WorldWideScience

Sample records for microscopic two-level system

  1. Rapid characterization of microscopic two-level systems using Landau-Zener transitions in a superconducting qubit

    International Nuclear Information System (INIS)

    Tan, Xinsheng; Yu, Haifeng; Yu, Yang; Han, Siyuan

    2015-01-01

    We demonstrate a fast method to detect microscopic two-level systems in a superconducting phase qubit. By monitoring the population leak after sweeping the qubit bias flux, we are able to measure the two-level systems that are coupled with the qubit. Compared with the traditional method that detects two-level systems by energy spectroscopy, our method is faster and more sensitive. This method supplies a useful tool to investigate two-level systems in solid-state qubits

  2. Quasiparticle-induced decoherence of microscopic two-level-systems in superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Bilmes, Alexander; Lisenfeld, Juergen; Zanker, Sebastian; Weiss, Georg; Ustinov, Alexey V. [PHI, KIT, Karlsruhe (Germany); Marthaler, Michael; Schoen, Gerd [TFP, KIT, Karlsruhe (Germany)

    2016-07-01

    Parasitic Two-Level-Systems (TLS) are one of the main sources of decoherence in superconducting nano-scale devices such as SQUIDs, resonators and quantum bits (qubits), although the TLS' microscopic nature remains unclear. We use a superconducting phase qubit to detect TLS contained within the tunnel barrier of the qubit's Al/AlOx/Al Josephson junction. If the TLS transition frequency lies within the 6-10 GHz range, we can coherently drive it by resonant microwave pulses and access its quantum state by utilizing the strong coupling to the qubit. Our previous measurements of TLS coherence in dependence of the temperature indicate that quasiparticles (QPs), which diffuse from the superconducting Al electrodes into the oxide layer, may give rise to TLS energy loss and dephasing. Here, we probe the TLS-QP interaction using a reliable method of in-situ QP injection via an on-chip dc-SQUID that is pulse-biased beyond its switching current. The QP density is calibrated by measuring associated characteristic changes to the qubit's energy relaxation rate. We will present experimental data which show the QP-induced TLS decoherence in good agreement to theoretical predictions.

  3. Two-probe atomic-force microscope manipulator and its applications

    Science.gov (United States)

    Zhukov, A. A.; Stolyarov, V. S.; Kononenko, O. V.

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  4. Two-probe atomic-force microscope manipulator and its applications.

    Science.gov (United States)

    Zhukov, A A; Stolyarov, V S; Kononenko, O V

    2017-06-01

    We report on a manipulator based on a two-probe atomic force microscope (AFM) with an individual feedback system for each probe. This manipulator works under an upright optical microscope with 3 mm focal distance. The design of the microscope helps us tomanipulate nanowires using the microscope probes as a two-prong fork. The AFM feedback is realized based on the dynamic full-time contact mode. The applications of the manipulator and advantages of its two-probe design are presented.

  5. Darboux transformation for two-level system

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.; Baldiotti, M.; Gitman, D.; Shamshutdinova, V. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil)

    2005-06-01

    We develop the Darboux procedure for the case of the two-level system. In particular, it is demonstrated that one can construct the Darboux intertwining operator that does not violate the specific structure of the equations of the two-level system, transforming only one real potential into another real potential. We apply the obtained Darboux transformation to known exact solutions of the two-level system. Thus, we find three classes of new solutions for the two-level system and the corresponding new potentials that allow such solutions. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  6. Two-Photon Fluorescence Microscope for Microgravity Research

    Science.gov (United States)

    Fischer, David G.; Zimmerli, Gregory A.; Asipauskas, Marius

    2005-01-01

    A two-photon fluorescence microscope has been developed for the study of biophysical phenomena. Two-photon microscopy is a novel form of laser-based scanning microscopy that enables three-dimensional imaging without many of the problems inherent in confocal microscopy. Unlike one-photon optical microscopy, two-photon microscopy utilizes the simultaneous nonlinear absorption of two near-infrared photons. However, the efficiency of two-photon absorption is much lower than that of one-photon absorption, so an ultra-fast pulsed laser source is typically employed. On the other hand, the critical energy threshold for two-photon absorption leads to fluorophore excitation that is intrinsically localized to the focal volume. Consequently, two-photon microscopy enables optical sectioning and confocal performance without the need for a signal-limiting pinhole. In addition, there is a reduction (relative to one-photon optical microscopy) in photon-induced damage because of the longer excitation wavelength. This reduction is especially advantageous for in vivo studies. Relative to confocal microscopy, there is also a reduction in background fluorescence, and, because of a reduction in Rayleigh scattering, there is a 4 increase of penetration depth. The prohibitive cost of a commercial two-photon fluorescence-microscope system, as well as a need for modularity, has led to the construction of a custom-built system (see Figure 1). This system includes a coherent mode-locked titanium: sapphire laser emitting 120-fs-duration pulses at a repetition rate of 80 MHz. The pulsed laser has an average output power of 800 mW and a wavelength tuning range of 700 to 980 nm, enabling the excitation of a variety of targeted fluorophores. The output from the laser is attenuated, spatially filtered, and then directed into a confocal scanning head that has been modified to provide for side entry of the laser beam. The laser output coupler has been replaced with a dichroic filter that reflects the

  7. Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters

    International Nuclear Information System (INIS)

    Maki, D.; Ishii, T.; Sato, F.; Kato, Y.; Yamamoto, T.; Iida, T.

    2011-01-01

    A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using 241 Am alpha rays. The spatial resolution of this system was ∼3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image. (authors)

  8. Development of confocal laser microscope system for examination of microscopic characteristics of radiophotoluminescence glass dosemeters.

    Science.gov (United States)

    Maki, Daisuke; Ishii, Tetsuya; Sato, Fuminobu; Kato, Yushi; Yamamoto, Takayoshi; Iida, Toshiyuki

    2011-03-01

    A confocal laser microscope system was developed for the measurement of radiophotoluminescence (RPL) photons emitted from a minute alpha-ray-irradiated area in an RPL glass dosemeter. The system was composed mainly of an inverted-type microscope, an ultraviolet laser, an XY movable stage and photon-counting circuits. The photon-counting circuits were effective in the reduction of the background noise level in the measurement of RPL photons. The performance of this microscope system was examined by the observation of standard RPL glass samples irradiated using (241)Am alpha rays. The spatial resolution of this system was ∼ 3 μm, and with regard to the sensitivity of this system, a hit of more than four to five alpha rays in unit area produced enough amount of RPL photons to construct the image.

  9. Two-level tunneling systems in amorphous alumina

    Science.gov (United States)

    Lebedeva, Irina V.; Paz, Alejandro P.; Tokatly, Ilya V.; Rubio, Angel

    2014-03-01

    The decades of research on thermal properties of amorphous solids at temperatures below 1 K suggest that their anomalous behaviour can be related to quantum mechanical tunneling of atoms between two nearly equivalent states that can be described as a two-level system (TLS). This theory is also supported by recent studies on microwave spectroscopy of superconducting qubits. However, the microscopic nature of the TLS remains unknown. To identify structural motifs for TLSs in amorphous alumina we have performed extensive classical molecular dynamics simulations. Several bistable motifs with only one or two atoms jumping by considerable distance ~ 0.5 Å were found at T=25 K. Accounting for the surrounding environment relaxation was shown to be important up to distances ~ 7 Å. The energy asymmetry and barrier for the detected motifs lied in the ranges 0.5 - 2 meV and 4 - 15 meV, respectively, while their density was about 1 motif per 10 000 atoms. Tuning of motif asymmetry by strain was demonstrated with the coupling coefficient below 1 eV. The tunnel splitting for the symmetrized motifs was estimated on the order of 0.1 meV. The discovered motifs are in good agreement with the available experimental data. The financial support from the Marie Curie Fellowship PIIF-GA-2012-326435 (RespSpatDisp) is gratefully acknowledged.

  10. Development and design of advanced two-photon microscope used in neuroscience

    International Nuclear Information System (INIS)

    Doronin, M S; Popov, A V

    2016-01-01

    This work represents the real steps to development and design advanced two-photon microscope by efforts of laboratory staff. Self-developed microscopy system provides possibility to service it and modify the structure of microscope depending on highly specialized experimental design and scientific goals. We are presenting here module-based microscopy system which provides an opportunity to looking for new applications of this setup depending on laboratories needs using with galvo and resonant scanners. (paper)

  11. Excitation transfer in two two-level systems coupled to an oscillator

    International Nuclear Information System (INIS)

    Hagelstein, P L; Chaudhary, I U

    2008-01-01

    We consider a generalization of the spin-boson model in which two different two-level systems are coupled to an oscillator, under conditions where the oscillator energy is much less than the two-level system energies, and where the oscillator is highly excited. We find that the two-level system transition energy is shifted, producing a Bloch-Siegert shift in each two-level system similar to what would be obtained if the other were absent. At resonances associated with energy exchange between a two-level system and the oscillator, the level splitting is about the same as would be obtained in the spin-boson model at a Bloch-Siegert resonance. However, there occur resonances associated with the transfer of excitation between one two-level system and the other, an effect not present in the spin-boson model. We use a unitary transformation leading to a rotated system in which terms responsible for the shift and splittings can be identified. The level splittings at the anticrossings associated with both energy exchange and excitation transfer resonances are accounted for with simple two-state models and degenerate perturbation theory using operators that appear in the rotated Hamiltonian

  12. Adapting a compact confocal microscope system to a two-photon excitation fluorescence imaging architecture.

    Science.gov (United States)

    Diaspro, A; Corosu, M; Ramoino, P; Robello, M

    1999-11-01

    Within the framework of a national National Institute of Physics of Matter (INFM) project, we have realised a two-photon excitation (TPE) fluorescence microscope based on a new generation commercial confocal scanning head. The core of the architecture is a mode-locked Ti:Sapphire laser (Tsunami 3960, Spectra Physics Inc., Mountain View, CA) pumped by a high-power (5 W, 532 nm) laser (Millennia V, Spectra Physics Inc.) and an ultracompact confocal scanning head, Nikon PCM2000 (Nikon Instruments, Florence, Italy) using a single-pinhole design. Three-dimensional point-spread function has been measured to define spatial resolution performances. The TPE microscope has been used with a wide range of excitable fluorescent molecules (DAPI, Fura-2, Indo-1, DiOC(6)(3), fluoresceine, Texas red) covering a single photon spectral range from UV to green. An example is reported on 3D imaging of the helical structure of the sperm head of the Octopus Eledone cirrhosa labelled with an UV excitable dye, i.e., DAPI. The system can be easily switched for operating both in conventional and two-photon mode. Copyright 1999 Wiley-Liss, Inc.

  13. IMIS: An intelligence microscope imaging system

    Science.gov (United States)

    Caputo, Michael; Hunter, Norwood; Taylor, Gerald

    1994-01-01

    Until recently microscope users in space relied on traditional microscopy techniques that required manual operation of the microscope and recording of observations in the form of written notes, drawings, or photographs. This method was time consuming and required the return of film and drawings from space for analysis. No real-time data analysis was possible. Advances in digital and video technologies along with recent developments in article intelligence will allow future space microscopists to have a choice of three additional modes of microscopy: remote coaching, remote control, and automation. Remote coaching requires manual operations of the microscope with instructions given by two-way audio/video transmission during critical phases of the experiment. When using the remote mode of microscopy, the Principal Investigator controls the microscope from the ground. The automated mode employs artificial intelligence to control microscope functions and is the only mode that can be operated in the other three modes as well. The purpose of this presentation is to discuss the advantages and disadvantages of the four modes of of microscopy and how the IMIS, a proposed intelligent microscope imaging system, can be used as a model for developing and testing concepts, operating procedures, and equipment design of specifications required to provide a comprehensive microscopy/imaging capability onboard Space Station Freedom.

  14. Realistic microscopic level densities for spherical nuclei

    International Nuclear Information System (INIS)

    Cerf, N.

    1994-01-01

    Nuclear level densities play an important role in nuclear reactions such as the formation of the compound nucleus. We develop a microscopic calculation of the level density based on a combinatorial evaluation from a realistic single-particle level scheme. This calculation makes use of a fast Monte Carlo algorithm allowing us to consider large shell model spaces which could not be treated previously in combinatorial approaches. Since our model relies on a microscopic basis, it can be applied to exotic nuclei with more confidence than the commonly used semiphenomenological formuals. An exhaustive comparison of our predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented

  15. Microscopic description of dissipative dynamics of a level-crossing transition

    Energy Technology Data Exchange (ETDEWEB)

    Scala, M.; Militello, B.; Messina, A. [Dipartimento di Fisica dell' Universita di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Vitanov, N. V. [Department of Physics, Sofia University, 5 James Bourchier Boulevard, BG-1164 Sofia (Bulgaria)

    2011-08-15

    We analyze the effect of a dissipative bosonic environment on the Landau-Zener-Stueckelberg-Majorana (LZSM) level crossing model by using a microscopic approach to derive the relevant master equation. For an environment at zero temperature and weak dissipation, our microscopic approach confirms the independence of the survival probability on the decay rate that has been predicted earlier by the simple phenomenological LZSM model. For strong decay the microscopic approach predicts a notable increase of the survival probability, which signals dynamical decoupling of the initial state. Unlike the phenomenological model, our approach makes it possible to study the dependence of the system dynamics on the temperature of the environment. In the limit of very high temperature we find that the dynamics is characterized by a very strong dynamical decoupling of the initial state--the temperature-induced quantum Zeno effect.

  16. Design of a microscopic electrical impedance tomography system using two current injections

    International Nuclear Information System (INIS)

    Liu, Qin; Oh, Tong In; Wi, Hun; Woo, Eung Je; Lee, Eun Jung; Seo, Jin Keun

    2011-01-01

    We describe a novel design of a microscopic electrical impedance tomography (micro-EIT) system for long-term noninvasive monitoring of cell or tissue cultures. The core of the micro-EIT system is a sample container including two pairs of current-injection electrodes and 360 voltage-sensing electrodes. In designing the container, we took advantage of a hexagonal structure with fixed dimensions and electrode configuration. This eliminated technical difficulties related to the unknown irregular boundary geometry of an imaging object in conventional medical EIT. Attaching a pair of large current-injection electrodes fully covering the left and right sides of the hexagonal container, we generated uniform parallel current density inside the container filled with saline. The 360 voltage-sensing electrodes were placed on the front, bottom and back sides of the hexagonal container in three sets of 8 × 15 arrays with equal gaps between them. We measured voltage differences between all neighboring pairs along the direction of the parallel current pathway. For the homogeneous container, all measured voltages must be the same since the voltage changes linearly along that direction. Any anomaly in the container perturbed the current pathways and therefore equipotential lines to produce different differential voltage data. For conductivity image reconstructions, we adopted a lately developed image reconstruction algorithm for this electrode configuration to first produce projected conductivity images on the front, bottom and back sides. Using a backprojection method, we reconstructed three-dimensional conductivity images from those projection images. To improve the image quality and also to meet the mathematical requirement on the uniqueness of a reconstructed image, we used a second pair of thin and long current-injection electrodes located at the middle of the front and back sides. This paper describes the design and construction of such a micro-EIT system with experimental

  17. In situ hybridization at the electron microscope level: hybrid detection by autoradiography and colloidal gold.

    Science.gov (United States)

    Hutchison, N J; Langer-Safer, P R; Ward, D C; Hamkalo, B A

    1982-11-01

    In situ hybridization has become a standard method for localizing DNA or RNA sequences in cytological preparations. We developed two methods to extend this technique to the transmission electron microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope level using mouse satellite DNA hybridization to whole mount metaphase chromosomes as the test system. The first method devised is a direct extension of standard light microscope in situ hybridization. Radioactively labeled complementary RNA (cRNA) is hybridized to metaphase chromosomes deposited on electron microscope grids and fixed in 70 percent ethanol vapor; hybridixation site are detected by autoradiography. Specific and intense labeling of chromosomal centromeric regions is observed even after relatively short exposure times. Inerphase nuclei present in some of the metaphase chromosome preparations also show defined paatterms of satellite DNA labeling which suggests that satellite-containing regions are associate with each other during interphase. The sensitivity of this method is estimated to at least as good as that at the light microscope level while the resolution is improved at least threefold. The second method, which circumvents the use of autoradiogrphic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction is improved at least threefold. The second method, which circumvents the use of autoradiographic detection, uses biotin-labeled polynucleotide probes. After hybridization of these probes, either DNA or RNA, to fixed chromosomes on grids, hybrids are detected via reaction with an antibody against biotin and secondary antibody adsorbed to the surface of over centromeric heterochromatin and along the associated peripheral fibers. Labeling is on average

  18. Lateral resolution testing of a novel developed confocal microscopic imaging system

    Science.gov (United States)

    Zhang, Xin; Zhang, Yunhai; Chang, Jian; Huang, Wei; Xue, Xiaojun; Xiao, Yun

    2015-10-01

    Laser scanning confocal microscope has been widely used in biology, medicine and material science owing to its advantages of high resolution and tomographic imaging. Based on a set of confirmatory experiments and system design, a novel confocal microscopic imaging system is developed. The system is composed of a conventional fluorescence microscope and a confocal scanning unit. In the scanning unit a laser beam coupling module provides four different wavelengths 405nm 488nm 561nm and 638nm which can excite a variety of dyes. The system works in spot-to-spot scanning mode with a two-dimensional galvanometer. A 50 microns pinhole is used to guarantee that stray light is blocked and only the fluorescence signal from the focal point can be received . The three-channel spectral splitter is used to perform fluorescence imaging at three different working wavelengths simultaneously. The rat kidney tissue slice is imaged using the developed confocal microscopic imaging system. Nucleues labeled by DAPI and kidney spherule curved pipe labeled by Alexa Fluor 488 can be imaged clearly and respectively, realizing the distinction between the different components of mouse kidney tissue. The three-dimensional tomographic imaging of mouse kidney tissue is reconstructed by several two-dimensional images obtained in different depths. At last the resolution of the confocal microscopic imaging system is tested quantitatively. The experimental result shows that the system can achieve lateral resolution priority to 230nm.

  19. Reasoning about Magnetism at the Microscopic Level

    Science.gov (United States)

    Cheng, Meng-Fei; Cheng, Yufang; Hung, Shuo-Hsien

    2014-01-01

    Based on our experience of teaching physics in middle and senior secondary school, we have found that students have difficulty in reasoning at the microscopic level. Their reasoning is limited to the observational level so they have problems in developing scientific models of magnetism. Here, we suggest several practical activities and the use of…

  20. A portable fluorescence microscopic imaging system for cholecystectomy

    Science.gov (United States)

    Ye, Jian; Yang, Chaoyu; Gan, Qi; Ma, Rong; Zhang, Zeshu; Chang, Shufang; Shao, Pengfei; Zhang, Shiwu; Liu, Chenhai; Xu, Ronald

    2016-03-01

    In this paper we proposed a portable fluorescence microscopic imaging system to prevent iatrogenic biliary injuries from occurring during cholecystectomy due to misidentification of the cystic structures. The system consisted of a light source module, a CMOS camera, a Raspberry Pi computer and a 5 inch HDMI LCD. Specifically, the light source module was composed of 690 nm and 850 nm LEDs, allowing the CMOS camera to simultaneously acquire both fluorescence and background images. The system was controlled by Raspberry Pi using Python programming with the OpenCV library under Linux. We chose Indocyanine green(ICG) as a fluorescent contrast agent and then tested fluorescence intensities of the ICG aqueous solution at different concentration levels by our fluorescence microscopic system compared with the commercial Xenogen IVIS system. The spatial resolution of the proposed fluorescence microscopic imaging system was measured by a 1951 USAF resolution target and the dynamic response was evaluated quantitatively with an automatic displacement platform. Finally, we verified the technical feasibility of the proposed system in mouse models of bile duct, performing both correct and incorrect gallbladder resection. Our experiments showed that the proposed system can provide clear visualization of the confluence between the cystic duct and common bile duct or common hepatic duct, suggesting that this is a potential method for guiding cholecystectomy. The proposed portable system only cost a total of $300, potentially promoting its use in resource-limited settings.

  1. The geometric phase in two-level atomic systems

    International Nuclear Information System (INIS)

    Tian Mingzhen; Barber, Zeb W.; Fischer, Joe A.; Randall Babbitt, Wm.

    2004-01-01

    We report the observation of the geometric phase in a closed two-level atomic system using stimulated photon echoes. The two-level system studied consists of the two-electronic energy levels ( 3 H 4 and 3 H 6 ) of Tm 3+ doped in YAG crystal. When a two-level atom at an arbitrary superposition state is excited by a pair of specially designed laser pulses, the excited state component gains a relative phase with respect to the ground state component. We identified the phase shift to be of pure geometric nature. The dynamic phase associated to the driving Hamiltonian is unchanged. The experiment results of the phase change agree with the theory to the extent of the measurement limit

  2. Dual ion beam irradiation system for in situ observation with electron microscope

    International Nuclear Information System (INIS)

    Tsukamoto, Tetuo; Hojou, Kiiti; Furuno, Sigemi; Otsu, Hitosi; Izui, Kazuhiko.

    1993-01-01

    We have developed a new in situ observation system for dynamic processes under dual ion beam irradiation. The system consists of a modified 400 keV analytical electron microscope (JEOL, JEM-4000FX) and two 40 kV ion beam accelerators. This system allows evaluation of microscopic changes of structure and chemical bonding state of materials in the dynamic processes under two kinds of ion beam irradiations, that is required for the simulation test of the first wall of nuclear fusion reactors onto which He + , H + , and H 2 + ions are irradiated simultaneously. These two ion accelerators were equipped symmetrically both sides of the electron microscope and individually controlled. Each ion beam extracted from a duo-plasmatron ion gun is bent downward by an angle of 30deg with a mass-separating magnet, and introduced into specimen chamber of the electron microscope. Inside the specimen chamber the beam is deflected again by an angle of 30deg with an electrostatic prism so as to be incident on the specimen surface. Finally, two ion beams from both side are incident on the specimen surface at an angle of 60deg. The maximum ion current density of helium is more than 250μA/cm 2 at the specimen at an ion energy of 17 keV. Images of the electron microscope during dual ion beam irradiation are observed through a TV camera and recorded with a VTR. (author)

  3. Microscopic theory of cavity-enhanced single-photon emission from optical two-photon Raman processes

    Science.gov (United States)

    Breddermann, Dominik; Praschan, Tom; Heinze, Dirk; Binder, Rolf; Schumacher, Stefan

    2018-03-01

    We consider cavity-enhanced single-photon generation from stimulated two-photon Raman processes in three-level systems. We compare four fundamental system configurations, one Λ -, one V-, and two ladder (Ξ -) configurations. These can be realized as subsystems of a single quantum dot or of quantum-dot molecules. For a new microscopic understanding of the Raman process, we analyze the Heisenberg equation of motion applying the cluster-expansion scheme. Within this formalism an exact and rigorous definition of a cavity-enhanced Raman photon via its corresponding Raman correlation is possible. This definition for example enables us to systematically investigate the on-demand potential of Raman-transition-based single-photon sources. The four system arrangements can be divided into two subclasses, Λ -type and V-type, which exhibit strongly different Raman-emission characteristics and Raman-emission probabilities. Moreover, our approach reveals whether the Raman path generates a single photon or just induces destructive quantum interference with other excitation paths. Based on our findings and as a first application, we gain a more detailed understanding of experimental data from the literature. Our analysis and results are also transferable to the case of atomic three-level-resonator systems and can be extended to more complicated multilevel schemes.

  4. Mixing phases of unstable two-level systems

    International Nuclear Information System (INIS)

    Sokolov, V.V.; Brentano, P. von.

    1993-01-01

    An unstable two-level system decaying into an arbitrary number of channels is considered. It is shown that the mixing phases of the two overlapping resonances can be expressed in the terms of their partial widths and one additional universal mixing parameter. Some applications to a doublet of 2 + resonances in 8 Be and to the ρ-ω systems are considered. 18 refs

  5. Thimble microscope system

    Science.gov (United States)

    Kamal, Tahseen; Rubinstein, Jaden; Watkins, Rachel; Cen, Zijian; Kong, Gary; Lee, W. M.

    2016-12-01

    Wearable computing devices, e.g. Google Glass, Smart watch, embodies the new human design frontier, where technology interfaces seamlessly with human gestures. During examination of any subject in the field (clinic, surgery, agriculture, field survey, water collection), our sensory peripherals (touch and vision) often go hand-in-hand. The sensitivity and maneuverability of the human fingers are guided with tight distribution of biological nerve cells, which perform fine motor manipulation over a range of complex surfaces that is often out of sight. Our sight (or naked vision), on the other hand, is generally restricted to line of sight that is ill-suited to view around corner. Hence, conventional imaging methods are often resort to complex light guide designs (periscope, endoscopes etc) to navigate over obstructed surfaces. Using modular design strategies, we constructed a prototype miniature microscope system that is incorporated onto a wearable fixture (thimble). This unique platform allows users to maneuver around a sample and take high resolution microscopic images. In this paper, we provide an exposition of methods to achieve a thimble microscopy; microscope lens fabrication, thimble design, integration of miniature camera and liquid crystal display.

  6. [Remote Slit Lamp Microscope Consultation System Based on Web].

    Science.gov (United States)

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping

    2015-11-01

    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.

  7. Quantum description of microscopic and macroscopic systems: Old problems and recent investigations

    International Nuclear Information System (INIS)

    Ghirardi, G.C.

    1986-04-01

    We review some open problems and some proposed solutions which are encountered in the quantum description of the microscopic systems, of the macroscopic ones, and of the interactions between these two types of objects. We describe a recent attempt allowing a unified description of all phenomena, reproducing the quantum mechanical situation for microscopic systems and inducing in a completely consistent way the classical behaviour of macro object and the phenomena of wave packet reduction in the system-apparatus interaction. (author)

  8. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics.

    Science.gov (United States)

    Yoshino, Masanori; Saito, Toki; Kin, Taichi; Nakagawa, Daichi; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2015-01-01

    Three-dimensional (3D) computer graphics (CG) are useful for preoperative planning of neurosurgical operations. However, application of 3D CG to intraoperative navigation is not widespread because existing commercial operative navigation systems do not show 3D CG in sufficient detail. We have developed a microscopic optically tracking navigation system that uses high-resolution 3D CG. This article presents the technical details of our microscopic optically tracking navigation system. Our navigation system consists of three components: the operative microscope, registration, and the image display system. An optical tracker was attached to the microscope to monitor the position and attitude of the microscope in real time; point-pair registration was used to register the operation room coordinate system, and the image coordinate system; and the image display system showed the 3D CG image in the field-of-view of the microscope. Ten neurosurgeons (seven males, two females; mean age 32.9 years) participated in an experiment to assess the accuracy of this system using a phantom model. Accuracy of our system was compared with the commercial system. The 3D CG provided by the navigation system coincided well with the operative scene under the microscope. Target registration error for our system was 2.9 ± 1.9 mm. Our navigation system provides a clear image of the operation position and the surrounding structures. Systems like this may reduce intraoperative complications.

  9. A high-resolution multimode digital microscope system.

    Science.gov (United States)

    Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry

    2013-01-01

    This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.

  10. Evaluating Red Reflex and Surgeon Preference Between Nearly-Collimated and Focused Beam Microscope Illumination Systems.

    Science.gov (United States)

    Cionni, Robert J; Pei, Ron; Dimalanta, Ramon; Lubeck, David

    2015-08-01

    To evaluate the intensity and stability of the red reflex produced by ophthalmic surgical microscopes with nearly-collimated versus focused illumination systems and to assess surgeon preference in a simulated surgical setting. This two-part evaluation consisted of postproduction surgical video analysis of red reflex intensity and a microscope use and preference survey completed by 13 experienced cataract surgeons. Survey responses were based on bench testing and experience in a simulated surgical setting. A microscope with nearly-collimated beam illumination and two focused beam microscopes were assessed. Red reflex intensity and stability were greater with the nearly-collimated microscope illumination system. In the bench testing survey, surgeons reported that the red reflex was maintained over significantly greater distances away from pupillary center, and depth of focus was numerically greater with nearly-collimated illumination relative to focused illumination. Most participating surgeons (≥64%) reported a preference for the microscope with nearly-collimated illumination with regard to red reflex stability, depth of focus, visualization, surgical working distance, and perceived patient comfort. The microscope with nearly-collimated illumination produced a more intense and significantly more stable red reflex and was preferred overall by more surgeons. This is the first report of an attempt to quantify red reflex intensity and stability and to evaluate surgically-relevant parameters between microscope systems. The data and methods presented here may provide a basis for future studies attempting to quantify differences between surgical microscopes that may affect surgeon preference and microscope use in ophthalmic surgery.

  11. The system of digital-image optical microscope in semiconductor particle detector development

    International Nuclear Information System (INIS)

    Han Lixiang; Li Zhankui; Jin Genming; Wang Zhusheng; Xiao Guoqing

    2009-01-01

    Optical microscopic detection is very important in the process of semiconductor particle detector development. A system of digital-image optical microscope has been constructed with rather low price, which performance is comparable with the moderate-level imports. The system mounts powerful dry objective, and a 2μm resolution could be achieved. Observations with bright and dark field, polarized light,and interference light can be carried out on it. The system have large area on-line monitor,and the photographic device can be controlled by PC. It can be used in the control of defects and contaminations, pattern test, identification of crystal backing, inspection of the smoothness and the flatness of the crystal surface. It can also be used in some precise procedures, such as test, assembly, packaging and repairing. The quality of the bond could be examined by observing the appearance of the bond point and the microscopic structure of the solder. The surface fluctuation can be precisely measured under the microscope with the technology of multi-beam interference. In the article, the application of this system for semiconductor particle detector development has been illustrated, and the construction information has been described in detail. (authors)

  12. Two-level systems driven by large-amplitude fields

    Science.gov (United States)

    Nori, F.; Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.

    2009-03-01

    We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition, (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems. S. Ashhab, J.R. Johansson, A.M. Zagoskin, F. Nori, Two-level systems driven by large-amplitude fields, Phys. Rev. A 75, 063414 (2007). S. Ashhab et al, unpublished.

  13. Wide-band acousto-optic deflectors for large field of view two-photon microscope.

    Science.gov (United States)

    Jiang, Runhua; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun

    2012-04-01

    Acousto-optic deflector (AOD) is an attractive scanner for two-photon microscopy because it can provide fast and versatile laser scanning and does not involve any mechanical movements. However, due to the small scan range of available AOD, the field of view (FOV) of the AOD-based microscope is typically smaller than that of the conventional galvanometer-based microscope. Here, we developed a novel wide-band AOD to enlarge the scan angle. Considering the maximum acceptable acoustic attenuation in the acousto-optic crystal, relatively lower operating frequencies and moderate aperture were adopted. The custom AOD was able to provide 60 MHz 3-dB bandwidth and 80% peak diffraction efficiency at 840 nm wavelength. Based on a pair of such AOD, a large FOV two-photon microscope was built with a FOV up to 418.5 μm (40× objective). The spatiotemporal dispersion was compensated simultaneously with a single custom-made prism. By means of dynamic power modulation, the variation of laser intensity within the FOV was reduced below 5%. The lateral and axial resolution of the system were 0.58-2.12 μm and 2.17-3.07 μm, respectively. Pollen grain images acquired by this system were presented to demonstrate the imaging capability at different positions across the entire FOV. © 2012 American Institute of Physics

  14. Non-zero temperature two-mode squeezing for time-dependent two-level systems

    International Nuclear Information System (INIS)

    Aliaga, J.; Gruver, J.L.; Proto, A.N.; Cerdeira, H.A.

    1994-01-01

    A Maximum Entropy Principle density matrix method, valid for systems with temperature different from zero, is presented making it possible two-mode squeezed states in two-level systems with relevant operators and Hamiltonian connected with O(3,2). A method which allows one to relate the appearance of squeezing to the relevant operators, included in order to define the density matrix of the system is given. (author). 14 refs, 1 fig

  15. Agent-based model with multi-level herding for complex financial systems

    Science.gov (United States)

    Chen, Jun-Jie; Tan, Lei; Zheng, Bo

    2015-02-01

    In complex financial systems, the sector structure and volatility clustering are respectively important features of the spatial and temporal correlations. However, the microscopic generation mechanism of the sector structure is not yet understood. Especially, how to produce these two features in one model remains challenging. We introduce a novel interaction mechanism, i.e., the multi-level herding, in constructing an agent-based model to investigate the sector structure combined with volatility clustering. According to the previous market performance, agents trade in groups, and their herding behavior comprises the herding at stock, sector and market levels. Further, we propose methods to determine the key model parameters from historical market data, rather than from statistical fitting of the results. From the simulation, we obtain the sector structure and volatility clustering, as well as the eigenvalue distribution of the cross-correlation matrix, for the New York and Hong Kong stock exchanges. These properties are in agreement with the empirical ones. Our results quantitatively reveal that the multi-level herding is the microscopic generation mechanism of the sector structure, and provide new insight into the spatio-temporal interactions in financial systems at the microscopic level.

  16. Stationary states of two-level open quantum systems

    International Nuclear Information System (INIS)

    Gardas, Bartlomiej; Puchala, Zbigniew

    2011-01-01

    A problem of finding stationary states of open quantum systems is addressed. We focus our attention on a generic type of open system: a qubit coupled to its environment. We apply the theory of block operator matrices and find stationary states of two-level open quantum systems under certain conditions applied on both the qubit and the surrounding.

  17. An integrated single- and two-photon non-diffracting light-sheet microscope

    Science.gov (United States)

    Lau, Sze Cheung; Chiu, Hoi Chun; Zhao, Luwei; Zhao, Teng; Loy, M. M. T.; Du, Shengwang

    2018-04-01

    We describe a fluorescence optical microscope with both single-photon and two-photon non-diffracting light-sheet excitations for large volume imaging. With a special design to accommodate two different wavelength ranges (visible: 400-700 nm and near infrared: 800-1200 nm), we combine the line-Bessel sheet (LBS, for single-photon excitation) and the scanning Bessel beam (SBB, for two-photon excitation) light sheet together in a single microscope setup. For a transparent thin sample where the scattering can be ignored, the LBS single-photon excitation is the optimal imaging solution. When the light scattering becomes significant for a deep-cell or deep-tissue imaging, we use SBB light-sheet two-photon excitation with a longer wavelength. We achieved nearly identical lateral/axial resolution of about 350/270 nm for both imagings. This integrated light-sheet microscope may have a wide application for live-cell and live-tissue three-dimensional high-speed imaging.

  18. Aiming of Kirkpatrick-Baez microscope based on auxiliary optical system

    International Nuclear Information System (INIS)

    Huang Shengling; Mu Baozhong; Yi Shengzhen; Wang Xin; Wang Zhanshan; Ding Yongkun; Miao Wenyong; Dong Jianjun

    2009-01-01

    An auxiliary optical system has been designed, which can provide precise positioning for aiming Kirkpatrick-Baez (KB) microscope object location. An 8 keV X-ray imaging system by KB microscope with periodic multilayer films has been designed. The field of view and depth of field in the resolution of 5 μm are got, and then the corresponding point and depth of field in diagnostic experiments are calculated. Based on the object-image relations and precision of the KB microscope, an auxiliary visible light imaging system is designed and X-ray imaging experiments are performed, which can achieve equivalent aiming between the visible imaging system and the KB microscope. The results show that ±20 μm vertical axis plane and ±300 μm axial accuracy are achieved through the auxiliary optical path, which can meet the object point positioning requirements of the KB microscope. (authors)

  19. Designing a large field-of-view two-photon microscope using optical invariant analysis.

    Science.gov (United States)

    Bumstead, Jonathan R; Park, Jasmine J; Rosen, Isaac A; Kraft, Andrew W; Wright, Patrick W; Reisman, Matthew D; Côté, Daniel C; Culver, Joseph P

    2018-04-01

    Conventional two-photon microscopy (TPM) is capable of imaging neural dynamics with subcellular resolution, but it is limited to a field-of-view (FOV) diameter [Formula: see text]. Although there has been recent progress in extending the FOV in TPM, a principled design approach for developing large FOV TPM (LF-TPM) with off-the-shelf components has yet to be established. Therefore, we present a design strategy that depends on analyzing the optical invariant of commercially available objectives, relay lenses, mirror scanners, and emission collection systems in isolation. Components are then selected to maximize the space-bandwidth product of the integrated microscope. In comparison with other LF-TPM systems, our strategy simplifies the sequence of design decisions and is applicable to extending the FOV in any microscope with an optical relay. The microscope we constructed with this design approach can image [Formula: see text] lateral and [Formula: see text] axial resolution over a 7-mm diameter FOV, which is a 100-fold increase in FOV compared with conventional TPM. As a demonstration of the potential that LF-TPM has on understanding the microarchitecture of the mouse brain across interhemispheric regions, we performed in vivo imaging of both the cerebral vasculature and microglia cell bodies over the mouse cortex.

  20. Fiber laser-microscope system for femtosecond photodisruption of biological samples.

    Science.gov (United States)

    Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F Ömer; Eldeniz, Y Burak; Tazebay, Uygar H

    2012-03-01

    We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells.

  1. A high performance, cost-effective, open-source microscope for scanning two-photon microscopy that is modular and readily adaptable.

    Directory of Open Access Journals (Sweden)

    David G Rosenegger

    Full Text Available Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems.

  2. A High Performance, Cost-Effective, Open-Source Microscope for Scanning Two-Photon Microscopy that Is Modular and Readily Adaptable

    Science.gov (United States)

    Rosenegger, David G.; Tran, Cam Ha T.; LeDue, Jeffery; Zhou, Ning; Gordon, Grant R.

    2014-01-01

    Two-photon laser scanning microscopy has revolutionized the ability to delineate cellular and physiological function in acutely isolated tissue and in vivo. However, there exist barriers for many laboratories to acquire two-photon microscopes. Additionally, if owned, typical systems are difficult to modify to rapidly evolving methodologies. A potential solution to these problems is to enable scientists to build their own high-performance and adaptable system by overcoming a resource insufficiency. Here we present a detailed hardware resource and protocol for building an upright, highly modular and adaptable two-photon laser scanning fluorescence microscope that can be used for in vitro or in vivo applications. The microscope is comprised of high-end componentry on a skeleton of off-the-shelf compatible opto-mechanical parts. The dedicated design enabled imaging depths close to 1 mm into mouse brain tissue and a signal-to-noise ratio that exceeded all commercial two-photon systems tested. In addition to a detailed parts list, instructions for assembly, testing and troubleshooting, our plan includes complete three dimensional computer models that greatly reduce the knowledge base required for the non-expert user. This open-source resource lowers barriers in order to equip more laboratories with high-performance two-photon imaging and to help progress our understanding of the cellular and physiological function of living systems. PMID:25333934

  3. Experimental Hamiltonian identification for controlled two-level systems

    International Nuclear Information System (INIS)

    Schirmer, S.G.; Kolli, A.; Oi, D.K.L.

    2004-01-01

    We present a strategy to empirically determine the internal and control Hamiltonians for an unknown two-level system (black box) subject to various (piecewise constant) control fields when direct readout by measurement is limited to a single, fixed observable

  4. Two-level systems driven by large-amplitude fields

    International Nuclear Information System (INIS)

    Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.; Nori, Franco

    2007-01-01

    We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems

  5. A high-resolution mini-microscope system for wireless real-time monitoring.

    Science.gov (United States)

    Wang, Zongjie; Boddeda, Akash; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Menard, Frederic; Kim, Keekyoung

    2017-09-04

    Compact, cost-effective and high-performance microscope that enables the real-time imaging of cells and lab-on-a-chip devices is highly demanded for cell biology and biomedical engineering. This paper aims to present the design and application of an inexpensive wireless mini-microscope with resolution up to 2592 × 1944 pixels and speed up to 90 fps. The mini-microscope system was built on a commercial embedded system (Raspberry Pi). We modified a camera module and adopted an inverse dual lens system to obtain the clear field of view and appropriate magnification for tens of micrometer objects. The system was capable of capturing time-lapse images and transferring image data wirelessly. The entire system can be operated wirelessly and cordlessly in a conventional cell culturing incubator. The developed mini-microscope was used to monitor the attachment and proliferation of NIH-3T3 and HEK 293 cells inside an incubator for 50 hours. In addition, the mini-microscope was used to monitor a droplet generation process in a microfluidic device. The high-quality images captured by the mini-microscope enabled us an automated analysis of experimental parameters. The successful applications prove the great potential of the developed mini-microscope for monitoring various biological samples and microfluidic devices. This paper presents the design of a high resolution mini-microscope system that enables the wireless real-time imaging of cells inside the incubator. This system has been verified to be a useful tool to obtain high-quality images and videos for the automated quantitative analysis of biological samples and lab-on-a-chip devices in the long term.

  6. Resonant retuning of Rabi oscillations in a two-level system

    International Nuclear Information System (INIS)

    Leonov, A.V.; Feranchuk, I.D.

    2009-01-01

    The evolution of a two-level system in a single-mode quantum field is considered beyond the rotating wave approximation. The existence of quasi-degenerate energy levels is shown to influence the essential characteristics of temporal and amplitude Rabi oscillations of the system in a resonant manner. (authors)

  7. Excitation of graphene plasmons as an analogy with the two-level system

    International Nuclear Information System (INIS)

    Fu, Jiahui; Lv, Bo; Li, Rujiang; Ma, Ruyu; Chen, Wan; Meng, Fanyi

    2016-01-01

    The excitation of graphene plasmons (GPs) is presented as an interaction between the GPs and the incident electromagnetic field. In this Letter, the excitation of GPs in a plasmonic system is interpreted as an analogy with the two-level system by taking the two-coupled graphene-covered gratings as an example. Based on the equivalent circuit theory, the excitation of GPs in the graphene-covered grating is equivalent to the resonance of an oscillator. Thus, according to the governing equation, the electric currents at the resonant frequencies for two-coupled graphene-covered gratings correspond to the energy states in a two-level system. In addition, the excitation of GPs in different two-coupled graphene-covered gratings is numerically studied to validate our theoretical model. Our work provides an intuitive understanding of the excitation of GPs using an analogy with the two-level system. - Highlights: • The excitation of graphene plasmons (GPs) in graphene-covered grating is equivalent to the resonance of an oscillator. • We establish the equivalent circuit of two-level system to analyze the resonant character. • The excitation of GPs in different two-coupled graphene-covered gratings are numerically studied to validate our theoretical model.

  8. Excitation of graphene plasmons as an analogy with the two-level system

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiahui [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China); Lv, Bo, E-mail: lb19840313@126.com [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China); Li, Rujiang [College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027 (China); Ma, Ruyu; Chen, Wan; Meng, Fanyi [Microwave and Electromagnetic Laboratory, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin City, Heilongjiang Province (China)

    2016-02-15

    The excitation of graphene plasmons (GPs) is presented as an interaction between the GPs and the incident electromagnetic field. In this Letter, the excitation of GPs in a plasmonic system is interpreted as an analogy with the two-level system by taking the two-coupled graphene-covered gratings as an example. Based on the equivalent circuit theory, the excitation of GPs in the graphene-covered grating is equivalent to the resonance of an oscillator. Thus, according to the governing equation, the electric currents at the resonant frequencies for two-coupled graphene-covered gratings correspond to the energy states in a two-level system. In addition, the excitation of GPs in different two-coupled graphene-covered gratings is numerically studied to validate our theoretical model. Our work provides an intuitive understanding of the excitation of GPs using an analogy with the two-level system. - Highlights: • The excitation of graphene plasmons (GPs) in graphene-covered grating is equivalent to the resonance of an oscillator. • We establish the equivalent circuit of two-level system to analyze the resonant character. • The excitation of GPs in different two-coupled graphene-covered gratings are numerically studied to validate our theoretical model.

  9. Development of an ultrasound microscope combined with optical microscope for multiparametric characterization of a single cell.

    Science.gov (United States)

    Arakawa, Mototaka; Shikama, Joe; Yoshida, Koki; Nagaoka, Ryo; Kobayashi, Kazuto; Saijo, Yoshifumi

    2015-09-01

    Biomechanics of the cell has been gathering much attention because it affects the pathological status in atherosclerosis and cancer. In the present study, an ultrasound microscope system combined with optical microscope for characterization of a single cell with multiple ultrasound parameters was developed. The central frequency of the transducer was 375 MHz and the scan area was 80 × 80 μm with up to 200 × 200 sampling points. An inverted optical microscope was incorporated in the design of the system, allowing for simultaneous optical observations of cultured cells. Two-dimensional mapping of multiple ultrasound parameters, such as sound speed, attenuation, and acoustic impedance, as well as the thickness, density, and bulk modulus of specimen/cell under investigation, etc., was realized by the system. Sound speed and thickness of a 3T3-L1 fibroblast cell were successfully obtained by the system. The ultrasound microscope system combined with optical microscope further enhances our understanding of cellular biomechanics.

  10. Crossing rule for a PT-symmetric two-level time-periodic system

    International Nuclear Information System (INIS)

    Moiseyev, Nimrod

    2011-01-01

    For a two-level system in a time-periodic field we show that in the non-Hermitian PT case the level crossing is of two quasistationary states that have the same dynamical symmetry property. At the field's parameters where the two levels which have the same dynamical symmetry cross, the corresponding quasienergy states coalesce and a self-orthogonal state is obtained. This situation is very different from the Hermitian case where a crossing of two quasienergy levels happens only when the corresponding two quasistationary states have different dynamical symmetry properties and, unlike the situation in the non-Hermitian case, the spectrum remains complete also when the two levels cross.

  11. Evaluation of the roughness of the surface of porcelain systems with the atomic force microscope

    International Nuclear Information System (INIS)

    Chavarria Rodriguez, Bernal

    2013-01-01

    The surface of a dental ceramic was evaluated and compared with an atomic force microscope after being treated with different systems of polishing. 14 identical ceramic Lava® Zirconia discs were used to test the different polishing systems. 3 polishing systems from different matrix houses were used to polish dental porcelain. The samples were evaluated quantitatively with an atomic force microscope in order to study the real effectiveness of each system, on the roughness average (Ra) and the maximum peak to valley roughness (Ry) of the ceramic surfaces. A considerable reduction of the surface roughness was obtained by applying different polishing systems on the surface of dental ceramics. Very reliable values of Ra and Ry were obtained by making measurements on the structure reproduced by the atomic force microscope. The advanced ceramics of zirconium oxide presented the best physical characteristics and low levels of surface roughness. A smoother surface was achieved with the application of polishing systems, thus demonstrating the reduction of the surface roughness of a dental ceramic [es

  12. Descriptions of membrane mechanics from microscopic and effective two-dimensional perspectives

    DEFF Research Database (Denmark)

    Lomholt, Michael Andersen; Miao, L.

    2006-01-01

    Mechanics of fluid membranes may be described in terms of the concepts of mechanical deformations and stresses or in terms of mechanical free-energy functions. In this paper, each of the two descriptions is developed by viewing a membrane from two perspectives: a microscopic perspective, in which...... the membrane appears as a thin layer of finite thickness and with highly inhomogeneous material and force distributions in its transverse direction, and an effective, two-dimensional perspective, in which the membrane is treated as an infinitely thin surface, with effective material and mechanical properties....... A connection between these two perspectives is then established. Moreover, the functional dependence of the variation in the mechanical free energy of the membrane on its mechanical deformations is first studied in the microscopic perspective. The result is then used to examine to what extent different...

  13. Features and states of microscopic particles in nonlinear quantum-mechanics systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,we present the elementary principles of nonlinear quantum mechanics(NLQM),which is based on some problems in quantum mechanics.We investigate in detail the motion laws and some main properties of microscopic particles in nonlinear quantum systems using these elementary principles.Concretely speaking,we study in this paper the wave-particle duality of the solution of the nonlinear Schr6dinger equation,the stability of microscopic particles described by NLQM,invariances and conservation laws of motion of particles,the Hamiltonian principle of particle motion and corresponding Lagrangian and Hamilton equations,the classical rule of microscopic particle motion,the mechanism and rules of particle collision,the features of reflection and the transmission of particles at interfaces,and the uncertainty relation of particle motion as well as the eigenvalue and eigenequations of particles,and so on.We obtained the invariance and conservation laws of mass,energy and momentum and angular momenturn for the microscopic particles,which are also some elementary and universal laws of matter in the NLQM and give further the methods and ways of solving the above questions.We also find that the laws of motion of microscopic particles in such a case are completely different from that in the linear quantum mechanics(LQM).They have a lot of new properties;for example,the particles possess the real wave-corpuscle duality,obey the classical rule of motion and conservation laws of energy,momentum and mass,satisfy minimum uncertainty relation,can be localized due to the nonlinear interaction,and its position and momentum can also be determined,etc.From these studies,we see clearly that rules and features of microscopic particle motion in NLQM is different from that in LQM.Therefore,the NLQM is a new physical theory,and a necessary result of the development of quantum mechanics and has a correct representation of describing microscopic particles in nonlinear systems,which can

  14. On thermodynamic and microscopic reversibility

    International Nuclear Information System (INIS)

    Crooks, Gavin E

    2011-01-01

    The word 'reversible' has two (apparently) distinct applications in statistical thermodynamics. A thermodynamically reversible process indicates an experimental protocol for which the entropy change is zero, whereas the principle of microscopic reversibility asserts that the probability of any trajectory of a system through phase space equals that of the time reversed trajectory. However, these two terms are actually synonymous: a thermodynamically reversible process is microscopically reversible, and vice versa

  15. On microscopic simulations of systems with model chemical reactions

    International Nuclear Information System (INIS)

    Gorecki, J.; Gorecka, J.N.

    1998-01-01

    Large scale computer simulations of model chemical systems play the role of idealized experiments in which theories may be tested. In this paper we present two applications of microscopic simulations based on the reactive hard sphere model. We investigate the influence of internal fluctuations on an oscillating chemical system and observe how they modify the phase portrait of it. Another application, we consider, is concerned with the propagation of a chemical wave front associated with a thermally activated reaction. It is shown that the nonequilibrium effects increase the front velocity if compared with the velocity of the front generated by a nonactivated process characterized by the same rate constant. (author)

  16. Microscopic reversibility and the information contained in the composition vector

    CERN Document Server

    Luetich, J J

    2001-01-01

    The microscopic level of observation is the level where every (hypothetical) transformation is reversible. As during reversible processes no composition information is generated by the system, when transforming composition variables, microscopic reversibility is the other side of the coin. This paper is the fourth member of a tetralogy conceived to give insight into the concept of microscopic reversibility.

  17. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi

    2009-02-15

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  18. Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems

    KAUST Repository

    Yukawa, Satoshi; Shimada, Takashi; Ogushi, Fumiko; Ito, Nobuyasu

    2009-01-01

    A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.

  19. Descriptions of membrane mechanics from microscopic and effective two-dimensional perspectives

    International Nuclear Information System (INIS)

    Lomholt, Michael A; Miao Ling

    2006-01-01

    Mechanics of fluid membranes may be described in terms of the concepts of mechanical deformations and stresses or in terms of mechanical free-energy functions. In this paper, each of the two descriptions is developed by viewing a membrane from two perspectives: a microscopic perspective, in which the membrane appears as a thin layer of finite thickness and with highly inhomogeneous material and force distributions in its transverse direction, and an effective, two-dimensional perspective, in which the membrane is treated as an infinitely thin surface, with effective material and mechanical properties. A connection between these two perspectives is then established. Moreover, the functional dependence of the variation in the mechanical free energy of the membrane on its mechanical deformations is first studied in the microscopic perspective. The result is then used to examine to what extent different, effective mechanical stresses and forces can be derived from a given, effective functional of the mechanical free energy

  20. System for sorting microscopic objects using electromagnetic radiation

    DEFF Research Database (Denmark)

    2013-01-01

    There is presented a system 10,100 for sorting microscopic objects 76, 78, 80, where the system comprises a fluid channel 66 with an inlet 68 and an outlet 70, where the fluid channel is arranged for allowing the fluid flow to be laminar. The system furthermore comprises a detection system 52 whi...

  1. Development of system and technology for moessbauer spectroscopic microscope

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Kazuo; Akiyama, Yuki; Tsukamoto, Yoshinori; Kurata, Mikio; Yukihira, Kenichi [Shizuoka Institute of Science and Technology (Japan); Soejima, Hiroyoshi [Shimadzu Corporation (Japan); Yoshida, Yutaka, E-mail: yoshida@ms.sist.ac.jp [Shizuoka Institute of Science and Technology (Japan)

    2012-03-15

    We have been developing a 'Moessbauer Spectroscopic Microscope (MSM)' which consists of a focusing lens for 14.4 keV {gamma}-rays and a high precision X-Y stage. The measuring system both for electrons and {gamma}-rays combined with a new Moessbauer driver, i.e., 'a moving coil actuator with a liner encoder' enables us to measure the mapping images simultaneously corresponding to different spectral components. The system has a controlling system based on a LabVIEW program and a LIST mode data acquisition system (NIKI-GLASS/A3100). To investigate a correlation between the microstructure of a sample and {sup 57}Fe atoms, a scanning electron microscope (APCO/Mini-EOC) is also installed to this system.

  2. Virtual reality microscope versus conventional microscope regarding time to diagnosis: an experimental study.

    Science.gov (United States)

    Randell, Rebecca; Ruddle, Roy A; Mello-Thoms, Claudia; Thomas, Rhys G; Quirke, Phil; Treanor, Darren

    2013-01-01

      To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice.   A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables and grade of histopathologist as a between-participant variable. Time to diagnosis was similar for the conventional and VR microscopes. However, there was a significant difference in the mean magnification used between the two technologies, with participants working at a higher level of magnification on the VR microscope.   The results suggest that, with the right technology, efficient use of digital pathology for routine practice is a realistic possibility. Further work is required to explore what magnification is required on the VR microscope for histopathologists to identify diagnostic features, and the effect on this of the digital slide production process. © 2012 Blackwell Publishing Limited.

  3. Optical design and system characterization of an imaging microscope at 121.6 nm

    Science.gov (United States)

    Gao, Weichuan; Finan, Emily; Kim, Geon-Hee; Kim, Youngsik; Milster, Thomas D.

    2018-03-01

    We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.

  4. Structures of two-dimensional three-body systems

    International Nuclear Information System (INIS)

    Ruan, W.Y.; Liu, Y.Y.; Bao, C.G.

    1996-01-01

    Features of the structure of L = 0 states of a two-dimensional three-body model system have been investigated. Three types of permutation symmetry of the spatial part, namely symmetric, antisymmetric, and mixed, have been considered. A comparison has been made between the two-dimensional system and the corresponding three-dimensional one. The effect of symmetry on microscopic structures is emphasized. (author)

  5. Occupational concerns associated with regular use of microscope.

    Science.gov (United States)

    Jain, Garima; Shetty, Pushparaja

    2014-08-01

    Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. a questionnaire based survey done on 50 professionals and technicians who used microscope regularly in pathology, microbiology, hematology and cytology laboratories. Sixty two percent of subjects declared that they were suffering from musculoskeletal problems, most common locations being neck and back. Maximum prevalence of musculoskeletal problems was noted in those using microscope for 11-15 years and for more than 30 h/week. Sixty two percent of subjects were aware of workplace ergonomics. Fifty six percent of microscope users took regular short breaks for stretching exercises and 58% took visual breaks every 15-30 min in between microscope use sessions. As many as 94% subjects reported some form of visual problem. Fourty four percent of microscope users felt stressed with long working hours on microscope. The most common occupational concerns of microscope users were musculoskeletal problems of neck and back regions, eye fatigue, aggravation of ametropia, headache, stress due to long working hours and anxiety during or after microscope use. There is an immediate need for increasing awareness about the various occupational hazards and their irreversible effects to prevent them.

  6. Evaluating EUV mask pattern imaging with two EUV microscopes

    International Nuclear Information System (INIS)

    Goldberg, Kenneth A.; Takase, Kei; Naulleau, Patrick P.; Han, Hakseung; Barty, Anton; Kinoshita, Hiroo; Hamamoto, Kazuhiro

    2008-01-01

    Aerial image measurement plays a key role in the development of patterned reticles for each generation of lithography. Studying the field transmitted (reflected) from EUV masks provides detailed information about potential disruptions caused by mask defects, and the performance of defect repair strategies, without the complications of photoresist imaging. Furthermore, by measuring the continuously varying intensity distribution instead of a thresholded, binary resist image, aerial image measurement can be used as feedback to improve mask and lithography system modeling methods. Interest in EUV, at-wavelength, aerial image measurement lead to the creation of several research tools worldwide. These tools are used in advanced mask development work, and in the evaluation of the need for commercial at-wavelength inspection tools. They describe performance measurements of two such tools, inspecting the same EUV mask in a series of benchmarking tests that includes brightfield and darkfield patterns. One tool is the SEMATECH Berkeley Actinic Inspection Tool (AIT) operating on a bending magnet beamline at Lawrence Berkeley National Laboratory's Advanced Light Source. The AIT features an EUV Fresnel zoneplate microscope that emulates the numerical aperture of a 0.25-NA stepper, and projects the aerial image directly onto a CCD camera, with 700x magnification. The second tool is an EUV microscope (EUVM) operating at the NewSUBARU synchrotron in Hyogo, Japan. The NewSUBARU tool projects the aerial image using a reflective, 30x Schwarzschild objective lens, followed by a 10-200x x-ray zooming tube. The illumination conditions and the imaging etendue are different for the two tools. The benchmarking measurements were used to determine many imaging and performance properties of the tools, including resolution, modulation transfer function (MTF), aberration magnitude, aberration field-dependence (including focal-plane tilt), illumination uniformity, line-edge roughness, and flare

  7. Microscopic description of exciton polaritons in direct two-band semiconductors

    Science.gov (United States)

    Nguyen, Van Trong; Mahler, Günter

    1999-07-01

    Based on a quantum electrodynamical formulation, a microscopic description of exciton polaritons in a two-band semiconductor is presented. We show that the interband exchange Coulomb interaction, responsible for the coupling of the exciton with the longitudinal part of the induced field, should be treated on equal footing together with the coupling to the transverse part of the induced field (the photon field). The constitutive relation is established to connect the current density with the total electric field of polaritons. The classical Maxwell equations are derived from the quantum representation of photons to get a closed system of equations. The temporal evolution for an initial excited exciton state is studied in detail and an anisotropic polariton vacuum Rabi splitting is shown to occur. A number of up-to-now unresolved discrepancies in the literature are clarified.

  8. Microscopic calculation of the 4He system

    International Nuclear Information System (INIS)

    Hofmann, H.M.

    1996-01-01

    We report on a consistent, microscopic calculation of the bound and scattering states in the 4 He system employing a realistic nucleon-nucleon potential in the framework of the resonating group model (RGM). We present for comparison with these microscopic RGM calculations the results from a charge-independent, Coulomb-corrected R-matrix analysis of all types of data for reactions in the A=4 system. Comparisons are made between the phase shifts, and with a selection of measurements from each reaction, as well as between the resonance spectra obtained from both calculations. In general, the comparisons are favorable, but distinct differences are observed between the RGM calculations and some of the polarisation data. The partial-wave decomposition of the experimental data produced by the R-matrix analysis shows that these differences can be attributed to just a few S-matrix elements, for which inadequate tensor-force strength in the N-N interaction used appears to be responsible. (orig.)

  9. Minimax terminal approach problem in two-level hierarchical nonlinear discrete-time dynamical system

    Energy Technology Data Exchange (ETDEWEB)

    Shorikov, A. F., E-mail: afshorikov@mail.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)

    2015-11-30

    We consider a discrete–time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector nonlinear or linear discrete–time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solving.

  10. Controlling the optical bistability and multistability in a two-level pumped-probe system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Sahrai, Mostafa; Masoumeh Mousavi, Seyede

    2010-01-01

    We study the behavior of the optical bistability (OB) and multistability (OM) in a two-level pumped-probe atomic system by means of a unidirectional ring cavity. We show that the optical bistability in a two-level atomic system can be controlled by adjusting the intensity of the pump field and the detuning between two fields. We find that applying the pumping field decreases the threshold of the optical bistability.

  11. Microscopic description of average level spacing in even-even nuclei

    International Nuclear Information System (INIS)

    Huong, Le Thi Quynh; Hung, Nguyen Quang; Phuc, Le Tan

    2017-01-01

    A microscopic theoretical approach to the average level spacing at the neutron binding energy in even-even nuclei is proposed. The approach is derived based on the Bardeen-Cooper-Schrieffer (BCS) theory at finite temperature and projection M of the total angular momentum J , which is often used to describe the superfluid properties of hot rotating nuclei. The exact relation of the J -dependent total level density to the M -dependent state densities, based on which the average level spacing is calculated, was employed. The numerical calculations carried out for several even-even nuclei have shown that in order to reproduce the experimental average level spacing, the M -dependent pairing gaps as well as the exact relation of the J -dependent total level density formula should be simultaneously used. (paper)

  12. Scanning tunneling microscope with two-dimensional translator.

    Science.gov (United States)

    Nichols, J; Ng, K-W

    2011-01-01

    Since the invention of the scanning tunneling microscope (STM), it has been a powerful tool for probing the electronic properties of materials. Typically STM designs capable of obtaining resolution on the atomic scale are limited to a small area which can be probed. We have built an STM capable of coarse motion in two dimensions, the z- and x-directions which are, respectively, parallel and perpendicular to the tip. This allows us to image samples with very high resolution at sites separated by macroscopic distances. This device is a single unit with a compact design making it very stable. It can operate in either a horizontal or vertical configuration and at cryogenic temperatures.

  13. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  14. Occupational concerns associated with regular use of microscope

    Directory of Open Access Journals (Sweden)

    Garima Jain

    2014-08-01

    Full Text Available Objectives: Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. Material and Methods: A questionnaire based survey done on 50 professionals and technicians who used microscope regularly in pathology, microbiology, hematology and cytology laboratories. Results: Sixty two percent of subjects declared that they were suffering from musculoskeletal problems, most common locations being neck and back. Maximum prevalence of musculoskeletal problems was noted in those using microscope for 11–15 years and for more than 30 h/week. Sixty two percent of subjects were aware of workplace ergonomics. Fifty six percent of microscope users took regular short breaks for stretching exercises and 58% took visual breaks every 15–30 min in between microscope use sessions. As many as 94% subjects reported some form of visual problem. Fourty four percent of microscope users felt stressed with long working hours on microscope. Conclusions: The most common occupational concerns of microscope users were musculoskeletal problems of neck and back regions, eye fatigue, aggravation of ametropia, headache, stress due to long working hours and anxiety during or after microscope use. There is an immediate need for increasing awareness about the various occupational hazards and their irreversible effects to prevent them.

  15. Four-level and two-qubit systems, subalgebras, and unitary integration

    International Nuclear Information System (INIS)

    Rau, A.R.P.; Selvaraj, G.; Uskov, D.

    2005-01-01

    Four-level systems in quantum optics, and for representing two qubits in quantum computing, are difficult to solve for general time-dependent Hamiltonians. A systematic procedure is presented which combines analytical handling of the algebraic operator aspects with simple solutions of classical, first-order differential equations. In particular, by exploiting su(2)+su(2) and su(2)+su(2)+u(1) subalgebras of the full SU(4) dynamical group of the system, the nontrivial part of the final calculation is reduced to a single Riccati (first-order, quadratically nonlinear) equation, itself simply solved. Examples are provided of two-qubit problems from the recent literature, including implementation of two-qubit gates with Josephson junctions

  16. Development and applications of the positron microscope

    International Nuclear Information System (INIS)

    1991-01-01

    Progress on the positron microscope during the past year has been steady, and we currently project that initial microscope images can be collected during mid to late summer of 1992. Work during the year has mainly been divided among four areas of effort: hardware construction; power supply and control system development; radioactive source fabrication; and planning of initial experimental projects. Details of progress in these areas will be given below. An initial optical design of the microscope was completed during 1990, but during the past year, significant improvements have been made to this design, and several limiting cases of microscope performance have been evaluated. The results of these evaluations have been extremely encouraging, giving us strong indications that the optical performance of the microscope will be better than originally anticipated. In particular, we should be able to explore ultimate performance capabilities of positron microscopy using our currently planned optical system, with improvements only in the image detector system, and the positron-source/moderator configuration. We should be able to study imaging reemission microscopy with resolutions approaching 10 Angstrom and be able to produce beam spots for rastered microscope work with diameters below the 1000 Angstrom diffusion limit. Because of these exciting new possibilities, we have decided to upgrade several microscope subsystems to levels consistent with ultimate performance earlier in our construction schedule than we had previously intended. In particular, alignment facilities in the optical system, vibration isolation, and power supply and control system flexibility have all been upgraded in their design over the past year

  17. The effect of learning multimedia on students’ understanding of macroscopic, sub-microscopic, and symbolic levels in electrolyte and nonelectrolyte

    Science.gov (United States)

    Eliyawati; Rohman, I.; Kadarohman, A.

    2018-05-01

    This research aims to investigate the effect of learning multimedia on students’ understanding of macroscopic, sub-microscopic, and symbolic levels in electrolyte and nonelectrolyte topic. The quasi-experimental with one group pre-test post-test design was used. Thirty-five students were experimental class and another thirty-five were control class. The instrument was used is three representation levels. The t-test was performed on average level of 95% to identify the significant difference between experimental class and control class. The results show that the normalized gain average of experimental class is 0.75 (high) and the normalized gain average of control class is 0.45 (moderate). There is significant difference in students’ understanding in sub-microscopic and symbolic levels and there is not significant difference of students’ understanding in macroscopic level between experimental class and control class. The normalized gain of students’ understanding of macroscopic, sub-microscopic and symbolic in experimental class are 0.6 (moderate), 0.75 (high), and 0.64 (moderate), while the normalized gain of students’ understanding of macroscopic, sub-microscopic and symbolic in control class are 0.49 (moderate), 0.39 (high), and 0.3 (moderate). Therefore, it can be concluded that learning multimedia can help in improving students’ understanding especially in sub-microscopic and symbolic levels.

  18. Towards Realization of Intelligent Medical Treatment at Nanoscale by Artificial Microscopic Swarm Control Systems

    Directory of Open Access Journals (Sweden)

    Alireza Rowhanimanesh

    2017-07-01

    Full Text Available Background: In this paper, the novel concept of artificial microscopic swarm control systems is proposed as a promising approach towards realization of intelligent medical treatment at nanoscale. In this new paradigm, treatment is done autonomously at nanoscale within the patient’s body by the proposed swarm control systems.Methods: From control engineering perspective, medical treatment can be considered as a control problem, in which the ultimate goal is to find the best feasible way to change the state of diseased tissue from unhealthy to healthy in presence of uncertainty. Although a living tissue is a huge swarm of microscopic cells, nearly all of the common treatment methods are based on macroscopic centralized control paradigm. Inspired by natural microscopic swarm control systems such as nervous, endocrine and immune systems that work based on swarm control paradigm, medical treatment needs a paradigm shift from macroscopic centralized control to microscopic swarm control. An artificial microscopic swarm control system consists of a huge number of very simple autonomous microscopic agents that exploit swarm intelligence to realize sense, control (computing and actuation at nanoscale in local, distributed and decentralized manner. This control system can be designed based on mathematical analysis and computer simulation.Results: The proposed approach is used for treatment of atherosclerosis and cancer based on mathematical analysis and in-silico study.Conclusion: The notion of artificial microscopic swarm control systems opens new doors towards realization of autonomous and intelligent medical treatment at nanoscale within the patient’s body.

  19. A two-dimensional Dirac fermion microscope

    DEFF Research Database (Denmark)

    Bøggild, Peter; Caridad, Jose; Stampfer, Christoph

    2017-01-01

    D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges...

  20. Microscopic calculation of level densities: the shell model Monte Carlo approach

    International Nuclear Information System (INIS)

    Alhassid, Yoram

    2012-01-01

    The shell model Monte Carlo (SMMC) approach provides a powerful technique for the microscopic calculation of level densities in model spaces that are many orders of magnitude larger than those that can be treated by conventional methods. We discuss a number of developments: (i) Spin distribution. We used a spin projection method to calculate the exact spin distribution of energy levels as a function of excitation energy. In even-even nuclei we find an odd-even staggering effect (in spin). Our results were confirmed in recent analysis of experimental data. (ii) Heavy nuclei. The SMMC approach was extended to heavy nuclei. We have studied the crossover between vibrational and rotational collectivity in families of samarium and neodymium isotopes in model spaces of dimension approx. 10 29 . We find good agreement with experimental results for both state densities and 2 > (where J is the total spin). (iii) Collective enhancement factors. We have calculated microscopically the vibrational and rotational enhancement factors of level densities versus excitation energy. We find that the decay of these enhancement factors in heavy nuclei is correlated with the pairing and shape phase transitions. (iv) Odd-even and odd-odd nuclei. The projection on an odd number of particles leads to a sign problem in SMMC. We discuss a novel method to calculate state densities in odd-even and odd-odd nuclei despite the sign problem. (v) State densities versus level densities. The SMMC approach has been used extensively to calculate state densities. However, experiments often measure level densities (where levels are counted without including their spin degeneracies.) A spin projection method enables us to also calculate level densities in SMMC. We have calculated the SMMC level density of 162 Dy and found it to agree well with experiments

  1. Microscopic nucleon spectral function for finite nuclei featuring two- and three-nucleon short-range correlations: The model versus ab initio calculations for three-nucleon systems

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko

    2017-04-01

    Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one

  2. Ghost microscope imaging system from the perspective of coherent-mode representation

    Science.gov (United States)

    Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan

    2018-03-01

    The coherent-mode representation theory of partially coherent fields is firstly used to analyze a two-arm ghost microscope imaging system. It is shown that imaging quality of the generated images depend crucially on the distribution of the decomposition coefficients of the object imaged when the light source is fixed. This theory is also suitable for demonstrating the effects from the distance the object is moved away from the original plane on imaging quality. Our results are verified theoretically and experimentally.

  3. Development and design of up-to-date laser scanning two-photon microscope using in neuroscience

    Science.gov (United States)

    Doronin, Maxim; Popov, Alexander

    2017-02-01

    Today one of the main areas of application of two-photon microscopy is biology. This is due to the fact that this technique allows to obtain 3D images of tissues due to laser focus change, that is possible due to substantially greater penetration depth on the main wavelength into biological tissues. Self-developed microscopy system provides possibility to service it and modify the structure of microscope depending on highly specialized experimental design and scientific goals. This article may be regarded as a quick reference to laboratory staff who are wishing to develop their own microscopy system for self-service and modernization of the system and in order to save the lab budget.

  4. A frameless stereotaxic operating microscope for neurosurgery

    International Nuclear Information System (INIS)

    Friets, E.M.; Strohbehn, J.W.; Hatch, J.F.; Roberts, D.W.

    1989-01-01

    A new system, which we call the frameless stereotaxic operating microscope, is discussed. Its purpose is to display CT or other image data in the operating microscope in the correct scale, orientation, and position without the use of a stereotaxic frame. A nonimaging ultrasonic rangefinder allows the position of the operating microscope and the position of the patient to be determined. Discrete fiducial points on the patient's external anatomy are located in both image space and operating room space, linking the image data and the operating room. Physician-selected image information, e.g., tumor contours or guidance to predetermined targets, is projected through the optics of the operating microscope using a miniature cathode ray tube and a beam splitter. Projected images superpose the surgical field, reconstructed from image data to match the focal plane of the operating microscope. The algorithms on which the system is based are described, and the sources and effects of errors are discussed. The system's performance is simulated, providing an estimate of accuracy. Two phantoms are used to measure accuracy experimentally. Clinical results and observations are given

  5. A frameless stereotaxic operating microscope for neurosurgery.

    Science.gov (United States)

    Friets, E M; Strohbehn, J W; Hatch, J F; Roberts, D W

    1989-06-01

    A new system, which we call the frameless stereotaxic operating microscope, is discussed. Its purpose is to display CT or other image data in the operating microscope in the correct scale, orientation, and position without the use of a stereotaxic frame. A nonimaging ultrasonic rangefinder allows the position of the operating microscope and the position of the patient to be determined. Discrete fiducial points on the patient's external anatomy are located in both image space and operating room space, linking the image data and the operating room. Physician-selected image information, e.g., tumor contours or guidance to predetermined targets, is projected through the optics of the operating microscope using a miniature cathode ray tube and a beam splitter. Projected images superpose the surgical field, reconstructed from image data to match the focal plane of the operating microscope. The algorithms on which the system is based are described, and the sources and effects of errors are discussed. The system's performance is simulated, providing an estimate of accuracy. Two phantoms are used to measure accuracy experimentally. Clinical results and observations are given.

  6. Two interacting spins in external fields. Four-level systems

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G.; Baldiotti, M.C.; Gitman, D.M. [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318-CEP, 05315-970 Sao Paulo, S.P. (Brazil); Levin, A.D. [Dexter Research Center (United States)

    2007-04-15

    In the present article, we consider the so-called two-spin equation that describes four-level quantum systems. Recently, these systems attract attention due to their relation to the problem of quantum computation. We study general properties of the two-spin equation and show that the problem for certain external backgrounds can be identified with the problem of one spin in an appropriate background. This allows one to generate a number of exact solutions for two-spin equations on the basis of already known exact solutions of the one-spin equation. Besides, we present some exact solutions for the two-spin equation with an external background different for each spin but having the same direction. We study the eigenvalue problem for a time-independent spin interaction and a time-independent external background. A possible analogue of the Rabi problem for the two-spin equation is defined. We present its exact solution and demonstrate the existence of magnetic resonances in two specific frequencies, one of them coinciding with the Rabi frequency, and the other depending on the rotating field magnitude. The resonance that corresponds to the second frequency is suppressed with respect to the first one. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  7. Perturbation Theory for Open Two-Level Nonlinear Quantum Systems

    International Nuclear Information System (INIS)

    Zhang Zhijie; Jiang Dongguang; Wang Wei

    2011-01-01

    Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)

  8. Battery Recharging Issue for a Two-Power-Level Flywheel System

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves de Oliveira

    2010-01-01

    Full Text Available A novel battery recharging system for an all-electric driveline comprising a flywheel with a permanent magnet double wound synchronous machine (motor/generator is presented. The double winding enables two voltage levels and two different power levels. This topology supersedes other all-electric drivelines. The battery operates in a low-power regime supplying the average power whereas the flywheel delivers and absorbs power peaks, which are up to a higher order of magnitude. The topology presents new challenges for the power conversion system, which is the focus of this investigation. The main challenge is the control of the power flow to the battery when the vehicle is parked despite the decay of the flywheel machine voltage; which is dependent on its charge state, that is, rotational speed. The design and simulation of an unidirectional DC/DC buck/boost converter for a variable rotational speed flywheel is presented. Conventional power electronic converters are used in a new application, which can maintain a constant current or voltage on the battery side. Successful PI current control has been implemented and simulated, together with the complete closed loop system.

  9. Nailfold capillaroscopy by digital microscope in an Indian population with systemic sclerosis.

    Science.gov (United States)

    Bhakuni, Darshan S; Vasdev, Vivek; Garg, M K; Narayanan, Krishanan; Jain, Rahul; Mullick, Gautam

    2012-02-01

    Nailfold capillaroscopy (NFC) is a simple, non-invasive method with exceptional predictive value for the analysis of microvascular abnormalities, especially in systemic sclerosis (SSc) but remains underutilized due to cost factors of the nailfold videocapillaroscope, lack of expertise and availability issues. The aim of this study was to establish the utility of an inexpensive digital microscope to study NFC changes in SSc in correlation with disease subsets and extent of skin involvement. Twenty-two diffuse cutaneous SSc (DSS), 20 limited cutaneous SSc (LSS) patients and 42 controls were evaluated with NFC using a digital microscope at 30× and 100× magnification. Digital micrographs were used to study qualitative and quantitative changes in microvasculature. The capillary density was significantly less in all cases of SSc as compared to controls (5.3 ± 1.4 vs. 8.7 ± 1.2; P Nailfold capillaroscopy changes in SSc are related to disease subset and MRSS. NFC with digital microscope is a simplified, inexpensive, outpatient procedure with results comparable to previous studies. © 2011 The Authors. International Journal of Rheumatic Diseases © 2011 Asia Pacific League of Associations for Rheumatology and Blackwell Publishing Asia Pty Ltd.

  10. Microscopic functional anatomy: Integumentary system: Chapter 17

    Science.gov (United States)

    Elliott, Diane G.; Ostrander, Gary K.

    2000-01-01

    Many of the features of the fish integument can only be observed microscopically. Because there are over 20,000 living fishes, mostly higher bony fishes (teleosts), a great diversity exists in the microscopic anatomy of the integument. This chapter presents several examples from varied taxonomic groups to illustrate the variation in morphological features. As in all vertebrate epidermis, the fundamental structural unit is the epithelial cell. This is the only constant feature, as a great diversity of cell types exists in the various fish taxa. Some of these include apocrine mucous cells and a variety of other secretory cells, ionocytes, sensory cells, and wandering cells such as leukocytes. The dermis consists essentially of two sets of collagen fibers arranged in opposing geodesic spirals around the body. The dermis of most fishes is divided into two major layers. The upper (outer) layer, the stratum spongiosum or stratum laxum, is a loose network of connective tissue, whereas the lower layer, the stratum compactum, is a dense layer consisting primarily of orthogonal collagen bands. There are also specialized dermal elements such as chromatophores scales, and fin rays.

  11. Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Hidetoshi, E-mail: hinishiy@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Koizumi, Mitsuru, E-mail: koizumi@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Ogawa, Koji, E-mail: kogawa@jeol.co.jp [JEOL Technics Ltd., 2-6-38 Musashino, Akishima, Tokyo 196-0021 (Japan); Kitamura, Shinich, E-mail: kitamura@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Konyuba, Yuji, E-mail: ykonyuub@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Watanabe, Yoshiyuki, E-mail: watanabeyoshiy@pref.yamagata.jp [Yamagata Research Institute of Technology, 2-2-1, Matsuei, Yamagata 990-2473 (Japan); Ohbayashi, Norihiko, E-mail: n.ohbayashi@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Fukuda, Mitsunori, E-mail: nori@m.tohoku.ac.jp [Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Suga, Mitsuo, E-mail: msuga@jeol.co.jp [JEOL Ltd., 3-1-2, Musashino, Akishima, Tokyo 196-8558 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-4, Umezono, Tsukuba 305-8568 (Japan)

    2014-12-15

    An atmospheric scanning electron microscope (ASEM) with an open sample chamber and optical microscope (OM) is described and recent developments are reported. In this ClairScope system, the base of the open sample dish is sealed to the top of the inverted SEM column, allowing the liquid-immersed sample to be observed by OM from above and by SEM from below. The optical axes of the two microscopes are aligned, ensuring that the same sample areas are imaged to realize quasi-simultaneous correlative microscopy in solution. For example, the cathodoluminescence of ZnO particles was directly demonstrated. The improved system has (i) a fully motorized sample stage, (ii) a column protection system in the case of accidental window breakage, and (iii) an OM/SEM operation system controlled by a graphical user interface. The open sample chamber allows the external administration of reagents during sample observation. We monitored the influence of added NaCl on the random motion of silica particles in liquid. Further, using fluorescence as a transfection marker, the effect of small interfering RNA-mediated knockdown of endogenous Varp on Tyrp1 trafficking in melanocytes was examined. A temperature-regulated titanium ASEM dish allowed the dynamic observation of colloidal silver nanoparticles as they were heated to 240 °C and sintered. - Highlights: • Atmospheric SEM (ASEM) allows observation of samples in liquid or gas. • Open sample chamber allows in situ monitoring of evaporation and sintering processes. • in situ monitoring of processes during reagent administration is also accomplished. • Protection system for film breakage is developed for ASEM. • Usability of ASEM has been improved significantly including GUI control.

  12. Atmospheric scanning electron microscope system with an open sample chamber: Configuration and applications

    International Nuclear Information System (INIS)

    Nishiyama, Hidetoshi; Koizumi, Mitsuru; Ogawa, Koji; Kitamura, Shinich; Konyuba, Yuji; Watanabe, Yoshiyuki; Ohbayashi, Norihiko; Fukuda, Mitsunori; Suga, Mitsuo; Sato, Chikara

    2014-01-01

    An atmospheric scanning electron microscope (ASEM) with an open sample chamber and optical microscope (OM) is described and recent developments are reported. In this ClairScope system, the base of the open sample dish is sealed to the top of the inverted SEM column, allowing the liquid-immersed sample to be observed by OM from above and by SEM from below. The optical axes of the two microscopes are aligned, ensuring that the same sample areas are imaged to realize quasi-simultaneous correlative microscopy in solution. For example, the cathodoluminescence of ZnO particles was directly demonstrated. The improved system has (i) a fully motorized sample stage, (ii) a column protection system in the case of accidental window breakage, and (iii) an OM/SEM operation system controlled by a graphical user interface. The open sample chamber allows the external administration of reagents during sample observation. We monitored the influence of added NaCl on the random motion of silica particles in liquid. Further, using fluorescence as a transfection marker, the effect of small interfering RNA-mediated knockdown of endogenous Varp on Tyrp1 trafficking in melanocytes was examined. A temperature-regulated titanium ASEM dish allowed the dynamic observation of colloidal silver nanoparticles as they were heated to 240 °C and sintered. - Highlights: • Atmospheric SEM (ASEM) allows observation of samples in liquid or gas. • Open sample chamber allows in situ monitoring of evaporation and sintering processes. • in situ monitoring of processes during reagent administration is also accomplished. • Protection system for film breakage is developed for ASEM. • Usability of ASEM has been improved significantly including GUI control

  13. Optical Analysis of an Ultra-High resolution Two-Mirror Soft X-Ray Microscope

    Science.gov (United States)

    Shealy, David L.; Wang, Cheng; Hoover, Richard B.

    1994-01-01

    This work has summarized for a Schwarzschild microscope some relationships between numerical aperture (NA), magnification, diameter of the primary mirror, radius of curvature of the secondary mirror, and the total length of the microscope. To achieve resolutions better than a spherical Schwarzschild microscope of 3.3 Lambda for a perfectly aligned and fabricated system. it is necessary to use aspherical surfaces to control higher-order aberrations. For an NA of 0.35, the aspherical Head microscope provides diffraction limited resolution of 1.4 Lambda where the aspherical surfaces differ from the best fit spherical surface by approximately 1 micrometer. However, the angle of incidence varies significantly over the primary and the secondary mirrors, which will require graded multilayer coatings to operate near peak reflectivities. For higher numerical apertures, the variation of the angle of incidence over the secondary mirror surface becomes a serious problem which must be solved before multilayer coatings can be used for this application. Tolerance analysis of the spherical Schwarzschild microscope has shown that water window operations will require 2-3 times tighter tolerances to achieve a similar performance for operations with 130 A radiation. Surface contour errors have been shown to have a significant impact on the MTF and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror.

  14. Aspects of two-level systems under external time-dependent fields

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G.; Wreszinski, W.F. [Tomsk State University and Tomsk Institute of High Current Electronics (Russian Federation); Barata, J.C.A.; Gitman D.M. [Universidade de Sao Paulo, Instituto de Fisica (Brazil)]. E-mails: jbarata@fma.if.usp.br; gitman@fma.if.usp.br

    2001-12-14

    The dynamics of two-level systems in time-dependent backgrounds is under consideration. We present some new exact solutions in special backgrounds decaying in time. On the other hand, following ideas of Feynman et al, we discuss in detail the possibility of reducing the quantum dynamics to a classical Hamiltonian system. This, in particular, opens the possibility of directly applying powerful methods of classical mechanics (e.g. KAM methods) to study the quantum system. Following such an approach, we draw conclusions of relevance for 'quantum chaos' when the external background is periodic or quasi-periodic in time. (author)

  15. Scanning tunneling microscope assembly, reactor, and system

    Science.gov (United States)

    Tao, Feng; Salmeron, Miquel; Somorjai, Gabor A

    2014-11-18

    An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

  16. Experiences of building a medical data acquisition system based on two-level modeling.

    Science.gov (United States)

    Li, Bei; Li, Jianbin; Lan, Xiaoyun; An, Ying; Gao, Wuqiang; Jiang, Yuqiao

    2018-04-01

    Compared to traditional software development strategies, the two-level modeling approach is more flexible and applicable to build an information system in the medical domain. However, the standards of two-level modeling such as openEHR appear complex to medical professionals. This study aims to investigate, implement, and improve the two-level modeling approach, and discusses the experience of building a unified data acquisition system for four affiliated university hospitals based on this approach. After the investigation, we simplified the approach of archetype modeling and developed a medical data acquisition system where medical experts can define the metadata for their own specialties by using a visual easy-to-use tool. The medical data acquisition system for multiple centers, clinical specialties, and diseases has been developed, and integrates the functions of metadata modeling, form design, and data acquisition. To date, 93,353 data items and 6,017 categories for 285 specific diseases have been created by medical experts, and over 25,000 patients' information has been collected. OpenEHR is an advanced two-level modeling method for medical data, but its idea to separate domain knowledge and technical concern is not easy to realize. Moreover, it is difficult to reach an agreement on archetype definition. Therefore, we adopted simpler metadata modeling, and employed What-You-See-Is-What-You-Get (WYSIWYG) tools to further improve the usability of the system. Compared with the archetype definition, our approach lowers the difficulty. Nevertheless, to build such a system, every participant should have some knowledge in both medicine and information technology domains, as these interdisciplinary talents are necessary. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Two-dimensional atom localization via two standing-wave fields in a four-level atomic system

    International Nuclear Information System (INIS)

    Zhang Hongtao; Wang Hui; Wang Zhiping

    2011-01-01

    We propose a scheme for the two-dimensional (2D) localization of an atom in a four-level Y-type atomic system. By applying two orthogonal standing-wave fields, the atoms can be localized at some special positions, leading to the formation of sub-wavelength 2D periodic spatial distributions. The localization peak position and number as well as the conditional position probability can be controlled by the intensities and detunings of optical fields.

  18. Development of a fluorescent microscope combined with a real-time autoradiography system

    International Nuclear Information System (INIS)

    Rai, Hiroki; Kanno, Satomi; Hayashi, Yoshitake; Nihei, Naoto; Nakanishi, Tomoko M.

    2008-01-01

    For combination with microscope, we developed real-time autoradiography system for micro-scale analysis with adjustment of the CsI(Ti) scintillator thickness for higher resolution and applying tapered fiber optic plate for magnification of autoradiograph image. We combined real-time autoradiography system with an inverted fluorescent microscope so that an autoradiograph image as well as fluorescent image, bright-field image can be acquired at the same time. In the case of observation of sliced soybean stalk traced 45 CaCl, the fluorescent and bright-field image was acquired which magnified to 50 times, the autoradiograph image of 45 Ca distribution in the tissue was acquired in almost same scale. The new microscopic system which can acquire autoradiograph image of labeled signals (low molecular weight) is expected to develop the signal transduction study and gene expression, combined with fluorescent protein techniques such as GFP etc. (author)

  19. Minimum time control of a pair of two-level quantum systems with opposite drifts

    International Nuclear Information System (INIS)

    Romano, Raffaele; D’Alessandro, Domenico

    2016-01-01

    In this paper we solve two equivalent time optimal control problems. On one hand, we design the control field to implement in minimum time the SWAP (or equivalent) operator on a two-level system, assuming that it interacts with an additional, uncontrollable, two-level system. On the other hand, we synthesize the SWAP operator simultaneously, in minimum time, on a pair of two-level systems subject to opposite drifts. We assume that it is possible to perform three independent control actions, and that the total control strength is bounded. These controls either affect the dynamics of the target system, under the first perspective, or, simultaneously, the dynamics of both systems, in the second view. We obtain our results by using techniques of geometric control theory on Lie groups. In particular, we apply the Pontryagin maximum principle, and provide a complete characterization of singular and nonsingular extremals. Our analysis shows that the problem can be formulated as the motion of a material point in a central force, a well known system in classical mechanics. Although we focus on obtaining the SWAP operator, many of the ideas and techniques developed in this work apply to the time optimal implementation of an arbitrary unitary operator. (paper)

  20. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  1. Minimax approach problem with incomplete information for the two-level hierarchical discrete-time dynamical system

    Energy Technology Data Exchange (ETDEWEB)

    Shorikov, A. F. [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia and Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)

    2014-11-18

    We consider a discrete-time dynamical system consisting of three controllable objects. The motions of all objects are given by the corresponding vector linear or convex discrete-time recurrent vector relations, and control system for its has two levels: basic (first or I level) that is dominating and subordinate level (second or II level) and both have different criterions of functioning and united a priori by determined informational and control connections defined in advance. For the dynamical system in question, we propose a mathematical formalization in the form of solving a multistep problem of two-level hierarchical minimax program control over the terminal approach process with incomplete information and give a general scheme for its solution.

  2. Refining Students' Explanations of an Unfamiliar Physical Phenomenon-Microscopic Friction

    Science.gov (United States)

    Corpuz, Edgar De Guzman; Rebello, N. Sanjay

    2017-08-01

    The first phase of this multiphase study involves modeling of college students' thinking of friction at the microscopic level. Diagnostic interviews were conducted with 11 students with different levels of physics backgrounds. A phenomenographic approach of data analysis was used to generate categories of responses which subsequently were used to generate a model of explanation. Most of the students interviewed consistently used mechanical interactions in explaining microscopic friction. According to these students, friction is due to the interlocking or rubbing of atoms. Our data suggest that students' explanations of microscopic friction are predominantly influenced by their macroscopic experiences. In the second phase of the research, teaching experiment was conducted with 18 college students to investigate how students' explanations of microscopic friction can be refined by a series of model-building activities. Data were analyzed using Redish's two-level transfer framework. Our results show that through sequences of hands-on and minds-on activities, including cognitive dissonance and resolution, it is possible to facilitate the refinement of students' explanations of microscopic friction. The activities seemed to be productive in helping students activate associations that refine their ideas about microscopic friction.

  3. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials

    International Nuclear Information System (INIS)

    Qin Xudong; Chen Yonghai; Liu Yu; Zhu Laipan; Li Yuan; Wu Qing; Huang Wei

    2016-01-01

    We employed the microscopic reflectance difference spectroscopy (micro-RDS) to determine the layer-number and microscopically image the surface topography of graphene and MoS 2 samples. The contrast image shows the efficiency and reliability of this new clipping technique. As a low-cost, quantifiable, no-contact and non-destructive method, it is not concerned with the characteristic signal of certain materials and can be applied to arbitrary substrates. Therefore it is a perfect candidate for characterizing the thickness of graphene-like two-dimensional materials. (paper)

  4. Detuning-induced stimulated Raman adiabatic passage in dense two-level systems

    Science.gov (United States)

    Deng, Li; Lin, Gongwei; Niu, Yueping; Gong, Shangqing

    2018-05-01

    We investigate the coherence generation in dense two-level systems under detuning-induced stimulated Raman adiabatic passage (D-STIRAP). In the dense two-level system, the near dipole-dipole (NDD) interaction should be taken into consideration. With the increase in the strength of the NDD interaction, it is found that a switchlike transition of the generated coherence from maximum value to zero appears. Meanwhile, the adiabatic condition of the D-STIRAP is destroyed in the presence of the NDD interaction. In order to avoid the sudden decrease in the generated coherence and maintain the maximum value, we can use stronger detuning pulse or pump pulse, between which increasing the intensity of the detuning pulse is of more efficiency. Except for taking advantage of such maximum coherence in the high density case into areas like enhancing the four-wave mixing process, we also point out that the phenomenon of the coherence transition can be applied as an optical switch.

  5. Design and performance of a beetle-type double-tip scanning tunneling microscope

    International Nuclear Information System (INIS)

    Jaschinsky, Philipp; Coenen, Peter; Pirug, Gerhard; Voigtlaender, Bert

    2006-01-01

    A combination of a double-tip scanning tunneling microscope with a scanning electron microscope in ultrahigh vacuum environment is presented. The compact beetle-type design made it possible to integrate two independently driven scanning tunneling microscopes in a small space. Moreover, an additional level for coarse movement allows the decoupling of the translation and approach of the tunneling tip. The position of the two tips can be controlled from the millimeter scale down to 50 nm with the help of an add-on electron microscope. The instrument is capable of atomic resolution imaging with each tip

  6. Computer Aided Quantification of Pathological Features for Flexor Tendon Pulleys on Microscopic Images

    Directory of Open Access Journals (Sweden)

    Yung-Chun Liu

    2013-01-01

    Full Text Available Quantifying the pathological features of flexor tendon pulleys is essential for grading the trigger finger since it provides clinicians with objective evidence derived from microscopic images. Although manual grading is time consuming and dependent on the observer experience, there is a lack of image processing methods for automatically extracting pulley pathological features. In this paper, we design and develop a color-based image segmentation system to extract the color and shape features from pulley microscopic images. Two parameters which are the size ratio of abnormal tissue regions and the number ratio of abnormal nuclei are estimated as the pathological progression indices. The automatic quantification results show clear discrimination among different levels of diseased pulley specimens which are prone to misjudgments for human visual inspection. The proposed system provides a reliable and automatic way to obtain pathological parameters instead of manual evaluation which is with intra- and interoperator variability. Experiments with 290 microscopic images from 29 pulley specimens show good correspondence with pathologist expectations. Hence, the proposed system has great potential for assisting clinical experts in routine histopathological examinations.

  7. Dynamical fusion thresholds in macroscopic and microscopic theories

    International Nuclear Information System (INIS)

    Davies, K.T.R.; Sierk, A.J.; Nix, J.R.

    1983-01-01

    Macroscopic and microscopic results demonstrating the existence of dynamical fusion thresholds are presented. For macroscopic theories, it is shown that the extra-push dynamics is sensitive to some details of the models used, e.g. the shape parametrization and the type of viscosity. The dependence of the effect upon the charge and angular momentum of the system is also studied. Calculated macroscopic results for mass-symmetric systems are compared to experimental mass-asymmetric results by use of a tentative scaling procedure, which takes into account both the entrance-channel and the saddle-point regions of configuration space. Two types of dynamical fusion thresholds occur in TDHF studies: (1) the microscopic analogue of the macroscopic extra push threshold, and (2) the relatively high energy at which the TDHF angular momentum window opens. Both of these microscopic thresholds are found to be very sensitive to the choice of the effective two-body interaction

  8. Historical evolution toward achieving ultrahigh vacuum in JEOL electron microscopes

    CERN Document Server

    Yoshimura, Nagamitsu

    2014-01-01

    This book describes the developmental history of the vacuum system of the transmission electron microscope (TEM) at the Japan Electron Optics Laboratory (JEOL) from its inception to its use in today’s high-technology microscopes. The author and his colleagues were engaged in developing vacuum technology for electron microscopes (JEM series) at JEOL for many years. This volume presents a summary and explanation of their work and the technology that makes possible a clean ultrahigh vacuum. The typical users of the TEM are top-level researchers working at the frontiers of new materials or with new biological specimens. They often use the TEM under extremely severe conditions, with problems sometimes occurring in the vacuum system of the microscopes. JEOL engineers then must work as quickly as possible to improve the vacuum evacuation system so as to prevent the recurrence of such problems. Among the wealth of explanatory material in this book are examples of users’ reports of problems in the vacuum system of...

  9. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    International Nuclear Information System (INIS)

    Evans, J.; Chapman, S.

    2014-01-01

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided

  10. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J., E-mail: radiant@ferrodevices.com; Chapman, S., E-mail: radiant@ferrodevices.com [Radiant Technologies, Inc., 2835C Pan American Fwy NE, Albuquerque, New Mexico 87107 (United States)

    2014-08-14

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.

  11. The simulation of the non-Markovian behaviour of a two-level system

    Science.gov (United States)

    Semina, I.; Petruccione, F.

    2016-05-01

    Non-Markovian relaxation dynamics of a two-level system is studied with the help of the non-linear stochastic Schrödinger equation with coloured Ornstein-Uhlenbeck noise. This stochastic Schrödinger equation is investigated numerically with an adapted Platen scheme. It is shown, that the memory effects have a significant impact to the dynamics of the system.

  12. Effective Hamiltonians, two level systems, and generalized Maxwell-Bloch equations

    International Nuclear Information System (INIS)

    Sczaniecki, L.

    1981-02-01

    A new method is proposed involving a canonical transformation leading to the non-secular part of time-independent perturbation calculus. The method is used to derive expressions for effective Shen-Walls Hamiltonians which, taken in the two-level approximation and on the inclusion of non-Hamiltonian terms into the dynamics of the system, lead to generalized Maxwell-Bloch equations. The rotating wave approximation is written anew within the framework of our formalism. (author)

  13. Photon scanning tunneling microscope in combination with a force microscope

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Tack, R.G.; van Hulst, N.F.; Bölger, B.; Bölger, B.

    1994-01-01

    The simultaneous operation of a photon scanning tunneling microscope with an atomic force microscope is presented. The use of standard atomic force silicon nitride cantilevers as near-field optical probes offers the possibility to combine the two methods. Vertical forces and torsion are detected

  14. Analysis of dicentrics in human lymphocytes exposed to ionizing radiation using the automated system and optical microscope

    International Nuclear Information System (INIS)

    Martinez A, J.

    2016-01-01

    Ionizing radiation is a form of energy that produces ionizations in the molecules it traverses. When the higher energy radiation interacts with the structure of human chromosomes, chromosome aberrations, mainly of the dicentric type, are the union of two damaged chromosomes, represented by two centromeres and non centromere fragment. There are situations where a population of people may be affected by the release of any radioactive material and it is impossible to determine in a short time the absorbed dose to which each person was exposed. The dicentrics analysis from the culture of human lymphocytes is used to estimate doses of exposure to ionizing radiation, using the optical microscope. The objective of this work is to analyze dicentric chromosomal lesions, using the optical microscope in comparison with the semi-automated system, to respond promptly to radiological emergencies. For this study, two samples irradiated with "6"0Co were analyzed, one in the Instituto Nacional de Investigaciones Nucleares (ININ) reaching doses of 2.7 ± 0.1 and 0.85 ± 0.1 Gy, and the other in Walischmiller Engineering G mb H, Markdorf (Germany) reaching doses of 0.84 ± 0.3 and 2.8 ± 0.1 Gy. A lymphocyte culture was performed following the recommendations of the IAEA, using minimum essential MEM medium previously prepared with BrdU, sodium heparin, antibiotic and L-glutamine. Phytohemagglutinin, fetal calf serum was added to the sample, incubated at 37 degrees Celsius for 48 hours and three hours before the end of incubation, colcemide was placed. KCl post-culture was added and lamellae were prepared by washing with the 3:1 acid-acetic fixative solution and a Giemsa staining. 1000 cell readings were performed using the optical microscope and the automated system according to study protocols and quality standards to estimate absorbed dose by means of dicentric analysis, defined by ISO-19238. With the automated system similar results of absorbed dose were obtained with respect to

  15. A cost-effective fluorescence mini-microscope for biomedical applications.

    Science.gov (United States)

    Zhang, Yu Shrike; Ribas, João; Nadhman, Akhtar; Aleman, Julio; Selimović, Šeila; Lesher-Perez, Sasha Cai; Wang, Ting; Manoharan, Vijayan; Shin, Su-Ryon; Damilano, Alessia; Annabi, Nasim; Dokmeci, Mehmet Remzi; Takayama, Shuichi; Khademhosseini, Ali

    2015-01-01

    We have designed and fabricated a miniature microscope from off-the-shelf components and a webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters, such as cell/tissue viability (e.g. live/dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60×, achieves a resolution as high as microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including, but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread application in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required.

  16. Electronic zooming TV readout system for an x-ray microscope

    International Nuclear Information System (INIS)

    Kinoshita, K.; Matsumura, T.; Inagaki, Y.; Hirai, N.; Sugiyama, M.; Kihara, H.; Watanabe, N.; Shimanuki, Y.

    1993-01-01

    The electronic zooming TV readout system using the X-ray zooming tube has been developed for purposes of real-time readout of very high resolution X-ray image, e.g. the output image from an X-ray microscope. The system limiting resolution is 0.2∼0.3 μm and it is easy to operate in practical applications

  17. Quantification of the level descriptors for the standard EQ-5D three-level system and a five-level version according to two methods

    NARCIS (Netherlands)

    M.F. Janssen (Bas); E. Birnie (Erwin); G.J. Bonsel (Gouke)

    2008-01-01

    textabstractObjectives: Our aim was to compare the quantitative position of the level descriptors of the standard EQ-5D three-level system (3L) and a newly developed, experimental five-level version (5L) using a direct and a vignette-based indirect method. Methods: Eighty-two respondents took part

  18. Evolutionary tuning of protein expression levels of a positively autoregulated two-component system.

    Directory of Open Access Journals (Sweden)

    Rong Gao

    2013-10-01

    Full Text Available Cellular adaptation relies on the development of proper regulatory schemes for accurate control of gene expression levels in response to environmental cues. Over- or under-expression can lead to diminished cell fitness due to increased costs or insufficient benefits. Positive autoregulation is a common regulatory scheme that controls protein expression levels and gives rise to essential features in diverse signaling systems, yet its roles in cell fitness are less understood. It remains largely unknown how much protein expression is 'appropriate' for optimal cell fitness under specific extracellular conditions and how the dynamic environment shapes the regulatory scheme to reach appropriate expression levels. Here, we investigate the correlation of cell fitness and output response with protein expression levels of the E. coli PhoB/PhoR two-component system (TCS. In response to phosphate (Pi-depletion, the PhoB/PhoR system activates genes involved in phosphorus assimilation as well as genes encoding themselves, similarly to many other positively autoregulated TCSs. We developed a bacteria competition assay in continuous cultures and discovered that different Pi conditions have conflicting requirements of protein expression levels for optimal cell fitness. Pi-replete conditions favored cells with low levels of PhoB/PhoR while Pi-deplete conditions selected for cells with high levels of PhoB/PhoR. These two levels matched PhoB/PhoR concentrations achieved via positive autoregulation in wild-type cells under Pi-replete and -deplete conditions, respectively. The fitness optimum correlates with the wild-type expression level, above which the phosphorylation output saturates, thus further increase in expression presumably provides no additional benefits. Laboratory evolution experiments further indicate that cells with non-ideal protein levels can evolve toward the optimal levels with diverse mutational strategies. Our results suggest that the natural

  19. Scanning Electron Microscope Analysis System

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides the capability to examine surfaces microscopically with high resolution (5 nanometers), perform micro chemical analyses of these surfaces, and...

  20. The deuteron microscopic optical potential

    International Nuclear Information System (INIS)

    Lu Congshan; Zhang Jingshang; Shen Qingbiao

    1991-01-01

    The two particle Green's function is introduced. When the direct interaction between two nucleons is neglected, the first and second order mass operators of two particles are the sum of those for each particle. The nucleon microscopic optical potential is calculated by applying nuclear matter approximation and effective Skyrme interaction. Then the deuteron microscopic optical potential (DMOP) is calculated by using fold formula. For improvement of the theory, the two particle polarization diagram contribution to the imaginary part of the deuteron microscopic optical potential is studied

  1. Frequency division multiplexed multi-color fluorescence microscope system

    Science.gov (United States)

    Le, Vu Nam; Yang, Huai Dong; Zhang, Si Chun; Zhang, Xin Rong; Jin, Guo Fan

    2017-10-01

    Grayscale camera can only obtain gray scale image of object, while the multicolor imaging technology can obtain the color information to distinguish the sample structures which have the same shapes but in different colors. In fluorescence microscopy, the current method of multicolor imaging are flawed. Problem of these method is affecting the efficiency of fluorescence imaging, reducing the sampling rate of CCD etc. In this paper, we propose a novel multiple color fluorescence microscopy imaging method which based on the Frequency division multiplexing (FDM) technology, by modulating the excitation lights and demodulating the fluorescence signal in frequency domain. This method uses periodic functions with different frequency to modulate amplitude of each excitation lights, and then combine these beams for illumination in a fluorescence microscopy imaging system. The imaging system will detect a multicolor fluorescence image by a grayscale camera. During the data processing, the signal obtained by each pixel of the camera will be processed with discrete Fourier transform, decomposed by color in the frequency domain and then used inverse discrete Fourier transform. After using this process for signals from all of the pixels, monochrome images of each color on the image plane can be obtained and multicolor image is also acquired. Based on this method, this paper has constructed and set up a two-color fluorescence microscope system with two excitation wavelengths of 488 nm and 639 nm. By using this system to observe the linearly movement of two kinds of fluorescent microspheres, after the data processing, we obtain a two-color fluorescence dynamic video which is consistent with the original image. This experiment shows that the dynamic phenomenon of multicolor fluorescent biological samples can be generally observed by this method. Compared with the current methods, this method can obtain the image signals of each color at the same time, and the color video's frame

  2. Quantification of the level descriptors for the standard EQ-5D three-level system and a five-level version according to two methods

    NARCIS (Netherlands)

    Janssen, M. F.; Birnie, E.; Bonsel, G. J.

    2008-01-01

    OBJECTIVES: Our aim was to compare the quantitative position of the level descriptors of the standard EQ-5D three-level system (3L) and a newly developed, experimental five-level version (5L) using a direct and a vignette-based indirect method. METHODS: Eighty-two respondents took part in the study.

  3. Multi-wavelength study of PPDs using an OPO tunable pulse laser microscope system

    International Nuclear Information System (INIS)

    Yoshimura, Koji; Nakamura, Isamu

    2012-01-01

    We have developed a new pulsed laser microscope system whose wavelength is continuously tunable from 410 nm to 2200 nm by using an optical parametric oscillator (OPO) laser system. The laser spot can be focused to ∼2μm diameter, small enough to measure pixel-by-pixel performance of PPDs (pixelated photon detectors). Using multi-wavelength laser light, we plan to probe PPDs at various depths, thanks to their different penetration lengths in the silicon layer. In this paper, details of the commissioning of the laser microscope system and pilot measurements on a PPD at several wavelengths will be presented.

  4. Multi-wavelength study of PPDs using an OPO tunable pulse laser microscope system

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Koji, E-mail: koji.yoshimura@kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nakamura, Isamu [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2012-12-11

    We have developed a new pulsed laser microscope system whose wavelength is continuously tunable from 410 nm to 2200 nm by using an optical parametric oscillator (OPO) laser system. The laser spot can be focused to {approx}2{mu}m diameter, small enough to measure pixel-by-pixel performance of PPDs (pixelated photon detectors). Using multi-wavelength laser light, we plan to probe PPDs at various depths, thanks to their different penetration lengths in the silicon layer. In this paper, details of the commissioning of the laser microscope system and pilot measurements on a PPD at several wavelengths will be presented.

  5. Microscopic modeling of photoluminescence of strongly disordered semiconductors

    International Nuclear Information System (INIS)

    Bozsoki, P.; Kira, M.; Hoyer, W.; Meier, T.; Varga, I.; Thomas, P.; Koch, S.W.

    2007-01-01

    A microscopic theory for the luminescence of ordered semiconductors is modified to describe photoluminescence of strongly disordered semiconductors. The approach includes both diagonal disorder and the many-body Coulomb interaction. As a case study, the light emission of a correlated plasma is investigated numerically for a one-dimensional two-band tight-binding model. The band structure of the underlying ordered system is assumed to correspond to either a direct or an indirect semiconductor. In particular, luminescence and absorption spectra are computed for various levels of disorder and sample temperature to determine thermodynamic relations, the Stokes shift, and the radiative lifetime distribution

  6. Feedback controlled dephasing and population relaxation in a two-level system

    International Nuclear Information System (INIS)

    Wang Jin

    2009-01-01

    This Letter presents the maximum achievable stability and purity that can be obtained in a two-level system with both dephasing and population relaxation processes by using homodyne-mediated feedback control. An analytic formula giving the optimal amplitudes of the driving and feedback for the steady-state is also presented. Experimental examples are used to show the importance of controlling the dephasing process.

  7. Probe-Hole Field Emission Microscope System Controlled by Computer

    Science.gov (United States)

    Gong, Yunming; Zeng, Haishan

    1991-09-01

    A probe-hole field emission microscope system, controlled by an Apple II computer, has been developed and operated successfully for measuring the work function of a single crystal plane. The work functions on the clean W(100) and W(111) planes are measured to be 4.67 eV and 4.45 eV, respectively.

  8. Numerical Investigation of the Microscopic Heat Current Inside a Nanofluid System Based on Molecular Dynamics Simulation and Wavelet Analysis.

    Science.gov (United States)

    Jia, Tao; Gao, Di

    2018-04-03

    Molecular dynamics simulation is employed to investigate the microscopic heat current inside an argon-copper nanofluid. Wavelet analysis of the microscopic heat current inside the nanofluid system is conducted. The signal of the microscopic heat current is decomposed into two parts: one is the approximation part; the other is the detail part. The approximation part is associated with the low-frequency part of the signal, and the detail part is associated with the high-frequency part of the signal. Both the probability distributions of the high-frequency and the low-frequency parts of the signals demonstrate Gaussian-like characteristics. The curves fit to data of the probability distribution of the microscopic heat current are established, and the parameters including the mean value and the standard deviation in the mathematical formulas of the curves show dramatic changes for the cases before and after adding copper nanoparticles into the argon base fluid.

  9. Scanning Electron Microscopic Evaluation of Residual Smear Layer Following Preparation of Curved Root Canals Using Hand Instrumentation or Two Engine-Driven Systems.

    Science.gov (United States)

    Khademi, Abbasali; Saatchi, Masoud; Shokouhi, Mohammad Mehdi; Baghaei, Badri

    2015-01-01

    In this experimental study, the amount of smear layer (SL) remnants in curved root canals after chemomechanical instrumentation with two engine-driven systems or hand instrumentation was evaluated. Forty-eight mesiobuccal roots of mandibular first molars with curvatures ranging between 25 and 35 degrees (according to Schneider's method) were divided into three groups (n=16) which were prepared by either the ProTaper Universal file series, Reciproc single file system or hand instrumentation. The canals were intermittently irrigated with 5.25% NaOCl and 17% (ethylenediaminetetraacetic acid) EDTA, followed by distilled water as the final rinse. The roots were split longitudinally and the apical third of the specimens were evaluated under 2500× magnification with a scanning electron microscope (SEM). The mean scores of the SL were calculated and analyzed using the non-parametric Kruskal-Wallis and Mann-Whitney U tests. The mean scores of the SL were 2.00±0.73, 1.94±0.68 and 1.44±0.63 µm for the ProTaper Universal, Reciproc and hand instrumentation, respectively. Mean score of SL was significantly less in the hand instrumentation group than the ProTaper (P=0.027) and Reciproc (P=0.035) groups. The difference between the two engine-driven systems, however, was not significant (P=0.803). The amount of smear layer in the apical third of curved root canals prepared with both engine-driven systems was similar and greater than the hand instrumentation technique. Complete cleanliness was not attained.

  10. Automatic segmentation of Leishmania parasite in microscopic images using a modified CV level set method

    Science.gov (United States)

    Farahi, Maria; Rabbani, Hossein; Talebi, Ardeshir; Sarrafzadeh, Omid; Ensafi, Shahab

    2015-12-01

    Visceral Leishmaniasis is a parasitic disease that affects liver, spleen and bone marrow. According to World Health Organization report, definitive diagnosis is possible just by direct observation of the Leishman body in the microscopic image taken from bone marrow samples. We utilize morphological and CV level set method to segment Leishman bodies in digital color microscopic images captured from bone marrow samples. Linear contrast stretching method is used for image enhancement and morphological method is applied to determine the parasite regions and wipe up unwanted objects. Modified global and local CV level set methods are proposed for segmentation and a shape based stopping factor is used to hasten the algorithm. Manual segmentation is considered as ground truth to evaluate the proposed method. This method is tested on 28 samples and achieved 10.90% mean of segmentation error for global model and 9.76% for local model.

  11. Integration of supercapacitive storage in renewable energy system to compare the response of two level and five level inverter with RL type load

    Science.gov (United States)

    Jana, Suman; Biswas, Pabitra Kumar; Das, Upama

    2018-04-01

    The analytical and simulation-based study in this presented paper shows a comparative report between two level inverter and five-level inverter with the integration of Supercapacitive storage in Renewable Energy system. Sometime dependent numerical models are used to measure the voltage and current response of two level and five level inverter in MATLAB Simulink based environment. In this study supercapacitive sources, which are fed by solar cells are used as input sources to experiment the response of multilevel inverter with integration of su-percapacitor as a storage device of Renewable Energy System. The RL load is used to compute the time response in MATLABSimulink based environment. With the simulation results a comparative study has been made of two different level types of inverters. Two basic types of inverter are discussed in the study with reference to their electrical behavior. It is also simulated that multilevel inverter can convert stored energy within supercapacitor which is extracted from Renewable Energy System.

  12. Application of a new MR Microscope using an Independent Console System (MRMICS) for biological tissues in vitro

    International Nuclear Information System (INIS)

    Yoshioka, Hiroshi; Anno, Izumi; Itai, Yuji; Haishi, Tomoyuki; Adachi, Naotaka; Kose, Katsumi

    1999-01-01

    We studied microscopic MR images of the normal appendix in vitro using a new MR microscope system: MR Microscope using an Independent Console System (MRMICS). The MRMICS was placed in the clinical MR room, and the probe box was fixed on the bed of the 1.5 T clinical MR machine. T1-, T2-, and proton density-weighted images were obtained using spin echo sequences with an in-plane pixel size of 100 x 100 μm. Zonal structures of the appendix were clearly demonstrated with different contrast by different sequences. Therefore, the MRMICS is a useful add-on system for investigating microscopic MR images of biological tissues in vitro. (author)

  13. Application of a new MR Microscope using an Independent Console System (MRMICS) for biological tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hiroshi; Anno, Izumi; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Haishi, Tomoyuki; Adachi, Naotaka; Kose, Katsumi

    1999-02-01

    We studied microscopic MR images of the normal appendix in vitro using a new MR microscope system: MR Microscope using an Independent Console System (MRMICS). The MRMICS was placed in the clinical MR room, and the probe box was fixed on the bed of the 1.5 T clinical MR machine. T1-, T2-, and proton density-weighted images were obtained using spin echo sequences with an in-plane pixel size of 100 x 100 {mu}m. Zonal structures of the appendix were clearly demonstrated with different contrast by different sequences. Therefore, the MRMICS is a useful add-on system for investigating microscopic MR images of biological tissues in vitro. (author)

  14. A transmission positron microscope and a scanning positron microscope being built at KEK, Japan

    International Nuclear Information System (INIS)

    Doyama, M.; Inoue, M.; Kogure, Y.; Kurihara, T.; Yagishita, A.; Shidara, T.; Nakahara, K.; Hayashi, Y.; Yoshiie, T.

    2001-01-01

    This paper reports the plans of positron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan improving used electron microscopes. The kinetic energies of positron produced by accelerators or by nuclear decays have not a unique value but show a spread over in a wide range. Positron beam will be guided near electron microscopes, a transmission electron microscope (JEM100S) and a scanning electron microscope (JSM25S). Positrons are slowed down by a tungsten foil, accelerated and focused on a nickel sheet. The monochromatic focused beam will be injected into an electron microscope. The focusing of positrons and electrons is achieved by magnetic system of the electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (orig.)

  15. Understanding of phase modulation in two-level systems through inverse scattering

    International Nuclear Information System (INIS)

    Hasenfeld, A.; Hammes, S.L.; Warren, W.S.

    1988-01-01

    Analytical and numerical calculations describe the effects of shaped radiation pulses on two-level systems in terms of quantum-mechanical scattering. Previous results obtained in the reduced case of amplitude modulation are extended to the general case of simultaneous amplitude and phase modulation. We show that an infinite family of phase- and amplitude-modulated pulses all generate rectangular inversion profiles. Experimental measurements also verify the theoretical analysis

  16. Designs for a quantum electron microscope.

    Science.gov (United States)

    Kruit, P; Hobbs, R G; Kim, C-S; Yang, Y; Manfrinato, V R; Hammer, J; Thomas, S; Weber, P; Klopfer, B; Kohstall, C; Juffmann, T; Kasevich, M A; Hommelhoff, P; Berggren, K K

    2016-05-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This 'quantum weirdness' could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or "quantum electron microscope". A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. A Two-Level Task Scheduler on Multiple DSP System for OpenCL

    Directory of Open Access Journals (Sweden)

    Li Tian

    2014-04-01

    Full Text Available This paper addresses the problem that multiple DSP system does not support OpenCL programming. With the compiler, runtime, and the kernel scheduler proposed, an OpenCL application becomes portable not only between multiple CPU and GPU, but also between embedded multiple DSP systems. Firstly, the LLVM compiler was imported for source-to-source translation in which the translated source was supported by CCS. Secondly, two-level schedulers were proposed to support efficient OpenCL kernel execution. The DSP/BIOS is used to schedule system level tasks such as interrupts and drivers; however, the synchronization mechanism resulted in heavy overhead during task switching. So we designed an efficient second level scheduler especially for OpenCL kernel work-item scheduling. The context switch process utilizes the 8 functional units and cross path links which was superior to DSP/BIOS in the aspect of task switching. Finally, dynamic loading and software managed CACHE were redesigned for OpenCL running on multiple DSP system. We evaluated the performance using some common OpenCL kernels from NVIDIA, AMD, NAS, and Parboil benchmarks. Experimental results show that the DSP OpenCL can efficiently exploit the computing resource of multiple cores.

  18. Macroscopic transport equations in many-body systems from microscopic exclusion processes in disordered media: a review

    Directory of Open Access Journals (Sweden)

    Marta Galanti

    2016-08-01

    Full Text Available Describing particle transport at the macroscopic or mesoscopic level in non-ideal environments poses fundamental theoretical challenges in domains ranging from inter and intra-cellular transport in biology to diffusion in porous media. Yet, often the nature of the constraints coming from many-body interactions or reflecting a complex and confining environment are better understood and modeled at the microscopic level.In this paper we review the subtle link between microscopic exclusion processes and the mean-field equations that ensue from them in the continuum limit. We show that in an inhomogeneous medium, i.e. when jumps are controlled by site-dependent hopping rates, one can obtain three different nonlinear advection-diffusion equations in the continuum limit, suitable for describing transport in the presence of quenched disorder and external fields, depending on the particular rule embodying site inequivalence at the microscopic level. In a situation that might be termed point-like scenario, when particles are treated as point-like objects, the effect of crowding as imposed at the microscopic level manifests in the mean-field equations only if some degree of inhomogeneity is enforced into the model. Conversely, when interacting agents are assigned a finite size, under the more realistic extended crowding framework, exclusion constraints persist in the unbiased macroscopic representation.

  19. High-Definition 3D Stereoscopic Microscope Display System for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Yoo Kwan-Hee

    2010-01-01

    Full Text Available Biomedical research has been performed by using advanced information techniques, and micro-high-quality stereo images have been used by researchers and/or doctors for various aims in biomedical research and surgery. To visualize the stereo images, many related devices have been developed. However, the devices are difficult to learn for junior doctors and demanding to supervise for experienced surgeons. In this paper, we describe the development of a high-definition (HD three-dimensional (3D stereoscopic imaging display system for operating a microscope or experimenting on animals. The system consists of a stereoscopic camera part, image processing device for stereoscopic video recording, and stereoscopic display. In order to reduce eyestrain and viewer fatigue, we use a preexisting stereo microscope structure and polarized-light stereoscopic display method that does not reduce the quality of the stereo images. The developed system can overcome the discomfort of the eye piece and eyestrain caused by use over a long period of time.

  20. Microscopic Electron Dynamics in Metal Nanoparticles for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Katarzyna Kluczyk

    2018-06-01

    Full Text Available Nanoparticles—regularly patterned or randomly dispersed—are a key ingredient for emerging technologies in photonics. Of particular interest are scattering and field enhancement effects of metal nanoparticles for energy harvesting and converting systems. An often neglected aspect in the modeling of nanoparticles are light interaction effects at the ultimate nanoscale beyond classical electrodynamics. Those arise from microscopic electron dynamics in confined systems, the accelerated motion in the plasmon oscillation and the quantum nature of the free electron gas in metals, such as Coulomb repulsion and electron diffusion. We give a detailed account on free electron phenomena in metal nanoparticles and discuss analytic expressions stemming from microscopic (Random Phase Approximation—RPA and semi-classical (hydrodynamic theories. These can be incorporated into standard computational schemes to produce more reliable results on the optical properties of metal nanoparticles. We combine these solutions into a single framework and study systematically their joint impact on isolated Au, Ag, and Al nanoparticles as well as dimer structures. The spectral position of the plasmon resonance and its broadening as well as local field enhancement show an intriguing dependence on the particle size due to the relevance of additional damping channels.

  1. Optical forces, torques, and force densities calculated at a microscopic level using a self-consistent hydrodynamics method

    Science.gov (United States)

    Ding, Kun; Chan, C. T.

    2018-04-01

    The calculation of optical force density distribution inside a material is challenging at the nanoscale, where quantum and nonlocal effects emerge and macroscopic parameters such as permittivity become ill-defined. We demonstrate that the microscopic optical force density of nanoplasmonic systems can be defined and calculated using the microscopic fields generated using a self-consistent hydrodynamics model that includes quantum, nonlocal, and retardation effects. We demonstrate this technique by calculating the microscopic optical force density distributions and the optical binding force induced by external light on nanoplasmonic dimers. This approach works even in the limit when the nanoparticles are close enough to each other so that electron tunneling occurs, a regime in which classical electromagnetic approach fails completely. We discover that an uneven distribution of optical force density can lead to a light-induced spinning torque acting on individual particles. The hydrodynamics method offers us an accurate and efficient approach to study optomechanical behavior for plasmonic systems at the nanoscale.

  2. An interchangeable scanning Hall probe/scanning SQUID microscope

    International Nuclear Information System (INIS)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin; Chen, Tse-Jun; Wang, M. J.; Ling, D. C.; Chi, C. C.; Chen, Jeng-Chung

    2014-01-01

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10 −7 T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La 2/3 Ca 1/3 MnO 3 thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K

  3. Digital management of an electron microscope unit

    International Nuclear Information System (INIS)

    Elea, N.; Dickson, M.; Munroe, P.

    2002-01-01

    Full text: Electron microscope units, especially those such as ours, which operate as a central infrastructural facility are increasingly asked to provide more service, over more instruments with decreasing, or limited, financial resources. We believe that staff time is best used performing electron microscopy, assisting users and maintaining instrumentation rather than in the pursuit of red tape. One solution to this problem has been the creation of a control system which performs all routine acts of data management, such as the archiving and accessing of digital data, providing access to bookings, and most importantly in the era of user pays services, logging time and billing users. The system we have created, developed and expanded allows the users themselves to access our server through any web-browser and make their own bookings or access and manipulate their data. Users themselves must log on to a microscope through swipecard readers before it can be used and log-off after use. Their time is logged precisely and an exquisitely fair user pays systems can be operated by transferring logged usage time to spreadsheets to calculate charges. Furthermore, this system acts as a method of user authentication and can be used to bar incompetent or unauthorised users. The system has recently been upgraded to increase its utility to include sensors that monitor the electron microscope operating environment, such as magnetic field, room temperature, water flow etc, so that if these parameters depart significantly from optimum levels electron microscope unit staff may be alerted. In this presentation the structure of our system will be described and the advantages and disadvantages of such a system will be discussed. Copyright (2002) Australian Society for Electron Microscopy Inc

  4. Relaxation dynamics of a driven two-level system coupled to a Bose-Einstein condensate: application to quantum dot-dipolar exciton gas hybrid systems.

    Science.gov (United States)

    Kovalev, Vadim M; Tse, Wang-Kong

    2017-11-22

    We develop a microscopic theory for the relaxation dynamics of an optically pumped two-level system (TLS) coupled to a bath of weakly interacting Bose gas. Using Keldysh formalism and diagrammatic perturbation theory, expressions for the relaxation times of the TLS Rabi oscillations are derived when the boson bath is in the normal state and the Bose-Einstein condensate (BEC) state. We apply our general theory to consider an irradiated quantum dot coupled with a boson bath consisting of a two-dimensional dipolar exciton gas. When the bath is in the BEC regime, relaxation of the Rabi oscillations is due to both condensate and non-condensate fractions of the bath bosons for weak TLS-light coupling and pre dominantly due to the non-condensate fraction for strong TLS-light coupling. Our theory also shows that a phase transition of the bath from the normal to the BEC state strongly influences the relaxation rate of the TLS Rabi oscillations. The TLS relaxation rate is approximately independent of the pump field frequency and monotonically dependent on the field strength when the bath is in the low-temperature regime of the normal phase. Phase transition of the dipolar exciton gas leads to a non-monotonic dependence of the TLS relaxation rate on both the pump field frequency and field strength, providing a characteristic signature for the detection of BEC phase transition of the coupled dipolar exciton gas.

  5. Designs for a quantum electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kruit, P., E-mail: p.kruit@tudelft.nl [Department of Imaging Physics, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands); Hobbs, R.G.; Kim, C-S.; Yang, Y.; Manfrinato, V.R. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hammer, J.; Thomas, S.; Weber, P. [Department of Physics, Friedrich Alexander University Erlangen-Nürnberg (FAU), Staudtstrasse 1, d-91058 Erlangen (Germany); Klopfer, B.; Kohstall, C.; Juffmann, T.; Kasevich, M.A. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Hommelhoff, P. [Department of Physics, Friedrich Alexander University Erlangen-Nürnberg (FAU), Staudtstrasse 1, d-91058 Erlangen (Germany); Berggren, K.K. [Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-05-15

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This ‘quantum weirdness’ could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or “quantum electron microscope”. A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. - Highlights: • Quantum electron microscopy has the potential of reducing radiation damage. • QEM requires a fraction of the electron wave to pass through the sample

  6. Designs for a quantum electron microscope

    International Nuclear Information System (INIS)

    Kruit, P.; Hobbs, R.G.; Kim, C-S.; Yang, Y.; Manfrinato, V.R.; Hammer, J.; Thomas, S.; Weber, P.; Klopfer, B.; Kohstall, C.; Juffmann, T.; Kasevich, M.A.; Hommelhoff, P.; Berggren, K.K.

    2016-01-01

    One of the astounding consequences of quantum mechanics is that it allows the detection of a target using an incident probe, with only a low probability of interaction of the probe and the target. This ‘quantum weirdness’ could be applied in the field of electron microscopy to generate images of beam-sensitive specimens with substantially reduced damage to the specimen. A reduction of beam-induced damage to specimens is especially of great importance if it can enable imaging of biological specimens with atomic resolution. Following a recent suggestion that interaction-free measurements are possible with electrons, we now analyze the difficulties of actually building an atomic resolution interaction-free electron microscope, or “quantum electron microscope”. A quantum electron microscope would require a number of unique components not found in conventional transmission electron microscopes. These components include a coherent electron beam-splitter or two-state-coupler, and a resonator structure to allow each electron to interrogate the specimen multiple times, thus supporting high success probabilities for interaction-free detection of the specimen. Different system designs are presented here, which are based on four different choices of two-state-couplers: a thin crystal, a grating mirror, a standing light wave and an electro-dynamical pseudopotential. Challenges for the detailed electron optical design are identified as future directions for development. While it is concluded that it should be possible to build an atomic resolution quantum electron microscope, we have also identified a number of hurdles to the development of such a microscope and further theoretical investigations that will be required to enable a complete interpretation of the images produced by such a microscope. - Highlights: • Quantum electron microscopy has the potential of reducing radiation damage. • QEM requires a fraction of the electron wave to pass through the sample

  7. A "two-objective, one-area" procedure in absorption microphotometry and its application using an inverted microscope.

    Science.gov (United States)

    Chaubal, K A

    1988-08-01

    A 'two-objective, one-area' method and related equations are suggested to measure absorbance of microscopic stained objects. In such work, the measuring field invariably includes an image of the object and some clear area surrounding the image. The total intensity in the two areas is measured photometrically, using two different objectives, and substituted in the equation for absorbance. The equation is independent of the term representing intensity from the clear area and hence the error in the measurement of absorbance is reduced. The limitations of the 'two-objective, one-area' method are discussed and its pragmatic operation described with an experimental setup involving an inverted microscope. The method permits measurement of intensity in a part of a stained cell while the rest of the cell remains in the field of view. The method is applied to measure absorbance in Giemsa stained ascites cells and Feulgen stained liver and Human Amnion cells.

  8. Development of Scanning-Imaging X-Ray Microscope for Quantitative Three-Dimensional Phase Contrast Microimaging

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Suzuki, Yoshio; Uesugi, Kentaro

    2013-01-01

    A novel x-ray microscope system has been developed for the purpose of quantitative and sensitive three-dimensional (3D) phase-contrast x-ray microimaging. The optical system is a hybrid that consists of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. These two optics are orthogonally arranged regarding their common optical axis. Each is used for forming each dimension of two-dimensional (2D) image. The same data acquisition process as that of the scanning microscope system enables quantitative and sensitive x-ray imaging such as phase contrast and absorption contrast. Because a 2D image is measured with only 1D translation scan, much shorter measurement time than that of conventional scanning optics has been realized. By combining a computed tomography (CT) technique, some 3D CT application examples are demonstrated

  9. The compound microscope: optical tube length or parfocalization?

    International Nuclear Information System (INIS)

    Simon, J M; Comastri, S A

    2005-01-01

    In various well-known textbooks for undergraduate students of physics, the compound microscope is described as having a standardized 'optical tube length'. On the other hand, in order to fulfil the parfocalization condition required by the human visual system to understand the relation between what is viewed with and without the microscope, the distance between the object and its image through the objective must remain constant as objectives are interchanged. In this paper, we show that these two requirements are not compatible in microscopes containing a revolver with various objectives and that the 'optical tube length' (which differs from the mechanical tube length) cannot be standardized. Moreover, we consider the Deutsche Industrie Norm (DIN) and the Japanese Industry Standards (JIS) norms employed in the microscope industry for standardization of the object-to-intermediate image distance, the parfocal distance and the mechanical tube length

  10. Mobile microscope complex GIB-1

    International Nuclear Information System (INIS)

    Belyakov, A.V.; Gorbachev, A.N.

    2002-01-01

    To study microstructure in operating pipelines of power units a mobile microscope system is developed and successfully used. The system includes a portable microscope, a monitor, power supply and a portable computer. The monitor is used for surveying images from a video camera mounted on the microscope. The magnification on visual examination constitutes x 100 and x 500. Diameters of pipelines examined should not be less than 130 mm. Surface preparation for microstructural studies includes routine mechanical rough grinding and polishing with subsequent etching [ru

  11. Design of an imaging microscope for soft X-ray applications

    Science.gov (United States)

    Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    1988-01-01

    An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.

  12. Comprehensive solutions to the Bloch equations and dynamical models for open two-level systems

    Science.gov (United States)

    Skinner, Thomas E.

    2018-01-01

    The Bloch equation and its variants constitute the fundamental dynamical model for arbitrary two-level systems. Many important processes, including those in more complicated systems, can be modeled and understood through the two-level approximation. It is therefore of widespread relevance, especially as it relates to understanding dissipative processes in current cutting-edge applications of quantum mechanics. Although the Bloch equation has been the subject of considerable analysis in the 70 years since its inception, there is still, perhaps surprisingly, significant work that can be done. This paper extends the scope of previous analyses. It provides a framework for more fully understanding the dynamics of dissipative two-level systems. A solution is derived that is compact, tractable, and completely general, in contrast to previous results. Any solution of the Bloch equation depends on three roots of a cubic polynomial that are crucial to the time dependence of the system. The roots are typically only sketched out qualitatively, with no indication of their dependence on the physical parameters of the problem. Degenerate roots, which modify the solutions, have been ignored altogether. Here the roots are obtained explicitly in terms of a single real-valued root that is expressed as a simple function of the system parameters. For the conventional Bloch equation, a simple graphical representation of this root is presented that makes evident the explicit time dependence of the system for each point in the parameter space. Several intuitive, visual models of system dynamics are developed. A Euclidean coordinate system is identified in which any generalized Bloch equation is separable, i.e., the sum of commuting rotation and relaxation operators. The time evolution in this frame is simply a rotation followed by relaxation at modified rates that play a role similar to the standard longitudinal and transverse rates. These rates are functions of the applied field, which

  13. Impurity states in two - and three-dimensional disordered systems

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-01-01

    We investigate the microscopic structure of the impurity states in two-and three-dimensional (2D and 3d) disordered systems. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  14. Impurity states in two-and three-dimensional disordered systems

    International Nuclear Information System (INIS)

    Silva, A.F. da; Fabbri, M.

    1984-04-01

    The microscopic structure of the impurity states in two-and three-dimensional (2D and 3D) disordered systems is investigated. A cluster model is outlined for the donor impurity density of states (DIDS) of doped semiconductors. It is shown that the impurity states are very sensitive to a change in the dimensionality of the system, i.e., from 3D to 2D system. It is found that all eigenstates become localized in 2D disordered system for a large range of concentration. (Author) [pt

  15. Dual-mode optical microscope based on single-pixel imaging

    OpenAIRE

    Rodríguez Jiménez, Angel David; Clemente Pesudo, Pedro Javier; Tajahuerce, Enrique; Lancis Sáez, Jesús

    2016-01-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD...

  16. Manipulation of magnetic Skyrmions with a Scanning Tunneling Microscope

    OpenAIRE

    Wieser, R.

    2016-01-01

    The dynamics of a single magnetic Skyrmion in an atomic spin system under the influence of Scanning Tunneling Microscope is investigated by computer simulations solving the Landau-Lifshitz-Gilbert equation. Two possible scenarios are described: manipulation with aid of a spin-polarized tunneling current and by an electric field created by the scanning tunneling microscope. The dynamics during the creation and annihilation process is studied and the possibility to move single Skyrmions is showed.

  17. Wolter x-ray microscope calibration

    International Nuclear Information System (INIS)

    Gerassimenko, M.

    1986-06-01

    A 22 x Wolter microscope was calibrated after several months of operation in the Lawrence Livermore National laboratory (LLNL) Inertial Confinement Fusion program. Placing a point x-ray source at the microscope focus, I recorded the image plane spectrum, as well as the direct spectrum, and from the ratio of these two spectra derived an accurate estimate of the microscope solid angle in the 1 to 4 keV range. The solid angle was also calculated using the microscope geometry and composition. Comparison of this calculated value with the solid angle that was actually measured suggests contamination of the microscope surface

  18. Wolter x-ray microscope calibration

    International Nuclear Information System (INIS)

    Gerassimenko, M.

    1986-01-01

    A 22 x Wolter microscope was calibrated after several months of operation in the Lawrence Livermore National Laboratory (LLNL) Inertial Confinement Fusion program. Placing a point x-ray source at the microscope focus, I recorded the image plane spectrum, as well as the direct spectrum, and from the ratio of these two spectra derived an accurate estimate of the microscope solid angle in the 1-4 keV range. The solid angle was also calculated using the microscope geometry and composition. Comparison of this calculated value with the solid angle that was actually measured suggests contamination of the microscope surface

  19. Two-zone model for the broadband Crab nebula spectrum: microscopic interpretation

    Directory of Open Access Journals (Sweden)

    Fraschetti F.

    2017-01-01

    Full Text Available We develop a simple two-zone interpretation of the broadband baseline Crab nebula spectrum between 10−5 eV and ~ 100 TeV by using two distinct log-parabola energetic electrons distributions. We determine analytically the very-high energy photon spectrum as originated by inverse-Compton scattering of the far-infrared soft ambient photons within the nebula off a first population of electrons energized at the nebula termination shock. The broad and flat 200 GeV peak jointly observed by Fermi/LAT and MAGIC is naturally reproduced. The synchrotron radiation from a second energetic electron population explains the spectrum from the radio range up to ~ 10 keV. We infer from observations the energy dependence of the microscopic probability of remaining in proximity of the shock of the accelerating electrons.

  20. Design and performance of an ultra-flexible two-photon microscope for in vivo research

    Science.gov (United States)

    Mayrhofer, Johannes M.; Haiss, Florent; Haenni, Dominik; Weber, Stefan; Zuend, Marc; Barrett, Matthew J. P.; Ferrari, Kim David; Maechler, Philipp; Saab, Aiman S.; Stobart, Jillian L.; Wyss, Matthias T.; Johannssen, Helge; Osswald, Harald; Palmer, Lucy M.; Revol, Vincent; Schuh, Claus-Dieter; Urban, Claus; Hall, Andrew; Larkum, Matthew E.; Rutz-Innerhofer, Edith; Zeilhofer, Hanns Ulrich; Ziegler, Urs; Weber, Bruno

    2015-01-01

    We present a cost-effective in vivo two-photon microscope with a highly flexible frontend for in vivo research. Our design ensures fast and reproducible access to the area of interest, including rotation of imaging plane, and maximizes space for auxiliary experimental equipment in the vicinity of the animal. Mechanical flexibility is achieved with large motorized linear stages that move the objective in the X, Y, and Z directions up to 130 mm. 360° rotation of the frontend (rotational freedom for one axis) is achieved with the combination of a motorized high precision bearing and gearing. Additionally, the modular design of the frontend, based on commercially available optomechanical parts, allows straightforward updates to future scanning technologies. The design exceeds the mobility of previous movable microscope designs while maintaining high optical performance. PMID:26600989

  1. Electron irradiation-induced destruction of carbon nanotubes in electron microscopes

    International Nuclear Information System (INIS)

    Molhave, Kristian; Gudnason, Sven Bjarke; Pedersen, Anders Tegtmeier; Clausen, Casper Hyttel; Horsewell, Andy; Boggild, Peter

    2007-01-01

    Observations of carbon nanotubes under exposure to electron beam irradiation in standard transmission electron microscope (TEM) and scanning electron microscope (SEM) systems show that such treatment in some cases can cause severe damage of the nanotube structure, even at electron energies far below the approximate 100 keV threshold for knock-on damage displacing carbon atoms in the graphene structure. We find that the damage we observe in one TEM can be avoided by use of a cold finger. This and the morphology of the damage imply that water vapour, which is present as a background gas in many vacuum chambers, can damage the nanotube structure through electron beam-induced chemical reactions. Though, the dependence on the background gas makes these observations specific for the presently used systems, the results demonstrate the importance of careful assessment of the level of subtle structural damage that the individual electron microscope system can do to nanostructures during standard use

  2. A new computerized moving stage for optical microscopes

    Science.gov (United States)

    Hatiboglu, Can Ulas; Akin, Serhat

    2004-06-01

    Measurements of microscope stage movements in the x and y directions are of importance for some stereological methods. Traditionally, the length of stage movements is measured with differing precision and accuracy using a suitable motorized stage, a microscope and software. Such equipment is generally expensive and not readily available in many laboratories. One other challenging problem is the adaptability to available microscope systems which weakens the possibility of the equipment to be used with any kind of light microscope. This paper describes a simple and cheap programmable moving stage that can be used with the available microscopes in the market. The movements of the stage are controlled by two servo-motors and a controller chip via a Java-based image processing software. With the developed motorized stage and a microscope equipped with a CCD camera, the software allows complete coverage of the specimens with minimum overlap, eliminating the optical strain associated with counting hundreds of images through an eyepiece, in a quick and precise fashion. The uses and the accuracy of the developed stage are demonstrated using thin sections obtained from a limestone core plug.

  3. Dynamical Evolution of an Effective Two-Level System with {\\mathscr{P}}{\\mathscr{T}} Symmetry

    Science.gov (United States)

    Du, Lei; Xu, Zhihao; Yin, Chuanhao; Guo, Liping

    2018-05-01

    We investigate the dynamics of parity- and time-reversal (PT ) symmetric two-energy-level atoms in the presence of two optical and a radio-frequency (rf) fields. The strength and relative phase of fields can drive the system from unbroken to broken PT symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of unbroken PT symmetry. At exception point (EP), the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find the emergence of the z components of the fixed points is the feature of the PT symmetry breaking and the projections in x-y plane can be controlled with high flexibility compared with the standard two-level system with PT symmetry. It helps to study the dynamic behavior of the complex PT symmetric model.

  4. Two-dimensional atom localization via probe absorption in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhi-Ping; Ge Qiang; Ruan Yu-Hua; Yu Ben-Li

    2013-01-01

    We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization

  5. On Two-Level State-Dependent Routing Polling Systems with Mixed Service

    Directory of Open Access Journals (Sweden)

    Guan Zheng

    2015-01-01

    Full Text Available Based on priority differentiation and efficiency of the system, we consider an N+1 queues’ single-server two-level polling system which consists of one key queue and N normal queues. The novel contribution of the present paper is that we consider that the server just polls active queues with customers waiting in the queue. Furthermore, key queue is served with exhaustive service and normal queues are served with 1-limited service in a parallel scheduling. For this model, we derive an expression for the probability generating function of the joint queue length distribution at polling epochs. Based on these results, we derive the explicit closed-form expressions for the mean waiting time. Numerical examples demonstrate that theoretical and simulation results are identical and the new system is efficient both at key queue and normal queues.

  6. Two-component multistep direct reactions: A microscopic approach

    International Nuclear Information System (INIS)

    Koning, A.J.; Chadwick, M.B.

    1998-03-01

    The authors present two principal advances in multistep direct theory: (1) A two-component formulation of multistep direct reactions, where neutron and proton excitations are explicitly accounted for in the evolution of the reaction, for all orders of scattering. While this may at first seem to be a formidable task, especially for multistep processes where the many possible reaction pathways becomes large in a two-component formalism, the authors show that this is not so -- a rather simple generalization of the FKK convolution expression 1 automatically generates these pathways. Such considerations are particularly relevant when simultaneously analyzing both neutron and proton emission spectra, which is always important since these processes represent competing decay channels. (2) A new, and fully microscopic, method for calculating MSD cross sections which does not make use of particle-hole state densities but instead directly calculates cross sections for all possible particle-hole excitations (again including an exact book-keeping of the neutron/proton type of the particle and hole at all stages of the reaction) determined from a simple non-interacting shell model. This is in contrast to all previous numerical approaches which sample only a small number of such states to estimate the DWBA strength, and utilize simple analytical formulae for the partial state density, based on the equidistant spacing model. The new approach has been applied, along with theories for multistep compound, compound, and collective reactions, to analyze experimental emission spectra for a range of targets and energies. The authors show that the theory correctly accounts for double-differential nucleon spectra

  7. Microscopic Theory of Transconductivity

    Directory of Open Access Journals (Sweden)

    A. P. Jauho

    1998-01-01

    Full Text Available Measurements of momentum transfer between two closely spaced mesoscopic electronic systems, which couple via Coulomb interaction but where tunneling is inhibited, have proven to be a fruitful method of extracting information about interactions in mesoscopic systems. We report a fully microscopic theory for transconductivity σ12, or, equivalently, momentum transfer rate between the system constituents. Our main formal result expresses the transconductivity in terms of two fluctuation diagrams, which are topologically related, but not equivalent to, the Azlamazov-Larkin and Maki-Thompson diagrams known for superconductivity. In the present paper the magnetic field dependence of σ12 is discussed, and we find that σ12(B is strongly enhanced over its zero field value, and it displays strong features, which can be understood in terms of a competition between density-of-states and screening effects.

  8. An interchangeable scanning Hall probe/scanning SQUID microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chiu-Chun; Lin, Hui-Ting; Wu, Sing-Lin [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Tse-Jun; Wang, M. J. [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan (China); Ling, D. C. [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Chi, C. C.; Chen, Jeng-Chung [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-08-15

    We have constructed a scanning probe microscope for magnetic imaging, which can function as a scanning Hall probe microscope (SHPM) and as a scanning SQUID microscope (SSM). The scanning scheme, applicable to SHPM and SSM, consists of a mechanical positioning (sub) micron-XY stage and a flexible direct contact to the sample without a feedback control system for the Z-axis. With the interchangeable capability of operating two distinct scanning modes, our microscope can incorporate the advantageous functionalities of the SHPM and SSM with large scan range up to millimeter, high spatial resolution (⩽4 μm), and high field sensitivity in a wide range of temperature (4.2 K-300 K) and magnetic field (10{sup −7} T-1 T). To demonstrate the capabilities of the system, we present magnetic images scanned with SHPM and SSM, including a RbFeB magnet and a nickel grid pattern at room temperature, surface magnetic domain structures of a La{sub 2/3}Ca{sub 1/3}MnO{sub 3} thin film at 77 K, and superconducting vortices in a striped niobium film at 4.2 K.

  9. Benchtop and animal validation of a portable fluorescence microscopic imaging system for potential use in cholecystectomy

    Science.gov (United States)

    Ye, Jian; Liu, Guanghui; Liu, Peng; Zhang, Shiwu; Shao, Pengfei; Smith, Zachary J.; Liu, Chenhai; Xu, Ronald X.

    2018-02-01

    We propose a portable fluorescence microscopic imaging system (PFMS) for intraoperative display of biliary structure and prevention of iatrogenic injuries during cholecystectomy. The system consists of a light source module, a camera module, and a Raspberry Pi computer with an LCD. Indocyanine green (ICG) is used as a fluorescent contrast agent for experimental validation of the system. Fluorescence intensities of the ICG aqueous solution at different concentration levels are acquired by our PFMS and compared with those of a commercial Xenogen IVIS system. We study the fluorescence detection depth by superposing different thicknesses of chicken breast on an ICG-loaded agar phantom. We verify the technical feasibility for identifying potential iatrogenic injury in cholecystectomy using a rat model in vivo. The proposed PFMS system is portable, inexpensive, and suitable for deployment in resource-limited settings.

  10. System for optical sorting of microscopic objects

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a system for optical sorting of microscopic objects and corresponding method. An optical detection system (52) is capable of determining the positions of said first and/or said second objects. One or more force transfer units (200, 205, 210, 215) are placed...... in a first reservoir, the one or more force units being suitable for optical momentum transfer. An electromagnetic radiation source (42) yields a radiation beam (31, 32) capable of optically displacing the force transfer units from one position to another within the first reservoir (1R). The force transfer...... units are displaced from positions away from the first objects to positions close to the first objects, and then displacing the first objects via a contact force (300) between the first objects and the force transfer units facilitates an optical sorting of the first objects and the second objects....

  11. New results on order and spacing of levels for two- and three-body systems

    International Nuclear Information System (INIS)

    Grosse, H.; Martin, A.; Richard, J.M.; Taxil, P.

    1987-01-01

    The authors propose sufficient conditions on the potential binding a two-body system to compare; the energy of a state with angular momentum iota+1 to the average of the energies of the neighbouring states with angular momentum iota, the spacings of the successive iota = O excitations. Applications to quarkonium physics are given. The authors also find a condition giving the sign of the parameter Δ controlling the pattern of levels obtained by perturbing the lowest positive parity excitation of a three-body system bound by harmonic oscillator two body forces

  12. Proper alignment of the microscope.

    Science.gov (United States)

    Rottenfusser, Rudi

    2013-01-01

    The light microscope is merely the first element of an imaging system in a research facility. Such a system may include high-speed and/or high-resolution image acquisition capabilities, confocal technologies, and super-resolution methods of various types. Yet more than ever, the proverb "garbage in-garbage out" remains a fact. Image manipulations may be used to conceal a suboptimal microscope setup, but an artifact-free image can only be obtained when the microscope is optimally aligned, both mechanically and optically. Something else is often overlooked in the quest to get the best image out of the microscope: Proper sample preparation! The microscope optics can only do its job when its design criteria are matched to the specimen or vice versa. The specimen itself, the mounting medium, the cover slip, and the type of immersion medium (if applicable) are all part of the total optical makeup. To get the best results out of a microscope, understanding the functions of all of its variable components is important. Only then one knows how to optimize these components for the intended application. Different approaches might be chosen to discuss all of the microscope's components. We decided to follow the light path which starts with the light source and ends at the camera or the eyepieces. To add more transparency to this sequence, the section up to the microscope stage was called the "Illuminating Section", to be followed by the "Imaging Section" which starts with the microscope objective. After understanding the various components, we can start "working with the microscope." To get the best resolution and contrast from the microscope, the practice of "Koehler Illumination" should be understood and followed by every serious microscopist. Step-by-step instructions as well as illustrations of the beam path in an upright and inverted microscope are included in this chapter. A few practical considerations are listed in Section 3. Copyright © 2013 Elsevier Inc. All rights

  13. Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields

    Energy Technology Data Exchange (ETDEWEB)

    Puthumpally-Joseph, Raiju; Charron, Eric [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay (France); Sukharev, Maxim [Science and Mathematics Faculty, College of Letters and Sciences, Arizona State University, Mesa, Arizona 85212 (United States)

    2016-04-21

    We introduce a non-Hermitian Schrödinger-type approximation of optical Bloch equations for two-level systems. This approximation provides a complete and accurate description of the coherence and decoherence dynamics in both weak and strong laser fields at the cost of losing accuracy in the description of populations. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.

  14. Improving Precision and Reducing Runtime of Microscopic Traffic Simulators through Stratified Sampling

    Directory of Open Access Journals (Sweden)

    Khewal Bhupendra Kesur

    2013-01-01

    Full Text Available This paper examines the application of Latin Hypercube Sampling (LHS and Antithetic Variables (AVs to reduce the variance of estimated performance measures from microscopic traffic simulators. LHS and AV allow for a more representative coverage of input probability distributions through stratification, reducing the standard error of simulation outputs. Two methods of implementation are examined, one where stratification is applied to headways and routing decisions of individual vehicles and another where vehicle counts and entry times are more evenly sampled. The proposed methods have wider applicability in general queuing systems. LHS is found to outperform AV, and reductions of up to 71% in the standard error of estimates of traffic network performance relative to independent sampling are obtained. LHS allows for a reduction in the execution time of computationally expensive microscopic traffic simulators as fewer simulations are required to achieve a fixed level of precision with reductions of up to 84% in computing time noted on the test cases considered. The benefits of LHS are amplified for more congested networks and as the required level of precision increases.

  15. Nonequilibrium Distribution of the Microscopic Thermal Current in Steady Thermal Transport Systems

    KAUST Repository

    Yukawa, Satoshi; Ogushi, Fumiko; Shimada, Takashi; Ito, Nobuyasu

    2010-01-01

    Nonequilibrium distribution of the microscopic thermal current is investigated by direct molecular dynamics simulations. The microscopic thermal current in this study is defined by a flow of kinetic energy carried by a single particle. Asymptotic parallel and antiparallel tails of the nonequilibrium distribution to an average thermal current are identical to ones of equilibrium distribution with different temperatures. These temperatures characterizing the tails are dependent on a characteristic length in which a memory of dynamics is completely erased by several particle collisions. This property of the tails of nonequilibrium distribution is confirmed in other thermal transport systems. In addition, statistical properties of a particle trapped by a harmonic potential in a steady thermal conducting state are also studied. This particle feels a finite force parallel to the average thermal current as a consequence of the skewness of the distribution of the current. This force is interpreted as the microscopic origin of thermophoresis.

  16. A microscopic model of ballistic-diffusive crossover

    International Nuclear Information System (INIS)

    Bagchi, Debarshee; Mohanty, P K

    2014-01-01

    Several low-dimensional systems show a crossover from diffusive to ballistic heat transport when system size is decreased. Although there is some phenomenological understanding of this crossover phenomenon at the coarse-grained level, a microscopic picture that consistently describes both the ballistic and the diffusive transport regimes has been lacking. In this work we derive a scaling form for the thermal current in a class of one dimensional systems attached to heat baths at boundaries and rigorously show that the crossover occurs when the characteristic length scale of the system competes with the system size. (paper)

  17. Microscopic Characterization of Scalable Coherent Rydberg Superatoms

    Directory of Open Access Journals (Sweden)

    Johannes Zeiher

    2015-08-01

    Full Text Available Strong interactions can amplify quantum effects such that they become important on macroscopic scales. Controlling these coherently on a single-particle level is essential for the tailored preparation of strongly correlated quantum systems and opens up new prospects for quantum technologies. Rydberg atoms offer such strong interactions, which lead to extreme nonlinearities in laser-coupled atomic ensembles. As a result, multiple excitation of a micrometer-sized cloud can be blocked while the light-matter coupling becomes collectively enhanced. The resulting two-level system, often called a “superatom,” is a valuable resource for quantum information, providing a collective qubit. Here, we report on the preparation of 2 orders of magnitude scalable superatoms utilizing the large interaction strength provided by Rydberg atoms combined with precise control of an ensemble of ultracold atoms in an optical lattice. The latter is achieved with sub-shot-noise precision by local manipulation of a two-dimensional Mott insulator. We microscopically confirm the superatom picture by in situ detection of the Rydberg excitations and observe the characteristic square-root scaling of the optical coupling with the number of atoms. Enabled by the full control over the atomic sample, including the motional degrees of freedom, we infer the overlap of the produced many-body state with a W state from the observed Rabi oscillations and deduce the presence of entanglement. Finally, we investigate the breakdown of the superatom picture when two Rydberg excitations are present in the system, which leads to dephasing and a loss of coherence.

  18. A Cost-Effective Fluorescence Mini-Microscope with Adjustable Magnifications for Biomedical Applications

    Science.gov (United States)

    Zhang, Yu Shrike; Ribas, João; Nadhman, Akhtar; Aleman, Julio; Selimović, Šeila; Lesher-Perez, Sasha Cai; Wang, Ting; Manoharan, Vijayan; Shin, Su-Ryon; Damilano, Alessia; Annabi, Nasim; Dokmeci, Mehmet Remzi; Takayama, Shuichi; Khademhosseini, Ali

    2015-01-01

    We have designed and fabricated a miniature microscope from off-the-shelf components and webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters such as cell/tissue viability (e.g. Live/Dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60X, achieves a resolution as high as microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread applications in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required. PMID:26282117

  19. Towards superdeformation in the quasicontinuum: microscopic view of the excited superdeformed bands and the corresponding level densities

    International Nuclear Information System (INIS)

    Werner, T.R.; Dudek, J.

    1991-01-01

    Microscopic calculations of both the normal and the superdeformed rotational bands have been performed for a number of Rare Earth nuclei. The 'universal' Woods-Saxon potential and the extended Strutinsky method have been used. Excited bands up to a prescribed energy limit E * (usually 2.5 to 3.5 MeV) have been calculated individually by minimizing the corresponding nuclear energies over the quadrupole and hexadecapole deformations. This turns out to be essential, when comparing with experimental results for the known discrete bands. An important influence of the superdeformed neutron (N = 86) shell closure on the microscopically calculated rotational-level densities is illustrated and discussed. (author) 11 refs., 4 figs

  20. Excitation-scanning hyperspectral imaging system for microscopic and endoscopic applications

    Science.gov (United States)

    Mayes, Sam A.; Leavesley, Silas J.; Rich, Thomas C.

    2016-04-01

    Current microscopic and endoscopic technologies for cancer screening utilize white-light illumination sources. Hyper-spectral imaging has been shown to improve sensitivity while retaining specificity when compared to white-light imaging in both microscopy and in vivo imaging. However, hyperspectral imaging methods have historically suffered from slow acquisition times due to the narrow bandwidth of spectral filters. Often minutes are required to gather a full image stack. We have developed a novel approach called excitation-scanning hyperspectral imaging that provides 2-3 orders of magnitude increased signal strength. This reduces acquisition times significantly, allowing for live video acquisition. Here, we describe a preliminary prototype excitation-scanning hyperspectral imaging system that can be coupled with endoscopes or microscopes for hyperspectral imaging of tissues and cells. Our system is comprised of three subsystems: illumination, transmission, and imaging. The illumination subsystem employs light-emitting diode arrays to illuminate at different wavelengths. The transmission subsystem utilizes a unique geometry of optics and a liquid light guide. Software controls allow us to interface with and control the subsystems and components. Digital and analog signals are used to coordinate wavelength intensity, cycling and camera triggering. Testing of the system shows it can cycle 16 wavelengths at as fast as 1 ms per cycle. Additionally, more than 18% of the light transmits through the system. Our setup should allow for hyperspectral imaging of tissue and cells in real time.

  1. Atomistic study of two-level systems in amorphous silica

    Science.gov (United States)

    Damart, T.; Rodney, D.

    2018-01-01

    Internal friction is analyzed in an atomic-scale model of amorphous silica. The potential energy landscape of more than 100 glasses is explored to identify a sample of about 700 two-level systems (TLSs). We discuss the properties of TLSs, particularly their energy asymmetry and barrier as well as their deformation potential, computed as longitudinal and transverse averages of the full deformation potential tensors. The discrete sampling is used to predict dissipation in the classical regime. Comparison with experimental data shows a better agreement with poorly relaxed thin films than well relaxed vitreous silica, as expected from the large quench rates used to produce numerical glasses. The TLSs are categorized in three types that are shown to affect dissipation in different temperature ranges. The sampling is also used to discuss critically the usual approximations employed in the literature to represent the statistical properties of TLSs.

  2. System modelling of a lateral force microscope

    International Nuclear Information System (INIS)

    Michal, Guillaume; Lu, Cheng; Kiet Tieu, A

    2008-01-01

    To quantitatively analyse lateral force microscope measurements one needs to develop a model able to relate the photodiode signal to the force acting on the tip apex. In this paper we focus on the modelling of the interaction between the cantilever and the optical chain. The laser beam is discretized by a set of rays which propagates in the system. The analytical equation of a single ray's position on the optical sensor is presented as a function of the reflection's state on top of the cantilever. We use a finite element analysis on the cantilever to connect the optical model with the force acting on the tip apex. A first-order approximation of the constitutive equations are derived along with a definition of the system's crosstalk. Finally, the model is used to analytically simulate the 'wedge method' in the presence of crosstalk in 2D. The analysis shows how the torsion loop and torsion offset signals are affected by the crosstalk.

  3. Acoustic interactions between inversion symmetric and asymmetric two-level systems

    International Nuclear Information System (INIS)

    Churkin, A; Schechter, M; Barash, D

    2014-01-01

    Amorphous solids, as well as many disordered lattices, display remarkable universality in their low temperature acoustic properties. This universality is attributed to the attenuation of phonons by tunneling two-level systems (TLSs), facilitated by the interaction of the TLSs with the phonon field. TLS-phonon interaction also mediates effective TLS–TLS interactions, which dictates the existence of a glassy phase and its low energy properties. Here we consider KBr:CN, the archetypal disordered lattice showing universality. We calculate numerically, using conjugate gradients method, the effective TLS–TLS interactions for inversion symmetric (CN flips) and asymmetric (CN rotations) TLSs, in the absence and presence of disorder, in two and three dimensions. The observed dependence of the magnitude and spatial power law of the interaction on TLS symmetry, and its change with disorder, characterizes TLS–TLS interactions in disordered lattices in both extreme and moderate dilutions. Our results are in good agreement with the two-TLS model, recently introduced to explain long-standing questions regarding the quantitative universality of phonon attenuation and the energy scale of ≈1–3 K below which universality is observed. (paper)

  4. Literature survey on microscopic friction modeling

    NARCIS (Netherlands)

    Hol, J.

    2010-01-01

    To better understand contact and friction conditions, experimental and theoretical studies have been performed in order to take microscopic dependencies into account. Friction is developed on microscopic level by adhesion between contacting asperities, the ploughing effect between asperities and the

  5. Chromosome structure investigated with the atomic force microscope

    NARCIS (Netherlands)

    de Grooth, B.G.; Putman, C.A.J.; Putman, Constant A.; van der Werf, Kees; van Hulst, N.F.; van Oort, G.; van Oort, Geeske; Greve, Jan; Manne, Srinivas

    1992-01-01

    We have developed an atomic force microscope (AFM) with an integrated optical microscope. The optical microscope consists of an inverted epi-illumination system that yields images in reflection or fluorescence of the sample. With this system it is possible to quickly locate an object of interest. A

  6. Occupational concerns associated with regular use of microscope

    OpenAIRE

    Garima Jain; Pushparaja Shetty

    2014-01-01

    Objectives: Microscope work can be strenuous both to the visual system and the musculoskeletal system. Lack of awareness or indifference towards health issues may result in microscope users becoming victim to many occupational hazards. Our objective was to understand the occupational problems associated with regular use of microscope, awareness regarding the hazards, attitude and practice of microscope users towards the problems and preventive strategies. Material and Methods: A questionnaire...

  7. Design and performance of an ultra-high vacuum scanning tunneling microscope operating at dilution refrigerator temperatures and high magnetic fields.

    Science.gov (United States)

    Misra, S; Zhou, B B; Drozdov, I K; Seo, J; Urban, L; Gyenis, A; Kingsley, S C J; Jones, H; Yazdani, A

    2013-10-01

    We describe the construction and performance of a scanning tunneling microscope capable of taking maps of the tunneling density of states with sub-atomic spatial resolution at dilution refrigerator temperatures and high (14 T) magnetic fields. The fully ultra-high vacuum system features visual access to a two-sample microscope stage at the end of a bottom-loading dilution refrigerator, which facilitates the transfer of in situ prepared tips and samples. The two-sample stage enables location of the best area of the sample under study and extends the experiment lifetime. The successful thermal anchoring of the microscope, described in detail, is confirmed through a base temperature reading of 20 mK, along with a measured electron temperature of 250 mK. Atomically resolved images, along with complementary vibration measurements, are presented to confirm the effectiveness of the vibration isolation scheme in this instrument. Finally, we demonstrate that the microscope is capable of the same level of performance as typical machines with more modest refrigeration by measuring spectroscopic maps at base temperature both at zero field and in an applied magnetic field.

  8. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-01-01

    A novel three-dimensional X-ray microtomographic micro-imaging system which enables simultaneous measurement of differential phase contrast and absorption contrast has been developed. The optical system consists of a scanning microscope with one-dimensional focusing device and an imaging microscope with one-dimensional objective. A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning–imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown

  9. Analysis of C-shaped canal systems in mandibular second molars using surgical operating microscope and cone beam computed tomography: A clinical approach.

    Science.gov (United States)

    Chhabra, Sanjay; Yadav, Seema; Talwar, Sangeeta

    2014-05-01

    The study was aimed to acquire better understanding of C-shaped canal systems in mandibular second molar teeth through a clinical approach using sophisticated techniques such as surgical operating microscope and cone beam computed tomography (CBCT). A total of 42 extracted mandibular second molar teeth with fused roots and longitudinal grooves were collected randomly from native Indian population. Pulp chamber floors of all specimens were examined under surgical operating microscope and classified into four types (Min's method). Subsequently, samples were subjected to CBCT scan after insertion of K-files size #10 or 15 into each canal orifice and evaluated using the cross-sectional and 3-dimensional images in consultation with dental radiologist so as to obtain more accurate results. Minimum distance between the external root surface on the groove and initial file placed in the canal was also measured at different levels and statistically analyzed. Out of 42 teeth, maximum number of samples (15) belonged to Type-II category. A total of 100 files were inserted in 86 orifices of various types of specimens. Evaluation of the CBCT scan images of the teeth revealed that a total of 21 canals were missing completely or partially at different levels. The mean values for the minimum thickness were highest at coronal followed by middle and apical third levels in all the categories. Lowest values were obtained for teeth with Type-III category at all three levels. The present study revealed anatomical variations of C-shaped canal system in mandibular second molars. The prognosis of such complex canal anatomies can be improved by simultaneous employment of modern techniques such as surgical operating microscope and CBCT.

  10. Optimal maintenance policy incorporating system level and unit level for mechanical systems

    Science.gov (United States)

    Duan, Chaoqun; Deng, Chao; Wang, Bingran

    2018-04-01

    The study works on a multi-level maintenance policy combining system level and unit level under soft and hard failure modes. The system experiences system-level preventive maintenance (SLPM) when the conditional reliability of entire system exceeds SLPM threshold, and also undergoes a two-level maintenance for each single unit, which is initiated when a single unit exceeds its preventive maintenance (PM) threshold, and the other is performed simultaneously the moment when any unit is going for maintenance. The units experience both periodic inspections and aperiodic inspections provided by failures of hard-type units. To model the practical situations, two types of economic dependence have been taken into account, which are set-up cost dependence and maintenance expertise dependence due to the same technology and tool/equipment can be utilised. The optimisation problem is formulated and solved in a semi-Markov decision process framework. The objective is to find the optimal system-level threshold and unit-level thresholds by minimising the long-run expected average cost per unit time. A formula for the mean residual life is derived for the proposed multi-level maintenance policy. The method is illustrated by a real case study of feed subsystem from a boring machine, and a comparison with other policies demonstrates the effectiveness of our approach.

  11. Time evolution of a system of two alpha particles

    International Nuclear Information System (INIS)

    Baye, D.; Herschkowitz, D.

    1996-01-01

    Motivated by interpretations of a broad structure at 32.5 MeV in the 12 C( 12 C, 12 C(0 + 2 )) 12 C(0 + 2 ) doubly inelastic scattering cross sections in terms of linear chains of α particles, we study in a microscopic model with an exact account of antisymmetrization the time evolution of a system of two α clusters. The evolution of the system is obtained from a time-dependent variational principle and visualized with matter densities. Even in the most favourable case, an initial two-cluster structure completely disappears in less than 2.10 -22 s. This result casts doubts on the observability of longer α chains. (orig.)

  12. Sensing of Streptococcus mutans by microscopic imaging ellipsometry

    Science.gov (United States)

    Khaleel, Mai Ibrahim; Chen, Yu-Da; Chien, Ching-Hang; Chang, Yia-Chung

    2017-05-01

    Microscopic imaging ellipsometry is an optical technique that uses an objective and sensing procedure to measure the ellipsometric parameters Ψ and Δ in the form of microscopic maps. This technique is well known for being noninvasive and label-free. Therefore, it can be used to detect and characterize biological species without any impact. Microscopic imaging ellipsometry was used to measure the optical response of dried Streptococcus mutans cells on a glass substrate. The ellipsometric Ψ and Δ maps were obtained with the Optrel Multiskop system for specular reflection in the visible range (λ=450 to 750 nm). The Ψ and Δ images at 500, 600, and 700 nm were analyzed using three different theoretical models with single-bounce, two-bounce, and multibounce light paths to obtain the optical constants and height distribution. The obtained images of the optical constants show different aspects when comparing the single-bounce analysis with the two-bounce or multibounce analysis in detecting S. mutans samples. Furthermore, the height distributions estimated by two-bounce and multibounce analyses of S. mutans samples were in agreement with the thickness values measured by AFM, which implies that the two-bounce and multibounce analyses can provide information complementary to that obtained by a single-bounce light path.

  13. Imaging differential polarization microscope with electronic readout

    International Nuclear Information System (INIS)

    Mickols, W.; Tinoco, I.; Katz, J.E.; Maestre, M.F.; Bustamante, C.

    1985-01-01

    A differential polarization microscope forms two images: one of the transmitted intensity and the other due to the change in intensity between images formed when different polarizations of light are used. The interpretation of these images for linear dichroism and circular dichroism are described. The design constraints on the data acquisition systems and the polarization modulation are described. The advantage of imaging several biological systems which contain optically anisotropic structures are described

  14. Evaluation of a completely robotized neurosurgical operating microscope.

    Science.gov (United States)

    Kantelhardt, Sven R; Finke, Markus; Schweikard, Achim; Giese, Alf

    2013-01-01

    Operating microscopes are essential for most neurosurgical procedures. Modern robot-assisted controls offer new possibilities, combining the advantages of conventional and automated systems. We evaluated the prototype of a completely robotized operating microscope with an integrated optical coherence tomography module. A standard operating microscope was fitted with motors and control instruments, with the manual control mode and balance preserved. In the robot mode, the microscope was steered by a remote control that could be fixed to a surgical instrument. External encoders and accelerometers tracked microscope movements. The microscope was additionally fitted with an optical coherence tomography-scanning module. The robotized microscope was tested on model systems. It could be freely positioned, without forcing the surgeon to take the hands from the instruments or avert the eyes from the oculars. Positioning error was about 1 mm, and vibration faded in 1 second. Tracking of microscope movements, combined with an autofocus function, allowed determination of the focus position within the 3-dimensional space. This constituted a second loop of navigation independent from conventional infrared reflector-based techniques. In the robot mode, automated optical coherence tomography scanning of large surface areas was feasible. The prototype of a robotized optical coherence tomography-integrated operating microscope combines the advantages of a conventional manually controlled operating microscope with a remote-controlled positioning aid and a self-navigating microscope system that performs automated positioning tasks such as surface scans. This demonstrates that, in the future, operating microscopes may be used to acquire intraoperative spatial data, volume changes, and structural data of brain or brain tumor tissue.

  15. A study of microscopic dose rate distribution of 99Tcm-MIBI in the liver of mice

    International Nuclear Information System (INIS)

    Wang Mingxi; Zhang Liang'an; Wang Yong; Dai Guangfu

    2002-01-01

    Objective: A microdosimetry model was tried to develop an accurate way to evaluate absorbed dose rates in target cell nuclei from radiopharmaceuticals. Methods: Microscopic frozen section autoradiography was used to determine the subcellular locations of 99 Tc m -MIBI relative to the tissue histology in the liver of mice after injection of 99 Tc m -MIBI via tail for two hours, and a mathematical model was developed to evaluate the microscopic dose rates in cell nuclei. The Medical Internal Radiation Dose (MIRD) schema was also used to evaluate the dose rates at the same time, and a comparison of the results of the two methods was conducted to determine which method is better to accurately estimate microscopic dose rates. Results: The spatial distribution of 99 Tc m -MIBI in the liver of mice at subcellular level was not uniform, and the differences between the microdosimetry model and MIRD schema were significant (P 99 Tc m -labeled pharmaceuticals at the microscopic level

  16. Renormalization of correlations in a quasiperiodically forced two-level system: quadratic irrationals

    International Nuclear Information System (INIS)

    Mestel, B D; Osbaldestin, A H

    2004-01-01

    Generalizing from the case of golden mean frequency to a wider class of quadratic irrationals, we extend our renormalization analysis of the self-similarity of correlation functions in a quasiperiodically forced two-level system. We give a description of all piecewise-constant periodic orbits of an additive functional recurrence generalizing that present in the golden mean case. We establish a criterion for periodic orbits to be globally bounded, and also calculate the asymptotic height of the main peaks in the correlation function

  17. Super-resolution imaging of ciliary microdomains in isolated olfactory sensory neurons using a custom two-color stimulated emission depletion microscope

    Science.gov (United States)

    Meyer, Stephanie A.; Ozbay, Baris N.; Potcoava, Mariana; Salcedo, Ernesto; Restrepo, Diego; Gibson, Emily A.

    2016-06-01

    We performed stimulated emission depletion (STED) imaging of isolated olfactory sensory neurons (OSNs) using a custom-built microscope. The STED microscope uses a single pulsed laser to excite two separate fluorophores, Atto 590 and Atto 647N. A gated timing circuit combined with temporal interleaving of the different color excitation/STED laser pulses filters the two channel detection and greatly minimizes crosstalk. We quantified the instrument resolution to be ˜81 and ˜44 nm, for the Atto 590 and Atto 647N channels. The spatial separation between the two channels was measured to be under 10 nm, well below the resolution limit. The custom-STED microscope is incorporated onto a commercial research microscope allowing brightfield, differential interference contrast, and epifluorescence imaging on the same field of view. We performed immunolabeling of OSNs in mice to image localization of ciliary membrane proteins involved in olfactory transduction. We imaged Ca2+-permeable cyclic nucleotide gated (CNG) channel (Atto 594) and adenylyl cyclase type III (ACIII) (Atto 647N) in distinct cilia. STED imaging resolved well-separated subdiffraction limited clusters for each protein. We quantified the size of each cluster to have a mean value of 88±48 nm and 124±43 nm, for CNG and ACIII, respectively. STED imaging showed separated clusters that were not resolvable in confocal images.

  18. Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity

    Science.gov (United States)

    Silaev, Mihail; Babaev, Egor

    2011-03-01

    In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.

  19. Optical microscope for nuclear emulsion readout-system design and results in application

    CERN Document Server

    Winkler, K; Gussek, P; Balogh, I; Breitfelder, S; Schlichting, J; Dupraz, J P; Fabre, Jean-Paul; Panman, J; Papadopoulos, I M; Zucchelli, P; Van de Vyver, B L

    1999-01-01

    Experiments such as CHORUS at CERN require the inspection of a large amount of nuclear emulsion plates exposed to particle beams. Rare events need to be found, measured and analyzed. Their features are stored as grains in microscopic dimensions in a 3D stack of plates. A new, fully automatic immersion microscope system was developed. It features high resolution, small depth of focus, large working distance, large field of view and synchronization of illumination and detector. An additional requirement is given by variations in the refraction index and in the relative thickness of immersion oil and emulsion. The approach used is an imaging system based on a various objective lens with extreme numerical aperture, large working distance and wide field, combined with a matched high-aperture Koehler illuminator. The light source is a mercury arc lamp, combined with a filter package for the g-line. It includes liquid crystal elements for synchronized shuttering and variable attenuation. The theoretical resolution i...

  20. Dynamics of a quantum two-level system under the action of phase-diffusion field

    Energy Technology Data Exchange (ETDEWEB)

    Sobakinskaya, E.A. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Pankratov, A.L., E-mail: alp@ipm.sci-nnov.ru [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Vaks, V.L. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation)

    2012-01-09

    We study a behavior of quantum two-level system, interacting with noisy phase-diffusion field. The dynamics is shown to split into two regimes, determined by the coherence time of the phase-diffusion field. For both regimes we present a model of quantum system behavior and discuss possible applications of the obtained effect for spectroscopy. In particular, the obtained analytical formula for the macroscopic polarization demonstrates that the phase-diffusion field does not affect the absorption line shape, which opens up an intriguing possibility of noisy spectroscopy, based on broadband sources with Lorentzian line shape. -- Highlights: ► We study dynamics of quantum system interacting with noisy phase-diffusion field. ► At short times the phase-diffusion field induces polarization in the quantum system. ► At long times the noise leads to polarization decay and heating of a quantum system. ► Simple model of interaction is derived. ► Application of the described effects for spectroscopy is discussed.

  1. Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  2. 21 CFR 884.6190 - Assisted reproductive microscopes and microscope accessories.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Assisted reproductive microscopes and microscope... Devices § 884.6190 Assisted reproductive microscopes and microscope accessories. (a) Identification. Assisted reproduction microscopes and microscope accessories (excluding microscope stage warmers, which are...

  3. High-speed multiframe dynamic transmission electron microscope image acquisition system with arbitrary timing

    Science.gov (United States)

    Reed, Bryan W.; DeHope, William J.; Huete, Glenn; LaGrange, Thomas B.; Shuttlesworth, Richard M.

    2015-10-20

    An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system ("laser"). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.

  4. An automatic system to study sperm motility and energetics

    OpenAIRE

    Shi, LZ; Nascimento, JM; Chandsawangbhuwana, C; Botvinick, EL; Berns, MW

    2008-01-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membr...

  5. Quantum theory of phonon-mediated decoherence and relaxation of two-level systems in a structured electromagnetic reservoir

    Science.gov (United States)

    Roy, Chiranjeeb

    In this thesis we study the role of nonradiative degrees of freedom on quantum optical properties of mesoscopic quantum dots placed in the structured electromagnetic reservoir of a photonic crystal. We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption lineshape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the "colored" electromagnetic vacuum of a photonic band gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. Phonon sidebands in an ordinary electromagnetic reservoir are recaptured in a simple model of optical phonons using a mean-field factorization of the atomic and lattice displacement operators. Our formalism is then used to treat the non-Markovian dynamics of the same system within the structured electromagnetic density of states of a photonic crystal. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to enhanced lifetime of a photon-atom bound state in a PBG by (i) dephasing and reducing the transition electric dipole moment of the atom and (ii) reducing the quantum mechanical overlap of the state vectors of the excited and ground state (polaronic shift). This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (break-up of phonons into lower energy phonons) and purely nonradiative decay. We demonstrate how these additional damping effects limit the extent of the polaronic (Franck-Condon) shift of

  6. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    Science.gov (United States)

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  7. Phase-controlled all-optical switching based on coherent population oscillation in a two-level system

    International Nuclear Information System (INIS)

    Liao, Ping; Yu, Song; Luo, Bin; Shen, Jing; Gu, Wanyi; Guo, Hong

    2011-01-01

    We theoretically propose a scheme of phase-controlled all-optical switching due to the effect of degenerate four-wave mixing (FWM) and coherent population oscillation (CPO) in a two-level system driven by a strong coupling field and two weak symmetrically detuned fields. The results show that the phase of the FWM field can be utilized to switch between constructive and destructive interference, which can lead to the transmission or attenuation of the probe field and thus switch the field on or off. We also find the intensity of the coupling field and the propagation distance have great influence on the performance of the switching. In our scheme, due to the quick response in semiconductor systems, a fast all-optical switching can be realized at low light level. -- Highlights: ► We study a new all-optical switching based on coherent population oscillation. ► The phase of the FWM field can be utilized to switch the probe field on or off. ► A fast and low-light-level switching can be realized in semiconductors.

  8. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope.

    Science.gov (United States)

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-07-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope.

  9. Fabrication of optical multilayer for two-color phase plate in super-resolution microscope

    International Nuclear Information System (INIS)

    Iketaki, Yoshinori; Kitagawa, Katsuichi; Hidaka, Kohjiro; Kato, Naoki; Hirabayashi, Akira; Bokor, Nandor

    2014-01-01

    In super-resolution microscopy based on fluorescence depletion, the two-color phase plate (TPP) is an indispensable optical element, which can independently control the phase shifts for two beams of different color, i.e., the pump and erase beams. By controlling a phase shift of the erase beam through the TPP, the erase beam can be modulated into a doughnut shape, while the pump beam maintains the initial Gaussian shape. To obtain a reliable optical multiplayer (ML) for the TPP, we designed a ML with only two optical layers by performing numerical optimization. The measured phase shifts generated by the fabricated ML using interferometry correspond to the design values. The beam profiles in the focal plane are also consistent with theoretical results. Although the fabricated ML consists of only two optical layers, the ML can provide a suitable phase modulation function for the TPP in a practical super-resolution microscope

  10. Grasping the second law of thermodynamics at university: The consistency of macroscopic and microscopic explanations

    Directory of Open Access Journals (Sweden)

    Risto Leinonen

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] This study concentrates on evaluating the consistency of upper-division students’ use of the second law of thermodynamics at macroscopic and microscopic levels. Data were collected by means of a paper and pencil test (N=48 focusing on the macroscopic and microscopic features of the second law concerned with heat transfer processes. The data analysis was based on a qualitative content analysis where students’ responses to the macroscopic- and microscopic-level items were categorized to provide insight into the consistency of the students’ ideas; if students relied on the same idea at both levels, they ended up in the same category at both levels, and their use of the second law was consistent. The most essential finding is that a majority of students, 52%–69% depending on the physical system under evaluation, used the second law of thermodynamics consistently at macroscopic and microscopic levels; approximately 40% of the students used it correctly in terms of physics while others relied on erroneous ideas, such as the idea of conserving entropy. The most common inconsistency harbored by 10%–15% of the students (depending on the physical system under evaluation was students’ tendency to consider the number of accessible microstates to remain constant even if the entropy was stated to increase in a similar process; other inconsistencies were only seen in the answers of a few students. In order to address the observed inconsistencies, we would suggest that lecturers should utilize tasks that challenge students to evaluate phenomena at macroscopic and microscopic levels concurrently and tasks that would guide students in their search for contradictions in their thinking.

  11. Infrared microscope inspection apparatus

    Science.gov (United States)

    Forman, Steven E.; Caunt, James W.

    1985-02-26

    Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.

  12. Development of a two photon microscope for tracking Drosophila larvae

    Science.gov (United States)

    Karagyozov, Doycho; Mihovilovic Skanata, Mirna; Gershow, Marc

    Current in vivo methods for measuring neural activity in Drosophila larva require immobilization of the animal. Although we can record neural signals while stimulating the sensory organs, we cannot read the behavioral output because we have prevented the animal from moving. Many research questions cannot be answered without observation of neural activity in behaving (freely-moving) animals. We incorporated a Tunable Acoustic Gradient (TAG) lens into a two-photon microscope to achieve a 70kHz axial scan rate, enabling volumetric imaging at tens of hertz. We then implemented a tracking algorithm based on a Kalman filter to maintain the neurons of interest in the field of view and in focus during the rapid three dimensional motion of a free larva. Preliminary results show successful tracking of a neuron moving at speeds reaching 500 μm/s. NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  13. Effect of Piper sarmentosum Extract on the Cardiovascular System of Diabetic Sprague-Dawley Rats: Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Zar Chi Thent

    2012-01-01

    Full Text Available Although Piper sarmentosum (PS is known to possess the antidiabetic properties, its efficacy towards diabetic cardiovascular tissues is still obscured. The present study aimed to observe the electron microscopic changes on the cardiac tissue and proximal aorta of experimental rats treated with PS extract. Thirty-two male Sprague-Dawley rats were divided into four groups: untreated control group (C, PS-treated control group (CTx, untreated diabetic group (D, and PS-treated diabetic group (DTx. Intramuscular injection of streptozotocin (STZ, 50 mg/kg body weight was given to induce diabetes. Following 28 days of diabetes induction, PS extract (0.125 g/kg body weight was administered orally for 28 days. Body weight, fasting blood glucose, and urine glucose levels were measured at 4-week interval. At the end of the study, cardiac tissues and the aorta were viewed under transmission electron microscope (TEM. DTx group showed increase in body weight and decrease in fasting blood glucose and urine glucose level compared to the D group. Under TEM study, DTx group showed lesser ultrastructural degenerative changes in the cardiac tissues and the proximal aorta compared to the D group. The results indicate that PS restores ultrastructural integrity in the diabetic cardiovascular tissues.

  14. Magnetoacoustic microscopic imaging of conductive objects and nanoparticles distribution

    Science.gov (United States)

    Liu, Siyu; Zhang, Ruochong; Luo, Yunqi; Zheng, Yuanjin

    2017-09-01

    Magnetoacoustic tomography has been demonstrated as a powerful and low-cost multi-wave imaging modality. However, due to limited spatial resolution and detection efficiency of magnetoacoustic signal, full potential of the magnetoacoustic imaging remains to be tapped. Here we report a high-resolution magnetoacoustic microscopy method, where magnetic stimulation is provided by a compact solenoid resonance coil connected with a matching network, and acoustic reception is realized by using a high-frequency focused ultrasound transducer. Scanning the magnetoacoustic microscopy system perpendicularly to the acoustic axis of the focused transducer would generate a two-dimensional microscopic image with acoustically determined lateral resolution. It is analyzed theoretically and demonstrated experimentally that magnetoacoustic generation in this microscopic system depends on the conductivity profile of conductive objects and localized distribution of superparamagnetic iron magnetic nanoparticles, based on two different but related implementations. The lateral resolution is characterized. Directional nature of magnetoacoustic vibration and imaging sensitivity for mapping magnetic nanoparticles are also discussed. The proposed microscopy system offers a high-resolution method that could potentially map intrinsic conductivity distribution in biological tissue and extraneous magnetic nanoparticles.

  15. Quantum nonlocality in two three-level systems

    International Nuclear Information System (INIS)

    Acin, A.; Durt, T.; Gisin, N.; Latorre, J.I.

    2002-01-01

    Recently a new Bell inequality has been introduced by Collins et al. [Phys. Rev. Lett. 88, 040404 (2002)], which is strongly resistant to noise for maximally entangled states of two d-dimensional quantum systems. We prove that a larger violation, or equivalently a stronger resistance to noise, is found for a nonmaximally entangled state. It is shown that the resistance to noise is not a good measure of nonlocality and we introduce some other possible measures. The nonmaximally entangled state turns out to be more robust also for these alternative measures. From these results it follows that two von Neumann measurements per party may be not optimal for detecting nonlocality. For d=3,4, we point out some connections between this inequality and distillability. Indeed, we demonstrate that any state violating it, with the optimal von Neumann settings, is distillable

  16. A fluorescence scanning electron microscope

    International Nuclear Information System (INIS)

    Kanemaru, Takaaki; Hirata, Kazuho; Takasu, Shin-ichi; Isobe, Shin-ichiro; Mizuki, Keiji; Mataka, Shuntaro; Nakamura, Kei-ichiro

    2009-01-01

    Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.

  17. Calcium carbonate crystallisation at the microscopic level

    International Nuclear Information System (INIS)

    Dobson, Phillip Stephen

    2001-01-01

    The primary concern of this thesis is the investigation of crystal nucleation and growth processes, and the effect of foreign substrates on the rate, extent and mechanism of crystallisation, with particular emphasis on the calcium carbonate system. A methodology, based on the in-line mixing of two stable solutions, which permits the continuous delivery of a solution with a constant, known supersaturation, has been developed and characterised. This has been used to induce CaCO 3 crystallisation in experimental systems involving the channel flow and wall jet techniques. The channel flow method has been adapted to facilitate the study of crystal growth at a single calcite crystal. Ca 2+ ion selective electrodes have been employed as a means of monitoring depletion of the supersaturated solution, downstream of the crystal substrate. The data obtained suggested a growth rate constant of 3x10 -12 mol cm -2 s -1 (and a reaction order of 1.52 on supersaturation). The ex-situ techniques of optical microscopy and atomic force microscopy (AFM) were employed to visualise changes in the calcite surface topography resulting from exposure to the growth solution. A technique based on an impinging jet of supersaturated solution was developed and characterised as a method for inducing crystal growth on foreign substrates under defined hydrodynamic control. When used in conjunction with the ex-situ techniques of scanning electron microscopy (SEM), optical microscopy and micro-Raman spectroscopy, the role of substrate and supersaturation on the morphology and polymorphology of the CaCOs microcrystals was determined. The technique also proved to be a powerful tool for the evaluation of scale inhibiting surface coatings. The combination of the impinging jet method with thin transparent substrates allowed in-situ observation, through optical microscopy, of the induction and growth of CaCO 3 microcrystals on foreign substrates. A number of substrates, displaying various surface energies

  18. Microscopic image processing system for measuring nonuniform film thickness profiles: Image scanning ellipsometry

    International Nuclear Information System (INIS)

    Liu, A.H.; Plawsky, J.L.; Wayner, P.C. Jr.

    1993-01-01

    The long-term objective of this research program is to determine the stability and heat transfer characteristics of evaporating thin films. The current objective is to develop and use a microscopic image-processing system (IPS) which has two parts: an image analyzing interferometer (IAI) and an image scanning ellipsometer (ISE). The primary purpose of this paper is to present the basic concept of ISE, which is a novel technique to measure the two dimensional thickness profile of a non-uniform, thin film, from several nm up to several μm, in a steady state as well as in a transient state. It is a full-field imaging technique which can study every point on the surface simultaneously with high spatial resolution and thickness sensitivity, i.e., it can measure and map the 2-D film thickness profile. The ISE was tested by measuring the thickness profile and the refractive index of a nonuniform solid film

  19. Faithful state transfer between two-level systems via an actively cooled finite-temperature cavity

    Science.gov (United States)

    Sárkány, Lőrinc; Fortágh, József; Petrosyan, David

    2018-03-01

    We consider state transfer between two qubits—effective two-level systems represented by Rydberg atoms—via a common mode of a microwave cavity at finite temperature. We find that when both qubits have the same coupling strength to the cavity field, at large enough detuning from the cavity mode frequency, quantum interference between the transition paths makes the swap of the excitation between the qubits largely insensitive to the number of thermal photons in the cavity. When, however, the coupling strengths are different, the photon-number-dependent differential Stark shift of the transition frequencies precludes efficient transfer. Nevertheless, using an auxiliary cooling system to continuously extract the cavity photons, we can still achieve a high-fidelity state transfer between the qubits.

  20. Pre-microscope tunnelling — Inspiration or constraint?

    Science.gov (United States)

    Walmsley, D. G.

    1987-03-01

    Before the microscope burst upon the scene, tunnelling had established for itself a substantial niche in the repertoire of the solid state physicist. Over a period of 20 years it has contributed importantly to our understanding of many systems. It elucidated the superconducting state, first by a direct display of the energy gap then by providing detailed information on the phonon spectra and electron-phonon coupling strength in junction electrodes. Its use as a phonon spectrometer was subsequently extended to semiconductors and to the oxides of insulating barriers. Eventually the vibrational spectra of monolayer organic and inorganic adsorbates became amenable with rich scientific rewards. In a few cases electronic transitions have been observed. Plasmon excitation by tunnelling electrons led to insights on the electron loss function in metals at visible frequencies and provided along the way an intriguing light emitting device. With the advent of the microscope it is now appropriate to enquire how much of this experience can profitably be carried over to the new environment. Are we constrained just to repeat the experiments in a new configuration? Happily no. The microscope offers us topographical and spectroscopic information of a new order. One might next ask how great is the contact between the two disciplines? We explore this question and seek to establish where the pre-microscope experience can be helpful in inspiring our use of this marvellous new facility that we know as the scanning tunnelling microscope.

  1. Combined laser and atomic force microscope lithography on aluminum: Mask fabrication for nanoelectromechanical systems

    DEFF Research Database (Denmark)

    Berini, Abadal Gabriel; Boisen, Anja; Davis, Zachary James

    1999-01-01

    A direct-write laser system and an atomic force microscope (AFM) are combined to modify thin layers of aluminum on an oxidized silicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production of nanoelectromecha......A direct-write laser system and an atomic force microscope (AFM) are combined to modify thin layers of aluminum on an oxidized silicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production...... writing, and to perform submicron modifications by AFM oxidation. The mask fabrication for a nanoscale suspended resonator bridge is used to illustrate the advantages of this combined technique for NEMS. (C) 1999 American Institute of Physics. [S0003-6951(99)00221-1]....

  2. Optical coherence tomography-enhanced microlaryngoscopy: preliminary report of a noncontact optical coherence tomography system integrated with a surgical microscope.

    Science.gov (United States)

    Vokes, David E; Jackson, Ryan; Guo, Shuguang; Perez, Jorge A; Su, Jianping; Ridgway, James M; Armstrong, William B; Chen, Zhongping; Wong, Brian J F

    2008-07-01

    Optical coherence tomography (OCT) is a new imaging modality that uses near-infrared light to produce cross-sectional images of tissue with a resolution approaching that of light microscopy. We have previously reported use of OCT imaging of the vocal folds (VFs) during direct laryngoscopy with a probe held in contact or near-contact with the VFs. This aim of this study was to develop and evaluate a novel OCT system integrated with a surgical microscope to allow hands-free OCT imaging of the VFs, which could be performed simultaneously with microscopic visualization. We performed a prospective evaluation of a new method of acquiring OCT images of the VFs. An OCT system was successfully integrated with a surgical microscope to permit noncontact OCT imaging of the VFs of 10 patients. With this novel device we were able to identify VF epithelium and lamina propria; however, the resolution was reduced compared to that achieved with the standard contact or near-contact OCT. Optical coherence tomography is able to produce high-resolution images of vocal fold mucosa to a maximum depth of 1.6 mm. It may be used in the diagnosis of VF lesions, particularly early squamous cell carcinoma, in which OCT can show disruption of the basement membrane. Mounting the OCT device directly onto the operating microscope allows hands-free noncontact OCT imaging and simultaneous conventional microscopic visualization of the VFs. However, the lateral resolution of the OCT microscope system is 50 microm, in contrast to the conventional handheld probe system (10 microm). Although such images at this resolution are still useful clinically, improved resolution would enhance the system's performance, potentially enabling real-time OCT-guided microsurgery of the larynx.

  3. Imaging properties and its improvements of scanning/imaging x-ray microscope

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2016-01-01

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with the linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination

  4. Comparison of central corneal thickness and endothelial cell measurements by Scheimpflug camera system and two noncontact specular microscopes.

    Science.gov (United States)

    Karaca, Irmak; Yilmaz, Suzan Guven; Palamar, Melis; Ates, Halil

    2017-07-03

    To investigate the correlation of Scheimpflug camera system and two noncontact specular microscopes in terms of central corneal thickness (CCT) and corneal endothelial cell morphology measurements. One hundred eyes of 50 healthy subjects were examined by Pentacam Scheimpflug Analyzer, CEM-530 (Nidek Co, Ltd, Gamagori, Japan) and CellChek XL (Konan Medical, California, USA) via fully automated image analysis with no corrections made. Measurement differences and agreement between instruments were determined by intraclass correlation analysis. The mean age of the subjects was 36.74 ± 8.59 (range 22-57). CCTs were well correlated among all devices, with having CEM-530 the thinnest and CellChek XL the thickest measurements (intraclass correlation coefficient (ICC) = 0.83; p < 0.001 and ICC = 0.78; p < 0.001, respectively). Mean endothelial cell density (ECD) given by CEM-530 was lower than CellChek XL (2613.17 ± 228.62 and 2862.72 ± 170.42 cells/mm 2 , respectively; ICC = 0.43; p < 0.001). Mean value for coefficient of variation (CV) was 28.57 ± 3.61 in CEM-530 and 30.30 ± 3.53 in CellChek XL. Cell hexagonality (HEX) with CEM-530 was higher than with CellChek XL (68.70 ± 4.16% and 45.19 ± 6.58%, respectively). ECDs with CellChek XL and CEM-530 have good correlation, but the values obtained by CellChek XL are higher than CEM-530. Measurements for HEX and CV differ significantly and show weak correlation. Thus, we do not recommend interchangeable use of CellChek XL and CEM-530. In terms of CCTs, Pentacam, CEM-530 and CellChek XL specular microscopy instruments are reliable devices.

  5. An ultrafast electron microscope gun driven by two-photon photoemission from a nanotip cathode

    International Nuclear Information System (INIS)

    Bormann, Reiner; Strauch, Stefanie; Schäfer, Sascha; Ropers, Claus

    2015-01-01

    We experimentally and numerically investigate the performance of an advanced ultrafast electron source, based on two-photon photoemission from a tungsten needle cathode incorporated in an electron microscope gun geometry. Emission properties are characterized as a function of the electrostatic gun settings, and operating conditions leading to laser-triggered electron beams of very low emittance (below 20 nm mrad) are identified. The results highlight the excellent suitability of optically driven nano-cathodes for the further development of ultrafast transmission electron microscopy

  6. Microscopic Superconductivity and Room Temperature Electronics of High-Tc Cuprates

    International Nuclear Information System (INIS)

    Liu Fusui; Chen Wanfang

    2008-01-01

    This paper points out that the Landau criterion for macroscopic superfluidity of He II is only a criterion for microscopic superfluidity of 4 He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-T c cuprates

  7. A Novel Two-Axis Load Sensor Designed for in Situ Scratch Testing inside Scanning Electron Microscopes

    Directory of Open Access Journals (Sweden)

    Chengli Shi

    2013-02-01

    Full Text Available Because of a lack of available miniaturized multiaxial load sensors to measure the normal load and the lateral load simultaneously, quantitative in situ scratch devices inside scanning electron microscopes and the transmission electron microscopes have barely been developed up to now. A novel two-axis load sensor was designed in this paper. With an I-shaped structure, the sensor has the function of measuring the lateral load and the normal load simultaneously, and at the same time it has compact dimensions. Finite element simulations were carried out to evaluate stiffness and modal characteristics. A decoupling algorithm was proposed to resolve the cross-coupling between the two-axis loads. Natural frequency of the sensor was tested. Linearity and decoupling parameters were obtained from the calibration experiments, which indicate that the sensor has good linearity and the cross-coupling between the two axes is not strong. Via the decoupling algorithm and the corresponding decoupling parameters, simultaneous measurement of the lateral load and the normal load can be realized via the developed two-axis load sensor. Preliminary applications of the load sensor for scratch testing indicate that the load sensor can work well during the scratch testing. Taking advantage of the compact structure, it has the potential ability for applications in quantitative in situ scratch testing inside SEMs.

  8. Cooled CCDs for recording data from electron microscopes

    CERN Document Server

    Faruqi, A R

    2000-01-01

    A cooled-CCD camera based on a low-noise scientific grade device is described in this paper used for recording images in a 120 kV electron microscope. The primary use of the camera is for recording electron diffraction patterns from two-dimensionally ordered arrays of proteins at liquid-nitrogen temperatures leading to structure determination at atomic or near-atomic resolution. The traditional method for recording data in the microscope is with electron sensitive film but electronic detection methods offer the following advantages over film methods: the data is immediately available in a digital format which can be displayed on a monitor screen for visual inspection whereas a film record needs to be developed and digitised, a lengthy process taking at least several hours, prior to inspection; the dynamic range of CCD detectors is about two orders of magnitude greater with better linearity. The accuracy of measurements is also higher for CCDs, particularly for weak signals due to inherent fog levels in film. ...

  9. A high resolution ion microscope for cold atoms

    International Nuclear Information System (INIS)

    Stecker, Markus; Schefzyk, Hannah; Fortágh, József; Günther, Andreas

    2017-01-01

    We report on an ion-optical system that serves as a microscope for ultracold ground state and Rydberg atoms. The system is designed to achieve a magnification of up to 1000 and a spatial resolution in the 100 nm range, thereby surpassing many standard imaging techniques for cold atoms. The microscope consists of four electrostatic lenses and a microchannel plate in conjunction with a delay line detector in order to achieve single particle sensitivity with high temporal and spatial resolution. We describe the design process of the microscope including ion-optical simulations of the imaging system and characterize aberrations and the resolution limit. Furthermore, we present the experimental realization of the microscope in a cold atom setup and investigate its performance by patterned ionization with a structure size down to 2.7 μ m. The microscope meets the requirements for studying various many-body effects, ranging from correlations in cold quantum gases up to Rydberg molecule formation. (paper)

  10. Experimental study of magnetocaloric effect in the two-level quantum system KTm(MoO4)2

    Science.gov (United States)

    Tarasenko, R.; Tkáč, V.; Orendáčová, A.; Orendáč, M.; Valenta, J.; Sechovský, V.; Feher, A.

    2018-05-01

    KTm(MoO4)2 belongs to the family of binary alkaline rare-earth molybdates. This compound can be considered to be an almost ideal quantum two-level system at low temperatures. Magnetocaloric properties of KTm(MoO4)2 single crystals were investigated using specific heat and magnetization measurement in the magnetic field applied along the easy axis. Large conventional magnetocaloric effect (-ΔSM ≈ 10.3 J/(kg K)) was observed in the magnetic field of 5 T in a relatively wide temperature interval. The isothermal magnetic entropy change of about 8 J/(kgK) has been achieved already for the magnetic field of 2 T. Temperature dependence of the isothermal entropy change under different magnetic fields is in good agreement with theoretical predictions for a quantum two-level system with Δ ≈ 2.82 cm-1. Investigation of magnetocaloric properties of KTm(MoO4)2 suggests that the studied system can be considered as a good material for magnetic cooling at low temperatures.

  11. Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs

    Science.gov (United States)

    Wang, Guo-You; Guo, You-Neng; Zeng, Ke

    2015-11-01

    We consider the optimal parameter estimation for a two-level system coupled to multiple bosonic reservoirs. By using quantum Fisher information (QFI), we investigate the effect of the Markovian reservoirs’ number N on QFI in both weak and strong coupling regimes for a two-level system surrounded by N zero-temperature reservoirs of field modes initially in the vacua. The results show that the dynamics of QFI non-monotonically decays to zero with revival oscillations at some time in the weak coupling regime depending on the reservoirs’ parameters. Furthermore, we also present the relations between the QFI flow, the flows of energy and information, and the sign of the decay rate to gain insight into the physical processes characterizing the dynamics. Project supported by the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2014B194) and the Scientific Research Foundation of Hunan Provincial Education Department, China (Grant No. 13C039).

  12. On-Orbit Gradiometry with the scientific instrument of the French Space Mission MICROSCOPE

    Science.gov (United States)

    Foulon, B.; Baghi, Q.; Panet, I.; Rodrigues, M.; Metris, G.; Touboul, P.

    2017-12-01

    The MICROSCOPE mission is fully dedicated to the in-orbit test of the universality of free fall, the so-called Weak Equivalence Principle (WEP). Based on a CNES Myriade microsatellite launched on the 25th of April 2016, MICROSCOPE is a CNES-ESA-ONERA-CNRS-OCA mission, the scientific objective of which is to test of the Equivalence Principle with an extraordinary accuracy at the level of 10-15. The measurement will be obtained from the T-SAGE (Twin Space Accelerometer for Gravitational Experimentation) instrument constituted by two ultrasensitive differential accelerometers. One differential electrostatic accelerometer, labeled SU-EP, contains, at its center, two proof masses made of Titanium and Platinum and is used for the test. The twin accelerometer, labeled SU-REF, contains two Platinum proof masses and is used as a reference instrument. Separated by a 17 cm-length arm, they are embarked in a very stable and soft environment on board a satellite equipped with a drag-free control system and orbiting on a sun synchronous circular orbit at 710 km above the Earth. In addition to the WEP test, this configuration can be interesting for various applications, and one of the proposed ideas is to use MICROSCOPE data for the measurement of Earth's gravitational gradient. Considering the gradiometer formed by the inner Platinum proof-masses of the two differential accelerometers and the arm along the Y-axis of the instrument which is perpendicular to the orbital plane, possibly 3 components of the gradient can be measured: Txy, Tyy and Tzy. Preliminary studies suggest that the errors can be lower than 10mE. Taking advantage of its higher altitude with respect to GOCE, the low frequency signature of Earth's potential seen by MICROSCOPE could provide an additional observable in gradiometry to discriminate between different models describing the large scales of the mass distribution in the Earth's deep mantle. The poster will shortly present the MICROSCOPE mission

  13. Dual-mode optical microscope based on single-pixel imaging

    Science.gov (United States)

    Rodríguez, A. D.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2016-07-01

    We demonstrate an inverted microscope that can image specimens in both reflection and transmission modes simultaneously with a single light source. The microscope utilizes a digital micromirror device (DMD) for patterned illumination altogether with two single-pixel photosensors for efficient light detection. The system, a scan-less device with no moving parts, works by sequential projection of a set of binary intensity patterns onto the sample that are codified onto a modified commercial DMD. Data to be displayed are geometrically transformed before written into a memory cell to cancel optical artifacts coming from the diamond-like shaped structure of the micromirror array. The 24-bit color depth of the display is fully exploited to increase the frame rate by a factor of 24, which makes the technique practicable for real samples. Our commercial DMD-based LED-illumination is cost effective and can be easily coupled as an add-on module for already existing inverted microscopes. The reflection and transmission information provided by our dual microscope complement each other and can be useful for imaging non-uniform samples and to prevent self-shadowing effects.

  14. Robotic autopositioning of the operating microscope.

    Science.gov (United States)

    Oppenlander, Mark E; Chowdhry, Shakeel A; Merkl, Brandon; Hattendorf, Guido M; Nakaji, Peter; Spetzler, Robert F

    2014-06-01

    Use of the operating microscope has become pervasive since its introduction to the neurosurgical world. Neuronavigation fused with the operating microscope has allowed accurate correlation of the focal point of the microscope and its location on the downloaded imaging study. However, the robotic ability of the Pentero microscope has not been utilized to orient the angle of the microscope or to change its focal length to hone in on a predefined target. To report a novel technology that allows automatic positioning of the operating microscope onto a set target and utilization of a planned trajectory, either determined with the StealthStation S7 by using preoperative imaging or intraoperatively with the microscope. By utilizing the current motorized capabilities of the Zeiss OPMI Pentero microscope, a robotic autopositioning feature was developed in collaboration with Surgical Technologies, Medtronic, Inc. (StealthStation S7). The system is currently being tested at the Barrow Neurological Institute. Three options were developed for automatically positioning the microscope: AutoLock Current Point, Align Parallel to Plan, and Point to Plan Target. These options allow the microscope to pivot around the lesion, hover in a set plane parallel to the determined trajectory, or rotate and point to a set target point, respectively. Integration of automatic microscope positioning into the operative workflow has potential to increase operative efficacy and safety. This technology is best suited for precise trajectories and entry points into deep-seated lesions.

  15. Bargmann representation for Landau levels in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Rohringer, Nina [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria); Burgdoerfer, Joachim [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria); Macris, Nicolas [Institut de Physique Theorique, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2003-04-11

    We present a formulation of the quantum mechanics of an electron gas confined to two dimensions in a strong magnetic field within the framework of the Hilbert space of analytic functions (Bargmann's space). Our approach extends the representation introduced by Girvin and Jach for the ground state to arbitrary Landau levels and to the regime of coupling between Landau levels. By projecting out the rapid cyclotron motion, the quantum mechanics of the slow guiding centre motion is converted into a system of coupled-channel equations describing the coupling between Landau levels due to the (disorder) potentials. In the limit of strong fields, the coupled-channel equations can be solved perturbatively. For the single-channel case we derive a WKB-like quantization condition for the one-dimensional motion along equipotential lines for arbitrary Landau levels. Two applications of this formalism are discussed: the weak-levitation problem in quantum Hall systems and a two-electron quantum dot in a strong magnetic field.

  16. Bargmann representation for Landau levels in two dimensions

    International Nuclear Information System (INIS)

    Rohringer, Nina; Burgdoerfer, Joachim; Macris, Nicolas

    2003-01-01

    We present a formulation of the quantum mechanics of an electron gas confined to two dimensions in a strong magnetic field within the framework of the Hilbert space of analytic functions (Bargmann's space). Our approach extends the representation introduced by Girvin and Jach for the ground state to arbitrary Landau levels and to the regime of coupling between Landau levels. By projecting out the rapid cyclotron motion, the quantum mechanics of the slow guiding centre motion is converted into a system of coupled-channel equations describing the coupling between Landau levels due to the (disorder) potentials. In the limit of strong fields, the coupled-channel equations can be solved perturbatively. For the single-channel case we derive a WKB-like quantization condition for the one-dimensional motion along equipotential lines for arbitrary Landau levels. Two applications of this formalism are discussed: the weak-levitation problem in quantum Hall systems and a two-electron quantum dot in a strong magnetic field

  17. Bargmann representation for Landau levels in two dimensions

    CERN Document Server

    Rohringer, N; Macris, N

    2003-01-01

    We present a formulation of the quantum mechanics of an electron gas confined to two dimensions in a strong magnetic field within the framework of the Hilbert space of analytic functions (Bargmann's space). Our approach extends the representation introduced by Girvin and Jach for the ground state to arbitrary Landau levels and to the regime of coupling between Landau levels. By projecting out the rapid cyclotron motion, the quantum mechanics of the slow guiding centre motion is converted into a system of coupled-channel equations describing the coupling between Landau levels due to the (disorder) potentials. In the limit of strong fields, the coupled-channel equations can be solved perturbatively. For the single-channel case we derive a WKB-like quantization condition for the one-dimensional motion along equipotential lines for arbitrary Landau levels. Two applications of this formalism are discussed: the weak-levitation problem in quantum Hall systems and a two-electron quantum dot in a strong magnetic field...

  18. Franson Interference Generated by a Two-Level System

    Science.gov (United States)

    Peiris, M.; Konthasinghe, K.; Muller, A.

    2017-01-01

    We report a Franson interferometry experiment based on correlated photon pairs generated via frequency-filtered scattered light from a near-resonantly driven two-level semiconductor quantum dot. In contrast to spontaneous parametric down-conversion and four-wave mixing, this approach can produce single pairs of correlated photons. We have measured a Franson visibility as high as 66%, which goes beyond the classical limit of 50% and approaches the limit of violation of Bell's inequalities (70.7%).

  19. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    Science.gov (United States)

    Lumetta, Gregg J.; Arcia, Edgar

    2016-01-01

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as…

  20. Miniaturized integration of a fluorescence microscope

    Science.gov (United States)

    Ghosh, Kunal K.; Burns, Laurie D.; Cocker, Eric D.; Nimmerjahn, Axel; Ziv, Yaniv; Gamal, Abbas El; Schnitzer, Mark J.

    2013-01-01

    The light microscope is traditionally an instrument of substantial size and expense. Its miniaturized integration would enable many new applications based on mass-producible, tiny microscopes. Key prospective usages include brain imaging in behaving animals towards relating cellular dynamics to animal behavior. Here we introduce a miniature (1.9 g) integrated fluorescence microscope made from mass-producible parts, including semiconductor light source and sensor. This device enables high-speed cellular-level imaging across ∼0.5 mm2 areas in active mice. This capability allowed concurrent tracking of Ca2+ spiking in >200 Purkinje neurons across nine cerebellar microzones. During mouse locomotion, individual microzones exhibited large-scale, synchronized Ca2+ spiking. This is a mesoscopic neural dynamic missed by prior techniques for studying the brain at other length scales. Overall, the integrated microscope is a potentially transformative technology that permits distribution to many animals and enables diverse usages, such as portable diagnostics or microscope arrays for large-scale screens. PMID:21909102

  1. Inhibition of two-photon absorption in a three-level system with a pair of bichromatic fields

    International Nuclear Information System (INIS)

    Zou Jinhua; Hu Xiangming; Cheng Guangling; Li Xing; Du Dan

    2005-01-01

    We study two-photon absorption in a three-level ladder atomic system driven by a pair of bichromatic fields of equal frequency differences. The high-frequency component of one bichromatic field and the low-frequency component of the other are on two-photon resonance. The transition probability is calculated by employing the method of harmonic expansion and matrix inversion. Unexpectedly, when the sums of the phases of the different pairs of field components on the two-photon resonance are equal to each other, two-photon absorption is dramatically suppressed and the atomic system becomes transparent against two-photon absorption. Physically, due to dynamical Stark splitting, the two-photon transitions induced by the different pairs of field components experience different dressed states with phase difference of π. As a result, destructive interference occurs between the two pathways and leads to the inhibition of two-photon absorption

  2. Surface profile measurement by using the integrated Linnik WLSI and confocal microscope system

    Science.gov (United States)

    Wang, Wei-Chung; Shen, Ming-Hsing; Hwang, Chi-Hung; Yu, Yun-Ting; Wang, Tzu-Fong

    2017-06-01

    The white-light scanning interferometer (WLSI) and confocal microscope (CM) are the two major optical inspection systems for measuring three-dimensional (3D) surface profile (SP) of micro specimens. Nevertheless, in practical applications, WLSI is more suitable for measuring smooth and low-slope surfaces. On the other hand, CM is more suitable for measuring uneven-reflective and low-reflective surfaces. As for aspect of surface profiles to be measured, the characteristics of WLSI and CM are also different. WLSI is generally used in semiconductor industry while CM is more popular in printed circuit board industry. In this paper, a self-assembled multi-function optical system was integrated to perform Linnik white-light scanning interferometer (Linnik WLSI) and CM. A connecting part composed of tubes, lenses and interferometer was used to conjunct finite and infinite optical systems for Linnik WLSI and CM in the self-assembled optical system. By adopting the flexibility of tubes and lenses, switching to perform two different optical measurements can be easily achieved. Furthermore, based on the shape from focus method with energy of Laplacian filter, the CM was developed to enhance the on focal information of each pixel so that the CM can provide all-in-focus image for performing the 3D SP measurement and analysis simultaneously. As for Linnik WLSI, eleven-step phase shifting algorithm was used to analyze vertical scanning signals and determine the 3D SP.

  3. Radiative heat transfer in low-dimensional systems -- microscopic mode

    Science.gov (United States)

    Woods, Lilia; Phan, Anh; Drosdoff, David

    2013-03-01

    Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

  4. Giant vesicles (GV) in colloidal system under the optical polarization microscope (OPM).

    Science.gov (United States)

    Khalid, Khalisanni; Noh, Muhammad Azri Mohd; Khan, M Niyaz; Ishak, Ruzaina; Penney, Esther; Chowdhury, Zaira Zaman; Hamzah, Mohammad Hafiz; Othman, Maizatulnisa

    2017-09-01

    This paper discusses the unprecedented microscopic findings of micellar growth in colloidal system (CS) of catalyzed piperidinolysis of ionized phenyl salicylate (PS - ). The giant vesicles (GV) was observed under the optical polarization microscope (OPM) at [NaX]=0.1M where X=3-isopropC 6 H 4 O - . The conditions were rationalized from pseudo-first-order rate constant, k obs of PS - of micellar phase at 31.1×10 -3 s -1 reported in previous publication. The overall diameter of GV (57.6μm) in CS (CTABr/NaX/H 2 O)-catalyzed piperidinolysis (where X=3-isopropC 6 H 4 O) of ionized phenyl salicylate were found as giant unilamellar vesicles (GUV) and giant multilamellar vesicles (GMV). The findings were also validated by means of rheological analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Meso-optical Fourier transform microscope with double focusing

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Soroko, L.M.; Tereshchenko, V.V.

    1992-01-01

    The meso-optical Fourier transform microscope (MFTM) with double focusing for particle tracks of low ionization level in the nuclear emulsion is described. It is shown experimentally that this device enables one to get high concentration of information about the position of the particle track in the nuclear emulsion and thus to increase the signal-to-noise ratio. It is shown that spreading of the meso-optical image of the particle track in the sagittal section of the MFTM can be eliminated completely in the frame of the diffraction limit. The number of the additional degrees of freedom in this new MFTM system along depth coordinate is equal to 20 in comparison to single degree of freedom in the Fourier transform microscope of the direct observation. 10 refs.; 15 figs

  6. Development of Near-Field Microwave Microscope with the Functionality of Scanning Tunneling Spectroscopy

    Science.gov (United States)

    Machida, Tadashi; Gaifullin, Marat B.; Ooi, Shuuich; Kato, Takuya; Sakata, Hideaki; Hirata, Kazuto

    2010-11-01

    We describe the details of an original near-field scanning microwave microscope, developed for simultaneous measurements of local density-of-states (LDOS) and local ohmic losses (LOL). Improving microwave detection systems, we have succeeded in distinguishing the LDOS and LOL even between two low resistance materials; gold and highly orientated pyrolitic graphite. The experimental data indicate that our microscope holds a capability to investigate both LDOS and LOL in nanoscale.

  7. Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    International Nuclear Information System (INIS)

    Abreu Junior, Luiz de; Wolosker, Angela Maria Borri; Borri, Maria Lucia; Galvao Filho, Mario de Melo; Hartmann, Luiz Guilherme de Carvalho; D'Ippolito, Giuseppe; Castro, Claudio Campi de

    2008-01-01

    Objective: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. Materials and methods: Five asymptomatic volunteers with no history of epiphora were submitted to high-field magnetic resonance imaging with microscopic and conventional surface coils, and STIR sequence after instillation of saline solution. The definition of normal anatomic structures of lacrimal apparatuses was compared utilizing conventional and microscopic surface coils. Based on a consensual scoring system, the mean values for each structure were calculated by two observers. Results: In 90% of cases, higher scores were attributed to images acquired with the microscopic coil. On average, a 1.17 point increase was observed in the scoring of anatomic structures imaged with the microscopic coil. Additionally, a subjective improvement was observed in the signal-to-noise ratio with the microscopic coil. Conclusion: Magnetic resonance dacryocystography with microscopic coils is the appropriate method for evaluating the lacrimal apparatus, providing images with better quality as compared with those acquired with conventional surface coils. (author)

  8. Design of a Two-level Adaptive Multi-Agent System for Malaria Vectors driven by an ontology

    Directory of Open Access Journals (Sweden)

    Etang Josiane

    2007-07-01

    Full Text Available Abstract Background The understanding of heterogeneities in disease transmission dynamics as far as malaria vectors are concerned is a big challenge. Many studies while tackling this problem don't find exact models to explain the malaria vectors propagation. Methods To solve the problem we define an Adaptive Multi-Agent System (AMAS which has the property to be elastic and is a two-level system as well. This AMAS is a dynamic system where the two levels are linked by an Ontology which allows it to function as a reduced system and as an extended system. In a primary level, the AMAS comprises organization agents and in a secondary level, it is constituted of analysis agents. Its entry point, a User Interface Agent, can reproduce itself because it is given a minimum of background knowledge and it learns appropriate "behavior" from the user in the presence of ambiguous queries and from other agents of the AMAS in other situations. Results Some of the outputs of our system present a series of tables, diagrams showing some factors like Entomological parameters of malaria transmission, Percentages of malaria transmission per malaria vectors, Entomological inoculation rate. Many others parameters can be produced by the system depending on the inputted data. Conclusion Our approach is an intelligent one which differs from statistical approaches that are sometimes used in the field. This intelligent approach aligns itself with the distributed artificial intelligence. In terms of fight against malaria disease our system offers opportunities of reducing efforts of human resources who are not obliged to cover the entire territory while conducting surveys. Secondly the AMAS can determine the presence or the absence of malaria vectors even when specific data have not been collected in the geographical area. In the difference of a statistical technique, in our case the projection of the results in the field can sometimes appeared to be more general.

  9. Microscopic approach to nuclear anharmonicities

    International Nuclear Information System (INIS)

    Matsuo, Masayuki; Shimizu, Yoshifumi; Matsuyanagi, Kenichi

    1985-01-01

    Present status of microscopic study of nuclear anharmonicity phenomena is reviewed from the viewpoint of the time-dependent Hartree-Bogoliubov approach. Both classical- and quantum-mechanical aspects of this approach are discussed. The Bohr-Mottelson-type collective Hamiltonian for anharmonic gamma vibrations is microscopically derived by means of the self-consistent-collective-coordinate method, and applied to the problem of two-phonon states of 168 Er. (orig.)

  10. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Shawn Q.; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B.; Cheng, Yifan; Sedat, John W. [The Howard Hughes Medical Institute and the W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, 600, 16th Street, Room S412D, CA 94158-2517 (United States); Agard, David A., E-mail: agard@msg.ucsf.edu [The Howard Hughes Medical Institute and the W.M. Keck Advanced Microscopy Laboratory, Department of Biochemistry and Biophysics, University of California, San Francisco, 600, 16th Street, Room S412D, CA 94158-2517 (United States)

    2011-07-15

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096{sup 2}x512 voxels from an input tilt series containing 122 projection images of 4096{sup 2} pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024{sup 2}x256 voxels from 122 1024{sup 2} pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. -- Highlights: {yields} A distributed multi-GPU system has been developed for electron microscopic tomography (EMT). {yields} This system allows for rapid constrained, iterative reconstruction of very large volumes. {yields} This system can be easily expanded to generate superior computing power for large-scale iterative EMT realignment.

  11. A distributed multi-GPU system for high speed electron microscopic tomographic reconstruction

    International Nuclear Information System (INIS)

    Zheng, Shawn Q.; Branlund, Eric; Kesthelyi, Bettina; Braunfeld, Michael B.; Cheng, Yifan; Sedat, John W.; Agard, David A.

    2011-01-01

    Full resolution electron microscopic tomographic (EMT) reconstruction of large-scale tilt series requires significant computing power. The desire to perform multiple cycles of iterative reconstruction and realignment dramatically increases the pressing need to improve reconstruction performance. This has motivated us to develop a distributed multi-GPU (graphics processing unit) system to provide the required computing power for rapid constrained, iterative reconstructions of very large three-dimensional (3D) volumes. The participating GPUs reconstruct segments of the volume in parallel, and subsequently, the segments are assembled to form the complete 3D volume. Owing to its power and versatility, the CUDA (NVIDIA, USA) platform was selected for GPU implementation of the EMT reconstruction. For a system containing 10 GPUs provided by 5 GTX295 cards, 10 cycles of SIRT reconstruction for a tomogram of 4096 2 x512 voxels from an input tilt series containing 122 projection images of 4096 2 pixels (single precision float) takes a total of 1845 s of which 1032 s are for computation with the remainder being the system overhead. The same system takes only 39 s total to reconstruct 1024 2 x256 voxels from 122 1024 2 pixel projections. While the system overhead is non-trivial, performance analysis indicates that adding extra GPUs to the system would lead to steadily enhanced overall performance. Therefore, this system can be easily expanded to generate superior computing power for very large tomographic reconstructions and especially to empower iterative cycles of reconstruction and realignment. -- Highlights: → A distributed multi-GPU system has been developed for electron microscopic tomography (EMT). → This system allows for rapid constrained, iterative reconstruction of very large volumes. → This system can be easily expanded to generate superior computing power for large-scale iterative EMT realignment.

  12. Novel scanning probe microscope instrumentation with applications in nanotechnology

    International Nuclear Information System (INIS)

    Humphry, M.J.

    2000-10-01

    A versatile scanning probe microscope controller has been constructed. Its suitability for the control of a range of different scanning probe microscope heads has been demonstrated. These include an ultra high vacuum scanning tunnelling microscope, with which atomic resolution images of Si surfaces was obtained, a custom-built atomic force microscope, and a custom-built photon emission scanning tunnelling microscope. The controller has been designed specifically to facilitate data acquisition during molecular manipulation experiments. Using the controller, the fullerene molecule C 60 has been successfully manipulated on Si(100)-2x1 surfaces and detailed data has been acquired during the manipulation process. Evidence for two distinct modes of manipulation have been observed. A repulsive mode with success rates up to 90% was found to occur with tunnel gap impedances below 2GΩ, while between 2GΩ and 8GΩ attractive manipulation events were observed, with a maximum success rate of ∼8%. It was also found that the step size between feedback updates had a significant effect on tip stability, and that dwell time of the STM tip at each data point had a critical effect on manipulation probability. A multi-function scanning probe microscope head has been developed capable of operation as a scanning tunnelling microscope and an atomic force microscope in vacuum and a magnetic field of 7T. The custom-built controller also presented here was used to control the head. A three-axis inertial sliding motor was developed for the head, capable of reproducible step sizes of <1000A. In addition, an optical fibre interferometer was constructed with a sensitivity of 0.2A/√Hz. Preliminary development of a magnetic resonance force microscope mode has also been performed, with initial results showing such a system to be feasible. (author)

  13. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery

    Science.gov (United States)

    Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong

    2015-07-01

    Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.

  14. Microscope-integrated optical coherence tomography for image-aided positioning of glaucoma surgery.

    Science.gov (United States)

    Li, Xiqi; Wei, Ling; Dong, Xuechuan; Huang, Ping; Zhang, Chun; He, Yi; Shi, Guohua; Zhang, Yudong

    2015-07-01

    Most glaucoma surgeries involve creating new aqueous outflow pathways with the use of a small surgical instrument. This article reported a microscope-integrated, real-time, high-speed, swept-source optical coherence tomography system (SS-OCT) with a 1310-nm light source for glaucoma surgery. A special mechanism was designed to produce an adjustable system suitable for use in surgery. A two-graphic processing unit architecture was used to speed up the data processing and real-time volumetric rendering. The position of the surgical instrument can be monitored and measured using the microscope and a grid-inserted image of the SS-OCT. Finally, experiments were simulated to assess the effectiveness of this integrated system. Experimental results show that this system is a suitable positioning tool for glaucoma surgery.

  15. Energetics and performance of a microscopic heat engine based on exact calculations of work and heat distributions

    International Nuclear Information System (INIS)

    Chvosta, Petr; Holubec, Viktor; Ryabov, Artem; Einax, Mario; Maass, Philipp

    2010-01-01

    We investigate a microscopic motor based on an externally controlled two-level system. One cycle of the motor operation consists of two strokes. Within each stroke, the two-level system is in contact with a given thermal bath and its energy levels are driven at a constant rate. The time evolutions of the occupation probabilities of the two states are controlled by one rate equation and represent the system's response with respect to the external driving. We give the exact solution of the rate equation for the limit cycle and discuss the emerging thermodynamics: the work done on the environment, the heat exchanged with the baths, the entropy production, the motor's efficiency, and the power output. Furthermore we introduce an augmented stochastic process which reflects, at a given time, both the occupation probabilities for the two states and the time spent in the individual states during the previous evolution. The exact calculation of the evolution operator for the augmented process allows us to discuss in detail the probability density for the work performed during the limit cycle. In the strongly irreversible regime, the density exhibits important qualitative differences with respect to the more common Gaussian shape in the regime of weak irreversibility

  16. Design of a transmission electron positron microscope

    International Nuclear Information System (INIS)

    Doyama, Masao; Inoue, M.; Kogure, Y.; Hayashi, Y.; Yoshii, T.; Kurihara, T.; Tsuno, K.

    2003-01-01

    This paper reports the plans and design of positron-electron microscopes being built at KEK (High Energy Accelerator Research Organization), Tsukuba, Japan. A used electron microscope is altered. The kinetic energies of positrons produced by accelerators or by nuclear decays are not a unique value but show a spread over in a wide range. Positron beam is guided to a transmission electron microscope (JEM100SX). Positrons are moderated by a tungsten foil, are accelerated and are focused on a nickel sheet. The monochromatic focused beam is injected into an electron microscope. The focusing and aberration of positrons are the same as electrons in a magnetic system which are used in commercial electron microscopes. Imaging plates are used to record positron images for the transmission electron microscope. (author)

  17. Exact Solution of the Two-Level System and the Einstein Solid in the Microcanonical Formalism

    Science.gov (United States)

    Bertoldi, Dalia S.; Bringa, Eduardo M.; Miranda, E. N.

    2011-01-01

    The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In…

  18. Assessing microscope image focus quality with deep learning.

    Science.gov (United States)

    Yang, Samuel J; Berndl, Marc; Michael Ando, D; Barch, Mariya; Narayanaswamy, Arunachalam; Christiansen, Eric; Hoyer, Stephan; Roat, Chris; Hung, Jane; Rueden, Curtis T; Shankar, Asim; Finkbeiner, Steven; Nelson, Philip

    2018-03-15

    Large image datasets acquired on automated microscopes typically have some fraction of low quality, out-of-focus images, despite the use of hardware autofocus systems. Identification of these images using automated image analysis with high accuracy is important for obtaining a clean, unbiased image dataset. Complicating this task is the fact that image focus quality is only well-defined in foreground regions of images, and as a result, most previous approaches only enable a computation of the relative difference in quality between two or more images, rather than an absolute measure of quality. We present a deep neural network model capable of predicting an absolute measure of image focus on a single image in isolation, without any user-specified parameters. The model operates at the image-patch level, and also outputs a measure of prediction certainty, enabling interpretable predictions. The model was trained on only 384 in-focus Hoechst (nuclei) stain images of U2OS cells, which were synthetically defocused to one of 11 absolute defocus levels during training. The trained model can generalize on previously unseen real Hoechst stain images, identifying the absolute image focus to within one defocus level (approximately 3 pixel blur diameter difference) with 95% accuracy. On a simpler binary in/out-of-focus classification task, the trained model outperforms previous approaches on both Hoechst and Phalloidin (actin) stain images (F-scores of 0.89 and 0.86, respectively over 0.84 and 0.83), despite only having been presented Hoechst stain images during training. Lastly, we observe qualitatively that the model generalizes to two additional stains, Hoechst and Tubulin, of an unseen cell type (Human MCF-7) acquired on a different instrument. Our deep neural network enables classification of out-of-focus microscope images with both higher accuracy and greater precision than previous approaches via interpretable patch-level focus and certainty predictions. The use of

  19. Decontamination of digital image sensors and assessment of electron microscope performance in a BSL-3 containment

    Directory of Open Access Journals (Sweden)

    Michael B. Sherman

    2015-05-01

    Full Text Available A unique biological safety level (BSL-3 cryo-electron microscopy facility with a 200 keV high-end cryo-electron microscope has been commissioned at the University of Texas Medical Branch (UTMB to study the structure of viruses and bacteria classified as select agents. We developed a microscope decontamination protocol based on chlorine dioxide gas with a continuous flow system. In this paper we report on testing digital camera sensors (both CCD and CMOS direct detector in a BSL-3 environment, and microscope performance after chlorine dioxide (ClO2 decontamination cycles.

  20. Two Level Versus Matrix Converters Performance in Wind Energy Conversion Systems Employing DFIG

    Science.gov (United States)

    Reddy, Gongati Pandu Ranga; Kumar, M. Vijaya

    2017-10-01

    Wind power capacity has received enormous growth during past decades. With substantial development of wind power, it is expected to provide a fifth of world's electricity by the end of 2030. In wind energy conversion system, the power electronic converters play an important role. This paper presents the two level and matrix converters performance in wind energy conversion system employing Doubly Fed Induction Generator (DFIG). The DFIG is a wound rotor induction generator. Because of the advantages of the DFIG over other generators it is being used for most of the wind applications. This paper also discusses control of converters using the space vector pulse width modulation technique. The MATLAB/SIMULINK ® software is used to study the performance of the converters.

  1. Systemic lupus erythematosus activity and beta two microglobulin levels

    Directory of Open Access Journals (Sweden)

    Thelma Larocca Skare

    Full Text Available CONTEXT AND OBJECTIVE: Systemic lupus erythematosus (SLE is an autoimmune disease with a cyclical clinical course. Evaluation of the clinical activity of this disease is important for choosing the correct treatment. The objective of this study was to analyze the value of beta-2 microglobulin (β2M serum levels in determining SLE clinical activity.DESIGN AND SETTING: Cross-sectional analytical study conducted at the rheumatology outpatient clinic of a private university hospital.METHODS: 129 SLE patients were studied regarding disease activity using SLEDAI (SLE Disease Activity Index and cumulative damage using SLICC ACR (SLE International Collaborating Clinics/American College of Rheumatology Damage Index for SLE. At the same time, the β2M serum level, ESR (erythrocyte sedimentation rate, anti-dsDNA (anti-double-stranded DNA and C3 and C4 complement fractions were determined.RESULTS: β2M levels correlated positively with SLEDAI (P = 0.02 and ESR (P = 0.0009 and negatively with C3 (P = 0.007. Patients who were positive for anti-dsDNA had higher β2M serum levels (P = 0.009.CONCLUSION: β2M levels are elevated in SLE patients with active disease.

  2. Optical Computed-Tomographic Microscope for Three-Dimensional Quantitative Histology

    Directory of Open Access Journals (Sweden)

    Ravil Chamgoulov

    2004-01-01

    Full Text Available A novel optical computed‐tomographic microscope has been developed allowing quantitative three‐dimensional (3D imaging and analysis of fixed pathological material. Rather than a conventional two‐dimensional (2D image, the instrument produces a 3D representation of fixed absorption‐stained material, from which quantitative histopathological features can be measured more accurately. The accurate quantification of these features is critically important in disease diagnosis and the clinical classification of cancer. The system consists of two high NA objective lenses, a light source, a digital spatial light modulator (DMD, by Texas Instrument, an x–y stage, and a CCD detector. The DMD, positioned at the back pupil‐plane of the illumination objective, is employed to illuminate the specimen with parallel rays at any desired angle. The system uses a modification of the convolution backprojection algorithm for reconstruction. In contrast to fluorescent images acquired by a confocal microscope, this instrument produces 3D images of absorption stained material. Microscopic 3D volume reconstructions of absorption‐stained cells have been demonstrated. Reconstructed 3D images of individual cells and tissue can be cut virtually with the distance between the axial slices less than 0.5 μm.

  3. In vivo microscopic imaging of the bronchial mucosa using an endo-cytoscopy system.

    Science.gov (United States)

    Shibuya, Kiyoshi; Fujiwara, Taiki; Yasufuku, Kazuhiro; Alaa, Mohamed; Chiyo, Masako; Nakajima, Takahiro; Hoshino, Hidehisa; Hiroshima, Kenzo; Nakatani, Yukio; Yoshino, Ichiro

    2011-05-01

    We investigated the capabilities of an endo-cytoscopy system (ECS) that enables microscopic imaging of the tracheobronchial tree during bronchoscopy, including normal bronchial epithelium, dysplastic mucosa and squamous cell carcinoma. The newly developed ECS has a 3.2 mm diameter that can be passed through the 4.2 mm working channel of a mother endoscope for insertion of the ECS. It has a high magnification of 570× on a 17 in. video monitor. Twenty-two patients (7 squamous cell carcinoma, 11 squamous dysplasia and 4 after PDT therapies) were underwent white light, NBI light and AFI bronchoscopy. Both abnormal areas of interest and normal bronchial mucosa were stained with 0.5% methylene blue and examined with ECS at high magnification (570×). Histological examinations using haematoxylin and eosin staining were made of biopsied specimens. Analyzed ECS images were compared with the corresponding histological examinations. In normal bronchial mucosa, ciliated columnar epithelial cells were visible. In bronchial squamous dysplasia, superficial cells with abundant cytoplasm were arranged regularly. In squamous cell carcinoma, large, polymorphic tumor cells showed increased cellular densities with irregular stratified patterns. These ECS images corresponded well with the light-microscopic examination of conventional histology. ECS was useful for the discrimination between normal bronchial epithelial cells and dysplastic cells or malignant cells during bronchoscopy in real time. This novel technology has an excellent potential to provide in vivo diagnosis during bronchoscopic examinations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  4. Visualizing 3-D microscopic specimens

    Science.gov (United States)

    Forsgren, Per-Ola; Majlof, Lars L.

    1992-06-01

    The confocal microscope can be used in a vast number of fields and applications to gather more information than is possible with a regular light microscope, in particular about depth. Compared to other three-dimensional imaging devices such as CAT, NMR, and PET, the variations of the objects studied are larger and not known from macroscopic dissections. It is therefore important to have several complementary ways of displaying the gathered information. We present a system where the user can choose display techniques such as extended focus, depth coding, solid surface modeling, maximum intensity and other techniques, some of which may be combined. A graphical user interface provides easy and direct control of all input parameters. Motion and stereo are available options. Many three- dimensional imaging devices give recordings where one dimension has different resolution and sampling than the other two which requires interpolation to obtain correct geometry. We have evaluated algorithms with interpolation in object space and in projection space. There are many ways to simplify the geometrical transformations to gain performance. We present results of some ways to simplify the calculations.

  5. Improved Scanners for Microscopic Hyperspectral Imaging

    Science.gov (United States)

    Mao, Chengye

    2009-01-01

    Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version

  6. Particle swarm optimization based PID controller tuning for level control of two tank system

    Science.gov (United States)

    Vincent, Anju K.; Nersisson, Ruban

    2017-11-01

    Automatic control plays a vital role in industrial operation. In process industries, in order to have an improved and stable control system, we need a robust tuning method. In this paper Particle Swarm Optimization (PSO) based algorithm is proposed for the optimization of a PID controller for level control process. A two tank system is considered. Initially a PID controller is designed using an Internal Model Control (IMC). The results are compared with the PSO based controller setting. The performance of the controller is compared and analyzed by time domain specification. In order to validate the robustness of PID controller, disturbance is imposed. The system is simulated using MATLAB. The results show that the proposed method provides better controller performance.

  7. Quantum driving protocols for a two-level system: From generalized Landau-Zener sweeps to transitionless control

    DEFF Research Database (Denmark)

    Malossi, Nicola; Bason, Mark George; Viteau, Matthieu

    2013-01-01

    We present experimental results on the preparation of a desired quantum state in a two-level system with the maximum possible fidelity using driving protocols ranging from generalizations of the linear Landau-Zener protocol to transitionless driving protocols that ensure perfect following of the ...

  8. Design and development of compact multiphoton microscopes

    Science.gov (United States)

    Mehravar, SeyedSoroush

    A compact multi-photon microscope (MPM) was designed and developed with the use of low-cost mode-locked fiber lasers operating at 1040nm and 1560nm. The MPM was assembled in-house and the system aberration was investigated using the optical design software: Zemax. A novel characterization methodology based on 'nonlinear knife-edge' technique was also introduced to measure the axial, lateral resolution, and the field curvature of the multi-photon microscope's image plane. The field curvature was then post-corrected using data processing in MATLAB. A customized laser scanning software based on LabVIEW was developed for data acquisition, image display and controlling peripheral electronics. Finally, different modalities of multi-photon excitation such as second- and third harmonic generation, two- and three-photon fluorescence were utilized to study a wide variety of samples from cancerous cells to 2D-layered materials.

  9. Traceable X,Y self-calibration at single nm level of an optical microscope used for coherence scanning interferometry

    Science.gov (United States)

    Ekberg, Peter; Mattsson, Lars

    2018-03-01

    Coherence scanning interferometry used in optical profilers are typically good for Z-calibration at nm-levels, but the X,Y accuracy is often left without further notice than typical resolution limits of the optics, i.e. of the order of ~1 µm. For the calibration of metrology tools we rely on traceable artefacts, e.g. gauge blocks for traditional coordinate measurement machines, and lithographically mask made artefacts for microscope calibrations. In situations where the repeatability and accuracy of the measurement tool is much better than the uncertainty of the traceable artefact, we are bound to specify the uncertainty based on the calibration artefact rather than on the measurement tool. This is a big drawback as the specified uncertainty of a calibrated measurement may shrink the available manufacturing tolerance. To improve the uncertainty in X,Y we can use self-calibration. Then, we do not need to know anything more than that the artefact contains a pattern with some nominal grid. This also gives the opportunity to manufacture the artefact in-house, rather than buying a calibrated and expensive artefact. The self-calibration approach we present here is based on an iteration algorithm, rather than the traditional mathematical inversion, and it leads to much more relaxed constrains on the input measurements. In this paper we show how the X,Y errors, primarily optical distortions, within the field of view (FOV) of an optical coherence scanning interferometry microscope, can be reduced with a large factor. By self-calibration we achieve an X,Y consistency in the 175  ×  175 µm2 FOV of ~2.3 nm (1σ) using the 50×  objective. Besides the calibrated coordinate X,Y system of the microscope we also receive, as a bonus, the absolute positions of the pattern in the artefact with a combined uncertainty of 6 nm (1σ) by relying on a traceable 1D linear measurement of a twin artefact at NIST.

  10. Microscopic cluster model analysis of 14O+p elastic scattering

    International Nuclear Information System (INIS)

    Baye, D.; Descouvemont, P.; Leo, F.

    2005-01-01

    The 14 O+p elastic scattering is discussed in detail in a fully microscopic cluster model. The 14 O cluster is described by a closed p shell for protons and a closed p3/2 subshell for neutrons in the translation-invariant harmonic-oscillator model. The exchange and spin-orbit parameters of the effective forces are tuned on the energy levels of the 15 C mirror system. With the generator-coordinate and microscopic R-matrix methods, phase shifts and cross sections are calculated for the 14 O+p elastic scattering. An excellent agreement is found with recent experimental data. A comparison is performed with phenomenological R-matrix fits. Resonances properties in 15 F are discussed

  11. Development of the Atomic-Resolution Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    Gai, Pratibha L.; Boyes, Edward D.; Yoshida, Kenta

    2016-01-01

    The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures is descr......The development of the novel atomic-resolution environmental transmission electron microscope (atomic-resolution ETEM) for directly probing dynamic gas–solid reactions in situ at the atomic level under controlled reaction conditions consisting of gas environment and elevated temperatures...... is used to study steels, graphene, nanowires, etc. In this chapter, the experimental setup of the microscope column and its peripherals are described....

  12. A compact combined ultrahigh vacuum scanning tunnelling microscope (UHV STM) and near-field optical microscope

    International Nuclear Information System (INIS)

    Woolley, R A J; Hayton, J A; Cavill, S; Ma, Jin; Beton, P H; Moriarty, P

    2008-01-01

    We have designed and constructed a hybrid scanning near-field optical microscope (SNOM)–scanning tunnelling microscope (STM) instrument which operates under ultrahigh vacuum (UHV) conditions. Indium tin oxide (ITO)-coated fibre-optic tips capable of high quality STM imaging and tunnelling spectroscopy are fabricated using a simple and reliable method which foregoes the electroless plating strategy previously employed by other groups. The fabrication process is reproducible, producing robust tips which may be exchanged under UHV conditions. We show that controlled contact with metal surfaces considerably enhances the STM imaging capabilities of fibre-optic tips. Light collection (from the cleaved back face of the ITO-coated fibre-optic tip) and optical alignment are facilitated by a simple two-lens arrangement where the in-vacuum collimation/collection lens may be adjusted using a slip-stick motor. A second in-air lens focuses the light (which emerges from the UHV system as a parallel beam) onto a cooled CCD spectrograph or photomultiplier tube. The application of the instrument to combined optical and electronic spectroscopy of Au and GaAs surfaces is discussed

  13. Quantum theory and microscopic mechanics. I

    International Nuclear Information System (INIS)

    Yussouff, M.

    1984-08-01

    The need for theoretical descriptions and experimental observations on 'small' individual systems is emphasized. It is shown that the mathematical basis for microscopic mechanics is very simple in one dimension. The square well problem is discussed to clarify general points about stationary states and the continuity of (p'/p) across potential boundaries in the applications of microscopic mechanics. (author)

  14. Microscopic and low Reynolds number flows between two intersecting permeable walls

    Science.gov (United States)

    Egashira, R.; Fujikawa, T.; Yaguchi, H.; Fujikawa, S.

    2018-06-01

    Two-dimensional Navier–Stokes equations are solved in an analytical way to clarify characteristics of low-Re flows in a microscopic channel consisting of two intersecting permeable walls, the intersection of which is supposed to be a sink or a source. Such flows are, therefore, considered to be an extension of the so-called Jeffery–Hamel flow to the permeable wall case. A set of nonlinear forth-order ordinary differential equations are obtained, and their solutions are sought for the small permeable velocity compared with the main flow one by a perturbation method. The solutions contain the solutions found in the past, such as the flow between two parallel permeable walls studied by Berman and the Jeffery–Hamel flow between the impermeable walls as special cases. Velocity distribution and friction loss in pressure along the main stream are represented in the explicit manner and compared with those of the Jeffery–Hamel flow. Numerical examples show that the wall permeability has a great influence on the friction loss. Furthermore, it is shown that the convergent main flow accompanied with the fluid addition through the walls is inversely directed away from the origin due to the balance of the main flow and the permeable one, while the flow accompanied with fluid suction is just directed toward the origin regardless of conditions.

  15. Electron Microscope Center Opens at Berkeley.

    Science.gov (United States)

    Robinson, Arthur L.

    1981-01-01

    A 1.5-MeV High Voltage Electron Microscope has been installed at the Lawrence Berkeley Laboratory which will help materials scientists and biologists study samples in more true-to-life situations. A 1-MeV Atomic Resolution Microscope will be installed at the same location in two years which will allow scientists to distinguish atoms. (DS)

  16. Virtual pinhole confocal microscope

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Rector, D.M.; Ranken, D.M. [Los Alamos National Lab., NM (United States). Biophysics Group; Peterson, B. [SciLearn Inc. (United States); Kesteron, J. [VayTech Inc. (United States)

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  17. The new Isidore microscope

    International Nuclear Information System (INIS)

    Rabouille, O.; Viard, J.; Menard, M.; Allegre, S.

    2001-01-01

    In the frame of the refurbishment of LECI hot laboratory in Saclay, it was decided to renew one of the two metallography lines of the building. This line is located at one end of the Isidore line of lead-shielded hot cells. The work started by the cleaning of 5 aout of 9 cells in Isidore line. Two were 2 m x 1.5 m cells, whereas the 3 others were smaller. Decontamination was difficult in both larger cells, because a lot of metallographic preparation had been performed there and because the cleaning of the lower parts of the cell, below the working area, was uneasy by remote manipulators. The refurbishment of the cells included: - Changing the windows, because old windows were made of glass panels sperated by oil, which is now prohibited by safety requirements. - Putting of a new pair of manipulators on one large cell, and adding bootings on manipulators on one large cell, and adding bootings on manipulators on both large cells. - Changing all the ventilation systems in these cells (new types of filters, new air-ducts), - Modifying and changing metallic pieces constituting the working are inside the cell - Increasing the hight of the small cells in order to add a manipulator for charging the sample on microscope or on hardness machine. - Simplifying the electrical wiring in order to decrease the fire risk in the hot cell line. - Add a better fire protection between the working area and the transfer area, i. e. between the front and the rear part of the cells. The scientific equipments fot these cells are: An Olympus microscope, modified by Optique Peter (company based in Lyons), equipped with a motorised sample holder (100 x 200 mm), maximum size of sample: O. D.=100 mm, 6 magnifications: x 12.5, x50, x100, x200, x500 and x1000, two microhardness positions: Vickers and Knoop. Polaroid image and digital camera with SIS image analysis system. A new periscope manufactured by Optique Peter. magnification x2 and x9, digital image and SIS system, and old periscope

  18. A compact light-sheet microscope for the study of the mammalian central nervous system

    Science.gov (United States)

    Yang, Zhengyi; Haslehurst, Peter; Scott, Suzanne; Emptage, Nigel; Dholakia, Kishan

    2016-01-01

    Investigation of the transient processes integral to neuronal function demands rapid and high-resolution imaging techniques over a large field of view, which cannot be achieved with conventional scanning microscopes. Here we describe a compact light sheet fluorescence microscope, featuring a 45° inverted geometry and an integrated photolysis laser, that is optimized for applications in neuroscience, in particular fast imaging of sub-neuronal structures in mammalian brain slices. We demonstrate the utility of this design for three-dimensional morphological reconstruction, activation of a single synapse with localized photolysis, and fast imaging of neuronal Ca2+ signalling across a large field of view. The developed system opens up a host of novel applications for the neuroscience community. PMID:27215692

  19. The impact of loupes and microscopes on vision in endodontics.

    Science.gov (United States)

    Perrin, P; Neuhaus, K W; Lussi, A

    2014-05-01

    To report on an intraradicular visual test in a simulated clinical setting under different optical conditions. Miniaturized visual tests with E-optotypes (bar distance from 0.01 to 0.05 mm) were fixed inside the root canal system of an extracted maxillary molar at different locations: at the orifice, a depth of 5 mm and the apex. The tooth was mounted in a phantom head for a simulated clinical setting. Unaided vision was compared with Galilean loupes (2.5× magnification) with integrated light source and an operating microscope (6× magnification). The influence of the dentists' age within two groups was evaluated: endodontic instruments. Dentists over 40 years of age were dependent on the microscope to inspect the root canal system. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  20. Quantum correlations between each two-level system in a pair of atoms and general coherent fields

    Directory of Open Access Journals (Sweden)

    S. Abdel-Khalek

    Full Text Available The quantitative description of the quantum correlations between each two-level system in a two-atom system and the coherent fields initially defined in a coherent state in the framework of power-law potentials (PLPCSs is considered. Specifically, we consider two atoms locally interacting with PLPCSs and take into account the different terms of interactions, the entanglement and quantum discord are studied including the time-dependent coupling and photon transition effects. Using the monogamic relation between the entanglement of formation and quantum discord in tripartite systems, we show that the control and preservation of the different kinds of quantum correlations greatly benefit from the combination of the choice of the physical quantities. Finally, we explore the link between the dynamical behavior of quantum correlations and nonclassicality of the fields with and without atomic motion effect. Keywords: Quantum correlations, Monogamic relation, Coherent states, Power-law potentials, Wehrl entropy

  1. The two-nucleon system above pion threshold

    International Nuclear Information System (INIS)

    Poepping, H.; Sauer, P.U.; Zhang Xizhen

    1987-01-01

    A force model is presented for the description of the two-nucleon system below and above pion threshold and its coupled inelastic channels with one pion. It uses Δ-isobar and pion degrees of freedom in addition to the nucleonic one. The force model is based on a hamiltonian approach within the framework of noncovariant quantum mechanics. It extends the traditional approach with purely nucleonic potentials in isospin-triplet partial waves. It is constructed to remain valid up to 500 MeV c.m. energy. The characteristics of the force model is its mechanism for pion production and pion absorption which is mediated by the Δ-isobar. Even without any fit of phenomenological parameters the force model is able to account for the experimental data of elastic nucleon-nucleon scattering' of the inelastic reactions pp ↔ π + d and of elastic pion-deuteron scattering with satisfactory accuracy. No need for the introduction of dibaryon degrees of freedom has been found yet. The force model is a realistic one in the two-nucleon system. In many-nucleon systems it forms the unifying basis for a microscopic description of nuclear structure and nuclear reactions at low and intermediate energies. (orig.)

  2. Microscopic origins of charge transport in triphenylene systems

    Science.gov (United States)

    Thompson, Ian R.; Coe, Mary K.; Walker, Alison B.; Ricci, Matteo; Roscioni, Otello M.; Zannoni, Claudio

    2018-06-01

    We study the effects of molecular ordering on charge transport at the mesoscale level in a layer of ≈9000 hexa-octyl-thio-triphenylene discotic mesogens with dimensions of ≈20 ×20 ×60 nm3 . Ordered (columnar) and disordered isotropic morphologies are obtained from a combination of atomistic and coarse-grained molecular-dynamics simulations. Electronic structure codes are used to find charge hopping rates at the microscopic level. Energetic disorder is included through the Thole model. Kinetic Monte Carlo simulations then predict charge mobilities. We reproduce the large increase in mobility in going from an isotropic to a columnar morphology. To understand how these mobilities depend on the morphology and hopping rates, we employ graph theory to analyze charge trajectories by representing the film as a charge-transport network. This approach allows us to identify spatial correlations of molecule pairs with high transfer rates. These pairs must be linked to ensure good transport characteristics or may otherwise act as traps. Our analysis is straightforward to implement and will be a useful tool in linking materials to device performance, for example, to investigate the influence of local inhomogeneities in the current density. Our mobility-field curves show an increasing mobility with field, as would be expected for an organic semiconductor.

  3. Quantitative characterization of semiconductor structures with a scanning microwave microscope.

    Science.gov (United States)

    Korolyov, S A; Reznik, A N

    2018-02-01

    In this work, our earlier method for measuring resistance R sh of semiconductor films with a near-field scanning microwave microscope [A. N. Reznik and S. A. Korolyov, J. Appl. Phys. 119, 094504 (2016)] is studied in a 0.1 kΩ/sq microscope model in the form of a monopole or dipole antenna interacting with an arbitrary layered structure. The model fitting parameters are determined from the data yielded by calibration measurements on a system of etalon samples. The performance of the method was analyzed experimentally, using strip-probe and coaxial-probe microscopes in the frequency range of 1-3 GHz. For test structures, we used doped GaN films on the Al 2 O 3 substrate and also transistor structures based on the AlGaN/GaN heterojunction and AlGaAs/GaAs/InGaAs/GaAs/AlGaAs quantum well with a conducting channel. The obtained microwave microscope data were compared with the results of measurements by the van der Pauw method. At the first stage of the experiment, the calibration etalons were bulk homogeneous samples with different permittivity/conductivity values. In this case, satisfactory agreement between the microscope and the van der Pauw data was obtained with a strip probe on all tested samples in the entire range of R sh . With a coaxial probe, such accordance was observed only in high-ohmic samples with R sh > 1 kΩ/sq. The use of GaN film structures as a calibration system helped to increase the accuracy of the coaxial-probe-aided measurement of R sh to a level of ∼10%.

  4. Dynamical properties of a two-level system with arbitrary nonlinearities

    Indian Academy of Sciences (India)

    nication, information processing and quantum computing, such as in the investigation of quantum teleportation ... They con- sidered a two-level atom interacting with an undamped cavity initially in a coherent state. ... Because concurrence pro-.

  5. Open quantum systems and the two-level atom interacting with a single mode of the electromagnetic field

    International Nuclear Information System (INIS)

    Sandulescu, A.; Stefanescu, E.

    1987-07-01

    On the basis of Lindblad theory of open quantum systems we obtain new optical equations for the system of two-level atom interacting with a single mode of the electromagnetic field. The conventional Block equations in a generalized form with field phases are obtained in the hypothesis that all the terms are slowly varying in the rotating frame.(authors)

  6. Transmission positron microscopes

    International Nuclear Information System (INIS)

    Doyama, Masao; Kogure, Yoshiaki; Inoue, Miyoshi; Kurihara, Toshikazu; Yoshiie, Toshimasa; Oshima, Ryuichiro; Matsuya, Miyuki

    2006-01-01

    Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons

  7. A distributed monitoring system for photovoltaic arrays based on a two-level wireless sensor network

    Science.gov (United States)

    Su, F. P.; Chen, Z. C.; Zhou, H. F.; Wu, L. J.; Lin, P. J.; Cheng, S. Y.; Li, Y. F.

    2017-11-01

    In this paper, a distributed on-line monitoring system based on a two-level wireless sensor network (WSN) is proposed for real time status monitoring of photovoltaic (PV) arrays to support the fine management and maintenance of PV power plants. The system includes the sensing nodes installed on PV modules (PVM), sensing and routing nodes installed on combiner boxes of PV sub-arrays (PVA), a sink node and a data management centre (DMC) running on a host computer. The first level WSN is implemented by the low-cost wireless transceiver nRF24L01, and it is used to achieve single hop communication between the PVM nodes and their corresponding PVA nodes. The second level WSN is realized by the CC2530 based ZigBee network for multi-hop communication among PVA nodes and the sink node. The PVM nodes are used to monitor the PVM working voltage and backplane temperature, and they send the acquired data to their PVA node via the nRF24L01 based first level WSN. The PVA nodes are used to monitor the array voltage, PV string current and environment irradiance, and they send the acquired and received data to the DMC via the ZigBee based second level WSN. The DMC is designed using the MATLAB GUIDE and MySQL database. Laboratory experiment results show that the system can effectively acquire, display, store and manage the operating and environment parameters of PVA in real time.

  8. Evaluation of comfort level in desks equipped with two personalized ventilation systems in slightly warm environments

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Eusebio Z.E. [Faculdade de Ciencias e Tecnologia - Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Lucio, Manuela J.R. [Agrupamento Vertical Professor Paula Nogueira, R. Comunidade Lusiada, 8700-000 Olhao (Portugal); Rosa, Silvia P.; Custodio, Ana L.V.; Andrade, Renata L.; Meira, Maria J.P.A. [Faculdade de Ciencias do Mar e do Ambiente - Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-03-15

    In this work the comfort level, namely the thermal comfort, local thermal discomfort and air quality levels, in a classroom with desks equipped with two personalized ventilation systems, in slightly warm environments, is evaluated. A manikin, a ventilated classroom desk, two indoor climate analyzers, a multi-nodal human thermal comfort numerical model and a computational fluid dynamic numerical model, are used. The classroom desk, with double occupation capacity, is used by a student, located in the right side seat. Each personalized ventilation system is equipped with one air terminal device located above the desk writing area, in front to the trunk area, and an other located below the desk writing area, in front to the legs area. The thermal comfort level is evaluated by the developed multi-nodal human thermal comfort numerical model, using a PMV value, the local thermal discomfort level, namely the draught risk and the air velocity fluctuation equivalent frequencies, is evaluated by empirical models, while the air quality level and the detailed airflow around the manikin are evaluated by the computational fluid dynamic numerical model. In the experimental tests the mean air velocity and the turbulence intensity in the upper air terminal device are 3.5 m/s and 9.7%, while in the lower air terminal device are 2.6 m/s and 15.2%. The mean air temperature in the air terminal devices is around 28 C, while the mean radiant temperature in the occupation area, the mean air temperature far from the occupation area and the internal mean air relative humidity were, respectively, 28 C, 28 C and 50%. The air velocity and temperature around the occupant are measured around 15 human body sections. The actual personalized ventilation system, which promotes an ascendant airflow around the occupant with highest air renovation rate in the respiration area, promotes acceptable thermal comfort conditions and air quality in the respiration area in accord to the present standards. The

  9. The Digital Microscope and Its Image Processing Utility

    Directory of Open Access Journals (Sweden)

    Tri Wahyu Supardi

    2011-12-01

    Full Text Available Many institutions, including high schools, own a large number of analog or ordinary microscopes. These microscopes are used to observe small objects. Unfortunately, object observations on the ordinary microscope require precision and visual acuity of the user. This paper discusses the development of a high-resolution digital microscope from an analog microscope, including the image processing utility, which allows the digital microscope users to capture, store and process the digital images of the object being observed. The proposed microscope is constructed from hardware components that can be easily found in Indonesia. The image processing software is capable of performing brightness adjustment, contrast enhancement, histogram equalization, scaling and cropping. The proposed digital microscope has a maximum magnification of 1600x, and image resolution can be varied from 320x240 pixels up to 2592x1944 pixels. The microscope was tested with various objects with a variety of magnification, and image processing was carried out on the image of the object. The results showed that the digital microscope and its image processing system were capable of enhancing the observed object and other operations in accordance with the user need. The digital microscope has eliminated the need for direct observation by human eye as with the traditional microscope.

  10. Quantum phase transition in a coupled two-level system embedded in anisotropic three-dimensional photonic crystals.

    Science.gov (United States)

    Shen, H Z; Shao, X Q; Wang, G C; Zhao, X L; Yi, X X

    2016-01-01

    The quantum phase transition (QPT) describes a sudden qualitative change of the macroscopic properties mapped from the eigenspectrum of a quantum many-body system. It has been studied intensively in quantum systems with the spin-boson model, but it has barely been explored for systems in coupled spin-boson models. In this paper, we study the QPT with coupled spin-boson models consisting of coupled two-level atoms embedded in three-dimensional anisotropic photonic crystals. The dynamics of the system is derived exactly by means of the Laplace transform method, which has been proven to be equivalent to the dissipationless non-Markovian dynamics. Drawing on methods for analyzing the ground state, we obtain the phase diagrams through two exact critical equations and two QPTs are found: one QPT is that from the phase without one bound state to the phase with one bound state and another is that from one phase with the bound state having one eigenvalue to another phase where the bound state has two eigenvalues. Our analytical results also suggest a way of control to overcome the effect of decoherence by engineering the spectrum of the reservoirs to approach the non-Markovian regime and to form the bound state of the whole system for quantum devices and quantum statistics.

  11. Microscopic modelling of doped manganites

    International Nuclear Information System (INIS)

    Weisse, Alexander; Fehske, Holger

    2004-01-01

    Colossal magneto-resistance manganites are characterized by a complex interplay of charge, spin, orbital and lattice degrees of freedom. Formulating microscopic models for these compounds aims at meeting two conflicting objectives: sufficient simplification without excessive restrictions on the phase space. We give a detailed introduction to the electronic structure of manganites and derive a microscopic model for their low-energy physics. Focusing on short-range electron-lattice and spin-orbital correlations we supplement the modelling with numerical simulations

  12. Mesooptical Fourier transform microscope - a new device for high energy physics

    International Nuclear Information System (INIS)

    Astakhov, A.Ya.; Batusov, Yu.A.; Bencze, Gy.L.; Farago, I.; Kisvaradi, A.; Molnar, L.; Soroko, L.M.; Vegh, J.

    1988-01-01

    A new device for high energy physics, Mesooptical Fourier Transform Microscope (MFTM), designed for observation of straight-line particle tracks in nuclear emulsion is described. The MFTM works without any mechanical or electronical depth scanning and can be considered as a selectively viewing eye. The computer controlled system containing MFTM as the main unit is given. This system can be used for fast search particle tracks and events produced by high energy neutrinos from accelerators. The results of the first experimental test of the computer controlled MFTM are presented. The performances of this system are described and discussed. It is shown that the angular resolution of the MFTM is 1 angular minute and the measurement time is equal to 30 ms. As all operations in the MFTM go without any depth scanning this new system works at least two orders of magnitude faster than any known system with a traditional optical microscope

  13. A Two-Level Sensorless MPPT Strategy Using SRF-PLL on a PMSG Wind Energy Conversion System

    Directory of Open Access Journals (Sweden)

    Amina Echchaachouai

    2017-01-01

    Full Text Available In this paper, a two-level sensorless Maximum Power Point Tracking (MPPT strategy is presented for a variable speed Wind Energy Conversion System (WECS. The proposed system is composed of a wind turbine, a direct-drive Permanent Magnet Synchronous Generator (PMSG and a three phase controlled rectifier connected to a DC load. The realised generator output power maximization analysis justifies the use of the Field Oriented Control (FOC giving the six Pulse Width Modulation (PWM signals to the active rectifier. The generator rotor speed and position required by the FOC and the sensorless MPPT are estimated using a Synchronous Reference Frame Phase Locked Loop (SRF-PLL. The MPPT strategy used consists of two levels, the first level is a power regulation loop and the second level is an extremum seeking bloc generating the coefficient gathering the turbine characteristics. Experimental results validated on a hardware test setup using a DSP digital board (dSPACE 1104 are presented. Figures illustrating the estimated speed and angle confirm that the SRF-PLL is able to give an estimated speed and angle which closely follow the real ones. Also, the power at the DC load and the power at the generator output indicate that the MPPT gives optimum extracted power. Finally, other results show the effectiveness of the adopted approach in real time applications.

  14. Classification of gram-positive and gram-negative foodborne pathogenic bacteria with hyperspectral microscope imaging

    Science.gov (United States)

    Optical method with hyperspectral microscope imaging (HMI) has potential for identification of foodborne pathogenic bacteria from microcolonies rapidly with a cell level. A HMI system that provides both spatial and spectral information could be an effective tool for analyzing spectral characteristic...

  15. On the microscopic foundation of scattering theory

    International Nuclear Information System (INIS)

    Moser, T.

    2007-01-01

    The aim of the thesis is to give a contribution to the microscopic foundation of scattering theory, i. e. to show, how the asymptotic formalism of scattering theory with objects like the S-matrix as well the initial and final asymptotics ψ in and ψ out can be derived from a microscopic description of the basic system. First the final statistics from a N-particle system through farly distant surfaces is derived. Thereafter we confine us to the 1-particle scattering and apply the final statistics in order to derive the scattering cross section from a microscopical description of the scattering situation. The basing dynamics are Bohm's mechanics, a theory on the motion of point particles, which reproduces all results of nonrelativistic quantum mechanics

  16. Microscopic appearance analysis of raw material used for the production of sintered UO2 by scanning electron microscope

    International Nuclear Information System (INIS)

    Liu feiming

    1992-01-01

    The paper describes the microscopic appearance of UO 2 , U 3 O 8 , ADU and AUC powders used for the production of sintered UO 2 slug of nuclear fuel component of PWR. The characteristic analysis of the microscopic appearance observed by scanning electron microscope shows that the quality and finished product rate of sintered UO 2 depend on the appearance characteristic of the active Uo 2 powder, such as grade size and its distribution, spherulitized extent, surface condition and heap model etc.. The addition of U 3 O 8 to the UO 2 powder improves significantly the quality and the finished product rate. The mechanism of this effect is discussed on the basis of the microscopic appearance characteristic for two kinds of powder

  17. Hybrid methods for witnessing entanglement in a microscopic-macroscopic system

    International Nuclear Information System (INIS)

    Spagnolo, Nicolo; Vitelli, Chiara; Paternostro, Mauro; De Martini, Francesco; Sciarrino, Fabio

    2011-01-01

    We propose a hybrid approach to the experimental assessment of the genuine quantum features of a general system consisting of microscopic and macroscopic parts. We infer entanglement by combining dichotomic measurements on a bidimensional system and phase-space inference through the Wigner distribution associated with the macroscopic component of the state. As a benchmark, we investigate the feasibility of our proposal in a bipartite-entangled state composed of a single-photon and a multiphoton field. Our analysis shows that, under ideal conditions, maximal violation of a Clauser-Horne-Shimony-Holt-based inequality is achievable regardless of the number of photons in the macroscopic part of the state. The difficulty in observing entanglement when losses and detection inefficiency are included can be overcome by using a hybrid entanglement witness that allows efficient correction for losses in the few-photon regime.

  18. Hybrid methods for witnessing entanglement in a microscopic-macroscopic system

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, Nicolo [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Vitelli, Chiara [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Paternostro, Mauro [School of Mathematics and Physics, Queen' s University, BT 7 1NN Belfast (United Kingdom); De Martini, Francesco [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Accademia Nazionale dei Lincei, via della Lungara 10, I-00165 Roma (Italy); Sciarrino, Fabio [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (INO-CNR), largo E. Fermi 6, I-50125 Firenze (Italy)

    2011-09-15

    We propose a hybrid approach to the experimental assessment of the genuine quantum features of a general system consisting of microscopic and macroscopic parts. We infer entanglement by combining dichotomic measurements on a bidimensional system and phase-space inference through the Wigner distribution associated with the macroscopic component of the state. As a benchmark, we investigate the feasibility of our proposal in a bipartite-entangled state composed of a single-photon and a multiphoton field. Our analysis shows that, under ideal conditions, maximal violation of a Clauser-Horne-Shimony-Holt-based inequality is achievable regardless of the number of photons in the macroscopic part of the state. The difficulty in observing entanglement when losses and detection inefficiency are included can be overcome by using a hybrid entanglement witness that allows efficient correction for losses in the few-photon regime.

  19. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karcı, Özgür [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Dede, Münir [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Oral, Ahmet, E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.

  20. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    International Nuclear Information System (INIS)

    Karcı, Özgür; Dede, Münir; Oral, Ahmet

    2014-01-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ∼12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system

  1. Controllable group velocity of the probe light in a Λ-type system with two fold levels

    International Nuclear Information System (INIS)

    Jin Lihui; Gong Shangqing; Niu Yueping; Li Ruxin; Jin Shiqi

    2006-01-01

    The group velocities of the probe laser field are studied in a Λ-type system where one lower state has two fold levels coupled by a control field. It is found that the interaction of double dark states leads to controllable group velocity of the probe field in this system. It can be easily realized, due to the interacting double dark resonances, that one of the group velocities at transparency positions is much slower than the other by tuning the control field to be off resonance. In particular, when the control field is on resonance, we can obtain two equal slow group velocities with a broader EIT width, which provides potential applications in quantum storage and retrieval of light

  2. Problem of two-level hierarchical minimax program control the final state of regional social and economic system in the presence of risks

    International Nuclear Information System (INIS)

    Shorikov, A. F.

    2015-01-01

    This article discusses a discrete-time dynamical system consisting of a set a controllable objects (region and forming it municipalities). The dynamics each of these is described by the corresponding vector nonlinear discrete-time recurrent vector equations and its control system consist from two levels: basic (control level I) that is dominating and subordinate level (control level II). Both levels have different criterions of functioning and united a priori by determined informational and control connections defined in advance. In this paper we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks. For this problem we proposed in this work an economical and mathematical model of two-level hierarchical minimax program control the final state of regional social and economic system in the presence of risks and the general scheme for its solving

  3. Problem of two-level hierarchical minimax program control the final state of regional social and economic system in the presence of risks

    Energy Technology Data Exchange (ETDEWEB)

    Shorikov, A. F., E-mail: afshorikov@mail.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002, Russia Institute of Mathematics and Mechanics, Ural Branch of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation)

    2015-11-30

    This article discusses a discrete-time dynamical system consisting of a set a controllable objects (region and forming it municipalities). The dynamics each of these is described by the corresponding vector nonlinear discrete-time recurrent vector equations and its control system consist from two levels: basic (control level I) that is dominating and subordinate level (control level II). Both levels have different criterions of functioning and united a priori by determined informational and control connections defined in advance. In this paper we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks. For this problem we proposed in this work an economical and mathematical model of two-level hierarchical minimax program control the final state of regional social and economic system in the presence of risks and the general scheme for its solving.

  4. Dressed-state analysis of efficient two-dimensional atom localization in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate two-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detection probability and precision of two-dimensional atom localization can be significantly improved due to the interference effect between the spontaneous decay channels and the dynamically induced quantum interference generated by the probe and composite fields. More importantly, a 100% probability of finding an atom within the sub-half-wavelength domain of the standing waves can be reached when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or atom nano-lithography via atom localization. (paper)

  5. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles

    International Nuclear Information System (INIS)

    Grace, Matthew; Brif, Constantin; Rabitz, Herschel; Walmsley, Ian A; Kosut, Robert L; Lidar, Daniel A

    2007-01-01

    Methods of optimal control are applied to a model system of interacting two-level particles (e.g., spin-half atomic nuclei or electrons or two-level atoms) to produce high-fidelity quantum gates while simultaneously negating the detrimental effect of decoherence. One set of particles functions as the quantum information processor, whose evolution is controlled by a time-dependent external field. The other particles are not directly controlled and serve as an effective environment, coupling to which is the source of decoherence. The control objective is to generate target one- and two-qubit unitary gates in the presence of strong environmentally-induced decoherence and under physically motivated restrictions on the control field. The quantum-gate fidelity, expressed in terms of a novel state-independent distance measure, is maximized with respect to the control field using combined genetic and gradient algorithms. The resulting high-fidelity gates demonstrate the feasibility of precisely guiding the quantum evolution via optimal control, even when the system complexity is exacerbated by environmental coupling. It is found that the gate duration has an important effect on the control mechanism and resulting fidelity. An analysis of the sensitivity of the gate performance to random variations in the system parameters reveals a significant degree of robustness attained by the optimal control solutions

  6. Construction of a high resolution microscope with conventional and holographic optical trapping capabilities.

    Science.gov (United States)

    Butterfield, Jacqualine; Hong, Weili; Mershon, Leslie; Vershinin, Michael

    2013-04-22

    High resolution microscope systems with optical traps allow for precise manipulation of various refractive objects, such as dielectric beads (1) or cellular organelles (2,3), as well as for high spatial and temporal resolution readout of their position relative to the center of the trap. The system described herein has one such "traditional" trap operating at 980 nm. It additionally provides a second optical trapping system that uses a commercially available holographic package to simultaneously create and manipulate complex trapping patterns in the field of view of the microscope (4,5) at a wavelength of 1,064 nm. The combination of the two systems allows for the manipulation of multiple refractive objects at the same time while simultaneously conducting high speed and high resolution measurements of motion and force production at nanometer and piconewton scale.

  7. Quantum physics. The bottom-up approach. From the simple two-level system to irreducible representations

    International Nuclear Information System (INIS)

    Dubbers, Dirk; Stoeckmann, Hans-Juergen

    2013-01-01

    Helps in a compact form to reach good understanding of quantum physics. Shows important analogies between problems across different disciplines. Concise and accurate, written in a readable and lively style. Concentrates on the simplest quantum system which still displays the basic features of quantum theory. Chapters end with a general outlook on multi-level systems. Results are applied to a multitude of topics in modern science, from particle physics and quantum optics to time standards and magnetic resonance imaging. This concise tutorial provides the bachelor student and the practitioner with a short text on quantum physics that allows them to understand a wealth of quantum phenomena based on a compact, well readable, yet still concise and accurate description of nonrelativistic quantum theory. This ''quadrature of the circle'' is achieved by concentrating first on the simplest quantum system that still displays all basic features of quantum theory, namely, a system with only two quantized energy levels. For most readers it is very helpful to understand such simple systems before slowly proceeding to more demanding topics like particle entanglement, quantum chaos, or the use of irreducible tensors. This tutorial does not intend to replace the standard textbooks on quantum mechanics, but will help the average student to understand them, often for the first time.

  8. Investigating Dissolution and Precipitation Phenomena with a Smartphone Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, Gregg J.; Arcia, Edgar

    2016-10-11

    A novel smartphone microscope can be used to observe the dissolution and crystallization of sodium chloride at a microscopic level. Observation of these seemingly simple phenomena through the microscope at 100× magnification can actually reveal some surprising behavior. These experiments offer the opportunity to discuss some basic concepts such as how the morphological features of the crystals dictates how the dissolution process proceeds, and how materials can be purified by re-crystallization techniques.

  9. Laser speckle contrast imaging using light field microscope approach

    Science.gov (United States)

    Ma, Xiaohui; Wang, Anting; Ma, Fenghua; Wang, Zi; Ming, Hai

    2018-01-01

    In this paper, a laser speckle contrast imaging (LSCI) system using light field (LF) microscope approach is proposed. As far as we known, it is first time to combine LSCI with LF. To verify this idea, a prototype consists of a modified LF microscope imaging system and an experimental device was built. A commercially used Lytro camera was modified for microscope imaging. Hollow glass tubes with different depth fixed in glass dish were used to simulate the vessels in brain and test the performance of the system. Compared with conventional LSCI, three new functions can be realized by using our system, which include refocusing, extending the depth of field (DOF) and gathering 3D information. Experiments show that the principle is feasible and the proposed system works well.

  10. French contributions to electron microscopic radioautography

    International Nuclear Information System (INIS)

    Droz, B.

    1994-01-01

    The radio autographic contributions carried out by electron microscopists took a part to improve the methodology and to extend applications to major biological problems. As underlined by CP Leblonc radioautography has clarified the importance of renewing systems; one may truly say that radioautography has introduced the time dimension in histology. The sites of biosynthesis of different substances have been located on the sub cellar scale, and it is now possible to analyse the molecular migrations within cells. The development of in situ hybridization and of receptors binding sites at the ultrastructural level has enlarged the application field of electron microscope radioautography. 64 refs., 2 figs

  11. An automatic system to study sperm motility and energetics.

    Science.gov (United States)

    Shi, Linda Z; Nascimento, Jaclyn M; Chandsawangbhuwana, Charlie; Botvinick, Elliot L; Berns, Michael W

    2008-08-01

    An integrated robotic laser and microscope system has been developed to automatically analyze individual sperm motility and energetics. The custom-designed optical system directs near-infrared laser light into an inverted microscope to create a single-point 3-D gradient laser trap at the focal spot of the microscope objective. A two-level computer structure is described that quantifies the sperm motility (in terms of swimming speed and swimming force) and energetics (measuring mid-piece membrane potential) using real-time tracking (done by the upper-level system) and fluorescent ratio imaging (done by the lower-level system). The communication between these two systems is achieved by a gigabit network. The custom-built image processing algorithm identifies the sperm swimming trajectory in real-time using phase contrast images, and then subsequently traps the sperm by automatically moving the microscope stage to relocate the sperm to the laser trap focal plane. Once the sperm is stably trapped (determined by the algorithm), the algorithm can also gradually reduce the laser power by rotating the polarizer in the laser path to measure the trapping power at which the sperm is capable of escaping the trap. To monitor the membrane potential of the mitochondria located in a sperm's mid-piece, the sperm is treated with a ratiometrically-encoded fluorescent probe. The proposed algorithm can relocate the sperm to the center of the ratio imaging camera and the average ratio value can be measured in real-time. The three parameters, sperm escape power, sperm swimming speed and ratio values of the mid-piece membrane potential of individual sperm can be compared with respect to time. This two-level automatic system to study individual sperm motility and energetics has not only increased experimental throughput by an order of magnitude but also has allowed us to monitor sperm energetics prior to and after exposure to the laser trap. This system should have application in both the

  12. Two-photon-induced hot-electron transfer to a single molecule in a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Wu, S. W.; Ho, W.

    2010-01-01

    The junction of a scanning tunneling microscope (STM) operating in the tunneling regime was irradiated with femtosecond laser pulses. A photoexcited hot electron in the STM tip resonantly tunnels into an excited state of a single molecule on the surface, converting it from the neutral to the anion. The electron-transfer rate depends quadratically on the incident laser power, suggesting a two-photon excitation process. This nonlinear optical process is further confirmed by the polarization measurement. Spatial dependence of the electron-transfer rate exhibits atomic-scale variations. A two-pulse correlation experiment reveals the ultrafast dynamic nature of photoinduced charging process in the STM junction. Results from these experiments are important for understanding photoinduced interfacial charge transfer in many nanoscale inorganic-organic structures.

  13. Proceedings of the workshop on microscopic and phenomenological studies of the interactions between light-heavy ions

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1993-01-01

    The workshop 'Microscopic and Phenomenological Studies of the Interactions between Light-Heavy Ions' was held at Institute for Nuclear Study, University of Tokyo from Dec. 24 to Dec. 26, 1991. The workshop included 1) studies of the nucleus-nucleus interactions of the systems as 16 O- 16 O, 16 O- 15 N, etc., or the studies of the elastic and inelastic scatterings and the transfer reactions in such systems, 2) structure and reactions of neutron-rich nuclei, 3) microscopic derivation of the effective two-nucleon interactions, 4) development of the methods of techniques applied to the heavier systems. (author)

  14. Development of full-field x-ray phase-tomographic microscope based on laboratory x-ray source

    Science.gov (United States)

    Takano, H.; Wu, Y.; Momose, A.

    2017-09-01

    An X-ray phase tomographic microscope that can quantitatively measure the refractive index of a sample in three dimensions with a high spatial resolution was developed by installing a Lau interferometer consisting of an absorption grating and a π/2 phase grating into the optics of an X-ray microscope. The optics comprises a Cu rotating anode X-ray source, capillary condenser optics, and a Fresnel zone plate for the objective. The microscope has two optical modes: a large-field-of-view mode (field of view: 65 μm x 65 μm) and a high-resolution mode (spatial resolution: 50 nm). Optimizing the parameters of the interferometer yields a self-image of the phase grating with 60% visibility. Through the normal fringe-scanning measurement, a twin phase image, which has an overlap of two phase image of opposite contrast with a shear distance much larger than system resolution, is generated. Although artifacts remain to some extent currently when a phase image is calculated from the twin phase image, this system can obtain high-spatial-resolution images resolving 50-nm structures. Phase tomography with this system has also been demonstrated using a phase object.

  15. A compact scanning soft X-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.

    1989-01-01

    Soft x-ray microscopes operating at wavelengths between 2.3 nm and 4.4 nm are capable of imaging wet biological cells with a resolution many times that of a visible light microscope. Several such soft x-ray microscopes have been constructed. However, with the exception of contact microscopes, all use synchrotrons as the source of soft x-ray radiation and Fresnel zone plates as the focusing optics. These synchrotron based microscopes are very successful but have the disadvantage of limited access. This dissertation reviews the construction and performance of a compact scanning soft x-ray microscope whose size and accessibility is comparable to that of an electron microscope. The microscope uses a high-brightness laser-produced plasma as the soft x-ray source and normal incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 -10 5 s -1 when operated with only 170 mW of average laser power. The complete system, including the laser, fits on a single 4' x 8' optical table. The significant components of the compact microscope are the laser-produced plasma (LPP) source, the multilayer coatings, and the Schwarzschild objective. These components are reviewed, both with regard to their particular use in the current microscope and with regard to extending the microscope performance to higher resolution, higher speed, and operation at shorter wavelengths. Measurements of soft x-ray emission and debris emission from our present LPP source are presented and considerations given for an optimal LPP source. The LPP source was also used as a broadband soft x-ray source for measurement of normal incidence multilayer mirror reflectance in the 10-25 nm spectral region

  16. An Assemblable, Multi-Angle Fluorescence and Ellipsometric Microscope

    Science.gov (United States)

    Nguyen, Victoria; Rizzo, John

    2016-01-01

    We introduce a multi-functional microscope for research laboratories that have significant cost and space limitations. The microscope pivots around the sample, operating in upright, inverted, side-on and oblique geometries. At these geometries it is able to perform bright-field, fluorescence and qualitative ellipsometric imaging. It is the first single instrument in the literature to be able to perform all of these functionalities. The system can be assembled by two undergraduate students from a provided manual in less than a day, from off-the-shelf and 3D printed components, which together cost approximately $16k at 2016 market prices. We include a highly specified assembly manual, a summary of design methodologies, and all associated 3D-printing files in hopes that the utility of the design outlives the current component market. This open design approach prepares readers to customize the instrument to specific needs and applications. We also discuss how to select household LEDs as low-cost light sources for fluorescence microscopy. We demonstrate the utility of the microscope in varied geometries and functionalities, with particular emphasis on studying hydrated, solid-supported lipid films and wet biological samples. PMID:27907008

  17. An Assemblable, Multi-Angle Fluorescence and Ellipsometric Microscope.

    Directory of Open Access Journals (Sweden)

    Victoria Nguyen

    Full Text Available We introduce a multi-functional microscope for research laboratories that have significant cost and space limitations. The microscope pivots around the sample, operating in upright, inverted, side-on and oblique geometries. At these geometries it is able to perform bright-field, fluorescence and qualitative ellipsometric imaging. It is the first single instrument in the literature to be able to perform all of these functionalities. The system can be assembled by two undergraduate students from a provided manual in less than a day, from off-the-shelf and 3D printed components, which together cost approximately $16k at 2016 market prices. We include a highly specified assembly manual, a summary of design methodologies, and all associated 3D-printing files in hopes that the utility of the design outlives the current component market. This open design approach prepares readers to customize the instrument to specific needs and applications. We also discuss how to select household LEDs as low-cost light sources for fluorescence microscopy. We demonstrate the utility of the microscope in varied geometries and functionalities, with particular emphasis on studying hydrated, solid-supported lipid films and wet biological samples.

  18. Visualization of atomic distances at the 1MV electron microscope: first results obtained on the Grenoble 1MV microscope

    International Nuclear Information System (INIS)

    Bourret, A.

    1975-01-01

    Practical and theoretical conditions for obtaining high resolution lattice images are presented. The use of a high voltage electron microscope is particularly powerful to visualize distances smaller than 3A. A 2A resolution test on (200) gold planes has been carried out on the Grenoble 1MV microscope. It would be possible at this level to study the crystalline defects such as dislocations or grain boundaries [fr

  19. Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.

    Science.gov (United States)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2015-09-11

    Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.

  20. A pragmatic guide to multiphoton microscope design

    Science.gov (United States)

    Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff

    2016-01-01

    Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429

  1. Differential magnetic force microscope imaging.

    Science.gov (United States)

    Wang, Ying; Wang, Zuobin; Liu, Jinyun; Hou, Liwei

    2015-01-01

    This paper presents a method for differential magnetic force microscope imaging based on a two-pass scanning procedure to extract differential magnetic forces and eliminate or significantly reduce background forces with reversed tip magnetization. In the work, the difference of two scanned images with reversed tip magnetization was used to express the local magnetic forces. The magnetic sample was first scanned with a low lift distance between the MFM tip and the sample surface, and the magnetization direction of the probe was then changed after the first scan to perform the second scan. The differential magnetic force image was obtained through the subtraction of the two images from the two scans. The theoretical and experimental results have shown that the proposed method for differential magnetic force microscope imaging is able to reduce the effect of background or environment interference forces, and offers an improved image contrast and signal to noise ratio (SNR). © Wiley Periodicals, Inc.

  2. Electronic structure and microscopic model of V2GeO4F2-a quantum spin system with S = 1

    International Nuclear Information System (INIS)

    Rahaman, Badiur; Saha-Dasgupta, T

    2007-01-01

    We present first-principles density functional calculations and downfolding studies of the electronic and magnetic properties of the oxide-fluoride quantum spin system V 2 GeO 4 F 2 . We discuss explicitly the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modelling based on analysis of the electronic structure of this systems puts it in the interesting class of weakly coupled alternating chain S = 1 systems. Based on the microscopic model, we make inferrences about its spin excitation spectra, which needs to be tested by rigorous experimental study

  3. Variable temperature superconducting microscope

    Science.gov (United States)

    Cheng, Bo; Yeh, W. J.

    2000-03-01

    We have developed and tested a promising type of superconducting quantum interference device (SQUID) microscope, which can be used to detect vortex motion and can operate in magnetic fields over a large temperature range. The system utilizes a single-loop coupling transformer, consisting of a patterned high Tc superconducting thin film. At one end of the transformer, a 20 μm diam detecting loop is placed close to the sample. At the other end, a large loop is coupled to a NbTi coil, which is connected to a low Tc SQUID sensor. Transformers in a variety of sizes have been tested and calibrated. The results show that the system is capable of detecting the motion of a single vortex. We have used the microscope to study the behavior of moving vortices at various positions in a YBa2Cu3O7 thin film bridge.

  4. On microscopic theory of radiative nuclear reaction characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kamerdzhiev, S. P. [National Research Centre “Kurchatov Institute” (Russian Federation); Achakovskiy, O. I., E-mail: oachakovskiy@ippe.ru; Avdeenkov, A. V. [Institute for Physics and Power Engineering (Russian Federation); Goriely, S. [Institut d’Astronomie et d’Astrophysique (Belgium)

    2016-07-15

    A survey of some results in the modern microscopic theory of properties of nuclear reactions with gamma rays is given. First of all, we discuss the impact of Phonon Coupling (PC) on the Photon Strength Function (PSF) because it represents the most natural physical source of additional strength found for Sn isotopes in recent experiments that could not be explained within the standard HFB + QRPA approach. The self-consistent version of the Extended Theory of Finite Fermi Systems in the Quasiparticle Time Blocking Approximation is applied. It uses the HFB mean field and includes both the QRPA and PC effects on the basis of the SLy4 Skyrme force. With our microscopic E1 PSFs, the following properties have been calculated for many stable and unstable even–even semi-magic Sn and Ni isotopes as well as for double-magic {sup 132}Sn and {sup 208}Pb using the reaction codes EMPIRE and TALYS with several Nuclear Level Density (NLD) models: (1) the neutron capture cross sections; (2) the corresponding neutron capture gamma spectra; (3) the average radiative widths of neutron resonances. In all the properties considered, the PC contribution turned out to be significant, as compared with the standard QRPA one, and necessary to explain the available experimental data. The results with the phenomenological so-called generalized superfluid NLD model turned out to be worse, on the whole, than those obtained with the microscopic HFB + combinatorial NLD model. The very topical question about the M1 resonance contribution to PSFs is also discussed.Finally, we also discuss the modern microscopic NLD models based on the self-consistent HFB method and show their relevance to explain the experimental data as compared with the phenomenological models. The use of these self-consistent microscopic approaches is of particular relevance for nuclear astrophysics, but also for the study of double-magic nuclei.

  5. Dynamical instabilities in hot expanding nuclear systems: a microscopic approach to the understanding of multifragmentation

    International Nuclear Information System (INIS)

    Suraud, E.

    1989-01-01

    We present a microscopic study of the quasi-fusion/explosion transition in the framework of Landau-Vlasov simulations and for intermediate energy heavy-ion collisions (beam energy from 10 to 100 MeV/A). After a short presentation of the results of schematic calculations, which furnish a guideline for microscopic investigations, we discuss the relevance of our approach for studying multifragmentation. Once the limitations of this kind of dynamical simulations exhibited, we perform a detailed analysis in terms of the equation of state of the system. In agreement with schematic models we find that the composite nuclear system formed in the collision actually explodes when it stays long enough in the mechanically unstable region (spinodal region). Quantitative estimates of the explosion threshold are given for central symmetric reactions (Ca + Ca and Ar + Ti). The link of the results with transport properties and the equation of state of nuclear matter are briefly discussed

  6. Meso-optical Fourier transform microscope - a new device for high energy physics

    International Nuclear Information System (INIS)

    Astakhov, A.Ya.; Batusov, Yu.A.; Bencze, G.L.; Farago, I.; Kisvaradi, A.; Molnar, L.; Soroko, L.M.; Vegh, J.

    1989-01-01

    A new device for high energy physics, the Meso-optical Fourier Transform Microscope (MFTM), designed for observation fo straight line particle tracks in nuclear research emulsion is described. The MFTM works without any mechanical or electronical depth scanning and can be considered as a selectivity viewing 'eye'. The computer controlled system containing MFTM as its main unit is given. This system can be used for a fast search for particle tracks and events produced by high energy neutrinos from particle accelerators. The results of the first experimental test of the computer controlled MFTM are presented. The performance of this system is described and discussed. It is shown that the angular resolution of the MFTM is 1 angular minute and the measurement time is equal to 30 ms per image. As all operations in the MFTM proceed without any depth scanning, this new evaluation system works at least two orders of magnitude faster than any known system with a traditional optical microscope. (orig.)

  7. Apertureless near-field/far-field CW two-photon microscope for biological and material imaging and spectroscopic applications.

    Science.gov (United States)

    Nowak, Derek B; Lawrence, A J; Sánchez, Erik J

    2010-12-10

    We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.

  8. Two-level image authentication by two-step phase-shifting interferometry and compressive sensing

    Science.gov (United States)

    Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-01-01

    A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.

  9. Level crossings in complex two-dimensional potentials

    Indian Academy of Sciences (India)

    Two-dimensional P T -symmetric quantum-mechanical systems with the complex cubic potential 12 = 2 + 2 + 2 and the complex Hénon–Heiles potential HH = 2 + 2 + (2 − 3/3) are investigated. Using numerical and perturbative methods, energy spectra are obtained to high levels. Although both ...

  10. Microscopic dynamics of binary mixtures and quasi-colloidal systems

    International Nuclear Information System (INIS)

    Smorenburg, H.E.

    1996-01-01

    In the study on the title subject two questions are addressed. One is whether the microscopic dynamics of binary mixtures and quasi-colloidal systems can be understood theoretically with kinetic theories for equivalent hard sphere mixtures. The other question that arises is whether the similarity in the dynamics of dense simple fluids and concentrated colloidal suspensions also holds for binary mixtures and quasi-colloidal systems. To answer these questions, we have investigated a number of binary gas mixtures and quasi-colloidal system with different diameter ratios and concentrations. We obtain the experimental dynamic structure factors S expt (κ,ω) of the samples from inelastic neutron scattering. We compare S expt (κ,ω) with the dynamic structure S HS (κ,ω) of an equivalent hard sphere fluid, that we calculate with the Enskog theory. In chapter 2, 3 and 4 we study dense He-Ar gas mixtures (diameter ratio R=1.4, and mass ratio M=10) at low and high Ar concentrations. Experiment and kinetic theory are in good agreement. In chapter 5 we study dilute quasi-colloidal suspensions of fullerene C60 molecules dissolved in liquid CS2. The diameter ratio R=2.2 is larger than in previous experiments while the mass ratio M=9.5 is more or less the same. We obtain the self diffusion coefficient D S of one C60 molecule in CS2 and find D s ≤D SE ≤D E , with D E obtained from kinetic theory and D SE from the Stokes-Einstein description. It appears that both descriptions are relevant but not so accurate. In chapter 6 we study three dense mixtures of neopentane in 40 Ar (diameter ratio R=1.7, mass ratio M=2) at low and high neopentane concentrations. At low concentration, we find a diffusion coefficient of neopentane in Ar, which is in good agreement with kinetic theory and in moderate agreement with the Stokes-Einstein description. At high concentration the collective translational dynamics of neopentane shows a similar behaviour as in dense colloids and simple fluids

  11. Application of microcomputer in automating microscope measurements in nuclear emulsion viewing

    International Nuclear Information System (INIS)

    Blaho, D.

    1985-01-01

    Microcomputer system MPS 8010 is described as applied to the automation of data collection and control of a microscope. The data on the measured coordinates of the microscope are recorded on paper tape and listed on a typewriter. The microcomputer system also makes possible automatic control of the microscope position by means of stepping motors according to the value read-out of the paper tape. (author)

  12. Measuring microscopic evolution processes of complex networks based on empirical data

    International Nuclear Information System (INIS)

    Chi, Liping

    2015-01-01

    Aiming at understanding the microscopic mechanism of complex systems in real world, we perform the measurement that characterizes the evolution properties on two empirical data sets. In the Autonomous Systems Internet data, the network size keeps growing although the system suffers a high rate of node deletion (r = 0.4) and link deletion (q = 0.81). However, the average degree keeps almost unchanged during the whole time range. At each time step the external links attached to a new node are about c = 1.1 and the internal links added between existing nodes are approximately m = 8. For the Scientific Collaboration data, it is a cumulated result of all the authors from 1893 up to the considered year. There is no deletion of nodes and links, r = q = 0. The external and internal links at each time step are c = 1.04 and m = 0, correspondingly. The exponents of degree distribution p(k) ∼ k -γ of these two empirical datasets γ data are in good agreement with that obtained theoretically γ theory . The results indicate that these evolution quantities may provide an insight into capturing the microscopic dynamical processes that govern the network topology. (paper)

  13. The National Ignition Facility modular Kirkpatrick-Baez microscope

    Energy Technology Data Exchange (ETDEWEB)

    Pickworth, L. A., E-mail: pickworth1@llnl.gov; Ayers, J.; Bell, P.; Brejnholt, N. F.; Buscho, J. G.; Bradley, D.; Decker, T.; Hau-Riege, S.; McCarville, T.; Pardini, T.; Vogel, J.; Walton, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kilkenny, J. [General Atomics, San Diego, California 92121 (United States)

    2016-11-15

    Current two-dimensional X-ray imaging at the National Ignition Facility (NIF) uses time resolved pinhole cameras with ∼10-25 μm pinholes. This method has limitations in the smallest resolvable features that can be imaged with reasonable photon statistics for inertial confinement fusion (ICF) applications. ICF sources have a broadband self-emission spectrum that causes the pinhole images obtained, through thin foil filters, to contain a similarly broadband spectrum complicating the interpretation of structure in the source. In order to study phenomena on the scale of ∼5 μm, such as dopant mix in the ICF capsule, a narrow energy band, higher spatial resolution microscope system with improved signal/noise has been developed using X-ray optics. Utilizing grazing incidence mirrors in a Kirkpatrick-Baez microscope (KBM) configuration [P. Kirkpatrick and A. V. Baez, J. Opt. Soc. Am. 38, 766–774 (1948)], an X-ray microscope has been designed and fielded on NIF with four imaging channels. The KBM has ∼12 × magnification, <8 μm resolution, and higher throughput in comparison to similar pinhole systems. The first KBM mirrors are coated with a multilayer mirror to allow a “narrow band” energy response at 10.2 keV with ΔE ∼ 3 keV. By adjusting the mirror coating only, the energy response can be matched to the future experimental requirements. Several mirror packs have been commissioned and are interchangeable in the diagnostic snout.

  14. Axiomatic electrodynamics and microscopic mechanics

    International Nuclear Information System (INIS)

    Yussouff, M.

    1981-04-01

    A new approach to theoretical physics, along with the basic formulation of a new MICROSCOPIC MECHANICS for the motion of small charged particles is described in this set of lecture notes. Starting with the classical (Newtonian) mechanics and classical fields, the important but well known properties of Classical Electromagnetic field are discussed up to section 4. The next nection describes the usual radiation damping theory and its difficulties. It is argued that the usual treatment of radiation damping is not valid for small space and time intervals and the true description of motion requires a new type of mechanics - the MICROSCOPIC MECHANICS: Section 6 and 7 are devoted to showing that not only the new microscopic mechanics goes over to Newtonian mechanics in the proper limit, but also it is closely connected with Quantum Mechanics. All the known results of the Schroedinger theory can be reproduced by microscopic mechanics which also gives a clear physical picture. It removes Einstein's famous objections against Quantum Theory and provides a clear distinction between classical and Quantum behavior. Seven Axioms (three on Classical Mechanics, two for Maxwell's theory, one for Relativity and a new Axiom on Radiation damping) are shown to combine Classical Mechanics, Maxwellian Electrodynamics, Relativity and Schroedinger's Quantum Theory within a single theoretical framework under Microscopic Mechanics which awaits further development at the present time. (orig.)

  15. Braking system for use with an arbor of a microscope

    International Nuclear Information System (INIS)

    Norgren, D.U.

    1984-01-01

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location

  16. Braking system for use with an arbor of a microscope

    Science.gov (United States)

    Norgren, Duane U.

    1984-01-01

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  17. Kirkpatrick-Baez microscope with spherical multilayer mirrors around 2.5keV photon energy

    Science.gov (United States)

    An, Ning; Du, Xuewei; Wang, Qiuping; Cao, Zhurong; Jiang, Shaoen; Ding, Yongkun

    2014-09-01

    A Kirkpatrick-Baez (KB) x-ray microscope has been developed for the diagnostics of inertial confinement fusion (ICF). The KB microscope system works around 2.5keV with the magnification of 20. It consists of two spherical multilayer mirrors. The grazing angle is 3.575° at 2.5keV. The influence of the slope error of optical components and the alignment errors is simulated by SHADOW software. The mechanical structure which can perform fine tuning is designed. Experiment result with Manson x-ray source shows that the spatial resolution of the system is about 3-4μm over a field of view of 200μm.

  18. Two-level convolution formula for nuclear structure function

    Science.gov (United States)

    Ma, Boqiang

    1990-05-01

    A two-level convolution formula for the nuclear structure function is derived in considering the nucleus as a composite system of baryon-mesons which are also composite systems of quark-gluons again. The results show that the European Muon Colaboration effect can not be explained by the nuclear effects as nucleon Fermi motion and nuclear binding contributions.

  19. Two-level convolution formula for nuclear structure function

    International Nuclear Information System (INIS)

    Ma Boqiang

    1990-01-01

    A two-level convolution formula for the nuclear structure function is derived in considering the nucleus as a composite system of baryon-mesons which are also composite systems of quark-gluons again. The results show that the European Muon Colaboration effect can not be explained by the nuclear effects as nucleon Fermi motion and nuclear binding contributions

  20. Proton microscope design for 9 GeV pRad facility

    International Nuclear Information System (INIS)

    Barminova, H.Y.; Turtikov, V.I.

    2016-01-01

    The proton microscope design for 9 GeV proton radiography facility is described. Basic principles of proton microscope development are discussed. Two variants of microscope optical scheme are proposed. Simulation of the proton beam dynamics is carried out, the results showing the possibility to obtain the microscope spatial resolution not worse than 10 μ m.

  1. Mesooptical microscope as a tomographical device

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1989-01-01

    It is shown that there are at least four regions which are common for the mesooptical microscopes, on the one hand, and for the reconstructed tomography, on the other hand. The following characteristics of the mesooptical microscope show the tomographical properties: the structure of the output data concerning the orientation and the position in space of the straight-line objects going at small angles with the perpendicular to the given tomographic plane, the behaviour of the two-dimensional fourier-transform of the straight-line object in the course of the rotation of this object with respect to the specified axis in space, the scanning algorithm of the nuclear emulsion volume by the fence-like illuminated region in the mesooptical microscope for searching for particle tracks going parallel to the optical axis of the microscope, and, finally, the fact that the mesooptical images of the straight-line particle tracks with a common vertex in the nuclear emulsion lie on the sinogram. 12 refs.; 16 figs

  2. Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion

    International Nuclear Information System (INIS)

    Svensson, K.; Jompol, Y.; Olin, H.; Olsson, E.

    2003-01-01

    A scanning tunneling microscope (STM) with a compact, three-dimensional, inertial slider design is presented. Inertial sliding of the STM tip, in three dimensions, enables coarse motion and scanning using only one piezoelectric tube. Using the same electronics both for scanning and inertial sliding, step lengths of less than 5% of the piezo range were achieved. The compact design, less than 1 cm3 in volume, ensures a low mechanical noise level and enables us to fit the STM into the sample holder of a transmission electron microscope (TEM), while maintaining atomic scale resolution in both STM and TEM imaging

  3. Dynamical model of coherent circularly polarized optical pulse interactions with two-level quantum systems

    International Nuclear Information System (INIS)

    Slavcheva, G.; Hess, O.

    2005-01-01

    We propose and develop a method for theoretical description of circularly (elliptically) polarized optical pulse resonant coherent interactions with two-level atoms. The method is based on the time-evolution equations of a two-level quantum system in the presence of a time-dependent dipole perturbation for electric dipole transitions between states with total angular-momentum projection difference (ΔJ z =±1) excited by a circularly polarized electromagnetic field [Feynman et al., J. Appl. Phys. 28, 49 (1957)]. The adopted real-vector representation approach allows for coupling with the vectorial Maxwell's equations for the optical wave propagation and thus the resulting Maxwell pseudospin equations can be numerically solved in the time domain without any approximations. The model permits a more exact study of the ultrafast coherent pulse propagation effects taking into account the vector nature of the electromagnetic field and hence the polarization state of the optical excitation. We demonstrate self-induced transparency effects and formation of polarized solitons. The model represents a qualitative extension of the well-known optical Maxwell-Bloch equations valid for linearly polarized light and a tool for studying coherent quantum control mechanisms

  4. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    International Nuclear Information System (INIS)

    Kim, Chan-Joong; Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon

    2015-01-01

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  5. A program-level management system for the life cycle environmental and economic assessment of complex building projects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan-Joong [Parsons Brinckerhoff, Seoul 135-763 (Korea, Republic of); Kim, Jimin; Hong, Taehoon; Koo, Choongwan; Jeong, Kwangbok; Park, Hyo Seon [Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-09-15

    Climate change has become one of the most significant environmental issues, of which about 40% come from the building sector. In particular, complex building projects with various functions have increased, which should be managed from a program-level perspective. Therefore, this study aimed to develop a program-level management system for the life-cycle environmental and economic assessment of complex building projects. The developed system consists of three parts: (i) input part: database server and input data; (ii) analysis part: life cycle assessment and life cycle cost; and (iii) result part: microscopic analysis and macroscopic analysis. To analyze the applicability of the developed system, this study selected ‘U’ University, a complex building project consisting of research facility and residential facility. Through value engineering with experts, a total of 137 design alternatives were established. Based on these alternatives, the macroscopic analysis results were as follows: (i) at the program-level, the life-cycle environmental and economic cost in ‘U’ University were reduced by 6.22% and 2.11%, respectively; (ii) at the project-level, the life-cycle environmental and economic cost in research facility were reduced 6.01% and 1.87%, respectively; and those in residential facility, 12.01% and 3.83%, respective; and (iii) for the mechanical work at the work-type-level, the initial cost was increased 2.9%; but the operation and maintenance phase was reduced by 20.0%. As a result, the developed system can allow the facility managers to establish the operation and maintenance strategies for the environmental and economic aspects from a program-level perspective. - Highlights: • A program-level management system for complex building projects was developed. • Life-cycle environmental and economic assessment can be conducted using the system. • The design alternatives can be analyzed from the microscopic perspective. • The system can be used to

  6. Microscopic to macroscopic depletion model development for FORMOSA-P

    International Nuclear Information System (INIS)

    Noh, J.M.; Turinsky, P.J.; Sarsour, H.N.

    1996-01-01

    Microscopic depletion has been gaining popularity with regard to employment in reactor core nodal calculations, mainly attributed to the superiority of microscopic depletion in treating spectral history effects during depletion. Another trend is the employment of loading pattern optimization computer codes in support of reload core design. Use of such optimization codes has significantly reduced design efforts to optimize reload core loading patterns associated with increasingly complicated lattice designs. A microscopic depletion model has been developed for the FORMOSA-P pressurized water reactor (PWR) loading pattern optimization code. This was done for both fidelity improvements and to make FORMOSA-P compatible with microscopic-based nuclear design methods. Needless to say, microscopic depletion requires more computational effort compared with macroscopic depletion. This implies that microscopic depletion may be computationally restrictive if employed during the loading pattern optimization calculation because many loading patterns are examined during the course of an optimization search. Therefore, the microscopic depletion model developed here uses combined models of microscopic and macroscopic depletion. This is done by first performing microscopic depletions for a subset of possible loading patterns from which 'collapsed' macroscopic cross sections are obtained. The collapsed macroscopic cross sections inherently incorporate spectral history effects. Subsequently, the optimization calculations are done using the collapsed macroscopic cross sections. Using this approach allows maintenance of microscopic depletion level accuracy without substantial additional computing resources

  7. Quantum physics the bottom-up approach : from the simple two-level system to irreducible representations

    CERN Document Server

    Dubbers, Dirk

    2013-01-01

    This concise tutorial provides the bachelor student and the practitioner with a short text on quantum physics that allows them to understand a wealth of quantum phenomena based on a compact, well readable, yet still concise and accurate description of nonrelativistic quantum theory. This “quadrature of the circle” is achieved by concentrating first on the simplest quantum system that still displays all basic features of quantum theory, namely, a system with only two quantized energy levels. For most readers it is very helpful to understand such simple systems before slowly proceeding to more demanding topics like particle entanglement, quantum chaos, or the use of irreducible tensors. This tutorial does not intend to replace the standard textbooks on quantum mechanics, but will help the average student to understand them, often for the first time.

  8. Macroscopic and microscopic evaluation of a new implant design supporting immediately loaded full arch rehabilitation

    OpenAIRE

    Tetè, Stefano; Zizzari, Vincenzo; De Carlo, Alessandro; Sinjari, Bruna; Gherlone, Enrico

    2012-01-01

    The purpose of this study is to evaluate macroscopic and microscopic appearance of a new implant design, with particular emphasis given to the type of prosthesis connection. Two dental implants of the same type (Torque Type®, WinSix®, BioSAFin. S.r.l. - Ancona, Italy), with sandblasted and acid etched surfaces (Micro Rough Surface®), but differing from each other for the prosthesis connection system, were examined by scanning electron microscope (SEM) analysis at different magnifications: TTI...

  9. Microscope self-calibration based on micro laser line imaging and soft computing algorithms

    Science.gov (United States)

    Apolinar Muñoz Rodríguez, J.

    2018-06-01

    A technique to perform microscope self-calibration via micro laser line and soft computing algorithms is presented. In this technique, the microscope vision parameters are computed by means of soft computing algorithms based on laser line projection. To implement the self-calibration, a microscope vision system is constructed by means of a CCD camera and a 38 μm laser line. From this arrangement, the microscope vision parameters are represented via Bezier approximation networks, which are accomplished through the laser line position. In this procedure, a genetic algorithm determines the microscope vision parameters by means of laser line imaging. Also, the approximation networks compute the three-dimensional vision by means of the laser line position. Additionally, the soft computing algorithms re-calibrate the vision parameters when the microscope vision system is modified during the vision task. The proposed self-calibration improves accuracy of the traditional microscope calibration, which is accomplished via external references to the microscope system. The capability of the self-calibration based on soft computing algorithms is determined by means of the calibration accuracy and the micro-scale measurement error. This contribution is corroborated by an evaluation based on the accuracy of the traditional microscope calibration.

  10. Implicit methods for equation-free analysis: convergence results and analysis of emergent waves in microscopic traffic models

    DEFF Research Database (Denmark)

    Marschler, Christian; Sieber, Jan; Berkemer, Rainer

    2014-01-01

    We introduce a general formulation for an implicit equation-free method in the setting of slow-fast systems. First, we give a rigorous convergence result for equation-free analysis showing that the implicitly defined coarse-level time stepper converges to the true dynamics on the slow manifold...... against the direction of traffic. Equation-free analysis enables us to investigate the behavior of the microscopic traffic model on a macroscopic level. The standard deviation of cars' headways is chosen as the macroscopic measure of the underlying dynamics such that traveling wave solutions correspond...... to equilibria on the macroscopic level in the equation-free setup. The collapse of the traffic jam to the free flow then corresponds to a saddle-node bifurcation of this macroscopic equilibrium. We continue this bifurcation in two parameters using equation-free analysis....

  11. Microscopic contact area and friction between medical textiles and skin.

    Science.gov (United States)

    Derler, S; Rotaru, G-M; Ke, W; El Issawi-Frischknecht, L; Kellenberger, P; Scheel-Sailer, A; Rossi, R M

    2014-10-01

    The mechanical contact between medical textiles and skin is relevant in the health care for patients with vulnerable skin or chronic wounds. In order to gain new insights into the skin-textile contact on the microscopic level, the 3D surface topography of a normal and a new hospital bed sheet with a regular surface structure was measured using a digital microscope. The topographic data was analysed concerning material distribution and real contact area against smooth surfaces as a function of surface deformations. For contact conditions that are relevant for the skin of patients lying in a hospital bed it was found that the order of magnitude of the ratio of real and apparent contact area between textiles and skin or a mechanical skin model lies between 0.02 and 0.1 and that surface deformations, i.e. penetration of the textile surface asperities into skin or a mechanical skin model, range from 10 to 50µm. The performed analyses of textile 3D surface topographies and comparisons with previous friction measurement results provided information on the relationship between microscopic surface properties and macroscopic friction behaviour of medical textiles. In particular, the new bed sheet was found to be characterised by a trend towards a smaller microscopic contact area (up to a factor of two) and by a larger free interfacial volume (more than a factor of two) in addition to a 1.5 times lower shear strength when in contact with counter-surfaces. The applied methods can be useful to develop improved and skin-adapted materials and surfaces for medical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Microscopic description of pair transfer between two superfluid Fermi systems: Combining phase-space averaging and combinatorial techniques

    Science.gov (United States)

    Regnier, David; Lacroix, Denis; Scamps, Guillaume; Hashimoto, Yukio

    2018-03-01

    In a mean-field description of superfluidity, particle number and gauge angle are treated as quasiclassical conjugated variables. This level of description was recently used to describe nuclear reactions around the Coulomb barrier. Important effects of the relative gauge angle between two identical superfluid nuclei (symmetric collisions) on transfer probabilities and fusion barrier have been uncovered. A theory making contact with experiments should at least average over different initial relative gauge-angles. In the present work, we propose a new approach to obtain the multiple pair transfer probabilities between superfluid systems. This method, called phase-space combinatorial (PSC) technique, relies both on phase-space averaging and combinatorial arguments to infer the full pair transfer probability distribution at the cost of multiple mean-field calculations only. After benchmarking this approach in a schematic model, we apply it to the collision 20O+20O at various energies below the Coulomb barrier. The predictions for one pair transfer are similar to results obtained with an approximated projection method, whereas significant differences are found for two pairs transfer. Finally, we investigated the applicability of the PSC method to the contact between nonidentical superfluid systems. A generalization of the method is proposed and applied to the schematic model showing that the pair transfer probabilities are reasonably reproduced. The applicability of the PSC method to asymmetric nuclear collisions is investigated for the 14O+20O collision and it turns out that unrealistically small single- and multiple pair transfer probabilities are obtained. This is explained by the fact that relative gauge angle play in this case a minor role in the particle transfer process compared to other mechanisms, such as equilibration of the charge/mass ratio. We conclude that the best ground for probing gauge-angle effects in nuclear reaction and/or for applying the proposed

  13. Confocal multispot microscope for fast and deep imaging in semicleared tissues

    Science.gov (United States)

    Adam, Marie-Pierre; Müllenbroich, Marie Caroline; Di Giovanna, Antonino Paolo; Alfieri, Domenico; Silvestri, Ludovico; Sacconi, Leonardo; Pavone, Francesco Saverio

    2018-02-01

    Although perfectly transparent specimens are imaged faster with light-sheet microscopy, less transparent samples are often imaged with two-photon microscopy leveraging its robustness to scattering; however, at the price of increased acquisition times. Clearing methods that are capable of rendering strongly scattering samples such as brain tissue perfectly transparent specimens are often complex, costly, and time intensive, even though for many applications a slightly lower level of tissue transparency is sufficient and easily achieved with simpler and faster methods. Here, we present a microscope type that has been geared toward the imaging of semicleared tissue by combining multispot two-photon excitation with rolling shutter wide-field detection to image deep and fast inside semicleared mouse brain. We present a theoretical and experimental evaluation of the point spread function and contrast as a function of shutter size. Finally, we demonstrate microscope performance in fixed brain slices by imaging dendritic spines up to 400-μm deep.

  14. Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging.

    Science.gov (United States)

    Kumar, Sunil; Kamali, Tschackad; Levitte, Jonathan M; Katz, Ori; Hermann, Boris; Werkmeister, Rene; Považay, Boris; Drexler, Wolfgang; Unterhuber, Angelika; Silberberg, Yaron

    2015-05-18

    Noninvasive label-free imaging of biological systems raises demand not only for high-speed three-dimensional prescreening of morphology over a wide-field of view but also it seeks to extract the microscopic functional and molecular details within. Capitalizing on the unique advantages brought out by different nonlinear optical effects, a multimodal nonlinear optical microscope can be a powerful tool for bioimaging. Bringing together the intensity-dependent contrast mechanisms via second harmonic generation, third harmonic generation and four-wave mixing for structural-sensitive imaging, and single-beam/single-pulse coherent anti-Stokes Raman scattering technique for chemical sensitive imaging in the finger-print region, we have developed a simple and nearly alignment-free multimodal nonlinear optical microscope that is based on a single wide-band Ti:Sapphire femtosecond pulse laser source. Successful imaging tests have been realized on two exemplary biological samples, a canine femur bone and collagen fibrils harvested from a rat tail. Since the ultra-broad band-width femtosecond laser is a suitable source for performing high-resolution optical coherence tomography, a wide-field optical coherence tomography arm can be easily incorporated into the presented multimodal microscope making it a versatile optical imaging tool for noninvasive label-free bioimaging.

  15. Microscopic bosonization of band structures: x-ray processes beyond the Fermi edge

    Science.gov (United States)

    Snyman, Izak; Florens, Serge

    2017-11-01

    Bosonization provides a powerful analytical framework to deal with one-dimensional strongly interacting fermion systems, which makes it a cornerstone in quantum many-body theory. However, this success comes at the expense of using effective infrared parameters, and restricting the description to low energy states near the Fermi level. We propose a radical extension of the bosonization technique that overcomes both limitations, allowing computations with microscopic lattice Hamiltonians, from the Fermi level down to the bottom of the band. The formalism rests on the simple idea of representating the fermion kinetic term in the energy domain, after which it can be expressed in terms of free bosonic degrees of freedom. As a result, one- and two-body fermionic scattering processes generate anharmonic boson-boson interactions, even in the forward channel. We show that up to moderate interaction strengths, these non-linearities can be treated analytically at all energy scales, using the x-ray emission problem as a showcase. In the strong interaction regime, we employ a systematic variational solution of the bosonic theory, and obtain results that agree quantitatively with an exact diagonalization of the original one-particle fermionic model. This provides a proof of the fully microscopic character of bosonization, on all energy scales, for an arbitrary band structure. Besides recovering the known x-ray edge singularity at the emission threshold, we find strong signatures of correlations even at emission frequencies beyond the band bottom.

  16. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    Science.gov (United States)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  17. Transmission-line resonators for the study of individual two-level tunneling systems

    Science.gov (United States)

    Brehm, Jan David; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey V.; Lisenfeld, Jürgen

    2017-09-01

    Parasitic two-level tunneling systems (TLS) emerge in amorphous dielectrics and constitute a serious nuisance for various microfabricated devices, where they act as a source of noise and decoherence. Here, we demonstrate a new test bed for the study of TLS in various materials which provides access to properties of individual TLS as well as their ensemble response. We terminate a superconducting transmission-line resonator with a capacitor that hosts TLS in its dielectric. By tuning TLS via applied mechanical strain, we observe the signatures of individual TLS strongly coupled to the resonator in its transmission characteristics and extract the coupling components of their dipole moments and energy relaxation rates. The strong and well-defined coupling to the TLS bath results in pronounced resonator frequency fluctuations and excess phase noise, through which we can study TLS ensemble effects such as spectral diffusion, and probe theoretical models of TLS interactions.

  18. Cluster secondary ion mass spectrometry microscope mode mass spectrometry imaging.

    Science.gov (United States)

    Kiss, András; Smith, Donald F; Jungmann, Julia H; Heeren, Ron M A

    2013-12-30

    Microscope mode imaging for secondary ion mass spectrometry is a technique with the promise of simultaneous high spatial resolution and high-speed imaging of biomolecules from complex surfaces. Technological developments such as new position-sensitive detectors, in combination with polyatomic primary ion sources, are required to exploit the full potential of microscope mode mass spectrometry imaging, i.e. to efficiently push the limits of ultra-high spatial resolution, sample throughput and sensitivity. In this work, a C60 primary source was combined with a commercial mass microscope for microscope mode secondary ion mass spectrometry imaging. The detector setup is a pixelated detector from the Medipix/Timepix family with high-voltage post-acceleration capabilities. The system's mass spectral and imaging performance is tested with various benchmark samples and thin tissue sections. The high secondary ion yield (with respect to 'traditional' monatomic primary ion sources) of the C60 primary ion source and the increased sensitivity of the high voltage detector setup improve microscope mode secondary ion mass spectrometry imaging. The analysis time and the signal-to-noise ratio are improved compared with other microscope mode imaging systems, all at high spatial resolution. We have demonstrated the unique capabilities of a C60 ion microscope with a Timepix detector for high spatial resolution microscope mode secondary ion mass spectrometry imaging. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding.

    Science.gov (United States)

    Lampinen, Björn; Szczepankiewicz, Filip; Mårtensson, Johan; van Westen, Danielle; Sundgren, Pia C; Nilsson, Markus

    2017-02-15

    In diffusion MRI (dMRI), microscopic diffusion anisotropy can be obscured by orientation dispersion. Separation of these properties is of high importance, since it could allow dMRI to non-invasively probe elongated structures such as neurites (axons and dendrites). However, conventional dMRI, based on single diffusion encoding (SDE), entangles microscopic anisotropy and orientation dispersion with intra-voxel variance in isotropic diffusivity. SDE-based methods for estimating microscopic anisotropy, such as the neurite orientation dispersion and density imaging (NODDI) method, must thus rely on model assumptions to disentangle these features. An alternative approach is to directly quantify microscopic anisotropy by the use of variable shape of the b-tensor. Along those lines, we here present the 'constrained diffusional variance decomposition' (CODIVIDE) method, which jointly analyzes data acquired with diffusion encoding applied in a single direction at a time (linear tensor encoding, LTE) and in all directions (spherical tensor encoding, STE). We then contrast the two approaches by comparing neurite density estimated using NODDI with microscopic anisotropy estimated using CODIVIDE. Data were acquired in healthy volunteers and in glioma patients. NODDI and CODIVIDE differed the most in gray matter and in gliomas, where NODDI detected a neurite fraction higher than expected from the level of microscopic diffusion anisotropy found with CODIVIDE. The discrepancies could be explained by the NODDI tortuosity assumption, which enforces a connection between the neurite density and the mean diffusivity of tissue. Our results suggest that this assumption is invalid, which leads to a NODDI neurite density that is inconsistent between LTE and STE data. Using simulations, we demonstrate that the NODDI assumptions result in parameter bias that precludes the use of NODDI to map neurite density. With CODIVIDE, we found high levels of microscopic anisotropy in white matter

  20. Microscopic coefficients for the quantum master equation of a Fermi system

    International Nuclear Information System (INIS)

    Stefanescu, E.; Sandulescu, A.

    2002-01-01

    In a previous paper, we derived a master equation for fermions, of Lindblad's form, with coefficients depending on microscopic quantities. In this paper, we study the properties of the dissipative coefficients taking into account the explicit expressions of: (a) the matrix elements of the dissipative potential, evaluated from the condition that, essentially, this potential induces transitions among the system eigenstates without significantly modifying these states, (b) the densities of the environment states according to the Thomas-Fermi model, and (c) the occupation probabilities of these states taken as a Fermi-Dirac distribution. The matrix of these coefficients correctly describes the system dynamics: (a) for a normal, Fermi-Dirac distribution of the environment population, the decays dominate the excitation processes; (b) for an inverted (exotic) distribution of this population, specific to a clustering state, the excitation processes are dominant. (author)

  1. Optical modeling of Fresnel zoneplate microscopes

    International Nuclear Information System (INIS)

    Naulleau, Patrick P.; Mochi, Iacopo; Goldberg, Kenneth A.

    2011-01-01

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  2. Limitations of two-level emitters as nonlinearities in two-photon controlled-PHASE gates

    DEFF Research Database (Denmark)

    Nysteen, Anders; McCutcheon, Dara P. S.; Heuck, Mikkel

    2017-01-01

    We investigate the origin of imperfections in the fidelity of a two-photon controlled-PHASE gate based on two-level-emitter nonlinearities. We focus on a passive system that operates without external modulations to enhance its performance. We demonstrate that the fidelity of the gate is limited...... by opposing requirements on the input pulse width for one-and two-photon-scattering events. For one-photon scattering, the spectral pulse width must be narrow compared with the emitter linewidth, while two-photon-scattering processes require the pulse width and emitter linewidth to be comparable. We find...

  3. Microscopic Features of Fractured Fragment of Nickel-Titanium Endodontic Instruments by Two Different Modes of Torsional Loading

    Directory of Open Access Journals (Sweden)

    Ibrahim H. Abu-Tahun

    2018-01-01

    Full Text Available This study compared the microscopic features of the fractured endodontic nickel-titanium (NiTi rotary instruments by two different torsional loadings: repetitive torsional loading (RTL and single torsional loading (STL based on the International Organization for Standardization (ISO. ProTaper Next, HyFlex EDM, and V-Taper 2 were compared in this study. In the STL method, the torsional load was applied after fixing the 3 mm tip of the file, by continuous clockwise rotation (2 rpm until fracture. In the RTL method, a preset rotational loading (0.5 N·cm was applied and the clockwise loading to the preset torque and counterclockwise unloading to original position were repeated at 50 rpm until the file fractured. Fractured fragments by two methods were compared under a scanning electron microscope (SEM to examine the topographic features of the fractured surfaces and longitudinal aspects. SEM examinations showed significantly different features according to the loading methods. Specimens from the RTL method showed ruptured aspects on cross sections, with multiple areas of initiated cracks while the STL method showed the typical features of torsional failure, such as circular abrasion marks and fatigue dimples. This study suggested a new repetitive torsional loading method which is much more clinically relevant and may result in a different fracture feature from STL method.

  4. Comparative study of image contrast in scanning electron microscope and helium ion microscope.

    Science.gov (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C

    2017-12-01

    Images of Ga + -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga + density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  5. An electron microscope for the aberration-corrected era

    Energy Technology Data Exchange (ETDEWEB)

    Krivanek, O.L. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)], E-mail: krivanek.ondrej@gmail.com; Corbin, G.J.; Dellby, N.; Elston, B.F.; Keyse, R.J.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Woodruff, J.W. [Nion Co., 1102 8th Street, Kirkland, WA 98033 (United States)

    2008-02-15

    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown.

  6. An electron microscope for the aberration-corrected era

    International Nuclear Information System (INIS)

    Krivanek, O.L.; Corbin, G.J.; Dellby, N.; Elston, B.F.; Keyse, R.J.; Murfitt, M.F.; Own, C.S.; Szilagyi, Z.S.; Woodruff, J.W.

    2008-01-01

    Improved resolution made possible by aberration correction has greatly increased the demands on the performance of all parts of high-end electron microscopes. In order to meet these demands, we have designed and built an entirely new scanning transmission electron microscope (STEM). The microscope includes a flexible illumination system that allows the properties of its probe to be changed on-the-fly, a third-generation aberration corrector which corrects all geometric aberrations up to fifth order, an ultra-responsive yet stable five-axis sample stage, and a flexible configuration of optimized detectors. The microscope features many innovations, such as a modular column assembled from building blocks that can be stacked in almost any order, in situ storage and cleaning facilities for up to five samples, computer-controlled loading of samples into the column, and self-diagnosing electronics. The microscope construction is described, and examples of its capabilities are shown

  7. Electron optical characteristics of a concave electrostatic electron mirror for a scanning electron microscope

    International Nuclear Information System (INIS)

    Hamarat, R.T.; Witzani, J.; Hoerl, E.M.

    1984-08-01

    Numerical computer calculations are used to explore the design characteristics of a concave electrostatic electron mirror for a mirror attachment for a conventional scanning electron microscope or an instrument designed totally as a scanning electron mirror microscope. The electron paths of a number of set-ups are calculated and drawn graphically in order to find the optimum shape and dimensions of the mirror geometry. This optimum configuration turns out to be the transition configuration between two cases of electron path deflection, towards the optical axis of the system and away from it. (Author)

  8. A multi-level maintenance policy for a multi-component and multifailure mode system with two independent failure modes

    International Nuclear Information System (INIS)

    Zhu, Wenjin; Fouladirad, Mitra; Bérenguer, Christophe

    2016-01-01

    This paper studies the maintenance modelling of a multi-component system with two independent failure modes with imperfect prediction signal in the context of a system of systems. Each individual system consists of multiple series components and the failure modes of all the components are divided into two classes due to their consequences: hard failure and soft failure, where the former causes system failure while the later results in inferior performance (production reduction) of system. Besides, the system is monitored and can be alerted by imperfect prediction signal before hard failure. Based on an illustration example of offshore wind farm, in this paper three maintenance strategies are considered: periodic routine, reactive and opportunistic maintenance. The periodic routine maintenance is scheduled at fixed period for each individual system in the perspective of system of systems. Between two successive routine maintenances, the reactive maintenance is instructed by the imperfect prediction signal according to two criterion proposed in this study for the system components. Due to the high setup cost and practical restraints of implementing maintenance activities, both routine and reactive maintenance can create the opportunities of maintenance for the other components of an individual system. The life cycle of the system and the cost of the proposed maintenance policies are analytically derived. Restrained by the complexity from both the system failure modelling and maintenance strategies, the performances and application scope of the proposed maintenance model are evaluated by numerical simulations. - Highlights: • We study the life behavior of a complex system with two failure modes. • We consider the imperfect prediction signal of potential failure by monitoring. • We propose an integrated maintenance policy with three levels based on wind turbine. • We derive the mathematical cost formulations for the proposed maintenance policy.

  9. Application of differential interference contrast with inverted microscopes to the in vitro perfused nephron.

    Science.gov (United States)

    Horster, M; Gundlach, H

    1979-12-01

    The study of in vitro perfused individual nephron segments requires a microscope which provides: (1) easy access to the specimen for measurement of cellular solute flux and voltage; (2) an image with high resolution and contrast; (3) optical sectioning of the object at different levels; and (4) rapid recording of the morphological phenomena. This paper describes an example of commercially available apparatus meeting the above requirements, and illustrates its efficiency. The microscope is of the inverted type (Zeiss IM 35) equipped with differential-interference-contrast (DIC) with a long working distance, and an automatically controlled camera system. The microscopic image exhibits cellular and intercellular details in the unstained transporting mammalian nephron segments despite their tubular structure and great thickness and makes obvious function-structure correlations (e.g. cell volume changes); luminal and contraluminal cell borders are well resolved for controlled microelectrode impalement.

  10. Amplification without inversion, fast light and optical bistability in a duplicated two-level system

    International Nuclear Information System (INIS)

    Ebrahimi Zohravi, Lida; Vafafard, Azar; Mahmoudi, Mohammad

    2014-01-01

    The optical properties of a weak probe field in a duplicated two-level system are investigated in multi-photon resonance (MPR) condition and beyond it. It is shown that by changing the relative phase of applied fields, the absorption switches to the amplification without inversion in MPR condition. By applying the Floquet decomposition to the equations of motion beyond MPR condition, it is shown that the phase-dependent behavior is valid only in MPR condition. Moreover, it is demonstrated that the group velocity of light pulse can be controlled by the intensity of the applied fields and the gain-assisted superluminal light propagation (fast light) is obtained in this system. In addition, the optical bistability (OB) behavior of the system is studied beyond MPR condition. We apply an indirect incoherent pumping field to the system and it is found that the group velocity and OB behavior of the system can be controlled by the incoherent pumping rate. - Highlights: • We studied the optical properties of DTL system under MPR condition and beyond it. • By changing the relative phase, the absorption switches to the amplification without inversion in MPR condition. • The gain-assisted superluminal light propagation (fast light) is obtained in this system. • The optical bistability (OB) behavior of the system is studied beyond MPR condition. • The incoherent pumping rate has a major role in controlling the group velocity and OB behavior of the system

  11. APPLICATION OF SCANNING ELECTRON MICROSCOPE EQUIPPED WITH THE MICROANALYSIS SYSTEM FOR INVESTIGATION OF BRASS COVERING

    Directory of Open Access Journals (Sweden)

    T. P. Kurenkova

    2010-01-01

    Full Text Available The possibilities of application of scanning electronic microscope equipped with microanalysis system for investigation of the brass covering quality by slug for production of wire and metal cord particularly of change of copper concentration by covering thickness and slug perimeter, revealing of ?-phase allocation presence and character, determination of defect reasons, are shown.

  12. Memory Effects in the Two-Level Model for Glasses

    Science.gov (United States)

    Aquino, Gerardo; Allahverdyan, Armen; Nieuwenhuizen, Theo M.

    2008-07-01

    We study an ensemble of two-level systems interacting with a thermal bath. This is a well-known model for glasses. The origin of memory effects in this model is a quasistationary but nonequilibrium state of a single two-level system, which is realized due to a finite-rate cooling and slow thermally activated relaxation. We show that single-particle memory effects, such as negativity of the specific heat under reheating, vanish for a sufficiently disordered ensemble. In contrast, a disordered ensemble displays a collective memory effect [similar to the Kovacs effect], where nonequilibrium features of the ensemble are monitored via a macroscopic observable. An experimental realization of the effect can be used to further assess the consistency of the model.

  13. Promoting system-level learning from project-level lessons

    Energy Technology Data Exchange (ETDEWEB)

    Jong, Amos A. de, E-mail: amosdejong@gmail.com [Innovation Management, Utrecht (Netherlands); Runhaar, Hens A.C., E-mail: h.a.c.runhaar@uu.nl [Section of Environmental Governance, Utrecht University, Utrecht (Netherlands); Runhaar, Piety R., E-mail: piety.runhaar@wur.nl [Organisational Psychology and Human Resource Development, University of Twente, Enschede (Netherlands); Kolhoff, Arend J., E-mail: Akolhoff@eia.nl [The Netherlands Commission for Environmental Assessment, Utrecht (Netherlands); Driessen, Peter P.J., E-mail: p.driessen@geo.uu.nl [Department of Innovation and Environment Sciences, Utrecht University, Utrecht (Netherlands)

    2012-02-15

    A growing number of low and middle income nations (LMCs) have adopted some sort of system for environmental impact assessment (EIA). However, generally many of these EIA systems are characterised by a low performance in terms of timely information dissemination, monitoring and enforcement after licencing. Donor actors (such as the World Bank) have attempted to contribute to a higher performance of EIA systems in LMCs by intervening at two levels: the project level (e.g. by providing scoping advice or EIS quality review) and the system level (e.g. by advising on EIA legislation or by capacity building). The aims of these interventions are environmental protection in concrete cases and enforcing the institutionalisation of environmental protection, respectively. Learning by actors involved is an important condition for realising these aims. A relatively underexplored form of learning concerns learning at EIA system-level via project level donor interventions. This 'indirect' learning potentially results in system changes that better fit the specific context(s) and hence contribute to higher performances. Our exploratory research in Ghana and the Maldives shows that thus far, 'indirect' learning only occurs incidentally and that donors play a modest role in promoting it. Barriers to indirect learning are related to the institutional context rather than to individual characteristics. Moreover, 'indirect' learning seems to flourish best in large projects where donors achieved a position of influence that they can use to evoke reflection upon system malfunctions. In order to enhance learning at all levels donors should thereby present the outcomes of the intervention elaborately (i.e. discuss the outcomes with a large audience), include practical suggestions about post-EIS activities such as monitoring procedures and enforcement options and stimulate the use of their advisory reports to generate organisational memory and ensure a better

  14. Promoting system-level learning from project-level lessons

    International Nuclear Information System (INIS)

    Jong, Amos A. de; Runhaar, Hens A.C.; Runhaar, Piety R.; Kolhoff, Arend J.; Driessen, Peter P.J.

    2012-01-01

    A growing number of low and middle income nations (LMCs) have adopted some sort of system for environmental impact assessment (EIA). However, generally many of these EIA systems are characterised by a low performance in terms of timely information dissemination, monitoring and enforcement after licencing. Donor actors (such as the World Bank) have attempted to contribute to a higher performance of EIA systems in LMCs by intervening at two levels: the project level (e.g. by providing scoping advice or EIS quality review) and the system level (e.g. by advising on EIA legislation or by capacity building). The aims of these interventions are environmental protection in concrete cases and enforcing the institutionalisation of environmental protection, respectively. Learning by actors involved is an important condition for realising these aims. A relatively underexplored form of learning concerns learning at EIA system-level via project level donor interventions. This ‘indirect’ learning potentially results in system changes that better fit the specific context(s) and hence contribute to higher performances. Our exploratory research in Ghana and the Maldives shows that thus far, ‘indirect’ learning only occurs incidentally and that donors play a modest role in promoting it. Barriers to indirect learning are related to the institutional context rather than to individual characteristics. Moreover, ‘indirect’ learning seems to flourish best in large projects where donors achieved a position of influence that they can use to evoke reflection upon system malfunctions. In order to enhance learning at all levels donors should thereby present the outcomes of the intervention elaborately (i.e. discuss the outcomes with a large audience), include practical suggestions about post-EIS activities such as monitoring procedures and enforcement options and stimulate the use of their advisory reports to generate organisational memory and ensure a better information

  15. Design of a normal incidence multilayer imaging X-ray microscope

    Science.gov (United States)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  16. Hybrid Microscopic-Endoscopic Surgery for Craniopharyngioma in Neurosurgical Suite: Technical Notes.

    Science.gov (United States)

    Ichikawa, Tomotsugu; Otani, Yoshihiro; Ishida, Joji; Fujii, Kentaro; Kurozumi, Kazuhiko; Ono, Shigeki; Date, Isao

    2016-01-01

    The best chance of curing craniopharyngioma is achieved by microsurgical total resection; however, its location adjacent to critical structures hinders complete resection without neurologic deterioration. Unrecognized residual tumor within microscopic blind spots might result in tumor recurrences. To improve outcomes, new techniques are necessary to visualize tissue within these blind spots. We examined the success of hybrid microscopic-endoscopic neurosurgery for craniopharyngioma in a neurosurgical suite. Four children with craniopharyngiomas underwent microscopic resection. When the neurosurgeon was confident that most of the visible tumor was removed but was suspicious of residual tumor within the blind spot, he or she used an integrated endoscope-holder system to inspect and remove any residual tumor. Two ceiling monitors were mounted side by side in front of the surgeon to display both microscopic and endoscopic views and to view both monitors simultaneously. Surgery was performed in all patients via the frontobasal interhemispheric approach. Residual tumors were observed in the sella (2 patients), on the ventral surface of the chiasm and optic nerve (1 patient), and in the third ventricle (1 patient) and were resected to achieve total resection. Postoperatively, visual function was improved in 2 patients and none exhibited deterioration related to the surgery. Simultaneous microscopic and endoscopic observation with the use of dual monitors in a neurosurgical suite was ergonomically optimal for the surgeon to perform microsurgical procedures and to avoid traumatizing surrounding vessels or neural tissues. Hybrid microscopic-endoscopic neurosurgery may contribute to safe, less-invasive, and maximal resection to achieve better prognosis in children with craniopharyngioma. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Modeling of Electronic Transport in Scanning Tunneling Microscope Tip-Carbon Nanotube Systems

    Science.gov (United States)

    Yamada, Toshishige; Kwak, Dochan (Technical Monitor)

    2000-01-01

    A model is proposed for two observed current-voltage (I-V) patterns in a recent experiment with a scanning tunneling microscope tip and a carbon nanotube. We claim that there are two mechanical contact modes for a tip (metal) -nanotube (semiconductor) junction (1) with or (2) without a tiny vacuum gap (0.1 - 0.2 nm). With the tip grounded, the tunneling case in (1) would produce large dI/dV with V > 0, small dI/dV with V < 0, and I = 0 near V = 0 for an either n- or p-nanotube; the Schottky mechanism in (2) would result in I does not equal 0 only with V < 0 for an n-nanotube, and the bias polarities would be reversed for a p-nanotube. The two observed I-V patterns are thus entirely explained by a tip-nanotube contact of the two types, where the nanotube must be n-type.

  18. Spectroscopy of electron irradiated polymers in electron microscope

    International Nuclear Information System (INIS)

    Faraj, S.H.; Salih, S.M.

    1981-01-01

    The damage induced by energetic electrons in the course of irradiation of polymers in a transmission electron microscope was investigated spectroscopically. Damage on the molecular level has been detected at very low exposure doses. These effects have been induced by electron doses less than that received by the specimen when it is situated at its usual place of the specimen stage in the electron microscope by a factor of 1,000. (author)

  19. Three-Dimensional Identification of Microorganisms Using a Digital Holographic Microscope

    Directory of Open Access Journals (Sweden)

    Ning Wu

    2013-01-01

    Full Text Available This paper reports a method for three-dimensional (3D analysis of shift-invariant pattern recognition and applies to holographic images digitally reconstructed from holographic microscopes. It is shown that the sequential application of a 2D filter to the plane-by-plane reconstruction of an optical field is exactly equivalent to the application of a more general filter with a 3D impulse response. We show that any 3D filters with arbitrary impulse response can be implemented in this way. This type of processing is applied to the two-class problem of distinguishing different types of bacteria. It is shown that the proposed technique can be easily implemented using a modified microscope to develop a powerful and cost-effective system with great potential for biological screening.

  20. Remote laboratory for phase-aided 3D microscopic imaging and metrology

    Science.gov (United States)

    Wang, Meng; Yin, Yongkai; Liu, Zeyi; He, Wenqi; Li, Boqun; Peng, Xiang

    2014-05-01

    In this paper, the establishment of a remote laboratory for phase-aided 3D microscopic imaging and metrology is presented. Proposed remote laboratory consists of three major components, including the network-based infrastructure for remote control and data management, the identity verification scheme for user authentication and management, and the local experimental system for phase-aided 3D microscopic imaging and metrology. The virtual network computer (VNC) is introduced to remotely control the 3D microscopic imaging system. Data storage and management are handled through the open source project eSciDoc. Considering the security of remote laboratory, the fingerprint is used for authentication with an optical joint transform correlation (JTC) system. The phase-aided fringe projection 3D microscope (FP-3DM), which can be remotely controlled, is employed to achieve the 3D imaging and metrology of micro objects.

  1. A microscopic derivation of stochastic differential equations

    International Nuclear Information System (INIS)

    Arimitsu, Toshihico

    1996-01-01

    With the help of the formulation of Non-Equilibrium Thermo Field Dynamics, a unified canonical operator formalism is constructed for the quantum stochastic differential equations. In the course of its construction, it is found that there are at least two formulations, i.e. one is non-hermitian and the other is hermitian. Having settled which framework should be satisfied by the quantum stochastic differential equations, a microscopic derivation is performed for these stochastic differential equations by extending the projector methods. This investigation may open a new field for quantum systems in order to understand the deeper meaning of dissipation

  2. Theory of a Quantum Scanning Microscope for Cold Atoms.

    Science.gov (United States)

    Yang, D; Laflamme, C; Vasilyev, D V; Baranov, M A; Zoller, P

    2018-03-30

    We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.

  3. Quantum jumps in a three-level system

    International Nuclear Information System (INIS)

    Javanainen, J.

    1986-01-01

    The authors study fluorescence in a scheme which is easy to treat theoretically: a two-level system driven by a laser and a third metastable state such that slow spontaneous transitions take place both from the excited state of a two-level system to the metastable state and from the metastable state to the ground state of the two-level system. With the aid of the quantum regression theorem the authors calculate the whole photon counting statistics at a detector which records scattering of the laser photons. In the limit of high intensity of the laser, the statistics of photon counts is found to be the same as the statistics of a two-state Markov jumps process. Thus, if the sequence of photon counts can be interpreted as a realization of a stochastic process, in a single experimental run the fluorescence should abruptly turn on and off for random intervals of time. The result is the same as given by the quantum-jump argument

  4. Microscopic studies of RIB target materials and ion induced nanostructures

    International Nuclear Information System (INIS)

    Karmakar, Prasanta; Bhattacharya, Shampa; Roy, Tapatee Kundu; Bhowmick, Debasis; Chakrabarti, Alok

    2010-01-01

    The invention of electron microscope and scanning probe microscope has empowered us to visualize the tiny world that has explored many fundamental laws of natures. Further technological advancements have made these tools capable to probe micron size structures to individual atom. These microscopes are used to image and study micron size fibers or grain structures used for high yield radioactive products, to few nanometer size ripple, dot and hole structures produced by ion irradiation. Electron Microscope has also been used to characterize the ion beam synthesized dilute magnetic systems

  5. Microscopic and macroscopic models for pedestrian crowds

    OpenAIRE

    Makmul, Juntima

    2016-01-01

    This thesis is concerned with microscopic and macroscopic models for pedes- trian crowds. In the first chapter, we consider pedestrians exit choices and model human behaviour in an evacuation process. Two microscopic models, discrete and continuous, are studied in this chapter. The former is a cellular automaton model and the latter is a social force model. Different numerical test cases are investigated and their results are compared. In chapter 2, a hierarchy of models for...

  6. Seamless stitching of tile scan microscope images.

    Science.gov (United States)

    Legesse, F B; Chernavskaia, O; Heuke, S; Bocklitz, T; Meyer, T; Popp, J; Heintzmann, R

    2015-06-01

    For diagnostic purposes, optical imaging techniques need to obtain high-resolution images of extended biological specimens in reasonable time. The field of view of an objective lens, however, is often smaller than the sample size. To image the whole sample, laser scanning microscopes acquire tile scans that are stitched into larger mosaics. The appearance of such image mosaics is affected by visible edge artefacts that arise from various optical aberrations which manifest in grey level jumps across tile boundaries. In this contribution, a technique for stitching tiles into a seamless mosaic is presented. The stitching algorithm operates by equilibrating neighbouring edges and forcing the brightness at corners to a common value. The corrected image mosaics appear to be free from stitching artefacts and are, therefore, suited for further image analysis procedures. The contribution presents a novel method to seamlessly stitch tiles captured by a laser scanning microscope into a large mosaic. The motivation for the work is the failure of currently existing methods for stitching nonlinear, multimodal images captured by our microscopic setups. Our method eliminates the visible edge artefacts that appear between neighbouring tiles by taking into account the overall illumination differences among tiles in such mosaics. The algorithm first corrects the nonuniform brightness that exists within each of the tiles. It then compensates for grey level differences across tile boundaries by equilibrating neighbouring edges and forcing the brightness at the corners to a common value. After these artefacts have been removed further image analysis procedures can be applied on the microscopic images. Even though the solution presented here is tailored for the aforementioned specific case, it could be easily adapted to other contexts where image tiles are assembled into mosaics such as in astronomical or satellite photos. © 2015 The Authors Journal of Microscopy © 2015 Royal

  7. Scanning microscopic four-point conductivity probes

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Hansen, Torben Mikael; Bøggild, Peter

    2002-01-01

    A method for fabricating microscopic four-point probes is presented. The method uses silicon-based microfabrication technology involving only two patterning steps. The last step in the fabrication process is an unmasked deposition of the conducting probe material, and it is thus possible to select...... the conducting material either for a silicon wafer or a single probe unit. Using shadow masking photolithography an electrode spacing (pitch) down to 1.1 mum was obtained, with cantilever separation down to 200 run. Characterisation measurements have shown the microscopic probes to be mechanically very flexible...

  8. In vivo cellular imaging with microscopes enabled by MEMS scanners

    Science.gov (United States)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  9. Energy-gap spectroscopy of superconductors using a tunneling microscope

    International Nuclear Information System (INIS)

    Le Duc, H.G.; Kaiser, W.J.; Stern, J.A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 10 2 --10 3 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory

  10. Two levels decision system for efficient planning and implementation of bioenergy production

    International Nuclear Information System (INIS)

    Ayoub, Nasser; Martins, Ricardo; Wang, Kefeng; Seki, Hiroya; Naka, Yuji

    2007-01-01

    When planning bioenergy production from biomass, planners should take into account each and every stakeholder along the biomass supply chains, e.g. biomass resources suppliers, transportation, conversion and electricity suppliers. Also, the planners have to consider social concerns, environmental and economical impacts related with establishing the biomass systems and the specific difficulties of each country. To overcome these problems in a sustainable manner, a robust decision support system is required. For that purpose, a two levels general Bioenergy Decision System (gBEDS) for bioenergy production planning and implementation was developed. The core part of the gBEDS is the information base, which includes the basic bioenergy information and the detailed decision information. Basic bioenergy information include, for instance, the geographical information system (GIS) database, the biomass materials' database, the biomass logistic database and the biomass conversion database. The detailed decision information considers the parameters' values database with their default values and the variables database, values obtained by simulation and optimization. It also includes a scenario database, which is used for demonstration to new users and also for case based reasoning by planners and executers. Based on the information base, the following modules are included to support decision making: the simulation module with graph interface based on the unit process (UP) definition and the genetic algorithms (GAs) methods for optimal decisions and the Matlab module for applying data mining methods (fuzzy C-means clustering and decision trees) to the biomass collection points, to define the location of storage and bioenergy conversion plants based on the simulation and optimization model developed of the whole life cycle of bioenergy generation. Furthermore, Matlab is used to set up a calculation model with crucial biomass planning parameters (e.g. costs, CO 2 emissions), over

  11. Characterization of microscopic deformation through two-point spatial correlation functions.

    Science.gov (United States)

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  12. Characterization of microscopic deformation through two-point spatial correlation functions

    Science.gov (United States)

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  13. Comparison of skin responses from macroscopic and microscopic UV challenges

    Science.gov (United States)

    Seo, InSeok; Bargo, Paulo R.; Chu, Melissa; Ruvolo, Eduardo; Kollias, Nikiforos

    2011-03-01

    The minimal erythema dose induced by solar-simulated radiation is a useful measure of UV sensitivity of skin. Most skin phototests have been conducted by projecting a flat field of UV radiation onto the skin in an area greater than 15 cm × 15 cm with an increment of radiation doses. In this study, we investigated the responses of human skin to solar-simulated radiation of different field sizes. Twelve human subjects of skin phototype I-IV were exposed to solar-simulated radiation (SSR) on their upper inner arm or on their lower back with a series of doses in increments of 20% in order to determine the threshold dose to induce a minimal perceptible erythema response (MED). Each dose was delivered with a liquid light guide (8 mm diameter on the back or 6 mm on the upper inner arm) and with quartz optical fibers of 200 μm diameter. The resulting skin responses were evaluated visually and investigated with a reflectance confocal microscope and imaging. The erythema response to the microscopic challenge was always diffuse with no clear boundaries extending to several times the exposed site diameter at doses greater than 2 MED. The skin returned to normal appearance from the microscopic challenge after two weeks of exposure while change in appearance for the larger areas persisted for several weeks to months. This new modality of testing provides the possibility to study skin at the microscopic level with a rapid recovery following challenge.

  14. A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly

    International Nuclear Information System (INIS)

    Xie Hui; Haliyo, Dogan Sinan; Regnier, Stephane

    2009-01-01

    A conventional atomic force microscope (AFM) has been successfully applied to manipulating nanoparticles (zero-dimensional), nanowires (one-dimensional) or nanotubes (one- or two-dimensional) by widely used pushing or pulling operations on a single surface. However, pick-and-place nanomanipulation in air is still a challenge. In this research, a modified AFM, called a three-dimensional (3D) manipulation force microscope (3DMFM), was developed to realize 3D nanomanipulation in air. This system consists of two individually actuated cantilevers with protruding tips that are facing each other, constructing a nanotweezer for the pick-and-place nanomanipulation. Before manipulation, one of the cantilevers is employed to position nano-objects and locate the tip of the other cantilever by image scanning. During the manipulation, these two cantilevers work collaboratively as a nanotweezer to grasp, transport and place the nano-objects with real-time force sensing. The manipulation capabilities of the nanotweezer were demonstrated by grabbing and manipulating silicon nanowires to build 3D nanowire crosses. 3D nanomanipulation and nanoassembly performed in air could become feasible through this newly developed 3DMFM.

  15. Development and evaluation of an automated reflectance microscope system for the petrographic characterization of bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, D. S.; Davis, A.

    1980-10-01

    The development of automated coal petrographic techniques will lessen the demands on skilled personnel to do routine work. This project is concerned with the development and successful testing of an instrument which will meet these needs. The fundamental differences in reflectance of the three primary maceral groups should enable their differentiation in an automated-reflectance frequency histogram (reflectogram). Consequently, reflected light photometry was chosen as the method for automating coal petrographic analysis. Three generations of an automated system (called Rapid Scan Versions I, II and III) were developed and evaluated for petrographic analysis. Their basic design was that of a reflected-light microscope photometer with an automatic stage, interfaced with a minicomputer. The hardware elements used in the Rapid Scan Version I limited the system's flexibility and presented problems with signal digitization and measurement precision. Rapid Scan Version II was designed to incorporate a new microscope photometer and computer system. A digital stepping stage was incorporated into the Rapid Scan Version III system. The precision of reflectance determination of this system was found to be +- 0.02 percent reflectance. The limiting factor in quantitative interpretation of Rapid Scan reflectograms is the resolution of reflectance populations of the individual maceral groups. Statistical testing indicated that reflectograms were highly reproducible, and a new computer program, PETAN, was written to interpret the curves for vitrinite reflectance parameters ad petrographic.

  16. Dynamics of a Landau-Zener transitions in a two-level system driven by a dissipative environment

    Science.gov (United States)

    Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.

    2016-02-01

    The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.

  17. Dynamics of a Landau–Zener transitions in a two-level system driven by a dissipative environment

    Energy Technology Data Exchange (ETDEWEB)

    Ateuafack, M.E., E-mail: esouamath@yahoo.fr [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang (Cameroon); Diffo, J.T., E-mail: diffojaures@yahoo.com [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang (Cameroon); Department of Physics, Higher Teachers' Training College, The University of Maroua, PO Box 55 Maroua (Cameroon); Fai, L.C., E-mail: corneliusfai@yahoo.fr [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang (Cameroon)

    2016-02-15

    The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.

  18. Microscopic theory of nuclear fission: a review

    Science.gov (United States)

    Schunck, N.; Robledo, L. M.

    2016-11-01

    This article reviews how nuclear fission is described within nuclear density functional theory. A distinction should be made between spontaneous fission, where half-lives are the main observables and quantum tunnelling the essential concept, and induced fission, where the focus is on fragment properties and explicitly time-dependent approaches are often invoked. Overall, the cornerstone of the density functional theory approach to fission is the energy density functional formalism. The basic tenets of this method, including some well-known tools such as the Hartree-Fock-Bogoliubov (HFB) theory, effective two-body nuclear potentials such as the Skyrme and Gogny force, finite-temperature extensions and beyond mean-field corrections, are presented succinctly. The energy density functional approach is often combined with the hypothesis that the time-scale of the large amplitude collective motion driving the system to fission is slow compared to typical time-scales of nucleons inside the nucleus. In practice, this hypothesis of adiabaticity is implemented by introducing (a few) collective variables and mapping out the many-body Schrödinger equation into a collective Schrödinger-like equation for the nuclear wave-packet. The region of the collective space where the system transitions from one nucleus to two (or more) fragments defines what are called the scission configurations. The inertia tensor that enters the kinetic energy term of the collective Schrödinger-like equation is one of the most essential ingredients of the theory, since it includes the response of the system to small changes in the collective variables. For this reason, the two main approximations used to compute this inertia tensor, the adiabatic time-dependent HFB and the generator coordinate method, are presented in detail, both in their general formulation and in their most common approximations. The collective inertia tensor enters also the Wentzel-Kramers-Brillouin (WKB) formula used to extract

  19. Microscopic description of nuclear reactions

    International Nuclear Information System (INIS)

    Gorbatov, A.M.

    1992-01-01

    The genealogical series method has been extended to the continuous spectrum of the many-body systems. New nonlinear integral equations have been formulated to perform the microscopical description of the nuclear reactions with arbitrary number of particles. The way to solve them numerically is demonstrated

  20. On the resolution of the electron microscopic radioautography

    International Nuclear Information System (INIS)

    Uchida, Kazuko; Daimon, Tateo; Kawai, Kazuhiro

    1981-01-01

    The aim of electron microscopic radioautography is to reveal the exact localization of certain substances at the macromolecular level. In order to attain this object the establishment of a fine grain development method is indispensable. Some of latent images are formed at the contact surface between the polyhedral halide silver grain and the section surface, where the impact of #betta# particles come directly from the section involved, and since it is in contact with the section it remains in place even after development and gelatin removal. This latent image finally becomes a developed silver grain in the electron microscope radioautogram. Although the limit of resolution in electron microscopic radioautography is supposed to be the diameter of halide silver grains in emulsion, it may be improved by considering the fact that the contact area between the halide silver grain and the section surface is the minimum unit of resolution. The minimum resolution of electron microscopic radioautography was determined histologically to be about 100A. (author)

  1. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report.

    Science.gov (United States)

    White, Tim; Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J

    2017-02-04

    The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions.

  2. New Aspects of Field Entropy Squeezing as an Indicator for Mixed State Entanglement in an Effective Two-Level System with Stark Shift

    Institute of Scientific and Technical Information of China (English)

    S.Abdel-Khalek; M.M.A.Ahmed; A-S F.Obada

    2011-01-01

    We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic field,initially prepared in a coherent state.Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested.The temporal evolution of the negativity,Wehrl entropy,Wehrl phase distribution and field entropy squeezing are investigated.The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy,Wehrl phase distribution and field entropy squeezing.%We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic Reid, initially prepared in a coherent state. Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested. The temporal evolution of the negativity, Wehrl entropy, Wehrl phase distribution and field entropy squeezing are investigated. The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy, Wehrl phase distribution and field entropy squeezing.

  3. PC-based digital feedback control for scanning force microscope

    International Nuclear Information System (INIS)

    Mohd Ashhar Khalid

    2002-01-01

    In the past, most digital feedback implementation for scanned-probe microscope were based on a digital signal processor (DSP). At present DSP plug-in card with the input-output interface module is still expensive compared to a fast pentium PC motherboard. For a magnetic force microscope (MFM) digital feedback has an advantage where the magnetic signal can be easily separated from the topographic signal. In this paper, a simple low-cost PC-based digital feedback and imaging system for Scanning Force Microscope (SFM) is presented. (Author)

  4. Local tunneling spectroscopy of a Nb/InAs/Nb superconducting proximity system with a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Inoue, K.; Takayanagi, H.

    1991-01-01

    Local tunneling spectroscopy for a Nb/In/As/Nb superconducting proximity system was demonstrated with a low-temperature scanning tunneling microscope. It is found that the local electron density of states in the InAs region is spatially modulated by the neighboring superconductor Nb

  5. Entanglement Criteria of Two Two-Level Atoms Interacting with Two Coupled Modes

    Science.gov (United States)

    Baghshahi, Hamid Reza; Tavassoly, Mohammad Kazem; Faghihi, Mohammad Javad

    2015-08-01

    In this paper, we study the interaction between two two-level atoms and two coupled modes of a quantized radiation field in the form of parametric frequency converter injecting within an optical cavity enclosed by a medium with Kerr nonlinearity. It is demonstrated that, by applying the Bogoliubov-Valatin canonical transformation, the introduced model is reduced to a well-known form of the generalized Jaynes-Cummings model. Then, under particular initial conditions for the atoms (in a coherent superposition of its ground and upper states) and the fields (in a standard coherent state) which may be prepared, the time evolution of state vector of the entire system is analytically evaluated. In order to understand the degree of entanglement between subsystems (atom-field and atom-atom), the dynamics of entanglement through different measures, namely, von Neumann reduced entropy, concurrence and negativity is evaluated. In each case, the effects of Kerr nonlinearity and detuning parameter on the above measures are numerically analyzed, in detail. It is illustrated that the amount of entanglement can be tuned by choosing the evolved parameters, appropriately.

  6. Comparison of PI and PR current controllers applied on two-level VSC-HVDC transmission system

    DEFF Research Database (Denmark)

    Manoloiu, A.; Pereria, H.A.; Teodorescu, Remus

    2015-01-01

    This paper analyzes differences between αβ and dq reference frames regarding the control of two-level VSC-HVDC current loop and dc-link voltage outer loop. In the first part, voltage feedforward effect is considered with PI and PR controllers. In the second part, the feedforward effect is removed...... and the PR gains are tuned to keep the dynamic performance. Also, the power feedforward is removed and the outer loop PI controller is tuned in order to maintain the system dynamic performance. The paper is completed with simulation results, which highlight the advantages of using PR controller....

  7. Nonlinear Jaynes–Cummings model for two interacting two-level atoms

    International Nuclear Information System (INIS)

    Santos-Sánchez, O de los; González-Gutiérrez, C; Récamier, J

    2016-01-01

    In this work we examine a nonlinear version of the Jaynes–Cummings model for two identical two-level atoms allowing for Ising-like and dipole–dipole interplays between them. The model is said to be nonlinear in the sense that it can incorporate both a general intensity-dependent interaction between the atomic system and the cavity field and/or the presence of a nonlinear medium inside the cavity. As an example, we consider a particular type of atom-field coupling based upon the so-called Buck–Sukumar model and a lossless Kerr-like cavity. We describe the possible effects of such features on the evolution of some quantities of current interest, such as atomic excitation, purity, concurrence, the entropy of the field and the evolution of the latter in phase space. (paper)

  8. Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation.

    Science.gov (United States)

    Werley, Christopher A; Chien, Miao-Ping; Cohen, Adam E

    2017-12-01

    The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.

  9. Breakdown of the few-level approximation in collective systems

    International Nuclear Information System (INIS)

    Kiffner, M.; Evers, J.; Keitel, C. H.

    2007-01-01

    The validity of the few-level approximation in dipole-dipole interacting collective systems is discussed. As an example system, we study the archetype case of two dipole-dipole interacting atoms, each modeled by two complete sets of angular momentum multiplets. We establish the breakdown of the few-level approximation by first proving the intuitive result that the dipole-dipole induced energy shifts between collective two-atom states depend on the length of the vector connecting the atoms, but not on its orientation, if complete and degenerate multiplets are considered. A careful analysis of our findings reveals that the simplification of the atomic level scheme by artificially omitting Zeeman sublevels in a few-level approximation generally leads to incorrect predictions. We find that this breakdown can be traced back to the dipole-dipole coupling of transitions with orthogonal dipole moments. Our interpretation enables us to identify special geometries in which partial few-level approximations to two- or three-level systems are valid

  10. Microscopic dynamical Casimir effect

    Science.gov (United States)

    Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia

    2018-03-01

    We consider an atom in its ground state undergoing a nonrelativistic oscillation in free space. The interaction with the electromagnetic quantum vacuum leads to two effects to leading order in perturbation theory. When the mechanical frequency is larger than the atomic transition frequency, the dominant effect is the motion-induced transition to an excited state with the emission of a photon carrying the excess energy. We compute the angular distribution of emitted photons and the excitation rate. On the other hand, when the mechanical frequency is smaller than the transition frequency, the leading-order effect is the parametric emission of photon pairs, which constitutes the microscopic counterpart of the dynamical Casimir effect. We discuss the properties of the microscopic dynamical Casimir effect and build a connection with the photon production by an oscillating macroscopic metallic mirror.

  11. Cryogenic immersion microscope

    Science.gov (United States)

    Le Gros, Mark; Larabell, Carolyn A.

    2010-12-14

    A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.

  12. An image of an event in which a microscopic-black-hole was produced in the collision of two protons in a computer generated image of the ATLAS detector.

    CERN Multimedia

    Joao Pequenao

    2008-01-01

    In some theories, microscopic black holes may be produced in particle collisions that occur when very-high-energy cosmic rays hit particles in our atmosphere. These microscopic-black-holes would decay into ordinary particles in a tiny fraction of a second and would be very difficult to observe in our atmosphere. The ATLAS Experiment offers the exciting possibility to study them in the lab (if they exist). The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).

  13. The Two-Level Theory of verb meaning: An approach to integrating the semantics of action with the mirror neuron system.

    Science.gov (United States)

    Kemmerer, David; Gonzalez-Castillo, Javier

    2010-01-01

    Verbs have two separate levels of meaning. One level reflects the uniqueness of every verb and is called the "root". The other level consists of a more austere representation that is shared by all the verbs in a given class and is called the "event structure template". We explore the following hypotheses about how, with specific reference to the motor features of action verbs, these two distinct levels of semantic representation might correspond to two distinct levels of the mirror neuron system. Hypothesis 1: Root-level motor features of verb meaning are partially subserved by somatotopically mapped mirror neurons in the left primary motor and/or premotor cortices. Hypothesis 2: Template-level motor features of verb meaning are partially subserved by representationally more schematic mirror neurons in Brodmann area 44 of the left inferior frontal gyrus. Evidence has been accumulating in support of the general neuroanatomical claims made by these two hypotheses-namely, that each level of verb meaning is associated with the designated cortical areas. However, as yet no studies have satisfied all the criteria necessary to support the more specific neurobiological claims made by the two hypotheses-namely, that each level of verb meaning is associated with mirror neurons in the pertinent brain regions. This would require demonstrating that within those regions the same neuronal populations are engaged during (a) the linguistic processing of particular motor features of verb meaning, (b) the execution of actions with the corresponding motor features, and (c) the observation of actions with the corresponding motor features. 2008 Elsevier Inc. All rights reserved.

  14. Soft control of scanning probe microscope with high flexibility.

    Science.gov (United States)

    Liu, Zhenghui; Guo, Yuzheng; Zhang, Zhaohui; Zhu, Xing

    2007-01-01

    Most commercial scanning probe microscopes have multiple embedded digital microprocessors and utilize complex software for system control, which is not easily obtained or modified by researchers wishing to perform novel and special applications. In this paper, we present a simple and flexible control solution that just depends on software running on a single-processor personal computer with real-time Linux operating system to carry out all the control tasks including negative feedback, tip moving, data processing and user interface. In this way, we fully exploit the potential of a personal computer in calculating and programming, enabling us to manipulate the scanning probe as required without any special digital control circuits and related technical know-how. This solution has been successfully applied to a homemade ultrahigh vacuum scanning tunneling microscope and a multiprobe scanning tunneling microscope.

  15. A zone plate soft x-ray microscope using monochromatized undulator radiation at the beamline NE1B of the TRISTAN Accumulation Ring

    International Nuclear Information System (INIS)

    Wang, J.; Kagoshima, Y.; Miyahara, T.; Ando, M.; Aoki, S.; Anderson, E.; Attwood, D.; Kern, D.

    1995-01-01

    A soft x-ray microscope has been developed at the beamline NE1B of the 6.5-GeV TRISTAN Accumulation Ring (AR). It makes use of undulator radiation as its source and a zone plate with the outermost zone width of 50 nm as its imaging element. It has two main features. First, the undulator radiation is monochromatized by a grazing incidence grating monochromator to match to the monochromaticity requirement of the zone plate. Second, a visible light prefocus unit consisting of two objectives has been designed and installed in the x-ray microscope. The x-ray optical system of the microscope can be adjusted easily, quickly, and precisely by using this unit. The microscope can resolve 55-nm lines and spaces in a zone plate test pattern

  16. Versatile variable temperature and magnetic field scanning probe microscope for advanced material research

    Science.gov (United States)

    Jung, Jin-Oh; Choi, Seokhwan; Lee, Yeonghoon; Kim, Jinwoo; Son, Donghyeon; Lee, Jhinhwan

    2017-10-01

    We have built a variable temperature scanning probe microscope (SPM) that covers 4.6 K-180 K and up to 7 T whose SPM head fits in a 52 mm bore magnet. It features a temperature-controlled sample stage thermally well isolated from the SPM body in good thermal contact with the liquid helium bath. It has a 7-sample-holder storage carousel at liquid helium temperature for systematic studies using multiple samples and field emission targets intended for spin-polarized spectroscopic-imaging scanning tunneling microscopy (STM) study on samples with various compositions and doping conditions. The system is equipped with a UHV sample preparation chamber and mounted on a two-stage vibration isolation system made of a heavy concrete block and a granite table on pneumatic vibration isolators. A quartz resonator (qPlus)-based non-contact atomic force microscope (AFM) sensor is used for simultaneous STM/AFM operation for research on samples with highly insulating properties such as strongly underdoped cuprates and strongly correlated electron systems.

  17. Accumulation of fission fragment 147Pm in subcellular level studied by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Wang Yuanchang

    1990-11-01

    The subcellular localization of fission fragment 147 Pm in tissue cells by electron microscopic autoradiography was investigated. The early harm of internal contaminated accumulation of 147 Pm appeared in blood cells and endothelium cells, obviously in erythrocytes. Then 147 Pm was selectively deposited in ultrastructure of liver cells. Autoradiographic study demonstrated that dense tracks appeared in mitochondria and lysosome of podal cells within renal corpuscle. In nucleus as well as in mitochondria and microbodies of epicyte of kidney near-convoluted tubule, there are numerous radioactive 149 Pm accumulated. With the prolongation of observing time, 149 Pm was selectively and steadily deposited in subcellular level of organic component bone. The radionuclides could be accumulated in nucleus of osteoclasts and osteoblasts. In organelles, the radionuclides was mainly accumulated in rough endoplasmic reticulum and mitochondria. Autoradiographic tracks of 149 Pm was obviously found to be localized in combined point between Golgi complex and transitive vesicle of rough endoplasmic reticulum

  18. Microscopic enteritis: Bucharest consensus.

    Science.gov (United States)

    Rostami, Kamran; Aldulaimi, David; Holmes, Geoffrey; Johnson, Matt W; Robert, Marie; Srivastava, Amitabh; Fléjou, Jean-François; Sanders, David S; Volta, Umberto; Derakhshan, Mohammad H; Going, James J; Becheanu, Gabriel; Catassi, Carlo; Danciu, Mihai; Materacki, Luke; Ghafarzadegan, Kamran; Ishaq, Sauid; Rostami-Nejad, Mohammad; Peña, A Salvador; Bassotti, Gabrio; Marsh, Michael N; Villanacci, Vincenzo

    2015-03-07

    Microscopic enteritis (ME) is an inflammatory condition of the small bowel that leads to gastrointestinal symptoms, nutrient and micronutrient deficiency. It is characterised by microscopic or sub-microscopic abnormalities such as microvillus changes and enterocytic alterations in the absence of definite macroscopic changes using standard modern endoscopy. This work recognises a need to characterize disorders with microscopic and submicroscopic features, currently regarded as functional or non-specific entities, to obtain further understanding of their clinical relevance. The consensus working party reviewed statements about the aetiology, diagnosis and symptoms associated with ME and proposes an algorithm for its investigation and treatment. Following the 5(th) International Course in Digestive Pathology in Bucharest in November 2012, an international group of 21 interested pathologists and gastroenterologists formed a working party with a view to formulating a consensus statement on ME. A five-step agreement scale (from strong agreement to strong disagreement) was used to score 21 statements, independently. There was strong agreement on all statements about ME histology (95%-100%). Statements concerning diagnosis achieved 85% to 100% agreement. A statement on the management of ME elicited agreement from the lowest rate (60%) up to 100%. The remaining two categories showed general agreement between experts on clinical presentation (75%-95%) and pathogenesis (80%-90%) of ME. There was strong agreement on the histological definition of ME. Weaker agreement on management indicates a need for further investigations, better definitions and clinical trials to produce quality guidelines for management. This ME consensus is a step toward greater recognition of a significant entity affecting symptomatic patients previously labelled as non-specific or functional enteropathy.

  19. STM-SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, Tadayuki; Tachiki, Minoru; Itozaki, Hideo

    2007-01-01

    We have developed a STM-SQUID probe microscope. A high T C SQUID probe microscope was combined with a scanning tunneling microscope for investigation of samples at room temperature in air. A high permeability probe needle was used as a magnetic flux guide to improve the spatial resolution. The probe with tip radius of less than 100 nm was prepared by microelectropolishing. The probe was also used as a scanning tunneling microscope tip. Topography of the sample surface could be measured by the scanning tunneling microscope with high spatial resolution prior to observation by SQUID microscopy. The SQUID probe microscope image could be observed while keeping the distance from the sample surface to the probe tip constant. We observed a topographic image and a magnetic image of Ni fine pattern and also a magnetically recorded hard disk. Furthermore we have investigated a sample vibration method of the static magnetic field emanating from a sample with the aim of achieving a higher signal-to-noise (S/N) ratio

  20. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian; Shao Bin; Zou Jian

    2009-01-01

    In this paper,we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling.We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially.The effects of the field squeezing factor,the two-level atomic transition frequency,the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed.Without intrinsic decoherence,the increase of field squeezing factor can break the entropy squeezing.The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing.The influence of the second field frequency is complicated.With the intrinsic decoherence taken into consideration,the results show that the stronger the intrinsic decoherence is,the more quickly the entropy squeezing will disappear.The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.

  1. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    International Nuclear Information System (INIS)

    Jian, Zhang; Bin, Shao; Jian, Zou

    2009-01-01

    In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing. (classical areas of phenomenology)

  2. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems.

    Science.gov (United States)

    Kim, Kyukwang; Kim, Seunggyu; Jeon, Jessie S

    2018-02-03

    Microfluidic devices are an emerging platform for a variety of experiments involving bacterial cell culture, and has advantages including cost and convenience. One inevitable step during bacterial cell culture is the measurement of cell concentration in the channel. The optical density measurement technique is generally used for bacterial growth estimation, but it is not applicable to microfluidic devices due to the small sample volumes in microfluidics. Alternately, cell counting or colony-forming unit methods may be applied, but these do not work in situ; nor do these methods show measurement results immediately. To this end, we present a new vision-based method to estimate the growth level of the bacteria in microfluidic channels. We use Fast Fourier transform (FFT) to detect the frequency level change of the microscopic image, focusing on the fact that the microscopic image becomes rough as the number of cells in the field of view increases, adding high frequencies to the spectrum of the image. Two types of microfluidic devices are used to culture bacteria in liquid and agar gel medium, and time-lapsed images are captured. The images obtained are analyzed using FFT, resulting in an increase in high-frequency noise proportional to the time passed. Furthermore, we apply the developed method in the microfluidic antibiotics susceptibility test by recognizing the regional concentration change of the bacteria that are cultured in the antibiotics gradient. Finally, a deep learning-based data regression is performed on the data obtained by the proposed vision-based method for robust reporting of data.

  3. Visual Estimation of Bacterial Growth Level in Microfluidic Culture Systems

    Directory of Open Access Journals (Sweden)

    Kyukwang Kim

    2018-02-01

    Full Text Available Microfluidic devices are an emerging platform for a variety of experiments involving bacterial cell culture, and has advantages including cost and convenience. One inevitable step during bacterial cell culture is the measurement of cell concentration in the channel. The optical density measurement technique is generally used for bacterial growth estimation, but it is not applicable to microfluidic devices due to the small sample volumes in microfluidics. Alternately, cell counting or colony-forming unit methods may be applied, but these do not work in situ; nor do these methods show measurement results immediately. To this end, we present a new vision-based method to estimate the growth level of the bacteria in microfluidic channels. We use Fast Fourier transform (FFT to detect the frequency level change of the microscopic image, focusing on the fact that the microscopic image becomes rough as the number of cells in the field of view increases, adding high frequencies to the spectrum of the image. Two types of microfluidic devices are used to culture bacteria in liquid and agar gel medium, and time-lapsed images are captured. The images obtained are analyzed using FFT, resulting in an increase in high-frequency noise proportional to the time passed. Furthermore, we apply the developed method in the microfluidic antibiotics susceptibility test by recognizing the regional concentration change of the bacteria that are cultured in the antibiotics gradient. Finally, a deep learning-based data regression is performed on the data obtained by the proposed vision-based method for robust reporting of data.

  4. Mirror distortion of the levels of a compound system

    International Nuclear Information System (INIS)

    Khvalchenko, I.I.

    1995-01-01

    The problem of the action of an arbitrary perturbation on a system of two identical atoms in the radiation field is analyzed. For simplicity, only two-level atoms are considered, the field is assumed to be classical, and the spontaneous transitions are ignored. The polarizations are calculated for the open-quotes two atoms + fieldclose quotes and open-quotes two atoms + field + particleclose quotes systems. A comparison of the obtained relationships allows us to clarify the character of the level distortions caused by the external perturbation in the compound system. 10 refs

  5. Soft x-ray microscope using Fourier transform holography

    International Nuclear Information System (INIS)

    McNulty, I.; Kirz, J.; Jacobsen, C.; Anderson, E.; Howells, M.R.; Rarback, H.

    1989-01-01

    A Fourier transform holographic microscope with an anticipated resolution of better than 100 nm has been built. Extensive testing of the apparatus has begun. Preliminary results include the recording of interference fringes using 3.6 nm x-rays. The microscope employs a charge-coupled device (CCD) detector array of 576 x 384 elements. The system is illuminated by soft x-rays from a high brightness undulator. The reference point source is formed by a Fresnel zone plate with a finest outer zone width of 50 nm. Sufficient temporal coherence for hologram formation is obtained by a spherical grating monochromator. The x-ray hologram intensities at the recording plane are to be collected, digitized and reconstructed by computer. Data acquisition is under CAMAC control, while image display and off-line processing takes place on a VAX graphics workstation. Computational models of Fourier transform hologram synthesis, and reconstruction in the presence of noise, have demonstrated the feasibility of numerical methods in two dimensions, and that three-dimensional information is potentially recoverable. 13 refs., 3 figs

  6. Generic distortion model for metrology under optical microscopes

    Science.gov (United States)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  7. Microscopic Description of Le Chatelier's Principle

    Science.gov (United States)

    Novak, Igor

    2005-01-01

    A simple approach that "demystifies" Le Chatelier's principle (LCP) and simulates students to think about fundamental physical background behind the well-known principles is presented. The approach uses microscopic descriptors of matter like energy levels and populations and does not require any assumption about the fixed amount of substance being…

  8. AP-VAS 2012 case report: two patients with rheumatoid arthritis suspected of relapsed microscopic polyangiitis after initiation of dialysis

    OpenAIRE

    Sugahara, Mai; Nishi, Takahiro; Tanaka, Shinji; Kurita, Noriaki; Sai, Keiko; Kano, Tatsuya; Nishio, Kyosuke; Sugimoto, Tokuichiro; Mise, Naobumi

    2013-01-01

    We report two patients with rheumatoid arthritis (RA) who were suspected of microscopic polyangiitis during maintenance dialysis. Case 1 was a 52-year-old woman with RA diagnosed at the age of 38 years and treated successfully with gold compounds. At the age of 43 years, she presented with progressive renal dysfunction and abnormal urine sediments, and a renal biopsy revealed crescentic nephritis with advanced glomerular sclerosis. Myeloperoxidase antineutrophil cytoplasmic antibody (MPO-ANCA...

  9. Statistical Analysis of the Figure of Merit of a Two-Level Thermoelectric System: A Random Matrix Approach

    KAUST Repository

    Abbout, Adel; Ouerdane, Henni; Goupil, Christophe

    2016-01-01

    Using the tools of random matrix theory we develop a statistical analysis of the transport properties of thermoelectric low-dimensional systems made of two electron reservoirs set at different temperatures and chemical potentials, and connected through a low-density-of-states two-level quantum dot that acts as a conducting chaotic cavity. Our exact treatment of the chaotic behavior in such devices lies on the scattering matrix formalism and yields analytical expressions for the joint probability distribution functions of the Seebeck coefficient and the transmission profile, as well as the marginal distributions, at arbitrary Fermi energy. The scattering matrices belong to circular ensembles which we sample to numerically compute the transmission function, the Seebeck coefficient, and their relationship. The exact transport coefficients probability distributions are found to be highly non-Gaussian for small numbers of conduction modes, and the analytical and numerical results are in excellent agreement. The system performance is also studied, and we find that the optimum performance is obtained for half-transparent quantum dots; further, this optimum may be enhanced for systems with few conduction modes.

  10. Statistical Analysis of the Figure of Merit of a Two-Level Thermoelectric System: A Random Matrix Approach

    KAUST Repository

    Abbout, Adel

    2016-08-05

    Using the tools of random matrix theory we develop a statistical analysis of the transport properties of thermoelectric low-dimensional systems made of two electron reservoirs set at different temperatures and chemical potentials, and connected through a low-density-of-states two-level quantum dot that acts as a conducting chaotic cavity. Our exact treatment of the chaotic behavior in such devices lies on the scattering matrix formalism and yields analytical expressions for the joint probability distribution functions of the Seebeck coefficient and the transmission profile, as well as the marginal distributions, at arbitrary Fermi energy. The scattering matrices belong to circular ensembles which we sample to numerically compute the transmission function, the Seebeck coefficient, and their relationship. The exact transport coefficients probability distributions are found to be highly non-Gaussian for small numbers of conduction modes, and the analytical and numerical results are in excellent agreement. The system performance is also studied, and we find that the optimum performance is obtained for half-transparent quantum dots; further, this optimum may be enhanced for systems with few conduction modes.

  11. NOMAD: a nodal microscopic analysis method for nuclear fuel depletion

    International Nuclear Information System (INIS)

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Recently developed assembly homogenization techniques made possible very efficient global burnup calculations based on modern nodal methods. There are two possible ways of modeling the global depletion process: macroscopic and microscopic depletion models. Using a microscopic global depletion approach NOMAD (NOdal Microscopic Analysis Method for Nuclear Fuel Depletion), a multigroup, two- and three-dimensional, multicycle depletion code was devised. The code uses the ILLICO nodal diffusion model. The formalism of the ILLICO methodology is extended to treat changes in the macroscopic cross sections during a depletion cycle without recomputing the coupling coefficients. This results in a computationally very efficient method. The code was tested against a well-known depletion benchmark problem. In this problem a two-dimensional pressurized water reactor is depleted through two cycles. Both cycles were run with 1 x 1 and 2 x 2 nodes per assembly. It is obvious that the one node per assembly solution gives unacceptable results while the 2 x 2 solution gives relative power errors consistently below 2%

  12. Development of hard X-ray dark-field microscope using full-field optics

    International Nuclear Information System (INIS)

    Takano, Hidekazu; Azuma, Hiroaki; Shimomura, Sho; Tsuji, Takuya; Tsusaka, Yoshiyuki; Kagoshima, Yasushi

    2016-01-01

    We develop a dark-field X-ray microscope using full-field optics based on a synchrotron beamline. Our setup consists of a condenser system and a microscope objective with an angular acceptance larger than that of the condenser. The condenser system is moved downstream from its regular position such that the focus of the condenser is behind the objective. The dark-field microscope optics are configured by excluding the converging beam from the condenser at the focal point. The image properties of the system are evaluated by observing and calculating a Siemens star test chart with 10 keV X-rays. Our setup allows easy switching to bright-field imaging. (author)

  13. Microscopic origins of anisotropic active stress in motor-driven nematic liquid crystals.

    Science.gov (United States)

    Blackwell, Robert; Sweezy-Schindler, Oliver; Baldwin, Christopher; Hough, Loren E; Glaser, Matthew A; Betterton, M D

    2016-03-14

    The cytoskeleton, despite comprising relatively few building blocks, drives an impressive variety of cellular phenomena ranging from cell division to motility. These building blocks include filaments, motor proteins, and static crosslinkers. Outside of cells, these same components can form novel materials exhibiting active flows and nonequilibrium contraction or extension. While dipolar extensile or contractile active stresses are common in nematic motor-filament systems, their microscopic origin remains unclear. Here we study a minimal physical model of filaments, crosslinking motors, and static crosslinkers to dissect the microscopic mechanisms of stress generation in a two-dimensional system of orientationally aligned rods. We demonstrate the essential role of filament steric interactions which have not previously been considered to significantly contribute to active stresses. With this insight, we are able to tune contractile or extensile behavior through the control of motor-driven filament sliding and crosslinking. This work provides a roadmap for engineering stresses in active liquid crystals. The mechanisms we study may help explain why flowing nematic motor-filament mixtures are extensile while gelled systems are contractile.

  14. The comparison of automated urine analyzers with manual microscopic examination for urinalysis automated urine analyzers and manual urinalysis.

    Science.gov (United States)

    İnce, Fatma Demet; Ellidağ, Hamit Yaşar; Koseoğlu, Mehmet; Şimşek, Neşe; Yalçın, Hülya; Zengin, Mustafa Osman

    2016-08-01

    Urinalysis is one of the most commonly performed tests in the clinical laboratory. However, manual microscopic sediment examination is labor-intensive, time-consuming, and lacks standardization in high-volume laboratories. In this study, the concordance of analyses between manual microscopic examination and two different automatic urine sediment analyzers has been evaluated. 209 urine samples were analyzed by the Iris iQ200 ELITE (İris Diagnostics, USA), Dirui FUS-200 (DIRUI Industrial Co., China) automatic urine sediment analyzers and by manual microscopic examination. The degree of concordance (Kappa coefficient) and the rates within the same grading were evaluated. For erythrocytes, leukocytes, epithelial cells, bacteria, crystals and yeasts, the degree of concordance between the two instruments was better than the degree of concordance between the manual microscopic method and the individual devices. There was no concordance between all methods for casts. The results from the automated analyzers for erythrocytes, leukocytes and epithelial cells were similar to the result of microscopic examination. However, in order to avoid any error or uncertainty, some images (particularly: dysmorphic cells, bacteria, yeasts, casts and crystals) have to be analyzed by manual microscopic examination by trained staff. Therefore, the software programs which are used in automatic urine sediment analysers need further development to recognize urinary shaped elements more accurately. Automated systems are important in terms of time saving and standardization.

  15. Duties to Extraterrestrial Microscopic Organisms

    Science.gov (United States)

    Cockell, C. S.

    Formulating a normative axiology for the treatment of extraterrestrial microscopic organisms, should they ever be found, requires an extension of environmental ethics to beyond the Earth. Using an ethical framework for the treatment of terrestrial micro-organisms, this paper elaborates a similar ethic for the treatment of extraterrestrial microscopic organisms. An ethic of `teloempathy' allows for the moral considerability of any organism that has `interests', based on rudimentary qualities of conativism, and therefore allows for an identical treatment of all life, related or not related to life on Earth. Although, according to this ethic, individual extraterrestrial microscopic organisms have a good of their own and even `rights', at this level the ethic can only be theoretical, allowing for the inevitable destruction of many individual organisms during the course of human exploratory missions, similarly to the daily destruction of microbes by humans on Earth. A holistic teloempathy, an operative ethic, not only provides a framework for human exploration, but it also has important implications for planetary protection and proposals to implement planetary-scale atmospheric alterations on other bodies. Even prior to the discovery of extraterrestrial life, or the discovery of a complete absence of such life, this exercise yields important insights into the moral philosophy that guides our treatment of terrestrial micro-organisms.

  16. A modular, open-source, slide-scanning microscope for diagnostic applications in resource-constrained settings.

    Directory of Open Access Journals (Sweden)

    Qiang Lu

    Full Text Available In this paper we report the development of a cost-effective, modular, open source, and fully automated slide-scanning microscope, composed entirely of easily available off-the-shelf parts, and capable of bright field and fluorescence modes. The automated X-Y stage is composed of two low-cost micrometer stages coupled to stepper motors operated in open-loop mode. The microscope is composed of a low-cost CMOS sensor and low-cost board lenses placed in a 4f configuration. The system has approximately 1 micron resolution, limited by the f/# of available board lenses. The microscope is compact, measuring just 25×25×30 cm, and has an absolute positioning accuracy of ±1 μm in the X and Y directions. A Z-stage enables autofocusing and imaging over large fields of view even on non-planar samples, and custom software enables automatic determination of sample boundaries and image mosaicking. We demonstrate the utility of our device through imaging of fluorescent- and transmission-dye stained blood and fecal smears containing human and animal parasites, as well as several prepared tissue samples. These results demonstrate image quality comparable to high-end commercial microscopes at a cost of less than US$400 for a bright-field system, with an extra US$100 needed for the fluorescence module.

  17. Forensic Scanning Electron Microscope

    Science.gov (United States)

    Keeley, R. H.

    1983-03-01

    The scanning electron microscope equipped with an x-ray spectrometer is a versatile instrument which has many uses in the investigation of crime and preparation of scientific evidence for the courts. Major applications include microscopy and analysis of very small fragments of paint, glass and other materials which may link an individual with a scene of crime, identification of firearms residues and examination of questioned documents. Although simultaneous observation and chemical analysis of the sample is the most important feature of the instrument, other modes of operation such as cathodoluminescence spectrometry, backscattered electron imaging and direct x-ray excitation are also exploited. Marks on two bullets or cartridge cases can be compared directly by sequential scanning with a single beam or electronic linkage of two instruments. Particles of primer residue deposited on the skin and clothing when a gun is fired can be collected on adhesive tape and identified by their morphology and elemental composition. It is also possible to differentiate between the primer residues of different types of ammunition. Bullets may be identified from the small fragments left behind as they pass through the body tissues. In the examination of questioned documents the scanning electron microscope is used to establish the order in which two intersecting ink lines were written and to detect traces of chemical markers added to the security inks on official documents.

  18. Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-Juan; FANG Mao-Fa

    2004-01-01

    From a quantum information point of view we investigate the entropy squeezing properties for a two-level atom interacting with the two-mode coherent fields via the two-photon transition. We discuss the influences of the initial state of the system on the atomic information entropy squeezing. Our results show that the squeezed component number,squeezed direction, and time of the information entropy squeezing can be controlled by choosing atomic distribution angle,the relative phase between the atom and the two-mode field, and the difference of the average photon number of the two field modes, respectively. Quantum information entropy is a remarkable precision measure for the atomic squeezing.

  19. Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation

    International Nuclear Information System (INIS)

    Chen, Shaoqing; Chen, Bin

    2014-01-01

    Highlights: • The metabolism of complex biogas system increased from 2000 to 2008. • System renewability has been increased due to biogas utilization. • Electricity, diesels and infrastructure were the most efficient supplies. • All processes were challenged by high transformity and low sustainability. - Abstract: Biogas engineering and the biogas-linked agricultural industries as a whole has been used as both a developmental strategy for rural new emergy and an important part of renewable agriculture revolution in China. In this paper, we proposed a 3-level emergetic evaluation framework to investigate the energy efficiency and sustainability of a complex biogas system (CBS) in South China, comprising agro-industries such as planting, aquaculture, breeding and biogas. The framework is capable of tracking dynamical behaviors of the whole complex system (Level I), transformation processes (Level II) and resource components (Level III) simultaneously. Two new indicators, emergy contribution rate (ECR) and emergy supply efficiency (ESE) were developed to address the contribution and efficiency of resource components within each agro-industrial process. Our findings suggested the metabolism of the CBS were increased from 2000 to 2008, in which planting production was the biggest process in terms of total emergy input, while breeding was the most productive one with its highest total emergy yield. The CBS was under an industry transaction process stimulated by biogas construction, while the traditional agricultural activities still play an important role. For economic input, a trend towards a more renewable regime was found behind the total increase over time. With different preferences for renewable or non-renewable resources, planting and aquaculture production were proved natural donation-reliant, while breeding and biogas were economic input-dependent. Among all the economic inputs, electricity, diesels and infrastructure were the most efficient components

  20. Effect of bur-cut dentin on bond strength using two all-in-one and one two-step adhesive systems.

    Science.gov (United States)

    Koase, Kaori; Inoue, Satoshi; Noda, Mamoru; Tanaka, Toru; Kawamoto, Chiharu; Takahashi, Akiko; Nakaoki, Yasuko; Sano, Hidehiko

    2004-01-01

    To compare the microtensile bond strength (MTBS) of two all-in-one adhesive systems and one experimental two-step self-etching adhesive system to two types of bur-cut dentin. Using one of the three adhesives, Xeno CF Bond (Xeno), Prompt L-Pop (PL), or the experimental two-step system ABF (ABF), resin composite was bonded to flat buccal and root dentin surfaces of eight extracted human premolars. These surfaces were produced using either regular-grit or superfine-grit diamond burs. After storage overnight in 37 degrees C water, the bonded specimens were sectioned into six or seven slices approximately 0.7 mm thick perpendicular to the bonded surface. They were then subjected to microtensile testing. The surfaces of the fractured specimens were observed microscopically to determine the failure mode. In addition, to observe the effect of conditioning, the two types of bur-cut dentin surfaces were conditioned with the adhesives, rinsed with acetone, and observed with SEM. When Xeno and PL were bonded to dentin cut with a regular-grit diamond bur, MTBS values were lower than to superfine bur-cut dentin, and failures occurred adhesively at the interface, whereas the experimental two-step adhesive showed no significant difference in microtensile bond strength between two differently cut surfaces. The all-in-one adhesives tested here improved bond strengths when bonded to superfine bur-cut dentin as a substrate, whereas the experimental two-step adhesive system showed unchanged bonding to both regular and superfine bur-cut dentin surfaces.

  1. Motorization of a surgical microscope for intra-operative navigation and intuitive control.

    Science.gov (United States)

    Finke, M; Schweikard, A

    2010-09-01

    During surgical procedures, various medical systems, e.g. microscope or C-arm, are used. Their precise and repeatable manual positioning can be very cumbersome and interrupts the surgeon's work flow. Robotized systems can assist the surgeon but they require suitable kinematics and control. However, positioning must be fast, flexible and intuitive. We describe a fully motorized surgical microscope. Hardware components as well as implemented applications are specified. The kinematic equations are described and a novel control concept is proposed. Our microscope combines fast manual handling with accurate, automatic positioning. Intuitive control is provided by a small remote control mounted to one of the surgical instruments. Positioning accuracy and repeatability are system assists the surgeon, so that he can position the microscope precisely and repeatedly without interrupting the clinical workflow. The combination of manual und automatic control guarantees fast and flexible positioning during surgical procedures. Copyright 2010 John Wiley & Sons, Ltd.

  2. A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability.

    Science.gov (United States)

    Hasan, Md Mehedi; Alam, Mohammad Wajih; Wahid, Khan A; Miah, Sayem; Lukong, Kiven Erique

    2016-01-01

    This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size.

  3. A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability.

    Directory of Open Access Journals (Sweden)

    Md Mehedi Hasan

    Full Text Available This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size.

  4. A Low-Cost Digital Microscope with Real-Time Fluorescent Imaging Capability

    Science.gov (United States)

    Hasan, Md. Mehedi; Wahid, Khan A.; Miah, Sayem; Lukong, Kiven Erique

    2016-01-01

    This paper describes the development of a prototype of a low-cost digital fluorescent microscope built from commercial off-the-shelf (COTS) components. The prototype was tested to detect malignant tumor cells taken from a living organism in a preclinical setting. This experiment was accomplished by using Alexa Fluor 488 conjugate dye attached to the cancer cells. Our prototype utilizes a torch along with an excitation filter as a light source for fluorophore excitation, a dichroic mirror to reflect the excitation and pass the emitted green light from the sample under test and a barrier filter to permit only appropriate wavelength. The system is designed out of a microscope using its optical zooming property and an assembly of exciter filter, dichroic mirror and transmitter filter. The microscope is connected to a computer or laptop through universal serial bus (USB) that allows real-time transmission of captured florescence images; this also offers real-time control of the microscope. The designed system has comparable features of high-end commercial fluorescent microscopes while reducing cost, power, weight and size. PMID:27977709

  5. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, Anita [Laboratory for Physical Sciences, College Park, Maryland 20742 (United States); Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20740 (United States); Gubrud, M. A.; Dana, R.; Dreyer, M. [Laboratory for Physical Sciences, College Park, Maryland 20742 (United States); Anderson, J. R.; Lobb, C. J.; Wellstood, F. C. [Center for Nanophysics and Advanced Materials, Department of Physics, University of Maryland, College Park, Maryland 20740 (United States)

    2014-04-15

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of Cu{sub x}Bi{sub 2}Se{sub 3}. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  6. A 30 mK, 13.5 T scanning tunneling microscope with two independent tips.

    Science.gov (United States)

    Roychowdhury, Anita; Gubrud, M A; Dana, R; Anderson, J R; Lobb, C J; Wellstood, F C; Dreyer, M

    2014-04-01

    We describe the design, construction, and performance of an ultra-low temperature, high-field scanning tunneling microscope (STM) with two independent tips. The STM is mounted on a dilution refrigerator and operates at a base temperature of 30 mK with magnetic fields of up to 13.5 T. We focus on the design of the two-tip STM head, as well as the sample transfer mechanism, which allows in situ transfer from an ultra high vacuum preparation chamber while the STM is at 1.5 K. Other design details such as the vibration isolation and rf-filtered wiring are also described. Their effectiveness is demonstrated via spectral current noise characteristics and the root mean square roughness of atomic resolution images. The high-field capability is shown by the magnetic field dependence of the superconducting gap of CuxBi2Se3. Finally, we present images and spectroscopy taken with superconducting Nb tips with the refrigerator at 35 mK that indicate that the effective temperature of our tips/sample is approximately 184 mK, corresponding to an energy resolution of 16 μeV.

  7. Complex composition film condensation in the sluice device of an electron microscope

    International Nuclear Information System (INIS)

    Kukuev, V.I.; Lesovoj, M.V.; Vlasov, D.A.; Malygin, M.V.; Domashevskaya, Eh.P.; Tomashpol'skij, Yu.Ya.

    1994-01-01

    Based on the sluice device of an electron microscope a system is developed for material laser evaporation and vapor condensation on a substrate, situated in the microscope specimen holder. Substrate heating by laser radiation to 100 deg C is used. The system is applied for investigating growth of high-temperature superconductor films

  8. CCDiode: an optimal detector for laser confocal microscopes

    Science.gov (United States)

    Pawley, James B.; Blouke, Morley M.; Janesick, James R.

    1996-04-01

    The laser confocal microscope (LCM) is now an established research tool in biology and materials science. In biological applications, it is usually employed to detect the location of fluorescent market molecules and, under these conditions, signal levels from bright areas are often digitizer. To maintain the desired +/- 3 e noise level at the relatively high data rate of 1 MHz, our new device utilizes 64 separate readout amplifier/digitizer systems, operating in sequence. The resulting detector is more compact, efficient and reliable than the PMT it replaces but as its sensitive area is smaller than that of a PMT, it will require auxiliary optics when used with any LCM having a large (mm) pinhole. As the signal light is parallel, a simple lens mounted axially and with the CCDiode at its focus would suffice. Future versions may use 3 X 3 or 5 X 5 arrays of sensors to `track' the confocal spot as it is deflected by inhomogeneities of the specimen, change its effective size or shape or detect system misalignment.

  9. Development of a SEM-based low-energy in-line electron holography microscope for individual particle imaging.

    Science.gov (United States)

    Adaniya, Hidehito; Cheung, Martin; Cassidy, Cathal; Yamashita, Masao; Shintake, Tsumoru

    2018-05-01

    A new SEM-based in-line electron holography microscope has been under development. The microscope utilizes conventional SEM and BF-STEM functionality to allow for rapid searching of the specimen of interest, seamless interchange between SEM, BF-STEM and holographic imaging modes, and makes use of coherent low-energy in-line electron holography to obtain low-dose, high-contrast images of light element materials. We report here an overview of the instrumentation and first experimental results on gold nano-particles and carbon nano-fibers for system performance tests. Reconstructed images obtained from the holographic imaging mode of the new microscope show substantial image contrast and resolution compared to those acquired by SEM and BF-STEM modes, demonstrating the feasibility of high-contrast imaging via low-energy in-line electron holography. The prospect of utilizing the new microscope to image purified biological specimens at the individual particle level is discussed and electron optical issues and challenges to further improve resolution and contrast are considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. On irreversible evolutions of two-level systems approaching coherent and squeezed states

    International Nuclear Information System (INIS)

    Jurco, B.; Tolar, J.

    1988-01-01

    The concepts of completely positive quantum dynamical semigroups and SU(2)-related generalized coherence and squeezing are used to investigate conditions for Markovian evolutions leading to coherent, intelligent, minimum-uncertainty and squeezed asymptotic stationary states in a 2-level system. (author). 10 refs

  11. Two-loop feed water control system in BWR plants

    International Nuclear Information System (INIS)

    Omori, Takashi; Watanabe, Takao; Hirose, Masao.

    1982-01-01

    In the process of the start-up and shutdown of BWR plants, the operation of changing over feed pumps corresponding to plant output is performed. Therefore, it is necessary to develop the automatic changeover system for feed pumps, which minimizes the variation of water level in reactors and is easy to operate. The three-element control system with the water level in reactors, the flow rate of main steam and the flow rate of feed water as the input is mainly applied, but long time is required for the changeover of feed pumps. The two-loop feed control system can control simultaneously two pumps being changed over, therefore it is suitable to the automatic changeover control system for feed pumps. Also it is excellent for the control of the recirculating valves of feed pumps. The control characteristics of the two-loop feed water control system against the external disturbance which causes the variation of water level in reactors were examined. The results of analysis by simulation are reported. The features of the two-loop feed water control system, the method of simulation and the evaluation of the two-loop feed water control system are described. Its connection with a digital feed water recirculation control system is expected. (Kako, I.)

  12. Electron microscopic observation at low temperature on superconductors

    International Nuclear Information System (INIS)

    Yokota, Yasuhiro; Hashimoto, Hatsujiro; Yoshida, Hiroyuki.

    1991-01-01

    The authors have observed superconducting materials with a high resolution electron microscope at liquid helium temperature. First, observation was carried out on Nb system intermetallic compounds such as Nb 3 Al and Nb 3 Sn of Al 5 type and Nb 3 Ge of 11 type at extremely low temperature. Next, the observation of high temperature superconductive ceramics in the state of superconductivity was attempted. In this paper, first the development of the liquid helium sample holder for a 400 kV electron microscope to realize the observation is reported. Besides, the sample holder of Gatan Co. and an extremely low temperature, high resolution electron microscope with a superconducting lens are described. The purpose of carrying out the electron microscope observation of superconductors at low temperature is the direct observation of the crystalline lattice image in the state of superconductivity. Also the structural transformation from tetragonal crystals to rhombic crystals in Al 5 type superconductors can be observed. The results of observation are reported. (K.I.)

  13. A comparative analysis of currently used microscopic and macroscopic traffic simulation software

    International Nuclear Information System (INIS)

    Ratrout Nedal T; Rahman Syed Masiur

    2009-01-01

    The significant advancements of information technology have contributed to increased development of traffic simulation models. These include microscopic models and broadening the areas of applications ranging from the modeling of specific components of the transportation system to a whole network having different kinds of intersections and links, even in a few cases combining travel demand models. This paper mainly reviews the features of traditionally used macroscopic and microscopic traffic simulation models along with a comparative analysis focusing on freeway operations, urban congested networks, project-level emission modeling, and variations in delay and capacity estimates. The models AIMSUN, CORSIM, and VISSIM are found to be suitable for congested arterials and freeways, and integrated networks of freeways and surface streets. The features of AIMSUN are favorable for creating large urban and regional networks. The models AIMSUN, PARAMICS, INTEGRATION, and CORSIM are potentially useful for Intelligent Transportation System (ITS). There are a few simulation models which are developed focusing on ITS such as MITSIMLab. The TRAF-family and HUTSIM models attempt a system-level simulation approach and develop open environments where several analysis models can be used interactively to solve traffic simulation problems. In Saudi Arabia, use of simulation software with the capability of analyzing an integrated system of freeways and surface streets has not been reported. Calibration and validation of simulation software either for freeways or surface streets has been reported. This paper suggests that researchers evaluate the state-of-the-art simulation tools and find out the suitable tools or approaches for the local conditions of Saudi Arabia. (author)

  14. Coupling auto trophic in vitro plant cultivation system to scanning electron microscope to study plant-fungal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, N. de; Decock, C.; Declereck, S.; Providencia, I. E. de la

    2010-07-01

    The interactions of plants with pathogens and beneficial micro-organisms have been seldom compared on the same host and under strict controlled auto trophic in vitro culture conditions. Here, the life cycle of two plant beneficial (Glomus sp. MUCL 41833 and Trichoderma harzianum) and one plant pathogen (Rhizoctonia solani) fungi were described on potato (Solanum tuberosum) plantlets under auto trophic in vitro culture conditions using video camera imaging and the scanning electron microscope (SEM). (i) The colony developmental pattern of the extraradical mycelium within the substrate, (ii) the reproduction structures and (iii) the three-dimensional spatial arrangements of the fungal hyphae within the potato root cells were successfully visualized, monitored and described. The combination of the autotrophic in vitro culture system and SEM represent a powerful tool for improving our knowledge on the dynamics of plant-fungal interactions. (Author) 41 refs.

  15. Microscopic polyangeitis, report of a case

    International Nuclear Information System (INIS)

    Malagon, Patricia; Suarez, Martha Lucia

    1998-01-01

    Polyarteritis or microscopic polyangeitis is a systemic necrotizing vasculitis associated with the lung-kidney syndrome. It presents with diffuse alveolar hemorrhage and necrotizing glomerulonephritis with multisystem involvement. A case is presented of a 50 years old male with its clinical and imaging findings

  16. A magneto-optical microscope for quantitative measurement of magnetic microstructures.

    Science.gov (United States)

    Patterson, W C; Garraud, N; Shorman, E E; Arnold, D P

    2015-09-01

    An optical system is presented to quantitatively map the stray magnetic fields of microscale magnetic structures, with field resolution down to 50 μT and spatial resolution down to 4 μm. The system uses a magneto-optical indicator film (MOIF) in conjunction with an upright reflective polarizing light microscope to generate optical images of the magnetic field perpendicular to the image plane. A novel single light path construction and discrete multi-image polarimetry processing method are used to extract quantitative areal field measurements from the optical images. The integrated system including the equipment, image analysis software, and experimental methods are described. MOIFs with three different magnetic field ranges are calibrated, and the entire system is validated by measurement of the field patterns from two calibration samples.

  17. Microscopic nuclear dissipation. Pt. 2

    International Nuclear Information System (INIS)

    Yannouleas, C.; Dworzecka, M.; Griffin, J.J.

    1983-01-01

    We have formulated a microscopic, nonperturbative, time reversible model which exhibits a dissipative decay of collective motion for times short compared to the system's Poincare time. The model assumes an RPA approximate description of the initial collective state within a restricted subspace, then traces its time evolution when an additional subspace is coupled to the restricted subspace by certain simplified matrix elements. It invokes no statistical assumptions. The damping of the collective motion occurs via real transitions from the collective state to other more complicated nuclear states of the same energy. It corresponds therefore to the so called 'one-body' long mean free path limit of nuclear dissipation when the collective state describes a surface vibration. When the simplest RPA approximation is used, this process associates the dissipation with the escape width for direct particle emission to the continuum. When the more detailed second RPA is used, it associates the dissipation with the spreading width for transitions to the 2p-2h components of the nuclear compound states as well. The energy loss rate for sharp n-phonon initial states is proportional to the total collective energy, unlike the dissipation of a classical damped oscillator, where it is proportional to the kinetic energy only. However, for coherent, multi-phonon wave packets, which explicitly describe the time-dependent oscillations of the mean field, dissipation proportional only to the kinetic energy is obtained. Canonical coordinates for the collective degree of freedom are explicitly introduced and a nonlinear frictional hamiltonian to describe such systems is specified by the requirement that it yield the same time dependence for the collective motion as the microscopic model. Thus, for the first time a descriptive nonlinear hamiltonian is derived explicitly from the underlying microscopic model of a nuclear system. (orig.)

  18. The head-mounted microscope.

    Science.gov (United States)

    Chen, Ting; Dailey, Seth H; Naze, Sawyer A; Jiang, Jack J

    2012-04-01

    Microsurgical equipment has greatly advanced since the inception of the microscope into the operating room. These advancements have allowed for superior surgical precision and better post-operative results. This study focuses on the use of the Leica HM500 head-mounted microscope for the operating phonosurgeon. The head-mounted microscope has an optical zoom from 2× to 9× and provides a working distance from 300 mm to 700 mm. The headpiece, with its articulated eyepieces, adjusts easily to head shape and circumference, and offers a focus function, which is either automatic or manually controlled. We performed five microlaryngoscopic operations utilizing the head-mounted microscope with successful results. By creating a more ergonomically favorable operating posture, a surgeon may be able to obtain greater precision and success in phonomicrosurgery. Phonomicrosurgery requires the precise manipulation of long-handled cantilevered instruments through the narrow bore of a laryngoscope. The head-mounted microscope shortens the working distance compared with a stand microscope, thereby increasing arm stability, which may improve surgical precision. Also, the head-mounted design permits flexibility in head position, enabling operator comfort, and delaying musculoskeletal fatigue. A head-mounted microscope decreases the working distance and provides better ergonomics in laryngoscopic microsurgery. These advances provide the potential to promote precision in phonomicrosurgery. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  19. Microscopic calculation of absolute values of two-nucleon transfer cross sections

    International Nuclear Information System (INIS)

    Potel, G.; Bayman, B. F.; Barranco, F.

    2009-01-01

    Arguably, the greatest achievement of many-body physics in the fifties was that of providing the basis for a complete description and a thorough understanding of superconductivity in metals. At the basis of it one finds BCS theory and Josephson effect. The first recognized the central role played by the appearance of a macroscopic coherent field -usually viewed as a condensate of strongly overlapping Cooper pairs-, the quasiparticle vacuum. The second realized that a true gap is not essential for such a state of matter to exist, but rather a finite expectation value of the pair field. Consequently, the specific probe to study the superconducting state is Cooper pair tunneling. Important progress in the understanding of pairing in atomic nuclei may arise from the systematic study of two-particle transfer reactions. Although this subject of research started about the time of the BCS papers, the quantitative calculation of absolute cross sections taking properly into account the full non-locality of the Cooper pairs (correlation length much larger than nuclear dimensions) is still an open problem. We present in this talk the results obtained within a second order DWBA framework for two- nucleon transfer reactions around the Coulomb barrier induced both by heavy and light ions. The calculations were done using a computer code developed for this purpose including the sequential and simultaneous contributions to the process, with microscopic form factors which take into account the relevant structure aspects of the process, such as the nature of the single-particle wavefunctions, the spectroscopic factors, and the interaction potential responsible for the transfer. Reasonable agreement with the experimental absolute values of the differential cross section is obtained without any parameter adjustment (see Figure 1).(author)

  20. An inexact two-stage stochastic energy systems planning model for managing greenhouse gas emission at a municipal level

    International Nuclear Information System (INIS)

    Lin, Q.G.; Huang, G.H.

    2010-01-01

    Energy management systems are highly complicated with greenhouse-gas emission reduction issues and a variety of social, economic, political, environmental and technical factors. To address such complexities, municipal energy systems planning models are desired as they can take account of these factors and their interactions within municipal energy management systems. This research is to develop an interval-parameter two-stage stochastic municipal energy systems planning model (ITS-MEM) for supporting decisions of energy systems planning and GHG (greenhouse gases) emission management at a municipal level. ITS-MEM is then applied to a case study. The results indicated that the developed model was capable of supporting municipal energy systems planning and environmental management under uncertainty. Solutions of ITS-MEM would provide an effective linkage between the pre-regulated environmental policies (GHG-emission reduction targets) and the associated economic implications (GHG-emission credit trading).

  1. The Homemade Microscope.

    Science.gov (United States)

    Baker, Roger C., Jr.

    1991-01-01

    Directions for the building of a pocket microscope that will make visible the details of insect structure and living bacteria are described. Background information on the history of microscopes and lenses is provided. The procedures for producing various types of lenses are included. (KR)

  2. Development of a Kirkpatrick-Baez microscope with a large visual field

    International Nuclear Information System (INIS)

    Kodama, R.; Ikeda, N.; Kato, Y.

    1995-01-01

    The authors have developed an advanced Kirkpatrick-Baez (AKB) microscope to diagnose a laser-produced-plasma. The AKB microscope optics are two pairs of hyperbolical and elliptical cylindrical-mirrors to avoid a spherical aberration and field obliquity. Ray trace calculation was applied to optimize the characterization. The microscope has attained a spatial resolution of less than 3 mm at 2.5-keV x-ray in the field of 800 mm from experiments

  3. Development of in situ two-coil mutual inductance technique in a multifunctional scanning tunneling microscope.

    Science.gov (United States)

    Duan, Ming-Chao; Liu, Zhi-Long; Ge, Jian-Feng; Tang, Zhi-Jun; Wang, Guan-Yong; Wang, Zi-Xin; Guan, Dandan; Li, Yao-Yi; Qian, Dong; Liu, Canhua; Jia, Jin-Feng

    2017-07-01

    Superconducting thin films have been a focal point for intensive research efforts since their reduced dimension allows for a wide variety of quantum phenomena. Many of these films, fabricated in UHV chambers, are highly vulnerable to air exposure, making it difficult to measure intrinsic superconducting properties such as zero resistance and perfect diamagnetism with ex situ experimental techniques. Previously, we developed a multifunctional scanning tunneling microscope (MSTM) containing in situ four-point probe (4PP) electrical transport measurement capability in addition to the usual STM capabilities [Ge et al., Rev. Sci. Instrum. 86, 053903 (2015)]. Here we improve this MSTM via development of both transmission and reflection two-coil mutual inductance techniques for in situ measurement of the diamagnetic response of a superconductor. This addition does not alter the original STM and 4PP functions of the MSTM. We demonstrate the performance of the two-coil mutual inductance setup on a 10-nm-thick NbN thin film grown on a Nb-doped SrTiO 3 (111) substrate.

  4. Observation of quantized vortices by cryocooler-based scanning Hall probe microscope

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Y.; Konishi, Y.; Tokunaga, M.; Tamegai, T

    2004-10-01

    We have developed a scanning Hall probe microscope (SHPM) system utilizing closed-cycle cryocooler. The Hall probe used in this system is fabricated from a GaAs/GaAlAs two-dimensional electron gas. A stepping-motor-driven XYZ translator is used with a resolution better than 0.1 {mu}m and maximum scan range of 20 x 20 mm{sup 2}. The spatial resolution of the system is about 5 {mu}m and magnetic resolution is about 100 mG. By using this system, we have successfully resolved the quantized vortices on the cleaved surface of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+y} single crystal.

  5. System level ESD protection

    CERN Document Server

    Vashchenko, Vladislav

    2014-01-01

    This book addresses key aspects of analog integrated circuits and systems design related to system level electrostatic discharge (ESD) protection.  It is an invaluable reference for anyone developing systems-on-chip (SoC) and systems-on-package (SoP), integrated with system-level ESD protection. The book focuses on both the design of semiconductor integrated circuit (IC) components with embedded, on-chip system level protection and IC-system co-design. The readers will be enabled to bring the system level ESD protection solutions to the level of integrated circuits, thereby reducing or completely eliminating the need for additional, discrete components on the printed circuit board (PCB) and meeting system-level ESD requirements. The authors take a systematic approach, based on IC-system ESD protection co-design. A detailed description of the available IC-level ESD testing methods is provided, together with a discussion of the correlation between IC-level and system-level ESD testing methods. The IC-level ESD...

  6. Microscopic theory of longitudinal sound velocity in charge ordered manganites

    International Nuclear Information System (INIS)

    Rout, G C; Panda, S

    2009-01-01

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e g band, an exchange interaction between spins of the itinerant e g band electrons and the core t 2g electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  7. Microscopic theory of longitudinal sound velocity in charge ordered manganites

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G C [Condensed Matter Physics Group, PG Department of Applied Physics and Ballistics, FM University, Balasore 756 019 (India); Panda, S, E-mail: gcr@iopb.res.i [Trident Academy of Technology, F2/A, Chandaka Industrial Estate, Bhubaneswar 751 024 (India)

    2009-10-14

    A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e{sub g} band, an exchange interaction between spins of the itinerant e{sub g} band electrons and the core t{sub 2g} electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.

  8. Microscopic interplay of superconducting and magnetic order parameters in ferropnictides

    Energy Technology Data Exchange (ETDEWEB)

    Maeter, H.; Goltz, T.; Spehling, J.; Klauss, H.H. [Institut fuer Festkoerperphysik, TU Dresden (Germany); Bendele, M.; Luetkens, H.; Khasanov, R.; Pascua, G.; Shermadini, Z.; Amato, A. [Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institut, Villigen (Switzerland); Aswartham, S.; Hamann-Borrero, J.E.; Kondrat, A.; Hess, C.; Wolter, A.; Wurmehl, S.; Behr, G.; Buechner, B. [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung Dresden (Germany); Wiesenmayer, E.; Johrendt, D. [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany); Potts, H.; Banusch, B. [Swiss Nanoscience Institute, Universitaet Basel (Switzerland)

    2012-07-01

    We present results of {mu}SR experiments of Ba{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} that show a large coupling of the superconducting and magnetic order parameters. This is unexpected in light of the phase separation in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2}. However, in a {mu}SR study of Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} we unambiguously showed microscopic coexistence, even though there are many reports of phase separation in this system. In FeSe{sub 1-x} the interplay of phase separation and microscopic coexistence is also evident, here pressure can induce a change from microscopic coexistence to a combination of both. In light of the {mu}SR results it seems likely that phase separation and microscopic coexistence depend on the microscopic properties much more than on disorder.

  9. A Derivation of a Microscopic Entropy and Time Irreversibility From the Discreteness of Time

    Directory of Open Access Journals (Sweden)

    Roland Riek

    2014-06-01

    Full Text Available The basic microsopic physical laws are time reversible. In contrast, the second law of thermodynamics, which is a macroscopic physical representation of the world, is able to describe irreversible processes in an isolated system through the change of entropy ΔS > 0. It is the attempt of the present manuscript to bridge the microscopic physical world with its macrosocpic one with an alternative approach than the statistical mechanics theory of Gibbs and Boltzmann. It is proposed that time is discrete with constant step size. Its consequence is the presence of time irreversibility at the microscopic level if the present force is of complex nature (F(r ≠ const. In order to compare this discrete time irreversible mechamics (for simplicity a “classical”, single particle in a one dimensional space is selected with its classical Newton analog, time reversibility is reintroduced by scaling the time steps for any given time step n by the variable sn leading to the Nosé-Hoover Lagrangian. The corresponding Nos´e-Hoover Hamiltonian comprises a term Ndf kB T ln sn (kB the Boltzmann constant, T the temperature, and Ndf the number of degrees of freedom which is defined as the microscopic entropy Sn at time point n multiplied by T. Upon ensemble averaging this microscopic entropy Sn in equilibrium for a system which does not have fast changing forces approximates its macroscopic counterpart known from thermodynamics. The presented derivation with the resulting analogy between the ensemble averaged microscopic entropy and its thermodynamic analog suggests that the original description of the entropy by Boltzmann and Gibbs is just an ensemble averaging of the time scaling variable sn which is in equilibrium close to 1, but that the entropy

  10. Mailing microscope slides

    Science.gov (United States)

    Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...

  11. Two-level modelling of real estate taxtation

    DEFF Research Database (Denmark)

    Gall, Jaroslav; Stubkjær, Erik

    2006-01-01

    Real estate taxes recurrently attract attention, because they are a source of potentially increased revenue for local and national government. Most experts agree that it is necessary to switch from using normative values for taxation to a market-value-based taxation of real property with computer......-assisted mass valuation, witch benefit from use of value maps. In Czech Republic, efforts have been made to adopt current tax policy goals, but improvements are still needed. The paper aims at supporting the current improvement process towards a market based system. It presents models, which describe aspects...... of the present Czech property tax system. A proposal for the future system focuses on the value map component. The described change depends on political involvement. This political activity is modelled as well. The hypothesis is that the two-level modelling effort enhances the change process by providing...

  12. Entropy as a measure of the noise extent in a two-level quantum feedback controlled system

    Institute of Scientific and Technical Information of China (English)

    Wang Tao-Bo; Fang Mao-Fa; Hu Yao-Hua

    2007-01-01

    By introducing the von Neumann entropy as a measure of the extent of noise, this paper discusses the entropy evolution in a two-level quantum feedback controlled system. The results show that the feedback control can induce the reduction of the degree of noise, and different control schemes exhibit different noise controlling ability, the extent of the reduction also related with the position of the target state on the Bloch sphere. It is shown that the evolution of entropy can provide a real time noise observation and a systematic guideline to make reasonable choice of control strategy.

  13. High-voltage scanning ion microscope: Beam optics and design

    Energy Technology Data Exchange (ETDEWEB)

    Magilin, D., E-mail: dmitrymagilin@gmail.com; Ponomarev, A.; Rebrov, V.; Ponomarov, A.

    2015-05-01

    This article is devoted to the conceptual design of a compact high-voltage scanning ion microscope (HVSIM). In an HVSIM design, the ion optical system is based on a high-brightness ion source. Specifically, the ion optical system is divided into two components: an ion injector and a probe-forming system (PFS) that consists of an accelerating tube and a multiplet of quadrupole lenses. The crossover is formed and controlled by the injector, which acts as an object collimator, and is focused on the image plane by the PFS. The ion microprobe has a size of 0.1 μm and an energy of 2 MeV. When the influence of the chromatic and third-order aberrations is theoretically taken into account, the HVSIM forms an ion microprobe.

  14. Polarized differential-phase laser scanning microscope

    International Nuclear Information System (INIS)

    Chou Chien; Lyu, C.-W.; Peng, L.-C.

    2001-01-01

    A polarized differential-phase laser scanning microscope, which combines a polarized optical heterodyne Mach-Zehnder interferometer and a differential amplifier to scan the topographic image of a surface, is proposed. In the experiment the differential amplifier, which acts as a PM-AM converter, in the experiment, converting phase modulation (PM) into amplitude modulation (AM). Then a novel, to our knowledge, phase demodulator was proposed and implemented for the differential-phase laser scanning microscope. An optical grating (1800 lp/mm) was imaged. The lateral and the depth resolutions of the imaging system were 0.5 μm and 1 nm, respectively. The detection accuracy, which was limited by the reflectivity variation of the test surface, is discussed

  15. Study of the diffraction in the microscope: Annular condenser

    International Nuclear Information System (INIS)

    Ciocci, L; Echarri, R M; Simon, J M

    2011-01-01

    In this work we study the diffraction in the microscope when an annular condenser is used to illuminate the object. We calculate the point spread function (PSF) for a pinhole in an opaque screen illuminated with an annular condenser, consisting in an 1D array of incoherent point sources. We compare it with the PSF for a self-luminous point object, finding that the central disk of the diffraction pattern is narrower and the first intensity minimum is deeper for illuminated objects. We also analyze the resolution of the system by means of the intensity profile produced by two points objects, finding that two self luminous point objects are better resolved than two illuminated objects at the same distance. This suggests that the correlation introduced in the object diminishes the resolution in the former case.

  16. A mini-microscope for in situ monitoring of cells.

    Science.gov (United States)

    Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R; Hamilton, Geraldine A; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E; Khademhosseini, Ali

    2012-10-21

    A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost.

  17. Two-step values for games with two-level communication structure

    NARCIS (Netherlands)

    Béal, Silvain; Khmelnitskaya, Anna Borisovna; Solal, Philippe

    TU games with two-level communication structure, in which a two-level communication structure relates fundamentally to the given coalition structure and consists of a communication graph on the collection of the a priori unions in the coalition structure, as well as a collection of communication

  18. First Sample Delivery to Mars Microscope

    Science.gov (United States)

    2008-01-01

    The Robotic Arm on NASA's Phoenix Mars Lander has just delivered the first sample of dug-up soil to the spacecraft's microscope station in this image taken by the Surface Stereo Imager during the mission's Sol 17 (June 12), or 17th Martian day after landing. The scoop is positioned above the box containing key parts of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer, or MECA, instrument suite. It has sprinkled a small amount of soil into a notch in the MECA box where the microscope's sample wheel is exposed. The wheel turns to present sample particles on various substrates to the Optical Microscope for viewing. The scoop is about 8.5 centimeters (3.3 inches) wide. The top of the MECA box is 20 centimeters (7.9 inches) wide. This image has been lightened to make details more visible. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. Topological structures of adiabatic phase for multi-level quantum systems

    International Nuclear Information System (INIS)

    Liu Zhengxin; Zhou Xiaoting; Liu Xin; Liu Xiongjun; Chen Jingling

    2007-01-01

    The topological properties of adiabatic gauge fields for multi-level (three-level in particular) quantum systems are studied in detail. Similar to the result that the adiabatic gauge field for SU(2) systems (e.g. two-level quantum system or angular momentum systems, etc) has a monopole structure, the curvature 2-forms of the adiabatic holonomies for SU(3) three-level and SU(3) eight-level quantum systems are shown to have monopole-like (for all levels) or instanton-like (for the degenerate levels) structures

  20. The comparison of automated urine analyzers with manual microscopic examination for urinalysis automated urine analyzers and manual urinalysis

    Directory of Open Access Journals (Sweden)

    Fatma Demet Ä°nce

    2016-08-01

    Full Text Available Objectives: Urinalysis is one of the most commonly performed tests in the clinical laboratory. However, manual microscopic sediment examination is labor-intensive, time-consuming, and lacks standardization in high-volume laboratories. In this study, the concordance of analyses between manual microscopic examination and two different automatic urine sediment analyzers has been evaluated. Design and methods: 209 urine samples were analyzed by the Iris iQ200 ELITE (Ä°ris Diagnostics, USA, Dirui FUS-200 (DIRUI Industrial Co., China automatic urine sediment analyzers and by manual microscopic examination. The degree of concordance (Kappa coefficient and the rates within the same grading were evaluated. Results: For erythrocytes, leukocytes, epithelial cells, bacteria, crystals and yeasts, the degree of concordance between the two instruments was better than the degree of concordance between the manual microscopic method and the individual devices. There was no concordance between all methods for casts. Conclusion: The results from the automated analyzers for erythrocytes, leukocytes and epithelial cells were similar to the result of microscopic examination. However, in order to avoid any error or uncertainty, some images (particularly: dysmorphic cells, bacteria, yeasts, casts and crystals have to be analyzed by manual microscopic examination by trained staff. Therefore, the software programs which are used in automatic urine sediment analysers need further development to recognize urinary shaped elements more accurately. Automated systems are important in terms of time saving and standardization. Keywords: Urinalysis, Autoanalysis, Microscopy

  1. No-go theorem for one-way quantum computing on naturally occurring two-level systems

    International Nuclear Information System (INIS)

    Chen Jianxin; Chen Xie; Duan Runyao; Ji Zhengfeng; Zeng Bei

    2011-01-01

    The ground states of some many-body quantum systems can serve as resource states for the one-way quantum computing model, achieving the full power of quantum computation. Such resource states are found, for example, in spin-(5/2) and spin-(3/2) systems. It is, of course, desirable to have a natural resource state in a spin-(1/2), that is, qubit system. Here, we give a negative answer to this question for frustration-free systems with two-body interactions. In fact, it is shown to be impossible for any genuinely entangled qubit state to be a nondegenerate ground state of any two-body frustration-free Hamiltonian. What is more, we also prove that every spin-(1/2) frustration-free Hamiltonian with two-body interaction always has a ground state that is a product of single- or two-qubit states. In other words, there cannot be any interesting entanglement features in the ground state of such a qubit Hamiltonian.

  2. First images from the Stanford tabletop scanning soft x-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.; Byer, R.L.

    1988-01-01

    The authors have constructed a scanning soft x-ray microscope which uses a laser-produced plasma as the soft x-ray source and normal incidence multilayer coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 140 angstrom, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 s -1 when operated with only 170 mW of average laser power. The microscope is compact; the complete system, including the laser, fits on a single optical table. In this paper they describe the microscope and present images of metallic microstructures

  3. Coupled storm-time magnetosphere-ionosphere-thermosphere simulations including microscopic ionospheric turbulence

    Science.gov (United States)

    Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.

    2017-12-01

    During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the

  4. Femtosecond photoelectron point projection microscope

    International Nuclear Information System (INIS)

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-01-01

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect

  5. Microscopic study on dynamic barrier in fusion reactions

    International Nuclear Information System (INIS)

    Wu Xizhen; Tian Junlong; Zhao Kai; Li Zhuxia; Wang Ning

    2004-01-01

    The authors briefly review the fusion process of very heavy nuclear systems and some theoretical models. The authors propose a microscopic transport dynamic model, i.e. the Improved Quantum Molecular Dynamic model, for describing fusion reactions of heavy systems, in which the dynamical behavior of the fusion barrier in heavy fusion systems has been studied firstly. The authors find that with the incident energy decreasing the lowest dynamic barrier is obtained which approaches to the adiabatic static barrier and with increase of the incident energy the dynamic barrier goes up to the diabatic static barrier. The authors also indicate that how the dynamical fusion barrier is correlated with the development of the configuration of fusion partners along the fusion path. Associating the single-particle potentials obtained at different stages of fusion with the Two Center Shell Model, authors can study the time evolution of the single particle states of fusion system in configuration space of single particle orbits along the fusion path. (author)

  6. Portable smartphone based quantitative phase microscope

    Science.gov (United States)

    Meng, Xin; Tian, Xiaolin; Yu, Wei; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2018-01-01

    To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.

  7. Simple microscopic process to determine the pollution level on leaf surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kisser, J; Lehnert, I

    1957-01-01

    For an unbiased determination of the degree of contamination of plants in the sphere of industrial establishments a method was developed by which a qualitative and quantitative fixation of the real dust cover could be found on the spot at any given time. Such a method must also be practicable as a field method and must provide the possibility for collecting the necessary amount of test material in the field in the shortest possible time and by the simplest means. For this purpose two methods were tried: the production of proof films including all contaminations of the leaf surface, and the production of impression preparations, by which the dust cover is picked up in its natural arrangement by an adhesive layer. The latter has proven to be the more efficient method. For the production of impression preparations transparent adhesive tape on a cellulose basis has proved to be very suitable. The making of impression preparations of contaminated leaves by means of the adhesive tape method is described in detail. It consists of the applications on the leaves, the removal of the Scotch tape and the preparation of microscopic preparations of the proofs; this can be done by different means, either by a direct mounting of the proofs on slides or another Scotch tape, or by using different mounting media described separately (no danger of turbidity). Finally some brief indications are given, as to how the preparations should be utilized.

  8. Simultaneous formation and detection of the reaction product of solid-state aspartame sweetener by FT-IR/DSC microscopic system.

    Science.gov (United States)

    Lin, S Y; Cheng, Y D

    2000-10-01

    The solid-state stability of aspartame hemihydrate (APM) sweetener during thermal treatment is important information for the food industry. The present study uses the novel technique of Fourier transform infrared microspectroscopy equipped with differential scanning calorimetry (FT-IR/DSC microscopic system) to accelerate and determine simultaneously the thermal-dependent impurity formation of solid-state APM. The results indicate a dramatic change in IR spectra from 50, 110 or 153 degrees C, which was respectively attributed to the onset temperature of water evaporation, dehydration and cyclization processes. It is suggested that the processes of dehydration and intramolecular cyclization occurred in the solid-state APM during the heating process. As an impurity, 3-carboxymethyl-6-benzyl-2,5-diketopiperazine (DKP) degraded from solid state APM via intramolecular cyclization and liberation of methanol. This was evidenced by this novel FT-IR/DSC microscopic system in a one-step procedure.

  9. Transverse magnetic field effect on the giant Goos–Hänchen shifts based on a degenerate two-level system

    Science.gov (United States)

    Nasehi, R.

    2018-06-01

    We study the effect of the Goos–Hänchen (GH) shifts through a cavity with degenerate two-level systems in the line of . For this purpose, we focus on the transverse magnetic field (TMF) in a Floquet frame to obtain the giant GH shifts. Physically, the collisional effects of TMF lead to increasing the population trapping in the ground state. However, we demonstrate that the population trapping generates the large negative or positive GH shifts and simultaneously switches from superluminal to subluminal (or vice versa). Also, we investigate the other optical properties such as the longitudinal magnetic field (LMF), which plays an important role in the control of the GH shifts and leads to the generation of new subsystems. In the next step, we evaluate the GH shifts beyond the multi-photon resonance condition by the control of TMF. Moreover, we compute the appearance of negative and positive GH shifts by setting the width of the incident Gaussian beams in the presence of a multi-photon resonance condition. Our results show that superluminal or subluminal light propagation can be simultaneously controlled by adjusting the rates of the TMF and LMF. The significant effects of these factors on the degenerate two-level systems provide different applications such as slow light, optical switches and quantum information storage.

  10. Line-scanning tomographic optical microscope with isotropic transfer function

    International Nuclear Information System (INIS)

    Gajdátsy, Gábor; Dudás, László; Erdélyi, Miklós; Szabó, Gábor

    2010-01-01

    An imaging method and optical system, referred to as a line-scanning tomographic optical microscope (LSTOM) using a combination of line-scanning technique and CT reconstruction principle, is proposed and studied theoretically and experimentally. In our implementation a narrow focus line is scanned over the sample and the reflected light is measured in a confocal arrangement. One such scan is equivalent to a transverse projection in tomography. Repeating the scanning procedure in several directions, a number of transverse projections are recorded from which the image can be obtained using conventional CT reconstruction algorithms. The resolution of the image is independent of the spatial dimensions and structure of the applied detector; furthermore, the transfer function of the system is isotropic. The imaging performance of the implemented confocal LSTOM was compared with a point-scanning confocal microscope, based on recorded images. These images demonstrate that the resolution of the confocal LSTOM exceeds (by 15%) the resolution limit of a point-scanning confocal microscope

  11. Use of a scanning electron microscope for examining radioactive materials

    International Nuclear Information System (INIS)

    Kauffmann, Yves; Prouve, Michel.

    1981-05-01

    The LAMA laboratory of the Grenoble Nuclear Research Center participates in studies carried out by research teams on fuels. Post-irradiation studies are performed on irradiated pins for research and development and safety programs. A scanning electron microscope was acquired for this purpose. This microscope had to fulfill certain criteria: it had to be sufficiently compact for it to be housed in a lead enclosure; it had to be capable of being adapted to operate with remote handling control. The modifications made to this microscope are briefly described together with the ancillary equipment of the cell. In parallel with these operations, an interconnection was realized enabling materials to be transferred between the various sampling and sample preparation cells and the microscope cell with a small transfer cask. After two years operating experience the microscope performance has been assessed satisfactory. The specific radioactivity of the samples themselves cannot be incriminated as the only cause of loss in resolution at magnifications greater than x 10,000 [fr

  12. Integration of a high-NA light microscope in a scanning electron microscope.

    Science.gov (United States)

    Zonnevylle, A C; Van Tol, R F C; Liv, N; Narvaez, A C; Effting, A P J; Kruit, P; Hoogenboom, J P

    2013-10-01

    We present an integrated light-electron microscope in which an inverted high-NA objective lens is positioned inside a scanning electron microscope (SEM). The SEM objective lens and the light objective lens have a common axis and focal plane, allowing high-resolution optical microscopy and scanning electron microscopy on the same area of a sample simultaneously. Components for light illumination and detection can be mounted outside the vacuum, enabling flexibility in the construction of the light microscope. The light objective lens can be positioned underneath the SEM objective lens during operation for sub-10 μm alignment of the fields of view of the light and electron microscopes. We demonstrate in situ epifluorescence microscopy in the SEM with a numerical aperture of 1.4 using vacuum-compatible immersion oil. For a 40-nm-diameter fluorescent polymer nanoparticle, an intensity profile with a FWHM of 380 nm is measured whereas the SEM performance is uncompromised. The integrated instrument may offer new possibilities for correlative light and electron microscopy in the life sciences as well as in physics and chemistry. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  13. TWO-DIMENSIONAL LOCALIZATION OF ATOMIC POPULATIONS IN FOUR-LEVEL QUANTUM SYSTEMS

    Directory of Open Access Journals (Sweden)

    E. A. Efremova

    2014-07-01

    Full Text Available The paper deals with investigation of one aspect of fundamental problem of laser radiation interaction with the matter. This problem is spatial localization of atomic populations due to fields impact of few running waves. We are the first to propose in our work two–dimensional spatial localization of atomic populations in medium with tripod–like configuration of levels under the field influence of running waves only. Three running waves, propagating along one plane 120o angle-wise to each other, form the system of standing waves in this plane. Atomic populations can be localized in the field of these standing waves. Moreover, the degree of such localization can make up hundredth parts of the wavelength of the incident optical radiation. It is shown that an excitation of the central transition of the tripod-like system using a field of multidirectional linearly polarized running waves is the necessary condition of the population dependence from spatial coordinates in the XY – plane. The two–dimensional shapes that appear in this system can have very complicated structure such as “double – craters”.

  14. Use of optical microscopes in research work in the field of work safety in mines

    Energy Technology Data Exchange (ETDEWEB)

    Piskorska-Kalisz, Z

    1979-05-01

    Notes that coal dust in mine air is measured by means of optical microscopes. The microscope is part of a dust counter called a konimeter. With the help of optical microscopes dust particles in a sample are counted. The Cawood-Patterson network is inserted in the eyepiece of a microscope. At present konimeters produced by Zeiss Works are used in Poland. In predicting rock burst hazard microscopes (light reflecting system) are used, e.g. Zeiss microscope Ng. With its help microcracks in coal samples are counted. An optical stereoscopic microscope is used for calculating the range of flames during coal dust explosions.

  15. Vibrational spectroscopy in the electron microscope.

    Science.gov (United States)

    Krivanek, Ondrej L; Lovejoy, Tracy C; Dellby, Niklas; Aoki, Toshihiro; Carpenter, R W; Rez, Peter; Soignard, Emmanuel; Zhu, Jiangtao; Batson, Philip E; Lagos, Maureen J; Egerton, Ray F; Crozier, Peter A

    2014-10-09

    Vibrational spectroscopies using infrared radiation, Raman scattering, neutrons, low-energy electrons and inelastic electron tunnelling are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample--that is, for 'aloof' spectroscopy that largely avoids radiation damage.

  16. Crises-induced intermittencies in a coherently driven system of two-level atoms

    International Nuclear Information System (INIS)

    Pando L, C.L.; Perez, G.; Cerdeira, H.A.

    1993-04-01

    We study the coherent dynamics of a thin layer of two-level atoms driven by an external coherent field and a phase conjugated mirror (PCM). Since the variables of the system are defined on the Bloch sphere, the third dimension is provided by the temporal modulation of the Rabi frequencies, which are induced by a PCM which reflects an electric field with a carrier frequency different from the incident one. We show that as the PCM gain coefficient is changed period doubling leading to chaos occurs. We find crises of attractor merging and attractor widening types related to homoclinic and heteroclinic tangencies respectively. For the attractor merging crises we find the critical exponent for the characteristic time of intermittency versus the control parameter which is given by the gain coefficient of the PCM. We show that during the crises of attractor widening type, another crisis due to attractor destruction occurs as the control parameter is changed. The latter is due to the collision of the old attractor with its basin boundary when a new attractor is created. This new attractor is stable only in a very small interval in the neighborhood of this second crisis. (author). 31 refs, 15 figs

  17. Development of an integrated model for energy systems planning and carbon dioxide mitigation under uncertainty - Tradeoffs between two-level decision makers.

    Science.gov (United States)

    Jin, S W; Li, Y P; Xu, L P

    2018-07-01

    A bi-level fuzzy programming (BFLP) method was developed for energy systems planning (ESP) and carbon dioxide (CO 2 ) mitigation under uncertainty. BFLP could handle fuzzy information and leader-follower problem in decision-making processes. It could also address the tradeoffs among different decision makers in two decision-making levels through prioritizing the most important goal. Then, a BFLP-ESP model was formulated for planning energy system of Beijing, in which the upper-level objective is to minimize CO 2 emission and the lower-level objective is to minimize the system cost. Results provided a range of decision alternatives that corresponded to a tradeoff between system optimality and reliability under uncertainty. Compared to the single-level model with a target to minimize system cost, the amounts of pollutant/CO 2 emissions from BFLP-ESP were reduced since the study system would prefer more clean energies (i.e. natural gas, LPG and electricity) to replace coal fuel. Decision alternatives from BFLP were more beneficial for supporting Beijing to adjust its energy mix and enact its emission-abatement policy. Results also revealed that the low-carbon policy for power plants (e.g., shutting down all coal-fired power plants) could lead to a potentially increment of imported energy for Beijing, which would increase the risk of energy shortage. The findings could help decision makers analyze the interactions between different stakeholders in ESP and provide useful information for policy design under uncertainty. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Using a university characterization facility to educate the public about microscopes: light microscopes to SEM

    Science.gov (United States)

    Healy, Nancy; Henderson, Walter

    2015-10-01

    The National Nanotechnology Infrastructure Network (NNIN)1is an integrated partnership of 14 universities across the US funded by NSF to support nanoscale researchers. The NNIN education office is located at the Institute of Electronics and Nanotechnology at the Georgia Institute of Technology. At Georgia Tech we offer programs that integrate the facility and its resources to educate the public about nanotechnology. One event that has proved highly successful involves using microscopes in our characterization suite to educate a diverse audience about a variety of imaging instruments. As part of the annual Atlanta Science Festival (ATLSF)2 we provided an event entitled: "What's all the Buzz about Nanotechnology?" which was open to the public and advertised through a variety of methods by the ATLSF. During the event, we provided hands-on demos, cleanroom tours, and activities with three of our microscopes in our recently opened Imaging and Characterization Facility: 1. Keyence VHX-600 Digital Microscope; 2. Hitachi SU823 FE-SEM; and 3. Hitachi TM 3000. During the two hour event we had approximately 150 visitors including many families with school-aged children. Visitors were invited to bring a sample for scanning with the TM-3000. This paper will discuss how to do such an event, lessons learned, and visitor survey results.

  19. SUBJECT «NUMBER SYSTEMS» IN TWO-LEVELED FORMAT PREPARATION TEACHERS OF MATHEMATICS

    Directory of Open Access Journals (Sweden)

    V. I. Igoshin

    2017-01-01

    Full Text Available The aim of this article is to analyze the format of a two-leveled training – bachelor and master – future teachers of mathematics from the point of view of the content of mathematical material, which is to develop prospective teachers of mathematics at those two levels, shaping their professional competence.Methods. The study involves the theoretical methods: the analysis of pedagogical and methodical literature, normative documents; historical, comparative and logical analysis of the content of pedagogical mathematical education; forecasting, planning and designing of two-leveled methodical system of training of future teachers of mathematics.Results and scientific novelty. The level differentiation of the higher education system requires developing the appropriate curricula for undergraduate and graduate programs. The fundamental principle must be the principle of continuity – the magister must continue to deepen and broaden knowledge and skills, along with competences acquired, developed and formed on the undergraduate level. From these positions, this paper examines the course «Number Systems» – the most important in terms of methodology course for future mathematics teachers, and shows what content should be filled with this course at the undergraduate level and the graduate level. At the undergraduate level it is proposed to study classical number systems – natural, integer, rational, real and complex. Further extensions of the number systems are studied at the graduate level. The theory of numeric systems is presented as a theory of algebraic systems, arising at the intersection of algebra and mathematical logic. Here we study algebras over a field, division algebra over a field, an alternative algebra with division over the field, Jordan algebra, Lie algebra. Comprehension of bases of the theory of algebras by the master of the «mathematical education» profile will promote more conscious

  20. Specimen preparation of irradiated materials for examination in the atom probe field ion microscope

    International Nuclear Information System (INIS)

    Russell, K.F.; Miller, M.K.

    1994-01-01

    The atom probe field ion microscope (APFIM) requires specimens in the form of ultrasharp needles. Basic protective measures used to reduce exposure druing specimen preparation are discussed. The low-level radioactive specimen blanks may be made using a two-stage electropolishing process using a thin layer of electrolyte floating on a denser inert liquid; this produces a necked region and eventually two specimens from each single blank. The amount of material handled may also be reduced using a micropolishing technique to repolish blunt or fractured specimens. Control of contamination and possible spills is discussed