record x-ray images. An AFM (atomic force microscope) is used to reproduce the x-ray images from the developed photoresists. The performance of the 50 nm spatial resolutions are achieved and images are able to be discussed on the biological view

  4. PREFACE: 11th International Conference on X-ray Microscopy (XRM2012)

    Science.gov (United States)

    Xu, Hongjie; Wu, Ziyu; Tai, Renzhong

    2013-10-01

    The Eleventh International Conference on X-ray Microscopy (XRM2012) was held on 5-10 August 2012 at the Hope hotel in Shanghai. Historically, for the first time the XRM conference took place in China. The conference was jointly hosted by the Shanghai Synchrotron Radiation Facility (SSRF) and the National Synchrotron Radiation Laboratory (NSRL). The series of XRM conferences dates back to 1983 in Göttingen, Germany. Since the Zürich conference, XRM2008, it has been held every two years, showing its increasing popularity among the x-ray microscopy communities around the world. Research in the area of x-ray microscopy is advancing very fast with the development of synchrotron radiation techniques, especially the emergence of third generation light sources with low natural emittance which has significantly pushed forward the development of technologies and applications in this area. This has been fully demonstrated in presentations from this and previous XRM conferences. XRM2012 was attended by 295 people including 21 invited speakers, 53 contributing speakers, 55 students, and 13 industry exhibitors. Over 232 abstracts were submitted for oral or poster presentation and 56 original, peer-reviewed papers are published in these proceedings. The conference was sponsored by the Chinese Academy of Sciences (CAS) and the National Natural Science Foundation of China (11210301016/A0802), and three gold sponsors active in industrial and technological fields related to x-ray microscopy. An exhibition booth was offered free to Australia synchrotron, the host for XRM2014, to promote the next conference which will be held in Melbourne, Australia in 2014. An unforgettable memory for most conference participants might be the charming night cruise along Pujiang river which was part of the welcome reception on the first evening. The Werner Meyer-Ilse Award (WMIA) prize this year was awarded to Irene Zanette (TU-München) and Stephan Werner (HZB-Berlin), the former for her pioneering

  5. Recent progress of hard x-ray imaging microscopy and microtomography at BL37XU of SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshio, E-mail: yoshio@spring8.or.jp; Takeuchi, Akihisa; Terada, Yasuko; Uesugi, Kentaro [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Sayo, Hyogo 679-5198 (Japan); Mizutani, Ryuta [Department of Applied Biochemistry, Tokai University, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-01-28

    A hard x-ray imaging microscopy and microtomography system is now being developed at the beamline 37XU of SPring-8. In the latest improvement, a spatial resolution of about 50 nm is achieved in two-dimensional imaging at 6 keV x-ray energy using a Fresnel zone plate objective with an outermost zone width of 35 nm. In the tomographic measurement, a spatial resolution of about 100 nm is achieved at 8 keV using an x-ray guide tube condenser optic and a Fresnel zone plate objective with an outermost zone width of 50 nm.

  6. Microanalysis of metals in barbs of a snow petrel (Pagodroma Nivea) from the Antarctica using synchrotron radiation X-ray fluorescence.

    Science.gov (United States)

    Xie, Zhouqing; Zhang, Pengfei; Sun, Liguang; Xu, Siqi; Huang, Yuying; He, Wei

    2008-03-01

    For the first time synchrotron radiation X-ray fluorescence (SR-XRF) microanalysis was performed throughout the total length of 4 single barbs from the primaries and secondaries of a snow petrel (Pagodroma Nivea) collected in the Antarctica. Thirteen elements (S, Mg, K, Ca, Fe, Ni, Cu, Zn, Se, Sr, Ba, Hg and Pb) were detected somewhere in the barbs. Variations in levels of these elements within and among the barbs were obvious, indicating nonuniform microscale distributions. Factors influencing the fluctuations of the levels of the elements were investigated using a multivariate statistical analysis method. Five factors (F1 being associated with high loadings of Ca, Sr, and Ni, F2 with high loadings of Fe and Ba, F3 with high loadings of Se and Hg, F4 with high loadings of Ca and K, and F5 with high loadings of Zn and Pb) were found to explain about 80% of the total variance. Results from the factor analysis suggested external contamination of Fe, Ba, Pb, Zn and Hg on the feathers of the snow petrel.

  7. Microanalysis of metals in barbs of a snow petrel (Pagodroma Nivea) from the Antarctica using synchrotron radiation X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Xie Zhouqing [Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China)], E-mail: zqxie@ustc.edu.cn; Zhang Pengfei [Department of Earth and Atmospheric Sciences, City College of New York, New York, NY 10031 (United States); Sun Liguang; Xu Siqi [Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang Yuying; He Wei [Institute of High Energy Physics, Chinese Academy of Sciences, 100039 Beijing (China)

    2008-03-15

    For the first time synchrotron radiation X-ray fluorescence (SR-XRF) microanalysis was performed throughout the total length of 4 single barbs from the primaries and secondaries of a snow petrel (Pagodroma Nivea) collected in the Antarctica. Thirteen elements (S, Mg, K, Ca, Fe, Ni, Cu, Zn, Se, Sr, Ba, Hg and Pb) were detected somewhere in the barbs. Variations in levels of these elements within and among the barbs were obvious, indicating nonuniform microscale distributions. Factors influencing the fluctuations of the levels of the elements were investigated using a multivariate statistical analysis method. Five factors (F1 being associated with high loadings of Ca, Sr, and Ni, F2 with high loadings of Fe and Ba, F3 with high loadings of Se and Hg, F4 with high loadings of Ca and K, and F5 with high loadings of Zn and Pb) were found to explain about 80% of the total variance. Results from the factor analysis suggested external contamination of Fe, Ba, Pb, Zn and Hg on the feathers of the snow petrel.

  8. Microanalysis of metals in barbs of a snow petrel (Pagodroma Nivea) from the Antarctica using synchrotron radiation X-ray fluorescence

    International Nuclear Information System (INIS)

    Xie Zhouqing; Zhang Pengfei; Sun Liguang; Xu Siqi; Huang Yuying; He Wei

    2008-01-01

    For the first time synchrotron radiation X-ray fluorescence (SR-XRF) microanalysis was performed throughout the total length of 4 single barbs from the primaries and secondaries of a snow petrel (Pagodroma Nivea) collected in the Antarctica. Thirteen elements (S, Mg, K, Ca, Fe, Ni, Cu, Zn, Se, Sr, Ba, Hg and Pb) were detected somewhere in the barbs. Variations in levels of these elements within and among the barbs were obvious, indicating nonuniform microscale distributions. Factors influencing the fluctuations of the levels of the elements were investigated using a multivariate statistical analysis method. Five factors (F1 being associated with high loadings of Ca, Sr, and Ni, F2 with high loadings of Fe and Ba, F3 with high loadings of Se and Hg, F4 with high loadings of Ca and K, and F5 with high loadings of Zn and Pb) were found to explain about 80% of the total variance. Results from the factor analysis suggested external contamination of Fe, Ba, Pb, Zn and Hg on the feathers of the snow petrel

  9. Investigation of Optically Modified YBa2Cu3O7–x Films by Means of X-ray Microanalysis Technique

    Directory of Open Access Journals (Sweden)

    Artūras JUKNA

    2014-06-01

    Full Text Available This work reports on investigation of remnant oxygen content in optically-modified regions of 0.3-mm-thick YBa2Cu3O7–x films, patterned by a laser-writing technique in an inert ambient gas atmosphere at room temperature. A laser-treated region of weak superconductivity with dimensions depending on the size of a laser spot, laser power, and initial content of oxygen is characterized by a lower oxygen content, weaker critical magnetic field, and suppressed both the superconducting critical temperature and the critical current density, as compared to the laser untreated regions. Optically induced (cw-laser, 532-nm-wavelength heating strongly affects a non-uniform distribution of remnant oxygen content in the film, depending both on the optical power and beam’s scanning velocity. A level of oxygen depletion and the size of the oxygen-deficient region have been directly estimated from scanning-electron-microscope spectra with the X-ray microanalysis technique. The results of our measurements were compared with results extracted from electric measurements, assuming a correlation between the remnant oxygen content and the electric transport properties of oxygen-deficient YBa2Cu3O7–x films. DOI: http://dx.doi.org/10.5755/j01.ms.20.2.6323

  10. Single-particle characterization of urban aerosol particles collected in three Korean cites using low-Z electron probe X-ray microanalysis.

    Science.gov (United States)

    Ro, Chul-Un; Kim, HyeKyeong; Oh, Keun-Young; Yea, Sun Kyung; Lee, Chong Bum; Jang, Meongdo; Van Grieken, René

    2002-11-15

    A recently developed single-particle analytical technique, called low-Z electron probe X-ray microanalysis (low-Z EPMA), was applied to characterize urban aerosol particles collected in three cities of Korea (Seoul, CheongJu, and ChunCheon) on single days in the winter of 1999. In this study, it is clearly demonstrated that the low-Z EPMA technique can provide detailed and quantitative information on the chemical composition of particles in the urban atmosphere. The collected aerosol particles were analyzed and classified on the basis of their chemical species. Various types of particles were identified, such as soil-derived, carbonaceous, marine-originated, and anthropogenic particles. In the sample collected in Seoul, carbonaceous, aluminosilicates, silicon dioxide, and calcium carbonate aerosol particles were abundantly encountered. In the CheongJu and ChunCheon samples, carbonaceous, aluminosilicates, reacted sea salts, and ammonium sulfate aerosol particles were often seen. However, in the CheongJu sample, ammonium sulfate particles were the most abundant in the fine fraction. Also, calcium sulfate and nitrate particles were significantly observed. In the ChunCheon sample, organic particles were the most abundant in the fine fraction. Also, sodium nitrate particles were seen at high levels. The ChunCheon sample seemed to be strongly influenced by sea-salt aerosols originating from the Yellow Sea, which is located about 115 km away from the city.

  11. X-ray microanalysis of Plasmodium falciparum and infected red blood cells: effects of qinghaosu and chloroquine on potassium, sodium, and phosphorus composition

    International Nuclear Information System (INIS)

    Lee, P.; Ye, Z.; Van Dyke, K.; Kirk, R.G.

    1988-01-01

    Cryosections of human red blood cells infected by Plasmodium falciparum were analyzed by energy dispersive x-ray microanalysis to determine the elemental composition of the parasites and their red cell hosts separately. The effects of two antimalarial drugs, qinghaosu and chloroquine, on potassium, sodium, and phosphorus concentrations were studied. Malarial infection causes a decrease in potassium concentration and an increase in sodium concentration in the host red cells. The drastic change in the cation composition, however, occurs only in red cells infected by late stage parasites (late trophozoite and schizont). Red cells infected by early stage parasites (ring stage) show only small changes in sodium concentration. Furthermore, the noninfected red cells in parasitized cultures show no difference in composition from those of normal red cells. Treatment of the parasitized cultures with qinghaosu (10(-6) M) or chloroquine (10(-6) M) for 8 hr causes phosphorus concentration of both early and late parasites to decrease. An 8 hr treatment with qinghaosu also produces a reduction in potassium and an increase in sodium concentrations in early and late parasites. In contrast, 8 hr treatment with chloroquine only causes a change in the sodium and potassium concentrations of the late stage parasites and does not affect the early stage parasites

  12. From electron microscopy to X-ray crystallography: molecular-replacement case studies

    International Nuclear Information System (INIS)

    Xiong, Yong

    2008-01-01

    Test studies have been conducted on five crystal structures of large molecular assemblies, in which EM maps are used as models for structure solution by molecular replacement using various standard MR packages such as AMoRe, MOLREP and Phaser. Multi-component molecular complexes are increasingly being tackled by structural biology, bringing X-ray crystallography into the purview of electron-microscopy (EM) studies. X-ray crystallography can utilize a low-resolution EM map for structure determination followed by phase extension to high resolution. Test studies have been conducted on five crystal structures of large molecular assemblies, in which EM maps are used as models for structure solution by molecular replacement (MR) using various standard MR packages such as AMoRe, MOLREP and Phaser. The results demonstrate that EM maps are viable models for molecular replacement. Possible difficulties in data analysis, such as the effects of the EM magnification error, and the effect of MR positional/rotational errors on phase extension are discussed

  13. Objective for EUV microscopy, EUV lithography, and x-ray imaging

    Science.gov (United States)

    Bitter, Manfred; Hill, Kenneth W.; Efthimion, Philip

    2016-05-03

    Disclosed is an imaging apparatus for EUV spectroscopy, EUV microscopy, EUV lithography, and x-ray imaging. This new imaging apparatus could, in particular, make significant contributions to EUV lithography at wavelengths in the range from 10 to 15 nm, which is presently being developed for the manufacturing of the next-generation integrated circuits. The disclosure provides a novel adjustable imaging apparatus that allows for the production of stigmatic images in x-ray imaging, EUV imaging, and EUVL. The imaging apparatus of the present invention incorporates additional properties compared to previously described objectives. The use of a pair of spherical reflectors containing a concave and convex arrangement has been applied to a EUV imaging system to allow for the image and optics to all be placed on the same side of a vacuum chamber. Additionally, the two spherical reflector segments previously described have been replaced by two full spheres or, more precisely, two spherical annuli, so that the total photon throughput is largely increased. Finally, the range of permissible Bragg angles and possible magnifications of the objective has been largely increased.

  14. X-ray photoemission electron microscopy for the study of semiconductor materials

    International Nuclear Information System (INIS)

    Anders, Simone; Stammler, Thomas; Padmore, Howard A.; Terminello, Louis J.; Jankowski, Alan F.; Stoehr, Joachim; Diaz, Javier; Cossy-Favre, Aline; Singh, Sangeet

    1998-01-01

    Photoemission Electron Microscopy using X-rays (X-PEEM) is a novel combination of two established materials analysis techniques--PEEM using UV light, and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. This combination allows the study of elemental composition and bonding structure of the sample by NEXAFS spectroscopy with a high spatial resolution given by the microscope. A simple, two lens, 10 kV operation voltage PEEM has been used at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (ALS) in Berkeley to study various problems including materials of interest for the semiconductor industry. In the present paper we give a short overview over the method and the instrument which was used, and describe in detail a number of applications. These applications include the study of the different phases of titanium disilicide, various phases of boron nitride, and the analysis of small particles. A brief outlook is given on possible new fields of application of the PEEM technique, and the development of new PEEM instruments

  15. Lithographically-fabricated channel arrays for confocal x-ray fluorescence microscopy and XAFS

    International Nuclear Information System (INIS)

    Woll, Arthur R; Agyeman-Budu, David; Choudhury, Sanjukta; Coulthard, Ian; Hallin, Emil; Finnefrock, Adam C; Gordon, Robert; Mass, Jennifer

    2014-01-01

    Confocal X-ray Fluorescence Microscopy (CXRF) employs overlapping focal regions of two x-ray optics—a condenser and collector—to directly probe a 3D volume. The minimum-achievable size of this probe volume is limited by the collector, for which polycapillaries are generally the optic of choice. Recently, we demonstrated an alternative collection optic for CXRF, consisting of an array of micron-scale collimating channels, etched in silicon, and arranged like spokes of a wheel directed towards a single source position. The optic, while successful, had a working distance of only 0.2 mm and exhibited relatively low total collection efficiency, limiting its practical application. Here, we describe a new design in which the collimating channels are formed by a staggered array of pillars whose side-walls taper away from the channel axis. This approach improves both collection efficiency and working distance, while maintaining excellent spatial resolution. We illustrate these improvements with confocal XRF data obtained at the Cornell High Energy Synchrotron Source (CHESS) and the Advanced Photon Source (APS) beamline 20-ID-B.

  16. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials.

    Science.gov (United States)

    Du, Ming; Jacobsen, Chris

    2018-01-01

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Finally, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Fine surface structure of unfixed and hydrated macrophages observed by laser-plasma x-ray contact microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Yoshimasa; Friedman, Herman; Yoshimura, Hideyuki; Kinjo, Yasuhito; Shioda, Seiji; Debari, Kazuhiro; Shinohara, Kunio; Rajyaguru, Jayshree; Richardson, Martin

    2000-01-01

    A compact, high-resolution, laser-plasma, x-ray contact microscope using a table-top Nd:glass laser system has been developed and utilized for the analysis of the surface structure of live macrophages. Fine fluffy surface structures of murine peritoneal macrophages, which were live, hydrolyzed and not sliced and stained, were observed by the x-ray microscope followed by analysis using an atomic force microscopy. In order to compare with other techniques, a scanning electron microscopy (SEM) was utilized to observe the surface structure of the macrophages. The SEM offered a fine whole cell image of the same macrophages, which were fixed and dehydrated, but the surfaces were ruffled and different from that of x-ray images. A standard light microscope was also utilized to observe the shape of live whole macrophages. Light microscopy showed some fluffy surface structures of the macrophages, but the resolution was too low to observe the fine structures. Thus, the findings of fine fluffy surface structures of macrophages by x-ray microscopy provide valuable information for studies of phagocytosis, cell spreading and adherence, which are dependent on the surface structure of macrophages. Furthermore, the present study also demonstrates the usefulness of x-ray microscopy for analysis of structures of living cells

  18. Transmission X-ray microscopy (TXM) reveals the nanostructure of a smectite gel.

    Science.gov (United States)

    Zbik, Marek S; Martens, Wayde N; Frost, Ray L; Song, Yen-Fang; Chen, Yi-Ming; Chen, Jian-Hua

    2008-08-19

    The unusual behavior of smectites, the ability to change volume when wetted (swelling) or dried (shrinking), makes soil rich in smectites very unstable and dangerous for the building industry because of the movement of building foundations and poor slope stability. These macroscopic properties are dominated by the structural arrangement of the smectites' finest fraction. Here, we show in three dimensions how the swelling phenomenon in smectite, caused by a combination of hydratation and electrostatic forces, may expand the dry smectite volume not 10-fold, as previously thought, but to more than 1000-fold. A new technique, transmission X-ray microscopy, makes it possible to investigate the internal structure and 3-D tomographic reconstruction of clay aggregates. This reveals, for the first time, the smectite gel arrangement in the voluminous cellular tactoid structure within a natural aqueous environment.

  19. Study of the creep of germanium bi-crystals by X ray topography and electronic microscopy

    International Nuclear Information System (INIS)

    Gay, Marie-Odile

    1981-01-01

    This research thesis addresses the study of the microscopic as well as macroscopic aspect of the role of grain boundary during deformation, by studying the creep of Germanium bi-crystals. The objective was to observe interactions of network dislocations with the boundary as well as the evolution of dislocations in each grain. During the first stages of deformation, samples have been examined by X ray topography, a technique which suits well the observation of low deformed samples, provided their initial dislocation density is very low. At higher deformation, more conventional techniques of observation of sliding systems and electronic microscopy have been used. After some general recalls, the definition of twin boundaries and of their structure in terms of dislocation, a look at germanium deformation, and an overview of works performed on bi-crystals deformation, the author presents the experimental methods and apparatuses. He reports and discusses the obtained results at the beginning of deformation as well as during next phases

  20. Characterization of Maghsail meteorite from Oman by Moessbauer spectroscopy, X-ray diffraction and petrographic microscopy

    International Nuclear Information System (INIS)

    Al-Rawas, A. D.; Gismelseed, A. M.; Al-Kathiri, A. F.; Elzain, M. E.; Yousif, A. A.; Al-Kathiri, S. B.; Widatallah, H. M.; Abdalla, S. B.

    2008-01-01

    The meteorite found at Maghsail (16 55 70 N-53 46 69 E) west of Salalah Oman, has been studied by 57 Fe Moessbauer spectroscopy, X-diffractometry and petrographic microscopy. In the polished section the meteorite exhibits a porphyritic texture consisting of pyroxene and olivine phenocrysts in a fine to medium grained ground mass in addition to minor phases possibly skeletal chromite, troilite and minute amount of iron oxides. X-ray diffraction supports the existence of these compounds. The Moessbauer spectra of powdered material from the core of the rock at 298 K and 78 K exhibit a mixture of magnetic and paramagnetic components. The paramagnetic components are assigned to the silicate minerals olivine and pyroxene. On the other hand, the magnetic spectra reveal the presence of troilite and iron oxides. The petrographic analyses indicate that the iron oxides are terrestrial alteration products.

  1. Probing chemistry within the membrane structure of wood with soft X-ray spectral microscopy

    International Nuclear Information System (INIS)

    Cody, George D.

    2000-01-01

    Scanning Transmission Soft X-ray spectral microscopy on Carbon's 1s absorption edge reveals the distribution of structural biopolymers within cell membrane regions of modern cedar and oak. Cellulose is extremely susceptible to beam damage. Spectroscopic studies of beam damage reveals that the chemical changes resulting from secondary electron impact may be highly selective and is consistent with hydroxyl eliminations and structural rearrangement of pyranose rings in alpha-cellulose to hydroxyl substituted γ pyrones. A study of acetylated cellulose demonstrates significantly different chemistry; principally massive decarboxylation. Defocusing the beam to a 2 μm spot size allows for the acquisition of 'pristine' cellulose spectra. Spectral deconvolution is used to assess the distribution of lignin and cellulose in the different regions of the cell membrane. Using the intensity of the hydroxylated aromatic carbons 1s-π * transition, the ratio of coniferyl and syringyl based lignin within the middle lamellae and secondary cell wall of oak, an angiosperm can be determined

  2. Lateral spin transfer torque induced magnetic switching at room temperature demonstrated by x-ray microscopy

    Science.gov (United States)

    Buhl, M.; Erbe, A.; Grebing, J.; Wintz, S.; Raabe, J.; Fassbender, J.

    2013-10-01

    Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nanoelectronic components. Therefore, new concepts for controlling the state of nanomagnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar. In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM).

  3. SEM and x-ray microanalysis of cellular differentiation in Sea Urchin Embryos: a frozen hydrated study

    Energy Technology Data Exchange (ETDEWEB)

    Klein, S.B.

    1985-12-01

    Quantitative studies of major chemical element distribution among individual differentiating cells were attempted using scanning electron microscopy. Frozen hydrated embryos of the sea urchin Strongelocentrotus purpuratus were examined at three stages: blastula, mesenchyme blastula, and early gastrula. The blastocoel matrix contained large beads of approximately 1 ..mu..m diameter. The cells of the archenteron lacked well defined cell boundaries. Characteristic levels of beam damage and charging provided structural information. The primary mesenchyme cells within the blastocoel were particularly susceptible to both effects. Damaging effects were noted in material stored in liquid nitrogen longer than three months. Ice crystal growth, shrinkage, elemental shift, density changes and charge accumulation may take place in these stored specimens. 151 refs., 50 figs., 3 tabs.

  4. SEM and x-ray microanalysis of cellular differentiation in Sea Urchin Embryos: a frozen hydrated study

    International Nuclear Information System (INIS)

    Klein, S.B.

    1985-12-01

    Quantitative studies of major chemical element distribution among individual differentiating cells were attempted using scanning electron microscopy. Frozen hydrated embryos of the sea urchin Strongelocentrotus purpuratus were examined at three stages: blastula, mesenchyme blastula, and early gastrula. The blastocoel matrix contained large beads of approximately 1 μm diameter. The cells of the archenteron lacked well defined cell boundaries. Characteristic levels of beam damage and charging provided structural information. The primary mesenchyme cells within the blastocoel were particularly susceptible to both effects. Damaging effects were noted in material stored in liquid nitrogen longer than three months. Ice crystal growth, shrinkage, elemental shift, density changes and charge accumulation may take place in these stored specimens. 151 refs., 50 figs., 3 tabs

  5. Application of X-ray emission techniques for monitoring environmental pollution

    International Nuclear Information System (INIS)

    Bernasconi, G.; Danesi, P.R.; Dargie, M.; Haselberger, N.; Markowicz, A.; Tajani, A.

    1997-01-01

    X-ray emission techniques are versatile and powerful methods used for multielement non-destructive analysis. They include X-ray fluorescence (XRF), particle induced X-ray emission (PIXE), scanning electron microscopy combined with X-ray spectrometry and electron probe microanalysis (EPMA). Since many years the IAEA has utilised and promoted these techniques for the analysis of environmental, biological and geological samples. In this paper recent progress at our laboratory in selected aspects related to the application of X-ray emission techniques is briefly overviewed. (authors)

  6. Single-particle characterization of 'Asian Dust' certified reference materials using low-Z particle electron probe X-ray microanalysis

    International Nuclear Information System (INIS)

    Hwang, Hee Jin; Ro, Chul-Un

    2006-01-01

    In order to clearly elucidate whether Asian Dust particles experience chemical modification during long-range transport, it is necessary to characterize soil particles where Asian Dust particles originate. If chemical compositions of source soil particles are well characterized, then chemical compositions of Asian Dust particles collected outside source regions can be compared with those of source soil particles in order to find out the occurrence of chemical modification. Asian Dust particles are chemically and morphologically heterogeneous, and thus the average composition and the average aerodynamic diameter (obtainable by bulk analysis) are not much relevant if the chemical modifications of the particles must be followed. The major elemental composition and abundance of the particle types that are potential subjects of chemical modification can only be obtained using single-particle analysis. A single particle analytical technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA), was applied to characterize two certified reference materials (CRMs) for Asian Dust particles, which were collected from a loess plateau area and a desert of China. The CRMs were defined by bulk analyses to provide certified concentrations for 13 chemical elements. Using the low-Z particle EPMA technique, the concentrations of major chemical species such as aluminosilicates, SiO 2 , CaCO 3 , and carbonaceous species were obtained. Elemental concentrations obtained by the low-Z particle EPMA are close to the certified values, with considering that the single particle and bulk analyses employ very different approaches. There are still some discrepancies between those concentration values, resulting from analyses of particles with different sizes, different sample amounts analyzed, and uncertainties involved in the single particle analysis

  7. X-ray micro-analysis of the mineralization patterns in developing enamel in hamster tooth germs exposed to fluoride in vitro during the secretory phase of amelogenesis

    International Nuclear Information System (INIS)

    Lyaruu, D.M.; Blijleven, N.; Hoeben-Schornagel, K.; Bronckers, A.L.; Woeltgens, J.H.

    1989-01-01

    The developing enamel from three-day-old hamster first maxillary (M1) molar tooth germs exposed to fluoride (F-) in vitro was analyzed for its mineral content by means of the energy-dispersive x-ray microanalysis technique. The aim of this study was to obtain semi-quantitative data on the F(-)-induced hypermineralization patterns in the enamel and to confirm that the increase in electron density observed in micrographs of F(-)-treated enamel is indeed due to an increase in mineral content in the fluorotic enamel. The tooth germs were explanted during the early stages of secretory amelogenesis and initially cultured for 24 hr in the presence of 10 ppm F- in the culture medium. The germs were then cultured for another 24 hr without F-. In order to compare the ultrastructural results directly with the microprobe data, we used the same specimens for both investigations. The net calcium counts (measurement minus background counts) in the analyses were used as a measure of the mineral content in the enamel. The aprismatic pre-exposure enamel, deposited in vivo before the onset of culture, was the most hypermineralized region in the fluorotic enamel, i.e., it contained the highest amount of calcium measured. The degree of the F(-)-induced hypermineralization gradually decreased (but was not abolished) in the more mature regions of the enamel. The unmineralized enamel matrix secreted during the initial F- treatment in vitro mineralized during the subsequent culture without F-. The calcium content in this enamel layer was in the same order of magnitude as that recorded for the newly deposited enamel in control tooth germs cultured without F-

  8. Hard-x-ray phase-imaging microscopy using the self-imaging phenomenon of a transmission grating

    International Nuclear Information System (INIS)

    Yashiro, Wataru; Harasse, Sebastien; Momose, Atsushi; Takeuchi, Akihisa; Suzuki, Yoshio

    2010-01-01

    We report on a hard-x-ray imaging microscope consisting of a lens, a sample, and a transmission grating. After the theoretical framework of self-imaging phenomenon by the grating in the system is presented, equations for the electric field on the image plane are derived for ideal and real lenses and an equation for the intensity on the image plane for partially coherent illumination is derived. The equations are simple and similar to those applying to a projection microscope consisting of a transmission grating except that there is no defocusing effect, regardless of whether the grating is in front of or behind the lens. This means that x-ray phase-imaging microscopy can be done without the defocusing effect. It is also shown that, by resolving the self-image on the image plane, high-sensitive x-ray phase-imaging microscopy can be attained without degradation in the spatial resolution due to diffraction by the grating. Experimental results obtained using partially coherent illumination from a synchrotron x-ray source confirm that hard-x-ray phase-imaging microscopy can be quantitatively performed with high sensitivity and without the spatial resolution degradation.

  9. X-ray microscopy: An emerging technique for semiconductor microstructure characterization

    International Nuclear Information System (INIS)

    Padmore, H.A.

    1998-05-01

    The advent of third generation synchrotron radiation x-ray sources, such as the Advanced Light Source (ALS) at Berkeley have enabled the practical realization of a wide range of new techniques in which mature chemical or structural probes such as x-ray photoelectron spectroscopy (XPS) and x-ray diffraction are used in conjunction with microfocused x-ray beams. In this paper the characteristics of some of these new microscopes are described, particularly in reference to their applicability to the characterization of semiconductor microstructures

  10. Evaluation of bent-crystal x-ray backlighting and microscopy techniques for the Sandia Z machine.

    Science.gov (United States)

    Sinars, Daniel B; Bennett, Guy R; Wenger, David F; Cuneo, Michael E; Porter, John L

    2003-07-01

    X-ray backlighting and microscopy systems for the 1-10-keV range based on spherically or toroidally bent crystals are discussed. These systems are ideal for use on the Sandia Z machine, a megajoule-class x-ray facility. Near-normal-incidence crystal microscopy systems have been shown to be more efficient than pinhole cameras with the same spatial resolution and magnification [Appl. Opt. 37, 1784 (1998)]. We show that high-resolution (< or = 10 microm) x-ray backlighting systems using bent crystals can be more efficient than analogous point-projection imaging systems. Examples of bent-crystal-backlighting results that demonstrate 10-microm resolution over a 20-mm field of view are presented.

  11. Evaluation of bent-crystal x-ray backlighting and microscopy techniques for the Sandia Z machine

    International Nuclear Information System (INIS)

    Sinars, Daniel B.; Wenger, David F.; Cuneo, Michael E.; Porter, John L.; Bennett, Guy R.

    2003-01-01

    X-ray backlighting and microscopy systems for the 1-10-keV range based on spherically or toroidally bent crystals are discussed. These systems are ideal for use on the Sandia Z machine, a megajoule-class x-ray facility. Near-normal-incidence crystal microscopy systems have been shown to be more efficient than pinhole cameras with the same spatial resolution and magnification [Appl. Opt. 37, 1784 (1998)]. We show that high-resolution (≤10 μm) x-ray backlighting systems using bent crystals can be more efficient than analogous point-projection imaging systems. Examples of bent-crystal-backlighting results that demonstrate 10-μm resolution over a 20-mm field of view are presented

  12. Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Hendrik; Andersson, Klas J.; Araki, Tohru; Benzerara, Karim; Brown, Gordon E.; Dynes, Jay J.; Ghosal, Sutapa; Gilles, Mary K.; Hansen, Hans C.; Hemminger, J. C.; Hitchcock, Adam P.; Ketteler, Guido; Kilcoyne, Arthur L.; Kneedler, Eric M.; Lawrence, John R.; Leppard, Gary G.; Majzlam, Juraj; Mun, B. S.; Myneni, Satish C.; Nilsson, Anders R.; Ogasawara, Hirohito; Ogletree, D. F.; Pecher, Klaus H.; Salmeron, Miquel B.; Shuh, David K.; Tonner, Brian; Tyliszczak, Tolek; Warwick, Tony; Yoon, T. H.

    2006-02-01

    We present examples of the application of synchrotron-based spectroscopies and microscopies to environmentally-relevant samples. The experiments were performed at the Molecular Environmental Science beamline (11.0.2) at the Advanced Light Source, Lawrence Berkeley National Laboratory. Examples range from the study of water monolayers on Pt(111) single crystal surfaces using X-ray emission spectroscopy and the examination of alkali halide solution/water vapor interfaces using ambient pressure photoemission spectroscopy, to the investigation of actinides, river-water biofilms, Al-containing colloids and mineral-bacteria suspensions using scanning transmission X-ray spectromicroscopy. The results of our experiments show that spectroscopy and microscopy in the soft X-ray energy range are excellent tools for the investigation of environmentally relevant samples under realistic conditions, i.e. with water or water vapor present at ambient temperature.

  13. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  14. Integrated circuit authentication using photon-limited x-ray microscopy.

    Science.gov (United States)

    Markman, Adam; Javidi, Bahram

    2016-07-15

    A counterfeit integrated circuit (IC) may contain subtle changes to its circuit configuration. These changes may be observed when imaged using an x-ray; however, the energy from the x-ray can potentially damage the IC. We have investigated a technique to authenticate ICs under photon-limited x-ray imaging. We modeled an x-ray image with lower energy by generating a photon-limited image from a real x-ray image using a weighted photon-counting method. We performed feature extraction on the image using the speeded-up robust features (SURF) algorithm. We then authenticated the IC by comparing the SURF features to a database of SURF features from authentic and counterfeit ICs. Our experimental results with real and counterfeit ICs using an x-ray microscope demonstrate that we can correctly authenticate an IC image captured using orders of magnitude lower energy x-rays. To the best of our knowledge, this Letter is the first one on using a photon-counting x-ray imaging model and relevant algorithms to authenticate ICs to prevent potential damage.

  15. Determination of lead in clay enameled by X-ray fluorescence technique in Total reflection and by Scanning Electron Microscopy

    International Nuclear Information System (INIS)

    Zarazua O, G.; Carapia M, L.

    2000-01-01

    This work has the objective of determining lead free in the glazed commercial stewing pans using the X-ray fluorescence technique in Total reflection (FRX) and the observation and semiquantitative determination of lead by Analytical Scanning Electron Microscopy (ASEM). (Author)

  16. X-ray spectrometry

    International Nuclear Information System (INIS)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-01-01

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references

  17. Scanning transmission X-ray microscopy as a speciation tool for natural organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, J.; Plaschke, M.; Denecke, M.A. [Inst. fuer Nukleare Entsorgung, Forschungszentrum Karlsruhe, Karlsruhe (Germany)

    2004-07-01

    A molecular-scale understanding of the basic processes affecting stability and transport behavior of actinide cations, complexes or hydroxide ('eigencolloid') species is prerequisite to performance assessment of nuclear waste disposal in geological formations. Depending on their functional group chemistry and macromolecular structure, naturally occurring organic molecules (NOM) possess a high tendency towards actinide complexation reactions. However, the compositional and structural heterogeneity of NOM and mixed aggregates with inorganic phases makes speciation by spectromicroscopy techniques highly desirable. The applicability of Scanning Transmission X-ray Microscopy (STXM) as a speciation tool for the characterization of NOM is demonstrated for a multifunctional natural organic acid (chlorogenic acid), Eu(III)-loaded humic acid (HA) aggregates and Eu(III)-oxo/hydroxide/HA hetero-aggregates. It is shown that in situ probing of HA functional group chemistry down to a spatial resolution < 100 nm (i.e., less than femto-liter sampled volumes) is feasible, at the same time revealing morphological details on NOM aggregates and NOM/mineral associations. (orig.)

  18. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis

    Science.gov (United States)

    Kehr, Sebastian; Malinouski, Mikalai; Finney, Lydia; Vogt, Stefan; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Carlson, Bradley A.; Zhou, You; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2009-01-01

    Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular and subcellular topography of Se. We applied this technique to characterize the role of Se in spermatogenesis and identified a dramatic Se enrichment specifically in late spermatids, a pattern that was not seen in any other elemental maps. This enrichment was due to elevated levels of the mitochondrial form of glutathione peroxidase 4 and was fully dependent on the supplies of Se by Selenoprotein P. High-resolution scans revealed that Se concentrated near the lumen side of elongating spermatids, where structural components of sperm are formed. During spermatogenesis, maximal Se associated with decreased phosphorus, whereas Zn did not change. In sperm, Se was primarily in the midpiece and co-localized with Cu and Fe. XFM allowed quantification of Se in the midpiece (0.8 fg) and head (0.14 fg) of individual sperm cells, revealing the ability of sperm cells to handle the amounts of this element well above its toxic levels. Overall, the use of XFM allowed visualization of tissue and cellular Se and provided important insights in the role of this and other trace elements in spermatogenesis. PMID:19379757

  19. In situ alkali-silica reaction observed by x-ray microscopy

    International Nuclear Information System (INIS)

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction

  20. Forensic applications of scanning electron microscopy/energy dispersive X-ray analyser in Hong Kong.

    Science.gov (United States)

    Wong, Y S

    1982-01-01

    Scanning Electron Microscopy - Energy Dispersive X-Ray Analysis (SEM/EDX) has been applied in casework for more than a year in the Forensic Division, Government Laboratory of Hong Kong. The types of samples being analysed are summarised and three cases of scientific interest are described. The first case applies SEM/EDX to characterize microscopic gold particles recovered from clothing of suspects involved in goldsmith robberies. Both elemental and morphological results obtained were used as supporting evidence. The second case describes the three types of beaded ends on fibres found in a single cloth sample. These beaded ends are different in shape and surface features and can be used as an additional parameter in fibre identification. The final case shows the application of vacuum evaporation of graphite on a document sample to reveal the area of paper which has been skillfully mechanically erased. Both the image intensity and the composition of the ink are used to differentiate between original and altered characters on the document.

  1. X-Ray Microscopy of Photovoltaic Polyfluorene Blends: Relating Nanomorphology to Device Performance

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, C.R.; Watts, B.; Thomsen, L.; Ade, H.; Greenham, N.C.; Dastoor, P.C.; /Cambridge U. /North Carolina State U. /Newcastle U., Australia

    2007-07-10

    The composition of blend films of poly(9,9'-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylenediamine) (PFB) and poly(9,9'-dioctylfluorene-co-benzothiadiazole) (F8BT) used in prototype polymer solar cells has been quantitatively mapped using scanning transmission X-ray microscopy (STXM). The resolution of the STXM technique is 50 nm or better, allowing the first nanoscale lateral chemical mapping of this blend system. For 1:1 blend films spin-coated from xylene we find that the F8BT-rich domain is over 90% pure (by weight) and the PFB-rich domain contains 70% PFB. For 5:1 and 1:5 blend films processed from xylene, the minority phases are found to be intermixed, containing as much as 50% by weight of the majority polymer. Films prepared from chloroform with a 1:1 weight ratio have also been imaged but show no features on the length scale of 50 nm or greater. Additionally, the performance of photovoltaic devices fabricated using films prepared in an identical fashion to those prepared for STXM analysis has been evaluated and compared to the performance of chloroform blends with varied weight ratio. By studying the influence of blend composition on device performance in chloroform blends with a uniform morphology, we relate the performance of xylene-processed films to the local blend composition measured by STXM and the degree of nanoscale phase separation.

  2. In situ alkali-silica reaction observed by x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurtis, K.E.; Monteiro, P.J.M. [Univ. of California, Berkeley, CA (United States); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  3. Production of muscovite-feldspathic glass composite: scanning electron microscopy and X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Costa, F.P.F.; Ogasawara, T.; Santos, S.F.

    2009-01-01

    The objective of this work was to find the sintering conditions for the feldspathic glass + muscovite mixture to produce a dense composite block for manufacturing dental prosthesis by using CAD-CAM. Each 20g of the glass-frit had : 15.55g of Armil-feldspar; 0.53g of Al 2 O 3 ; 1.56g of Na 2 CO 3 ; 0.5g of borax; 1.74g of K 2 CO 3 ; 0.13g of CeO 2 . Frit's powder finer than 350 Tyler mesh was mixed with 0 wt%, 10 wt%, 20 wt% and 100 wt% of muscovite pressed cylinders (5600 pounds force) 16mm in diameter and sintered under vacuum Vacumat (VITA) furnace at 850 deg C, 900 deg C, 950 deg C, 1000 deg C, 1050 deg C, 1100 deg C and 1150 deg C. X-ray diffraction analysis and scanning electron microscopy were carried out. The necessary temperature for high densification depended on the composition of the mixture: 850 deg C (for pure frit); 1050 deg C (for 10 wt% mica) and 1150 deg C (for 20 wt% mica); pure mica degraded during sintering. (author)

  4. Foliar manganese accumulation by Maytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis.

    Science.gov (United States)

    Fernando, D R; Woodrow, I E; Jaffré, T; Dumontet, V; Marshall, A T; Baker, A J M

    2008-01-01

    Hyperaccumulation by plants is a rare phenomenon that has potential practical benefits. The majority of manganese (Mn) hyperaccumulators discovered to date occur in New Caledonia, and little is known about their ecophysiology. This study reports on natural populations of one such species, the endemic shrub Maytenus founieri. Mean foliar Mn concentrations of two populations growing on ultramafic substrates with varying soil pHs were obtained. Leaf anatomies were examined by light microscopy, while the spatial distributions of foliar Mn in both populations were examined by qualitative scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). Plants growing on two different substrates were found to have very different mean dry weight (DW) foliar Mn concentrations. Light microscopy showed that the leaves had very distinct thick dermal structures, consisting of multiple layers of large cells in the hypodermis. In vivo X-ray microprobe analyses revealed that, in both populations, Mn sequestration occurred primarily in these dermal tissues. The finding here that foliar Mn is most highly localized in the nonphotosynthetic tissues of M. founieri contrasts with results from similar studies on other woody species that accumulate high Mn concentrations in their shoots.

  5. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao [National Synchrotron Radiation Laboratory (China); Liu Yijin [School of Physics (China); Yue Zhengbo; Yu Hanqing [Laboratory of Environmental Engineering, School of Chemistry, University of Science and Technology of China, Hefei Anhui 230029 (China); Wang Chunru, E-mail: ychtian@ustc.edu.c [Institute of Chemistry, Chinese Academy of Sciences, Beijing 10060 (China)

    2009-09-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 {mu}m thickness and 4 {mu}m width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  6. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    International Nuclear Information System (INIS)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao; Liu Yijin; Yue Zhengbo; Yu Hanqing; Wang Chunru

    2009-01-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 μm thickness and 4 μm width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  7. Liquid crystalthermography as compared to X-ray diagnostics, clinical findings and capillary microscopy in sclerodermia progressiva

    International Nuclear Information System (INIS)

    Loreck, D.; Buehler, G.; Brenke, A.; Schmidt, P.; Heerdegen, I.; Huege, H.

    1985-01-01

    The hands of 55 patients suffering from progressive sclerodermia were examined by liquid crystal thermography. The findings were compared with those of X-ray diagnosis and with clinical results. In 20 patients also capillary microscopy was applied. All patients revealed hypothermias in the fingers, independent from X-ray results, duration of the disease and Raynaud's phenomenon. Hypothermia could involve all fingers and was localized proximally or distally. In most of the patients also hyperthermias, not to be cooled, were found. They were diarthrodial and vasal, respectively

  8. Correlating properties and microstructure of YBCO thin films by magnetic X-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, Stephen; Stahl, Claudia; Weigand, Markus; Schuetz, Gisela [Max-Planck-Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Zahn, Patrick; Bayer, Jonas [Max-Planck-Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Research Institute for Innovative Surfaces, FINO, Aalen University, Beethovenstrasse 1, 73430 Aalen (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University, Beethovenstrasse 1, 73430 Aalen (Germany)

    2016-07-01

    The magnetic flux distribution in high-temperature superconductors namely YBCO has been observed using a novel high-resolution technique based on the X-ray magnetic circular dichroism (XMCD). Therefore, a CoFeB layer is deposited on the superconductor which exhibits a strong XMCD-effect. X-ray absorption measurements with circular polarized radiation allows the analysis of the magnetic flux distribution in the superconductor via the soft-magnetic sensor layer [3,4]. In the total electron yield (TEY) mode of the scanning X-ray microscope (SXM) the surface structure and the magnetic domains can be imaged at the same time. Having obtained such high resolution images, the correlation of magnetic flux penetration and defect structure of YBCO thin films can be analyzed. The measurements have been performed at the scanning X-ray microscope MAXYMUS at Bessy II, HZB Berlin.

  9. Diffuse x-ray scattering and transmission electron microscopy study of defects in antimony-implanted silicon

    Science.gov (United States)

    Takamura, Y.; Marshall, A. F.; Mehta, A.; Arthur, J.; Griffin, P. B.; Plummer, J. D.; Patel, J. R.

    2004-04-01

    Ion implantation followed by laser annealing has been used to create supersaturated and electrically active concentrations of antimony in silicon. Upon subsequent thermal annealing, however, these metastable dopants deactivate towards the equilibrium solubility limit. In this work, the formation of inactive antimony structures has been studied with grazing incidence diffuse x-ray scattering, and transmission electron microscopy, and the results are correlated to previous high-resolution x-ray diffraction data. We find that at a concentration of 6.0×1020 cm-3, small, incoherent clusters of radius 3-4 Å form during annealing at 900 °C. At a higher concentration of 2.2×1021 cm-3, deactivation at 600 °C occurs through the formation of small, antimony aggregates and antimony precipitates. The size of these precipitates from diffuse x-ray scattering is roughly 15 Å in radius for anneal times from 15 to 180 seconds. This value is consistent with the features observed in high-resolution and mass contrast transmission electron microscopy images. The coherent nature of the aggregates and precipitates causes the expansion of the surrounding silicon matrix as the deactivation progresses. In addition, the sensitivity of the diffuse x-ray scattering technique has allowed us to detect the presence of small clusters of radius ˜2 Å in unprocessed Czochralski silicon wafers. These defects are not observed in floating zone silicon wafers, and are tentatively attributed to thermal donors.

  10. 3rd International Multidisciplinary Microscopy and Microanalysis Congress

    CERN Document Server

    Oral, Zehra

    2017-01-01

    The 3rd International Multidisciplinary Microscopy Congress (InterM2015), held from 19 to 23 October 2015, focused on the latest developments concerning applications of microscopy in the biological, physical and chemical sciences at all dimensional scales, advances in instrumentation, techniques in and educational materials on microscopy. These proceedings gather 17 peer-reviewed technical papers submitted by leading academic and research institutions from nine countries and representing some of the most cutting-edge research available.

  11. Imaging Spin Dynamics on the Nanoscale using X-Ray Microscopy

    Directory of Open Access Journals (Sweden)

    Hermann eStoll

    2015-04-01

    Full Text Available The dynamics of emergent magnetic quasiparticles, such as vortices, domain walls, and bubbles are studied by scanning transmission x-ray microscopy (STXM, combining magnetic (XMCD contrast with about 25 nm lateral resolution as well as 70 ps time resolution. Essential progress in the understanding of magnetic vortex dynamics is achieved by vortex core reversal observed by sub-GHz excitation of the vortex gyromode, either by ac magnetic fields or spin transfer torque. The basic switching scheme for this vortex core reversal is the generation of a vortex-antivortex pair. Much faster vortex core reversal is obtained by exciting azimuthal spin wave modes with (multi-GHz rotating magnetic fields or orthogonal monopolar field pulses in x and y direction, down to 45 ps in duration. In that way unidirectional vortex core reversal to the vortex core 'down' or 'up' state only can be achieved with switching times well below 100 ps. Coupled modes of interacting vortices mimic crystal properties. The individual vortex oscillators determine the properties of the ensemble, where the gyrotropic mode represents the fundamental excitation. By self-organized state formation we investigate distinct vortex core polarization configurations and understand these eigenmodes in an extended Thiele model. Analogies with photonic crystals are drawn. Oersted fields and spin-polarized currents are used to excite the dynamics of domain walls and magnetic bubbles. From the measured phase and amplitude of the displacement of domain walls we deduce the size of the non-adiabatic spin-transfer torque. For sensing applications, the displacement of domain walls is studied and a direct correlation between domain wall velocity and spin structure is found. Finally the synchronous displacement of multiple domain walls using perpendicular field pulses is demonstrated as a possible paradigm shift for magnetic memory and logic applications.

  12. Provenance study of Gothic paintings from North-East Slovakia by handheld x-ray fluorescence, microscopy and x-ray microdiffraction

    Czech Academy of Sciences Publication Activity Database

    Hradil, David; Hradilová, J.; Bezdička, Petr; Švarcová, Silvie

    2008-01-01

    Roč. 37, č. 4 (2008), s. 376-382 ISSN 0049-8246 R&D Projects: GA ČR(CZ) GA203/07/1324 Institutional research plan: CEZ:AV0Z40320502 Keywords : Gothic paintings * X-ray fluorescence * X-ray microdiffraction Subject RIV: CA - Inorganic Chemistry Impact factor: 1.390, year: 2008

  13. Use of scanning electron microscopy and microanalysis to determine chloride content of concrete and raw materials.

    Science.gov (United States)

    2013-02-01

    Standard sample sets of cement and mortar formulations with known levels of Cl as well as concrete samples subject to Cl diffusion were all prepared for and analyzed with scanning electron microscopy (SEM) and electron microprobe (EPMA). Using x-ray ...

  14. Normal murine bone morphometry: a comparison of magnetic resonance microscopy with micro X-ray and histology

    International Nuclear Information System (INIS)

    Weber, Michael H.; Sharp, Jonathan C.; Hassard, Thomas H.; Orr, William F.

    2002-01-01

    Objective: The authors have devised a means to assess subtle changes in the structure of bone using magnetic resonance (MR) microscopy. MR microscopy was compared with micro X-ray and histology to analyze the structure of normal bone. Design: Femurs of C57Bl/6 mice were examined ex vivo using differently orientated slices and pulse sequences on both a 9.4 and 11.7 T MR scanner, followed by micro X-ray and histology. A thresholding analysis technique was applied to MR images, to generate contour lines delineating the boundaries between bone and marrow. Results: By MR microscopy, optimal correlation with histological ''gold standards'' was obtained using a longitudinal sectional versus a cross-sectional slice profile, a short echo time gradient-echo sequence versus a long echo time spin-echo sequence, and a higher field strength, 11.7 T versus 9.4 T. Gradient-echo images at 11.7 T were acquired with a maximum in-plane resolution of 35 μm. Conclusion: Our results demonstrate that the percent area of marrow increases and percent area of trabecular bone and cortical bone thickness decreases on moving from the epiphyseal growth plate to the diaphysis. These changes observed with MR microscopy correlate with the histological data, but did not correlate with micro X-ray data, which showed no trends. Our quantitative evaluation using MR microscopy was found to be an effective means to visualize the normal variation in bone microanatomy compared with a histological ''gold standard'', and was a superior means of quantification in comparison with micro X-ray. (orig.)

  15. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  16. Hard X-ray full field microscopy and magnifying microtomography using compound refractive lenses

    CERN Document Server

    Schrör, C; Benner, B; Kuhlmann, M; Tümmler, J; Lengeler, B; Rau, C; Weitkamp, T; Snigirev, A; Snigireva, I

    2001-01-01

    For hard X-rays, parabolic compound refractive lenses (PCRLs) are genuine imaging devices like glass lenses for visible light. Based on these new lenses, a hard X-ray full field microscope has been constructed that is ideally suited to image the interior of opaque samples with a minimum of sample preparation. As a result of a large depth of field, CRL micrographs are sharp projection images of most samples. To obtain 3D information about a sample, tomographic techniques are combined with magnified imaging.

  17. Hard X-ray full field microscopy and magnifying microtomography using compound refractive lenses

    Science.gov (United States)

    Schroer, Christian G.; Günzler, Til Florian; Benner, Boris; Kuhlmann, Marion; Tümmler, Johannes; Lengeler, Bruno; Rau, Christoph; Weitkamp, Timm; Snigirev, Anatoly; Snigireva, Irina

    2001-07-01

    For hard X-rays, parabolic compound refractive lenses (PCRLs) are genuine imaging devices like glass lenses for visible light. Based on these new lenses, a hard X-ray full field microscope has been constructed that is ideally suited to image the interior of opaque samples with a minimum of sample preparation. As a result of a large depth of field, CRL micrographs are sharp projection images of most samples. To obtain 3D information about a sample, tomographic techniques are combined with magnified imaging.

  18. Hard X-ray full field microscopy and magnifying microtomography using compound refractive lenses

    International Nuclear Information System (INIS)

    Schroer, Christian G.; Guenzler, Til Florian; Benner, Boris; Kuhlmann, Marion; Tuemmler, Johannes; Lengeler, Bruno; Rau, Christoph; Weitkamp, Timm; Snigirev, Anatoly; Snigireva, Irina

    2001-01-01

    For hard X-rays, parabolic compound refractive lenses (PCRLs) are genuine imaging devices like glass lenses for visible light. Based on these new lenses, a hard X-ray full field microscope has been constructed that is ideally suited to image the interior of opaque samples with a minimum of sample preparation. As a result of a large depth of field, CRL micrographs are sharp projection images of most samples. To obtain 3D information about a sample, tomographic techniques are combined with magnified imaging

  19. Development of a plasma system as a source of radiation for X-ray microscopy

    International Nuclear Information System (INIS)

    Neff, W.; Lebert, R.; Holz, R.

    1992-01-01

    During the period of the report, an X-ray source was developed for a laboratory X-ray microscope based on a plasma focus. Nitrogen is used as the discharge gas. The Lyman α line (λ = 2.48 nm) of nitrogen ions N VII similar to hydrogen is used for the image in the microscope. This line is favourably situated at the start of the water window (2.33 - 4.37 nm), so that the microscope is particularly suitable for the examination of biological objects. (orig.) [de

  20. Sub-25-nm laboratory x-ray microscopy using a compound Fresnel zone plate.

    Science.gov (United States)

    von Hofsten, Olov; Bertilson, Michael; Reinspach, Julia; Holmberg, Anders; Hertz, Hans M; Vogt, Ulrich

    2009-09-01

    Improving the resolution in x-ray microscopes is of high priority to enable future applications in nanoscience. However, high-resolution zone-plate optics often have low efficiency, which makes implementation in laboratory microscopes difficult. We present a laboratory x-ray microscope based on a compound zone plate. The compound zone plate utilizes multiple diffraction orders to achieve high resolution while maintaining reasonable efficiency. We analyze the illumination conditions necessary for this type of optics in order to suppress stray light and demonstrate microscopic imaging resolving 25 nm features.

  1. Small angle X-ray scattering and transmission electron microscopy study of the Lactobacillus brevis S-layer protein

    Energy Technology Data Exchange (ETDEWEB)

    Jaeaeskelaeinen, Pentti [Department of Biomedical Engineering and Computational Science, PO Box 2200, FI-02015 Aalto University School of Science and Technology (Finland); Engelhardt, Peter [Haartman Institute, Department of Pathology, PO Box 21, FIN-00014 University of Helsinki (Finland); Hynoenen, Ulla; Palva, Airi [Department of Basic Veterinary Sciences, Division of Microbiology, FIN-00014 University of Helsinki (Finland); Torkkeli, Mika; Serimaa, Ritva, E-mail: ritva.serimaa@helsinki.f [Department of Physics, POB 64, 00014 University of Helsinki (Finland)

    2010-10-01

    The structure of self-assembly domain containing recombinant truncation mutants of Lactobacillus brevis surface layer protein SlpA in aqueous solution was studied using small-angle X-ray scattering and transmission electron microscopy. The proteins were found out to interact with each other forming stable globular oligomers of about 10 monomers. The maximum diameter of the oligomers varied between 75 A and 435 A.

  2. Characterization of particulate matter from the Metropolitan Zone of the Valley of Mexico by scanning electron microscopy and energy-dispersive x-ray analysis

    International Nuclear Information System (INIS)

    Martiez, T.; Lartigue, J.; Avila-Perez, P.; Carapio-Morales, L.; Zarazua, G.; Tejeda, S.

    2005-01-01

    The urban air pollution issue is a concern in many Mega cities, because of hazardous effect to human health. The Metropolitan Zone of the Valley of Mexico (MZMV) is one of the ten largest urban areas around the World with a population of 24.4 million people by the year 2000. One or the 'six criteria pollutants' regulated by Norm (because the hazardous effect to human health) are those commonly designed as Total Suspended Particles (TSP) and Respirable Particles (RP) lower than 10 μm (coarse, PM10 and fine PM2.5). Particulate matter consists of solids or liquid aerosol particles suspended in the air and has diverse chemical composition related to the sources. Under ambient conditions of sampling analysis particulate matter exists almost exclusively in solid phase but can include liquid aerosols such as the heavier components of diesel combustion products and nitric acid. In general particulate matter includes dust, dirt, soot, smoke and liquid droplets emitted in the air by sources such as factories, power plants, cars, fire, construction activities, aircrafts and winds blown dust. In this work the survey of TSP particles an PM10 was carried out with an automatic high volume sampler with an average flow rate of 1.5 m 3 min -1 during 24 h in five monitoring stations of the national network system chosen trying to cover the fourth cardinal directions and the central zone: Xalostoc (XAL) at NE; Tlanepantla (TLA) at NW; Merced (MER) at the downtown; Cerro de la Estrella (CES) at SE and Pedregal (PED) at SW. A sample of l cm 2 was cut from each filter and mounted with a graphite tape on an aluminum sample-holder. The analysis of 100 induvidual particles of each sample were done by scanning electron microscopy and energy-dispersive X-ray microanalysis (EDX). The analysis was performed using a scanning electron microscope PHILLIPS Model XL-30. X-ray analysis is carried out with an energy-dispersive Si(Li) detector Model Saphire, SUTW (super ultra thin window), allowing

  3. Channeling contrast microscopy: a new technique for microanalysis of semiconductors

    International Nuclear Information System (INIS)

    McCallum, J.C.

    1985-01-01

    The technique of channeling contrast microscopy has been developed over the past few years for use with the Melbourne microprobe. It has been used for several profitable analyses of small-scale structures in semiconductor materials. This paper outlines the basic features of the technique and examples of its applications are given

  4. Non-destructive characterization of recrystallization kinetics using three-dimensional X-ray diffraction microscopy

    DEFF Research Database (Denmark)

    Lauridsen, E.M.; Schmidt, Søren; Fæster Nielsen, Søren

    2006-01-01

    Three-dimensional X-ray diffraction (3DXRD) is used to characterize the nucleation and early growth of individual bulk nuclei in situ during recrystallization of 92% cold-rolled copper. It is found that some cube nuclei, but not all, have a significantly faster initial growth than the average...

  5. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  6. X-ray diffraction and electron microscopy data for amyloid formation of Aβ40 and Aβ42

    Directory of Open Access Journals (Sweden)

    Olga M. Selivanova

    2016-09-01

    Full Text Available The data presented in this article are related to the research article entitled “One of the possible mechanisms of amyloid fibrils formation based on the sizes of primary and secondary folding nuclei of Aβ40 and Aβ42” (Dovidchenko et al., 2016 [1]. Aβ peptide is one of the most intensively studied amyloidogenic peptides. Despite the huge number of articles devoted to studying different fragments of Aβ peptide there are only several papers with correct kinetics data, also there are a few papers with X-ray data, especially for Aβ42. Our data present X-ray diffraction patterns both for Aβ40 and Aβ42 as well for Tris–HCl and wax. Moreover, our data provide kinetics of amyloid formation by recombinant Аβ40 and synthetic Аβ42 peptides by using electron microscopy.

  7. Studies of SmCo5/Fe nanocomposite magnetic bilayers with magnetic soft x-ray transmission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, F.; Siddiqi, S. A.; Im, M.-Y.; Avallone, A.; Fischer, P.; Hussain, Z.; Siddiqi, I.; Hellman, F.; Zhao, J.

    2009-12-04

    A hard/soft SmCo{sub 5}/Fe nanocomposite magnetic bilayer system has been fabricated on X-ray transparent 100-200 nm thin Si{sub 3}N{sub 4} membranes by magnetron sputtering. The microscopic magnetic domain pattern and its behavior during magnetization reversal in the hard and soft magnetic phases have been individually studied by element specific magnetic soft x-ray microscopy at a spatial resolution of better than 25nm. We observe that the domain patterns for soft and hard phases switch coherently throughout the full hysteresis cycle upon applying external magnetic fields. We derived local M(H) curves from the images for Fe and SmCo5 separately and found switching for both hard and soft phases same.

  8. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    Science.gov (United States)

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    Energy Technology Data Exchange (ETDEWEB)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France); Purans, J.; Sammelselg, V. [Tartu Univ. (Estonia); Chevrier, J.; Huant, S. [Universite Joseph-Fourier, Grenoble I, LEPES, 38 (France); Hamilton, B. [School of Electrical Engineering and Electronics, Manchester (United Kingdom); Saito, A. [Osaka Univ., RIKEN/SPring8 (Japan); Dhez, O. [OGG, INFM/CNR, 38 - Grenoble (France); Brocklesby, W.S. [Southampton Univ., Optoelectronics Research Centre (United Kingdom); Alvarez-Prado, L.M. [Ovieado, Dept. de Fisica (Spain); Kuzmin, A. [Institute of Solid State Physics - Riga (Latvia); Pailharey, D. [CRMC-N - CNRS, 13 - Marseille (France); Tonneau, D. [CRMCN - Faculte des sciences de Luminy, 13 - Marseille (France); Chretien, P. [Laboratoire de Genie Electrique de Paris, 75 - Paris (France); Cricenti, A. [ISM-CNR, Rome (Italy); DeWilde, Y. [ESPCI, 75 - Paris (France)

    2005-07-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document.

  10. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    International Nuclear Information System (INIS)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J.; Purans, J.; Sammelselg, V.; Chevrier, J.; Huant, S.; Hamilton, B.; Saito, A.; Dhez, O.; Brocklesby, W.S.; Alvarez-Prado, L.M.; Kuzmin, A.; Pailharey, D.; Tonneau, D.; Chretien, P.; Cricenti, A.; DeWilde, Y.

    2005-01-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document

  11. Variable magnification with Kirkpatrick-Baez optics for synchrotron x-ray microscopy

    OpenAIRE

    Jach, T.; Bakulin, A. S.; Durbin, S. M.; Pedulla, J.; Macrander, A.

    2006-01-01

    We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In add...

  12. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    International Nuclear Information System (INIS)

    Späth, Andreas; Raabe, Jörg; Fink, Rainer H.

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed

  13. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Späth, Andreas [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Raabe, Jörg [Paul Scherrer Institut, 5232 Villigen (Switzerland); Fink, Rainer H., E-mail: rainer.fink@fau.de [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany)

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed.

  14. Transmission electron microscopy physics of image formation and microanalysis

    CERN Document Server

    Reimer, Ludwig

    1984-01-01

    The aim of this book is to outline the physics of image formation, electron­ specimen interactions and image interpretation in transmission electron mic­ roscopy. The book evolved from lectures delivered at the University of Munster and is a revised version of the first part of my earlier book Elek­ tronenmikroskopische Untersuchungs- und Priiparationsmethoden, omitting the part which describes specimen-preparation methods. In the introductory chapter, the different types of electron microscope are compared, the various electron-specimen interactions and their applications are summarized and the most important aspects of high-resolution, analytical and high-voltage electron microscopy are discussed. The optics of electron lenses is discussed in Chapter 2 in order to bring out electron-lens properties that are important for an understanding of the function of an electron microscope. In Chapter 3, the wave optics of elec­ trons and the phase shifts by electrostatic and magnetic fields are introduced; Fresne...

  15. X-ray diffraction, XAFS and scanning electron microscopy study of otolith of a crevalle jack fish (caranx hippos)

    Energy Technology Data Exchange (ETDEWEB)

    Pattanaik, Sidhartha [Bailey Hall 703, Illinois Institute of Technology, 3101 S. Wabash Avenue, Chicago, IL 60616 (United States)]. E-mail: sidpattanaik@yahoo.com

    2005-04-01

    The otolith of a crevalle jack fish (caranx hippos) has been investigated by means of X-ray diffraction, X-ray absorption fine structure spectroscopy and scanning electron microscopy techniques. The results suggest that the biomineralization of otolith occurs predominantly in the aragonite phase. A detailed X-ray Rietveld analysis showed that the first shell Ca-O distances in otolith lay in the range 2.371-2.652 A, with each calcium atom coordinated to 9 oxygen atoms. While the average Ca-O distance remains same in both otolith and aragonite, certain Ca-O distances in otolith differ markedly from those in aragonite. Such difference reflects the remarkable degree of control that the protein matrix exercised over packing of calcium and carbonate ions to promote growth of rarer aragonite otolith. In view of the complex coordination chemistry of calcium in otoliths, the EXAFS analysis was limited to obtaining local atomic environment about calcium up to the first Ca-O shell. EXAFS data showed an asymmetric distribution of Ca-O bond distances with the centroid of distribution at 2.48 A, which is closer to the average Ca-O distance in aragonite than in calcite. The asymmetry in the Ca-O peak is consistent with an apparent departure of Ca-O distances from a near regular distribution, as expected of an aragonite otolith.

  16. X-ray diffraction, XAFS and scanning electron microscopy study of otolith of a crevalle jack fish (caranx hippos)

    International Nuclear Information System (INIS)

    Pattanaik, Sidhartha

    2005-01-01

    The otolith of a crevalle jack fish (caranx hippos) has been investigated by means of X-ray diffraction, X-ray absorption fine structure spectroscopy and scanning electron microscopy techniques. The results suggest that the biomineralization of otolith occurs predominantly in the aragonite phase. A detailed X-ray Rietveld analysis showed that the first shell Ca-O distances in otolith lay in the range 2.371-2.652 A, with each calcium atom coordinated to 9 oxygen atoms. While the average Ca-O distance remains same in both otolith and aragonite, certain Ca-O distances in otolith differ markedly from those in aragonite. Such difference reflects the remarkable degree of control that the protein matrix exercised over packing of calcium and carbonate ions to promote growth of rarer aragonite otolith. In view of the complex coordination chemistry of calcium in otoliths, the EXAFS analysis was limited to obtaining local atomic environment about calcium up to the first Ca-O shell. EXAFS data showed an asymmetric distribution of Ca-O bond distances with the centroid of distribution at 2.48 A, which is closer to the average Ca-O distance in aragonite than in calcite. The asymmetry in the Ca-O peak is consistent with an apparent departure of Ca-O distances from a near regular distribution, as expected of an aragonite otolith

  17. Synchrotron-based in situ soft X-ray microscopy of Ag corrosion in aqueous chloride solution

    International Nuclear Information System (INIS)

    Bozzini, B; D'Urzo, L; Gianoncelli, A; Kaulich, B; Kiskinova, M; Prasciolu, M; Tadjeddine, A

    2009-01-01

    In this paper we report an in situ X-ray microscopy study of a model metal electrochemistry system, incorporating faradaic reactivity: the anodic corrosion and cathodic electrodeposition of Ag in aqueous systems. The information at sub-μm scale about morpho-chemical evolution of the electrified interface, provided by this novel electroanalytical approach fosters fundamental understanding of important issues concerning material fabrication and stability, which are crucial in developing the next generation electrochemical technologies, such as fuel cells and biosensors. The key methodology challenge faced in this pilot electrochemical experiments is combining a three-electrode configuration and wet environment, which required metal electrodes suitable for transmitting soft X-rays and a sealed cell allowing working in high vacuum. This has been solved via lithographic fabrication route fabricating 75 nm thick Ag electrodes and using Si 3 N 4 membranes as X-ray windows and electrode support. Imaging in the STXM mode with phase contrast allowed us to monitor the corrosion morphologies and metal outgrowth features. Localised thickness variation and the build-up of reaction products of electron density different from that of the starting material have been detected with high sensitivity.

  18. Imaging cells and sub-cellular structures with ultrahigh resolution full-field X-ray microscopy.

    Science.gov (United States)

    Chien, C C; Tseng, P Y; Chen, H H; Hua, T E; Chen, S T; Chen, Y Y; Leng, W H; Wang, C H; Hwu, Y; Yin, G C; Liang, K S; Chen, F R; Chu, Y S; Yeh, H I; Yang, Y C; Yang, C S; Zhang, G L; Je, J H; Margaritondo, G

    2013-01-01

    Our experimental results demonstrate that full-field hard-X-ray microscopy is finally able to investigate the internal structure of cells in tissues. This result was made possible by three main factors: the use of a coherent (synchrotron) source of X-rays, the exploitation of contrast mechanisms based on the real part of the refractive index and the magnification provided by high-resolution Fresnel zone-plate objectives. We specifically obtained high-quality microradiographs of human and mouse cells with 29 nm Rayleigh spatial resolution and verified that tomographic reconstruction could be implemented with a final resolution level suitable for subcellular features. We also demonstrated that a phase retrieval method based on a wave propagation algorithm could yield good subcellular images starting from a series of defocused microradiographs. The concluding discussion compares cellular and subcellular hard-X-ray microradiology with other techniques and evaluates its potential impact on biomedical research. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The fractional Fourier transform as a simulation tool for lens-based X-ray microscopy

    DEFF Research Database (Denmark)

    Pedersen, Anders Filsøe; Simons, Hugh; Detlefs, Carsten

    2018-01-01

    The fractional Fourier transform (FrFT) is introduced as a tool for numerical simulations of X-ray wavefront propagation. By removing the strict sampling requirements encountered in typical Fourier optics, simulations using the FrFT can be carried out with much decreased detail, allowing...... the attenuation from the entire CRL using one or two effective apertures without loss of accuracy, greatly accelerating simulations involving CRLs. To demonstrate the applicability and accuracy of the FrFT, the imaging resolution of a CRL-based imaging system is estimated, and the FrFT approach is shown...

  20. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    International Nuclear Information System (INIS)

    Hayashi, Y.; Hirose, Y.; Seno, Y.

    2016-01-01

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 "3 voxels was obtained.

  1. Scanning three-dimensional x-ray diffraction microscopy using a high-energy microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Y., E-mail: y-hayashi@mosk.tytlabs.co.jp; Hirose, Y.; Seno, Y. [Toyota Central R& D Toyota Central R& D Labs., Inc., 41-1 Nagakute Aichi 480-1192 Japan (Japan)

    2016-07-27

    A scanning three-dimensional X-ray diffraction (3DXRD) microscope apparatus with a high-energy microbeam was installed at the BL33XU Toyota beamline at SPring-8. The size of the 50 keV beam focused using Kirkpatrick-Baez mirrors was 1.3 μm wide and 1.6 μm high in full width at half maximum. The scanning 3DXRD method was tested for a cold-rolled carbon steel sheet sample. A three-dimensional orientation map with 37 {sup 3} voxels was obtained.

  2. Morphological and chemical information in fresh and vitrified ovarian tissues revealed by X-ray Microscopy and Fluorescence: observational study

    Science.gov (United States)

    Pascolo, L.; Venturin, I.; Gianoncelli, A.; Salomé, M.; Altissimo, M.; Bedolla, D. E.; Giolo, E.; Martinelli, M.; Luppi, S.; Romano, F.; Zweyer, M.; Ricci, G.

    2018-06-01

    Many clinical circumstances impose the necessity of collection and prolonged storage of gametes and/or ovarian tissue in order to preserve the reproduction potential of subjects. This is particularly appropriate in the case of young women and pre-pubertal girls undergoing chemotherapeutic treatments. The success of later assisted fertilization will depend on the suitable cooling protocols minimizing cryo-damages and preserving their biological function. The freeze-thaw processes of cryopreservation may induce, in fact, morphological and structural damages of oocytes and tissue mainly due to the formation of intracellular ice and to the toxicity of cryoprotectant. The most used cryo-protocol is the slow freezing procedure, but recently many authors have proposed vitrification as an alternative, because of its simplicity. The damage extent and the quality of follicles after cryopreservation are usually evaluated morphologically by conventional histological procedures, light and electron microscopy. Our laboratory, to further improve the evaluation and to better investigate damages, is adopting a combination of Synchrotron soft X-ray Microscopy (at TwinMic – Elettra) and XRF at different incident energies (at TwinMic – Elettra and ID21 – ESRF). X-ray techniques were performed on histological sections at micro and sub-micron resolution. Phase contrast and absorption images revealed changes in the compactness of the tissues, as well as cellular abnormalities revealed at sub-micrometric resolution. The distributions of the elements detected at 7.3 and 1.5 keV were compared and particularly Cl resulted to be indicative of follicle integrity. The results demonstrate the utility and the potential of X-ray microscopy and fluorescence in this research field.

  3. High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility

    International Nuclear Information System (INIS)

    Koch, J.A.; Landen, O.L.; Hammel, B.A.

    1997-01-01

    Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view

  4. Imaging and etching, soft x-ray microscopy on whole wet cells

    International Nuclear Information System (INIS)

    Gilbert, J.R.; Pine, J.

    1993-01-01

    The authors have produced images of whole wet tissue culture cells with the Stony Brook/BNL scanning transmission x-ray microscope (STXM). For fixed cells the authors have taken images at theoretical resolutions of ∼50-75nm, and in practice have measured FWHM of features down to near 100nm, without any exotic image processing. For unfixed (i.e., initially live) cells the authors have imaged with 100nm pixels and measured features down to 250nm. In order to do this the authors have developed, tested and used a wet cell for maintaining fixed or live cells on the STXM stage during imaging. The design of the wet cell and the culture substrates that go with it make the STXM compatible with almost all standard systems for surface adherent tissue culture. The authors will show some new images of whole wet fixed and unfixed cells, with visible sub-micron features. The authors will also report data that helps to characterize the tissue damage due to x-ray absorption during STXM imaging

  5. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  6. The Characterisation of Settled Dust by Scanning Electron Microscopy and Energy Dispersive X-ray Analysis

    International Nuclear Information System (INIS)

    Shilton, Vaughan; Giess, Paul; Mitchell, David; Williams, Craig

    2002-01-01

    Settled dust has been collected inside the main foyers oft hree University buildings in Wolverhampton City Centre,U.K. Two of the three buildings are located in a street canyon used almost exclusively by heavy duty diesel vehicles. The dust was collected on adhesive carbonspectro-tabs to be in a form suitable for analysis by scanning electron microscope and energy dispersive X-ray analysis. Using these analytical techniques, individual particle analysis was undertaken for morphology and chemistry. Seasonal variations and variations due to location were observed in both the morphological measurements and chemical analysis. Many of the differences appear attributable to the influence of road traffic, in particular, the heavy duty diesel vehicles, travelling along the street canyon

  7. Quantitative studies of the nucleation of recrystallization in metals utilizing microscopy and X-ray diffraction

    DEFF Research Database (Denmark)

    Larsen, Axel Wright

    is proven to be a good way of determining microstructural parameters, which are important when studying recrystallization dynamics. The nucleation of recrystallizationat triple junctions has been studied by 3 dimensional X-ray diffraction (3DXRD), allowing for the first time the deformed and recrystallized......This thesis covers three main results obtained during the project: A reliable method of performing serial sectioning on metal samples utilizing a Logitech polishing machine has been developed. Serial sectioning has been performed on metal samples in 1 µmsteps utilizing mechanical polishing...... microstructures to be compared at a given nucleation site in the bulk of a metal sample. From an experiment threenuclei were identified, their respective crystal orientations were determined, and growth curves were obtained for two of them....

  8. Low temperature x-ray analysis and electron microscopy of a new family of superconducting materials

    International Nuclear Information System (INIS)

    Ossipyan, Yu.A.; Borodin, V.A.; Goncharov, V.A.; Kondakov, S.F.; Khasanov, S.S.; Chernyshova, L.M.; Shekhtman, V.S.; Shmyt'ko, I.M.; Stchegolev, N.F.

    1987-01-01

    Recent findings in the field of high temperature superconductivity require that structural aspects of the behavior of this class of materials be investigated in detail in a wide temperature interval. A series of superconducting ceramics on the base of lanthanum and yttrium oxides (La/sub 2-x/Sr/sub x/CuO 4 ; x = 0, 2 and YBaCuO) have been obtained in the solid state Physics Institute of the Academy of Sciences of the USSR. This paper presents the results of the analysis of powder and sintered materials, using X-ray diffractometers (DRON), scanning electron microscope and special devices, enabling the investigations to be carried out within 4.2 K - 573 K

  9. Investigation of mineral distribution in bone by synchrotron X-ray fluorescence microscopy after tibolone therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I. [Rio de Janeiro State Univ., Nova Friburgo, RJ (Brazil). Dept. of Mechanical Engineering and Energy; Federal Univ. of Rio de Janeiro, RJ (Brazil). Nuclear Instrumentation Lab. - COPPE; Carvalho, A.C.B.; Henriques, H.N.; Guzman-Silva, M.A. [Fluminense Federal Univ., Niteroi, RJ (Brazil). Lab. of Experimental Pathology; Sales, E.; Lopes, R.T. [Federal Univ. of Rio de Janeiro, RJ (Brazil). Nuclear Instrumentation Lab. - COPPE; Granjeiro, J.M. [Fluminense Federal Univ., Niteroi, RJ (Brazil). Dept. of Cellular and Molecular Biology

    2011-07-01

    Tibolone is a synthetic steroid with estrogenic, androgenic, and progestagenic properties used for the prevention of postmenopausal osteoporosis and treatment of climacteric symptoms. Tibolone shows almost no action on breast and endometrium, which are target-organs for estrogens and progesterone activity. The aim of this work was to investigate the spatial distribution of calcium and zinc minerals in the femoral head of ovariectomized rat in order to evaluate the effects of the long-term administration of tibolone. For that purpose X-ray microfluorescence was used with synchrotron radiation imaging technique which was performed at Brazilian Light Synchrotron Laboratory, Campinas, SP. Minerals were not homogeneously distributed in trabecular bone areas; a higher concentration of calcium in the trabecular regions at femoral heads was found in ovariectomized and tibolone-treated rats compared to ovariectomized and control groups. (orig.)

  10. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gianoncelli, Alessandra, E-mail: alessandra.gianoncelli@elettra.eu [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Bufon, Jernej [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); University of Trieste, Piazzale Europa 1, Trieste 34127 (Italy); Ahangarianabhari, Mahdi [Politecnico di Milano, Via Anzani 42, Como 22100 (Italy); INFN Milano, Via Celoria 16, Milano 20133 (Italy); Altissimo, Matteo [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Bellutti, Pierluigi [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Bertuccio, Giuseppe [Politecnico di Milano, Via Anzani 42, Como 22100 (Italy); INFN Milano, Via Celoria 16, Milano 20133 (Italy); Borghes, Roberto [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Carrato, Sergio [University of Trieste, Piazzale Europa 1, Trieste 34127 (Italy); Cautero, Giuseppe [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Fabiani, Sergio [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Giacomini, Gabriele [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Giuressi, Dario [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Kourousias, George [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Menk, Ralf Hendrik [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Picciotto, Antonino; Piemonte, Claudio [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Rachevski, Alexandre [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); and others

    2016-04-21

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  11. Characterization of sintered samples of La/Sr/Cu/O by X-ray diffraction, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Gonzalez, C.O. de; Polla, Griselda; Manghi, Estela

    1987-01-01

    Samples of La/Sr/Cu/O were sinterized by solid state reaction starting from a nominal composition of La 1 .8, Sr 0 .2, CuO 4 . They presented superconductive properties with T c = 40.9 K (onset) and δ T c = 17 K. Two phases were observed by X-ray diffraction and the more abundant was the tetragonal phase. The mean grain size was 1-5 μm. The X-ray photoelectron spectroscopy measurements were carried out using Mg kα (1486.6 eV) as incident radiation. Sample temperature was varied between -180 deg C and 420 deg C, approximately. The temperature variation produces a change in the atomic concentration of the surface components. Deconvolutions of the O 1s peaks show three components with binding energies (B.E.). The decomposition of Cu 2p 3 /2 peaks presents two components corresponding to Cu + and Cu 2+ . (Author) [es

  12. Fluorescence X-ray microscopy on hydrated tributyltin-clay mineral suspensions

    Science.gov (United States)

    Neuhäusler, U.; Schmidt, C.; Hoch, M.; Susini, J.

    2003-03-01

    Using the scanning transmission X-ray microscope at ID21 beamline of the ESRF in fluorescence mode, we mapped tin at a bulk concentration of 1000 μg(Sn)/ml within hydrated tributyltin (TBT)-clay mineral (Kaolinite) dispersion with sub-300 nm spatial resolution. Using the L absorption edges of tin at 3929, 4156 and 4465 eV fluorescence radiation was excited in tin atoms with incident photon energies of 4 and 4.5 keV. When using 4 keV radiation, only tin fluorescence is excited. For 4.5 keV X rays, both the fluorescence of tin and calcium (which is present in the solid phase) can be measured. Methodologically, we were interested in assessing and proving the possibilities and limitations of fluorescence mapping using the L absorption edges of tin, where the fluorescence yield is significantly lower compared to other elements with their K edges in the same energy range. Scientifically, organotin-clay mineral interactions are of environmental concern because this factor influences significantly the distribution of toxic TBT in the aquatic System. On one hand, the half-life of TBT deposited to the sediment phase increases, and consequently the time of its bioavailability. On the other hand, the adsorption process is reversible, which means that contaminated sediments can act as a source of pollution. The adsorption and desorption effects can be studied directly with high spatial resolution and brought into connection to the surface properties of the clay mineral under study as well as to other experimental parameters, like pH or salinity.

  13. Mesoscopic simulation of dendritic growth observed in x-ray video microscopy during directional solidification of Al-Cu alloys

    International Nuclear Information System (INIS)

    Delaleau, Pierre; Beckermann, Christoph; Mathiesen, Ragnvald H.; Arnberg, Lars

    2010-01-01

    A mesoscopic model is developed to simulate microstructures observed in situ by X-ray video microscopy during directional solidification of Al-Cu alloys in a Hele-Shaw cell. In the model, a volume-averaged species conservation equation is solved to obtain the solute concentration and solid fraction fields, and an analytical stagnant film model is used to predict the motion of the dendrite envelopes. The model is carefully validated in several test cases. Then, the model is applied to simulate the columnar dendritic microstructures observed in the X-ray video microscopy experiments for two different alloy compositions. Reasonable agreement is found between the measured and predicted dendrite envelope shapes, solid fractions, and solute concentration fields. The predicted size of the mushy zone and the extent of the undercooled melt region ahead of the columnar front agree well with the in situ experimental observations. The simulation results show quantitative agreement with the internal solid fraction variations measured from the radiographs. The present model is also able to realistically simulate a primary dendrite trunk spacing adjustment that was observed in one of the experiments. Overall, the present study represents the first successful validation of a solidification model using real time, in situ data from an experiment with a metallic alloy. Considerable additional research is needed to account in the model for the effect of gravity driven melt convection. (author)

  14. Raman microscopy and x-ray fluorescence analysis of pigments on medieval and Renaissance Italian manuscript cuttings.

    Science.gov (United States)

    Burgio, Lucia; Clark, Robin J H; Hark, Richard R

    2010-03-30

    Italian medieval and Renaissance manuscript cuttings and miniatures from the Victoria and Albert Museum were analyzed by Raman microscopy to compile a database of pigments used in different periods and different Italian regions. The palette identified in most manuscripts and cuttings was found to include lead white, gypsum, azurite, lazurite, indigo, malachite, vermilion, red lead, lead tin yellow (I), goethite, carbon, and iron gall ink. A few of the miniatures, such as the historiated capital "M" painted by Gerolamo da Cremona and the Petrarca manuscript by Bartolomeo Sanvito, are of exceptional quality and were analyzed extensively; some contained unusual materials. The widespread usage of iron oxides such as goethite and hematite as minor components of mixtures with azurite is particularly notable. The use of a needle-shaped form of iron gall ink as a pigment rather than a writing material was established by both Raman microscopy and x-ray fluorescence spectroscopy for the Madonna and Child by Franco de' Russi.

  15. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    Science.gov (United States)

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    penetration by nanoradiators. In conclusion, the combined use of a synchrotron X-ray microbeam-irradiated three-dimensional ROS gel and confocal laser scanning fluorescence microscopy provides a simple dosimetry method for track analysis of X-ray photoelectric nanoradiator radiation, suggesting extensive cellular damage with dose-enhancement beyond a single cell containing IONs.

  16. Experimental analysis of high-resolution soft x-ray microscopy

    International Nuclear Information System (INIS)

    Chao, Weilun; Anderson, Erik H.; Denbeaux, Gregory; Harteneck, Bruce; Pearson, Angelic L.; Olynick, Deirdre; Schneider, Gerd; Attwood, David

    2001-01-01

    The soft x-ray, full-field microscope XM-1 at Lawrence Berkeley National Laboratory's (LBNL) Advanced Light Source has already demonstrated its capability to resolve 25-nm features. This was accomplished using a micro zone plate (MZP) with an outer zone width of 25 nm. Limited by the aspect ratio of the resist used in the fabrication, the gold-plating thickness of that zone plate is around 40 nm. However, some applications, in particular, biological imaging, prefer improved efficiency, which can be achieved by high-aspect-ratio zone plates. We accomplish this by using a bilayer-resist process in the zone plate fabrication. As our first attempt, a 40-nm-outer-zone-width MZP with a nickel-plating thickness of 150 nm (aspect ratio of 4:1) was successfully fabricated. Relative to the 25-nm MZP, this zone plate is ten times more efficient. Using this high-efficiency MZP, a line test pattern with half period of 30 nm is resolved by the microscope at photon energy of 500 eV. Furthermore, with a new multilayer mirror, the XM-1 can now perform imaging up to 1.8 keV. An image of a line test pattern with half period of 40 nm has a measured modulation of 90%. The image was taken at 1.77 keV with the high-efficiency MZP with an outer zone width of 35 nm and a nickel-plating thickness of 180 nm (aspect ratio of 5:1). XM-1 provides a gateway to high-resolution imaging at high energy. To measure frequency response of the XM-1, a partially annealed gold ''island'' pattern was chosen as a test object. After comparison with the SEM image of the pattern, the microscope has the measured cutoff of 19 nm, close to the theoretical one of 17 nm. The normalized frequency response, which is the ratio of the power density of the soft x-ray image to that of the SEM image, is shown in this paper

  17. Quantification of Biogenic Magnetite by Synchrotron X-ray Microscopy During the PETM

    Science.gov (United States)

    Wang, H.; Wang, J.; Kent, D. V.; Chen-Wiegart, Y. C. K.

    2014-12-01

    Exceptionally large biogenic magnetite crystals, including spearhead-like and spindle-like ones up to 4 microns, have been reported in clay-rich sediments recording the ~56 Ma Paleocene-Eocene thermal maximum (PETM) and carbon isotope excursion (CIE) in a borehole at Ancora, NJ and along with magnetotactic bacteria (MTB) chains, were suggested [Schumann et al. 2008 PNAS; Kopp et al. 2009 Paleoceanography] to account for the distinctive single domain (SD) rock magnetic properties of these sediments [Lanci et al. 2002 JGR]. However, because uncalibrated magnetic extraction techniques were used to provide material for TEM imaging of the biogenic magnetite, it is difficult to quantitatively analyze their concentration in the bulk clay. In this study, we use a synchrotron transmission X-ray microscope to image bulk CIE clay. We first take mosaic images of sub-millimeter-sized bulk clay samples, in which we can identify many of the various types of giant biogenic magnetite crystals, as well as several other types of iron minerals, such as pyrite framboids, siderite, and detrital magnetite. However, limited by the instrument resolution (~50 nm), we are not able to identify MTB chains let alone isolated magnetic nanoparticles that may be abundant the clay. To quantitatively estimate the concentration of the giant biogenic magnetite, we re-deposited the bulk clay sample in an alcohol solution on a silicon nitride membrane for 2D X-ray scans. After scanning a total area of 0.55 mm2 with average clay thickness of 4 μm, we identified ~40 spearheads, ~5 spindles and a few elongated rods and estimated their total magnetization as SD particles to be less than about 10% of the mass normalized clay for the scanned area. This result suggests that the giant biogenic magnetite is not a major source of the SD signal for the clay and is in good agreement with rock magnetic analyses using high-resolution first-order reversal curves and thermal fluctuation tomography on bulk CIE clay

  18. Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy.

    Science.gov (United States)

    Wang, Y F; Singh, Shashi B; Limaye, Mukta V; Shao, Y C; Hsieh, S H; Chen, L Y; Hsueh, H C; Wang, H T; Chiou, J W; Yeh, Y C; Chen, C W; Chen, C H; Ray, Sekhar C; Wang, J; Pong, W F; Takagi, Y; Ohigashi, T; Yokoyama, T; Kosugi, N

    2015-10-20

    This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature. Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based on experimental results and first-principles calculations, the variation in magnetic behavior from GO to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups on GO sheets.

  19. Hard x-ray contact microscopy with 250 nm spatial resolution using a LiF film detector and a tabletop microsource

    International Nuclear Information System (INIS)

    Almaviva, S.; Bonfigli, F.; Franzini, I.; Lai, A.; Montereali, R. M.; Pelliccia, D.; Cedola, A.; Lagomarsino, S.

    2006-01-01

    An innovative route for deep-submicrometer spatial resolution hard x-ray microscopy with tabletop x-ray source is proposed. A film of lithium fluoride (LiF) was used as imaging detector in contact mode. We present here the x-ray images recorded on LiF films of a Fresnel zone plate with submicrometer gold structures and of an onion cataphyll. The images were read with an optical confocal microscope in fluorescence mode. The measured spatial resolution was about 250 nm, i.e., close to the resolution limit of the confocal microscope. The advantages and drawbacks, and the possible improvements, of this route are discussed

  20. Intracellular distribution and stability of a luminescent rhenium(I) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wedding, Jason L.; Harris, Hugh H.; Bader, Christie A.; Plush, Sally E.; Mak, Rachel

    2016-01-01

    Optical fluorescence microscopy was used in conjunction with X-ray fluorescence microscopy to monitor the stability and intracellular distribution of the luminescent rhenium(I) complex fac-[Re(CO) 3 (phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex, in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence techniques. Furthermore, X-ray fluorescence also showed that the Re-I complex disrupted the homeostasis of some biologically relevant elements, such as chlorine, potassium and zinc.

  1. X-ray tomographic and laminographic microscopy (XTM, XLM) using synchrotron radiation

    International Nuclear Information System (INIS)

    Wyss, P.; Obrist, A.; Hofmann, J.; Luethi, T.; Sennhauser, U.; Thurner, P.; Stampanoni, M.; Abela, R.; Patterson, B.; Mueller, R.

    2003-01-01

    Inner structures of composite materials, components or tissues have to be characterised with micrometer and even submicrometer resolution. It is often highly desirable that specimens stay unchanged after a first characterization to allow meaningful subsequent tests. This justifies major efforts for an ongoing improvement of nondestructive radiographical and tomographical methods for morphological characterization. Radiography and tomography as well as laminography can fulfill these requirements. X-ray sources and detectors have been improved. This applies for synchrotron-beamline systems as well as for tube based systems. A novel detector concept has been implemented in the XTM station at the SLS of the PSI in Villigen, Switzerland. This microtomography station at the SLS has started its operation in spring 2002. A selection of results related to industrial and scientific applications is presented in this contribution. Special emphasis will be given to first results of tomography with limited numbers of projections which is comparable to laminography. This method allows to characterise e.g. ribbons of tissue under load

  2. Effect of processing on the microstructure of finger millet by X-ray diffraction and scanning electron microscopy.

    Science.gov (United States)

    Dharmaraj, Usha; Parameswara, P; Somashekar, R; Malleshi, Nagappa G

    2014-03-01

    Finger millet is one of the important minor cereals, and carbohydrates form its major chemical constituent. Recently, the millet is processed to prepare hydrothermally treated (HM), decorticated (DM), expanded (EM) and popped (PM) products. The present research aims to study the changes in the microstructure of carbohydrates using X-ray diffraction and scanning electron microscopy. Processing the millet brought in significant changes in the carbohydrates. The native millet exhibited A-type pattern of X-ray diffraction with major peaks at 2θ values of 15.3, 17.86 and 23.15°, whereas, all other products showed V-type pattern with single major peak at 2θ values ranging from 19.39 to 19.81°. The corresponding lattice spacing and the number of unit cells in a particular direction of reflection also reduced revealing that crystallinity of starch has been decreased depending upon the processing conditions. Scanning electron microscopic studies also revealed that the orderly pattern of starch granules changed into a coherent mass due to hydrothermal treatment, while high temperature short time treatment rendered a honey-comb like structure to the product. However, the total carbohydrates and non-starch polysaccharide contents almost remained the same in all the products except for DM and EM, but the individual carbohydrate components changed significantly depending on the type of processing.

  3. The architecture of amyloid-like peptide fibrils revealed by X-ray scattering, diffraction and electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Langkilde, Annette E., E-mail: annette.langkilde@sund.ku.dk [University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark); Morris, Kyle L.; Serpell, Louise C. [University of Sussex, Falmer, Brighton (United Kingdom); Svergun, Dmitri I. [European Molecular Biology Laboratory, Hamburg Outstation, 22607 Hamburg (Germany); Vestergaard, Bente [University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen (Denmark)

    2015-04-01

    The aggregation process and the fibril state of an amyloidogenic peptide suggest monomer addition to be the prevailing mechanism of elongation and a model of the peptide packing in the fibrils has been obtained. Structural analysis of protein fibrillation is inherently challenging. Given the crucial role of fibrils in amyloid diseases, method advancement is urgently needed. A hybrid modelling approach is presented enabling detailed analysis of a highly ordered and hierarchically organized fibril of the GNNQQNY peptide fragment of a yeast prion protein. Data from small-angle X-ray solution scattering, fibre diffraction and electron microscopy are combined with existing high-resolution X-ray crystallographic structures to investigate the fibrillation process and the hierarchical fibril structure of the peptide fragment. The elongation of these fibrils proceeds without the accumulation of any detectable amount of intermediate oligomeric species, as is otherwise reported for, for example, glucagon, insulin and α-synuclein. Ribbons constituted of linearly arranged protofilaments are formed. An additional hierarchical layer is generated via the pairing of ribbons during fibril maturation. Based on the complementary data, a quasi-atomic resolution model of the protofilament peptide arrangement is suggested. The peptide structure appears in a β-sheet arrangement reminiscent of the β-zipper structures evident from high-resolution crystal structures, with specific differences in the relative peptide orientation. The complexity of protein fibrillation and structure emphasizes the need to use multiple complementary methods.

  4. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy

    Science.gov (United States)

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, Il Woong; Walko, Donald A.; Dufresne, Eric M.; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan

    2016-02-01

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.

  5. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales.

    Science.gov (United States)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A L David; Belcher, Warwick J; Dastoor, Paul C

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  6. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Science.gov (United States)

    Burke, Kerry B.; Stapleton, Andrew J.; Vaughan, Ben; Zhou, Xiaojing; Kilcoyne, A. L. David; Belcher, Warwick J.; Dastoor, Paul C.

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N'-(4-butylphenyl)-bis-N, N'-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  7. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    International Nuclear Information System (INIS)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C; Kilcoyne, A L David

    2011-01-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N ' -(4-butylphenyl)-bis-N, N ' -phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  8. Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Kerry B; Stapleton, Andrew J; Vaughan, Ben; Zhou Xiaojing; Belcher, Warwick J; Dastoor, Paul C [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); Kilcoyne, A L David, E-mail: Paul.Dastoor@newcastle.edu.au [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-07-01

    Water-processable nanoparticle dispersions of semiconducting polymers offer an attractive approach to the fabrication of organic electronic devices since they offer: (1) control of nanoscale morphology and (2) environmentally friendly fabrication. Although the nature of phase segregation in these polymer nanoparticles is critical to device performance, to date there have been no techniques available to directly determine their intra-particle structure, which consequently has been poorly understood. Here, we present scanning transmission x-ray microscopy (STXM) compositional maps for nanoparticles fabricated from poly(9,9-dioctyl-fluorene-2,7-diyl-co-bis-N, N{sup '}-(4-butylphenyl)-bis-N, N{sup '}-phenyl-1,4-phenylenedi-amine) (PFB) and poly(9,9-dioctylfluorene-2,7-diyl-co-benzothiadiazole) (F8BT) 1:1 blend mixtures. The images show distinct phase segregation within the nanoparticles. The compositional data reveals that, within these nanoparticles, PFB and F8BT segregate into a core-shell morphology, with an F8BT-rich core and a PFB-rich shell. Structural modelling demonstrates that the STXM technique is capable of quantifying morphological features on a sub-10 nm length scale; below the spot size of the incident focused x-ray beam. These results have important implications for the development of water-based 'solar paints' fabricated from microemulsions of semiconducting polymers.

  9. Point defects in lithium fluoride films for micro-radiography, X-ray microscopy and photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Bonfigli, F.; Flora, F.; Marolo, T.; Montereali, R.M.; Baldacchini, G. [ENEA, UTS Tecnologie Fisiche Avanzate, C.R. Frascati, Via E. Fermi, 45, 00044 Frascati (Rome) (Italy); Faenov, A.Ya.; Pikuz, T.A. [MISDC of VNIIFTRI Mendeleevo, Moscow region, 141570 (Russian Federation); Nichelatti, E. [ENEA, UTS Tecnologie Fisiche Avanzate, C.R. Casaccia, Via Anguillarese, 301, 00060 Santa Maria di Galeria (Rome) (Italy); Reale, L. [Universita dell' Aquila e INFN, Dip. di Fisica, Coppito, L' Aquila (Italy)

    2005-01-01

    Point defects in lithium fluoride (LiF) have recently attracted renewed attention due the exciting results obtained in the realisation of miniaturised optical devices. Among light-emitting materials, LiF is of particular interest because it is almost not hygroscopic and can host, even at room temperature, stable color centers (CCs) that emit light in the visible and in the near infrared spectral range under optical excitation. The increasing demand for low-dimensionality photonic devices imposes the use of advanced irradiation methods for producing luminescent structures with high spatial resolution. An innovative irradiation technique to produce luminescent CCs in LiF crystals and films by using an extreme ultra-violet and soft X-ray laser-plasma source will be presented. This technique is capable to induce colored patterns with submicrometric spatial resolution on large areas in a short exposure time as compared with other irradiation methods. Luminescent regular arrays produced by this irradiation technique will be shown. Recently, the idea of using a LiF film as image detector for X-ray microscopy and micro-radiography based on optically-stimulated luminescence from CCs has been developed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    Science.gov (United States)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is

  11. Large area quantitative X-ray mapping of (U,Pu)O2 nuclear fuel pellets using wavelength dispersive electron probe microanalysis

    International Nuclear Information System (INIS)

    Bremier, S.; Haas, D.; Somers, J.; Walker, C.T.

    2003-01-01

    The work presented is an example of how large area compositional mapping (≥1 mm 2 ) can be used to provide quantitative information on element distribution and specimen homogeneity. High-resolution was accomplished by producing a collage of X-ray maps acquired using classical conditions; magnification x400, spatial resolution 256x256 pixels. The individual images, each measuring roughly 250x250 μm, were converted to quantitative maps using the HIMAX reg software package and the XMAS reg matrix correction from SAMx. The quantitative gray-level large area X-ray picture was pieced together using the 'Multiple Image Alignment' function of the ANALYSIS reg image processing software. This software was also used to convert the gray-level pictures to false color images. The specimens investigated were transverse sections of MOX fuel pellets. Results are presented for the distribution of Pu by area fraction and cumulative area fraction, the size distribution of regions of high Pu concentration and average separation of these regions

  12. Depth profiling: RBS versus energy-dispersive X-ray imaging using scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Markwitz, Andreas

    2000-01-01

    Rutherford backscattering spectrometry (RBS) is known to be one of the techniques ideal for analysis of thin films. Elemental concentrations of matrix components and impurities can be investigated as well as depth profiles of almost each element of the periodic table. Best of all, RBS has both a high sensitivity and a high depth resolution, and is a non-destructive analysis technique that does not require specific sample preparation. Solid-state samples are mounted without preparation inside a high-vacuum analysis chamber. However, depth-related interpretation of elemental depth profiles requires the material density of the specimen and stopping power values to be taken into consideration. In many cases, these parameters can be estimated with sufficient precision. However, the assumed density can be inaccurate for depth scales in the nanometer range. For example, in the case of Ge nanoclusters in 500 nm thick SiO 2 layers, uncertainty is related to the actual position of a very thin Ge nanocluster band. Energy-dispersive X-ray emission (EDX) spectroscopy, using a high-resolution scanning transmission electron microscope (STEM) can assist in removing this uncertainty. By preparing a thin section of the specimen, EDX can be used to identify the position of the Ge nanocluster band very precisely, by correlating the Ge profile with the depth profiles of silicon and oxygen. However, extraction of the concentration profiles from STEM-EDX spectra is in general not straightforward. Therefore, a combination of the two very different analysis techniques is often the best and only successful way to extract high-resolution concentration profiles

  13. Synchrotron-based transmission x-ray microscopy for improved extraction in shale during hydraulic fracturing

    Science.gov (United States)

    Kiss, Andrew M.; Jew, Adam D.; Joe-Wong, Claresta; Maher, Kate M.; Liu, Yijin; Brown, Gordon E.; Bargar, John

    2015-09-01

    Engineering topics which span a range of length and time scales present a unique challenge to researchers. Hydraulic fracturing (fracking) of oil shales is one of these challenges and provides an opportunity to use multiple research tools to thoroughly investigate a topic. Currently, the extraction efficiency from the shale is low but can be improved by carefully studying the processes at the micro- and nano-scale. Fracking fluid induces chemical changes in the shale which can have significant effects on the microstructure morphology, permeability, and chemical composition. These phenomena occur at different length and time scales which require different instrumentation to properly study. Using synchrotron-based techniques such as fluorescence tomography provide high sensitivity elemental mapping and an in situ micro-tomography system records morphological changes with time. In addition, the transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Lightsource (SSRL) beamline 6-2 is utilized to collect a nano-scale three-dimensional representation of the sample morphology with elemental and chemical sensitivity. We present the study of a simplified model system, in which pyrite and quartz particles are mixed and exposed to oxidizing solution, to establish the basic understanding of the more complex geology-relevant oxidation reaction. The spatial distribution of the production of the oxidation reaction, ferrihydrite, is retrieved via full-field XANES tomography showing the reaction pathway. Further correlation between the high resolution TXM data and the high sensitivity micro-probe data provides insight into potential morphology changes which can decrease permeability and limit hydrocarbon recovery.

  14. Proton induced X-ray emission and electron microscopy analysis of induced mutants of sorghum

    CSIR Research Space (South Africa)

    Mbambo, Z

    2014-01-01

    Full Text Available of elements in preferential accumulation tissues and entire changes in cellular localization. Transmission and scanning electron microscopy of the mutants resolved changes in size, shape, ultra-structure and packed cell volumes of protein- and starch bodies...

  15. Center for X-Ray Optics, 1992

    International Nuclear Information System (INIS)

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors

  16. Repeatability and reproducibility of intracellular molar concentration assessed by synchrotron-based x-ray fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merolle, L., E-mail: lucia.merolle@elettra.eu; Gianoncelli, A. [Elettra - Sincrotrone Trieste, 34149 Basovizza, Trieste (Italy); Malucelli, E., E-mail: emil.malucelli@unibo.it; Cappadone, C.; Farruggia, G.; Sargenti, A.; Procopio, A. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127 (Italy); Fratini, M. [Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, 00184 Roma Italy (Italy); Department of Science, Roma Tre University, Via della Vasca Navale 84, I-00146 Rome (Italy); Notargiacomo, A. [Institute for Photonics and Nanotechnology, Consiglio Nazionale delle Richerche, 00156 Rome (Italy); Lombardo, M. [Department of Chemistry “G. Ciamician”, University of Bologna, Bologna 40126 (Italy); Lagomarsino, S. [Institute of Chemical-Physical Processes, Sapienza University of Rome, 00185 Rome (Italy); National Institute of Biostructures and Biosystems, 00136 Rome (Italy); Iotti, S. [Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127 (Italy); National Institute of Biostructures and Biosystems, 00136 Rome (Italy)

    2016-01-28

    Elemental analysis of biological sample can give information about content and distribution of elements essential for human life or trace elements whose absence is the cause of abnormal biological function or development. However, biological systems contain an ensemble of cells with heterogeneous chemistry and elemental content; therefore, accurate characterization of samples with high cellular heterogeneity may only be achieved by analyzing single cells. Powerful methods in molecular biology are abundant, among them X-Ray microscopy based on synchrotron light source has gaining increasing attention thanks to its extremely sensitivity. However, reproducibility and repeatability of these measurements is one of the major obstacles in achieving a statistical significance in single cells population analysis. In this study, we compared the elemental content of human colon adenocarcinoma cells obtained by three distinct accesses to synchrotron radiation light.

  17. Characterization of pigments applied on archaeological material from Chincha's Culture by x-rays fluorescence and transmission electronic microscopy

    International Nuclear Information System (INIS)

    Lopez M, Alcides; Olivera, Paula

    2007-01-01

    The elementary characterization of some pigments applied in the decoration of recipients used by our ancestors of the Chincha Culture by Energy dispersive X-ray fluorescence (EDXRF)method was allowed. Additionally, the morphological and crystalline characterization by Transmission Electronic Microscopy (TEM) method has been possible. The results have allowed identifying the presence of mercury sulphur (HgS) (cinnabar) in the red pigment on the 'mate'; the black and white pigments are constituted by materials of organic aspect; in the case the dark brown one they are constituted by organic matter and ferric oxide. This work also demonstrates that a portable EDXRF spectrometer is the most suitable for the study of pieces of our cultural patrimony, mainly of those that are difficult to transport from an archaeological place or museum to an analytic laboratory by reason of its dimensions and conservation conditions. (author)

  18. Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis.

    Science.gov (United States)

    Dague, Etienne; Delcorte, Arnaud; Latgé, Jean-Paul; Dufrêne, Yves F

    2008-04-01

    Understanding the surface properties of microbial cells is a major challenge of current microbiological research and a key to efficiently exploit them in biotechnology. Here, we used three advanced surface analysis techniques with different sensitivity, probing depth, and lateral resolution, that is, in situ atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry, to gain insight into the surface properties of the conidia of the human fungal pathogen Aspergillus fumigatus. We show that the native ultrastructure, surface protein and polysaccharide concentrations, and amino acid composition of three mutants affected in hydrophobin production are markedly different from those of the wild-type, thereby providing novel insight into the cell wall architecture of A. fumigatus. The results demonstrate the power of using multiple complementary techniques for probing microbial cell surfaces.

  19. Employing Electron Microscopy integrated with X-ray Spectroscopy for Kuntawa Landslide Assessment

    Science.gov (United States)

    Dikedi, P. N.

    2016-12-01

    This work centres on Kuntawa landslide assessment owing to the enigmatic nature of a 2003 landslide which buried 4 people and a truck in Kuntawa village, of Nigeria. A Phenom ProX Scanning Electron Microscope (SEM) integrated with Energy dispersive X-ray Spectroscopy (EDS) and Particlemetric software was employed to generate the morphology, particle size data, elemental identification data and topography (at 3500x) of earth samples scooped from the landslide site. For a core sample 1 at depth, d=3.75m, average circle equivalent diameter dav, area a and volume by area Va of 11.5 µm, 249 µm² and 3680µm³ were generated respectively; at d=3.785m, dav , a and Va of 6.19µm, 30.1µm² and 124µm³ were generated respectively; at d=3.82m, dav , a and Va of 11.5 µm, 130 µm² and 1380µm³ were generated respectively. For a core sample 2, at d=3.75m, dav, a and Va of 5.54 µm, 26 µm² and 108µm³ were generated respectively; at d=3.82m, dav , a and Va of 19.4µm, 338µm² and 5240µm³ were generated respectively; a total of 243 particles were scanned. One of the results from specific surface for samples 1 and 2, reveals that it would take twice and four times the amount of water needed to wet an entire surface both at d=3.82m than at d=3.785m and d=3.75m respectively. Additional laboratory facilities reveal that soil water content Š, volumetric water content Vwc, porosity Φ, soil water-filled pore space Wps, increased with increasing d; bulk density ρb, decreased with increasing d. Elemental composition at the landslide site were generated from the EDS: oxygen (O), Silicon (Si), Bromine (Br), iron (Fe), Carbon (C) and Aluminium (Al). O and C had the highest and lowest concentration of elemental compositions of 68.5% at 3.75m depth and 1% at 3.82m depth for samples 1 and 2, respectively. Keywords: EDS, Particlemetric, SEM.

  20. A histochemical and X-ray microanalysis study of calcium changes in insect flight muscle degeneration in Solenopsis, the queen fire ant

    International Nuclear Information System (INIS)

    Jones, R.G.; Davis, W.L.; Vinson, S.B.

    1982-01-01

    Potassium pyroantimonate histochemistry, coupled with ethyleneglycoltetraacetic acid (EGTA)-chelation and X-ray microprobe analysis, was employed to localize intracellular calcium binding sites in the normal and degenerating flight musculature in queens of Solenopsis, the fire ant. In normal animals, calcium distribution was light to moderate within myofibrils and mitochondria. In the early contracture stages of the insemination-induced degeneration, both myofilament and mitochondrial calcium loading was markedly increased. In the terminal stages of myofibril breakdown, only Z-lines (isolated or in clusters) with an associated filamentous residue persisted. These complexes were also intensely calcium positive. This study further documents the presence of increased sarcoplasmic calcium during muscle necrosis. Surface membrane defects, mitochondrial calcium overload, and calcium-activated proteases may all be involved in this ''normal'' breakdown process

  1. Characterisation of mineralisation of bone and cartilage: X-ray diffraction and Ca and Sr K{sub {alpha}} X-ray fluorescence microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH (United Kingdom)], E-mail: d.a.bradley@surrey.ac.uk; Muthuvelu, P.; Ellis, R.E.; Green, E.M.; Attenburrow, D. [Biomedical Physics Group, School of Physics, University of Exeter, Exeter (United Kingdom); Barrett, R. [ESRF, BP 220, F-38043 Grenoble Cedex (France); Arkill, K.; Colridge, D.B.; Winlove, C.P. [Biomedical Physics Group, School of Physics, University of Exeter, Exeter (United Kingdom)

    2007-10-15

    Bone is a dynamic structure, constantly remodelling in response to changing mechanical and environmental factors. This is particularly evident in the mineral component encrusting the collagenous framework. The mineral is principally in the form of calcium apatite, but calcium can exchange with strontium, both during the cellular processes of mineralisation and resorption and by passive exchange with the deposited crystals. Mineralisation is generally characterized by densitometry, but because of the differences in absorption cross sections of calcium and strontium it can be misleading in studies of composition. In this work we have used X-ray diffraction to identify calcium and strontium apatite and X-ray fluorescence to quantify strontium and calcium distribution. With the beam characteristics available from synchrotron radiation, this has enabled us to obtain microscopic resolution on thin sections of bone and cartilage from the equine metacarpophalangeal joint. Two issues have been investigated; the first is the distribution of mineral in the bone-cartilage interface and within individual trabeculae. In trabecular bone the ratio of strontium to calcium concentration was typically 0.0035 {+-} 0.0020, and higher by a factor of {approx}3 at the periphery than in the centre of a trabeculum (possibly reflecting the more rapid turnover of mineral in the surface layer). In the dense subchondral bone the ratio was similar, approximately doubling in the calcified cartilage. The second objective was to explore the changes in mineralisation associated with development of osteoarthrosis. We analysed lesions showing cartilage thinning and changes in the trabecular organization and density of the underlying bone. At the centre of the lesion the ratio of strontium to calcium was much lower than that in normal tissue, although the calcified cartilage still showed a higher ratio than the underlying bone. In the superficially normal tissue around the lesion the calcified

  2. Characterization of leaf-level particulate matter for an industrial city using electron microscopy and X-ray microanalysis

    Czech Academy of Sciences Publication Activity Database

    Sgrigna, G.; Baldacchini, C.; Eposito, R.; Calandrelli, R.; Tiwary, A.; Calfapietra, Carlo

    548-549, apr (2016), s. 91-99 ISSN 0048-9697 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Air pollution * EDX * Human health * Particulate matter * Urban trees * SEM Subject RIV: EH - Ecology, Behaviour Impact factor: 4.900, year: 2016

  3. Four-dimensional in vivo X-ray microscopy with projection-guided gating

    Science.gov (United States)

    Mokso, Rajmund; Schwyn, Daniel A.; Walker, Simon M.; Doube, Michael; Wicklein, Martina; Müller, Tonya; Stampanoni, Marco; Taylor, Graham K.; Krapp, Holger G.

    2015-03-01

    Visualizing fast micrometer scale internal movements of small animals is a key challenge for functional anatomy, physiology and biomechanics. We combine phase contrast tomographic microscopy (down to 3.3 μm voxel size) with retrospective, projection-based gating (in the order of hundreds of microseconds) to improve the spatiotemporal resolution by an order of magnitude over previous studies. We demonstrate our method by visualizing 20 three-dimensional snapshots through the 150 Hz oscillations of the blowfly flight motor.

  4. Networking strategies of the microscopy community for improved utilization of advanced instruments: (1) The Australian Microscopy and Microanalysis Research Facility (AMMRF)

    International Nuclear Information System (INIS)

    Ringer, S.P.; Apperley, M.H.

    2014-01-01

    This paper describes the strategy underpinning the formation and operation of the Australian Microscopy and Microanalysis Research Facility (AMMRF). AMMRF is a formal collaboration that links eight Australian Universities together to create a user-focused national capability in microscopy and microanalysis. The AMMRF flagship capabilities include: Cameca IMS-1280 and NanoSIMS-50 ion microprobes (University of Western Australia); High-throughput, high-resolution cryoTEM (University of Queensland); Atom Probe Microscopy (University of Sydney); High-resolution Focussed Ion-Beam and SEM (Universities of Adelaide and NSW); High-resolution SEM microanalysis facility (University of New South Wales); and PHI TRIFT V nanoToF ToF-SIMS (University of South Australia). Secondly, a network of peer support and expert training has been established amongst facility professional support staff. The governance and funding of the organisation are described and the advantages and achievements of a nationally coordinated facility for microscopy and microanalysis are set out. Selected data are presented that benchmark the performance of the facility, describe the economic impact and demonstrate the impact on the quality of research outcomes as a result of operating national collaborative research infrastructure for microscopy and microanalysis

  5. Quality of determinations obtained from laboratory reference samples used in the calibration of X-ray electron probe microanalysis of silicate minerals

    International Nuclear Information System (INIS)

    Pavlova, Ludmila A.; Suvorova, Ludmila F.; Belozerova, Olga Yu.; Pavlov, Sergey M.

    2003-01-01

    Nine simple minerals and oxides, traditionally used as laboratory reference samples in the electron probe microanalysis (EPMA) of silicate minerals, have been quantitatively evaluated. Three separate series of data, comprising the average concentration, standard deviation, relative standard deviation, confidence interval and the z-score of data quality, were calculated for 21 control samples derived from calibrations obtained from three sets of reference samples: (1) simple minerals; (2) oxides; and (3) certified glass reference materials. No systematic difference was observed between the concentrations obtained from these three calibration sets when analyzed results were compared to certified compositions. The relative standard deviations obtained for each element were smaller than target values for all determinations. The z-score values for all elements determined fell within acceptable limits (-2< z<2) for concentrations ranging from 0.1 to 100%. These experiments show that the quality of data obtained from laboratory reference calibration samples is not inferior to that from certified reference glasses. The quality of results obtained corresponds to the 'applied geochemistry' type of analysis (category 2) as defined in the GeoPT proficiency testing program. Therefore, the laboratory reference samples can be used for calibrating EPMA techniques in the analysis of silicate minerals and for controlling the quality of results

  6. In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratio

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Duchstein, Linus Daniel Leonhard; Chiarello, Gian Luca

    2014-01-01

    Silica-supported, bimetallic Cu-Ni nanomaterials were prepared with different ratios of Cu to Ni by incipient wetness impregnation without a specific calcination step before reduction. Different in situ characterization techniques, in particular transmission electron microscopy (TEM), X-ray...... diffraction (XRD), and X-ray absorption spectroscopy (XAS), were applied to follow the reduction and alloying process of Cu-Ni nanoparticles on silica. In situ reduction of Cu-Ni samples with structural characterization by combined synchrotron XRD and XAS reveals a strong interaction between Cu and Ni species......, which results in improved reducibility of the Ni species compared with monometallic Ni. At high Ni concentrations silica-supported Cu-Ni alloys form a homogeneous solid solution of Cu and Ni, whereas at lower Ni contents Cu and Ni are partly segregated and form metallic Cu and Cu-Ni alloy phases. Under...

  7. Experimental determination of the back scattering factor in X-ray microanalysis; Determination experimentale du facteur de retro-diffusion en microanalyse par emission X

    Energy Technology Data Exchange (ETDEWEB)

    Derian, J C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    This paper describes the first experimental method which has fixed the relative value of the X-ray loss by electron back scattering. Measurements have been performed, using gold, copper and aluminium specimens and accelerating voltages from 10 to 30 kV. Our experimental results, although higher than back scattering factor values calculated before, agree fairly well with those obtained by a Monte-Carlo calculation, using recent experimental measurement on thin films. The higher values obtained here, show that the compensation between deceleration and back scattering effects is better: the discrepancy from a linearity law is then probably weaker than it has been generally shown previously. (author) [French] Le memoire decrit la premiere methode experimentale ayant permis de determiner l'importance relative de la fraction du rayonnement X perdue par retrodiffusion des electrons. Les mesures ont porte sur l'or, le cuivre et l'aluminium entre 10 et 30 kV. Les resultats, sensiblement superieurs aux estimations anterieures, sont en bon accord avec ceux deduits, par la methode de Monte-Carlo, des recentes mesures sur les lames minces. Les valeurs plus elevees du facteur de retrodiffusion mises ainsi en evidence, conduisent a une meilleure compensation entre les effets de ralentissement et de retrodiffusion: l'ecart a une simple loi de proportionnalite par effet de difference de nombre atomique est ainsi probablement plus faible qu'on ne le pensait generalement jusqu'ici. (auteur)

  8. Polyvinyl chloride degradation by X-rays

    International Nuclear Information System (INIS)

    Sbampato, M.E.

    1984-01-01

    Degradation of film samples of pure PVC and comercial film (PVC + Polyacrylatis) with vacuum X-rays using the following techniques: infra-red, Raman, ultra violet and visible spectroscopies, eletronic paramagnetic resonance, X-rays difraction, percent measurement of transmitance and microanalysis was studied. (L.M.J.) [pt

  9. Characterization of gold mineralizations of Cuba by means of scanning electron microscopy with X-ray analyzer and con focal Raman microscopy

    International Nuclear Information System (INIS)

    Toledo Sanchez, Carlos Alfredo; Santa Cruz Pacheco, Maria; Lopez Kramer, Jesus M.; Lisabet Sarracen, Evelio; Aguirre Guillot, Graciela; Capote Marrero, Carbeny; Llanes Castro, Angelica I.; Milia Gonzalez, Ines

    2016-01-01

    The technology selection for gold ore processing requires the characterization, not only of the gold carrier minerals but also its associations, so it is necessary to find out the mineral nature, morphology, particle size, purity and gold concentration, other factors to consider are liberation grade, minerals in association, surface accessibility and form to present themselves. In this research it is exposed the utilization of the optical and electron microscopy, with Raman and X ray micro analyzers, in order to obtain useful information about different gold mineralization of the country, including those of Delita, Meloneras-Descanso, Oro Jacinto and Oro Barita. It describes how the scanning electron microscopy with x-ray analyzer allowed the study of gold particles from nanometer order, determining its size, morphology, surface condition and purity. It was found that in some places the gold grains have a purity exceeding 99%, while in others the content of silver, copper and mercury are increasing, surpassing gold just 30% in some cases, resulting in other mineralogical forms. It was also observed variability in the degree of release of the gold particles. Moreover Raman con focal microscope allowed analyzes minerals micrometric volumes under study, particularly rock-forming. Being a structural technique, it was possible to identify minerals without causing damage to the samples, which usually is not achieved with other techniques. (Author)

  10. Synchrotron x-ray microbeam characteristics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi

    1995-01-01

    X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis. 16 refs., 5 figs

  11. Transmission X-Ray Microscopy of the Galvanostatic Growth of Lead Sulfate on Lead: Impact of Lignosulfonate

    International Nuclear Information System (INIS)

    Knehr, K.W.; Eng, Christopher; Wang, Jun; West, Alan C.

    2015-01-01

    The galvanostatic growth of PbSO 4 on Pb in H 2 SO 4 was studied using scanning electron microscopy and in situ transmission X-ray microscopy (TXM). Images from the TXM are used to investigate the effects of sodium lignosulfonate on the PbSO 4 formation and the initial growth of the PbSO 4 crystals. Sodium lignosulfonate is shown to retard, on average, the growth of the PbSO 4 crystals, yielding a film with smaller crystals and higher crystal densities. In addition, results from experiments with and without sodium lignosulfonate indicate an increase in the nucleation rate of the PbSO 4 crystals when the oxidation current is applied, which was attributed to an increase in the supersaturation of the electrolyte. Furthermore, an analysis of the growth rates of individual, large crystals showed an initial rapid growth which declined as the PbSO 4 surface coverage increased. It was concluded that the increase in PbSO 4 provides additional sites for precipitation and reduces the precipitation rate on the existing crystals. Finally, the potential-time transient at the beginning of oxidation is suggested to result from the relaxation of a supersaturated solution and the development of a PbSO 4 film with increasing resistance

  12. 3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission x-ray microscopy at 5.4 keV

    Science.gov (United States)

    Chen, Jie; Yang, Yunhao; Zhang, Xiaobo; Andrews, Joy C.; Pianetta, Piero; Guan, Yong; Liu, Gang; Xiong, Ying; Wu, Ziyu; Tian, Yangchao

    2010-01-01

    Three-dimensional (3D) nanoscale structures of the fission yeast, Schizosaccharomyces pombe, can be obtained by full-field transmission hard x-ray microscopy with 30 nm resolution using synchrotron radiation sources. Sample preparation is relatively simple and the samples are portable across various imaging environments, allowing for high throughput sample screening. The yeast cells were fixed and double stained with Reynold’s lead citrate and uranyl acetate. We performed both absorption contrast and Zernike phase contrast imaging on these cells in order to test this method. The membranes, nucleus and subcellular organelles of the cells were clearly visualized using absorption contrast mode. The x-ray images of the cells could be used to study the spatial distributions of the organelles in the cells. These results show unique structural information, demonstrating that hard x-ray microscopy is a complementary method for imaging and analyzing biological samples. PMID:20349228

  13. Recent progress in energy-filtered high energy X-ray photoemission electron microscopy using a Wien filter type energy analyzer

    International Nuclear Information System (INIS)

    Niimi, H.; Tsutsumi, T.; Matsudaira, H.; Kawasaki, T.; Suzuki, S.; Chun, W.-J.; Kato, M.; Kitajima, Y.; Iwasawa, Y.; Asakura, K.

    2004-01-01

    Energy-filtered X-ray photoemission electron microscopy (EXPEEM) is a microscopy technique which has the potential to provide surface chemical mapping during surface chemical processes on the nanometer scale. We studied the possibilities of EXPEEM using a Wien filter type energy analyzer in the high energy X-ray region above 1000 eV. We have successfully observed the EXPEEM images of Au islands on a Ta sheet using Au 3d 5/2 and Ta 3d 5/2 photoelectron peaks which were excited by 2380 eV X-rays emitted from an undulator (BL2A) at Photon Factory. Our recent efforts to improve the sensitivity of the Wien filter energy analyzer will also be discussed

  14. 3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV.

    Science.gov (United States)

    Chen, Jie; Yang, Yunhao; Zhang, Xiaobo; Andrews, Joy C; Pianetta, Piero; Guan, Yong; Liu, Gang; Xiong, Ying; Wu, Ziyu; Tian, Yangchao

    2010-07-01

    Three-dimensional (3D) nanoscale structures of the fission yeast, Schizosaccharomyces pombe, can be obtained by full-field transmission hard X-ray microscopy with 30 nm resolution using synchrotron radiation sources. Sample preparation is relatively simple and the samples are portable across various imaging environments, allowing for high-throughput sample screening. The yeast cells were fixed and double-stained with Reynold's lead citrate and uranyl acetate. We performed both absorption contrast and Zernike phase contrast imaging on these cells in order to test this method. The membranes, nucleus, and subcellular organelles of the cells were clearly visualized using absorption contrast mode. The X-ray images of the cells could be used to study the spatial distributions of the organelles in the cells. These results show unique structural information, demonstrating that hard X-ray microscopy is a complementary method for imaging and analyzing biological samples.

  15. Biomedical applications of electronic microscopy and elementary analysis with spectrometer of x rays

    International Nuclear Information System (INIS)

    Hernandez Chavarria, F.; Saenz, A.; Freer, E.

    2002-01-01

    The electronic microscopy has advanced from its invention 60 years ago and its application in biomedical sciences has been very big. Parallel to the development of new technology in this field and that has allowed to reach a resolution of 1,4 amstrong for the transmission microscope and from 30 to 70 amstrong for the racking microscope its has been adapted to these microscopes by other devices that allow to realize an elementary analysis of the sample that is being examined in the microscope. The advantage of this procedure is that the sample is being examined in the microscope in real time can be analyzed in his chemical composition without being destroyed. Additional it is possible to realize an analysis of the distribution of its elements in the whole sample. The application of this new method in the biological sciences is very wide. We can detect inorganic materials as the lead, arsenic, calcium, mercury, aluminium, etc. in different tissue of the body, obtained of biopsy or autopsy. A practical application is the analysis of the composition of vesiculary calculus or urinary determining in that way the physiopathogeny of the process. (Author) [es

  16. Studies on silica deposition in sugarcane (Saccharum spp. ) using scanning electron microscopy, energy-dispersive X-ray analysis, neutron activation analysis, and light microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, P B; Takeoka, Y; Carlson, T J; Bigelow, W C; Jones, J D; Moore, P H; Ghosheh, N S [Michigan Univ., Ann Arbor (USA)

    1979-06-01

    Marked differences in silicon content in internodes of two sugarcane cultivars as revealed by neutron activation analysis, were closely correlated with number of silica cells per unit area in the epidermal system of the internodes of the two cultivars, as indicated by scanning electron microscopy and X-ray analysis. Light microscopy of epidermal peels showed that silica cells are capable of transmitting significantly more light through themselves than do other types of adjacent epidermal cells. This could be of great significance to total amount of carbon fixed by photosynthesizing mesophyll cells in leaves and cortical cells in internodes below the epidermis, especially in sugarcane cultivars with high densities of silica cells in their shoot epidermal systems. This has led to propose a window hypothesis, which indicates that silica cells in sugarcane, and in other grasses, act like windows in the epidermal system, allowing more light to be transmitted to photosynthetic tissue below than would occur if silica cells were absent.

  17. Scanning electron-microscopic and X-ray-microanalytic observation of diesel-emission particles associated with mutagenicity

    International Nuclear Information System (INIS)

    Nakashima, K.; Yoshitsugu, K.; Tokiwa, H.; Fukuoka Environmental Research Center

    1983-01-01

    The particles formed by diesel combustion, which may contain various mutagenic chemicals like polycyclic aromatic hydrocarbons (PAH), are analyzed in their morphology by scanning electron microscopy; their sulfur content is detected by X-ray microanalysis, and mutagenicity is tested with a Salmonella typhimurium bioassay. The authors find a close correlation between sulfur content and mutagenicity of PAH. (Auth.)

  18. Central Laboratory of X-ray and Electron Microscopy Research at the Institute of Physics of the Polish Academy of Sciences, Warsaw

    International Nuclear Information System (INIS)

    Zymierska, D.

    2008-01-01

    The beginning and history of the Central Laboratory of X-ray and Electron Microscopy at the Institute of Physics of the Polish Academy of Sciences in Warsaw is described. Then, recent scientific achievements are presented. Organising activities of the Laboratory staff are also mentioned. (author)

  19. Synchrotron-based X-ray Fluorescence Microscopy in Conjunction with Nanoindentation to Study Molecular-Scale Interactions of Phenol–Formaldehyde in Wood Cell Walls

    Science.gov (United States)

    Joseph E. Jakes; Christopher G. Hunt; Daniel J. Yelle; Linda Lorenz; Kolby Hirth; Sophie-Charlotte Gleber; Stefan Vogt; Warren Grigsby; Charles R. Frihart

    2015-01-01

    Understanding and controlling molecular-scale interactions between adhesives and wood polymers are critical to accelerate the development of improved adhesives for advanced wood-based materials. The submicrometer resolution of synchrotron-based X-ray fluorescence microscopy (XFM) was found capable of mapping and quantifying infiltration of Br-labeled phenol−...

  20. X-ray microscopy as an approach to increasing accuracy and efficiency of serial block-face imaging for correlated light and electron microscopy of biological specimens.

    Science.gov (United States)

    Bushong, Eric A; Johnson, Donald D; Kim, Keun-Young; Terada, Masako; Hatori, Megumi; Peltier, Steven T; Panda, Satchidananda; Merkle, Arno; Ellisman, Mark H

    2015-02-01

    The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.

  1. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Donnelley, Martin, E-mail: martin.donnelley@adelaide.edu.au; Farrow, Nigel; Parsons, David [Respiratory & Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, South Australia (Australia); Robinson Research Institute, University of Adelaide, South Australia (Australia); School of Paediatrics and Reproductive Health, University of Adelaide, South Australia (Australia); Morgan, Kaye; Siu, Karen [School of Physics, Monash University, Victoria (Australia)

    2016-01-28

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  2. Scanning electron microscopy and X-ray energy dispersive spectroscopy - useful tools in the analysis of pharmaceutical products

    Science.gov (United States)

    Sarecka-Hujar, Beata; Balwierz, Radoslaw; Ostrozka-Cieslik, Aneta; Dyja, Renata; Lukowiec, Dariusz; Jankowski, Andrzej

    2017-11-01

    The quality of the drug, its purity and identification of degradation products provide the highest quality of pharmaceutical products. The energy dispersive spectroscopy (EDS) method analyses the percentage of each element form as well as their distribution, and morphological characteristics of the drug form. We analysed the usefulness of EDS method in testing orally disintegrating tablets (ODT) with trimetazidine hydrochloride with high resolution scanning electron microscopy (SEM, SUPRA25 Carl Zeiss company) with spectrophotometer equipped with an X-ray energy dispersion (EDAX Company). The samples of the analysed tablets were imaged after applying conductive layers of gold on their surface. In the EDS analysis the compositions of each sample of the obtained tablets were observed to be virtually identical. The differences in the content of carbon and oxygen came from differences in the composition of particular tablets. The presence of gold in the composition resulted from the sputtering the surface of tablets with gold during the analysis. Knowing the composition of the tablet, SEM-EDS method helps to locate and identify the impurities and degradation products of the compounds, leading to a better understanding of the mechanisms of their formation.

  3. X-ray tomographic microscopy tightens affinity of the early Cambrian Oymurania to the brachiopod stem group

    Directory of Open Access Journals (Sweden)

    Artem Kouchinsky

    2017-03-01

    Full Text Available The geologically rapid biotic evolution in the early Cambrian is marked by the first appearance of major groups of animals in the fossil record (e.g., Budd and Jensen 2000; Kouchinsky et al. 2012. Along with the earliest crown-group representatives of the phylum Brachiopoda, more basal branches of the phylogenetic tree belonging to the stem-group Brachiopoda, such as tannuolinids and mikwitziids, diversified and became widespread during the early Cambrian (e.g., Williams and Holmer 2002; Balthasar et al. 2009; Skovsted et al. 2014. Synchrotron-radiation X-ray tomographic microscopy (SRXTM of Oymurania gravestocki reveals the microstructure of its calcium-phosphatic shell differentiated into two layers and intersecting systems of canals. The outer layer shows the acrotretoid columnar microstructure and the inner layer consists of continuous prismatic columns. Phosphatized setae preserved within tangential canals, as well as perpendicular canals of Micrina–Setatella type demonstrate homology with the tannuolinid Micrina and the mickwitziid Setatella. A unique and novel combination of microstructural features in Oymurania confirms its evolutionary position within the brachiopod stem group.

  4. Compositional and quantitative microtextural characterization of historic paintings by micro-X-ray diffraction and Raman microscopy.

    Science.gov (United States)

    Romero-Pastor, Julia; Duran, Adrian; Rodríguez-Navarro, Alejandro Basilio; Van Grieken, René; Cardell, Carolina

    2011-11-15

    This work shows the benefits of characterizing historic paintings via compositional and microtextural data from micro-X-ray diffraction (μ-XRD) combined with molecular information acquired with Raman microscopy (RM) along depth profiles in paint stratigraphies. The novel approach was applied to identify inorganic and organic components from paintings placed at the 14th century Islamic University-Madrasah Yusufiyya-in Granada (Spain), the only Islamic University still standing from the time of Al-Andalus (Islamic Spain). The use of μ-XRD to obtain quantitative microtextural information of crystalline phases provided by two-dimensional diffraction patterns to recognize pigments nature and manufacture, and decay processes in complex paint cross sections, has not been reported yet. A simple Nasrid (14th century) palette made of gypsum, vermilion, and azurite mixed with glue was identified in polychromed stuccos. Here also a Christian intervention was found via the use of smalt, barite, hematite, Brunswick green and gold; oil was the binding media employed. On mural paintings and wood ceilings, more complex palettes dated to the 19th century were found, made of gypsum, anhydrite, barite, dolomite, calcite, lead white, hematite, minium, synthetic ultramarine blue, and black carbon. The identified binders were glue, egg yolk, and oil.

  5. Exceptionally preserved Cambrian trilobite digestive system revealed in 3D by synchrotron-radiation X-ray tomographic microscopy.

    Directory of Open Access Journals (Sweden)

    Mats E Eriksson

    Full Text Available The Cambrian 'Orsten' fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish 'Orsten' fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the 'Orsten' fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome.

  6. Characterization of neutron-irradiated HT-UPS steel by high-energy X-ray diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuan, E-mail: xuanzhang@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Park, Jun-Sang; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Li, Meimei [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2016-04-01

    This paper presents the first measurement of neutron-irradiated microstructure using far-field high-energy X-ray diffraction microscopy (FF-HEDM) in a high-temperature ultrafine-precipitate-strengthened (HT-UPS) austenitic stainless steel. Grain center of mass, grain size distribution, crystallographic orientation (texture), diffraction spot broadening and lattice constant distributions of individual grains were obtained for samples in three different conditions: non-irradiated, neutron-irradiated (3dpa/500 °C), and irradiated + annealed (3dpa/500 °C + 600 °C/1 h). It was found that irradiation caused significant increase in grain-level diffraction spot broadening, modified the texture, reduced the grain-averaged lattice constant, but had nearly no effect on the average grain size and grain size distribution, as well as the grain size-dependent lattice constant variations. Post-irradiation annealing largely reversed the irradiation effects on texture and average lattice constant, but inadequately restored the microstrain.

  7. Distribution of trace levels of therapeutic gallium in bone as mapped by synchrotron X-ray microscopy

    International Nuclear Information System (INIS)

    Bockman, R.S.; Repo, M.A.; Warrell, R.P. Jr.; Pounds, J.G.; Schidlovsky, G.; Gordon, B.M.; Jones, K.W.

    1990-01-01

    Gallium nitrate, a drug that inhibits calcium release from bone, has been proven a safe and effective treatment for the accelerated bone resorption associated with cancer. Though bone is a target organ for gallium, the kinetics, sites, and effects of gallium accumulation in bone are not known. The authors have used synchrotron X-ray microscopy to map the distribution of trace levels of gallium in bone. After short-term in vivo administration of gallium nitrate to rats, trace (nanogram) amounts of gallium preferentially localized to the metabolically active regions in the metaphysis as well as the endosteal and periosteal surfaces of diaphyseal bone, regions where new bone formation and modeling were occurring. The amounts measured were well below the levels known to be cytotoxic. Iron and zinc, trace elements normally found in bone, were decreased in amount after in vivo administration of gallium. These studies represent a first step toward understanding the mechanism(s) of action of gallium in bone by suggesting the possible cellular, structural, and elemental targets of gallium

  8. Smectite flocculation structure modified by Al13 macro-molecules--as revealed by the transmission X-ray microscopy (TXM).

    Science.gov (United States)

    Zbik, Marek S; Martens, Wayde N; Frost, Ray L; Song, Yen-Fang; Chen, Yi-Ming; Chen, Jian-Hua

    2010-05-01

    The aggregate structure which occurs in aqueous smectitic suspensions is responsible for poor water clarification, difficulties in sludge dewatering and the unusual rheological behaviour of smectite rich soils. These macroscopic properties are dictated by the 3D structural arrangement of smectite finest fraction within flocculated aggregates. Here, we report results from a relatively new technique, transmission X-ray microscopy (TXM), which makes it possible to investigate the internal structure and 3D tomographic reconstruction of the smectite clay aggregates modified by Al(13) Keggin macro-molecule [Al(13)(O)(4)(OH)(24)(H(2)O)(12)](7+). Three different treatment methods were shown resulted in three different micro-structural environments of the resulting flocculation. In case of smectite sample prepared in Methods 1 and 3 particles fall into the primary minimum where Van der Waals forces act between FF oriented smectite flakes and aggregates become approach irreversible flocculation. In case of sample prepared using Method 2, particles contacting by edges (EE) and edge to face (EF) orientation fell into secondary minimum and weak flocculation resulted in severe gelation and formation of the micelle-like texture in fringe superstructure, which was first time observed in smectite based gel. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Real-time X-ray transmission microscopy for fundamental studies solidification: Al-Al2Au eutectic

    International Nuclear Information System (INIS)

    Curreri, Peter A.; Kaukler, William F.; Sen, Subhayu

    1998-01-01

    High resolution real-time X-ray Transmission Microscopy, XTM, has been applied to obtain information fundamental to solidification of optically opaque metallic systems. We have previously reported the measurement of the solute profile in the liquid, phase growth, and detailed solid-liquid interfacial morphology of aluminum based alloys with exposure times less than 2 seconds. Recent advances in XTM furnace design have provided an increase in real-time magnification (during solidification) for the XTM from 40X to 160X. The increased magnification has enabled for the first time the XTM imaging of real-time growth of fibers and particles with diameters of 5 μm. We have previously applied this system to study the kinetics of formation and morphological evolution of secondary fibers and particles in Al-Bi monotectic alloys. In this paper we present the preliminary results of the first real-time observations of fiber morphology evolution in optically opaque bulk metal sample of Aluminum-Gold eutectic alloy. These studies show that the XTM can be applied to study the fundamentals of eutectic and monotectic solidification. We are currently attempting to apply this technology in the fundamentals of solidification in microgravity

  10. Investigation of liquid water in gas diffusion layers of polymer electrolyte fuel cells using X-ray tomographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Flueckiger, Reto [Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Marone, Federica [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Stampanoni, Marco [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, CH-8092 Zurich (Switzerland); Wokaun, Alexander [Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Buechi, Felix N., E-mail: felix.buechi@psi.c [Electrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2011-02-01

    In polymer electrolyte fuel cells (PEFCs), condensation of water within the pore network of the gas diffusion layers (GDL) can influence the gas transport properties and thus reduce the electrochemical conversion rates. The use of X-ray tomographic microscopy (XTM), which allows for a resolution in the order of one micrometer is investigated for studying ex situ the local saturation in GDL's. The strength of XTM is the high spatial resolution with simultaneous contrast for water and carbon, allowing for non-destructive 3D-imaging of the solid and the contained water. The application of this method for imaging the ex situ water intrusion into the porous network of GDLs is explored using absorption and phase contrast methods. It is shown that the inhomogeneous filling behavior of GDL materials can indeed be visualized with sufficient resolution. For Toray paper TGP-H-060 the local saturation was measured as function of the water pressure. The results, evaluated in 1D, 2D and 3D show a liquid water retention effect at the denser layers near the surface. A comparison with established capillary pressure functions is presented. Altogether, the results show the potential of the XTM-method as a tool for studying the liquid water behavior in PEFC on a microscopic scale.

  11. Investigation of liquid water in gas diffusion layers of polymer electrolyte fuel cells using X-ray tomographic microscopy

    International Nuclear Information System (INIS)

    Flueckiger, Reto; Marone, Federica; Stampanoni, Marco; Wokaun, Alexander; Buechi, Felix N.

    2011-01-01

    In polymer electrolyte fuel cells (PEFCs), condensation of water within the pore network of the gas diffusion layers (GDL) can influence the gas transport properties and thus reduce the electrochemical conversion rates. The use of X-ray tomographic microscopy (XTM), which allows for a resolution in the order of one micrometer is investigated for studying ex situ the local saturation in GDL's. The strength of XTM is the high spatial resolution with simultaneous contrast for water and carbon, allowing for non-destructive 3D-imaging of the solid and the contained water. The application of this method for imaging the ex situ water intrusion into the porous network of GDLs is explored using absorption and phase contrast methods. It is shown that the inhomogeneous filling behavior of GDL materials can indeed be visualized with sufficient resolution. For Toray paper TGP-H-060 the local saturation was measured as function of the water pressure. The results, evaluated in 1D, 2D and 3D show a liquid water retention effect at the denser layers near the surface. A comparison with established capillary pressure functions is presented. Altogether, the results show the potential of the XTM-method as a tool for studying the liquid water behavior in PEFC on a microscopic scale.

  12. Effective segmentation of fresh post-mortem murine lung parenchyma in phase contrast X-ray tomographic microscopy images

    International Nuclear Information System (INIS)

    Oikonomidis, Ioannis Vogiatzis; Cremona, Tiziana P; Schittny, Johannes C; Lovric, Goran; Arcadu, Filippo; Stampanoni, Marco

    2017-01-01

    The acinus represents the functional unit of the mammalian lung. It is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Different hypotheses exist on how the fine structure of the acinus changes during ventilation and development. Since in classical 2-dimensional (2D) sections of the lung the borders of the acini are not detectable, every study of acini requires 3-dimensional (3D) datasets. As a basis for further studies of pulmonary acini we imaged rodent lungs as close to life as possible using phase contrast synchrotron radiation-based X-ray tomographic microscopy (SRXTM), and developed a protocol for the segmentation of the alveolar septa. The method is based on a combined multilevel filtering approach. Seeds are automatically defined for separate regions of tissue and airspace during each 2D filtering level and then given as input to a 3D random walk segmentation. Thus, the different types of artifacts present in the images are treated separately, taking into account the sample’s structural complexity. The proposed procedure yields high-quality 3D segmentations of acinar microstructure that can be used for a reliable morphological analysis. (paper)

  13. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Science.gov (United States)

    Donnelley, Martin; Morgan, Kaye; Farrow, Nigel; Siu, Karen; Parsons, David

    2016-01-01

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  14. Mechanical design and performance evaluation for plane grating monochromator in a soft X-ray microscopy beamline at SSRF.

    Science.gov (United States)

    Gong, Xuepeng; Lu, Qipeng

    2015-01-01

    A new monochromator is designed to develop a high performance soft X-ray microscopy beamline at Shanghai Synchrotron Radiation Facility (SSRF). But owing to its high resolving power and high accurate spectrum output, there exist many technical difficulties. In the paper presented, as two primary design targets for the monochromator, theoretical energy resolution and photon flux of the beamline are calculated. For wavelength scanning mechanism, primary factors affecting the rotary angle errors are presented, and the measuring results are 0.15'' and 0.17'' for plane mirror and plane grating, which means that it is possible to provide sufficient scanning precision to specific wavelength. For plane grating switching mechanism, the repeatabilities of roll, yaw and pitch angles are 0.08'', 0.12'' and 0.05'', which can guarantee the high accurate switch of the plane grating effectively. After debugging, the repeatability of light spot drift reaches to 0.7'', which further improves the performance of the monochromator. The commissioning results show that the energy resolving power is higher than 10000 at Ar L-edge, the photon flux is higher than 1 × 108 photons/sec/200 mA, and the spatial resolution is better than 30 nm, demonstrating that the monochromator performs very well and reaches theoretical predictions.

  15. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca

    2014-03-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  16. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca; Moore, Katie L.; Paterson, David J.; De Jonge, Martin Daly; Howard, Daryl Lloyd; Stangoulis, James Constantine R; Tester, Mark A.; Lombi, E.; Johnson, Alexander A T

    2014-01-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  17. Threshold for ion movements in wood cell walls below fiber saturation observed by X-ray fluorescence microscopy (XFM)

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Samuel L.; Gleber, Sophie-Charlotte; Vogt, Stefan; Rodriguez Lopez, Gabriela M.; Jakes, Joseph E.

    2015-05-01

    Diffusion of chemicals and ions through the wood cell wall plays an important role in wood damage mechanisms. In the present work, free diffusion of ions through wood secondary walls and middle lamellae has been investigated as a function of moisture content (MC) and anatomical direction. Various ions (K, Cl, Zn, Cu) were injected into selected regions of 2 mu m thick wood sections with a microinjector and then the ion distribution was mapped by means of X-ray fluorescence microscopy with submicron spatial resolution. The MC of the wood was controlled in situ by means of climatic chamber with controlled relative humidity (RH). For all ions investigated, there was a threshold RH below which the concentration profiles did not change. The threshold RH depended upon ionic species, cell wall layer, and wood anatomical orientation. Above the threshold RH, differences in mobility among ions were observed and the mobility depended upon anatomical direction and cell wall layer. These observations support a recently proposed percolation model of electrical conduction in wood. The results contribute to understanding the mechanisms of fungal decay and fastener corrosion that occur below the fiber saturation point.

  18. Charge state mapping of mixed valent iron and manganese mineral particles using Scanning Transmission X-ray Microscopy (STXM)

    International Nuclear Information System (INIS)

    Pecher, K.; Nealson, K.; Kneedler, E.; Rothe, J.; Meigs, G.; Warwick, T.; Tonner, B.

    2000-01-01

    The interfaces between solid mineral particles and water play a crucial role in partitioning and chemical transformation of many inorganic as well as organic pollutants in environmental systems. Among environmentally significant minerals, mixed-valent oxides and hydroxides of iron (e.g. magnetite, green rusts) and manganese (hausmanite, birnessite) have been recognized as particularly strong sorbents for metal ions. In addition, minerals containing Fe(II) have recently been proven to be powerful reductants for a wide range of pollutants. Chemical properties of these minerals strongly depend on the distribution and availability of reactive sites and little is known quantitatively about the nature of these sites. We have investigated the bulk distribution of charge states of manganese (Mn (II, III, IV)) and iron (Fe(II, III)) in single particles of natural manganese nodules and synthetic green rusts using Scanning Transmission X-ray SpectroMicroscopy (STXM). Pixel resolved spectra (XANES) extracted from stacks of images taken at different wave lengths across the metal absorption edge were fitted to total electron yield (TEY) spectra of single valent reference compounds. Two dimensional maps of bulk charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-nodules and green rust precipitates. Changes of oxidation states of iron were followed as a result of reductive transformation of an environmental contaminant (CCl 4 ) using green rust as the only reductant

  19. Characterization of wood dust from furniture by scanning electron microscopy and energy-dispersive x-ray analysis.

    Science.gov (United States)

    Gómez Yepes, Milena Elizabeth; Cremades, Lázaro V

    2011-01-01

    Study characterized and analyzed form factor, elementary composition and particle size of wood dust, in order to understand its harmful health effects on carpenters in Quindío (Colombia). Once particle characteristics (size distributions, aerodynamic equivalent diameter (D(α)), elemental composition and shape factors) were analyzed, particles were then characterized via scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDXRA). SEM analysis of particulate matter showed: 1) cone-shaped particle ranged from 2.09 to 48.79 µm D(α); 2) rectangular prism-shaped particle from 2.47 to 72.9 µm D(α); 3) cylindrically-shaped particle from 2.5 to 48.79 µm D(α); and 4) spherically-shaped particle from 2.61 to 51.93 µm D(α). EDXRA reveals presence of chemical elements from paints and varnishes such as Ca, K, Na and Cr. SEM/EDXRA contributes in a significant manner to the morphological characterization of wood dust. It is obvious that the type of particles sampled is a complex function of shapes and sizes of particles. Thus, it is important to investigate the influence of particles characteristics, morphology, shapes and D(α) that may affect the health of carpenters in Quindío.

  20. Investigation of the structure of nanocrystalline refractory oxides by X-ray diffraction, electron microscopy, and atomic force microscopy

    International Nuclear Information System (INIS)

    Ulyanova, T. M.; Titova, L. V.; Medichenko, S. V.; Zonov, Yu. G.; Konstantinova, T. E.; Glazunova, V. A.; Doroshkevich, A. S.; Kuznetsova, T. A.

    2006-01-01

    The structures of nanocrystalline fibrous powders of refractory oxides have been investigated by different methods: determination of coherent-scattering regions, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic-force microscopy (AFM). The sizes of nanograins of different crystalline phases of refractory metal oxides have been determined during the formation of these nanograins and the dynamics of their growth during heat treatment in the temperature range 600-1600 deg. C has been studied. The data on the structure of nanocrystalline refractory oxide powders, obtained by different methods, are in good agreement. According to the data on coherent-scattering regions, the sizes of the ZrO 2 (Y 2 O 3 ) and Al 2 O 3 grains formed are in the range 4-6 nm, and the particle sizes determined according to the TEM and AFM data are in the ranges 5-7 and 2-10 nm, respectively. SEM analysis made it possible to investigate the dynamics of nanoparticle growth at temperatures above 1000 deg. C and establish the limiting temperatures of their consolidation in fibers

  1. Characterization by Raman scattering, x-ray diffraction, and transmission electron microscopy of (AlAs)m(InAs)m short period superlattices grown by migration enhanced epitaxy

    DEFF Research Database (Denmark)

    Bradshaw, J.; Song, X.J.; Shealy, J.R.

    1992-01-01

    We report growth of (InAs)1(AlAs)1 and (InAs)2(AlAs)2 strained layer superlattices by migration enhanced epitaxy. The samples were grown on InP (001) substrates and characterized by Raman spectroscopy, x-ray diffraction, and transmission electron microscopy. Satellite peaks in the x-ray data...... confirm the intended periodicity and indicate the presence of some disorder in the monolayer sample. The energies of the zone folded and quantum confined optic phonons are in reasonable agreement with calculations based on one-dimensional elastic continuum and linear chain models. Journal of Applied...

  2. Structure-Property Relationships in Aluminum-Copper alloys using Transmission X-Ray Microscopy (TXM) and Micromechanical Testing

    Science.gov (United States)

    Kaira, Chandrashekara Shashank

    that effect, in situ tests were conducted at the synchrotron (Advanced Photon Source) using Transmission X-Ray Microscopy as well as in a scanning electron microscope (SEM) to study real-time damage evolution in such alloys. Findings of precipitate size-dependent transition in deformation behavior from these tests have inspired a novel resilient aluminum alloy design.

  3. Development of a laser-based heating system for in situ synchrotron-based X-ray tomographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fife, Julie L., E-mail: julie.fife@psi.ch [Laboratory for Synchrotron Radiation, Swiss Light Source, Paul Scherrer Institut, Villigen (Switzerland); Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Rappaz, Michel [Computational Materials Laboratory, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Pistone, Mattia [Institute for Geochemistry and Petrology, Swiss Federal Institute of Technology of Zurich, Zurich (Switzerland); Celcer, Tine [Laboratory for Synchrotron Radiation, Swiss Light Source, Paul Scherrer Institut, Villigen (Switzerland); The Centre of Excellence for Biosensors, Instrumentation and Process Control, Solkan (Slovenia); Mikuljan, Gordan [Laboratory for Synchrotron Radiation, Swiss Light Source, Paul Scherrer Institut, Villigen (Switzerland); Stampanoni, Marco [Laboratory for Synchrotron Radiation, Swiss Light Source, Paul Scherrer Institut, Villigen (Switzerland); Institute for Biomedical Engineering, Swiss Federal Institute of Technology and University of Zurich, Zurich (Switzerland)

    2012-05-01

    A laser-based heating system has been developed at the TOMCAT beamline of the Swiss Light Source for in situ observations of moderate-to-high-temperature applications of materials. Understanding the formation of materials at elevated temperatures is critical for determining their final properties. Synchrotron-based X-ray tomographic microscopy is an ideal technique for studying such processes because high spatial and temporal resolutions are easily achieved and the technique is non-destructive, meaning additional analyses can take place after data collection. To exploit the state-of-the-art capabilities at the tomographic microscopy and coherent radiology experiments (TOMCAT) beamline of the Swiss Light Source, a general-use moderate-to-high-temperature furnace has been developed. Powered by two diode lasers, it provides controlled localized heating, from 673 to 1973 K, to examine many materials systems and their dynamics in real time. The system can also be operated in various thermal modalities. For example, near-isothermal conditions at a given sample location can be achieved with a prescribed time-dependent temperature. This mode is typically used to study isothermal phase transformations; for example, the formation of equiaxed grains in metallic systems or to nucleate and grow bubble foams in silicate melts under conditions that simulate volcanic processes. In another mode, the power of the laser can be fixed and the specimen moved at a constant speed in a user-defined thermal gradient. This is similar to Bridgman solidification, where the thermal gradient and cooling rate control the microstructure formation. This paper details the experimental set-up and provides multiple proofs-of-concept that illustrate the versatility of using this laser-based heating system to explore, in situ, many elevated-temperature phenomena in a variety of materials.

  4. Characterisation of corrosion processes of using electron micro-probe, scanning probe microscopy and synchrotron-generated x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Neufeld, A.K.; Cole, I.S.; Furman, S.A.; Isaacs, H.S.

    2002-01-01

    Full text: With recent advances in computerized technology, the study of chemical reactions can now be visualized as they occur in real time and has resulted in analytical techniques with orders of magnitude greater sensitivity and resolution. This ability offers the corrosion scientist a unique opportunity to study the processes relevant to degradation science which could only be theoretically considered. Neufeld el al (1,2) have attempted to explain in great detail the mechanism of corrosion initiation of zinc by using X-ray micro-probe, Scanning Kelvin probe, and more recently by using synchrotron-generated X-rays and X-ray fluorescence imaging. New results are presented from the synchrotron studies where the transport of ions in-situ has been investigated. The synthesis of information from the techniques will also be discussed in its relevance to atmospheric corrosion processes. Copyright (2002) Australian Society for Electron Microscopy Inc

  5. Thermal analysis, X-ray powder diffraction and electron microscopy data related with the production of 1:1 Caffeine:Glutaric Acid cocrystals

    Directory of Open Access Journals (Sweden)

    Íris Duarte

    2016-09-01

    Full Text Available The data presented in this article are related to the production of 1:1 Caffeine:Glutaric Acid cocrystals as part of the research article entitled “Green production of cocrystals using a new solvent-free approach by spray congealing” (Duarte et al., 2016 [1]. More specifically, here we present the thermal analysis and the X-ray powder diffraction data for pure Glutaric Acid, used as a raw material in [1]. We also include the X-ray powder diffraction and electron microscopy data obtained for the 1:1 Caffeine:Glutaric Acid cocrystal (form II produced using the cooling crystallization method reported in “Operating Regions in Cooling Cocrystallization of Caffeine and Glutaric Acid in Acetonitrile” (Yu et al., 2010 [2]. Lastly, we show the X-ray powder diffraction data obtained for assessing the purity of the 1:1 Caffeine:Glutaric cocrystals produced in [1].

  6. Study of non stoichiometric pure and Zr-Doped yttria surfaces by X-Ray photoelectron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Gautier, M.; Duraud, J.P.; Jollet, F.; Thromat, N.; Maire, P.; Le Gressus, C.

    1988-01-01

    Surfaces of oxygen-deficient yttrium oxide, pure or Zr-doped, have been studied by means of X-ray photoelectron spectroscopy and scanning electron microscopy. The bulk local geometric structure of these non-stoichiometric compounds was previously determined around the Y atom by an EXAFS (Extended X-ray absorption fine structure) study. The local electronic structure around both Y and O, at the surface, was investigated by X-ray photoelectron spectroscopy. The partial transfer of the electronic distribution between the anion and the cation was probed using the Auger parameter. Coupling of these experiments with microscopic observations show that: - In the pure oxygen-deficient sample, the concentration of oxygen vacancies appears to be increased at the grain boundaries. - The Auger parameter shows upon reduction an evolution of the Y-O bond towards a more covalent one, this evolution being modulated with the presence of Zr0 2

  7. Determination of elemental distribution in green micro-algae using synchrotron radiation nano X-ray fluorescence (SR-nXRF) and electron microscopy techniques--subcellular localization and quantitative imaging of silver and cobalt uptake by Coccomyxa actinabiotis.

    Science.gov (United States)

    Leonardo, T; Farhi, E; Boisson, A-M; Vial, J; Cloetens, P; Bohic, S; Rivasseau, C

    2014-02-01

    The newly discovered unicellular micro-alga Coccomyxa actinabiotis proves to be highly radio-tolerant and strongly concentrates radionuclides, as well as large amounts of toxic metals. This study helps in the understanding of the mechanisms involved in the accumulation and detoxification of silver and cobalt. Elemental distribution inside Coccomyxa actinabiotis cells was determined using synchrotron nano X-ray fluorescence spectroscopy at the ID22 nano fluorescence imaging beamline of the European Synchrotron Radiation Facility. The high resolution and high sensitivity of this technique enabled the assessment of elemental associations and exclusions in subcellular micro-algae compartments. A quantitative treatment of the scans was implemented to yield absolute concentrations of each endogenous and exogenous element with a spatial resolution of 100 nm and compared to the macroscopic content in cobalt and silver determined using inductively coupled plasma-mass spectrometry. The nano X-ray fluorescence imaging was complemented by transmission electron microscopy coupled to X-ray microanalysis (TEM-EDS), yielding differential silver distribution in the cell wall, cytosol, nucleus, chloroplast and mitochondria with unique resolution. The analysis of endogenous elements in control cells revealed that iron had a unique distribution; zinc, potassium, manganese, molybdenum, and phosphate had their maxima co-localized in the same area; and sulfur, copper and chlorine were almost homogeneously distributed among the whole cell. The subcellular distribution and quantification of cobalt and silver in micro-alga, assessed after controlled exposure to various concentrations, revealed that exogenous metals were mainly sequestered inside the cell rather than on mucilage or the cell wall, with preferential compartmentalization. Cobalt was homogeneously distributed outside of the chloroplast. Silver was localized in the cytosol at low concentration and in the whole cell excluding the

  8. The nature of ancient Egyptian copper-containing carbon inks is revealed by synchrotron radiation based X-ray microscopy

    OpenAIRE

    Christiansen , Thomas; Cotte , Marine; Loredo-Portales , René; Lindelof , Poul ,; Mortensen , Kell; Ryholt , Kim; Larsen , Sine

    2017-01-01

    International audience; For the first time it is shown that carbon black inks on ancient Egyptian papyri from different time periods and geographical regions contain copper. The inks have been investigated using synchrotron-based micro X-ray fluorescence (XRF) and micro X-ray absorption near-edge structure spectroscopy (XANES) at the European Synchrotron Radiation Facility (ESRF). The composition of the copper-containing carbon inks showed no significant differences that could be related to t...

  9. Type 1 diabetes mellitus effects on dental enamel formation revealed by microscopy and microanalysis.

    Science.gov (United States)

    Silva, Bruna Larissa Lago; Medeiros, Danila Lima; Soares, Ana Prates; Line, Sérgio Roberto Peres; Pinto, Maria das Graças Farias; Soares, Telma de Jesus; do Espírito Santo, Alexandre Ribeiro

    2018-03-01

    Type 1 diabetes mellitus (T1DM) largely affects children, occurring therefore at the same period of deciduous and permanent teeth development. The aim of this work was to investigate birefringence and morphology of the secretory stage enamel organic extracellular matrix (EOECM), and structural and mechanical features of mature enamel from T1DM rats. Adult Wistar rats were maintained alive for a period of 56 days after the induction of experimental T1DM with a single dose of streptozotocin (60 mg/kg). After proper euthanasia of the animals, fixed upper incisors were accurately processed, and secretory stage EOECM and mature enamel were analyzed by transmitted polarizing and bright field light microscopies (TPLM and BFLM), energy-dispersive x-ray (EDX) analysis, scanning electron microscopy (SEM), and microhardness testing. Bright field light microscopies and transmitted polarizing light microscopies showed slight morphological changes in the secretory stage EOECM from diabetic rats, which also did not exhibit statistically significant alterations in birefringence brightness when compared to control animals (P > .05). EDX analysis showed that T1DM induced statistically significant little increases in the amount of calcium and phosphorus in outer mature enamel (P  .05). T1DM also caused important ultrastructural alterations in mature enamel as revealed by SEM and induced a statistically significant reduction of about 13.67% in its microhardness at 80 μm from dentin-enamel junction (P enamel development, leading to alterations in mature enamel ultrastructure and in its mechanical features. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Atomic level study of water-gas shift catalysts via transmission electron microscopy and x-ray spectroscopy

    Science.gov (United States)

    Akatay, Mehmed Cem

    Water-gas shift (WGS), CO + H2O ⇆ CO2 + H2 (DeltaH° = -41 kJ mol -1), is an industrially important reaction for the production of high purity hydrogen. Commercial Cu/ZnO/Al2O3 catalysts are employed to accelerate this reaction, yet these catalysts suffer from certain drawbacks, including costly regeneration processes and sulfur poisoning. Extensive research is focused on developing new catalysts to replace the current technology. Supported noble metals stand out as promising candidates, yet comprise intricate nanostructures complicating the understanding of their working mechanism. In this study, the structure of the supported Pt catalysts is explored by transmission electron microscopy and X-ray spectroscopy. The effect of the supporting phase and the use of secondary metals on the reaction kinetics is investigated. Structural heterogeneities are quantified and correlated with the kinetic descriptors of the catalysts to develop a fundamental understanding of the catalytic mechanism. The effect of the reaction environment on catalyst structure is examined by in-situ techniques. This study benefitted greatly from the use of model catalysts that provide a convenient medium for the atomic level characterization of nanostructures. Based on these studies, Pt supported on iron oxide nano islands deposited on inert spherical alumina exhibited 48 times higher WGS turnover rate (normalized by the total Pt surface area) than Pt supported on bulk iron oxide. The rate of aqueous phase glycerol reforming reaction of Pt supported on multiwall carbon nanotubes (MWCNT) is promoted by co-impregnating with cobalt. The synthesis resulted in a variety of nanostructures among which Pt-Co bimetallic nanoparticles are found to be responsible for the observed promotion. The unprecedented WGS rate of Pt supported on Mo2C is explored by forming Mo 2C patches on top of MWCNTs and the rate promotion is found to be caused by the Pt-Mo bimetallic entities.

  11. Single-particle characterization of summertime Antarctic aerosols collected at King George Island using quantitative energy-dispersive electron probe X-ray microanalysis and attenuated total reflection Fourier transform-infrared imaging techniques.

    Science.gov (United States)

    Maskey, Shila; Geng, Hong; Song, Young-Chul; Hwang, Heejin; Yoon, Young-Jun; Ahn, Kang-Ho; Ro, Chul-Un

    2011-08-01

    Single-particle characterization of Antarctic aerosols was performed to investigate the impact of marine biogenic sulfur species on the chemical compositions of sea-salt aerosols in the polar atmosphere. Quantitative energy-dispersive electron probe X-ray microanalysis was used to characterize 2900 individual particles in 10 sets of aerosol samples collected between March 12 and 16, 2009 at King Sejong Station, a Korean scientific research station located at King George Island in the Antarctic. Two size modes of particles, i.e., PM(2.5-10) and PM(1.0-2.5), were analyzed, and four types of particles were identified, with sulfur-containing sea-salt particles being the most abundant, followed by genuine sea-salt particles without sulfur species, iron-containing particles, and other species including CaCO(3)/CaMg(CO(3))(2), organic carbon, and aluminosilicates. When a sulfur-containing sea-salt particle showed an atomic concentration ratio of sulfur to sodium of >0.083 (seawater ratio), it is regarded as containing nonsea-salt sulfate (nss-SO(4)(2-)) and/or methanesulfonate (CH(3)SO(3)(-)), which was supported by attenuated total reflection Fourier transform-infrared imaging measurements. These internal mixture particles of sea-salt/CH(3)SO(3)(-)/SO(4)(2-) were very frequently encountered. As nitrate-containing particles were not encountered, and the air-masses for all of the samples originated from the Pacific Ocean (based on 5-day backward trajectories), the oxidation of dimethylsulfide (DMS) emitted from phytoplanktons in the ocean is most likely to be responsible for the formation of the mixed sea-salt/CH(3)SO(3)(-)/SO(4)(2-) particles.

  12. Scanning ion-selective electrode technique and X-ray microanalysis provide direct evidence of contrasting Na+ transport ability from root to shoot in salt-sensitive cucumber and salt-tolerant pumpkin under NaCl stress.

    Science.gov (United States)

    Lei, Bo; Huang, Yuan; Sun, Jingyu; Xie, Junjun; Niu, Mengliang; Liu, Zhixiong; Fan, Molin; Bie, Zhilong

    2014-12-01

    Grafting onto salt-tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na(+) in salt-tolerant pumpkin and salt-sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion-selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na(+), and a correspondingly increased H(+) influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na(+)/H(+) exchange in the root was inhibited by amiloride (a Na(+)/H(+) antiporter inhibitor) or vanadate [a plasma membrane (PM) H(+) -ATPase inhibitor], indicating that Na(+) exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na(+)/H(+) antiporter across the PM, and the Na(+)/H(+) antiporter system in salt stressed pumpkin roots was sufficient to exclude Na(+) X-ray microanalysis showed higher Na(+) in the cortex, but lower Na(+) in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na(+), limit the radial transport of Na(+) to the stele and thus restrict the transport of Na(+) to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. © 2014 Scandinavian Plant Physiology Society.

  13. Hierarchical nanoparticle morphology for platinum supported on SrTiO3 (0 0 1): A combined microscopy and X-ray scattering study

    International Nuclear Information System (INIS)

    Christensen, Steven T.; Lee, Byeongdu; Feng Zhenxing; Hersam, Mark C.; Bedzyk, Michael J.

    2009-01-01

    The morphology of metal nanoparticles supported on oxide substrates plays an important role in heterogeneous catalysis and in the nucleation of thin films. For platinum evaporated onto SrTiO 3 (0 0 1) and vacuum annealed we find an unexpected growth formation of Pt nanoparticles that aggregate into clusters without coalescence. This hierarchical nanoparticle morphology with an enhanced surface-to-volume ratio for Pt is analyzed by grazing incidence small-angle X-ray scattering (GISAXS), X-ray fluorescence (XRF), atomic force microscopy (AFM) and high-resolution scanning electron microscopy (SEM). The nanoparticle constituents of the clusters measure 2-4 nm in size and are nearly contiguously spaced where the average edge-to-edge spacing is less than 1 nm. These particles make up the clusters, which are 10-50 nm in diameter and are spaced on the order of 100 nm apart.

  14. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, Stephen; Stahl, Claudia; Weigand, Markus; Schuetz, Gisela [Max-Planck-Institut fuer Intelligente Systeme, Stuttgart (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University (Germany)

    2015-07-01

    The penetration of magnetic flux into the high-temperature superconductor YBCO has been observed using a new high-resolution technique based on X-ray magnetic circular dichroism (XMCD). Superconductors coated with thin soft magnetic layers of CoFeB are observed in a scanning x-ray microscope providing cooling of the sample down to 83 K under the influence of external magnetic fields. Resulting electrical currents create an inhomogeneous magnetic field distribution above the superconductor which leads to a local reorientation of the ferromagnetic layer. X-ray absorption measurements with circular polarized radiation allows the analysis of the magnetic flux distribution in the superconductor via the ferromagnetic layer. In this work we present first images taken at 83K with high spatial resolution in the nanoscale.

  15. The Study of the Oxide Coating Effect on Bone-Implant Interface Formation by Means of Electron Microscopy Method with Energy Dispersive X-ray Analysis

    International Nuclear Information System (INIS)

    Gudakova, A.A.; Danilchenko, S.N.; Sukhodub, L.F.; Luk'yanchenko, V.V.; Zykova, A.V.; Safonov, V.I.

    2006-01-01

    The experimental results of the measurement of the tissue constituent elements distribution, as well as impurity elements in the tissues around a Ti-implant with protective TiO 2 oxide coating are presented. Study of morphology, qualitative and quantitative analysis were carried out by means of scanning electron microscopy method with energy dispersive X-ray analysis. The results show weak migration of Ti into the bone tissue near the interface and protective role of the oxide coatings

  16. X-ray microanalysis of volcanic ash

    International Nuclear Information System (INIS)

    Kearns, S L; Buse, B

    2012-01-01

    The 2010 eruption of Eyjafjallajökull volcano in Iceland demonstrated the disruptive nature of high-level volcanic ash emissions to the world's air traffic. The chemistry of volcanic material is complex and varied. Different eruptions yield both compositional and morphological variation. Equally a single eruption, such as that in Iceland will evolve over time and may potentially produce a range of volcanic products of varying composition and morphology. This variability offers the petrologist the opportunity to derive a tracer to the origins both spatially and temporally of a single particle by means of electron microbeam analysis. EPMA of volcanic ash is now an established technique for this type of analysis as used in tephrachronology. However, airborne paniculate material may, as in the case of Eyjafjallajökull, result in a particle size that is too small and too dispersed for preparation of standard EPMA mounts. Consequently SEM-EDS techniques are preferred for this type of quantitative analysis . Results of quantitative SEM-EDS analysis yield data with a larger precision error than EPMA yet sufficient to source the original eruption. Uncoated samples analyzed using variable pressure SEM yield slightly poorer results at modest pressures.

  17. Accurate Cross Sections for Microanalysis

    OpenAIRE

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a...

  18. Combined Application of QEM-SEM and Hard X-ray Microscopy to Determine Mineralogical Associations and Chemcial Speciation of Trace Metals

    Energy Technology Data Exchange (ETDEWEB)

    M Grafe; M Landers; R Tappero; P Austin; B Gan; A Grabsch; C Klauber

    2011-12-31

    We describe the application of quantitative evaluation of mineralogy by scanning electron microscopy in combination with techniques commonly available at hard X-ray microprobes to define the mineralogical environment of a bauxite residue core segment with the more specific aim of determining the speciation of trace metals (e.g., Ti, V, Cr, and Mn) within the mineral matrix. Successful trace metal speciation in heterogeneous matrices, such as those encountered in soils or mineral residues, relies on a combination of techniques including spectroscopy, microscopy, diffraction, and wet chemical and physical experiments. Of substantial interest is the ability to define the mineralogy of a sample to infer redox behavior, pH buffering, and mineral-water interfaces that are likely to interact with trace metals through adsorption, coprecipitation, dissolution, or electron transfer reactions. Quantitative evaluation of mineralogy by scanning electron microscopy coupled with micro-focused X-ray diffraction, micro-X-ray fluorescence, and micro-X-ray absorption near edge structure (mXANES) spectroscopy provided detailed insights into the composition of mineral assemblages and their effect on trace metal speciation during this investigation. In the sample investigated, titanium occurs as poorly ordered ilmenite, as rutile, and is substituted in iron oxides. Manganese's spatial correlation to Ti is closely linked to ilmenite, where it appears to substitute for Fe and Ti in the ilmenite structure based on its mXANES signature. Vanadium is associated with ilmenite and goethite but always assumes the +4 oxidation state, whereas chromium is predominantly in the +3 oxidation state and solely associated with iron oxides (goethite and hematite) and appears to substitute for Fe in the goethite structure.

  19. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  20. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  1. Quantitative characterization of the protein contents of the exocrine pancreatic acinar cell by soft x-ray microscopy and advanced digital imaging methods

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Jr., Billy W. [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    The study of the exocrine pancreatic acinar cell has been central to the development of models of many cellular processes, especially of protein transport and secretion. Traditional methods used to examine this system have provided a wealth of qualitative information from which mechanistic models have been inferred. However they have lacked the ability to make quantitative measurements, particularly of the distribution of protein in the cell, information critical for grounding of models in terms of magnitude and relative significance. This dissertation describes the development and application of new tools that were used to measure the protein content of the major intracellular compartments in the acinar cell, particularly the zymogen granule. Soft x-ray microscopy permits image formation with high resolution and contrast determined by the underlying protein content of tissue rather than staining avidity. A sample preparation method compatible with x-ray microscopy was developed and its properties evaluated. Automatic computerized methods were developed to acquire, calibrate, and analyze large volumes of x-ray microscopic images of exocrine pancreatic tissue sections. Statistics were compiled on the protein density of several organelles, and on the protein density, size, and spatial distribution of tens of thousands of zymogen granules. The results of these measurements, and how they compare to predictions of different models of protein transport, are discussed.

  2. Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle X-ray scattering experiments

    CERN Document Server

    Marliere, C; Etienne, P; Woignier, T; Dieudonné, P; Phalippou, J

    2001-01-01

    During the last few years the bulk structure of silica aerogels has been extensively studied mainly by scattering techniques (neutrons, X-rays, light). It has been shown that small silica particles aggregate to constitute a fractal network. Its spatial extension and fractal dimension are strongly dependent on the synthesis conditions (e.g., pH of gelifying solutions). These typical lengths range from 1 to 10 nm. Ultra-small angle X-ray scattering (USAXS) and atomic force microscopy (AFM) experiments have been carried out on aerogels at different steps of densification. The results presented in this paper reveal the existence of a spatial arrangement of the solid part at a very large length scale. The evolution of this very large-scale structure during the densification process has been studied and reveals a contraction of this macro-structure made of aggregates of clusters. (16 refs).

  3. Growth and structure of water on SiO2 films on Si investigated byKelvin probe microscopy and in situ X-ray Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Verdaguer, A.; Weis, C.; Oncins, G.; Ketteler, G.; Bluhm, H.; Salmeron, M.

    2007-06-14

    The growth of water on thin SiO{sub 2} films on Si wafers at vapor pressures between 1.5 and 4 torr and temperatures between -10 and 21 C has been studied in situ using Kelvin Probe Microscopy and X-ray photoemission and absorption spectroscopies. From 0 to 75% relative humidity (RH) water adsorbs forming a uniform film 4-5 layers thick. The surface potential increases in that RH range by about 400 mV and remains constant upon further increase of the RH. Above 75% RH the water film grows rapidly, reaching 6-7 monolayers at around 90% RH and forming a macroscopic drop near 100%. The O K-edge near-edge X-ray absorption spectrum around 75% RH is similar to that of liquid water (imperfect H-bonding coordination) at temperatures above 0 C and ice-like below 0 C.

  4. High-throughput, high-resolution X-ray phase contrast tomographic microscopy for visualisation of soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S A; Marone, F; Hintermueller, C; Stampanoni, M [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bensadoun, J-C; Aebischer, P, E-mail: samuel.mcdonald@psi.c [EPFL, School of Life Sciences, Station 15, 1015 Lausanne (Switzerland)

    2009-09-01

    The use of conventional absorption based X-ray microtomography can become limited for samples showing only very weak absorption contrast. However, a wide range of samples studied in biology and materials science can produce significant phase shifts of the X-ray beam, and thus the use of the phase signal can provide substantially increased contrast and therefore new and otherwise inaccessible information. The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomography, both available on the TOMCAT beamline of the SLS, is illustrated. Differential Phase Contrast (DPC) imaging uses a grating interferometer and a phase-stepping technique. It has been integrated into the beamline environment on TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. The second phase contrast approach is a modified transfer of intensity approach that can yield the 3D distribution of the phase (refractive index) of a weakly absorbing object from a single tomographic dataset. These methods are being used for the evaluation of cell integrity in 3D, with the specific aim of following and analyzing progressive cell degeneration to increase knowledge of the mechanistic events of neurodegenerative disorders such as Parkinson's disease.

  5. A Scanning Transmission X-ray Microscopy Study of Cubic and Orthorhombic C3A and Their Hydration Products in the Presence of Gypsum

    Directory of Open Access Journals (Sweden)

    Vanessa Rheinheimer

    2016-08-01

    Full Text Available This paper shows the microstructural differences and phase characterization of pure phases and hydrated products of the cubic and orthorhombic (Na-doped polymorphs of tricalcium aluminate (C3A, which are commonly found in traditional Portland cements. Pure, anhydrous samples were characterized using scanning transmission X-ray microscopy (STXM, X-ray photoelectron spectroscopy (XPS and X-ray diffraction (XRD and demonstrated differences in the chemical and mineralogical composition as well as the morphology on a micro/nano-scale. C3A/gypsum blends with mass ratios of 0.2 and 1.9 were hydrated using a water/C3A ratio of 1.2, and the products obtained after three days were assessed using STXM. The hydration process and subsequent formation of calcium sulfate in the C3A/gypsum systems were identified through the changes in the LIII edge fine structure for Calcium. The results also show greater Ca LII binding energies between hydrated samples with different gypsum contents. Conversely, the hydrated samples from the cubic and orthorhombic C3A at the same amount of gypsum exhibited strong morphological differences but similar chemical environments.

  6. Examining the ground layer of St. Anthony from Padua 19th century oil painting by Raman spectroscopy, scanning electron microscopy and X-ray diffraction

    International Nuclear Information System (INIS)

    Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš

    2013-01-01

    Highlights: ► Raman spectroscopic examination of uncovered and covered paint layers of a real painting. ► Deconvolution of Raman peaks of lead white. ► Comparison of results with energy-dispersive analysis and X-ray diffraction. - Abstract: In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM–EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM–EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.

  7. Development of wave length-dispersive soft x-ray emission spectrometers for transmission electron microscopes - an introduction of valence electron spectroscopy for transmission electron microscopy

    International Nuclear Information System (INIS)

    Terauchi, Masami; Koike, Masato; Fukushima, Kurio; Kimura, Atsushi

    2010-01-01

    Two types of wavelength-dispersive soft X-ray spectrometers, a high-dispersion type and a conventional one, for transmission electron microscopes were constructed. Those spectrometers were used to study the electronic states of valence electrons (bonding electrons). Both spectrometers extended the acceptable energy regions to higher than 2000 eV. The best energy resolution of 0.08 eV was obtained for an Al L-emission spectrum by using the high-dispersion type spectrometer. By using the spectrometer, C K-emission of carbon allotropes, Cu L-emission of Cu 1-x Zn x alloys and Pt M-emission spectra were presented. The FWHM value of 12 eV was obtained for the Pt Mα-emission peak. The performance of the conventional one was also presented for ZnS and a section specimen of a multilayer device. W-M and Si-K emissions were clearly resolved. Soft X-ray emission spectroscopy based on transmission electron microscopy (TEM) has an advantage for obtaining spectra from a single crystalline specimen with a defined crystal setting. As an example of anisotropic soft X-ray emission, C K-emission spectra of single crystalline graphite with different crystal settings were presented. From the spectra, density of states of π- and σ-bondings were separately derived. These results demonstrated a method to analyse the electronic states of valence electrons of materials in the nanometre scale based on TEM. (author)

  8. A new light on Alkaptonuria: A Fourier-transform infrared microscopy (FTIRM) and low energy X-ray fluorescence (LEXRF) microscopy correlative study on a rare disease.

    Science.gov (United States)

    Mitri, Elisa; Millucci, Lia; Merolle, Lucia; Bernardini, Giulia; Vaccari, Lisa; Gianoncelli, Alessandra; Santucci, Annalisa

    2017-05-01

    Alkaptonuria (AKU) is an ultra-rare disease associated to the lack of an enzyme involved in tyrosine catabolism. This deficiency results in the accumulation of homogentisic acid (HGA) in the form of ochronotic pigment in joint cartilage, leading to a severe arthropathy. Secondary amyloidosis has been also unequivocally assessed as a comorbidity of AKU arthropathy. Composition of ochronotic pigment and how it is structurally related to amyloid is still unknown. We exploited Synchrotron Radiation Infrared and X-Ray Fluorescence microscopies in combination with conventional bio-assays and analytical tools to characterize chemical composition and morphology of AKU cartilage. We evinced that AKU cartilage is characterized by proteoglycans depletion, increased Sodium levels, accumulation of lipids in the peri-lacunar regions and amyloid formation. We also highlighted an increase of aromatic compounds and oxygen-containing species, depletion in overall Magnesium content (although localized in the peri-lacunar region) and the presence of calcium carbonate fragments in proximity of cartilage lacunae. We highlighted common features between AKU and arthropathy, but also specific signatures of the disease, like presence of amyloids and peculiar calcifications. Our analyses provide a unified picture of AKU cartilage, shedding a new light on the disease and opening new perspectives. Ochronotic pigment is a hallmark of AKU and responsible of tissue degeneration. Conventional bio-assays have not yet clarified its composition and its structural relationship with amyloids. The present work proposes new strategies for filling the aforementioned gap that encompass the integration of new analytical approaches with standardized analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The application of soft X-ray microscopy to the in-situ analysis of sporopollenin/sporinite in a rank variable suite of organic rich sediments

    Energy Technology Data Exchange (ETDEWEB)

    Cody, G.D.; Botto, R.E. [Argonne National Lab., IL (United States). Chemistry Div.; Ade, H. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics; Wirick, S. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics

    1997-07-01

    Soft X-ray imaging and carbon near edge absorption fine structure spectroscopy (C-NEXAFS) has been used for the in-situ analysis of sporinite in a rank variable suite of organic rich sediments extending from recent up to high volatile A bituminous coal. The acquisition of chemically based images (contrast based on the 1s - 1{pi}* transition of unsaturated carbon), revealed a homogeneous chemical structure in the spore exine. C-NEXAFS microanalysis indicates chemical structural evolution in sporopollenin/sporinite with increases in maturation. The most significant change in the C-NEXAFS spectrum is an increase in unsaturated carbon, presumably aromatic, with rank. The rate of aromatization in sporinite exceeds that of the surrounding vitrinite. Increases in the concentration of unsaturated carbon are compensated by losses of aliphatic and hydroxylated aliphatic carbon components. Carboxyl groups are present in low and variable concentrations. Absorption due to carboxyl persists in the most mature specimen in this series, a high volatile A rank coal. The reactions which drive sporopollenin chemical structural evolution during diagenesis presumably involve dehydration, Diels-Alder cyclo-addition, and dehydrogenation reactions which ultimately lead to a progressively aromatized bio/geopolymer.

  10. X-ray analysis in the steel industry

    International Nuclear Information System (INIS)

    Bourke, T.; Turner, K.

    1999-01-01

    Full text: The steel industry makes extensive use of X-ray analysis at all stages of the steelmaking process. XRF and XRD techniques, together with the associated techniques of electron probe microanalysis and electron microscopy are key tools for exploration and mine site and process development where detailed grade and mineralogical data is required. In production X-ray analysis is used to monitor and control: mine product grade (eg iron ore, coal and other raw materials), steel making production processes (eg iron ore sinter, incoming raw materials), waste products (eg coal watery refuse, slags) and final products (eg paint coatings, customer complaints). The demands put on X-ray analysis by the Steel Industry are severe. Iron ore mining and steelmaking is a continuous process, hence instrumentation has to be robust and reliable. In addition, with ever tightening environmental controls there is an increasing demand for trace heavy element analysis in both raw and waste materials. Copyright (1999) Australian X-ray Analytical Association Inc

  11. In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopy

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Esposito, Vincenzo; Lauridsen, Erik Mejdal

    2014-01-01

    The densification, delamination and crack growth behavior in a Ce0.9Gd0.1O1.95 (CGO) and (La0.85Sr0.15)0.9MnO3 (LSM) multi-layer ceramic sample was studied using in situ X-ray tomographic microscopy (microtomography) to investigate the critical dynamics of crack propagation and delamination...... in a multilayered sample. Naturally occurring defects, caused by the sample preparation process, are shown not to be critical in sample degradation. Instead defects are nucleated during the debinding step. Crack growth is significantly faster along the material layers than perpendicular to them, and crack growth...

  12. Direct evaluation of thyroid 127I and iodine overload: in vivo study by X-ray fluorescence and in vitro by SIMS microscopy

    International Nuclear Information System (INIS)

    Briancon, C.; Jeusset, J.; Halpern, S.; Fragu, P.

    1992-01-01

    This review describes the two methods which allow direct estimation of stable iodine ( 127 I) within thyroid gland either in vivo by X-ray fluorescence or in vitro by secondary ion mass spectrometry (SIMS) microscopy on tissue section. Although the measurement of thyroid iodine content (TIC) by X-ray fluorescence has little relevance for routine explorations of thyroid function, this is a valuable method for understanding complex pathophysiological conditions such as the thyroid adaptation to iodine overload. On the other hand, SIMS microscopy which is able to characterize the functional activity of thyroid tissue by measuring 127 I concentration within the thyroid follicles, can be used to determine the extent to which exogeneous iodine affects the regulation of iodine within the thyroid follicles. Both methods were used to evaluate the quantitative changes in thyroid 127 I induced by amiodarone iodine overload. TIC measurements shows that hyperthyroidism occured only in patients who increased their iodine stores, while the patients who developed hypothyroidism has low iodine stores. The SIMS microscopy data obtained in mice demonstrated that the thyroid response to amiodarone is related to dietary iodine intake leading to an increase in local iodine concentration in iodine deficient mice and to a decrease in iodine supplemented mice. This response is specific and different from that induced by an iodine overload. These results could explain that hyperthyroidism with high thyroid iodine content occured in areas with low thyroid iodine content in areas with a supplemented iodine diet

  13. Development of quantitative x-ray microtomography

    International Nuclear Information System (INIS)

    Deckman, H.W.; Dunsmuir, J.A.; D'Amico, K.L.; Ferguson, S.R.; Flannery, B.P.

    1990-01-01

    The authors have developed several x-ray microtomography systems which function as quantitative three dimensional x-ray microscopes. In this paper the authors describe the evolutionary path followed from making the first high resolution experimental microscopes to later generations which can be routinely used for investigating materials. Developing the instrumentation for reliable quantitative x-ray microscopy using synchrotron and laboratory based x-ray sources has led to other imaging modalities for obtaining temporal and spatial two dimensional information

  14. Implementation of X-ray fluorescence microscopy for investigation of elemental abnormalities in central nervous system tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chwiej, J. [Faculty of Physics and Applied Computer Science, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland)]. E-mail: jchwiej@novell.ftj.agh.edu.pl; Szczerbowska-Boruchowska, M. [Faculty of Physics and Applied Computer Science, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Wojcik, S. [Faculty of Physics and Applied Computer Science, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Lankosz, M. [Faculty of Physics and Applied Computer Science, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Chlebda, M. [Faculty of Physics and Applied Computer Science, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Adamek, D. [Institute of Neurology, Collegium Medicum, Jagiellonian University, ul. Botaniczna-3, 31-503 Cracow (Poland); Tomik, B. [Institute of Neurology, Collegium Medicum, Jagiellonian University, ul. Botaniczna-3, 31-503 Cracow (Poland); Setkowicz, Z. [Department of Neuroanatomy, Institute of Zoology, Jagiellonian University, ul. Ingardena 6, 30-060 Cracow (Poland); Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg (Germany); Stegowski, Z. [Faculty of Physics and Applied Computer Science, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow (Poland); Szczudlik, A. [Institute of Neurology, Collegium Medicum, Jagiellonian University, ul. Botaniczna-3, 31-503 Cracow (Poland)

    2005-09-29

    The microbeam synchrotron radiation X-ray fluorescence technique (micro-SRXRF) was applied to topographic and quantitative elemental analysis of human spinal cord tissue sections. The feasibility of this technique for the determination of elemental abnormalities caused by neurodegenerative disorder, i.e. amyotrophic lateral sclerosis (ALS), was verified. The applied measurement conditions allowed detecting: P, S, Cl, K, Ca, Fe, Cu, Zn and Br in thin tissue slices. Two-dimensional maps of the elemental distribution were recorded. Quantitative differences in elemental concentration between gray matter, nerve cells and white matter were observed for all analyzed cases. For the motor neuron bodies higher accumulation of S, Cl, K, Fe, Zn and Br was noticed. The results showed significant differences of elemental accumulation between the analyzed ALS cases. Moreover, the feasibility of using tissue sections fixed and embedded in paraffin for micro-SRXRF analysis was tested. These studies were performed on the samples of rat brain.

  15. Implementation of X-ray fluorescence microscopy for investigation of elemental abnormalities in central nervous system tissue

    International Nuclear Information System (INIS)

    Chwiej, J.; Szczerbowska-Boruchowska, M.; Wojcik, S.; Lankosz, M.; Chlebda, M.; Adamek, D.; Tomik, B.; Setkowicz, Z.; Falkenberg, G.; Stegowski, Z.; Szczudlik, A.

    2005-01-01

    The microbeam synchrotron radiation X-ray fluorescence technique (micro-SRXRF) was applied to topographic and quantitative elemental analysis of human spinal cord tissue sections. The feasibility of this technique for the determination of elemental abnormalities caused by neurodegenerative disorder, i.e. amyotrophic lateral sclerosis (ALS), was verified. The applied measurement conditions allowed detecting: P, S, Cl, K, Ca, Fe, Cu, Zn and Br in thin tissue slices. Two-dimensional maps of the elemental distribution were recorded. Quantitative differences in elemental concentration between gray matter, nerve cells and white matter were observed for all analyzed cases. For the motor neuron bodies higher accumulation of S, Cl, K, Fe, Zn and Br was noticed. The results showed significant differences of elemental accumulation between the analyzed ALS cases. Moreover, the feasibility of using tissue sections fixed and embedded in paraffin for micro-SRXRF analysis was tested. These studies were performed on the samples of rat brain

  16. X-Ray

    Science.gov (United States)

    ... enema. What you can expect During the X-ray X-rays are performed at doctors' offices, dentists' offices, ... as those using a contrast medium. Your child's X-ray Restraints or other techniques may be used to ...

  17. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  18. Chest X-Ray

    Medline Plus

    Full Text Available ... talk with you about chest radiography also known as chest x-rays. Chest x-rays are the ... treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray ...

  19. Microscopy and microanalysis of complex nanosized strengthening precipitates in new generation commercial Al-Cu-Li alloys.

    Science.gov (United States)

    Guinel, M J-F; Brodusch, N; Sha, G; Shandiz, M A; Demers, H; Trudeau, M; Ringer, S P; Gauvin, R

    2014-09-01

    Precipitates (ppts) in new generation aluminum-lithium alloys (AA2099 and AA2199) were characterised using scanning and transmission electron microscopy and atom probe tomography. Results obtained on the following ppts are reported: Guinier-Preston zones, T1 (Al2 CuLi), β' (Al3 Zr) and δ' (Al3 Li). The focus was placed on their composition and the presence of minor elements. X-ray energy-dispersive spectrometry in the electron microscopes and mass spectrometry in the atom probe microscope showed that T1 ppts were enriched in zinc (Zn) and magnesium up to about 1.9 and 3.5 at.%, respectively. A concentration of 2.5 at.% Zn in the δ' ppts was also measured. Unlike Li and copper, Zn in the T1 ppts could not be detected using electron energy-loss spectroscopy in the transmission electron microscope because of its too low concentration and the small sizes of these ppts. Indeed, Monte Carlo simulations of EEL spectra for the Zn L2,3 edge showed that the signal-to-noise ratio was not high enough and that the detection limit was at least 2.5 at.%, depending on the probe current. Also, the simulation of X-ray spectra confirmed that the detection limit was exceeded for the Zn Kα X-ray line because the signal-to-noise ratio was high enough in that case, which is in agreement with our observations. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  20. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  1. EPS composition and calcification potential of tufa-dominating cyanobacteria investigated by Scanning Transmission X-ray Microscopy (STXM) and Laser Scanning Microscopy (LSM)

    Science.gov (United States)

    Zippel, Barbara; Dynes, James J.; Obst, Martin; Lawrence, John R.; Neu, Thomas R.

    2010-05-01

    Tufa deposits in freshwater habitats are the result of calcium carbonate precipitation within interfacial microbial ecosystems. Calcite precipitation is influenced by the saturation index and the occurrence of extracellular polymeric substances (EPS) which are produced by a variety of microorganisms. In theory, the first important step of biologically induced calcification processes is the adsorption of calcium ions by extracellular polymeric substances (EPS) produced by cyanobacteria. In the present study we take advantage of Laser Scanning Microscopy (LSM) and combine it with Synchrotron imaging using Scanning Transmission X-ray Microscopy (STXM). STXM represents a technique that allows simultaneous analysis of inorganic and organic constituents as a scale of 50 nm. By means of STXM it is possible to differentiate between calcium carbonate phases at the Ca L-edge. Furthermore, STXM has also been used at the C K-edge to map the major biomolecules (proteins, lipids, and polysaccharides). The purpose of this study is to find out if there are differences in calcium adsorption depending on specific composition of the EPS produced by filamentous cyanobacteria isolated from a German hard water creek (Westerhöfer Bach, Harz Mountains). The goal was to elucidate the potential of biofilms constituents, including microbial cell surfaces as well as extracellular polymeric substances, in triggering the formation of calcium carbonate in tufa systems. For this purpose three filamentous cyanobacteria (Pseudanabaena sp., Leptolyngbya sp. and Nostoc sp.) were cultivated in creek-adapted as well as standard media (BG11) on polycarbonate slides. In situ EPS composition was detected by means of fluorescence lectin-binding approach (FLBA) using 23 commercially available lectins with different specificities for mono- and disaccharides and amino sugars. For CaCO3 nucleation experiments cyanobacterial biofilms grown on polycarbonate slides were deposited in NaHCO3/CaCl2 solutions

  2. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)

    International Nuclear Information System (INIS)

    Duke, Elizabeth M.H.; Razi, Minoo; Weston, Anne; Guttmann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Tooze, Sharon A.; Collinson, Lucy M.

    2014-01-01

    Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10 nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from ‘hotspots’ on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities. - Highlights: • We image whole, unstained mammalian cells using cryo-soft X-ray tomography. • Endosomes are identified using a gold marker for the transferrin receptor. • A new workflow for correlative cryo-fluorescence and cryo-SXT is used to locate early autophagosomes. • Interactions between endosomes, endoplasmic reticulum and forming autophagosomes are mapped in 3D. • Multiple omegasomes are shown to form at ‘hotspots’ on the endoplasmic reticulum

  3. Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kilcoyne, Arthur L; Takahama, S.; Gilardoni, S.; Russell, L.M.; Kilcoyne, A.L.D.

    2007-05-16

    A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

  4. Quantified abundance of magnetofossils at the Paleocene-Eocene boundary from synchrotron-based transmission X-ray microscopy.

    Science.gov (United States)

    Wang, Huapei; Wang, Jun; Chen-Wiegart, Yu-Chen Karen; Kent, Dennis V

    2015-10-13

    The Paleocene-Eocene boundary (∼55.8 million years ago) is marked by an abrupt negative carbon isotope excursion (CIE) that coincides with an oxygen isotope decrease interpreted as the Paleocene-Eocene thermal maximum. Biogenic magnetite (Fe3O4) in the form of giant (micron-sized) spearhead-like and spindle-like magnetofossils, as well as nano-sized magnetotactic bacteria magnetosome chains, have been reported in clay-rich sediments in the New Jersey Atlantic Coastal Plain and were thought to account for the distinctive single-domain magnetic properties of these sediments. Uncalibrated strong field magnet extraction techniques have been typically used to provide material for scanning and transmission electron microscopic imaging of these magnetic particles, whose concentration in the natural sediment is thus difficult to quantify. In this study, we use a recently developed ultrahigh-resolution, synchrotron-based, full-field transmission X-ray microscope to study the iron-rich minerals within the clay sediment in their bulk state. We are able to estimate the total magnetization concentration of the giant biogenic magnetofossils to be only ∼10% of whole sediment. Along with previous rock magnetic studies on the CIE clay, we suggest that most of the magnetite in the clay occurs as isolated, near-equidimensional nanoparticles, a suggestion that points to a nonbiogenic origin, such as comet impact plume condensates in what may be very rapidly deposited CIE clays.

  5. Multimodal nanoparticles as alignment and correlation markers in fluorescence/soft X-ray cryo-microscopy/tomography of nucleoplasmic reticulum and apoptosis in mammalian cells

    International Nuclear Information System (INIS)

    Hagen, Christoph; Werner, Stephan; Carregal-Romero, Susana; Malhas, Ashraf N.; Klupp, Barbara G.; Guttmann, Peter; Rehbein, Stefan; Henzler, Katja; Mettenleiter, Thomas C.

    2014-01-01

    Correlative fluorescence and soft X-ray cryo-microscopy/tomography on flat sample holders is perfectly suited to study the uncompromised physiological status of adherent cells at its best possible preservation by imaging after fast cryo-immobilization. To understand the mechanism by which herpesviruses induce nucleoplasmic reticulum, i.e. invaginations of the nuclear envelope, during their egress from the host cell nucleus, morphologically similar structures found in laminopathies and after chemical induction were investigated as a potentially more easily accessible model system. For example, anti-retroviral protease inhibitors like Saquinavir also induce invaginations of the nuclear membranes. With the help of newly designed multimodal nanoparticles as alignment and correlation markers, and by optimizing fluorescence cryo-microscopy data acquisition, an elaborate three-dimensional network of nucleoplasmic reticulum was demonstrated in nuclei of Saquinavir-treated rabbit kidney cells expressing a fluorescently labeled inner nuclear membrane protein. In part of the protease inhibitor-treated samples, nuclei exhibited dramatic ultrastructural changes indicative of programmed cell death/apoptosis. This unexpected observation highlights another unique feature of soft X-ray microscopy, i.e. high absorption contrast information not relying on labeled cellular components, at a 3D resolution of approximately 40 nm (half-pitch) and through a sample thickness of several micrometers. These properties make it a valuable part of the cell biology imaging toolbox to visualize the cellular ultrastructure in its completeness. - Highlights: • Nucleoplasmic reticulum was demonstrated in nuclei of Saquinavir-treated cells. • New polyelectrolyte-Qdot ® 605 coated gold beads were employed as fiducials. • Saquinavir can induce a strong apoptotic phenotype in the nucleus. • CryoXT is an auspicious imaging technique in apoptosis research

  6. Examining the ground layer of St. Anthony from Padua 19th century oil painting by Raman spectroscopy, scanning electron microscopy and X-ray diffraction

    Science.gov (United States)

    Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš

    2013-01-01

    In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM-EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.

  7. Direct comparison between X-ray nanotomography and scanning electron microscopy for the microstructure characterization of a solid oxide fuel cell anode

    International Nuclear Information System (INIS)

    Quey, R.; Suhonen, H.; Laurencin, J.; Cloetens, P.; Bleuet, P.

    2013-01-01

    X-ray computed nanotomography (nano-CT) and scanning electron microscopy (SEM) have been applied to characterize the microstructure of a Solid Oxide Fuel Cell (SOFC) anode. A direct comparison between the results of both methods is conducted on the same region of the microstructure to assess the spatial resolution of the nano-CT microstructure, SEM being taken as a reference. A registration procedure is proposed to find out the position of the SEM image within the nano-CT volume. It involves a second SEM observation, which is taken along an orthogonal direction and gives an estimate reference SEM image position, which is then refined by an automated optimization procedure. This enables an unbiased comparison between the cell porosity morphologies provided by both methods. In the present experiment, nano-CT is shown to underestimate the number of pores smaller than 1 μm and overestimate the size of the pores larger than 1.5 μm. - Highlights: ► X-ray computed nanotomography (nano-CT) and SEM are used to characterize an SOFC anode. ► A methodology is proposed to compare the nano-CT and SEM data on the same region. ► The spatial resolution of the nano-CT data is assessed from that comparison

  8. Analysis of the dislocation content in a deformed Co-based superalloy by transmission electron microscopy and X-ray diffraction

    International Nuclear Information System (INIS)

    Breuer, D.; Klimanek, P.; Muehle, U.; Martin, U.

    1997-01-01

    The present paper compares the dislocation densities as determined in a Co-based superalloy (CoNi22Cr22W14) after creep and tensile deformation by Transmission Electron Microscopy (TEM) and X-ray profile analysis (XRD). After creep tests the dislocation densities obtained by both methods are in good agreement, which is the result of a nearly homogeneous dislocation distribution. The relationship between the dislocation density and the flow stress meets the Taylor equation. After tensile deformation the dislocation densities determined by TEM and XRD differ systematically from each other, but in both cases also a Taylor relationship can be obtained. The constant α of the dislocation interaction derived by TEM is much larger than in the creep tests and also than that of the XRD, which agrees well with the creep data. The difference between the TEM and the XRD results is the consequence of the dislocation cell structure much more developed in the tensile specimens, which leads to an underestimation of the dislocation density in TEM because of overweighting the cell interior. By fitting the Fourier coefficients of the X-ray diffraction line shapes with a bimodal distribution of the defect content (composite model), dislocation densities of the cell interior can be estimated that correspond well to the TEM data. (orig.)

  9. A simple method for detection of gunshot residue particles from hands, hair, face, and clothing using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX).

    Science.gov (United States)

    Kage, S; Kudo, K; Kaizoji, A; Ryumoto, J; Ikeda, H; Ikeda, N

    2001-07-01

    We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.

  10. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    Directory of Open Access Journals (Sweden)

    Polentarutti Maurizio

    2011-02-01

    Full Text Available Abstract Background Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF microscopy, which reveals new features in the elemental lateral distribution. Results The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the

  11. A comparative transmission electron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia - porcelain interface in dental prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, Alexander J.G., E-mail: alexander.lunt@chch.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Mohanty, Gaurav, E-mail: gaurav.mohanty@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Ying, Siqi, E-mail: siqi.ying@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Dluhoš, Jiří, E-mail: jiri.dluhos@tescan.cz [TESCAN Brno, s.r.o., Libušina tř. 1, 623 00 Brno-Kohoutovice (Czech Republic); Sui, Tan, E-mail: tan.sui@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Neo, Tee K., E-mail: neophyte@singnet.com.sg [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, 228510 (Singapore); Michler, Johann, E-mail: johann.michler@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Korsunsky, Alexander M., E-mail: alexander.korsunsky@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom)

    2015-12-01

    Recent studies into the origins of failure of yttria partially stabilised zirconia–porcelain veneered prosthesis have revealed the importance of micro-to-nano scale characterisation of this interface zone. Current understanding suggests that the heat treatment, residual stresses and varying microstructure at this location may contribute to near-interface porcelain chipping. In this study the chemical, microstructural and mechanical property variation across the interfacial zone has been characterised at two differing length scales and using three independent techniques; energy dispersive X-ray spectroscopy, transmission electron microscopy and micropillar compression. Energy dispersive X-ray spectroscopy mapping of the near-interface region revealed, for the first time, that the diffusional lengths of twelve principal elements are limited to within 2–6 μm of the interface. This study also revealed that 0.2–2 μm diameter zirconia grains had become detached from the bulk and were embedded in the near-interface porcelain. Transmission electron microscopy analysis demonstrated the presence of nanoscale spherical features, indicative of tensile creep induced voiding, within the first 0.4–1.5 μm from the interface. Within zirconia, variations in grain size and atomistic structure were also observed within the 3 μm closest to the interface. Micropillar compression was performed over a 100 μm range on either side of the interface at the spatial resolution of 5 μm. This revealed an increase in zirconia and porcelain loading modulus at close proximities (< 5 μm) to the interface and a decrease in zirconia modulus at distances between 6 and 41 μm from this location. The combination of the three experimental techniques has revealed intricate details of the microstructural, chemical and consequently mechanical heterogeneities in the YPSZ–porcelain interface, and demonstrated that the length scales typically associated with this behaviour are approximately ± 5

  12. Decomposition of tetraalkylammonium thiotungstates characterized by thermoanalysis, mass spectrometry, X-ray diffractometry and scanning electron microscopy

    International Nuclear Information System (INIS)

    Poisot, M.; Bensch, W.

    2007-01-01

    Thermal decomposition reactions of tetraalkylammonium thiotungstates (R 4 N) 2 WS 4 (R = methyl to heptyl), were investigated with DSC and DTA-TG coupled with mass spectroscopy (MS). The results demonstrate that the complexity of thermal decomposition reactions is significantly influenced by the alkyl group, i.e., more complex steps are observed for the materials with longer alkyl chain lengths. Tetraethyl and tetrapropyl complexes show reversible and irreversible phase transitions detected by DSC experiments combined with thermodiffractometry. The tetrapentyl compound undergoes an irreversible phase transition while the tetraheptyl sample exhibits a glass-like transition and melting prior to decomposition. The whole series of compounds decompose without forming sulfur rich WS n (n = 3 or 4) intermediates. The final WS 2 products are nearly stoichiometric for R = methyl to pentyl but for hexyl and heptyl samples the sulfur content is significantly reduced with a W/S ratio of about 1.5. The residual carbon and hydrogen contents increase in the final decomposition products in the same order as the number of C atoms in R 4 N increase. For the N content no clear trend is obvious. A general thermal decomposition mechanism is suggested which follows a bimolecular nucleophilic substitution reaction. In the SEM images only for R = heptyl the formation of macro-pores with a sponge-like morphology is seen, but for the other precursors compact materials are formed which in part display a well developed morphology. X-ray diffraction analysis of the final products shows the formation of amorphous WS 2 up to the tetrapentyl precursor. But for the tetrahexyl and tetraheptyl materials the W:S ratio is significantly smaller than 1:2 and large amounts of C and H are determined by chemical analyses. In accordance with previously reported results it can be assumed that a carbosulfide phase is formed by a mixed C-W-S sandwich layered structure

  13. Transmission microscopy of unmodified biological materials: comparative radiation dosages with electrons and ultrasoft X-ray photons

    International Nuclear Information System (INIS)

    Sayre, D.; Feder, R.; Spiller, E.; Kirz, J.; Kim, D.M.

    1977-01-01

    The minimum radiation dosage in a specimen consistent with transmission microscopy at resolution d and specimen thickness t is calculated for model specimens resembling biological materials in their natural state. The calculations cover 10 4 -10 7 eV electrons and 1.3-90 A photons in a number of microscopy modes. The results indicate that over a considerable part of the (t,d)-plane transmission microscopy on such specimens can be carried out at lower dosage with photons than with electrons. Estimates of the maximum resolutions obtainable with electrons and photons, consistent with structural survival of the specimen, are obtained, as are data on optimal operating conditions for microscopy with the two particles

  14. Chest X-Ray

    Medline Plus

    Full Text Available ... about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed x-ray exams and use a very small dose of ... of the inside of the chest. A chest x-ray is used to evaluate the lungs, heart and ...

  15. Magnetic x-ray microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Paul G [Computer-Aided Engineering Center, University of Wisconsin, Madison, WI 53706 (United States); Isaacs, Eric D [Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2006-08-07

    Magnetic x-ray microdiffraction uses the structural specificity of x-ray diffraction to probe complex magnetic structures at the length scales relevant to physical phenomena including domain dynamics and phase transitions. Conventional magnetic crystallography techniques such as neutron or x-ray diffraction lack this spatial resolution. The combination of both reciprocal space and real space resolution with a rich magnetic cross section allows new microscopy techniques to be developed and applied to magnetism at the scale of single domains. Potential applications include a wide range of magnetic problems in nanomagnetism, the interaction of strain, polarization and magnetization in complex oxides and spatially resolved studies of magnetic phase transitions. We present the physical basis for x-ray microdiffraction and magnetic scattering processes, review microdiffraction domain imaging techniques in antiferromagnetic and ferromagnetic materials and discuss potential directions for studies. (topical review)

  16. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  17. Microstructural changes in CdSe-coated ZnO nanowires evaluated by in situ annealing in transmission electron microscopy and x-ray diffraction

    International Nuclear Information System (INIS)

    Majidi, Hasti; Baxter, Jason B; Winkler, Christopher R; Taheri, Mitra L

    2012-01-01

    We report on the crystallite growth and phase change of electrodeposited CdSe coatings on ZnO nanowires during annealing. Both in situ transmission electron microscopy (TEM) and x-ray diffraction (XRD) reveal that the nanocrystal size increases from ∼3 to ∼10 nm upon annealing at 350 °C for 1 h and then to more than 30 nm during another 1 h at 400 °C, exhibiting two distinct growth regimes. Nanocrystal growth occurs together with a structural change from zinc blende to wurtzite. The structural transition begins at 350 °C, which results in the formation of stacking faults. Increased crystallite size, comparable to the coating thickness, can improve charge separation in extremely thin absorber solar cells. We demonstrate a nearly two-fold improvement in power conversion efficiency upon annealing. (paper)

  18. Microstructural changes in CdSe-coated ZnO nanowires evaluated by in situ annealing in transmission electron microscopy and x-ray diffraction

    Science.gov (United States)

    Majidi, Hasti; Winkler, Christopher R.; Taheri, Mitra L.; Baxter, Jason B.

    2012-07-01

    We report on the crystallite growth and phase change of electrodeposited CdSe coatings on ZnO nanowires during annealing. Both in situ transmission electron microscopy (TEM) and x-ray diffraction (XRD) reveal that the nanocrystal size increases from ˜3 to ˜10 nm upon annealing at 350 °C for 1 h and then to more than 30 nm during another 1 h at 400 °C, exhibiting two distinct growth regimes. Nanocrystal growth occurs together with a structural change from zinc blende to wurtzite. The structural transition begins at 350 °C, which results in the formation of stacking faults. Increased crystallite size, comparable to the coating thickness, can improve charge separation in extremely thin absorber solar cells. We demonstrate a nearly two-fold improvement in power conversion efficiency upon annealing.

  19. The Reactivity and Structural Dynamics of Supported Metal Nanoclusters Using Electron Microscopy, in situ X-Ray Spectroscopy, Electronic Structure Theories, and Molecular Dynamics Simulations

    International Nuclear Information System (INIS)

    Yang, Judith C.; Nuzzo, Ralph G.; Johnson, Duane; Frenkel, Anatoly

    2008-01-01

    The distinguishing feature of our collaborative program of study is the focus it brings to emergent phenomena originating from the unique structural/electronic environments found in nanoscale materials. We exploit and develop frontier methods of atomic-scale materials characterization based on electron microscopy (Yang) and synchrotron X-ray absorption spectroscopy (Frenkel) that are in turn coupled innately with advanced first principles theory and methods of computational modeling (Johnson). In the past year we have made significant experimental advances that have led to important new understandings of the structural dynamics of what are unquestionably the most important classes of heterogeneous catalysts-the materials used to both produce and mitigate the consequences of the use of liquid hydrocarbon fuels.

  20. Revealing the synergetic effects in Ni nanoparticle-carbon nanotube hybrids by scanning transmission X-ray microscopy and their application in the hydrolysis of ammonia borane.

    Science.gov (United States)

    Zhao, Guanqi; Zhong, Jun; Wang, Jian; Sham, Tsun-Kong; Sun, Xuhui; Lee, Shuit-Tong

    2015-06-07

    The hybrids of carbon nanotubes (CNTs) and the supported Ni nanoparticles (NPs) have been studied by scanning transmission X-ray microscopy (STXM) and tested by the hydrolysis reaction of ammonia borane (AB, NH3BH3). Data clearly showed the existence of a strong interaction between Ni NPs and thin CNTs (C-O-Ni bonds), which favored the tunable (buffer) electronic structure of Ni NPs facilitating the catalytic process. The hydrolysis process of AB confirmed the hypothesis that the hybrids with a strong interfacial interaction would show superior catalytic performance, while the hybrids with a weak interfacial interaction show poor performance. Our results provide a wealth of detailed information regarding the electronic structure of the NP-CNT hybrids and provide guidance towards the rational design of high-performance catalysts for energy applications.

  1. In situ and ex situ electron microscopy and X-ray diffraction characterization of the evolution of a catalytic system - from synthesis to deactivation

    DEFF Research Database (Denmark)

    Gardini, Diego

    Heterogeneous catalysis represents a research field of undeniable importance for a multitude of technological and industrial processes. Supported catalysts are nowadays at the base of the large-scale production of most chemicals and are used for the removal of air pollutants from automotive engines...... the understanding of the structural properties and mechanisms at the origin of catalytic activity. This thesis presents the potential and uniqueness of ex situ and in situ transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques in the characterization of several supported material systems...... TEM (HRTEM) and electron energy loss spectroscopy (EELS) revealed the degradation of the supported carbide particles probably due to the formation of volatile molybdenum hydroxide species. The activity of silver nanoparticles as catalyst for soot oxidation was studied in operative conditions...

  2. X-ray and electron microscopy investigation of the topotactic transformation of MoO3 into MoO2

    International Nuclear Information System (INIS)

    Bertrand, O.; Dufour, L.C.

    1980-01-01

    The reduction of MoO 3 is investigated by X-ray analysis and electron microscopy from MoO 3 (010) platelets between 1000 A and 5 mm long. In all cases, the following orientation relationship between both lattices is found: [100] 2 parallel [010] 3 , [122] 2 parallel [100] 3 . [-12-2] 2 parallel [001] 3 . MoO 3 crystallites twinning and misorientation are discussed in relation with the particular importance of [101] 3 directions in MoO 3 preserved in the transformation and becoming [010] 2 of MoO 2 . A model for this topotactic reduction is proposed where the reaction develops layer (010) 3 by layer (010) 3 to form [20-1] 2 type planes in MoO 2 structure. Data on the kinetics of the boundary moving in [010] 3 direction are also presented. (author)

  3. Structure, Mobility, and Composition of Transition Metal Catalyst Surfaces. High-Pressure Scanning Tunneling Microscopy and Ambient-Pressure X-ray Photoelectron Spectroscopy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhongwei [Univ. of California, Berkeley, CA (United States)

    2013-12-06

    Surface structure, mobility, and composition of transition metal catalysts were studied by high-pressure scanning tunneling microscopy (HP-STM) and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at high gas pressures. HP-STM makes it possible to determine the atomic or molecular rearrangement at catalyst surfaces, particularly at the low-coordinated active surface sites. AP-XPS monitors changes in elemental composition and chemical states of catalysts in response to variations in gas environments. Stepped Pt and Cu single crystals, the hexagonally reconstructed Pt(100) single crystal, and Pt-based bimetallic nanoparticles with controlled size, shape and composition, were employed as the model catalysts for experiments in this thesis.

  4. Si Nanoribbons on Ag(110) Studied by Grazing-Incidence X-Ray Diffraction, Scanning Tunneling Microscopy, and Density-Functional Theory: Evidence of a Pentamer Chain Structure.

    Science.gov (United States)

    Prévot, Geoffroy; Hogan, Conor; Leoni, Thomas; Bernard, Romain; Moyen, Eric; Masson, Laurence

    2016-12-30

    We report a combined grazing incidence x-ray diffraction (GIXD), scanning tunneling microscopy (STM), and density-functional theory (DFT) study which clearly elucidates the atomic structure of the Si nanoribbons grown on the missing-row reconstructed Ag(110) surface. Our study allows us to discriminate between the theoretical models published in the literature, including the most stable atomic configurations and those based on a missing-row reconstructed Ag(110) surface. GIXD measurements unambiguously validate the pentamer model grown on the reconstructed surface, obtained from DFT. This pentamer atomistic model accurately matches the high-resolution STM images of the Si nanoribbons adsorbed on Ag(110). Our study closes the long-debated atomic structure of the Si nanoribbons grown on Ag(110) and definitively excludes a honeycomb structure similar to that of freestanding silicene.

  5. Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy

    International Nuclear Information System (INIS)

    Pantzas, K; Voss, P L; Ougazzaden, A; Patriarche, G; Largeau, L; Mauguin, O; Troadec, D; Gautier, S; Moudakir, T; Suresh, S

    2012-01-01

    Using elastic scattering theory we show that a small set of energy dispersive x-ray spectroscopy (EDX) measurements is sufficient to experimentally evaluate the scattering function of electrons in high-angle annular dark field scanning transmission microscopy (HAADF-STEM). We then demonstrate how to use this function to transform qualitative HAADF-STEM images of InGaN layers into precise, quantitative chemical maps of the indium composition. The maps obtained in this way combine the resolution of HAADF-STEM and the chemical precision of EDX. We illustrate the potential of such chemical maps by using them to investigate nanometer-scale fluctuations in the indium composition and their impact on the growth of epitaxial InGaN layers. (paper)

  6. Optical systems for synchrotron radiation: lecture 4. Soft x-ray imaging systems

    International Nuclear Information System (INIS)

    Howells, M.R.

    1986-04-01

    The history and present techniques of soft x-ray imaging are reviewed briefly. The physics of x-ray imaging is described, including the temporal and spatial coherence of x-ray sources. Particular technologies described are: contact x-ray microscopy, zone plate imaging, scanned image zone plate microscopy, scanned image reflection microscopy, and soft x-ray holography and diffraction

  7. Operando x-ray photoelectron emission microscopy for studying forward and reverse biased silicon p-n junctions

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, N., E-mail: nick.barrett@cea.fr; Gottlob, D. M.; Mathieu, C.; Lubin, C. [SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Passicousset, J. [SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); IFP Energies nouvelles, Rond-point de l’échangeur de Solaize, BP 3, 69360 Solaize (France); Renault, O.; Martinez, E. [University Grenoble-Alpes, 38000 Grenoble, France and CEA, LETI, MINATEC Campus, 38054 Grenoble (France)

    2016-05-15

    Significant progress in the understanding of surfaces and interfaces of materials for new technologies requires operando studies, i.e., measurement of chemical, electronic, and magnetic properties under external stimulus (such as mechanical strain, optical illumination, or electric fields) applied in situ in order to approach real operating conditions. Electron microscopy attracts much interest, thanks to its ability to determine semiconductor doping at various scales in devices. Spectroscopic photoelectron emission microscopy (PEEM) is particularly powerful since it combines high spatial and energy resolution, allowing a comprehensive analysis of local work function, chemistry, and electronic structure using secondary, core level, and valence band electrons, respectively. Here we present the first operando spectroscopic PEEM study of a planar Si p-n junction under forward and reverse bias. The method can be used to characterize a vast range of materials at near device scales such as resistive oxides, conducting bridge memories and domain wall arrays in ferroelectrics photovoltaic devices.

  8. Small scale soft x-ray lasers

    International Nuclear Information System (INIS)

    Skinner, C.H.; DiCicco, D.S.; Kim, D.; Voorhees, D.; Suckewer, S.

    1990-01-01

    The widespread application of soft x-ray laser technology is contingent on the development of small scale soft x-ray lasers that do not require large laser facilities. Progress in the development of soft x-ray lasers pumped by a Nd laser of energy 6-12J is reported below. Application of an existing soft x-ray laser to x-ray microscopy has begun. A soft x-ray laser of output energy 1-3 mJ at 18,2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. The authors present a composite optical x-ray laser microscope design

  9. Investigating Microbe-Mineral Interactions: Recent Advances in X-Ray and Electron Microscopy and Redox-Sensitive Methods

    Science.gov (United States)

    Miot, Jennyfer; Benzerara, Karim; Kappler, Andreas

    2014-05-01

    Microbe-mineral interactions occur in diverse modern environments, from the deep sea and subsurface rocks to soils and surface aquatic environments. They may have played a central role in the geochemical cycling of major (e.g., C, Fe, Ca, Mn, S, P) and trace (e.g., Ni, Mo, As, Cr) elements over Earth's history. Such interactions include electron transfer at the microbe-mineral interface that left traces in the rock record. Geomicrobiology consists in studying interactions at these organic-mineral interfaces in modern samples and looking for traces of past microbe-mineral interactions recorded in ancient rocks. Specific tools are required to probe these interfaces and to understand the mechanisms of interaction between microbes and minerals from the scale of the biofilm to the nanometer scale. In this review, we focus on recent advances in electron microscopy, in particular in cryoelectron microscopy, and on a panel of electrochemical and synchrotron-based methods that have recently provided new understanding and imaging of the microbe-mineral interface, ultimately opening new fields to be explored.

  10. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  11. Interfacial reaction pathways and kinetics during annealing of 111-textured Al/TiN bilayers: A synchrotron x-ray diffraction and transmission electron microscopy study

    International Nuclear Information System (INIS)

    Chun, J.-S.; Desjardins, P.; Lavoie, C.; Petrov, I.; Cabral, C. Jr.; Greene, J. E.

    2001-01-01

    Growth of TiN layers in most diffusion-barrier applications is limited to deposition temperatures T s s =450 deg. C on SiO 2 by ultrahigh vacuum reactive magnetron sputter deposition in pure N 2 . Al overlayers, 160 nm thick with inherited 111 preferred orientation, were then deposited at T s =100 deg. C without breaking vacuum. The as-deposited TiN layer is underdense due to the low deposition temperature (T s /T m ≅0.23 in which T m is the melting point) resulting in kinetically limited adatom mobilities leading to atomic shadowing which, in turn, results in a columnar microstructure with both inter- and intracolumnar voids. The Al overlayer is fully dense. Synchrotron x-ray diffraction was used to follow interfacial reaction kinetics during postdeposition annealing of the 111-textured Al/TiN bilayers as a function of time (t a =12-1200 s) and temperature (T a =440-550 deg. C). Changes in bilayer microstructure and microchemistry were investigated using transmission electron microscopy (TEM) and scanning TEM to obtain compositional maps of plan-view and cross-sectional specimens. Interfacial reaction during annealing is initiated at the Al/TiN interface. Al diffuses rapidly into TiN voids during anneals at temperatures ∼ 3 Ti at the interface. Al 3 Ti exhibits a relatively planar growth front extending toward the Al free surface. Analyses of time-dependent x-ray diffraction peak intensities during isothermal annealing as a function of temperature show that Al 3 Ti growth kinetics are, for the entire temperature range investigated, diffusion limited with an activation energy of 1.5±0.2 eV

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... some concerns about chest x-rays. However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a ... posted: How to Obtain and Share ...

  13. Chest X-Ray

    Medline Plus

    Full Text Available ... X-ray Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey Rubin, a radiologist ... about chest x-rays, visit Radiology Info dot org. Thank you for your time! Spotlight Recently posted: ...

  14. X-ray apparatus

    International Nuclear Information System (INIS)

    Sell, L.J.

    1981-01-01

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  15. X-ray - skeleton

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this ... Degenerative bone conditions Osteomyelitis Risks There is low radiation exposure. X-rays machines are set to provide the smallest ...

  16. Characterization of the ashes from the 2014-2015 Turrialba Volcano eruptions by means of scanning electron microscopy and energy dispersive X-Ray spectroscopy

    International Nuclear Information System (INIS)

    Lucke, Oscar H.; Calderon, Ariadna

    2016-01-01

    The Turrialba Volcano is a stratovolcano located approximately 35 km northwest from San Jose, Costa Rica's capital city. A series of eruptions since October 29, 2014 until at least late 2015, has represented the most significant activity of this volcano since the 1860s. A significant volume of ash was dispersed with this eruptions that reached the most populous areas of the country. The characteristics of the ash particles are analyzed in order to establish the nature of the eruptive events that occurred on 2014 and 2015, and to monitor the evolution of the eruptive processes. The analysis was carried out utilizing optical microscopy and stereomicroscopy techniques, as well as novel scanning electron microscopy (SEM) methods that involve imaging and element composition analysis by means of Energy Dispersive X-Ray Spectroscopy (EDX). The evolution of the Turrialba eruptions is showed from phreatic events in 2014, with ashes composed entirely of non-juvenile fragments, to phreatomagmatic events starting on March 12, 2015 with the appearance of a significant fraction of juvenile components in the ash. (author)

  17. Study of deformation and fracture micro mechanisms of titanium alloy Ti-6Al-4V using electron microscopy and and X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Morcelli, Aparecido Edilson

    2009-01-01

    This present work allowed the study of deformation and fracture micro mechanisms of titanium alloy Ti-6Al-4V, used commercially for the manufacture of metallic biomaterials. The techniques employed for the analysis of the material under study were: scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The study of the influence and behavior of the phases present in titanium alloys is important to evaluate the behavior of cracks in titanium alloys with high mechanical strength, which have fine alpha (α), beta (β) and (α±β) microstructure, linking the presence of the phases with the strength of the material. The evaluation in situ of deformation and fracture micro mechanisms were performed by TEM and was also a study of phase transformations during cooling in titanium alloys, using the techniques of bright field, dark field and diffraction of electrons in the selected area. After heat treatment differences were observed between the amount of in relation to the original microstructure of the β and α phases material for different conditions used in heat treatment applied to the alloy. The presence of lamellar microstructure formed during cooling in the β field was observed, promoting the conversion of part of the secondary alpha structure in β phase, which was trapped between the lamellar of alpha. (author)

  18. Analysis of a nanocrystalline polymer dispersion of ebselen using solid-state NMR, Raman microscopy, and powder X-ray diffraction.

    Science.gov (United States)

    Vogt, Frederick G; Williams, Glenn R

    2012-07-01

    Nanocrystalline drug-polymer dispersions are of significant interest in pharmaceutical delivery. The purpose of this work is to demonstrate the applicability of methods based on two-dimensional (2D) and multinuclear solid-state NMR (SSNMR) to a novel nanocrystalline pharmaceutical dispersion of ebselen with polyvinylpyrrolidone-vinyl acetate (PVP-VA), after initial characterization with other techniques. A nanocrystalline dispersion of ebselen with PVP-VA was prepared and characterized by powder X-ray diffraction (PXRD), confocal Raman microscopy and mapping, and differential scanning calorimetry (DSC), and then subjected to detailed 1D and 2D SSNMR analysis involving ¹H, ¹³C, and ⁷⁷Se isotopes and ¹H spin diffusion. PXRD was used to show that dispersion contains nanocrystalline ebselen in the 35-60 nm size range. Confocal Raman microscopy and spectral mapping were able to detect regions where short-range interactions may occur between ebselen and PVP-VA. Spin diffusion effects were analyzed using 2D SSNMR experiments and are able to directly detect interactions between ebselen and the surrounding PVP-VA. The methods used here, particularly the 2D SSNMR methods based on spin diffusion, provided detailed structural information about a nanocrystalline polymer dispersion of ebselen, and should be useful in other studies of these types of materials.

  19. Chest X-Ray

    Medline Plus

    Full Text Available ... I’d like to talk with you about chest radiography also known as chest x-rays. Chest x-rays are the most ... far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  20. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  1. Polymer Compund Refractive Lenses for Hard X-ray Nanofocusing

    OpenAIRE

    Krywka, Christina; Last, Arndt; Marschall, Felix; Markus, Otto; Georgi, Sebastian; Mueller, Martin; Mohr, Jürgen

    2016-01-01

    Compound refractive lenses fabricated out of SU-8 negative photoresist have been used to generate a nanofocused, i.e. sub-μm sized X-ray focal spot at an X-ray nanodiffraction setup. X-ray microscopy and X-ray diffraction techniques have conceptually different demands on nanofocusing optical elements and so with the application of X-ray nanodiffraction in mind, this paper presents the results of an initial characterization of polymer lenses used as primary focusin...

  2. Identification of corrosion and damage mechanisms by using scanning electron microscopy and energy-dispersive X-ray microanalysis: contribution to failure analysis case histories

    Science.gov (United States)

    Pantazopoulos, G.; Vazdirvanidis, A.

    2014-03-01

    Emphasis is placed on the evaluation of corrosion failures of copper and machineable brass alloys during service. Typical corrosion failures of the presented case histories mainly focussed on stress corrosion cracking and dezincification that acted as the major degradation mechanisms in components used in piping and water supply systems. SEM assessment, coupled with EDS spectroscopy, revealed the main cracking modes together with the root-source(s) that are responsible for the damage initiation and evolution. In addition, fracture surface observations contributed to the identification of the incurred fracture mechanisms and potential environmental issues that stimulated crack initiation and propagation. Very frequently, the detection of chlorides among the corrosion products served as a suggestive evidence of the influence of working environment on passive layer destabilisation and metal dissolution.

  3. Microscopic study of dental hard tissues in primary teeth with Dentinogenesis Imperfecta Type II: Correlation of 3D imaging using X-ray microtomography and polarising microscopy.

    Science.gov (United States)

    Davis, Graham R; Fearne, Janice M; Sabel, Nina; Norén, Jörgen G

    2015-07-01

    The aim of this study was to examine the histological appearance of dental hard tissues in primary teeth from children with DI using conventional polarised light microscopy and correlate that with 3D imaging using X-ray microtomograpy (XMT) to gain a further understanding of the dentine structure of teeth diagnosed with dentinogenesis imperfecta. Undecalcified sections of primary teeth from patients diagnosed with Dentinogenesis Imperfecta Type II were examined using polarised light microscopy. XMT was employed for 3D-imaging and analysis of the dentine. The polarised light microscopy and XMT revealed tubular structures in the dentine seen as vacuoles coinciding with the path of normal dentinal tubules but not continuous tubules. The size of the tubules was close to that of capillaries. The largest tubular structures had a direction corresponding to where the pulp tissue would have been located during primary dentine formation. The dysfunctional mineralisation of the dentine and obliteration of the pulp evidently leaves blood vessels in the dentine which have in the main been tied off and, in the undecalcified sections, appear as vacuoles. Although from radiographs, the pulp in teeth affected by Dentinogenesis Imperfect type II appears to be completely obliterated, a network of interconnected vessels may remain. The presence of large dentinal tubules and blood vessels, or the remnants of blood vessels, could provide a pathway for bacteria from the oral cavity. This might account for why some of these teeth develop periapical abscesses in spite of apparently having no pulp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Determination of lead in clay enameled by X-ray fluorescence technique in Total reflection and by Scanning Electron Microscopy; Determinacion de plomo en esmaltado de barro por Fluorescencia de rayos X en reflexion total y Microscopia Electronica de Barrido

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua O, G.; Carapia M, L. [Instituto Nacional de Investigaciones Nucleares, C.P. 52045 Estado de Mexico (Mexico)

    2000-07-01

    This work has the objective of determining lead free in the glazed commercial stewing pans using the X-ray fluorescence technique in Total reflection (FRX) and the observation and semiquantitative determination of lead by Analytical Scanning Electron Microscopy (ASEM). (Author)

  5. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  6. Spectroscopic ellipsometric modeling of a Bi–Te–Se write layer of an optical data storage device as guided by atomic force microscopy, scanning electron microscopy, and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Madaan, Nitesh; Bagley, Jacob; Diwan, Anubhav [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Liu, Yiqun [Department of Chemistry, Lehigh University, Bethlehem, PA 18015 (United States); Davis, Robert C. [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Lunt, Barry M. [Department of Information Technology, Brigham Young University, Provo, UT 84602 (United States); Smith, Stacey J., E-mail: ssmith@chem.byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Linford, Matthew R., E-mail: mrlinford@chem.byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)

    2014-10-31

    Conventional magnetic tape is the most widely used medium for archival data storage. However, data stored on it need to be migrated every ca. 5 years. Recently, optical discs that store information for hundreds, or even more than 1000 years, have been introduced to the market. We recently proposed that technology in these optical discs be used to make an optical tape that would show greater permanence than its magnetic counterpart. Here we provide a detailed optical characterization of a sputtered thin film of bismuth, tellurium, and selenium (BTS) that is a proposed data storage layer for these devices. The methodology described herein should be useful in the future development of related materials. Spectroscopic ellipsometry (SE) data are obtained using interference enhancement, and the modeling of this data is guided by results from atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray reflectivity (XRR). By AFM, ca. 40 nm BTS films show ca. 10 nm roughness. SEM images also suggest considerable roughness in the films and indicate that they are composed of 13.1 ± 5.9 nm grains. XRD confirms that the films are crystalline and predicts a grain size of 17 ± 2 nm. XRD results are consistent with the composition of the films — a mildly oxidized BTS material. Three models of increasing complexity are investigated to explain the SE data. The first model consists of a smooth, homogeneous BTS film. The second model adds a roughness layer to the previous model. The third model also has two layers. The bottom layer is modeled as a mixture of BTS and void using a Bruggeman effective medium approximation. The upper layer is similarly modeled, but with a gradient. The first model was unable to adequately model the SE data. The second model was an improvement — lower MSE (4.4) and good agreement with step height measurements. The third model was even better — very low MSE (2.6) and good agreement with AFM results. The

  7. Contact microscopy with synchrotron radiation

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.

    1985-10-01

    Soft x-ray contact microscopy with synchrotron radiation offers the biologist and especially the microscopist, a way to morphologically study specimens that could not be imaged by conventional TEM, STEM or SEM methods (i.e. hydrated samples, samples easily damaged by an electron beam, electron dense samples, thick specimens, unstained low contrast specimens) at spatial resolutions approaching those of the TEM, with the additional possibility to obtain compositional (elemental) information about the sample as well. Although flash x-ray sources offer faster exposure times, synchrotron radiation provides a highly collimated, intense radiation that can be tuned to select specific discrete ranges of x-ray wavelengths or specific individual wavelengths which optimize imaging or microanalysis of a specific sample. This paper presents an overview of the applications of x-ray contact microscopy to biological research and some current research results using monochromatic synchrotron radiation to image biological samples. 24 refs., 10 figs

  8. Scanning transmission X-ray microscopy probe for in situ mechanism study of graphene-oxide-based resistive random access memory.

    Science.gov (United States)

    Nho, Hyun Woo; Kim, Jong Yun; Wang, Jian; Shin, Hyun-Joon; Choi, Sung-Yool; Yoon, Tae Hyun

    2014-01-01

    Here, an in situ probe for scanning transmission X-ray microscopy (STXM) has been developed and applied to the study of the bipolar resistive switching (BRS) mechanism in an Al/graphene oxide (GO)/Al resistive random access memory (RRAM) device. To perform in situ STXM studies at the C K- and O K-edges, both the RRAM junctions and the I0 junction were fabricated on a single Si3N4 membrane to obtain local XANES spectra at these absorption edges with more delicate I0 normalization. Using this probe combined with the synchrotron-based STXM technique, it was possible to observe unique chemical changes involved in the BRS process of the Al/GO/Al RRAM device. Reversible oxidation and reduction of GO induced by the externally applied bias voltages were observed at the O K-edge XANES feature located at 538.2 eV, which strongly supported the oxygen ion drift model that was recently proposed from ex situ transmission electron microscope studies.

  9. Atomic force microscopy and X-ray photoelectron spectroscopy study of NO2 reactions on CaCO3 (1014) surfaces in humid environments.

    Science.gov (United States)

    Baltrusaitis, Jonas; Grassian, Vicki H

    2012-09-13

    In this study, alternating current (AC) mode atomic force microscopy (AFM) combined with phase imaging and X-ray photoelectron spectroscopy (XPS) were used to investigate the effect of nitrogen dioxide (NO2) adsorption on calcium carbonate (CaCO3) (101̅4) surfaces at 296 K in the presence of relative humidity (RH). At 70% RH, CaCO3 (101̅4) surfaces undergo rapid formation of a metastable amorphous calcium carbonate layer, which in turn serves as a substrate for recrystallization of a nonhydrated calcite phase, presumably vaterite. The adsorption of nitrogen dioxide changes the surface properties of CaCO3 (101̅4) and the mechanism for formation of new phases. In particular, the first calcite nucleation layer serves as a source of material for further island growth; when it is depleted, there is no change in total volume of nitrocalcite, Ca(NO3)2, particles formed whereas the total number of particles decreases. This indicates that these particles are mobile and coalesce. Phase imaging combined with force curve measurements reveals areas of inhomogeneous energy dissipation during the process of water adsorption in relative humidity experiments, as well as during nitrocalcite particle formation. Potential origins of the different energy dissipation modes within the sample are discussed. Finally, XPS analysis confirms that NO2 adsorbs on CaCO3 (101̅4) in the form of nitrate (NO3(-)) regardless of environmental conditions or the pretreatment of the calcite surface at different relative humidity.

  10. Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy-dispersive x-ray fluorescence spectrometry, and scanning electron microscopy study

    Science.gov (United States)

    Pascon, Fernanda Miori; Kantovitz, Kamila Rosamilia; Soares, Luís Eduardo Silva; Santo, Ana Maria do Espírito; Martin, Airton Abraha~o.; Puppin-Rontani, Regina Maria

    2012-07-01

    We examine the morphological and chemical changes in the pulp chamber dentin after using endodontic agents by scanning electron microscopy (SEM), Fourier transform Raman spectroscopy (FT-Raman), and micro energy-dispersive x-ray fluorescence spectrometry (μEDXRF). Thirty teeth were sectioned exposing the pulp chamber and divided by six groups (n=5): NT-no treatment; CHX-2% chlorhexidine; CHXE-2% chlorhexidine+17% EDTA E-17% EDTA; SH5-5.25% NaOCl; SH5E-5.25% NaOCl+17% EDTA. The inorganic and organic content was analyzed by FT-Raman. μEDXRF examined calcium (Ca) and phosphorus (P) content as well as Ca/P ratio. Impressions of specimens were evaluated by SEM. Data were submitted to Kruskal-Wallis and Dunn tests (pNT=SH5E>CHX>E>CHXE). CHXE and E presented the highest Ca/P ratio values compared to the other groups (p<0.05). The SEM images in the EDTA-treated groups had the highest number of open tubules. Erosion in the tubules was observed in CHX and SH5E groups. Endodontic agents change the inorganic and organic content of pulp chamber dentin. NaOCl used alone, or in association with EDTA, was the most effective agent considering chemical and morphological approaches.

  11. X-ray diffraction and high resolution transmission electron microscopy characterization of intermetallics formed in Fe/Ti nanometer-scale multilayers during thermal annealing

    International Nuclear Information System (INIS)

    Wu, Z.L.; Peng, T.X.; Cao, B.S.; Lei, M.K.

    2009-01-01

    Intermetallics formation in the Fe/Ti nanometer-scale multilayers magnetron-sputtering deposited on Si(100) substrate during thermal annealing at 623-873 K was investigated by using small and wide angle X-ray diffraction and cross-sectional high-resolution transmission electron microscopy. The Fe/Ti nanometer-scale multilayers were constructed with bilayer thickness of 16.2 nm and the sublayer thickness ratio of 1:1. At the annealing temperature of 623 K, intermetallics FeTi were formed by nucleation at the triple joins of α-Fe(Ti)/α-Ti interface and α-Ti grain boundary with an orientational correlation of FeTi(110)//α-Ti(100) and FeTi[001]//α-Ti[001] to adjacent α-Ti grains. The lateral growth of intermetallics FeTi which is dependent on the diffusion path of Ti led to a coalescence into an intermetallic layer. With an increase in the annealing temperature, intermetallics Fe 2 Ti were formed between the intermetallics FeTi and the excess Fe due to the limitation of Fe and Ti atomic concentrations, resulting in the coexistence of intermetallics FeTi and Fe 2 Ti. It was found that the low energy interface as well as the dominant diffusion path constrained the nucleation and growth of intermetallics during interfacial reaction in the nanometer-scale metallic multilayers.

  12. Investigations on chloride-induced high temperature corrosion of iron-, nickel-, cobalt-base alloys by scanning electron microscopy and energy dispersive X-ray microspot analysis

    International Nuclear Information System (INIS)

    Ross, W.; Umland, F.

    1984-01-01

    The direct oxidation at 900 0 C in air and the corrosion of alloys in air after short exposure to chloride have been compared under identical conditions. Chloride destroys the original oxide layers by recristallisation and modifies the following scale growing in such a manner that no firmly sticking layers can be rebuilt. After a chloride induction therefore all other following corrosions will be enhanced. Experiments in a closed system, a so called transport furnace, showed that the chloride also acts as a gas phase carrier transporting firstly the oxide layer, under reducing conditions metals, too, as volatile chloro metal gas complexes in this case from hot to cold region of the furnace. Cobalt base alloys are less attacked than iron or nickel base alloys. As chloride is not found implicitly on the treated surface the identification of the chloride induced corrosion is difficult. However the scanning electron microscopy combined with quantitative energy dispersive X-ray analysis has been proved as an appropriate method for early detection. As the phenomena depend on the type of alloy, respectively, an illustration and interpretation catalogue is necessary. (orig.) [de

  13. Comparative and complementary characterization of precipitate microstructures in Al-Mg-Si(-Li) alloys by transmission electron microscopy, energy dispersive X-ray spectroscopy and atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Koshino, Yuki [Department of Mechanical Engineering and Materials Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Kozuka, Masaya [Materials Research Laboratory, Kobe Steel, Ltd., 1-5-5 Takatsukadai, Nishi-ku, Kobe 651-2271 (Japan); Hirosawa, Shoichi, E-mail: hirosawa@ynu.ac.jp [Department of Mechanical Engineering and Materials Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan); Aruga, Yasuhiro [Materials Research Laboratory, Kobe Steel, Ltd., 1-5-5 Takatsukadai, Nishi-ku, Kobe 651-2271 (Japan)

    2015-02-15

    Highlights: • Microalloying addition of Li enhances the age-hardening response of Al-Mg-Si alloys. • Size and number density of nanoclusters or precipitates are increased by Li addition. • Mg and Si contents within the aggregates are inversely decreased by Li addition. • Microalloying Li accelerates heterogeneous nucleation of such Mg-Si aggregates. - Abstract: In this study, comparative and complementary characterization of precipitate microstructures by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and atom probe tomography (APT) has been performed for Al-0.55 wt%Mg-0.89 wt%Si(-0.043 wt%Li) alloys aged at 433 K for 1.2 ks (under aging) and 36 ks (peak aging). Quantitative estimation of nanometer-scale clusters (nanoclusters) and β″ precipitates by TEM and APT revealed that microalloying addition of Li increases the size and number density of these Mg-Si aggregates, resulting in the enhanced age-hardening response. Positive evidence by APT for the segregation of Li suggests that heterogeneous nucleation of such Mg-Si aggregates with the aid of Li is attributed to the modified precipitate microstructures and thus improved mechanical strength of this alloy system.

  14. Characterization of CuCl quantum dots grown in NaCl single crystals via optical measurements, X-ray diffraction, and transmission electron microscopy

    Science.gov (United States)

    Miyajima, Kensuke; Akatsu, Tatsuro; Itoh, Ken

    2018-05-01

    We evaluated the crystal size, shape, and alignment of the lattice planes of CuCl quantum dots (QDs) embedded in NaCl single crystals by optical measurements, X-ray diffraction (XRD) patterns, and transmission electron microscopy (TEM). We obtained, for the first time, an XRD pattern and TEM images for CuCl QDs in NaCl crystals. The XRD pattern showed that the lattice planes of the CuCl QDs were parallel to those of the NaCl crystals. In addition, the size of the QDs was estimated from the diffraction width. It was apparent from the TEM images that almost all CuCl QDs were polygonal, although some cubic QDs were present. The mean size and size distribution of the QDs were also obtained. The dot size obtained from optical measurements, XRD, and TEM image were almost consistent. Our new findings can help to reveal the growth mechanism of semiconductor QDs embedded in a crystallite matrix. In addition, this work will play an important role in progressing the study of optical phenomena originating from assembled semiconductor QDs.

  15. Wavefront propagation simulations for a UV/soft x-ray beamline: Electron Spectro-Microscopy beamline at NSLS-II

    Science.gov (United States)

    Canestrari, N.; Bisogni, V.; Walter, A.; Zhu, Y.; Dvorak, J.; Vescovo, E.; Chubar, O.

    2014-09-01

    A "source-to-sample" wavefront propagation analysis of the Electron Spectro-Microscopy (ESM) UV / soft X-ray beamline, which is under construction at the National Synchrotron Light Source II (NSLS-II) in the Brookhaven National Laboratory, has been conducted. All elements of the beamline - insertion device, mirrors, variable-line-spacing gratings and slits - are included in the simulations. Radiation intensity distributions at the sample position are displayed for representative photon energies in the UV range (20 - 100 eV) where diffraction effects are strong. The finite acceptance of the refocusing mirrors is the dominating factor limiting the spatial resolution at the sample (by ~3 μm at 20 eV). Absolute estimates of the radiation flux and energy resolution at the sample are also obtained from the electromagnetic calculations. The analysis of the propagated UV range undulator radiation at different deflection parameter values demonstrates that within the beamline angular acceptance a slightly "red-shifted" radiation provides higher flux at the sample and better energy resolution compared to the on-axis resonant radiation of the fundamental harmonic.

  16. 3D membrane segmentation and quantification of intact thick cells using cryo soft X-ray transmission microscopy: A pilot study

    Science.gov (United States)

    Klementieva, Oxana; Werner, Stephan; Guttmann, Peter; Pratsch, Christoph; Cladera, Josep

    2017-01-01

    Structural analysis of biological membranes is important for understanding cell and sub-cellular organelle function as well as their interaction with the surrounding environment. Imaging of whole cells in three dimension at high spatial resolution remains a significant challenge, particularly for thick cells. Cryo-transmission soft X-ray microscopy (cryo-TXM) has recently gained popularity to image, in 3D, intact thick cells (∼10μm) with details of sub-cellular architecture and organization in near-native state. This paper reports a new tool to segment and quantify structural changes of biological membranes in 3D from cryo-TXM images by tracking an initial 2D contour along the third axis of the microscope, through a multi-scale ridge detection followed by an active contours-based model, with a subsequent refinement along the other two axes. A quantitative metric that assesses the grayscale profiles perpendicular to the membrane surfaces is introduced and shown to be linearly related to the membrane thickness. Our methodology has been validated on synthetic phantoms using realistic microscope properties and structure dimensions, as well as on real cryo-TXM data. Results demonstrate the validity of our algorithms for cryo-TXM data analysis. PMID:28376110

  17. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme, A. [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Coroado, J. [Instituto Politecnico Tomar, Dep. Arte Conservacao and Restauro, P-2300313 Tomar (Portugal); Santos, J.M.F. dos [GIAN, Departamento de Fisica, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Luehl, L.; Wolff, T.; Kanngiesser, B. [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Hardenbergstr. 36 D-10623 Berlin (Germany); Carvalho, M.L., E-mail: luisa@cii.fc.ul.pt [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal)

    2011-05-15

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with {mu}-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each 'layer'. Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  18. Application of particle-induced X-ray emission, backscattering spectrometry and scanning electron microscopy in the evaluation of orthodontic materials

    International Nuclear Information System (INIS)

    Gihwala, D.; Mars, J.A.; Pineda-Vargas, C.

    2013-01-01

    The focus of this investigation was on orthodontic materials used in the manufacture of dental brackets. The properties of these dental materials are subjected to various physical parameters such as elongation, yield strength and elasticity that justify their application. In turn, these parameters depend on the quantitative elemental concentration distribution (QECD) in the materials used in the manufacture. For compositional analysis, proton-induced X-ray emission (PIXE), backscatter spectrometry (BS) and scanning electron microscopy (SEM) were applied. QECD analysis was performed to correlate the physical parameters with the composition and to quantify imperfections in the materials. PIXE and BS analyses were performed simultaneously with a 3 MeV proton beam while electrons accelerated at 25 keV were used for the SEM analysis. From the QECDs it was observed that: (1) the major elements Cr, Fe and Ni were homogeneously distributed in the orthodontic plate; (2) the distribution of Mo and O correlated with one another; (3) there was a spread of Cr around regions of high C concentration; and, (4) areas of high concentrations of Mo and O corresponded to a decrease in C concentrations. Elemental concentration correlations are shown to indicate the similarities and differences in the ease of formation of phases, based on the tangent of linearity. (author)

  19. A Study of the Oxidation Behaviour of Pile Grade A (PGA) Nuclear Graphite Using Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and X-Ray Tomography (XRT).

    Science.gov (United States)

    Payne, Liam; Heard, Peter J; Scott, Thomas B

    2015-01-01

    Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK's first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600-1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment.

  20. Scanning Electron Microscopy-Energy-Dispersive X-Ray (SEM/EDX): A Rapid Diagnostic Tool to Aid the Identification of Burnt Bone and Contested Cremains.

    Science.gov (United States)

    Ellingham, Sarah T D; Thompson, Tim J U; Islam, Meez

    2018-03-01

    This study investigates the use of Scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) as a diagnostic tool for the determination of the osseous origin of samples subjected to different temperatures. Sheep (Ovis aries) ribs of two experimental groups (fleshed and defleshed) were burned at temperatures of between 100°C and 1100°C in 100°C increments and subsequently analyzed with the SEM-EDX to determine the atomic percentage of present elements. Three-factor ANOVA analysis showed that neither the exposure temperature, nor whether the burning occurred with or without soft tissue present had any significant influence on the bone's overall elemental makeup (p > 0.05). The Ca/P ratio remained in the osseous typical range of between 1.6 and 2.58 in all analyzed samples. This demonstrates that even faced with high temperatures, the overall gross elemental content and atomic percentage of elements in bone remain stable, creating a unique "fingerprint" for osseous material, even after exposure to extreme conditions. © 2017 American Academy of Forensic Sciences.