WorldWideScience

Sample records for microscale packed bed

  1. Microscale packed bed reactor for controlled hydrogen peroxide decomposition as a fuel cell oxidant aboard unmanned undersea vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, E.; Ocampo, M.; Besser, R.S. [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030 (United States); Burke, A.A. [Naval Undersea Warfare Center, Newport, RI 02841 (United States)

    2010-01-01

    The multiphase catalytic decomposition of hydrogen peroxide into water and oxygen is notoriously susceptible to thermal runaway (heat of reaction: -98 kJ mol{sup -1}). The high surface area to volume ratio (S/V) in a microscale packed bed (MPB) reactor (radius 0.5 mm) was investigated for reducing the risk of thermal runaway during hydrogen peroxide decomposition to oxygen intended as a fuel cell oxidant aboard an unmanned undersea vehicle (UUV). A microscale reactor channel with a S/V of {proportional_to}2 x 10{sup 3} m{sup 2} m{sup -3} simulated under convective cooling generated a significant heat rise (T rise {proportional_to} 100 K), whereas a microreactor with a higher S/V ({proportional_to}200 x 10{sup 3} m{sup 2} m{sup -3}) achieved thermal control (T rise < 10 K) over the simulated reaction zone. Although thermal management was successfully accomplished using the higher S/V, experimental conversions of hydrogen peroxide to oxygen (5-18%) measured from the outlet were lower than simulated conversions (38-63%). Simulation assumptions, such as homogeneously dispersed flow and perfect catalyst interaction among other factors, contributed to the discrepancies between the simulated and experimental degrees of peroxide conversion to oxygen. Even though thermal control of the MPB was achieved, this work indicates that mass transfer limitations are a factor in the MPB reactor during a multiphase reaction, like decomposition of hydrogen peroxide to oxygen and water, and suggests means to overcome them even on the microscale level. (author)

  2. Condensation in Nanoporous Packed Beds.

    Science.gov (United States)

    Ally, Javed; Molla, Shahnawaz; Mostowfi, Farshid

    2016-05-10

    In materials with tiny, nanometer-scale pores, liquid condensation is shifted from the bulk saturation pressure observed at larger scales. This effect is called capillary condensation and can block pores, which has major consequences in hydrocarbon production, as well as in fuel cells, catalysis, and powder adhesion. In this study, high pressure nanofluidic condensation studies are performed using propane and carbon dioxide in a colloidal crystal packed bed. Direct visualization allows the extent of condensation to be observed, as well as inference of the pore geometry from Bragg diffraction. We show experimentally that capillary condensation depends on pore geometry and wettability because these factors determine the shape of the menisci that coalesce when pore filling occurs, contrary to the typical assumption that all pore structures can be modeled as cylindrical and perfectly wetting. We also observe capillary condensation at higher pressures than has been done previously, which is important because many applications involving this phenomenon occur well above atmospheric pressure, and there is little, if any, experimental validation of capillary condensation at such pressures, particularly with direct visualization.

  3. Accumulation of BSA in Packed-bed Microfluidics

    Science.gov (United States)

    Summers, Samantha; Hu, Chuntian; Hartman, Ryan

    2012-11-01

    Alzheimers and Parkinsons are two diseases that are associated with protein deposition in the brain, causing loss of either cognitive or muscle functioning. Protein deposition diseases are considered progressive diseases since the continual aggregation of protein causes the patient's symptoms to slowly worsen over time. There are currently no known means of treatment for protein deposition diseases. Our goal is to understand the potential for packed-bed microfluidics to study protein accumulation. Measurement of the resistance to flow through micro-scale packed-beds is critical to understanding the process of protein accumulation. Aggregation in bulk is fundamentally different from accumulation on surfaces. Our study attempts to distinguish between either mechanism. The results from our experiments involving protein injection through a microfluidic system will be presented and discussed. Funding received by NSF REU Grant 1062611.

  4. Direct contact condensation in packed beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Klausner, James F.; Mei, Renwei; Knight, Jessica [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2006-12-15

    A diffusion driven desalination process was recently described where a very effective direct contact condenser with a packed bed is used to condense water vapor out of an air/vapor mixture. A laboratory scale direct contact condenser has been fabricated as a twin tower structure with two stages, co-current and countercurrent. Experiments have been operated in each stage with respective saturated air inlet temperatures of 36, 40 and 43{sup o}C. The temperature and humidity data have been collected at the inlet and exit of the packed bed for different water to air mass flow ratios that vary between 0 and 2.5. A one-dimensional model based on conservation principles has been developed, which predicts the variation of temperature, humidity, and condensation rate through the condenser stages. Agreement between the model and experiments is very good. It is observed that the countercurrent flow stage condensation effectiveness is significantly higher than that for the co-current stage. The condensation heat and mass transfer rates were found to decrease when water blockages occur within the packed bed. Using high-speed digital cinematography, it was observed that this problem can occur at any operating condition, and is dependent on the packing surface wetting characteristics. This observation is used to explain the requirement for two different empirical constants, depending on packing diameter, suggested by Onda for the air side mass transfer coefficient correlation. (author)

  5. Experimental studies on the coolability of packed beds. Flooding of hot dry packed beds

    International Nuclear Information System (INIS)

    Leininger, S.; Kulenovic, R.; Laurien, E.

    2013-01-01

    In case of a severe accident in a nuclear power plant meltdown of the reactor core can occur and form a packed bed in the lower plenum of the reactor pressure vessel (RPV) after solidification due to contact with water. The removal of after-heat and the long-term coolability is of essential interest. The efficient injection of cooling water into the packed bed has to be assured without endangering the structural integrity of the reactor pressure vessel. The experiments performed aimed to study the dry-out and the quenching (flooding) of hot dry packed beds. Two different inflow variants, bottom- and top-flooding including the variation of the starting temperature of the packed bed and the injection rate were studied. In case of bottom flooding the quenching time increases with increasing packed bed temperature and decreasing injection rate. In case of top flooding the flow pattern is more complex, in a first phase the water flows preferentially toward the RPV wall, the flow paths conduct the water downwards. The flow resistance of the packed bed increases with increasing bed temperatures. The quenching temperatures increase significantly above average.

  6. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  7. Udder health in a Danish compost bedded pack barn

    DEFF Research Database (Denmark)

    Svennesen, Line; Enevoldsen, Carsten; Bjerg, Bjarne Schmidt

    Besides welfare advantages of the compost bedded pack system (CBP) there could be a negative effect of the organic bedding on udder health. Our objectives were to evaluate the effects of a CBP on udder health compared to a free stall system (FS) with sand bedded cubicles. Within the same Danish...

  8. Ceramic breeder pebble bed packing stability under cyclic loads

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunbo, E-mail: chunbozhang@fusion.ucla.edu [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Ying, Alice; Abdou, Mohamed A. [Fusion Science and Technology Center, University of California, Los Angeles, CA 90095-1597 (United States); Park, Yi-Hyun [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The feasibility of obtaining packing stability for pebble beds is studied. • The responses of pebble bed to cyclic loads have been presented and analyzed in details. • Pebble bed packing saturation and its applications are discussed. • A suggestion is made regarding the improvement of pebbles filling technique. - Abstract: Considering the optimization of blanket performance, it is desired that the bed morphology and packing state during reactor operation are stable and predictable. Both experimental and numerical work are performed to explore the stability of pebble beds, in particular under pulsed loading conditions. Uniaxial compaction tests have been performed for both KIT’s Li{sub 4}SiO{sub 4} and NFRI’s Li{sub 2}TiO{sub 3} pebble beds at elevated temperatures (up to 750 °C) under cyclic loads (up to 6 MPa). The obtained data shows the stress-strain loop initially moves towards the larger strain and nearly saturates after a certain number of cyclic loading cycles. The characterized FEM CAP material models for a Li{sub 4}SiO{sub 4} pebble bed with an edge-on configuration are used to simulate the thermomechanical behavior of pebble bed under ITER pulsed operations. Simulation results have shown the cyclic variation of temperature/stress/strain/gap and also the same saturation trend with experiments under cyclic loads. Therefore, it is feasible for pebble bed to maintain its packing stability during operation when disregarding pebbles’ breakage and irradiation.

  9. The Performance of Structured Packings in Trickle-Bed Reactors

    NARCIS (Netherlands)

    Frank, M.J.W.; Kuipers, J.A.M.; Versteeg, G.F.; Swaaij, W.P.M. van

    1999-01-01

    An experimental study was carried out to investigate whether the use of structured packings might improve the mass transfer characteristics and the catalyst effectiveness of a trickle-bed reactor. Therefore, the performances of a structured packing, consisting of KATAPAK elements, and a dumped

  10. Udder health in a Danish compost bedded pack barn

    OpenAIRE

    Svennesen, Line; Enevoldsen, Carsten; Bjerg, Bjarne Schmidt; Klaas, Ilka Christine

    2014-01-01

    Besides welfare advantages of the compost bedded pack system (CBP) there could be a negative effect of the organic bedding on udder health. Our objectives were to evaluate the effects of a CBP on udder health compared to a free stall system (FS) with sand bedded cubicles. Within the same Danish organic farm, 330 multiparous cows were randomly allocated to CBP or FS. During the experimental period (EP), December 2012 to May 2013, proportions of cows with blinded teats were registered monthly a...

  11. Thermal-hydraulic and characteristic models for packed debris beds

    International Nuclear Information System (INIS)

    Mueller, G.E.; Sozer, A.

    1986-12-01

    APRIL is a mechanistic core-wide meltdown and debris relocation computer code for Boiling Water Reactor (BWR) severe accident analyses. The capabilities of the code continue to be increased by the improvement of existing models. This report contains information on theory and models for degraded core packed debris beds. The models, when incorporated into APRIL, will provide new and improved capabilities in predicting BWR debris bed coolability characteristics. These models will allow for a more mechanistic treatment in calculating temperatures in the fluid and solid phases in the debris bed, in determining debris bed dryout, debris bed quenching from either top-flooding or bottom-flooding, single and two-phase pressure drops across the debris bed, debris bed porosity, and in finding the minimum fluidization mass velocity. The inclusion of these models in a debris bed computer module will permit a more accurate prediction of the coolability characteristics of the debris bed and therefore reduce some of the uncertainties in assessing the severe accident characteristics for BWR application. Some of the debris bed theoretical models have been used to develop a FORTRAN 77 subroutine module called DEBRIS. DEBRIS is a driver program that calls other subroutines to analyze the thermal characteristics of a packed debris bed. Fortran 77 listings of each subroutine are provided in the appendix

  12. On the heat transfer in packed beds

    International Nuclear Information System (INIS)

    Sordon, G.

    1988-09-01

    The design of a fusion reactor blanket concept based on a bed of lithium containing ceramic pebbles or a mixture of ceramic and beryllium pebbles demands the knowledge of the effective thermal conductivity of pebble beds, including beds formed by a binary mixture of high conducting metallic pebbles and poorly conducting pebbles. In this work, binary mixtures of spheres of same diameter and different conductivities as well as beds formed by one type of spheres were investigated. The experimental apparatus consists of a stainless steel cylinder with a heating rod along the symmetry axis. Experiments with stagnant and flowing gas were performed. The pebbles were of Al 2 O 3 (diameter = 1, 2, 4 mm), of Li 4 SO 4 (diameter = 0.5 mm) of Al (diameter = 2 mm) and of steel (diameter = 2, 4 mm). Experimental values of the thermal conductivity and of the wall heat transfer coefficient are compared with the predicted ones. Modifications of already existing models were suggested. (orig.) [de

  13. Forced Convection Heat Transfer of a sphere in Packed Bed Arrangement

    International Nuclear Information System (INIS)

    Lee, Dong-Young; Chung, Bum-Jin

    2016-01-01

    This paper analysis and discuss the forced convective heat transfer from heated single sphere, which is buried in unheated packed bed, depending on Re d with porosity. The present work determines the test matrix for the packed bed experiment. And this study discuss difference of heat transfer according to the location of heated sphere and compared heated bed with heated sphere in packed bed and compared FCC (Face Centered Cubic), HCP (Hexagonal Closed Packed) structured packed bed with random packed. This paper is to discuss and make the plan to experiment the heat transfer for depending on location of heated single sphere in unheated packed bed, to compare single sphere in packed bed with heated packed bed and to compare the structured packed bed with random packed bed. The Nu d increase as heated single sphere is close to the wall and bottom because of increasing porosity and enhancing eddy motion respectively. The existing experiment of heated sphere in packed bed do not consider the preheating effect which decrease heat transfer on downstream. The heat transfer rate of structured packed bed is different from random packed bed because of unsteady flow in random packed bed. In this study, mass transfer experiments will replace heat transfer experiments based on analogy concept. An electroplating system is adopted using limiting current technique

  14. Forced Convection Heat Transfer of a sphere in Packed Bed Arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Young; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    This paper analysis and discuss the forced convective heat transfer from heated single sphere, which is buried in unheated packed bed, depending on Re{sub d} with porosity. The present work determines the test matrix for the packed bed experiment. And this study discuss difference of heat transfer according to the location of heated sphere and compared heated bed with heated sphere in packed bed and compared FCC (Face Centered Cubic), HCP (Hexagonal Closed Packed) structured packed bed with random packed. This paper is to discuss and make the plan to experiment the heat transfer for depending on location of heated single sphere in unheated packed bed, to compare single sphere in packed bed with heated packed bed and to compare the structured packed bed with random packed bed. The Nu{sub d} increase as heated single sphere is close to the wall and bottom because of increasing porosity and enhancing eddy motion respectively. The existing experiment of heated sphere in packed bed do not consider the preheating effect which decrease heat transfer on downstream. The heat transfer rate of structured packed bed is different from random packed bed because of unsteady flow in random packed bed. In this study, mass transfer experiments will replace heat transfer experiments based on analogy concept. An electroplating system is adopted using limiting current technique.

  15. Packed Bed Reactor Technology for Chemical-Looping Combustion

    NARCIS (Netherlands)

    Noorman, S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    Chemical-looping combustion (CLC) has emerged as an alternative for conventional power production processes to intrinsically integrate power production and CO2 capture. In this work a new reactor concept for CLC is proposed, based on dynamically operated packed bed reactors. With analytical

  16. Improvement for the design of packed moving bed adsorption column

    International Nuclear Information System (INIS)

    Xiao Wei

    2014-01-01

    The problems needed to pay attention to in the physical design of packed moving bed adsorption column were presented. The design of key parts such as the inlet and outlet of liquid phase and gas phase were improved. The expected effect was achieved by the improvement. (author)

  17. Minimum Energy Dissipation under Cocurrent Flow in Packed Beds

    Czech Academy of Sciences Publication Activity Database

    Akramov, T.A.; Stavárek, Petr; Jiřičný, Vladimír; Staněk, Vladimír

    2011-01-01

    Roč. 50, č. 18 (2011), s. 10824-10832 ISSN 0888-5885 R&D Projects: GA ČR GA104/09/0880 Institutional research plan: CEZ:AV0Z40720504 Keywords : energy dissipation * current flow * packed bed Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.237, year: 2011

  18. Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming

    NARCIS (Netherlands)

    Gallucci, F.; van Sint Annaland, M.; Kuipers, J.A.M.

    2010-01-01

    In this theoretical work the performance of different membrane reactor concepts, both fluidized bed and packed bed membrane reactors, has been compared for ultra-pure hydrogen production via methane reforming. Using detailed theoretical models, the required membrane area to reach a given conversion

  19. Comparison of packed bed and fluidized bed membrane reactors for methane reforming

    NARCIS (Netherlands)

    Gallucci, F.; van Sint Annaland, M.; Kuipers, J.A.M.

    2009-01-01

    In this work the performance of different membrane reactor concepts, both fluidized bed and packed bed membrane reactors, have been compared for the reforming of methane for the production of ultra-pure hydrogen. Using detailed theoretical models, the required membrane area to reach a given

  20. Operation of Packed-Bed Reactors Studied in Microgravity

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri

    2004-01-01

    The operation of a packed bed reactor (PBR) involves gas and liquid flowing simultaneously through a fixed-bed of solid particles. Depending on the application, the particles can be various shapes and sizes but are generally designed to force the two fluid phases through a tortuous route of narrow channels connecting the interstitial space. The PBR is the most common type of reactor in industry because it provides for intimate contact and high rates of transport between the phases needed to sustain chemical or biological reactions. The packing may also serve as either a catalyst or as a support for growing biological material. Furthermore, this type of reactor is relatively compact and requires minimal power to operate. This makes it an excellent candidate for unit operations in support of long-duration human space activities.

  1. Simulation of turbulent flow in a packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.; Yu, A. [Centre for Simulation and Modelling of Particulate Systems and School of Material Science and Engineering, The University of New South Wales, Sydney 2052 (Australia); Wright, B.; Zulli, P. [BlueScope Steel Research Laboratories, P.O. Box 202, Port Kembla, NSW 2505 (Australia)

    2006-05-15

    Numerous models for simulating the flow and transport in packed beds have been proposed in the literature with few reported applications. In this paper, several turbulence models for porous media are applied to the gas flow through a randomly packed bed and are examined by means of a parametric study against some published experimental data. These models predict widely different turbulent eddy viscosity. The analysis also indicates that deficiencies exist in the formulation of some model equations and selection of a suitable turbulence model is important. With this realization, residence time distribution and velocity distribution are then simulated by considering a radial profile of porosity and turbulence induced dispersion, and the results are in good agreement with the available experimental data. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. Numerical modeling of pyrolysis of sawdust in a packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingmin; Chen, Xiaoping [Southeast Univ., Nanjing (China). School of Energy and Environment

    2013-07-01

    An unsteady, one-dimensional mathematical model has been developed to describe the pyrolysis of sawdust in a packed bed. The sawdust bed was pyrolyzed using the hot gas and an electric heater outside the bed as the source of energy. The developed model includes mass, momentum and energy conservations of gas and solid within the bed. The gas flow in the bed is modeled using Darcy's law for fluid through a porous medium. The heat transfer model includes heat conduction inside the bed and convection between the bed and the hot gas. The kinetic model consists of primary pyrolysis reaction. A finite volume fully implicit scheme is employed for solving the heat and mass transfer model equations. A Runge-Kutta fourth order method is used for the chemical kinetics model equations. The model predictions of mass loss history and temperature were validated with published experimental results, showing a good agreement. The effects of inlet temperature on the pyrolysis process have been analyzed with model simulation. A sensitivity analysis using the model suggests that the predictions could be improved by considering the second reaction which could generate volatile flowing in the void.

  3. Biodegradation of phenolic waste liquors in stirred-tank, packed-bed, and fluidized-bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, D W; Hancher, G W; Chilcote, D D; Scott, C D

    1978-11-01

    The biological degradation of phenolic scrub liquors similar to those that arise in coal conversion processes was studied for symbiotic bacterial populations contained in a continuously stirred tank bioreactor, a three-phase packed-bed bioreactor, and a three-phase, fluidized-bed bioreactor. The conversions of phenol compounds were comparable in the three-phase, packed-bed bioreactor and the continuously stirred tank bioreactor; however, the packed-bed bioreactor degradation rates were as much as twice those in the continuously stirred tank bioreactor, and packed-bed bioreactor retention times were as low as one- tenth those of the continuously stirred tank bioreactors (minimum time was 12 hours).

  4. Carbon Sequestration in Olivine and Basalt Powder Packed Beds.

    Science.gov (United States)

    Xiong, Wei; Wells, Rachel K; Giammar, Daniel E

    2017-02-21

    Fractures and pores in basalt could provide substantial pore volume and surface area of reactive minerals for carbonate mineral formation in geologic carbon sequestration. In many fractures solute transport will be limited to diffusion, and opposing chemical gradients that form as a result of concentration differences can lead to spatial distribution of silicate mineral dissolution and carbonate mineral precipitation. Glass tubes packed with grains of olivine or basalt with different grain sizes and compositions were used to explore the identity and spatial distribution of carbonate minerals that form in dead-end one-dimensional diffusion-limited zones that are connected to a larger reservoir of water in equilibrium with 100 bar CO 2 at 100 °C. Magnesite formed in experiments with olivine, and Mg- and Ca-bearing siderite formed in experiments with flood basalt. The spatial distribution of carbonates varied between powder packed beds with different powder sizes. Packed beds of basalt powder with large specific surface areas sequestered more carbon per unit basalt mass than powder with low surface area. The spatial location and extent of carbonate mineral formation can influence the overall ability of fractured basalt to sequester carbon.

  5. Method for immobilizing particulate materials in a packed bed

    Science.gov (United States)

    Even, Jr., William R.; Guthrie, Stephen E.; Raber, Thomas N.; Wally, Karl; Whinnery, LeRoy L.; Zifer, Thomas

    1999-01-01

    The present invention pertains generally to immobilizing particulate matter contained in a "packed" bed reactor so as to prevent powder migration, compaction, coalescence, or the like. More specifically, this invention relates to a technique for immobilizing particulate materials using a microporous foam-like polymer such that a) the particulate retains its essential chemical nature, b) the local movement of the particulate particles is not unduly restricted, c) bulk powder migration and is prevented, d) physical and chemical access to the particulate is unchanged over time, and e) very high particulate densities are achieved. The immobilized bed of the present invention comprises a vessel for holding particulate matter, inlet and an outlet ports or fittings, a loosely packed bed of particulate material contained within the vessel, and a three dimensional porous matrix for surrounding and confining the particles thereby fixing the movement of individual particle to a limited local position. The established matrix is composed of a series of cells or chambers comprising walls surrounding void space, each wall forming the wall of an adjacent cell; each wall containing many holes penetrating through the wall yielding an overall porous structure and allowing useful levels of gas transport.

  6. Optimization of a packed bed reactor for liquid waste treatment

    International Nuclear Information System (INIS)

    Schmidt, C.A.; Brower, M.J.; Coogan, J.J.; Tennant, R.A.

    1993-01-01

    The authors describe an optimization study of a packed bed reactor (PBR), developed for the treatment of hazardous liquid wastes. The focus is on the destruction of trichloroethylene (TCE). The PBR technology offers many distinct advantages over other processes: simple design, high destruction rates (99.99%), low costs, ambient pressure operation, easy maintenance and scaleability. The cost effectiveness, optimal operating parameters and scaleability were determined. As a second stage of treatment, a silent discharge plasma (SDP) reactor was installed to further treat offgases from the PBR. A primary advantage of this system is closed loop operation, where exhaust gases are continuously recycled and not released into the atmosphere

  7. Numerical study on hygroscopic material drying in packed bed

    Directory of Open Access Journals (Sweden)

    M. Stakić

    2011-06-01

    Full Text Available The paper addresses numerical simulation for the case of convective drying of hygroscopic material in a packed bed, analyzing agreement between the simulated and the corresponding experimental results. In the simulation model of unsteady simultaneous one-dimensional heat and mass transfer between gas phase and dried material, it is assumed that the gas-solid interface is at thermodynamic equilibrium, while the drying rate of the specific product is calculated by applying the concept of a "drying coefficient". Model validation was done on the basis of the experimental data obtained with potato cubes. The obtained drying kinetics, both experimental and numerical, show that higher gas (drying agent velocities (flow-rates, as well as lower equivalent grain diameters, induce faster drying. This effect is more pronounced for deeper beds, because of the larger amount of wet material to be dried using the same drying agent capacity.

  8. The characterization of fluidization behavior using a novel multichamber microscale fluid bed

    DEFF Research Database (Denmark)

    Räsänen, Eetu; Rantanen, Jukka; Mannermaa, Jukka-Pekka

    2004-01-01

    In the preformulation stage, there is a special need to determine the process behavior of materials with smaller amounts of samples. The purpose of this study was to assemble a novel automated multichamber microscale fluid bed module with a process air control unit for the characterization...... of fluidization behavior in variable conditions. The results were evaluated on the basis of two common computational methods, the minimum fluidization velocity, and the Geldart classification. The materials studied were different particle sizes of glass beads, microcrystalline cellulose, and silicified......, the utilization of the computational predictions was restricted. The presented setup is a novel approach for studying process behavior with only a few grams of materials....

  9. Percolation behavior of tritiated water into a soil packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka (Japan); Takeishi, T. [Faculty of Engineering, Kyushu University, Motooka Nishi-ku, Fukuoka (Japan)

    2015-03-15

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  10. Percolation behavior of tritiated water into a soil packed bed

    International Nuclear Information System (INIS)

    Honda, T.; Katayama, K.; Uehara, K.; Fukada, S.; Takeishi, T.

    2015-01-01

    A large amount of cooling water is used in a D-T fusion reactor. The cooling water will contain tritium with high concentration because tritium can permeate metal walls at high temperature easily. A development of tritium handling technology for confining tritiated water in the fusion facility is an important issue. In addition, it is also important to understand tritium behavior in environment assuming severe accidents. In this study, percolation experiments of tritiated water in soil packed bed were carried out and tritium behavior in soil was discussed. Six soil samples were collected in Hakozaki campus of Kyushu University. These particle densities were of the same degree as that of general soils and moisture contents were related to BET surface area. For two soil samples used in the percolation experiment of tritiated water, saturated hydraulic conductivity agreed well with the estimating value by Creager. Tritium retention ratio in the soil packed bed was larger than water retention. This is considered to be due to an effect of tritium sorption on the surface of soil particles. The isotope exchange capacity estimated by assuming that H/T ratio of supplied tritiated water and H/T ratio of surface water of soil particle was equal was comparable to that on cement paste and mortar which were obtained by exposure of tritiated water vapor. (authors)

  11. Magnetohydraulic flow through a packed bed of electrically conducting spheres

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1985-01-01

    The flow of an electrically conducting fluid through a packed bed of electrically conducting spheres in the presence of a strong magnetic field constitutes a very complex flow situation due to the constant turning of the fluid in and out of magnetic field lines. The interaction of the orthogonal components of the velocity and magnetic field will induce electric fields that are orthogonal to both and the electric fields in turn can cause currents that interact with the magnetic field to generate forces against the direction of flow. The strengths of these generated forces depend primarily upon the closure paths taken by the induced currents which, in turn, depend upon the relative ratio of the electrical resistance of the solid spheres to that of the fluid. Both experimental and analytical analyses of the slow flow of a eutectic mixture of sodium and potassium (NaK) through packed cylinders containing stainless steel spheres in the presence of a strong transverse magnetic field were completed. A theory of magnetohydraulic flow is developed by analogy with the development of hydraulic radius theories of flow through porous media. An exact regional analysis is successfully applied to an infinite bed of electrically conducting spheres with a conducting or non-conducting constraining wall on one side. The equations derived are solved for many different combinations of flowrate, magnetic field strength, porosity, and electrical resistance ratio

  12. Continuous thermophilic biohydrogen production in packed bed reactor

    International Nuclear Information System (INIS)

    Roy, Shantonu; Vishnuvardhan, M.; Das, Debabrata

    2014-01-01

    Highlights: • Continuous H 2 production in whole cell immobilized system was compared with CSTR. • Suitability of environment friendly support matrix for immobilization of whole cells was explored. • Pack bed reactor showed higher stability as compared to CSTR at lower HRTs. • Flow cytometry study showed the influence of recycle ratio on viability of cells. • Novel approach to find out the effect of NADH/NAD + ratio during H 2 production. - Abstract: The present research work deals with the performance of packed bed reactor for continuous H 2 production using cane molasses as a carbon source. Maximum H 2 production rate of 1.7 L L −1 h −1 was observed at a dilution rate and recycle ratio of 0.8 h −1 and 0.6, respectively which was corresponding to the lowest NADH/NAD + ratio. This suggests that the utilization of NADH pool for H 2 and metabolite production might lead to decrement in NADH/NAD + ratio. Thus NADH/NAD + ratio show inverse relation with hydrogen production. The substrate degradation kinetics was investigated as a function of flow rate considering the external film diffusion model. At a flow rate of 245 mL h −1 , the contribution of external film mass transfer coefficient and first order substrate degradation constant were 55.4% and 44.6% respectively. Recycle ratio of 0.6 improved the hydrogen production rates by 9%. The viable cell count was directly proportional to the recycle ratio (within the range 0.1–0.6). Taguchi design showed the significant influence of the feed pH on continuous H 2 production followed by dilution rate and recycle ratio. Thus environmentally friendly and cheaper solid matrix like coconut coir could be efficiently used for thermophilic continuous hydrogen production

  13. Biological perchlorate reduction in packed bed reactors using elemental sulfur.

    Science.gov (United States)

    Sahu, Ashish K; Conneely, Teresa; Nüsslein, Klaus R; Ergas, Sarina J

    2009-06-15

    Sulfur-utilizing perchlorate (ClO4-)-reducing bacteria were enriched from a denitrifying wastewater seed with elemental sulfur (S0) as an electron donor. The enrichment was composed of a diverse microbial community, with the majority identified as members of the phylum Proteobacteria. Cultures were inoculated into bench-scale packed bed reactors (PBR) with S0 and crushed oyster shell packing media. High ClO4-concentrations (5-8 mg/L) were reduced to PBR performance decreased when effluent recirculation was applied or when smaller S0 particle sizes were used, indicating that mass transfer of ClO4- to the attached biofilm was not the limiting mechanism in this process, and that biofilm acclimation and growth were key factors in overall reactor performance. The presence of nitrate (6.5 mg N/L) inhibited ClO4- reduction. The microbial community composition was found to change with ClO4- availability from a majority of Beta-Proteobacteria near the influent end of the reactor to primarily sulfur-oxidizing bacteria near the effluent end of the reactor.

  14. Using atomic layer deposited tungsten to increase thermal conductivity of a packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Van Norman, Staci A.; Falconer, John L.; Weimer, Alan W., E-mail: alan.weimer@colorado.edu [Department of Chemical and Biological Engineering, University of Colorado, UCB 596, Boulder, Colorado 80309-0596 (United States); Tringe, Joseph W.; Sain, John D. [Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550 (United States); Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, UCB 427, Boulder, Colorado 80309-0427 (United States)

    2015-04-13

    This study investigated the effective thermal conductivity (k{sub eff}) of packed-beds that contained porous particles with nanoscale tungsten (W) films of different thicknesses formed by atomic layer deposition (ALD). A continuous film on the particles is vital towards increasing k{sub eff} of the packed beds. For example, the k{sub eff} of an alumina packed bed was increased by three times after an ∼8-nm continuous W film with 20 cycles of W ALD, whereas k{sub eff} was decreased on a polymer packed bed with discontinuous, evenly dispersed W-islands due to nanoparticle scattering of phonons. For catalysts, understanding the thermal properties of these packed beds is essential for developing thermally conductive supports as alternatives to structured supports.

  15. Modeling a Packed Bed Reactor Utilizing the Sabatier Process

    Science.gov (United States)

    Shah, Malay G.; Meier, Anne J.; Hintze, Paul E.

    2017-01-01

    A numerical model is being developed using Python which characterizes the conversion and temperature profiles of a packed bed reactor (PBR) that utilizes the Sabatier process; the reaction produces methane and water from carbon dioxide and hydrogen. While the specific kinetics of the Sabatier reaction on the RuAl2O3 catalyst pellets are unknown, an empirical reaction rate equation1 is used for the overall reaction. As this reaction is highly exothermic, proper thermal control is of the utmost importance to ensure maximum conversion and to avoid reactor runaway. It is therefore necessary to determine what wall temperature profile will ensure safe and efficient operation of the reactor. This wall temperature will be maintained by active thermal controls on the outer surface of the reactor. Two cylindrical PBRs are currently being tested experimentally and will be used for validation of the Python model. They are similar in design except one of them is larger and incorporates a preheat loop by feeding the reactant gas through a pipe along the center of the catalyst bed. The further complexity of adding a preheat pipe to the model to mimic the larger reactor is yet to be implemented and validated; preliminary validation is done using the smaller PBR with no reactant preheating. When mapping experimental values of the wall temperature from the smaller PBR into the Python model, a good approximation of the total conversion and temperature profile has been achieved. A separate CFD model incorporates more complex three-dimensional effects by including the solid catalyst pellets within the domain. The goal is to improve the Python model to the point where the results of other reactor geometry can be reasonably predicted relatively quickly when compared to the much more computationally expensive CFD approach. Once a reactor size is narrowed down using the Python approach, CFD will be used to generate a more thorough prediction of the reactors performance.

  16. Packed bed reactor treatment of liquid hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Tennant, R.A.; Wantuck, P.J.; Vargas, R.

    1992-01-01

    We are developing thermal-based packed bed reactor (PBR) technology as an alternative to incineration for treatment of hazardous organic liquid wastes. The waste streams targeted by this technology are machining fluids contaminated with chlorocarbons and/or chlorofluorocarbons and low levels of plutonium or tritium The PBR offers several distinct advantages including simplistic design, rugged construction, ambient pressure processing, economical operations, as well as ease of scalability and maintainability. In this paper, we provide a description of the apparatus as well as test results using prepared mixtures of machining oils/emulsions with trichloroethylene (TCE), carbon tetrachloride (CCl 4 ), trichloroethane (TCA), and Freon TF. The current treatment system is configured as a two stage device with the PBR (1st stage) coupled to a silent discharge plasma (SDP) cell. The SDP serves as a second stage for further treatment of the gaseous effluent from the PBR. One of the primary advantages of this two stage system is that its suitability for closed loop operation where radioactive components are well contained and even CO 2 is not released to the environment

  17. Properties Influencing Plasma Discharges in Packed Bed Reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for CO2 removal and conversion of waste gases into higher value compounds. We report on results of a computational investigation of PBR-DBD properties using the plasma hydrodynamics simulator nonPDPSIM with a comparison to experiments. Dielectric beads (rods in 2D) were inserted between two coplanar electrodes, 1 cm apart filled by humid air. A step-pulse of -30 kV was applied to the top electrode. Material properties of the beads (dielectric constant, secondary emission coefficient) and gas properties (photoionization and photo-absorption cross-sections, temperature) were varied. We found that photoionization plays a critical role in the propagation of the discharge through the PBR, as it serves to seed charges in regions of high electric field. Increasing rates of photo-ionization enable increases in the discharge propagation velocity, ionization rates and production of radicals. A transition between DBD-like and arc-like discharges occurs as the radiation mean free path decreases. Increasing the dielectric constant of the beads increased electric fields in the gas, which translated to increased discharge propagation velocity and charge density until ɛ/ɛ0 100. Secondary electron emission coefficient and gas temperature have minimal impacts on the discharge propagation though the latter did affect the production of reactive species. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  18. Experimental Study of the Flooding and Appearance of a Bubble Bed on Top of a Countercurrent Packed-Bed Column

    Czech Academy of Sciences Publication Activity Database

    Jiřičný, Vladimír; Staněk, Vladimír; Svoboda, Petr; Ondráček, Jakub

    2001-01-01

    Roč. 40, č. 1 (2001), s. 407-412 ISSN 0888-5885 R&D Projects: GA ČR GA203/97/1174 Institutional research plan: CEZ:AV0Z4072921 Keywords : appearance * bubble-bed * packed bed column Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.351, year: 2001

  19. Adiabatic Compressed Air Energy Storage with packed bed thermal energy storage

    International Nuclear Information System (INIS)

    Barbour, Edward; Mignard, Dimitri; Ding, Yulong; Li, Yongliang

    2015-01-01

    Highlights: • The paper presents a thermodynamic analysis of A-CAES using packed bed regenerators. • The packed beds are used to store the compression heat. • A numerical model is developed, validated and used to simulate system operation. • The simulated efficiencies are between 70.5% and 71.1% for continuous operation. • Heat build-up in the beds reduces continuous cycle efficiency slightly. - Abstract: The majority of articles on Adiabatic Compressed Air Energy Storage (A-CAES) so far have focussed on the use of indirect-contact heat exchangers and a thermal fluid in which to store the compression heat. While packed beds have been suggested, a detailed analysis of A-CAES with packed beds is lacking in the available literature. This paper presents such an analysis. We develop a numerical model of an A-CAES system with packed beds and validate it against analytical solutions. Our results suggest that an efficiency in excess of 70% should be achievable, which is higher than many of the previous estimates for A-CAES systems using indirect-contact heat exchangers. We carry out an exergy analysis for a single charge–storage–discharge cycle to see where the main losses are likely to transpire and we find that the main losses occur in the compressors and expanders (accounting for nearly 20% of the work input) rather than in the packed beds. The system is then simulated for continuous cycling and it is found that the build-up of leftover heat from previous cycles in the packed beds results in higher steady state temperature profiles of the packed beds. This leads to a small reduction (<0.5%) in efficiency for continuous operation

  20. A parametric study of powder holdups in a packed bed under ...

    African Journals Online (AJOL)

    Nafiisah

    Packed bed, turbulent flow, mathematical modelling, decreasing ..... The vertical gauge pressure distribution, at a distance of 0.06 m away from the tuyere ... fines from these locations as the interactive forces are more than the drag forces. It.

  1. A CFD model for biomass combustion in a packed bed furnace

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Md. Rezwanul [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia); Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Ovi, Ifat Rabbil Qudrat [Department of Mechanical & Chemical Engineering, Islamic University of Technology, Gazipur 1704 (Bangladesh); Naser, Jamal, E-mail: jnaser@swin.edu.au [Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC 3122 (Australia)

    2016-07-12

    Climate change has now become an important issue which is affecting environment and people around the world. Global warming is the main reason of climate change which is increasing day by day due to the growing demand of energy in developed countries. Use of renewable energy is now an established technique to decrease the adverse effect of global warming. Biomass is a widely accessible renewable energy source which reduces CO{sub 2} emissions for producing thermal energy or electricity. But the combustion of biomass is complex due its large variations and physical structures. Packed bed or fixed bed combustion is the most common method for the energy conversion of biomass. Experimental investigation of packed bed biomass combustion is difficult as the data collection inside the bed is challenging. CFD simulation of these combustion systems can be helpful to investigate different operational conditions and to evaluate the local values inside the investigation area. Available CFD codes can model the gas phase combustion but it can’t model the solid phase of biomass conversion. In this work, a complete three-dimensional CFD model is presented for numerical investigation of packed bed biomass combustion. The model describes the solid phase along with the interface between solid and gas phase. It also includes the bed shrinkage due to the continuous movement of the bed during solid fuel combustion. Several variables are employed to represent different parameters of solid mass. Packed bed is considered as a porous bed and User Defined Functions (UDFs) platform is used to introduce solid phase user defined variables in the CFD. Modified standard discrete transfer radiation method (DTRM) is applied to model the radiation heat transfer. Preliminary results of gas phase velocity and pressure drop over packed bed have been shown. The model can be useful for investigation of movement of the packed bed during solid fuel combustion.

  2. The influence of bamboo-packed configuration to mixing characteristics in a fixed-bed reactor

    Science.gov (United States)

    Detalina, M.; Pradanawati, S. A.; Widyarani; Mamat; Nilawati, D.; Sintawardani, N.

    2018-03-01

    Fixed-bed reactors are commonly used as bioreactors for various applications, including chemicals production and organic wastewater treatment. Bioreactors are fixed with packing materials for attaching microorganisms. Packing materials should have high surface area and enable sufficient fluid flow in the reactor. Natural materials e.g. rocks and fibres are often used as packing materials. Commercially, packing materials are also produced from polymer with the advantage of customizable shapes. The objective of this research was to study the mixing pattern in a packed-bed reactor using bamboo as packing material. Bamboo was selected for its pipe-like and porous form, as well as its abundant availability in Indonesia. The cut bamboo sticks were installed in a reactor in different configurations namely vertical, horizontal, and random. Textile dye was used as a tracer. Our results show that the vertical configuration gave the least liquid resistant flow. Yet, the random configuration was the best configuration during mixing process.

  3. The Dynamic Behavior of Water Flowing Through Packed Bed of Different Particle Shapes and Sizes

    Directory of Open Access Journals (Sweden)

    Haneen Ahmed Jasim

    2017-12-01

    Full Text Available An experimental study was conducted on pressure drop of water flow through vertical cylindrical packed beds in turbulent region and the influence of the operating parameters on its behavior. The bed packing was made of spherical and non-spherical particles (spheres, Rasching rings and intalox saddle with aspect ratio range 3.46 D/dp 8.486 obtaining bed porosities 0.396 0.84 and Reynolds number 1217 21758. The system is consisted of 5 cm inside diameter Perspex column, 50 cm long; distilled water was pumped through the bed with flow rate 875, 1000, 1125, 1250,1375 and 1500 l/h and inlet water temperature 20, 30, 40 and 50 ˚C. The packed bed system was monitored by using LabVIEW program, were the results have been obtained from Data Acquisition Adaptor (DAQ.

  4. Improved Performances of a Fluidized Bed Photo reactor by a Microscale Illumination System

    International Nuclear Information System (INIS)

    Ciambelli, P.; Sannino, D.; Palma, V.; Vaiano, V.; Mazzei, R.S.; Ciambelli, P.; Sannino, D.

    2009-01-01

    The performances of a gas-solid two-dimensional fluidized bed reactor in photo catalytic selective oxidation reactions, irradiated with traditional UV lamps or with a microscale illumination system based on UV emitting diodes (UV A-LEDs), have been compared. In the photo catalytic oxidative dehydrogenation of cyclohexane to benzene on MoOx/TiO 2 -A1 2 O 3 catalyst the use of UV A-LEDs modules allowed to achieve a cyclohexane conversion and benzene yield higher than those obtained with traditional UV lamps. The better performances with UV A-LEDs are due to the UV A-LEDs small dimensions and small-angle emittance, which allow photons beam be directed towards the photo reactor windows, reducing the dispersion outside of photo reactor or the optical path length. As a consequence, the effectively illuminated mass of catalyst is greater. We have found that this illumination system is efficient for photo-oxidative dehydrogenation of cyclohexane to cyclohexene on sulphated MoOx-A1 2 O 3 and ethanol to acetaldehyde on VOx/TiO 2 .

  5. Numerical simulation and experimental verification of gas flow through packed beds

    International Nuclear Information System (INIS)

    Natarajan, S.; Zhang, C.; Briens, C.

    2003-01-01

    This work is concerned with finding out an effective way of eliminating oxygen from a packed bed of monomer particles. This process finds application in industries involved in the manufacture of Nylon12. In the manufacture of the polymer Nylon12, the polymerization reaction is hindered by the presence of oxygen. Therefore, the main objective of this study is to get rid of the oxygen by injecting nitrogen to displace the oxygen from the voids in-between the monomer particles before they are introduced into the polymerization reactor. This work involves the numerical simulation and experimental verification of the flow in a packed bed. In addition, a parametric study is carried out for the parameters such as the number of injectors, the radial position of injectors, and the position of the injectors along the circumference of the packed bed to find out the best possible combination for effective elimination of the oxygen. Nitrogen does not interact with the monomer particles and hence there is no chemical reaction involved in this process. The nitrogen is introduced into the packed bed at a flow rate which will keep the superficial velocity well below the minimum fluidization velocity of the monomer particles. The packed bed will be modeled using a porous medium approach available in the commercial computational fluid dynamics (CFD) software FLUENT. The fluid flow inside the packed bed will be a multicomponent gas flow through a porous medium. The simulation results are validated by comparing with the experimental results. (author)

  6. Effect of Mass-Transport Limitations on the Performance of a Packed Bed Membrane Reactor for Partial Oxidations. Transport from the Membrane to the Packed Bed

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    With a packed bed membrane reactor, the product yield can be significantly enhanced for partial oxidation systems, via distributive addition of oxygen to the reaction mixture along the axial coordinate of the reactor, provided that the reaction order in oxygen of the formation rate of the target

  7. Effect of mass-transport limitations on the performance of a packed bed membrane reactor for partial oxidations. Transport from the membrane to the packed bed

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    With a packed bed membrane reactor, the product yield can be significantly enhanced for partial oxidation systems, via distributive addition of oxygen to the reaction mixture along the axial coordinate of the reactor, provided that the reaction order in oxygen of the formation rate of the target

  8. Ammonia, Total Reduced Sulfides, and Greenhouse Gases of Pine Chip and Corn Stover Bedding Packs.

    Science.gov (United States)

    Spiehs, Mindy J; Brown-Brandl, Tami M; Parker, David B; Miller, Daniel N; Berry, Elaine D; Wells, James E

    2016-03-01

    Bedding materials may affect air quality in livestock facilities. Our objective in this study was to compare headspace concentrations of ammonia (NH), total reduced sulfides (TRS), carbon dioxide (CO), methane (CH), and nitrous oxide (NO) when pine wood chips ( spp.) and corn stover ( L.) were mixed in various ratios (0, 10, 20, 30, 40, 60, 80, and 100% pine chips) and used as bedding with manure. Air samples were collected from the headspace of laboratory-scaled bedded manure packs weekly for 42 d. Ammonia concentrations were highest for bedded packs containing 0, 10, and 20% pine chips (equivalent to 501.7, 502.3, and 502.3 mg m, respectively) in the bedding mixture and were lowest when at least 80% pine chips were used as bedding (447.3 and 431.0 mg m, respectively for 80 and 100% pine chip bedding). The highest NH concentrations were observed at Day 28. The highest concentration of TRS was observed when 100% pine chips were used as bedding (11.4 µg m), with high concentrations occurring between Days 7 and 14, and again at Day 35. Greenhouse gases were largely unaffected by bedding material but CH and CO concentrations increased as the bedded packs aged and NO concentrations were highly variable throughout the incubation. We conclude that a mixture of bedding material that contains 30 to 40% pine chips may be the ideal combination to reduce both NH and TRS emissions. All gas concentrations increased as the bedded packs aged, suggesting that frequent cleaning of facilities would improve air quality in the barn, regardless of bedding materials used. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. Oxidation of ethene in a wall-cooled packed-bed reactor

    NARCIS (Netherlands)

    Schouten, E.P.S.; Borman, P.C.; Westerterp, K.R.

    1994-01-01

    The selective oxidation of ethene over a silver on α-alumina catalyst was studied in a pilot plant with a wall-cooled tubular packed bed reactor. Gas and solid temperatures in the catalyst bed were measured at different axial and radial positions as well as concentrations at different axial

  10. Effect of packing fraction variations on reactivity in pebble-bed reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Ravnik, M.

    2004-01-01

    The pebble-bed reactor (PBR) core consists of large number of randomly packed spherical fuel elements. The effect of fuel element packing density variations on multiplication factor in a typical PBR is studied using WIMS code. It is observed that at normal conditions the k-eff increases with packing fraction. Effects of secondary coolant ingress (water or molten lead) in the core at accidental conditions are studied at various packing densities. The effect of water ingress on reactivity depends strongly on water density and packing fraction and is prevailingly positive, while the lead ingress reduces multiplication factor regardless of lead effective density and packing fraction. Both effects are stronger at lower packing fractions. (author)

  11. Dehydration studies using a novel multichamber microscale fluid bed dryer with in-line near-infrared measurement

    DEFF Research Database (Denmark)

    Räsänen, Eetu; Rantanen, Jukka; Mannermaa, Jukka-Pekka

    2003-01-01

    The purpose of this research was to study the effect of two process parameters (temperature and moisture content) on dehydration behavior of different materials using a novel multichamber microscale fluid bed dryer with a process air control unit and in-line near-infrared (NIR) spectroscopy....... The materials studied were disodium hydrogen phosphates with three different levels of hydrate water and wet theophylline granules. Measured process parameters of fluid bed drying were logged, including in-line NIR signals. Off-line analyses consisted of X-ray powder diffraction patterns, Fourier transform NIR...... spectra and moisture contents of studied materials. During fluid bed drying, the stepwise dehydration of materials was observed by the water content difference of inlet and outlet air, the pressure difference over the bed, and the in-line NIR spectroscopy. The off-line analysis confirmed the state...

  12. Oxidation of tritium in packed bed of noble metal catalyst for detritiation from system gases

    International Nuclear Information System (INIS)

    Nishikawa, Masabumi; Takeishi, Toshiharu; Munakata, Kenzo; Kotoh, Kenji; Enoeda, Mikio

    1985-01-01

    Catalytic oxidation rates of tritium in the bed of the noble metal catalysts are obtained and compared with the oxidation rates observed for the packed bed of spongy copper oxide or hopcalites. Use of Pt- or Pd-aluminia catalysts is recommended in this study because they give effective oxidation rates of tritium in the ambient temperature range. The adsorption performance of tritiated water in the catalyst bed is also discussed. (orig.)

  13. Short communication: Bacterial counts in recycled manure solids bedding replaced daily or deep packed in freestalls.

    Science.gov (United States)

    Sorter, D E; Kester, H J; Hogan, J S

    2014-05-01

    An experiment was conducted to compare bacterial counts of mastitis pathogens in deep-packed manure solids bedding with those in manure solids bedding replaced daily from mattresses. Eighteen Holstein cows were housed in 1 pen with 18 stalls. One row of 9 stalls was equipped with mattresses topped with bedding. The back one-third of these stalls toward the alleyway was covered in 25 mm of recycled manure solids, which was removed daily for the next 6 d and replaced with bedding from the brisket board and lunge space areas of stalls. The second row of 9 stalls was bedded for 3 wk with 100 to 150 mm of deep-pack recycled manure bedding from which only fecal matter was removed daily. After 3 wk, bedding treatments were changed between rows in a switchback design. Mean total gram-negative bacterial counts did not differ between treatments throughout the experiment. Coliform and Klebsiella spp. bacterial counts were lower in daily replaced bedding compared with deep pack across the experiment and on each of d 0, 1, 2, and 6. Streptococcal counts were reduced in daily replacement stalls compared with deep-pack stalls on d 0 and greater in daily replacement stalls compared with deep-pack stalls on d 1, 2, and 6. Daily replacement of recycled manure bedding from the back one-third of the stalls appeared to be an effective approach to reducing exposure to coliforms, specifically Klebsiella, but not streptococci. However, bacterial counts in bedding from both treatments were elevated throughout the trial and resulted in considerable risk for exposure to teats and development of intramammary infections. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Experimental performance evaluation of sintered Gd spheres packed beds

    DEFF Research Database (Denmark)

    Tura, A.; Nielsen, Klaus K.; Van Nong, Ngo

    2016-01-01

    Research in magnetic refrigeration heavily relies on the use of packed spheres in regenerators, however little investigation to verify that such non-monolithic arrangements guarantee a sufficiently constrained structure has yet been performed. This work presents a preliminary comparison of the pe......Research in magnetic refrigeration heavily relies on the use of packed spheres in regenerators, however little investigation to verify that such non-monolithic arrangements guarantee a sufficiently constrained structure has yet been performed. This work presents a preliminary comparison...... of the performance of AMRs consisting of Gd spheres with diameters ranging from 450-550 microns partially sintered by Spark Plasma Sintering (SPS) to similar spheres, sorted in the same size range and from the same batch, but merely packed. Pressure drop is compared at uniform temperature and at a range of heat...

  15. Experimental measurement of effective thermal conductivity of packed lithium-titanate pebble bed

    International Nuclear Information System (INIS)

    Mandal, D.; Sathiyamoorthy, D.; Vinjamur, M.

    2012-01-01

    Lithium titanate is a promising solid breeder material for the fusion reactor blanket. Packed lithium titanate pebble bed is considered for the blanket. The thermal energy; that will be produced in the bed during breeding and the radiated heat from the reactor core absorbed must be removed. So, the experimental thermal property data are important for the blanket design. In past, a significant amount of works were conducted to determine the effective thermal conductivity of packed solid breeder pebble bed, in helium atmosphere, but no flow of gas was considered. With increase in gas flow rate, effective thermal conductivity of pebble bed increases. Particle size and void fraction also affect the thermal properties of the bed significantly. An experimental facility with external heat source was designed and installed. Experiments were carried out with lithium-titanate pebbles of different sizes at variable gas flow rates and at different bed wall temperature. It was observed that effective thermal conductivity of pebble bed is a function of particle Reynolds number and temperature. From the experimental data two correlations have been developed to estimate the effective thermal conductivity of packed lithium-titanate pebble bed for different particle Reynolds number and at different temperatures. The experimental details and results are discussed in this paper.

  16. PENGARUH POROSITAS PACKING STEEL WOOL TERHADAP PRESSURE DROP DIDALAM PACKED BED COLUMN PADA DISTILASI CAMPURAN ETANOL-AMIL-ALKOHOL-AIR

    Directory of Open Access Journals (Sweden)

    Trisna Kumala Dhaniswara

    2016-08-01

    Full Text Available Inventories of petroleum fuels are increasingly depleted and will someday run out. These shortcomings can be overcome by using alternative fuels, such as ethanol. Based on this, it is necessary to research and development of ethanol as a fuel. One way is with a separation in a packed distillation column. This study aims to assess the mass transfer phenomena that occur in the process of distilling a mixture of ethanol-water-amyl alcohol packed in column. In addition, this study aims to optimize temperature and reflux to obtain the highest levels of ethanol. This research method uses packed bed distillation system with the batch process. Feed used is synthetic ethanol, water, and solvent. Solvent used were amyl alcohol. Doing distillation with heating temperature is maintained. Distillation is done in the packing of stainless steel wool. Research carried out in a batch process with a variable temperature of  79°C; 84°C; 91°C; and porosity packing 20%; 30%; 40%; 50%; 60%; 70%; 80%.

  17. Analysis of wall-packed-bed thermal interactions

    International Nuclear Information System (INIS)

    Gorbis, Z.R.; Tillack, M.S.; Tehranian, F.; Abdou, M.A.

    1995-01-01

    One of the major issues remaining for ceramic breeder blankets involves uncertainties in heat transfer and thermomechanical interactions within the breeder and multiplier regions. Particle bed forms are considered in many reactor blanket designs for both the breeder and Be multiplier. The effective thermal conductivity of beds and the wall-bed thermal conductance are still not adequately characterized, particularly under the influence of mechanical stresses. The problem is particularly serious for the wall conductance between Be and its cladding, where the uncertainty can be greater than 50%. In this work, we describe a new model for the wall-bed conductance that treats the near-wall region as a finite-width zone. The model includes an estimate of the region porosity based on the number of contact points, and the contact area for smooth surfaces. It solves the heat conduction in a near-wall unit cell. The model is verified with existing data and used to predict the range of wall conductances expected in future simulation experiments and in reactor applications. (orig.)

  18. Breakthrough of toluene vapours in granular activated carbon filled packed bed reactor

    International Nuclear Information System (INIS)

    Mohan, N.; Kannan, G.K.; Upendra, S.; Subha, R.; Kumar, N.S.

    2009-01-01

    The objective of this research was to determine the toluene removal efficiency and breakthrough time using commercially available coconut shell-based granular activated carbon in packed bed reactor. To study the effect of toluene removal and break point time of the granular activated carbon (GAC), the parameters studied were bed lengths (2, 3, and 4 cm), concentrations (5, 10, and 15 mg l -1 ) and flow rates (20, 40, and 60 ml/min). The maximum percentage removal of 90% was achieved and the maximum carbon capacity for 5 mg l -1 of toluene, 60 ml/min flow rate and 3 cm bed length shows 607.14 mg/g. The results of dynamic adsorption in a packed bed were consistent with those of equilibrium adsorption by gravimetric method. The breakthrough time and quantity shows that GAC with appropriate surface area can be utilized for air cleaning filters. The result shows that the physisorption plays main role in toluene removal.

  19. Agglomeration techniques for the production of spheres for packed beds

    International Nuclear Information System (INIS)

    Sullivan, J.D.

    1988-03-01

    One attractive fusion-breeder-blanket design features a lithium bearing ceramic in the form of spheres packed into a random array. The spheres have diameters of 3 mm and 0.3 mm. This report surveys techniques used to produce ceramic spheres on an industrial scale. The methods examined include tumbling and mixing granulation, extrusion, briquetting and pelletizing. It is concluded that the required quantities of 0.3 mm diameter spheres can be produced by the tumbling agglomeration of a feed powder. The 3 mm diameter spheres will be made using a process of extrusion, chopping and rolling

  20. Fungi solubilisation of low rank coal: performances of stirred tank, fluidised bed and packed bed reactors

    CSIR Research Space (South Africa)

    Oboirien, BO

    2013-02-01

    Full Text Available Coal biosolubilisation was investigated in stirred tank reactor, fluidised bed and fixed bed bioreactors with a view to highlight the advantages and shortcomings of each of these reactor configurations. The stirred aerated bioreactor and fluidised...

  1. Mathematical modelling of MSW incineration in a packed bed

    DEFF Research Database (Denmark)

    Chen, Guanyi; Gu, Tianbao; He, Xiao

    2017-01-01

    Grate-firing is the most commonly used technology for municipal solid waste (MSW) incineration for heat and power generation, in which MSW undergoes thermochemical conversion (e.g., drying, devolatilization, char gasification and oxidation) in the fuel bed on the grate while the combustible gases...... and the entrained fine particles are further burned in the freeboard. Nevertheless, grate-firing generally needs to be improved in terms of efficiency and overall environmental impacts, in which computational fluid dynamics (CFD) modelling plays the vital role. In this paper, a comprehensive mathematical model...

  2. A mathematical model for supplying air-cooling for a building using a packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Marewo, G.T. [Zimbabwe Univ., Mathematics Dept., Harare (Zimbabwe); Henwood, D.J. [School of Computing and Mathematical Sciences, Brighton (United Kingdom)

    2006-01-15

    The cooling system at the Harare International School uses a packed bed system for storing the coldness of the night-time to be used later for day-time air-conditioning. A two-phase mathematical model is described for the packed bed which includes heat dispersion in the fluid, and heat loss to the environment. This is in contrast to other studies, where at least one of these terms is neglected to simplify the mathematical model. A numerical method for obtaining a solution is proposed and implemented. Using measured inlet temperatures, the measured and predicted outlet temperatures of the bed show good trend agreement. The differences in detail are examined through sensitivity analyses for both the heat convection transfer and air velocity. It is apparent that adjusting these parameters can increase the agreement between the predicted and measured data. A parametric study for heat storage with various materials and bed sizes is given, which indicates how the code may be used as a tool for improving design and operational parameters. Practical application: A mathematical model of a packed bed is described; the bed is made up of fluid flowing over solid material with heat interchange between the two. The solid material is idealized as spheres and the fluid temperature is assumed uniform in a cross-section of the bed. The model includes heat interchange between the bed and its surrounding environment and allows for time varying fluid velocity. The input data is the inlet temperature to the bed, which may be measured. The comparison with measured data may be helpful to anyone attempting to develop and test a similar model. The sensitivity tests give an understanding of the significance of some of the parameters involved. The Appendix gives a mathematical statement of the problem and an outline of an approach to developing computer code for a numerical solution. (Author)

  3. Model description and kinetic parameter analysis of MTBE biodegradation in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    A dynamic modeling approach was used to estimate in-situ model parameters, which describe the degradation of methyl tert-butyl ether (MTBE) in a laboratory packed bed reactor. The measured dynamic response of MTBE pulses injected at the reactor's inlet was analyzed by least squares and parameter...

  4. Preliminary performance analysis of a transverse flow spectrally selective two-slab packed bed volumetric receiver

    CSIR Research Space (South Africa)

    Roos, TH

    2016-05-01

    Full Text Available for the transparent slab 1 and SiC for the opaque slab 2 – which are ordered in a hexagonally close-packed bed. The flow direction has been changed from parallel to the incident radiation and perpendicular to the window, to parallel to the window and perpendicular...

  5. Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power

    International Nuclear Information System (INIS)

    Hu Jian; Jiang Nan; Li Jie; Shang Kefeng; Lu Na; Wu Yan; Mizuno Akira

    2016-01-01

    The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. (paper)

  6. Discharge Characteristics of Series Surface/Packed-Bed Discharge Reactor Diven by Bipolar Pulsed Power

    Science.gov (United States)

    Hu, Jian; Jiang, Nan; Li, Jie; Shang, Kefeng; Lu, Na; Wu, Yan; Mizuno, Akira

    2016-03-01

    The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. supported by National Natural Science Foundation of China (No. 51177007), the Joint Funds of National Natural Science Foundation of China (No. U1462105), and Dalian University of Technology Fundamental Research Fund of China (No. DUT15RC(3)030)

  7. A parametric study pf powder holdups in a packed bed under ...

    African Journals Online (AJOL)

    More specifically, a parametric study is performed to determine the effects of the gas blast velocity, particle size adn powder loading on the powder holdups. Results are presented in terms of fines accumulation area. This work shows the dependency of the powder holdups on the packed bed flow parameters. Keywords: ...

  8. Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors

    NARCIS (Netherlands)

    Budzaki, S.; Miljic, G.; Sundaram, S.; Tisma, M.; Hessel, V.

    2017-01-01

    A cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors using refined sunflower oil is performed in this work. A few enzymatic micro-flow reactors have so far reached a performance close to gram-scale, which might be sufficient for the pharmaceutical industry. This

  9. Kinetic model for an up-flow anaerobic packed bed bioreactor: Dairy ...

    African Journals Online (AJOL)

    Kinetic studies of anaerobic digestion process of cheese whey were conducted in a pilot-scale up-flow anaerobic packed bed bioreactor (UAPB). An influent COD concentration of 59419 mg/l was utilized at steady state condition. Logistic and Monod kinetic models were employed to describe microbial activities of cheese ...

  10. Production of structured lipids in a packed-bed reactor with Thermomyces lanuginosa lipase

    DEFF Research Database (Denmark)

    Xu, Xuebing; Porsgaard, Trine; Zhang, Hong

    2002-01-01

    Lipase-catalyzed interesterification between fish oil and medium-chain TAG has been investigated in a packed-bed reactor with a commercially immobilized enzyme. The enzyme, a Thermomyces lanuginosa lipase immobilized on silica by granulation (Lipozyme TL IM; Novozymes A/S, Bagsvaerd, Denmark), ha...

  11. Experimental investigation into a packed bed thermal storage solution for solar gas turbine systems

    CSIR Research Space (South Africa)

    Klein, P

    2013-09-01

    Full Text Available High temperature thermal storage in randomly packed beds of ceramic particles is proposed as an effective storage solution for Solar Gas Turbine (SGT) cycles in the near term. Numerical modelling of these systems allows for optimised thermal storage...

  12. CLC in packed beds using syngas and CuO/Al2O3: model description and experimental validation

    NARCIS (Netherlands)

    Hamers, H.P.; Gallucci, F.; Cobden, P.D.; Kimball, E.; Sint Annaland, M. van

    2014-01-01

    The objective of this work is to study the performance of the oxygen carrier in a packed bed with periodic switching between oxidizing and reducing conditions. In this paper the performance of CuO/Al2O3 as the oxygen carrier in a packed bed reactor with syngas as the fuel are investigated, while

  13. Process for the exchange of hydrogen isotopes using a catalyst packed bed assembly

    International Nuclear Information System (INIS)

    Butler, J.P.; den Hartog, J.; Molson, F.W.R.

    1978-01-01

    A process for the exchange of hydrogen isotopes between streams of gaseous hydrogen and liquid water is described, wherein the streams of liquid water and gaseous hydrogen are simultaneously brought into contact with one another and a catalyst packed bed assembly while at a temperature in the range 273 0 to 573 0 K. The catalyst packed bed assembly may be composed of discrete carrier bodies of e.g. ceramics, metals, fibrous materials or synthetic plastics with catalytically active metal crystallites selected from Group VIII of the Periodic Table, partially enclosed in and bonded to the carrier bodies by a water repellent, water vapor and hydrogen gas permeable, porous, polymeric material, and discrete packing bodies having an exterior surface which is substantially hydrophilic and relatively noncatalytically active with regard to hydrogen isotope exchange between hydrogen gas and water vapor to that of the catalyst bodies

  14. Freezing process in unsaturated packed beds; Fuhowa ryushi sonai ni okeru suibun toketsu

    Energy Technology Data Exchange (ETDEWEB)

    Akahori, M; Aoki, K; Hattori, M [Nagaoka University of Technology, Niigata (Japan); Tani, T [Oji Paper Co. Ltd., Tokyo (Japan)

    1998-04-25

    The freezing process in unsaturated packed beds has been investigated experimentally and theoretically. Water transport to the frozen front plays an important part on freezing. The rate of the absorption of water into frozen layer depended on the freezing heat flux and the water saturation at the freezing front. As a result, ice content in the frozen layer was related to the rate of the absorption of water and the freezing heat flux. A one-dimensional freezing model in unsaturated packed beds has been presented, accounting for the water transport. The predicted water saturation and temperature distributions in the body and the thickness of frozen layer were compared with the experimental results using a porous bed composed of glass beads. 12 refs., 10 figs., 1 tab.

  15. New proposition on performance evaluation of hydrophobic Pt catalyst packed in trickle bed

    International Nuclear Information System (INIS)

    Shimizu, Masami; Kitamoto, Asashi; Takashima, Yoichi.

    1983-01-01

    On the evaluation of the performance of the hydrophobic Pt catalyst packed in the trickle-bed test column, the conventionally defined (Ksub(y)a) and the newly defined (Ksub(f))sub (G) are compared with each other as a measure of the overall D-transfer coefficient. The value of (Ksub(y)a) varies in a wide range in accordance with the length of the test column. On the other hand (Ksub(f))sub (G sub (l = L)) has a finite value in the test column longer than about 0.5 m. By considering the values of ksub(g) and ksub(l) which are the constituents of (Ksub(f))sub (G), it is possible to improve the hydrophobic Pt catalyst trickle bed and to design the H 2 /H 2 O-isotopic exchange trickle-bed column packed with this catalyst. (author)

  16. The behavior of xenon dynamic adsorption on granular activated carbon packed bed adsorber

    International Nuclear Information System (INIS)

    Chongyang Zhou; Shujuan Feng; Guoqing Zhou; Yuren Jin; Junfu Liang; Jingming Xu

    2011-01-01

    In order to retard radioxenon release into the atmosphere from nuclear power station or to sensitively monitor its concentration to ensure environmental and human safety, it is necessary to know the behavior of xenon dynamic adsorption on granular activated carbon pack bed adsorber. The quantities, including the dynamic adsorption coefficient (k d ), the amount of xenon adsorbed (q), the length of mass transfer zone (L MTZ ) and the length of the unused bed (LUB), used to describe the adsorption behavior, were sorted out and calculated. The factors, including xenon concentrations, pressures and temperatures, to affect these quantities were investigated. The results show that: (1) The values of k d and q decrease with increasing temperatures, but increase with increasing pressures, (2) The values of L MTZ and LUB increase with increasing temperatures or pressures, but are independent of concentrations. Knowledge of these quantities is very helpful for packed bed adsorber operation. (author)

  17. Experimental, kinetic and numerical modeling of hydrogen production by catalytic reforming of crude ethanol over a commercial catalyst in packed bed tubular reactor and packed bed membrane reactor

    International Nuclear Information System (INIS)

    Aboudheir, Ahmed; Akande, Abayomi; Idem, Raphael

    2006-01-01

    The demand for hydrogen energy has increased tremendously in recent years essentially because of the increase in the word energy consumption as well as recent developments in fuel cell technologies. The energy information administration has projected that world energy consumption will increase by 59% over the next two decades, from 1999 to 2020, in which the largest share is still dominated by fossil fuels (oil, natural gas and coal). Carbon dioxide (CO 2 ) emissions resulting from the combustion of these fossil fuels currently are estimated to account for three-fourth of human-caused CO 2 emissions worldwide. Greenhouse gas emission, including CO 2 , should be limited, as recommended at the Kyoto Conference, Japan, in December 1997. In this regard, hydrogen (H 2 ) has a significant future potential as an alternative fuel that can solve the problems of CO 2 emissions as well as the emissions of other air contaminants. One of the techniques to produce hydrogen is by reforming of hydrocarbons or biomass. Crude ethanol (a form of biomass, which essentially is fermentation broth) is easy to produce, is free of sulphur, has low toxicity, and is also safe to handle, transport and store. In addition, crude ethanol consists of oxygenated hydrocarbons, such as ethanol, lactic acid, glycerol, and maltose. These oxygenated hydrocarbons can be reformed completely to H 2 and CO 2 , the latter of which could be separated from H 2 by membrane technology. This provides for CO 2 capture for eventual storage or destruction. In the case of using crude ethanol, this will result in negative CO 2 , emissions. In this paper, we conducted experimental work on production of hydrogen by the catalytic reforming of crude ethanol over a commercial promoted Ni-based catalyst in a packed bed tubular reactor as well as a packed bed membrane reactor. As well, a rigorous numerical model was developed to simulate this process in both the catalytic packed bed tubular reactor and packed bed membrane

  18. Friction factor for water flow through packed beds of spherical and non-spherical particles

    Directory of Open Access Journals (Sweden)

    Kaluđerović-Radoičić Tatjana

    2017-01-01

    Full Text Available The aim of this work was the experimental evaluation of different friction factor correlations for water flow through packed beds of spherical and non-spherical particles at ambient temperature. The experiments were performed by measuring the pressure drop across the bed. Packed beds made of monosized glass spherical particles of seven different diameters were used, as well as beds made of 16 fractions of quartz filtration sand obtained by sieving (polydisperse non-spherical particles. The range of bed voidages was 0.359–0.486, while the range of bed particle Reynolds numbers was from 0.3 to 286 for spherical particles and from 0.1 to 50 for non-spherical particles. The obtained results were compared using a number of available literature correlations. In order to improve the correlation results for spherical particles, a new simple equation was proposed in the form of Ergun’s equation, with modified coefficients. The new correlation had a mean absolute deviation between experimental and calculated values of pressure drop of 9.04%. For non-spherical quartz filtration sand particles the best fit was obtained using Ergun’s equation, with a mean absolute deviation of 10.36%. Surface-volume diameter (dSV necessary for correlating the data for filtration sand particles was calculated based on correlations for dV = f(dm and Ψ = f(dm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON172022

  19. Characteristics of convective heat transport in a packed pebble-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abdulmohsin, Rahman S., E-mail: rsar62@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Al-Dahhan, Muthanna H., E-mail: aldahhanm@mst.edu [Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, 400 West 11th Street/231 Schrenk Hall, Rolla, MO 65409-1230 (United States); Department of Nuclear Engineering, 301 W. 14th St./222 Fulton Hall (United States)

    2015-04-01

    Highlights: • A fast-response heat transfer probe has been developed and used in this work. • Heat transport has been quantified in terms of local heat transfer coefficients. • The method of the electrically heated single sphere in packing has been applied. • The heat transfer coefficient increases from the center to the wall of packed bed. • This work advancing the knowledge of heat transport in the studied packed bed. - Abstract: Obtaining more precise results and a better understanding of the heat transport mechanism in the dynamic core of packed pebble-bed reactors is needed because this mechanism poses extreme challenges to the reliable design and efficient operation of these reactors. This mechanism can be quantified in terms of a solid-to-gas convective heat transfer coefficient. Therefore, in this work, the local convective heat transfer coefficients and their radial profiles were measured experimentally in a separate effect pilot-plant scale and cold-flow experimental setup of 0.3 m in diameter, using a sophisticated noninvasive heat transfer probe of spherical type. The effect of gas velocity on the heat transfer coefficient was investigated over a wide range of Reynolds numbers of practical importance. The experimental investigations of this work include various radial locations along the height of the bed. It was found that an increase in coolant gas flow velocity causes an increase in the heat transfer coefficient and that effect of the gas flow rate varies from laminar to turbulent flow regimes at all radial positions of the studied packed pebble-bed reactor. The results show that the local heat transfer coefficient increases from the bed center to the wall due to the change in the bed structure, and hence, in the flow pattern of the coolant gas. The findings clearly indicate that one value of an overall heat transfer coefficient cannot represent the local heat transfer coefficients within the bed; therefore, correlations are needed to

  20. Mass transfer controlled reactions in packed beds at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Fedkiw, P.S.

    1978-12-01

    The a priori prediction and correlation of mass-transfer rates in transport limited, packed-bed reactors at low Reynolds numbers is examined. The solutions to the governing equations for a flow-through porous electrode reactor indicate that these devices must operate at a low space velocity to suppress a large ohmic potential drop. Packed-bed data for the mass-transfer rate at such low Reynolds numbers were examined and found to be sparse, especially in liquid systems. Prior models to simulate the solid-void structure in a bed are reviewed. Here the bed was envisioned as an array of sinusoidal periodically constricted tubes (PCT). Use of this model has not appeared in the literature. The velocity field in such a tube should be a good approximation to the converging-diverging character of the velocity field in an actual bed. The creeping flow velocity profiles were calculated. These results were used in the convective-diffusion equation to find mass transfer rates at high Peclet number for both deep and shallow beds, for low Peclet numbers in a deep bed. All calculations assumed that the reactant concentration at the tube surface is zero. Mass-transfer data were experimentally taken in a transport controlled, flow-through porous electrode to test the theoretical calculations and to provide data resently unavailable for deeper beds. It was found that the sinusoidal PCT model could not fit the data of this work or that available in the literature. However, all data could be adequately described by a model which incorporates a channelingeffect. The bed was successfully modeled as an array of dual sized straight tubes.

  1. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures

    Directory of Open Access Journals (Sweden)

    Pešić Radojica

    2015-01-01

    Full Text Available The aim of this work was the experimental investigation of the particle friction factor for air flow through packed bed of particles at ambient and elevated temperatures. The experiments were performed by measuring the pressure drop across the packed bed, heated to the desired temperature by hot air. Glass spherical particles of seven different diameters were used. The temperature range of the air flowing through the packed bed was from 20ºC to 350ºC and the bed voidages were from 0.3574 to 0.4303. The obtained results were correlated using a number of available literature correlations. The overall best fit of all of the experimental data was obtained using Ergun [1] equation, with mean absolute deviation of 10.90%. Ergun`s equation gave somewhat better results in correlating the data at ambient temperature with mean absolute deviation of 9.77%, while correlation of the data at elevated temperatures gave mean absolute deviation of 12.38%. The vast majority of the correlations used gave better results when applied to ambient temperature data than to the data at elevated temperatures. Based on the results obtained, Ergun [1] equation is proposed for friction factor calculation both at ambient and at elevated temperatures. [Projekat Ministarstva nauke Republike Srbije, br. ON172022

  2. Volatile Removal Assembly Flight Experiment and KC-135 Packed Bed Experiment: Results and Lessons Learned

    Science.gov (United States)

    Holder, Donald W.; Parker, David

    2000-01-01

    The Volatile Removal Assembly (VRA) is a high temperature catalytic oxidation process that will be used as the final treatment for recycled water aboard the International Space Station (ISS). The multiphase nature of the process had raised concerns as to the performance of the VRA in a microgravity environment. To address these concerns, two experiments were designed. The VRA Flight Experiment (VRAFE) was designed to test a full size VRA under controlled conditions in microgravity aboard the SPACEHAB module and in a 1 -g environment and compare the performance results. The second experiment relied on visualization of two-phase flow through small column packed beds and was designed to fly aboard NASA's microgravity test bed plane (KC-135). The objective of the KC-135 experiment was to understand the two-phase fluid flow distribution in a packed bed in microgravity. On Space Transportation System (STS) flight 96 (May 1999), the VRA FE was successfully operated and in June 1999 the KC-135 packed bed testing was completed. This paper provides an overview of the experiments and a summary of the results and findings.

  3. Application of a model to investigate the effective thermal conductivity of randomly packed fusion pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoliang; Zheng, Jie; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-05-15

    In our precious study, a prediction model, which calculates the effective thermal conductivity k{sub eff} of mono-sized pebble beds, has been developed and validated. Based on this model, here the effects of these influencing factors such as pebble size, thermal radiation, contact area, filling gas, gas flow, gas pressure, etc. on the k{sub eff} of randomly packed fusion pebble beds are studied and analyzed. The pebble beds investigated include Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3}, Li{sub 2}TiO{sub 3}, Li{sub 2}O, Be and BeO pebble beds. In the current study, many important and meaningful conclusions are derived and some of them are similar to the existing research results. Particularly, some critters that under which conditions the effect of some influencing factors can be neglected or should be considered are also presented.

  4. Deuterium exchange reaction in a trickle bed packed with a mixture of hydrophobic catalyst and hydrophilic packings

    International Nuclear Information System (INIS)

    Seungwoo Paek; Heui-Joo Choi; DO-Hee Ahn; Kwang-Rag Kim; Minsoo Lee; Sung-Paal Yim; Hongsuk Chung

    2006-01-01

    Full text of publication follows: The isotopic exchange reaction between hydrogen and water on the platinum supported catalysts provides a useful step for separating hydrogen isotopes such as deuterium and tritium. The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. This paper deals with the experiments for the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst in order to develop the catalytic column of the CECE. Hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring) to improve liquid distribution and vapor/liquid transfer area. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities. The catalyst was packed wet into the column and water was injected at the top through a liquid distributor and trickled through a catalyst mixture. Hydrogen gas passed up the column and deuterium was transferred to water stream flowing counter currently. The temperature of the column was controlled to maintain at 60 deg. C using water jackets around the reactor and equilibrator, a feed waster heater, and a circulation water heater. A metal bellows pump was used to circulate the hydrogen gas at the typical flow rate of 60 LPM.The reactor pressure was controlled to maintain at 135 kPa (abs) by a water column. Gas samples were drawn off from the top and bottom of the column. The difference in deuterium concentration between the inlet and outlet gas samples was analyzed using Gas

  5. Deuterium exchange reaction in a trickle bed packed with a mixture of hydrophobic catalyst and hydrophilic packings

    Energy Technology Data Exchange (ETDEWEB)

    Seungwoo Paek [KAERI (Korea, Republic of); Heui-Joo Choi; DO-Hee Ahn; Kwang-Rag Kim; Minsoo Lee; Sung-Paal Yim; Hongsuk Chung

    2006-07-01

    Full text of publication follows: The isotopic exchange reaction between hydrogen and water on the platinum supported catalysts provides a useful step for separating hydrogen isotopes such as deuterium and tritium. The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. This paper deals with the experiments for the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst in order to develop the catalytic column of the CECE. Hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring) to improve liquid distribution and vapor/liquid transfer area. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities. The catalyst was packed wet into the column and water was injected at the top through a liquid distributor and trickled through a catalyst mixture. Hydrogen gas passed up the column and deuterium was transferred to water stream flowing counter currently. The temperature of the column was controlled to maintain at 60 deg. C using water jackets around the reactor and equilibrator, a feed waster heater, and a circulation water heater. A metal bellows pump was used to circulate the hydrogen gas at the typical flow rate of 60 LPM.The reactor pressure was controlled to maintain at 135 kPa (abs) by a water column. Gas samples were drawn off from the top and bottom of the column. The difference in deuterium concentration between the inlet and outlet gas samples was analyzed using Gas

  6. Experimental Study on Pressure Drop and Flow Dispersion in Packed Bed of Natural Zeolite

    Directory of Open Access Journals (Sweden)

    Ruya Petric Marc

    2018-01-01

    Full Text Available The use of conventional correlation for pressure drop and dispersion coefficient calculation may result in inaccurate values for zeolite packed bed as the correlations are generally developed for regularly shaped and uniformly sized particles. To support the research on the application of modified natural zeolite as tar cracking catalyst, the research on the hydrodynamic behaviour of zeolite packed bed has been conducted. Experiments were carried out using a glass column with diameter of 37.8 mm. Natural zeolite with particle size of about 2.91 to 6.4 mm was applied as packing material in the column, and the bed height was varied at 9, 19 and 29 cm. Air was used as the fluid that flows through the bed and nitrogen was used as a tracer for residence time distribution determination. Air flow rates were in the range of 20 to 100 mL/s which correspond to the laminar-transitional flow regime. The pressure drops through the bed were in the range of 1.7 to 95.6 Pa, depending on the air flow rate and bed height. From these values, the parameters in the Ergun equation were estimated, taking into account the contribution by wall effect when the ratio of column to particle diameter is low. The viscous and inertial term constants in the Ergun equation calculated ranges from 179 to 199 and 1.41 to 1.47 respectively while the particle sphericity ranges from 0.56 to 0.59. The reactor Peclet number were determined to range from 5.2 to 5.5, which indicated significant deviation from a plug flow condition.

  7. Co-current descending two-phase flows in inclined packed beds : experiments versus simulations

    Energy Technology Data Exchange (ETDEWEB)

    Atta, A.; Nigam, K.D.P.; Roy, S. [Inst. of Technology, New Delhi (India). Dept. of Chemical Engineering; Schubert, M.; Larachi, F. [Laval Univ., Quebec City, PQ (Canada). Dept. of Chemical Engineering

    2010-10-15

    This paper presented a numerical simulation for an inclined packed bed configuration for two-phase co-current downward flow. A two-phase Eulerian computational fluid dynamics (CFD) model was used to predict the hydrodynamic behaviour. Two different modelling strategies were compared, notably a straight tube with an artificially inclined gravity, and an inclined geometry with straight gravity. The effect of inclination angle of a packed bed on its gas-liquid flow segregation and liquid saturation spatial distribution was measured for varying inclinations and fluid velocities. The CFD model was adapted from a trickle-bed vertical configuration and based on the porous media concept. The predicted pressure drops for the inclined gravity were found to be insensitive to inclination. Therefore, simulations to study the parameters that influence the reduced liquid saturation were performed only with the inclined geometry case. Experimental data obtained using electrical capacitance tomography was used to validate the model predictions. The study showed that a trickle bed CFD model for vertically straight reactors can be effectively implemented in inclined reactor geometries. However, additional research is needed to formulate appropriate drag force closures which should be incorporated in the CFD model for improved quantitative estimation of inclined bed hydrodynamics. 22 refs., 10 figs.

  8. Research and application of packing density for pebble bed in HTR

    International Nuclear Information System (INIS)

    Yu Fujiang; Xie Fei; Sun Ximing

    2015-01-01

    The pebble bed high temperature gas-cooled reactor is one of the major types of reactors developed by Chinese nuclear technology. The statistical analysis for packing density in the pebble bed is an important issue of physical-thermal calculation and safety analysis. Aimed to this problem, a new kind of method was set up to solve this problem. Compared with the traditional lattice-fill method and the experiment, its efficiency and accuracy were verified, while helping to find out the best length of unit in the traditional lattice-fill method. This method was used to analyze the boundary effects observed by experiments. (authors)

  9. A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor

    Directory of Open Access Journals (Sweden)

    Andrew Bogdan

    2009-04-01

    Full Text Available We demonstrate the preparation and characterization of a simplified packed-bed microreactor using an immobilized TEMPO catalyst shown to oxidize primary and secondary alcohols via the biphasic Anelli-Montanari protocol. Oxidations occurred in high yields with great stability over time. We observed that plugs of aqueous oxidant and organic alcohol entered the reactor as plugs but merged into an emulsion on the packed-bed. The emulsion coalesced into larger plugs upon exiting the reactor, leaving the organic product separate from the aqueous by-products. Furthermore, the microreactor oxidized a wide range of alcohols and remained active in excess of 100 trials without showing any loss of catalytic activity.

  10. PEBBLES: A COMPUTER CODE FOR MODELING PACKING, FLOW AND RECIRCULATIONOF PEBBLES IN A PEBBLE BED REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Joshua J. Cogliati; Abderrafi M. Ougouag

    2006-10-01

    A comprehensive, high fidelity model for pebble flow has been developed and embodied in the PEBBLES computer code. In this paper, a description of the physical artifacts included in the model is presented and some results from using the computer code for predicting the features of pebble flow and packing in a realistic pebble bed reactor design are shown. The sensitivity of models to various physical parameters is also discussed.

  11. Ozo-Dyes mixture degradation in a fixed bed biofilm reactor packed with volcanic porous rock

    International Nuclear Information System (INIS)

    Contreras-Blancas, E.; Cobos-Vasconcelos, D. de los; Juarez-Ramirez, C.; Poggi-Varaldo, H. M.; Ruiz-Ordaz, N.; Galindez-Mayer, J.

    2009-01-01

    Textile industries discharge great amounts of dyes and dyeing-process auxiliaries, which pollute streams and water bodies. Several dyes, especially the ones containing the azo group, can cause harmful effects to different organisms including humans. Through bacterial and mammalian tests, azo dyes or their derived aromatic amines have shown cell genotoxicity. The purpose of this work was to evaluate the effect of air flow rate on azo-dyes mixture biodegradation by a microbial community immobilized in a packed bed reactor. (Author)

  12. A bibliographic review of mathematical models of packed-bed biological reactors (PBR

    Directory of Open Access Journals (Sweden)

    Deisy Corredor

    2005-09-01

    Full Text Available Several authors have sublected packed-bed biological reactors to mathematical and theoretical analysis. They have taken reaction kinetics and single-dimensional, homogeneous, pseudo-homogeneous and heterogeneous models into account. Numerical methods have provided the set of equations so developed. The effect of physically important process variables in terms of design and operation have been investigated (i.e. residence time, operating- flow, substrate conversion, bio-film area and film thickness.

  13. Local description of the energy transfer process in a packed bed heat exchanger

    International Nuclear Information System (INIS)

    Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.

    1990-01-01

    The energy transfer process in a packed-bed heat exchanger, in counter0flow arrangement is considered. The phenomenon is described through a Continuum Theory of Mixtures approach, in which fluid and solid (porous matrix) are regarded as continuous constituents possessing, each one, its own temperature and velocity fields. The heat 'exchangers consists of two channels, separated by an impermeable wall without thermal resistence, in which there exists a saturated flow. Some particular cases are simulated. (author)

  14. Immobilised native plant cysteine proteases: packed-bed reactor for white wine protein stabilisation

    OpenAIRE

    Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Acciaro, Giuseppe; Zappino, Matteo; Esti, Marco

    2015-01-01

    This research presents a feasibility study of using a continuous packed-bed reactor (PBR), containing immobilised native plant cysteine proteases, as a specific and mild alternative technique relative to the usual bentonite fining for white wine protein stabilisation. The operational parameters for a PBR containing immobilised bromelain (PBR-br) or immobilised papain (PBR-pa) were optimised using model wine fortified with synthetic substrate (Bz-Phe-Val-Arg-pNA). The effectiveness of PBR-br, ...

  15. Ozo-Dyes mixture degradation in a fixed bed biofilm reactor packed with volcanic porous rock

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Blancas, E.; Cobos-Vasconcelos, D. de los; Juarez-Ramirez, C.; Poggi-Varaldo, H. M.; Ruiz-Ordaz, N.; Galindez-Mayer, J.

    2009-07-01

    Textile industries discharge great amounts of dyes and dyeing-process auxiliaries, which pollute streams and water bodies. Several dyes, especially the ones containing the azo group, can cause harmful effects to different organisms including humans. Through bacterial and mammalian tests, azo dyes or their derived aromatic amines have shown cell genotoxicity. The purpose of this work was to evaluate the effect of air flow rate on azo-dyes mixture biodegradation by a microbial community immobilized in a packed bed reactor. (Author)

  16. Inulinase production in a packed bed reactor by solid state fermentation.

    Science.gov (United States)

    Dilipkumar, M; Rajamohan, N; Rajasimman, M

    2013-07-01

    In this work, production of inulinase was carried out in a packed bed reactor (PBR) under solid state fermentation. Kluyveromyces marxianus var. marxianus was used to produce the inulinase using pressmud as substrate. The parameters like air flow rate, packing density and particle size were optimized using response surface methodology (RSM) to maximize the inulinase production. The optimum conditions for the maximum inulinase production were: air flow rate - 0.82 L/min, packing density - 40 g/L and particle size - 0.0044 mm (mesh - 14/20). At these optimized conditions, the production of inulinase was found to be 300.5 unit/gram of dry substrate (U/gds). Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Tritium sorption behavior on the percolation of tritiated water into a soil packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Furuichi, Kazuya, E-mail: kfuruichi@aees.kyushu-u.ac.jp [Department of Advanced Energy Engineering, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Katayama, Kazunari; Date, Hiroyuki [Department of Advanced Energy Engineering, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Takeishi, Toshiharu [Factory of Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395 (Japan); Fukada, Satoshi [Department of Advanced Energy Engineering, Kyushu University, 6-1, Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2016-11-01

    Highlights: • We establish the permeation model of tritiated water in the soil layer. • Saturated hydraulic conductivity of water in soil was gained by using the model. • The isotope exchange reaction coefficient was good agreement with experimental data. - Abstract: Development of tritium transport model in natural soil is an important issue from a viewpoint of safety of fusion reactors. The spill of a large amount of tritiated water to the environment is a concern accident because huge tritiated water is handled in a fusion plant. In this work, a simple tritium transport model was proposed based on the tritium transport model in porous materials. The overall mass transfer coefficient representing isotope exchange reaction between tritiated water and structural water in soil particles was obtained by numerically analyzing the result of the percolation experiment of tritiated water into the soil packed bed. Saturated hydraulic conductivity in the natural soil packed bed was obtained to be 0.033 mm/s. By using this value, the overall mass transfer capacity coefficients representing the isotope exchange reaction between tritiated water percolating through the packed bed and overall structural water on soil particles was determined to be 6.0 × 10{sup −4} 1/s. This value is much smaller than the mass transfer capacity coefficient between tritiated water vapor and water on concrete material and metals.

  18. Experimental study of gas–liquid two-phase flow through packed bed under natural circulation conditions

    International Nuclear Information System (INIS)

    Chen, Shao-Wen; Miwa, Shuichiro; Griffiths, Matt

    2016-01-01

    Dry-out phenomena in packed beds or porous media may cause a significant digression of cooling/reaction performance in heat transfer/chemical reactor systems. One of the phenomena responsible for the dry-out in packed beds is known as the counter-current flow limitation (CCFL). In order to investigate the CCFL phenomena induced by gas–liquid two-phase flow in packed beds inside a pool, a natural circulation packed bed test facility was designed and constructed. A total of 27 experimental conditions covering various packing media sizes (sphere diameters: 3.0, 6.4 and 9.5 mm), packed bed heights (15, 35 and 50 cm) and water level heights (1.0, 1.5 and 2.0 m) were tested to examine the CCFL criteria with adiabatic air–water two-phase flow under natural circulation conditions. Both CCFL and flow reversal phenomena were observed, and the experimental data including instantaneous and time-averaged void fraction, differential pressure and superficial gas–liquid velocities were collected. The CCFL criteria were determined when periodical oscillations of void fraction and differential pressure appear. In addition, the Wallis correlation for CCFL was utilized for data analysis, and the Wallis coefficient, C, was determined experimentally from the packed bed CCFL tests. Compared to the existing data-sets in literature, the higher C values obtained in the present experiment suggest a possibly higher dry-out heat flux for natural circulation debris systems, which may be due to the water supply from both top and bottom surfaces of the packed beds. Considering the effects of bed height and hydraulic diameter of the packing media, a newly developed model for the Wallis coefficient, C, under natural circulation CCFL is presented. The present model can predict the experimental data with an averaged absolute error of ±7.9%. (author)

  19. Adsorption of zinc ions on bone char using helical coil-packed bed columns and its mass transfer modeling

    DEFF Research Database (Denmark)

    Moreno-Pérez, J.; Bonilla-Petriciolet, A.; Rojas-Mayorga, C. K.

    2016-01-01

    This study reports the assessment of helical coil-packed bed columns for Zn2+ adsorption on bone char. Zn2+ adsorption breakthrough curves have been obtained using helical coil columns with different characteristics and a comparison has been conducted with respect to the results of straight fixed-bed...... columns. Results showed that the helical coil adsorption columns may offer an equivalent removal performance than that obtained for the traditional packed bed columns but using a compact structure. However, the coil diameter, number of turns, and feed flow appear to be crucial parameters for obtaining...... the best performance in this packed-bed geometry. A mass transfer model for a mobile fluid flowing through a porous media was used for fitting and predicting the Zn2+ breakthrough curves in helical coil bed columns. Results of adsorbent physicochemical characterization showed that Zn2+ adsorption on bone...

  20. Performance of a desiccant assisted packed bed passive solar dryer for copra processing

    Directory of Open Access Journals (Sweden)

    Padmanaban Govindarajulu

    2017-01-01

    Full Text Available In this paper, the performance of a novel desiccant assisted packed bed passive solar dryer was evaluated for copra processing and compared with conventional passive solar dryer. This novel solar dryer consists of a desiccant assisted packed bed solar air heater attached with a dryer cabin. The desiccant and phase change materials packed in the solar air heater has control the humidity and retains the heat for longer duration, respectively. The performance of the dryer was evaluated (in terms of drying time to attain the final equilibrium moisture content, drying rate, specific moisture extraction rate, pick-up efficiency, and dryer efficiency under the meteorological conditions of Coimbatore city in India during March and April 2016. The copra was dried from initial moisture content (wet basis of about 52% to the final moisture content (wet basis of about 8% in 62 hours with specific moisture extraction rate of 0.82 kg/kWh. The drying time was reduced by about 44 hours when compared to the conventional passive solar dryer. The dryer pick-up efficiency was varied between about 10% and 65%. The average dryer thermal efficiency was calculated to be about 32%. The quality of final dried product was found to be good.

  1. Fluid dynamics of air in a packed bed: velocity profiles and the continuum model assumption

    Directory of Open Access Journals (Sweden)

    NEGRINI A. L.

    1999-01-01

    Full Text Available Air flow through packed beds was analyzed experimentally under conditions ranging from those that reinforce the effect of the wall on the void fraction to those that minimize it. The packing was spherical particles, with a tube-to-particle diameter ratio (D/dp between 3 and 60. Air flow rates were maintained between 1.3 and 4.44 m3/min, and gas velocity was measured with a Pitot tube positioned above the bed exit. Measurements were made at various radial and angular coordinate values, allowing the distribution of air flow across the bed to be described in detail. Comparison of the experimentally observed radial profiles with those derived from published equations revealed that at high D/dp ratios the measured and calculated velocity profiles behaved similarly. At low ratios, oscillations in the velocity profiles agreed with those in the voidage profiles, signifying that treating the porous medium as a continuum medium is questionable in these cases.

  2. Modelling heat transfer during flow through a random packed bed of spheres

    Science.gov (United States)

    Burström, Per E. C.; Frishfelds, Vilnis; Ljung, Anna-Lena; Lundström, T. Staffan; Marjavaara, B. Daniel

    2018-04-01

    Heat transfer in a random packed bed of monosized iron ore pellets is modelled with both a discrete three-dimensional system of spheres and a continuous Computational Fluid Dynamics (CFD) model. Results show a good agreement between the two models for average values over a cross section of the bed for an even temperature profiles at the inlet. The advantage with the discrete model is that it captures local effects such as decreased heat transfer in sections with low speed. The disadvantage is that it is computationally heavy for larger systems of pellets. If averaged values are sufficient, the CFD model is an attractive alternative that is easy to couple to the physics up- and downstream the packed bed. The good agreement between the discrete and continuous model furthermore indicates that the discrete model may be used also on non-Stokian flow in the transitional region between laminar and turbulent flow, as turbulent effects show little influence of the overall heat transfer rates in the continuous model.

  3. Electrochemical removal of copper ions from dilute solutions using packed bed electrode. Part І

    Directory of Open Access Journals (Sweden)

    I.A. Khattab

    2013-06-01

    Full Text Available Removal of some hazardous waste like copper from effluent streams has an industrial importance. In this field, this paper is directed towards electrochemical removal of copper ions from sulfate solution using packed bed electrode. The cathode packing is in static mode, consisted of graphite particles, with mean particle size equal to 0.125 cm. The high surface area of this cell is expected to give high current efficiency and removal percent. The effect of current density and liquid flow rate were tested. Experimental results obtained indicate that the efficiencies are in direct proportional with current density while inversely proportional with liquid flow rate. It was observed that, using this cell was effective in reducing copper concentration to less than 4 mg/l with R.E of 96.2% during 30 min electrolysis time.

  4. Experimental and modelling study of drinking water hydrogenotrophic denitrification in packed-bed reactors

    International Nuclear Information System (INIS)

    Vasiliadou, I.A.; Karanasios, K.A.; Pavlou, S.; Vayenas, D.V.

    2009-01-01

    The aim of this work was to study hydrogenotrophic denitrification in packed-bed reactors under draw-fill and continuous operation. Three bench-scale packed-bed reactors with gravel in different sizes (mean diameter 1.75, 2.41 and 4.03 mm) as support media were used, in order to study the effect of particle size on reactors performance. The maximum denitrification rate achieved under draw-fill operation was 4.4 g NO 3 - -N/ld for the filter with gravel of 2.41 mm. This gravel size was chosen to perform experiments under continuous operation. Feed NO 3 - -N concentrations and hydraulic loadings (HL) ranged between 20-200 mg/l and 5.7-22.8 m 3 /m 2 d, respectively. A comparison between the two operating modes showed that, for low HL the draw-fill operation achieved higher denitrification rates, while for high HL and intermediate feed concentrations (40-60 mg NO 3 - -N/l) the continuous operation achieved higher denitrification rates (4.67-5.65 g/ld). Finally, experiments with three filters in series (with gravels of 4.03, 2.41 and 1.75 mm mean diameter) were also performed under continuous operation. The maximum denitrification rate achieved was 6.2 g NO 3 - -N/ld for feed concentration of 340 mg/l and HL of 11.5 m 3 /m 2 d. A model, which describes denitrification in packed-bed reactors, was also developed. The model predicts the concentration profiles of NO 3 - -N along filter height, in draw-fill as well as in continuous operation, satisfactorily.

  5. Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode.

    Science.gov (United States)

    Ye, Xiaokun; Zhang, Junya; Zhang, Yan; Lv, Yuancai; Dou, Rongni; Wen, Shulong; Li, Lianghao; Chen, Yuancai; Hu, YongYou

    2016-12-01

    The unique electrocoagulator proposed in this study is highly efficient at removing Ni-EDTA, providing a potential remediation option for wastewater containing lower concentrations of Ni-EDTA (Ni ≤ 10 mg L -1 ). In the electrocoagulation (EC) system, cylindrical graphite was used as a cathode, and a packed-bed formed from iron scraps was used as an anode. The results showed that the removal of Ni-EDTA increased with the application of current and favoured acidic conditions. We also found that the iron scrap packed-bed anode was superior in its treatment ability and specific energy consumption (SECS) compared with the iron rod anode. In addition, the packed density and temperature had a large influence on the energy consumption (ECS). Over 94.3% of Ni and 95.8% of TOC were removed when conducting the EC treatment at an applied current of 0.5 A, initial pH of 3, air-purged rate 0.2 L min -1 , anode packed density of 400 kg m -3 temperature of 313 K and time of 30 min. SEM analysis of the iron scraps indicated that the specific area of the anode increased after the EC. The XRD analysis of flocs produced during EC revealed that hematite (α-Fe 2 O 3 ) and magnetite (Fe 3 O 4 ) were the main by-products under aerobic and anoxic conditions, respectively. A kinetic study demonstrated that the removal of Ni-EDTA followed a first-order model with the current parameters. Moreover, the removal efficiency of real wastewater was essentially consistent with that of synthetic wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Mechanical and Structural Behavior of Granular Material Packed Beds for Space Life Support System Applications

    Science.gov (United States)

    Malla, Ramesh B.; Anandakumar, Ganesh

    2005-01-01

    Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of

  7. Packed-fluidized-bed blanket concept for a thorium-fueled commercial tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Miller, J.W.; Karbowski, J.S.; Chapin, D.L.; Kelly, J.L.

    1980-09-01

    A preliminary design of a thorium blanket was carried out as a part of the Commercial Tokamak Hybrid Reactor (CTHR) study. A fixed fuel blanket concept was developed as the reference CTHR blanket with uranium carbide fuel and helium coolant. A fixed fuel blanket was initially evaluated for the thorium blanket study. Subsequently, a new type of hybrid blanket, a packed-fluidized bed (PFB), was conceived. The PFB blanket concept has a number of unique features that may solve some of the problems encountered in the design of tokamak hybrid reactor blankets. This report documents the thorium blanket study and describes the feasibility assessment of the PFB blanket concept

  8. Packed bed reactor for degradation of simulated cyanide-containing wastewater

    OpenAIRE

    Kumar, Virender; Kumar, Vijay; Bhalla, Tek Chand

    2014-01-01

    The discharge of cyanide-containing effluents into the environment contaminates water bodies and soil. Effective methods of treatment which can detoxify cyanide are the need of the hour. The aim of the present study is to develop a bioreactor for complete degradation of cyanide using immobilized cells of Serratia marcescens RL2b. Alginate-entrapped cells of S. marcescens RL2b were used for complete degradation of cyanide in a packed bed reactor (PBR). Cells grown in minimal salt medium (pH 6....

  9. Modelling and Simulation of a Packed Bed of Pulp Fibers Using Mixed Collocation Method

    Directory of Open Access Journals (Sweden)

    Ishfaq Ahmad Ganaie

    2013-01-01

    Full Text Available A convenient computational approach for solving mathematical model related to diffusion dispersion during flow through packed bed is presented. The algorithm is based on the mixed collocation method. The method is particularly useful for solving stiff system arising in chemical and process engineering. The convergence of the method is found to be of order 2 using the roots of shifted Chebyshev polynomial. Model is verified using the literature data. This method has provided a convenient check on the accuracy of the results for wide range of parameters, namely, Peclet numbers. Breakthrough curves are plotted to check the effect of Peclet number on average and exit solute concentrations.

  10. Rice Husk Packed Bed Column Reactor To Remove Cadmium From Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Monik Kasman

    2014-06-01

    Full Text Available The landfill leachate can be a major problem due to large variability of high organic, inorganic, heavy metal content and toxicity characteristics from landfill leachate such as  cadmium. Thus, this study was aimed to observe the application of rice husk packed bed column to reduce cadmium from landfill leachate. Experiment was conducted in gravity down flow system by pumping landfill leachate into packed bed column. The effect of influent flow rate to adsorption capacity was studied by varying flow rate (5 mL/min and 10 mL/min. The effluent-influent concentration ratio Ce/C0 (% as a function of throughput volume (L was used to represent the breakthrough curve in column systems. Result shows that the flow rate of 5 mL/min was favorable to achieve higher removal rates with the percentage of cadmium was 57 %. At breakthrough time, the cadmium effluent concentration reached on 0.01 mg/l for both of flow rate.ABSTRAKLindi yang dihasilkan dari TPA (Tempat Pembuangan Akhir menimbulkan permasalahan lingkungan karena kandungan pencemarnya meliputi material organik, material anorganik, logam dan material beracun. Salah satu logam berat yang terdapat dalam lindi tersebut adalah kadmium. Penelitian ini bertujuan untuk mereduksi kadmium dalam lindi dengan menggunakan sekam padi yang diinstal dalam packed bed column. Lindi dipompakan dari tangki penampung lindi ke dalam packed bed column dan dialirkan dari atas ke bawah kolom secara gravitasi. Fokus pada penelitian ini adalah pengaruh laju alir influen terhadap kapasitas adsorpsi. Dimana lindi dialirkan dengan laju alir 5 mL/menit dan 10 mL/menit. Kurva breakthrough (titik jenuh kolom dipresentasikan oleh hubungan antara rasio konsentrasi efluen-influen Ce/C0 (% dan jumlah aliran lindi yang diolah dalam kolom. Hasil eksperimen menunjukkan bahwa persentase reduksi tertinggi dicapai pada laju alir 5 mL/menit yaitu 57%. Waktu jenuh kedua laju alir (5 mL/menit dan 10 mL/menit tercapai saat konsentrasi efluen

  11. The effect of deformation on two-phase flow through proppant-packed fractured shale samples: A micro-scale experimental investigation

    Science.gov (United States)

    Arshadi, Maziar; Zolfaghari, Arsalan; Piri, Mohammad; Al-Muntasheri, Ghaithan A.; Sayed, Mohammed

    2017-07-01

    We present the results of an extensive micro-scale experimental investigation of two-phase flow through miniature, fractured reservoir shale samples that contained different packings of proppant grains. We investigated permeability reduction in the samples by conducting experiments under a wide range of net confining pressures. Three different proppant grain distributions in three individual fractured shale samples were studied: i) multi-layer, ii) uniform mono-layer, and iii) non-uniform mono-layer. We performed oil-displacing-brine (drainage) and brine-displacing-oil (imbibition) flow experiments in the proppant packs under net confining pressures ranging from 200 to 6000 psi. The flow experiments were performed using a state-of-the-art miniature core-flooding apparatus integrated with a high-resolution, X-ray microtomography system. We visualized fluid occupancies, proppant embedment, and shale deformation under different flow and stress conditions. We examined deformation of pore space within the proppant packs and its impact on permeability and residual trapping, proppant embedment due to changes in net confining stress, shale surface deformation, and disintegration of proppant grains at high stress conditions. In particular, geometrical deformation and two-phase flow effects within the proppant pack impacting hydraulic conductivity of the medium were probed. A significant reduction in effective oil permeability at irreducible water saturation was observed due to increase in confining pressure. We propose different mechanisms responsible for the observed permeability reduction in different fracture packings. Samples with dissimilar proppant grain distributions showed significantly different proppant embedment behavior. Thinner proppant layer increased embedment significantly and lowered the onset confining pressure of embedment. As confining stress was increased, small embedments caused the surface of the shale to fracture. The produced shale fragments were

  12. Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and catalysts

    International Nuclear Information System (INIS)

    Obeid, Farah; Zeaiter, Joseph; Al-Muhtaseb, Ala’a H.; Bouhadir, Kamal

    2014-01-01

    Highlights: • Thermo-catalytic pyrolysis of waste polyethylene bottles was investigated. • The highest yield of liquid (82%) was obtained over a cement powder bed. • Acidic catalysts narrowed the carbon chain length of the paraffins to C 10 –C 28 . • Combination of cement bed with HBeta catalyst gave the highest yield of liquid. • Significant yield of aromatics was obtained mainly naphthalene and D-limonene. - Abstract: Plastic waste is an increasing economic and environmental problem as such there is a great need to process this waste and reduce its environmental impact. In this work, the pyrolysis of high density polyethylene (HDPE) waste products was investigated using both thermal and catalytic cracking techniques. The experimental work was carried out using packed bed reactor operating under an inert atmosphere at 450 °C. Different reactor bed materials, including sand, cement and white clay were used to enhance the thermal cracking of HDPE. In addition, the catalytic effect of sodium hydroxide, HUSY and HBeta zeolite catalysts on the degradation of HDPE waste was also investigated. The reactor beds were found to significantly alter the yield as well as the product composition. Products such as paraffins (⩽C 44 ), olefins (⩽C 22 ), aromatics (⩽C 14 ) and alcohols (C 16 and C 17 ) were obtained at varying rates. The highest yield of liquid (82%) was obtained over a cement powder bed with a paraffin yield of 58%. The yield of paraffins and olefins followed separate paths, for paraffins it was found to increase in the order or Cement > White clay > Silica Sand, whereas for the olefins it was in the reverse order Silica Sand > White clay > Cement. The results obtained in this work exhibited a higher P/O ratio than expected, where the amount of generated paraffins was greater than 60% in most cases. Less olefin was generated as a consequence. This indicates that the product generated is more suited to be used as a fuel rather than as a chemical

  13. Numerical modelling for the effective thermal conductivity of lithium meta titanate pebble bed with different packing structures

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Maulik, E-mail: maulikpanchal@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Chaudhuri, Paritosh [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India); Van Lew, Jon T; Ying, Alice [UCLA, MAE Department, Los Angeles, CA 90095-1597 (United States)

    2016-11-15

    Highlights: • The effective thermal conductivity (k{sub eff}) of lithium meta-titanate (Li{sub 2}TiO{sub 3}) pebble beds is an important parameter for the design and analysis of TBM in ITER. • The k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds under stagnant helium gas have been determined numerically using different uniform packing structures and random close packing (RCP) structures. • k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds with different packing fractions have been reported as function of temperature; k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed is compared with reported experimental results. • The numerically-determined k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed agrees reasonably well with the experimental data and Zehner-Schlunder correlation. - Abstract: The effective thermal conductivity (k{sub eff}) of lithium meta-titanate (Li{sub 2}TiO{sub 3}) pebble beds is an important parameter for the design and analysis of IN LLCB TBM (Indian Lead Lithium Ceramic Breeder Test Blanket Module). The k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds under stagnant helium gas have been determined numerically using different uniform packing structures and random close packing (RCP) structures. The uniform packing structures of Li{sub 2}TiO{sub 3} pebble bed are modelled by using the simple cubic, body centered cubic and face centered cubic arrangement. The packing structure of the RCP bed of Li{sub 2}TiO{sub 3} pebbles is generated with the discrete element method (DEM) code. k{sub eff} of Li{sub 2}TiO{sub 3} pebble beds with different packing fractions have been reported as function of temperature; k{sub eff} of the RCP Li{sub 2}TiO{sub 3} pebble bed is compared with reported experimental results from literature. The numerically determined k{sub eff} of the Li{sub 2}TiO{sub 3} pebble bed agrees reasonably well with the experimental data.

  14. Evaluation of a commercial packed bed flow hydrogenator for reaction screening, optimization, and synthesis

    Directory of Open Access Journals (Sweden)

    Marian C. Bryan

    2011-08-01

    Full Text Available The performance of the ThalesNano H-Cube®, a commercial packed bed flow hydrogenator, was evaluated in the context of small scale reaction screening and optimization. A model reaction, the reduction of styrene to ethylbenzene through a 10% Pd/C catalyst bed, was used to examine performance at various pressure settings, over sequential runs, and with commercial catalyst cartridges. In addition, the consistency of the hydrogen flow was indirectly measured by in-line UV spectroscopy. Finally, system contamination due to catalyst leaching, and the resolution of this issue, is described. The impact of these factors on the run-to-run reproducibility of the H-Cube® reactor for screening and reaction optimization is discussed.

  15. Butanol production by bioconversion of cheese whey in a continuous packed bed reactor.

    Science.gov (United States)

    Raganati, F; Olivieri, G; Procentese, A; Russo, M E; Salatino, P; Marzocchella, A

    2013-06-01

    Butanol production by Clostridium acetobutylicum DSM 792 fermentation was investigated. Unsupplemented cheese whey was adopted as renewable feedstock. The conversion was successfully carried out in a biofilm packed bed reactor (PBR) for more than 3 months. The PBR was a 4 cm ID, 16 cm high glass tube with a 8 cm bed of 3mm Tygon rings, as carriers. It was operated at the dilution rate between 0.4h(-1) and 0.94 h(-1). The cheese whey conversion process was characterized in terms of metabolites production (butanol included), lactose conversion and biofilm mass. Under optimized conditions, the performances were: butanol productivity 2.66 g/Lh, butanol concentration 4.93 g/L, butanol yield 0.26 g/g, butanol selectivity of the overall solvents production 82 wt%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Mass transfer between a fluid and an immersed object in liquid–solid packed and fluidized beds

    Directory of Open Access Journals (Sweden)

    NEVENKA BOSKOVIC-VRAGOLOVIC

    2005-11-01

    Full Text Available Themass transfer coefficient between fluid and an immersed sphere in liquid packed and fluidized beds of inert spherical particles have been studied experimentally using a column 40 mm in diameter. The mass transfer data were obtained by studying the transfer of benzoic acid from the immersed sphere to flowing water using the dissolution method. In all runs, the mass transfer rates were determined in the presence of inert glass particles 0.50-2.98 mm in diameter. The influence of different parameters, such as: liquid velocity, particles size and bed voidage, on the mass transfer in packed and fluidized beds is presented. The obtained experimental data for mass transfer in the packed and particulate fluidized bed were correlated by a single correlation, thus confirming the similarity between the two systems.

  17. Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment

    Science.gov (United States)

    Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan

    2013-01-01

    Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and

  18. Abatement of toluene from gas streams via ferro-electric packed bed dielectric barrier discharge plasma.

    Science.gov (United States)

    Liang, Wenjun; Li, Jian; Li, Jie; Jin, Yuquan

    2009-10-30

    Destruction of gaseous toluene via ferro-electric packed bed dielectric barrier discharge plasma in a coaxial cylindrical reactor was carried out at atmospheric pressure and room temperature. The difference among three kinds of reactors was compared in terms of specific energy density (SED), energy yield (EY), toluene decomposition. In order to optimize the geometry of the reactor, the removal efficiency of toluene was compared for various inner electrode diameters. In addition, qualitative analysis on by-products and particular discussion on toluene abatement mechanisms were also presented. It has been found that ferro-electric packed bed DBD reactor could effectively decompose toluene. Toluene removal efficiency enhanced with increasing SED. With respect to toluene conversion, 1.62 mm electrode appeared to be superior to 1.06 mm electrodes. BaTiO3 reactor had the highest toluene removal efficiency among the reactors. For NaNO2 reactor, the highest EY could reach 17.0 mg/kWh to a certain extent.

  19. Abatement of toluene from gas streams via ferro-electric packed bed dielectric barrier discharge plasma

    International Nuclear Information System (INIS)

    Liang Wenjun; Li Jian; Li Jie; Jin Yuquan

    2009-01-01

    Destruction of gaseous toluene via ferro-electric packed bed dielectric barrier discharge plasma in a coaxial cylindrical reactor was carried out at atmospheric pressure and room temperature. The difference among three kinds of reactors was compared in terms of specific energy density (SED), energy yield (EY), toluene decomposition. In order to optimize the geometry of the reactor, the removal efficiency of toluene was compared for various inner electrode diameters. In addition, qualitative analysis on by-products and particular discussion on toluene abatement mechanisms were also presented. It has been found that ferro-electric packed bed DBD reactor could effectively decompose toluene. Toluene removal efficiency enhanced with increasing SED. With respect to toluene conversion, 1.62 mm electrode appeared to be superior to 1.06 mm electrodes. BaTiO 3 reactor had the highest toluene removal efficiency among the reactors. For NaNO 2 reactor, the highest EY could reach 17.0 mg/kWh to a certain extent.

  20. Phenols removal using ozonation-adsorption with granular activated carbon (GAC) in rotating packed bed reactor

    Science.gov (United States)

    Karamah, E. F.; Leonita, S.; Bismo, S.

    2018-01-01

    Synthetic wastewater containing phenols was treated using combination method of ozonation-adsorption with GAC (Granular Activated Carbon) in a packed bed rotating reactor. Ozone reacts quickly with phenol and activated carbon increases the oxidation process by producing hydroxyl radicals. Performance parameters evaluated are phenol removal percentage, the quantity of hydroxyl radical formed, changes in pH and ozone utilization, dissolved ozone concentration and ozone concentration in off gas. The performance of the combination method was compared with single ozonation and single adsorption. The influence of GAC dose and initial pH of phenols were evaluated in ozonation-adsorption method. The results show that ozonation-adsorption method generates more OH radicals than a single ozonation. Quantity of OH radical formation increases with increasing pH and quantity of the GAC. The combination method prove better performance in removing phenols. At the same operation condition, ozonation-adsorption method is capable of removing of 78.62% phenols as compared with single ozonation (53.15%) and single adsorption (36.67%). The increasing percentage of phenol removal in ozonation-adsorption method is proportional to the addition of GAC dose, solution pH, and packed bed rotator speed. Maximum percentage of phenol removal is obtained under alkaline conditions (pH 10) and 125 g of GAC

  1. Using crosslinkable diacetylene phospholipids to construct two-dimensional packed beds in supported lipid bilayer separation platforms

    Directory of Open Access Journals (Sweden)

    Shu-Kai Hu, Sheng-Wen Hsiao, Hsun-Yen Mao, Ya-Ming Chen, Yung Chang and Ling Chao

    2013-01-01

    Full Text Available Separating and purifying cell membrane-associated biomolecules has been a challenge owing to their amphiphilic property. Taking these species out of their native lipid membrane environment usually results in biomolecule degradation. One of the new directions is to use supported lipid bilayer (SLB platforms to separate the membrane species while they are protected in their native environment. Here we used a type of crosslinkable diacetylene phospholipids, diynePC (1,2-bis(10,12-tricosadiynoyl-sn-glycero-3-phosphocholine, as a packed material to create a 'two-dimensional (2D packed bed' in a SLB platform. After the diynePC SLB is exposed to UV light, some of the diynePC lipids in the SLB can crosslink and the non-crosslinked monomer lipids can be washed away, leaving a 2D porous solid matrix. We incorporated the lipid vesicle deposition method with a microfluidic device to pattern the location of the packed-bed region and the feed region with species to be separated in a SLB platform. Our atomic force microscopy result shows that the nano-scaled structure density of the '2D packed bed' can be tuned by the UV dose applied to the diynePC membrane. When the model membrane biomolecules were forced to transport through the packed-bed region, their concentration front velocities were found to decrease linearly with the UV dose, indicating the successful creation of packed obstacles in these 2D lipid membrane separation platforms.

  2. Investigations on a new internally-heated tubular packed-bed methanol–steam reformer

    KAUST Repository

    Nehe, Prashant

    2015-05-01

    Small-scale reformers for hydrogen production through steam reforming of methanol can provide an alternative solution to the demand of continuous supply of hydrogen gas for the operation of Proton Exchange Membrane Fuel Cells (PEMFCs). A packed-bed type reformer is one of the potential designs for such purpose. An externally heated reformer has issues of adverse lower temperature in the core of the reformer and significant heat loss to the environment thus impacting its performance. Experimental and numerical studies on a new concept of internally heated tubular packed-bed methanol-steam reformer have been reported in this paper with improved performance in terms of higher methanol conversion and reduced heat losses to surroundings. CuO/ZnO/Al2O3 is used as the catalyst for the methanol-steam reforming reaction and a rod-type electric heater at the center of the reactor is used for supplying necessary heat for endothermic steam reforming reaction. The vaporizer and the reformer unit with a constant volume catalyst bed are integrated in the annular section of a tubular reformer unit. The performance of the reformer was investigated at various operating conditions like feed rate of water-methanol mixture, mass of the catalyst and reforming temperature. The experimental and numerical results show that the methanol conversion and CO concentration increase with internal heating for a wide range of operating conditions. The developed reformer unit generates 50-80W (based on lower heating value) of hydrogen gas for applications in PEMFCs. For optimized design and operating conditions, the reformer unit produced 298sccm reformed gas containing 70% H2, 27% CO2 and 3% CO at 200-240°C which can produce a power output of 25-32W assuming 60% fuel cell efficiency and 80% of hydrogen utilization in a PEMFC. © 2015 Hydrogen Energy Publications, LLC.

  3. Aerobic biodegradation of a sulfonated phenylazonaphthol dye by a bacterial community immobilized in a multistage packed-bed BAC reactor.

    Science.gov (United States)

    Ruiz-Arias, Alfredo; Juárez-Ramírez, Cleotilde; de los Cobos-Vasconcelos, Daniel; Ruiz-Ordaz, Nora; Salmerón-Alcocer, Angélica; Ahuatzi-Chacón, Deifilia; Galíndez-Mayer, Juvencio

    2010-11-01

    A microbial community able to aerobically degrade the azo dye Acid Orange 7 was selected from riparian or lacustrine sediments collected at sites receiving textile wastewaters. Three bacterial strains, pertaining to the genera Pseudomonas, Arthrobacter, and Rhizobium, constitute the selected community. The biodegradation of AO7 was carried out in batch-suspended cell culture and in a continuously operated multistage packed-bed BAC reactor. The rapid decolorization observed in batch culture, joined to a delay of about 24 h in COD removal and cell growth, suggests that enzymes involved in biodegradation of the aromatic amines generated after AO7 azo-bond cleavage (1-amino-2-naphthol [1-A2N] and 4-aminobenzenesulfonic acid [4-ABS]), are inducible in this microbial consortium. After this presumptive induction period, the accumulated byproducts, measured through COD, were partially metabolized and transformed in cell mass. At all azo dye loading rates used, complete removal of AO7 and 1-A2N was obtained in the multistage packed-bed BAC reactor (PBR).; however, the overall COD (eta ( COD )) and 4-ABS (eta ( ABS )) removal efficiencies obtained in steady state continuous culture were about 90%. Considering the toxicity of 1-A2N, its complete removal has particular relevance. In the first stages of the packed-bed BAC reactor (Fig. 4a-c), major removal was observed. In the last stage, only a slight removal of COD and 4-ABS was obtained. Comparing to several reported studies, the continuously operated multistage packed-bed BAC reactor showed similar or superior results. In addition, the operation of large-packed-bed BAC reactors could be improved by using several shallow BAC bed stages, because the pressure drop caused by bed compaction of a support material constituted by small and fragile particles can be reduced.

  4. Deuterium exchange reaction between hydrogen and water in a trickle-bed column packed with novel catalysts

    International Nuclear Information System (INIS)

    Ahn, D. H.; Baek, S. W.; Lee, H. S.; Kim, K. R.; Kang, H. S.; Lee, S. H.; Jeong, H. S.

    1998-01-01

    The activity of a novel catalyst (Pt/SDBC) for deuterium exchange reaction between water and hydrogen streams in a trickle bed was measured. The performance of the catalyst was compared with a commercial catalyst with same metal content. The catalytic activity for the bed of wet-proofed catalyst diluted with hydrophillic packing material also measured. The Pt/SDBC catalyst shows higher activity in the liquid phase reaction than the commercial catalyst as measured in the vapor phase reaction. The performance for 50% dilution of the Pt/SDBC catalyst bed with hydrophillic packing material is better than that of the 100% bed due to more liquid holdup and better water distribution

  5. Experiments on forced convection form a horizontal heated plate in a packed bed of glass spheres

    Energy Technology Data Exchange (ETDEWEB)

    Renken, K.J. (Univ. of Wisconsin, Milwaukee (USA)); Poulikakos, D. (Univ. of Illinois, Chicago (USA))

    1989-02-01

    This paper presents an experimental investigation of boundary-layer forced convective heat transfer from a flat isothermal plate in a packed bed of spheres. Extensive experimental results are reported for the thermal boundary-layer thickness, the temperature field, and the local wall heat flux (represented by the local Nusselt number). Theoretical findings of previous investigations using the Darcy flow model as well as a general model for themomentum equation accouting for flow inertia and macroscopic shear wtih and without variable porosity are used to evaluate the theoretical models. Several trends are revealed regarding the conditions of validity of these flow models. Overall the general flow model including variable porosity appears to perform better, even through the need for serious improvements in modeling becomes apparent.

  6. High throughput photo-oxidations in a packed bed reactor system.

    Science.gov (United States)

    Kong, Caleb J; Fisher, Daniel; Desai, Bimbisar K; Yang, Yuan; Ahmad, Saeed; Belecki, Katherine; Gupton, B Frank

    2017-12-01

    The efficiency gains produced by continuous-flow systems in conducting photochemical transformations have been extensively demonstrated. Recently, these systems have been used in developing safe and efficient methods for photo-oxidations using singlet oxygen generated by photosensitizers. Much of the previous work has focused on the use of homogeneous photocatalysts. The development of a unique, packed-bed photoreactor system using immobilized rose bengal expands these capabilities as this robust photocatalyst allows access to and elaboration from these highly useful building blocks without the need for further purification. With this platform we were able to demonstrate a wide scope of singlet oxygen ene, [4+2] cycloadditions and heteroatom oxidations. Furthermore, we applied this method as a strategic element in the synthesis of the high-volume antimalarial artemisinin. Copyright © 2017. Published by Elsevier Ltd.

  7. Single and double pass solar air heaters with wire mesh as packing bed

    Energy Technology Data Exchange (ETDEWEB)

    Aldabbagh, L.B.Y.; Egelioglu, F. [Mechanical Engineering Department, Eastern Mediterranean University, Magosa, Mersin 10 (Turkey); Ilkan, M. [School of Computing and Tecnology, Eastern Mediterranean University, Magosa, Mersin 10 (Turkey)

    2010-09-15

    The thermal performances of single and double pass solar air heaters with steel wire mesh layers are used instead of a flat absorber plate are investigated experimentally. The effects of mass flow rate of air on the outlet temperature and thermal efficiency were studied. The results indicate that the efficiency increases with increasing the mass flow rate for the range of the flow rate used in this work between 0.012 and 0.038 kg/s. For the same flow rate, the efficiency of the double pass is found to be higher than the single pass by 34-45%. Moreover, the maximum efficiencies obtained for the single and the double pass air collectors are 45.93 and 83.65% respectively for the mass flow rate of 0.038 kg/s. Comparison of the results of a packed bed collector with those of a conventional collector shows a substantial enhancement in the thermal efficiency. (author)

  8. Phenol degradation in an anaerobic fluidized bed reactor packed with low density support materials

    Directory of Open Access Journals (Sweden)

    G. P. Sancinetti

    2012-03-01

    Full Text Available The objective of this research was to study phenol degradation in anaerobic fluidized bed reactors (AFBR packed with polymeric particulate supports (polystyrene - PS, polyethylene terephthalate - PET, and polyvinyl chloride - PVC. The reactors were operated with a hydraulic retention time (HRT of 24 h. The influent phenol concentration in the AFBR varied from 100 to 400 mg L-1, resulting in phenol removal efficiencies of ~100%. The formation of extracellular polymeric substances yielded better results with the PVC particles; however, deformations in these particles proved detrimental to reactor operation. PS was found to be the best support for biomass attachment in an AFBR for phenol removal. The AFBR loaded with PS was operated to analyze the performance and stability for phenol removal at feed concentrations ranging from 50 to 500 mg L-1. The phenol removal efficiency ranged from 90-100%.

  9. Sequential UASB and dual media packed-bed reactors for domestic wastewater treatment - experiment and simulation.

    Science.gov (United States)

    Rodríguez-Gómez, Raúl; Renman, Gunno

    2016-01-01

    A wastewater treatment system composed of an upflow anaerobic sludge blanket (UASB) reactor followed by a packed-bed reactor (PBR) filled with Sorbulite(®) and Polonite(®) filter material was tested in a laboratory bench-scale experiment. The system was operated for 50 weeks and achieved very efficient total phosphorus (P) removal (99%), 7-day biochemical oxygen demand removal (99%) and pathogenic bacteria reduction (99%). However, total nitrogen was only moderately reduced in the system (40%). A model focusing on simulation of organic material, solids and size of granules was then implemented and validated for the UASB reactor. Good agreement between the simulated and measured results demonstrated the capacity of the model to predict the behaviour of solids and chemical oxygen demand, which is critical for successful P removal and recovery in the PBR.

  10. Investigation of the Time Evolution and Species Production in a 2-Dimensional Packed Bed Reactor

    Science.gov (United States)

    Engeling, Kenneth; Kruszelnicki, Juliusz; Kushner, Mark; Foster, John

    2016-09-01

    Plasma production in microporous media has potential to enable a number of technologies ranging from flameless combustion to environmental hazard mitigation addressing air borne pollutants. Packed bed reactors (PBRs) is one such technology that relies on plasma production in microporous media. The physics of plasma production and transport in such media however remains poorly understood. In order to better understand the plasma propagation and plasma driven chemical reaction within microporous media, absorption spectroscopy and time-resolved imaging diagnostics are being utilized. We report on plasma driven species formation and plasma discharge spatial structure and evolution characteristics found in the 2-dimensional representation of a PBR. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  11. Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor.

    Science.gov (United States)

    Napoli, Fabio; Olivieri, Giuseppe; Russo, Maria Elena; Marzocchella, Antonio; Salatino, Piero

    2010-06-01

    In this study, we report on a butanol production process by immobilized Clostridium acetobutylicum in a continuous packed bed reactor (PBR) using Tygon rings as a carrier. The medium was a solution of lactose (15-30 g/L) and yeast extract (3 g/L) to emulate the cheese whey, an abundant lactose-rich wastewater. The reactor was operated under controlled conditions with respect to the pH and to the dilution rate. The pH and the dilution rate ranged between 4 and 5, the dilution rate between 0.54 and 2.4 h(-1) (2.5 times the maximum specific growth rate assessed for suspended cells). The optimal performance of the reactor was recorded at a dilution rate of 0.97 h(-1): the butanol productivity was 4.4 g/Lh and the selectivity of solvent in butanol was 88%(w).

  12. Measurements of the purge helium pressure drop across pebble beds packed with lithium orthosilicate and glass pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Sena, Ali, E-mail: ali.abou-sena@kit.edu; Arbeiter, Frederik; Boccaccini, Lorenzo V.; Schlindwein, Georg

    2014-10-15

    Highlights: • The objective is to measure the purge helium pressure drop across various HCPB-relevant pebble beds packed with lithium orthosilicate and glass pebbles. • The purge helium pressure drop significantly increases with decreasing the pebbles diameter from one run to another. • At the same superficial velocity, the pressure drop is directly proportional to the helium inlet pressure. • The Ergun's equation can successfully model the purge helium pressure drop for the HCPB-relevant pebble beds. • The measured values of the purge helium pressure drop for the lithium orthosilicate pebble bed will support the design of the purge gas system for the HCPB breeder units. - Abstract: The lithium orthosilicate pebble beds of the Helium Cooled Pebble Bed (HCPB) blanket are purged by helium to transport the produced tritium to the tritium extraction system. The pressure drop of the purge helium has a direct impact on the required pumping power and is a limiting factor for the purge mass flow. Therefore, the objective of this study is to measure the helium pressure drop across various HCPB-relevant pebble beds packed with lithium orthosilicate and glass pebbles. The pebble bed was formed by packing the pebbles into a stainless steel cylinder (ID = 30 mm and L = 120 mm); then it was integrated into a gas loop that has four variable-speed side-channel compressors to regulate the helium mass flow. The static pressure was measured at two locations (100 mm apart) along the pebble bed and at inlet and outlet of the pebble bed. The results demonstrated that: (i) the pressure drop significantly increases with decreasing the pebbles diameter, (ii) for the same superficial velocity, the pressure drop is directly proportional to the inlet pressure, and (iii) predictions of Ergun's equation agree well with the experimental results. The measured pressure drop for the lithium orthosilicate pebble bed will support the design of the purge gas system for the HCPB.

  13. Process integration for biological sulfate reduction in a carbon monoxide fed packed bed reactor.

    Science.gov (United States)

    Kumar, Manoj; Sinharoy, Arindam; Pakshirajan, Kannan

    2018-05-09

    This study examined immobilized anaerobic biomass for sulfate reduction using carbon monoxide (CO) as the sole carbon source under batch and continuous fed conditions. The immobilized bacteria with beads made of 10% polyvinyl alcohol (PVA) showed best results in terms of sulfate reduction (84 ± 3.52%) and CO utilization (98 ± 1.67%). The effect of hydraulic retention time (HRT), sulfate loading rate and CO loading rate on sulfate and CO removal was investigated employing a 1L packed bed bioreactor containing the immobilized biomass. At 48, 24 and 12 h HRT, the sulfate removal was 94.42 ± 0.15%, 89.75 ± 0.47% and 61.08 ± 0.34%, respectively, along with a CO utilization of more than 90%. The analysis of variance (ANOVA) of the results obtained showed that only the initial CO concentration significantly affected the sulfate reduction process. The reactor effluent sulfate concentrations were 27.41 ± 0.44, 59.16 ± 1.08, 315.83 ± 7.33 mg/L for 250, 500 and 1000 mg/L of influent sulfate concentrations respectively, under the optimum operating conditions. The sulfate reduction rates matched well with low inlet sulfate loading rates, indicating stable performance of the bioreactor system. Overall, this study yielded very high sulfate reduction efficiency by the immobilized anaerobic biomass under high CO loading condition using the packed bed reactor system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Thermo-mechanical parametric analysis of packed-bed thermocline energy storage tanks

    International Nuclear Information System (INIS)

    González, Ignacio; Pérez-Segarra, Carlos David; Lehmkuhl, Oriol; Torras, Santiago; Oliva, Assensi

    2016-01-01

    Highlights: • A numerical model of packed-bed thermocline thermal storage for CSP is presented. • Up-to-date commercial configurations are tested both thermally and structurally. • Promising thermal performance is obtained with a temperature difference of 100 °C. • Reliable factors of safety against material yielding and ratcheting can be obtained. • Cyclic relaxation-traction elastic wall stresses arise with plant normal operation. - Abstract: A packed-bed thermocline tank represents a proved cheaper thermal energy storage for concentrated solar power plants compared with the commonly-built two-tank system. However, its implementation has been stopped mainly due to the vessel’s thermal ratcheting concern, which would compromise its structural integrity. In order to have a better understanding of the commercial viability of thermocline approach, regarding energetic effectiveness and structural reliability, a new numerical simulation platform has been developed. The model dynamically solves and couples all the significant components of the subsystem, being able to evaluate its thermal and mechanical response over plant normal operation. The filler material is considered as a cohesionless bulk solid with thermal expansion. For the stresses on the tank wall the general thermoelastic theory is used. First, the numerical model is validated with the Solar One thermocline case, and then a parametric analysis is carried out by settling this storage technology in two real plants with a temperature rise of 100 °C and 275 °C. The numerical results show a better storage performance together with the lowest temperature difference, but both options achieve suitable structural factors of safety with a proper design.

  15. Synthesis of Biodiesel in Batch and Packed-Bed Reactors Using Powdered and Granular Sugar Catalyst

    Science.gov (United States)

    Janaun, J.; Lim, P. M.; Balan, W. S.; Yaser, A. Z.; Chong, K. P.

    2017-06-01

    Increasing world production of palm oil warrants effective utilization of its waste. In particular, conversion of waste cooking oil into biodiesel has obtained global interest because of renewable energy need and reduction of CO2 emission. In this study, oleic acid used as a model compound for waste cooking oil conversion using esterification reaction catalysed by sugar catalyst (SC) in powdered (P-SC) and granular (G-SC) forms. The catalysts were synthesized via incomplete carbonization of D-glucose followed by functionalization with concentrated sulphuric acid. Catalysts characterizations were done for their physical and chemical properties using modern tools. Batch and packed-bed reactor systems were used to evaluate the reactivity of the catalysts. The results showed that G-SC had slightly higher total acidity and more porous than P-SC. The experimental conditions for batch reaction were temperature of 60°C, molar ratio of 1:20 (Oleic Acid:Methanol) and 2 wt. catalyst with respect to oleic acid. The results showed the maximum oleic acid conversion using G-SC and P-SC were 52 and 48, respectively. Whereas, the continuous reaction with varying feed flow rate as a function of retention time was studied by using 3 g of P-SC in 60 °C and 1:20 molar ratio in a packed-bed reactor. The results showed that a longer retention time which was 6.48 min and feed flow rate 1.38 ml/min, achieved higher average conversion of 9.9 and decreased with further increasing flow rate. G-SC showed a better average conversion of 10.8 at lowest feed flow rate of 1.38 ml/min in continuous reaction experiments. In a broader perspective, large scale continuous biodiesel production is feasible using granular over powdered catalyst mainly due to it lower pressure drop.

  16. Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors.

    Science.gov (United States)

    Yan, Lei; Chen, Peng; Zhang, Shuang; Li, Suyue; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-10-06

    We performed the biotransformation of ferulic acid to vanillin using Bacillus subtilis (B. subtilis) in the stirring packed-bed reactors filled with carbon fiber textiles (CFT). Scanning electron microscope (SEM), HPLC, qRT-PCR and ATP assay indicated that vanillin biotransformation is tightly related to cell growth, cellar activity and the extent of biofilm formation. The biotransformation was affected by hydraulic retention time (HRT), temperature, initial pH, stirring speed and ferulic acid concentration, and the maximum vanillin production was obtained at 20 h, 35 °C, 9.0, 200 rpm, 1.5 g/L, respectively. Repeated batch biotransformation performed under this optimized condition showed that the maximum productivity (0.047 g/L/h) and molar yield (60.43%) achieved in immobilized cell system were 1.84 and 3.61 folds higher than those achieved in free cell system. Therefore, the stirring reactor packed with CFT carrier biofilm formed by B. subtilis represented a valid biocatalytic system for the production of vanillin.

  17. Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds.

    Science.gov (United States)

    Sankey, M H; Holland, D J; Sederman, A J; Gladden, L F

    2009-02-01

    Single-phase liquid flow in porous media such as bead packs and model fixed bed reactors has been well studied by MRI. To some extent this early work represents the necessary preliminary research to address the more challenging problem of two-phase flow of gas and liquid within these systems. In this paper, we present images of both the gas and liquid velocities during stable liquid-gas flow of water and SF(6) within a packing of 5mm spheres contained within columns of diameter 40 and 27 mm; images being acquired using (1)H and (19)F observation for the water and SF(6), respectively. Liquid and gas flow rates calculated from the velocity images are in agreement with macroscopic flow rate measurements to within 7% and 5%, respectively. In addition to the information obtained directly from these images, the ability to measure liquid and gas flow fields within the same sample environment will enable us to explore the validity of assumptions used in numerical modelling of two-phase flows.

  18. Modeling and simulation of a packed bed reactor for hydrogen by methanol steam reforming

    International Nuclear Information System (INIS)

    Aboudheir, A.; Idem, R.

    2004-01-01

    'Full text:' The performance of a catalytic packed bed tubular reactor for hydrogen production depends on mass transport characteristics and temperature distribution in the reactor. To accurately predict this performance, a rigorous numerical model has been developed based on coupled mass, energy, and momentum balance equations in cylindrical coordinates. This comprehensive model takes into account the variations of the concentration and temperature in both the axial and radial directions as well as the pressure drop along the packed reactor. Also, experimental measurements for hydrogen production were collected using a manganese-promoted co-precipitated Cu-Al catalyst for methanol-steam reforming in a micro-reactor having 10 mm i.d. and 460 mm overall length. The operating temperature ranged from 443 to 523 K and the space-time ranged from 0.1 to 2.5 kg cat h/kmol CH3OH. The simulation results were found to be in close agreement with the experimental data over the various operating conditions. This confirms the validity of both the numerical model of this work and our previous published kinetics models for this reaction system. In addition, the model formulation is applicable to handle reactions, not only for the microreactor presented in this work, but also, for other laboratory size and industrial scale processes for hydrogen production by hydrocarbon reformation. (author)

  19. Power generation by packed-bed air-cathode microbial fuel cells

    KAUST Repository

    Zhang, Xiaoyuan

    2013-08-01

    Catalysts and catalyst binders are significant portions of the cost of microbial fuel cell (MFC) cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. Packed-bed air-cathodes were constructed without expensive binders or diffusion layers using four inexpensive carbon-based materials. Cathodes made from activated carbon produced the largest maximum power density of 676±93mW/m2, followed by semi-coke (376±47mW/m2), graphite (122±14mW/m2) and carbon felt (60±43mW/m2). Increasing the mass of activated carbon and semi-coke from 5 to ≥15g significantly reduced power generation because of a reduction in oxygen transfer due to a thicker water layer in the cathode (~3 or ~6cm). These results indicate that a thin packed layer of activated carbon or semi-coke can be used to make inexpensive air-cathodes for MFCs. © 2013 Elsevier Ltd.

  20. Porous structure analysis of large-scale randomly packed pebble bed in high temperature gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cheng; Yang, Xingtuan; Liu, Zhiyong; Sun, Yanfei; Jiang, Shengyao [Tsinghua Univ., Beijing (China). Key Laboratory of Advanced Reactor Engineering and Safety; Li, Congxin [Ministry of Environmental Protection of the People' s Republic of China, Beijing (China). Nuclear and Radiation Safety Center

    2015-02-15

    A three-dimensional pebble bed corresponding to the randomly packed bed in the heat transfer test facility built for the High Temperature Reactor Pebble bed Modules (HTR-PM) in Shandong Shidaowan is simulated via discrete element method. Based on the simulation, we make a detailed analysis on the packing structure of the pebble bed from several aspects, such as transverse section image, longitudinal section image, radial and axial porosity distributions, two-dimensional porosity distribution and coordination number distribution. The calculation results show that radial distribution of porosity is uniform in the center and oscillates near the wall; axial distribution of porosity oscillates near the bottom and linearly varies along height due to effect of gravity; the average coordination number is about seven and equals to the maximum coordination number frequency. The fully established three-dimensional packing structure analysis of the pebble bed in this work is of fundamental significance to understand the flow and heat transfer characteristics throughout the pebble-bed type structure.

  1. Experimental and Numerical Research Activity on a Packed Bed TES System

    Directory of Open Access Journals (Sweden)

    Mario Cascetta

    2016-09-01

    Full Text Available This paper presents the results of experimental and numerical research activities on a packed bed sensible thermal energy storage (TES system. The TES consists of a cylindrical steel tank filled with small alumina beads and crossed by air used as the heat transfer fluid. Experimental tests were carried out while varying some operating parameters such as the mass flow rate, the inlet–outlet temperature thresholds and the aspect ratio (length over diameter. Numerical simulations were carried out using a one-dimensional model, specifically developed in the Matlab-Simulink environment and a 2D axisymmetric model based on the ANSYS-Fluent platform. Both models are based on a two-equation transient approach to calculate fluid and solid phase temperatures. Thermodynamic properties were considered to be temperature-dependent and, in the Computational Fluid Dynamics (CFD model, variable porosity of the bed in the radial direction, thermal losses and the effective conductivity of the alumina beads were also considered. The simulation results of both models were compared to the experimental ones, showing good agreement. The one-dimensional model has the advantage of predicting the axial temperature distribution with a very low computational cost, but it does not allow calculation of the correct energy stored when the temperature distribution is strongly influenced by the wall. To overcome this problem a 2D CFD model was used in this work.

  2. Pt-catalyzed ozonation of aqueous phenol solution using high-gravity rotating packed bed

    International Nuclear Information System (INIS)

    Chang, Chia-Chi; Chiu, Chun-Yu; Chang, Ching-Yuan; Chang, Chiung-Fen; Chen, Yi-Hung; Ji, Dar-Ren; Tseng, Jyi-Yeong; Yu, Yue-Hwa

    2009-01-01

    In this study, a high-gravity rotating packed bed (HGRPB or HG) was used as a catalytic ozonation (Cat-OZ) reactor to decompose phenol. The operation of HGRPB system was carried out in a semi-batch apparatus which combines two major parts, namely the rotating packed bed (RPB) and photo-reactor (PR). The high rotating speed of RPB can give a high volumetric gas-liquid mass transfer coefficient with one or two orders of magnitude higher than those in the conventional packed beds. The platinum-containing catalyst (Dash 220N, Pt/γ-Al 2 O 3 ) and activated alumina (γ-Al 2 O 3 ) were packed in the RPB respectively to adsorb molecular ozone and the target pollutant of phenol on the surface to catalyze the oxidation of phenol. An ultra violet (UV) lamp (applicable wavelength λ = 200-280 nm) was installed in the PR to enhance the self-decomposition of molecular ozone in water to form high reactive radical species. Different combinations of advanced oxidation processes (AOPs) with the HGRPB for the degradation of phenol were tested. These included high-gravity OZ (HG-OZ), HG catalytic OZ (HG-Cat-OZ), HG photolysis OZ (HG-UV-OZ) and HG-Cat-OZ with UV (HG-Cat-UV-OZ). The decomposition efficiency of total organic compound (η TOC ) of HG-UV-OZ with power of UV (P UV ) of 16 W is 54% at applied dosage of ozone per volume sample m A,in = 1200 mg L -1 (reaction time t = 20 min), while that of HG-OZ without the UV irradiation is 24%. After 80 min oxidation (m A,in = 4800 mg L -1 ), the η TOC of HG-UV-OZ is as high as 94% compared to 82% of HG-OZ process. The values of η TOC for HG-Cat-OZ process with m S = 42 g are 56% and 87% at m A,in = 1200 and 4800 mg L -1 , respectively. By increasing the catalyst mass to 77 g, the η TOC for the HG-Cat-OZ process reaches 71% and 90% at m A,in = 1200 and 4800 mg L -1 , respectively. The introduction of Pt/γ-Al 2 O 3 as well as UV irradiation in the HG-OZ process can enhance the η TOC of phenol significantly, while γ-Al 2 O 3 exhibits

  3. Modeling the competitive effect of ammonium oxidizers and heterotrophs on the degradation of MTBE in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    A mathematical model was used to study effects on the degradation of methyl tert-butyl ether (MTBE) in a packed bed reactor due to the presence of contaminants such as ammonium, and the mix of benzene, toluene, ethylbenzene and xylenes (BTEX). It was shown that competition between the slower...

  4. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor

    NARCIS (Netherlands)

    de Best, JH; Hunneman, P; Doddema, HJ; Janssen, DB; Harder, W; Doddema, Hans J.

    1999-01-01

    Carbon tetrachloride (52 mu M) was biodegraded for more than 72% in an anaerobic packed-bed reactor without addition of an external electron donor. The chloride mass balance demonstrated that all carbon tetrachloride transformed was completely dechlorinated. Chloroform and dichloromethane were

  5. Integration of coal gasification and packed bed CLC for high efficiency and near-zero emission power generation

    NARCIS (Netherlands)

    Spallina, V.; Romano, M.C.; Chiesa, P.; Gallucci, F.; Sint Annaland, van M.; Lozza, G.

    2014-01-01

    A detailed thermodynamic analysis has been carried out of large-scale coal gasification-based power plant cycles with near zero CO2 emissions, integrated with chemical looping combustion (CLC). Syngas from coal gasification is oxidized in dynamically operated packed bed reactors (PBRs), generating a

  6. Reactor design and operation strategies for a large-scale packed-bed CLC power plant with coal syngas

    NARCIS (Netherlands)

    Spallina, V.; Chiesa, P.; Martelli, E; Gallucci, F.; Romano, M.C.; Lozza, G.; Sint Annaland, van M.

    2015-01-01

    This paper deals with the design and operation strategies of dynamically operated packed-bed reactors (PBRs) of a chemical looping combustion (CLC) system included in an integrated gasification combined cycle (IGCC) for electric power generation with low CO2 emission from coal. The CLC reactors,

  7. Chemical looping reforming in packed-bed reactors : modelling, experimental validation and large-scale reactor design

    NARCIS (Netherlands)

    Spallina, V.; Marinello, B.; Gallucci, F.; Romano, M.C.; van Sint Annaland, M.

    This paper addresses the experimental demonstration and model validation of chemical looping reforming in dynamically operated packed-bed reactors for the production of H2 or CH3OH with integrated CO2 capture. This process is a combination of auto-thermal and steam methane reforming and is carried

  8. Transformation of carbon tetrachloride in an anaerobic packed-bed reactor without addition of another electron donor

    NARCIS (Netherlands)

    Best, J.H. de; Hunneman, P.; Doddema, H.J.; Janssen, D.B.; Harder, W.

    1999-01-01

    Carbon tetrachloride (52 μM) was biodegraded for more than 72% in an anaerobic packed-bed reactor without addition of an external electron donor. The chloride mass balance demonstrated that all carbon tetrachloride transformed was completely dechlorinated. Chloroform and dichloromethane were

  9. Computational study of fluid flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio

    International Nuclear Information System (INIS)

    Yang, Jian; Wu, Jiangquan; Zhou, Lang; Wang, Qiuwang

    2016-01-01

    Highlights: • Flow and heat transfer in composite packed beds with low d_t/d_p_e are investigated. • The wall effect would be restrained with radially layered composite packing (RLM). • Heat flux and overall heat transfer efficiency can be improved with RLM packing. - Abstract: The effect of the tube wall on the fluid flow and heat transfer would be important in the packed bed with low tube to particle diameter ratio, which may lead to flow and temperature maldistributions inside, and the heat transfer performance may be lowered. In the present paper, the flow and heat transfer performances in both the composite and uniform packed beds of spheres with low tube to particle diameter were numerically investigated, where the composite packing means randomly packing with non-uniform spheres and the uniform packing means randomly packing with uniform spheres, including radially layered composite packing (RLM), axially layered composite packing (ALM), randomly composite packing (RCM) and randomly uniform packing (RPM). Both the composite and uniform packings were generated with discrete element method (DEM), and the influence of the wall effect on the flow and heat transfer in the packed beds were carefully studied and compared with each other. Firstly, it is found that, the wall effect on the velocity and temperature distributions in the randomly packed bed of uniform spheres (RPM) with low tube to particle diameter ratio were obvious. The average velocity of the near-tube-wall region is higher than that of the inner-tube region in the bed. When the tube wall is adiabatic, the average temperature of the near-tube-wall region is lower. With radially layered composite packing method (RLM), smaller pores would be formed close to the tube wall and big flow channels would be formed in the inner-tube region of the bed, which would be benefit to restrain the wall effect and improve heat transfer in the bed with low tube to particle diameter ratio. Furthermore, it is also

  10. Computational study of fluid flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jian, E-mail: yangjian81@mail.xjtu.edu.cn [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Wu, Jiangquan [CSR Research of Electrical Technology and Material Engineering, Zhuzhou, Hunan 412001 (China); Zhou, Lang; Wang, Qiuwang [Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China)

    2016-04-15

    Highlights: • Flow and heat transfer in composite packed beds with low d{sub t}/d{sub pe} are investigated. • The wall effect would be restrained with radially layered composite packing (RLM). • Heat flux and overall heat transfer efficiency can be improved with RLM packing. - Abstract: The effect of the tube wall on the fluid flow and heat transfer would be important in the packed bed with low tube to particle diameter ratio, which may lead to flow and temperature maldistributions inside, and the heat transfer performance may be lowered. In the present paper, the flow and heat transfer performances in both the composite and uniform packed beds of spheres with low tube to particle diameter were numerically investigated, where the composite packing means randomly packing with non-uniform spheres and the uniform packing means randomly packing with uniform spheres, including radially layered composite packing (RLM), axially layered composite packing (ALM), randomly composite packing (RCM) and randomly uniform packing (RPM). Both the composite and uniform packings were generated with discrete element method (DEM), and the influence of the wall effect on the flow and heat transfer in the packed beds were carefully studied and compared with each other. Firstly, it is found that, the wall effect on the velocity and temperature distributions in the randomly packed bed of uniform spheres (RPM) with low tube to particle diameter ratio were obvious. The average velocity of the near-tube-wall region is higher than that of the inner-tube region in the bed. When the tube wall is adiabatic, the average temperature of the near-tube-wall region is lower. With radially layered composite packing method (RLM), smaller pores would be formed close to the tube wall and big flow channels would be formed in the inner-tube region of the bed, which would be benefit to restrain the wall effect and improve heat transfer in the bed with low tube to particle diameter ratio. Furthermore, it

  11. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    Directory of Open Access Journals (Sweden)

    Jafari Mohammad Javad

    2012-12-01

    Full Text Available Abstract The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p 3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream.

  12. Mass balance and isotope effects during nitrogen transport through septic tank systems with packed-bed (sand) filters

    Science.gov (United States)

    Hinkle, S.R.; Böhlke, J.K.; Fisher, L.H.

    2008-01-01

    Septic tank systems are an important source of NO3- to many aquifers, yet characterization of N mass balance and isotope systematics following septic tank effluent discharge into unsaturated sediments has received limited attention. In this study, samples of septic tank effluent before and after transport through single-pass packed-bed filters (sand filters) were evaluated to elucidate mass balance and isotope effects associated with septic tank effluent discharge to unsaturated sediments. Chemical and isotopic data from five newly installed pairs and ten established pairs of septic tanks and packed-bed filters serving single homes in Oregon indicate that aqueous solute concentrations are affected by variations in recharge (precipitation, evapotranspiration), NH4+ sorption (primarily in immature systems), nitrification, and gaseous N loss via NH3 volatilization and(or) N2 or N2O release during nitrification/denitrification. Substantial NH4+ sorption capacity was also observed in laboratory columns with synthetic effluent. Septic tank effluent ??15N-NH4+ values were almost constant and averaged + 4.9??? ?? 0.4??? (1 ??). In contrast, ??15N values of NO3- leaving mature packed-bed filters were variable (+ 0.8 to + 14.4???) and averaged + 7.2??? ?? 2.6???. Net N loss in the two networks of packed-bed filters was indicated by average 10-30% decreases in Cl--normalized N concentrations and 2-3??? increases in ??15N, consistent with fractionation accompanying gaseous N losses and corroborating established links between septic tank effluent and NO3- in a local, shallow aquifer. Values of ??18O-NO3- leaving mature packed-bed filters ranged from - 10.2 to - 2.3??? (mean - 6.4??? ?? 1.8???), and were intermediate between a 2/3 H2O-O + 1/3 O2-O conceptualization and a 100% H2O-O conceptualization of ??18O-NO3- generation during nitrification.

  13. Hexavalent chromium reduction in a sulfur reducing packed-bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Sahinkaya, Erkan, E-mail: erkansahinkaya@yahoo.com [Department of Bioengineering, Istanbul Medeniyet University, Goeztepe, Istanbul (Turkey); Kilic, Adem [Department of Environmental Engineering, Harran University, Osmanbey Campus, 63000 Sanliurfa (Turkey); Altun, Muslum [Department of Chemistry, Hacettepe University, Beytepe, Ankara (Turkey); Komnitsas, Kostas [Department of Mineral Resources Engineering, Technical University of Crete, 73100 Chania (Greece); Lens, Piet N.L. [Unesco-IHE Institute for Water Education, Westvest 7, Delft 2611 AX (Netherlands)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Elemental sulfur can be used as electron acceptor for sulfide production. Black-Right-Pointing-Pointer Biogenically produced sulfide reduces Cr(VI) to the much less toxic and immobile form of Cr(III). Black-Right-Pointing-Pointer Sulfur packed bioreactor is efficient for Cr(VI) containing wastewater treatment. Black-Right-Pointing-Pointer Reduced form of chromium precipitates in the bioreactor. - Abstract: The most commonly used approach for the detoxification of hazardous industrial effluents and wastewaters containing Cr(VI) is its reduction to the much less toxic and immobile form of Cr(III). This study investigates the cleanup of Cr(VI) containing wastewaters using elemental sulfur as electron acceptor, for the production of hydrogen sulfide that induces Cr(VI) reduction. An elemental sulfur reducing packed-bed bioreactor was operated at 28-30 Degree-Sign C for more than 250 days under varying influent Cr(VI) concentrations (5.0-50.0 mg/L) and hydraulic retention times (HRTs, 0.36-1.0 day). Ethanol or acetate (1000 mg/L COD) was used as carbon source and electron donor. The degree of COD oxidation varied between 30% and 85%, depending on the operating conditions and the type of organic carbon source. The oxidation of organic matter was coupled with the production of hydrogen sulfide, which reached a maximum concentration of 750 mg/L. The biologically produced hydrogen sulfide reduced Cr(VI) chemically to Cr(III) that precipitated in the reactor. Reduction of Cr(VI) and removal efficiency of total chromium always exceeded 97% and 85%, respectively, implying that the reduced chromium was retained in the bioreactor. This study showed that sulfur can be used as an electron acceptor to produce hydrogen sulfide that induces efficient reduction and immobilization of Cr(VI), thus enabling decontamination of Cr(VI) polluted wastewaters.

  14. Packed bed reactor for degradation of simulated cyanide-containing wastewater.

    Science.gov (United States)

    Kumar, Virender; Kumar, Vijay; Bhalla, Tek Chand

    2015-10-01

    The discharge of cyanide-containing effluents into the environment contaminates water bodies and soil. Effective methods of treatment which can detoxify cyanide are the need of the hour. The aim of the present study is to develop a bioreactor for complete degradation of cyanide using immobilized cells of Serratia marcescens RL2b. Alginate-entrapped cells of S. marcescens RL2b were used for complete degradation of cyanide in a packed bed reactor (PBR). Cells grown in minimal salt medium (pH 6.0) were harvested after 20 h and exhibited 0.4 U mg -1  dcw activity and 99 % cyanide degradation in 10 h. These resting cells were entrapped using 3 % alginate beads and packed in a column reactor (20 × 1.7 cm). Simulated cyanide (12 mmol l -1 )-containing wastewater was loaded and fractions were collected after different time intervals at various flow rates. Complete degradation of 12 m mmol l -1 (780 mg l -1 ) cyanide in 10 h was observed at a flow rate of 1.5 ml h -1 . The degradation of cyanide in PBR showed direct dependence on retention time. The retention time of cyanide in the reactor was 9.27 h. The PBR can degrade 1.2 g of cyanide completely in 1 day.

  15. Water infiltration and heat transfer in one dimensional unsaturated packed beds; Fuhowa ryushi sonai no ichijigen suibun nagare to dennetsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, K; Akahori, M; Hattori, M [Nagaoka University of Technology, Niigata (Japan); Shiraishi, N [Toshiba Corp., Tokyo (Japan)

    1998-05-25

    Water and heat transport in unsaturated packed beds due to supplying hot water have been investigated experimentally and theoretically. Using various sizes of glass beads, capillary pressure and permeability in packed beds were measured in unsaturated beds. The distributions in water saturation and temperature were predicted for one dimensional packed bed, based on a model assuming local thermal equilibrium among water, gas and particles at any specific space. The predicted temperature distributions were compared with the experimental results obtained using various glass sizes. In layered packed beds, water saturation becomes discontinuous at the interface of two layers because of the difference of the water characteristics between two beds. Water penetrates faster in coarse-over fine-textured profile compared with in fine-over coarse-textured profile. Similarly, the temperature rises faster in former profile under the same supplied heat quantity. 11 refs., 13 figs., 1 tab.

  16. Continuous Packed Bed Reactor with Immobilized β-Galactosidase for Production of Galactooligosaccharides (GOS

    Directory of Open Access Journals (Sweden)

    Barbara Rodriguez-Colinas

    2016-11-01

    Full Text Available The β-galactosidase from Bacillus circulans was covalently attached to aldehyde-activated (glyoxal agarose beads and assayed for the continuous production of galactooligosaccharides (GOS in a packed-bed reactor (PBR. The immobilization was fast (1 h and the activity of the resulting biocatalyst was 97.4 U/g measured with o-nitrophenyl-β-d-galactopyranoside (ONPG. The biocatalyst showed excellent operational stability in 14 successive 20 min reaction cycles at 45 °C in a batch reactor. A continuous process for GOS synthesis was operated for 213 h at 0.2 mL/min and 45 °C using 100 g/L of lactose as a feed solution. The efficiency of the PBR slightly decreased with time; however, the maximum GOS concentration (24.2 g/L was obtained after 48 h of operation, which corresponded to 48.6% lactose conversion and thus to maximum transgalactosylation activity. HPAEC-PAD analysis showed that the two major GOS were the trisaccharide Gal-β(1→4-Gal-β(1→4-Glc and the tetrasaccharide Gal-β(1→4-Gal-β(1→4-Gal-β(1→4-Glc. The PBR was also assessed in the production of GOS from milk as a feed solution. The stability of the bioreactor was satisfactory during the first 8 h of operation; after that, a decrease in the flow rate was observed, probably due to partial clogging of the column. This work represents a step forward in the continuous production of GOS employing fixed-bed reactors with immobilized β-galactosidases.

  17. Investigation of hydrodynamic behaviour of a pilot-scale trickle bed reactor packed with hydrophobic and hydrophilic packings using radiotracer technique

    International Nuclear Information System (INIS)

    Rajesh Kumar; Sadhana Mohan; Pant, H.J.; Sharma, V.K.; Mahajani, S.M.

    2012-01-01

    A radiotracer study was carried out in a trickle bed reactor (TBR) independently filled with two different types of packing i.e., hydrophobic and hydrophilic. The study was aimed at to estimate liquid holdup and investigate the dispersion characteristics of liquid phase with both types of packing at different operating conditions. Water and H2 gas were used as aqueous and gas phase, respectively. The liquid and gas flow rates used ranged from 0.83 x 10 -7 -16.67 x 10 -7 m 3 /s and 0-3.33 x 10 -4 m 3 (std)/s, respectively. Residence time distribution (RTD) of liquid phase was measured using 82 Br as radiotracer and about 10 MBq activity was used in each run. Mean residence time (MRT) and holdup of liquid phase were estimated from the measured RTD data. An axial dispersion with exchange model was used to simulate the measured RTD curves and model parameters (Peclet number and MRT) were obtained. At higher liquid flow rates, the TBR behaves as a plug flow reactor, whereas at lower liquid flow rates, the flow was found to be highly dispersed. The results of investigation indicated that the dispersion of liquid phase is higher in case of hydrophobic packing, whereas holdup is higher in case of hydrophilic packing. (author)

  18. The Performance of the Trickle Bed Reactor Packed with the Pt/SDBC Catalyst Mixture for the CECE Process

    International Nuclear Information System (INIS)

    Seungwoo Paek; Do-Hee Ahn; Heui-Joo Choi; Kwang-Rag Kim; Hongsuk Chung; Sung-Paal Yim; Minsoo Lee; Kyu-Min Song; Soon Hwan Sohn

    2006-01-01

    The CECE (Combined Electrolysis Catalytic Exchange) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy waste water streams because of its high separation factor and mild operating conditions. The CECE process is composed of an electrolysis cell and a LPCE (Liquid Phase Catalytic Exchange) column. This paper describes the experimental results of the hydrogen isotopic exchange reaction in a trickle bed reactor packed with a hydrophobic catalyst for the development of the LPCE column of the CECE process. The hydrophobic Pt/SDBC (Styrene Divinyl Benzene Copolymer) catalyst has been developed by Korean researchers for the LPCE column of WTRF (Wolsong Tritium Removal Facility). An experimental apparatus was constructed for the various experiments with the different parameters, such as hydrogen flow rate, temperature, and the structure of the mixed catalyst column. The catalyst column was packed with a mixture of hydrophobic catalyst and hydrophilic packing (Dixon gauze ring). The performance of the catalyst bed was expressed as an overall rate constant Kya. To improve the performance of the trickle bed, the modification of the catalyst bed design (changing the shape of the catalyst complex and diluting with inert) has been investigated. (author)

  19. Solid-State Anaerobic Digestion of Dairy Manure from a Sawdust-Bedded Pack Barn: Moisture Responses

    Directory of Open Access Journals (Sweden)

    Eunjong Kim

    2018-02-01

    Full Text Available Bedded pack manure has long been considered an unsuitable feedstock for conventional anaerobic digestion systems due to its high solids content. However, solid-state anaerobic digestion (SS-AD provides an opportunity to generate methane from such high-solids feedstocks. This study was conducted to determine the influence of moisture content on the digestion of bedded pack dairy manure using SS-AD. Mixtures of sawdust bedding and dairy manure were prepared with moisture contents (MCs of 70, 76, and 83% and digested at 37 °C for 85 days. The performance of digesters containing manure at 83% MC was 1.3 to 1.4-fold higher than that of digesters containing 70% MC manure in terms of volatile solids (VS reduction and biogas production. VS reduction rates were 55 to 75% and cumulative methane yield ranged from 64 to 90 NmL (gVS−1. These values are lower than those from SS-AD of fresh manure and this is likely due to the partial decomposition of biodegradable materials during the two to three-month period before the manure was removed from the barn. However, in terms of efficient management of farm odors and providing a renewable energy source for heating, SS-AD of bedded pack manure offers a potential alternative to the conventional composting systems currently in use.

  20. Thermal and mechanical behaviour of oxygen carrier materials for chemical looping combustion in a packed bed reactor

    International Nuclear Information System (INIS)

    Jacobs, M.; Van Noyen, J.; Larring, Y.; Mccann, M.; Pishahang, M.; Amini, S.; Ortiz, M.; Galluci, F.; Sint-Annaland, M.V.; Tournigant, D.; Louradour, E.; Snijkers, F.

    2015-01-01

    Highlights: • Ilmenite-based oxygen carriers were developed for packed-bed chemical looping. • Addition of Mn_2O_3 increased mechanical strength and microstructure of the carriers. • Oxygen carriers were able to withstand creep and thermal cycling up to 1200 °C. • Ilmenite-based granules are a promising shape for packed-bed reactor conditions. - Abstract: Chemical looping combustion (CLC) is a promising carbon capture technology where cyclic reduction and oxidation of a metallic oxide, which acts as a solid oxygen carrier, takes place. With this system, direct contact between air and fuel can be avoided, and so, a concentrated CO_2 stream is generated after condensation of the water in the exit gas stream. An interesting reactor system for CLC is a packed bed reactor as it can have a higher efficiency compared to a fluidized bed concept, but it requires other types of oxygen carrier particles. The particles must be larger to avoid a large pressure drop in the reactor and they must be mechanically strong to withstand the severe reactor conditions. Therefore, oxygen carriers in the shape of granules and based on the mineral ilmenite were subjected to thermal cycling and creep tests. The mechanical strength of the granules before and after testing was investigated by crush tests. In addition, the microstructure of these oxygen particles was studied to understand the relationship between the physical properties and the mechanical performance. It was found that the granules are a promising shape for a packed bed reactor as no severe degradation in strength was noticed upon thermal cycling and creep testing. Especially, the addition of Mn_2O_3 to the ilmenite, which leads to the formation of an iron–manganese oxide, seems to results in stronger granules than the other ilmenite-based granules.

  1. Propagation of negative electrical discharges through 2-dimensional packed bed reactors

    International Nuclear Information System (INIS)

    Kruszelnicki, Juliusz; Engeling, Kenneth W; Foster, John E; Xiong, Zhongmin; Kushner, Mark J

    2017-01-01

    Plasma-based pollutant remediation and value-added gas production have recently gained increased attention as possible alternatives to the currently-deployed chemical reactor systems. Electrical discharges in packed bed reactors (PBRs) are of interest, due to their ability to synergistically combine catalytic and plasma chemical processes. In principle, these systems could be tuned to produce specific products, based on their application by combinations of power formats, materials, geometries and working gases. Negative voltage, atmospheric-pressure plasma discharges sustained in humid air in a PBR-like geometry were experimentally characterized using ICCD imaging and simulated in 2-dimensions (2D) to provide insights into possible routes to this tunability. Surface ionization waves (SIWs) and positive restrikes through the lattice of dielectric rods were shown to be the principal means of producing reactive species. The number and intensity of SIWs and restrikes are sensitive functions of the alignment of the lattice of dielectric beads (or rods in 2D) with respect to the applied electric field. Decreased spacing between the dielectric elements leads to an increased electric field enhancement in the gas, and therefore locally higher plasma densities, but does not necessarily impact the types of discharges that occur through the lattice. (paper)

  2. Simultaneous Coproduction of Hydrogen and Ethanol in Anaerobic Packed-Bed Reactors

    Directory of Open Access Journals (Sweden)

    Cristiane Marques dos Reis

    2014-01-01

    Full Text Available This study evaluated the use of an anaerobic packed-bed reactor for hydrogen production at different hydraulic retention times (HRT (1–8 h. Two reactors filled with expanded clay and fed with glucose (3136–3875 mg L−1 were operated at different total upflow velocities: 0.30 cm s−1 (R030 and 0.60 cm s−1 (R060. The effluent pH of the reactors was maintained between 4 and 5 by adding NaHCO3 and HCl solutions. It was observed a maximum hydrogen production rate of 0.92 L H2 h−1 L−1 in R030 at HRT of 1 h. Furthermore, the highest hydrogen yield of 2.39 mol H2 mol−1 glucose was obtained in R060. No clear trend was observed by doubling the upflow velocities at this experiment. High ethanol production was also observed, indicating that the ethanol-pathway prevailed throughout the experiment.

  3. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor.

    Directory of Open Access Journals (Sweden)

    Shohreh Azizi

    Full Text Available For the effective application of a modified packed bed biofilm reactor (PBBR in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l concentrations of combined heavy metals at an optimum HRT condition (2 hours, while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l, is capable of removing the industrial contamination in wastewater.

  4. Evaluation of Heavy Metal Removal from Wastewater in a Modified Packed Bed Biofilm Reactor

    Science.gov (United States)

    Azizi, Shohreh; Kamika, Ilunga; Tekere, Memory

    2016-01-01

    For the effective application of a modified packed bed biofilm reactor (PBBR) in wastewater industrial practice, it is essential to distinguish the tolerance of the system for heavy metals removal. The industrial contamination of wastewater from various sources (e.g. Zn, Cu, Cd and Ni) was studied to assess the impacts on a PBBR. This biological system was examined by evaluating the tolerance of different strengths of composite heavy metals at the optimum hydraulic retention time (HRT) of 2 hours. The heavy metal content of the wastewater outlet stream was then compared to the source material. Different biomass concentrations in the reactor were assessed. The results show that the system can efficiently treat 20 (mg/l) concentrations of combined heavy metals at an optimum HRT condition (2 hours), while above this strength there should be a substantially negative impact on treatment efficiency. Average organic reduction, in terms of the chemical oxygen demand (COD) of the system, is reduced above the tolerance limits for heavy metals as mentioned above. The PBBR biological system, in the presence of high surface area carrier media and a high microbial population to the tune of 10 000 (mg/l), is capable of removing the industrial contamination in wastewater. PMID:27186636

  5. Ethanol production by immobilized yeast and its CO2 gas effects on a packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, G M; Choi, C Y; Choi, Y D; Han, M H

    1982-10-01

    Immobilised yeast trapped in an alginate matrix demonstrated maximum activity at 30 degrees C and showed no pH effect between 3 and 7. Substrate inhibition was observed at glucose concentrations above 8% but the immobilised cells retained 70% of their maximum activity at 20% glucose concentration. The operation stability of immobilised cells was lower in simple glucose solution than in the activation medium in which only 20% of the activity was lost after 10 days operation. Inactivated immobilised yeast beads were reactivated by incubation in activation medium without a significant increase in cell numbers in a bead. During the operation of the immobilised yeast in a packed bed reactor, CO/sub 2/ gas accumulation adversely affected the reactor performance. An ideal plus flow reactor, not taking into account the formation of CO/sub 2/ gas bubbles and the presence of mass trasnfer resistance, was simulated using a kinetic model for the production of ethanol and the simulation results were compared with the actual reactor performance to determine the CO/sub 2/ gas effect, quantitatively. Up to 45% of the substrate conversion was lost due to the accumulation of CO/sub 2/ gas bubbles in all cases. (Refs. 21).

  6. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R

    2008-09-01

    Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.

  7. Anaerobic Digestion of Sugarcane Vinasse Through a Methanogenic UASB Reactor Followed by a Packed Bed Reactor.

    Science.gov (United States)

    Cabrera-Díaz, A; Pereda-Reyes, I; Oliva-Merencio, D; Lebrero, R; Zaiat, M

    2017-12-01

    The anaerobic treatment of raw vinasse in a combined system consisting in two methanogenic reactors, up-flow anaerobic sludge blanket (UASB) + anaerobic packed bed reactors (APBR), was evaluated. The organic loading rate (OLR) was varied, and the best condition for the combined system was 12.5 kg COD m -3 day -1 with averages of 0.289 m 3 CH 4  kg COD r -1 for the UASB reactor and 4.4 kg COD m -3 day -1 with 0.207 m 3 CH 4  kg COD r -1 for APBR. The OLR played a major role in the emission of H 2 S conducting to relatively stable quality of biogas emitted from the APBR, with H 2 S concentrations <10 mg L -1 . The importance of the sulphate to COD ratio was demonstrated as a result of the low biogas quality recorded at the lowest ratio. It was possible to develop a proper anaerobic digestion of raw vinasse through the combined system with COD removal efficiency of 86.7% and higher CH 4 and a lower H 2 S content in biogas.

  8. Packed-bed reactor/silent-discharge plasma design data report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    In 1992, Congress passed the Federal Facility Compliance Act requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). The DOE Albuquerque Operations Office (AL) currently does not have adequate systems to treat the mixed wastes generated and stored at the nine DOE-AL sites. In response to the need for mixed-waste treatment capacity, DOE-AL organized a Treatment Selection Team under the Mixed-Waste Treatment Program (MWTP) to match mixed wastes with treatment options and develop a strategy for treatment of its mixed waste. The strategy developed by the Treatment Selection Team, as described in the AL Mixed-Waste Treatment Plan (DOE 1994), is to use available off-site commercial treatment facilities for all wastes that can be successfully and cost-effectively treated by such facilities. Where no appropriate commercial treatment facilities exist, mobile treatment units (MTUs) would be developed to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste must not only address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. The packed-bed reactor/silent discharge plasma was chosen as a potential candidate for the treatment of the mixed wastes. The process is described.

  9. Packed-bed reactor/silent-discharge plasma design data report

    International Nuclear Information System (INIS)

    1996-05-01

    In 1992, Congress passed the Federal Facility Compliance Act requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). The DOE Albuquerque Operations Office (AL) currently does not have adequate systems to treat the mixed wastes generated and stored at the nine DOE-AL sites. In response to the need for mixed-waste treatment capacity, DOE-AL organized a Treatment Selection Team under the Mixed-Waste Treatment Program (MWTP) to match mixed wastes with treatment options and develop a strategy for treatment of its mixed waste. The strategy developed by the Treatment Selection Team, as described in the AL Mixed-Waste Treatment Plan (DOE 1994), is to use available off-site commercial treatment facilities for all wastes that can be successfully and cost-effectively treated by such facilities. Where no appropriate commercial treatment facilities exist, mobile treatment units (MTUs) would be developed to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste must not only address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. The packed-bed reactor/silent discharge plasma was chosen as a potential candidate for the treatment of the mixed wastes. The process is described

  10. Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.-C. [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan (China); Chiu, C.-Y. [Department of Cosmetic Science and Application, Lan-Yang Institute of Technology, I-Lan 261, Taiwan (China); Chang, C.-Y. [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan (China)], E-mail: cychang3@ntu.edu.tw; Chang, C.-F. [Department of Environmental Science and Engineering, Tunghai University, Taichung 407, Taiwan (China); Chen, Y.-H. [Department of Chemical and Material Engineering, National Kaohsiung University of Applied Science, Kaohsiung City 807, Taiwan (China); Ji, D.-R.; Yu, Y.-H.; Chiang, P.-C. [Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2009-01-15

    In this study, a high-gravity rotating packed bed (HGRPB) was used as a catalytic ozonation reactor to decompose dimethyl phthalate (DMP), an endocrine disrupting chemical commonly encountered. The HGRPB is an effective gas-liquid mixing equipment which can enhance the ozone mass transfer coefficient. Platinum-containing catalyst (Pt/-Al{sub 2}O{sub 3}) of Dash 220N and ultra violet (UV) lamp were combined in the high-gravity ozonation (HG-OZ) system to enhance the self-decomposition of molecular ozone in liquid to form highly reactive radical species. Different combinations of HG-OZ with Dash 220N and UV for the degradation of DMP were tested. These include HG-OZ, HG catalytic OZ (HG-Pt-OZ), HG photolysis OZ (HG-UV-OZ) and HG-UV-Pt-OZ. The result indicated that all the above four ozonation processes result in significant decomposition of DMP and mineralization of total organic carbon (TOC) at the applied ozone dosage per volume of liquid sample of 1.2 g L{sup -1}. The UV and Pt/{gamma}-Al{sub 2}O{sub 3} combined in HG-OZ can enhance the TOC mineralization efficiency ({eta}{sub TOC}) to 56% (via HG-UV-OZ) and 57% (via HG-Pt-OZ), respectively, while only 45% with ozone only. The process of HG-UV-Pt-OZ offers the highest {eta}{sub TOC} of about 68%.

  11. Propagation of negative electrical discharges through 2-dimensional packed bed reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Xiong, Zhongmin; Kushner, Mark J.

    2017-01-01

    Plasma-based pollutant remediation and value-added gas production have recently gained increased attention as possible alternatives to the currently-deployed chemical reactor systems. Electrical discharges in packed bed reactors (PBRs) are of interest, due to their ability to synergistically combine catalytic and plasma chemical processes. In principle, these systems could be tuned to produce specific products, based on their application by combinations of power formats, materials, geometries and working gases. Negative voltage, atmospheric-pressure plasma discharges sustained in humid air in a PBR-like geometry were experimentally characterized using ICCD imaging and simulated in 2-dimensions (2D) to provide insights into possible routes to this tunability. Surface ionization waves (SIWs) and positive restrikes through the lattice of dielectric rods were shown to be the principal means of producing reactive species. The number and intensity of SIWs and restrikes are sensitive functions of the alignment of the lattice of dielectric beads (or rods in 2D) with respect to the applied electric field. Decreased spacing between the dielectric elements leads to an increased electric field enhancement in the gas, and therefore locally higher plasma densities, but does not necessarily impact the types of discharges that occur through the lattice.

  12. Hydrogenotrophic denitrification in a packed bed reactor: effects of hydrogen-to-water flow rate ratio.

    Science.gov (United States)

    Lee, J W; Lee, K H; Park, K Y; Maeng, S K

    2010-06-01

    Hydrogen dissolution and hydrogenotrophic denitrification performance were investigated in a lab-scale packed bed reactor (PBR) by varying the hydrogen flow rate and hydraulic retention time (HRT). The denitrification performance was enhanced by increasing the hydrogen flow rate and HRT as a result of high dissolved hydrogen concentration (0.39mg/L) and utilization efficiencies (79%). In this study, the hydrogen-to-water flow rate ratio (Q(g)/Q(w)) was found to be a new operating factor representing the two parameters of hydrogen flow rate and HRT. Hydrogen dissolution and denitrification efficiency were nonlinearly and linearly correlated with the Q(g)/Q(w), respectively. Based on its excellent linear correlation with denitrification efficiency, Q(g)/Q(w) should be greater than 2.3 to meet the WHO's guideline of nitrate nitrogen for drinking water. This study demonstrates that Q(g)/Q(w) is a simple and robust factor to optimize hydrogen-sparged bioreactors for hydrogenotrophic denitrification. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Immobilised native plant cysteine proteases: packed-bed reactor for white wine protein stabilisation.

    Science.gov (United States)

    Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Acciaro, Giuseppe; Zappino, Matteo; Esti, Marco

    2016-02-01

    This research presents a feasibility study of using a continuous packed-bed reactor (PBR), containing immobilised native plant cysteine proteases, as a specific and mild alternative technique relative to the usual bentonite fining for white wine protein stabilisation. The operational parameters for a PBR containing immobilised bromelain (PBR-br) or immobilised papain (PBR-pa) were optimised using model wine fortified with synthetic substrate (Bz-Phe-Val-Arg-pNA). The effectiveness of PBR-br, both in terms of hazing potential and total protein decrease, was significantly higher than PBR-pa, in all the seven unfined, white wines used. Among the wines tested, Sauvignon Blanc, given its total protein content as well as its very high intrinsic instability, was selected as a control wine to evaluate the effect of the treatment on wine as to its soluble protein profile, phenolic composition, mineral component, and sensory properties. The treatment in a PBR containing immobilised bromelain appeared effective in decreasing both wine hazing potential and total protein amount, while it did not significantly affect the phenol compounds, the mineral component nor the sensory quality of wine. The enzymatic treatment in PBR was shown to be a specific and mild technique for use as an alternative to bentonite fining for white wine protein stabilisation.

  14. Optimization of tannase production by Aspergillus niger in solid-state packed-bed bioreactor.

    Science.gov (United States)

    Rodríguez-Durán, Luis V; Contreras-Esquivel, Juan C; Rodríguez, Raúl; Prado-Barragán, L Arely; Aguilar, Cristóbal N

    2011-09-01

    Tannin acyl hydrolase, also known as tannase, is an enzyme with important applications in the food, feed, pharmaceutical, and chemical industries. However, despite a growing interest in the catalytic properties of tannase, its practical use is very limited owing to high production costs. Several studies have already demonstrated the advantages of solid-state fermentation (SSF) for the production of fungal tannase, yet the optimal conditions for enzyme production strongly depend on the microbial strain utilized. Therefore, the aim of this study was to improve the tannase production by a locally isolated A. niger strain in an SSF system. The SSF was carried out in packed-bed bioreactors using polyurethane foam as an inert support impregnated with defined culture media. The process parameters influencing the enzyme production were identified using a Plackett–Burman design, where the substrate concentration, initial pH, and incubation temperature were determined as the most significant. These parameters were then further optimized using a Box-Behnken design. The maximum tannase production was obtained with a high tannic acid concentration (50 g/l), relatively low incubation temperature (30°C), and unique low initial pH (4.0). The statistical strategy aided in increasing the enzyme activity nearly 1.97-fold, from 4,030 to 7,955 U/l. Consequently, these findings can lead to the development of a fermentation system that is able to produce large amounts of tannase in economical, compact, and scalable reactors.

  15. Isotope exchange reaction in Li2ZrO3 packed bed

    International Nuclear Information System (INIS)

    Kawamura, Y.; Enoeda, M.; Okuno, K.

    1998-01-01

    To understand the release behavior of bred tritium in a solid breeder blanket, the tritium transfer rate and tritium inventory for various mass transfer processes should be investigated. The contribution of the surface reactions (adsorption, desorption and two kinds of isotope exchange reactions) to the release process cannot be ignored. It is believed that two kinds of isotope exchange reactions (gaseous hydrogen-tritiated water and water vapor-tritiated water) occur on the surface of the solid breeder materials when hydrogen is added to the sweep gas to enhance the tritium release rate. The isotope exchange reaction study in H-D systems was carried out using a Li 2 ZrO 3 packed bed. The exchange reaction between gaseous hydrogen and water was the rate controlling step among the two kinds of exchange reactions. The reaction rate constants were quantified, and experimental equations were proposed. The equilibrium constant of the isotope exchange reaction in the H-D system was obtained from experimental data and was found to be 1.17. (orig.)

  16. Treatment of amoxicillin by O3/Fenton process in a rotating packed bed.

    Science.gov (United States)

    Li, Mo; Zeng, Zequan; Li, Yingwen; Arowo, Moses; Chen, Jianfeng; Meng, Hong; Shao, Lei

    2015-03-01

    In this study, simulated amoxicillin wastewater was treated by the O3/Fenton process in a rotating packed bed (RPB) and the results were compared with the Fenton process and the O3 followed by Fenton (O3 + Fenton) process. The chemical oxygen demand (COD) removal rate and the ratio of 5-day biological oxygen demand to chemical oxygen demand (BOD5/COD) in the O3/Fenton process were approximately 17% and 26%, respectively, higher than those in the O3 + Fenton process with an initial pH of 3. The COD removal rate of the amoxicillin solution reached maximum at the Fe(II) concentration of 0.6 mM, temperature of 25 °C, rotation speed of 800 rpm and initial pH of 3. The BOD5/COD of the amoxicillin solution increased from 0 to 0.38 after the solution was treated by the O3/Fenton process. Analysis of the intermediates indicated that the pathway of amoxicillin degradation in the O3/Fenton process was similar to that in the O3 + Fenton process. Contrast experiment results showed that amoxicillin degradation was significantly intensified in the RPB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  18. Study on effective particle diameters and coolability of particulate beds packed with irregular multi-size particles

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.; Kudinov, P.; Bechta, S.

    2013-08-01

    One of the key questions in severe accident research is the coolability of the debris bed, i.e., whether decay heat can be completely removed by the coolant flow into the debris bed. Extensive experimental and analytical work has been done to substantiate the coolability research. Most of the available experimental data is related to the beds packed with single size (mostly spherical) particles, and less data is available for multi-size/irregular-shape particles. There are several analytical models available, which rely on the mean particle diameter and porosity of the bed in their predictions. Two different types of particles were used to investigate coolability of particulate beds at VTT, Finland. The first type is irregular-shape Aluminum Oxide gravel particles whose sizes vary from 0.25 mm to 10 mm, which were employed in the STYX experiment programme (2001-2008). The second type is spherical beads of Zirconium silicate whose sizes vary between 0.8 mm to 1 mm, which were used in the COOLOCE tests (Takasuo et al., 2012) to study the effect of multi-dimensional flooding on coolability. In the present work, the two types of particles are used in the POMECO-FL and POMECO-HT test facility to obtain their effective particle diameters and dryout heat flux of the beds, respectively. The main idea is to check how the heaters' orientations (vertical in COOLOCE vs. horizontal in POMECO-HT) and diameters (6 mm in COOLOCE vs. 3 mm in POMECO-HT) affect the coolability (dryout heat flux) of the test beds. The tests carried out on the POMECO-FL facility using a bed packed with aluminum oxide gravel particles show the effective particle diameter of the gravel particles is 0.65 mm, by which the frictional pressure gradient can be predicted by the Ergun equation. After the water superficial velocity is higher than 0.0025 m/s, the pressure gradient is underestimated. The effective particle diameter of the zirconium particles is found as 0.8 mm. The dryout heat flux is measured on

  19. Continuous cadmium removal from aqueous solutions by seaweed in a packed-bed column under consecutive sorption-desorption cycles

    International Nuclear Information System (INIS)

    Jafari, Seyed Ali; Jamali, Abbas

    2016-01-01

    Packed-bed column process efficiency for cadmium adsorption from aqueous solution was investigated under different bed heights (2.6 to 7.5 cm) and feed flow rates (15 to 30 ml min -1 ). The column was filled with brown seaweed, Sargassum angustifolium. Three simplified models, including Bed Depth Service Time, Thomas, and Yoon- Nelson were employed for describing the experimental breakthrough curves as well as achieving design parameters. Bed lifetime was also evaluated in several consecutive sorption-desorption cycles. Cadmium concentration of 0.005mg l−1, as a standard limit for potable water, was considered as the breakthrough concentration. The maximum column performance was achieved 81% at 7.5 cm bed length and flow rate of 15 ml min -1 . Indeed, increasing the bed height increased the sorption performance and service time, while increasing the feed flow rate had a negative effect. Maximum sorption capacity value remained almost constant by the bed height changes; however, increase in the feed flow rate slightly decreased it. The modeling results revealed that the Yoon-Nelson model was more accurate than Thomas for describing the experimental breakthrough data, especially at low flow rates. Column service time predictions were surprisingly achieved using the Bed Depth Service Time model even at extrapolations. 20% reduction in column adsorption efficiency was observed at the end of four consecutive sorption-desorption cycles; however, desorption efficiencies were achieved more than 99% in each cycle.

  20. Continuous cadmium removal from aqueous solutions by seaweed in a packed-bed column under consecutive sorption-desorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, Seyed Ali; Jamali, Abbas [Persian Gulf Research Institute, Persian Gulf University, 75169, Bushehr (Iran, Islamic Republic of)

    2016-04-15

    Packed-bed column process efficiency for cadmium adsorption from aqueous solution was investigated under different bed heights (2.6 to 7.5 cm) and feed flow rates (15 to 30 ml min{sup -1}). The column was filled with brown seaweed, Sargassum angustifolium. Three simplified models, including Bed Depth Service Time, Thomas, and Yoon- Nelson were employed for describing the experimental breakthrough curves as well as achieving design parameters. Bed lifetime was also evaluated in several consecutive sorption-desorption cycles. Cadmium concentration of 0.005mg l−1, as a standard limit for potable water, was considered as the breakthrough concentration. The maximum column performance was achieved 81% at 7.5 cm bed length and flow rate of 15 ml min{sup -1}. Indeed, increasing the bed height increased the sorption performance and service time, while increasing the feed flow rate had a negative effect. Maximum sorption capacity value remained almost constant by the bed height changes; however, increase in the feed flow rate slightly decreased it. The modeling results revealed that the Yoon-Nelson model was more accurate than Thomas for describing the experimental breakthrough data, especially at low flow rates. Column service time predictions were surprisingly achieved using the Bed Depth Service Time model even at extrapolations. 20% reduction in column adsorption efficiency was observed at the end of four consecutive sorption-desorption cycles; however, desorption efficiencies were achieved more than 99% in each cycle.

  1. EXPERIMENTAL STUDY ON HEAT TRANSFER COEFFICIENT AND FRICTION FACTOR OF Al2O3 NANOFLUID IN A PACKED BED COLUMN

    Directory of Open Access Journals (Sweden)

    G. Srinivasa Rao

    2011-12-01

    Full Text Available The forced convection heat transfer coefficient and friction factor are determined for the flow of water and nanofluid in a vertical packed bed column. The analysis is undertaken in the laminar and transition Reynolds number range. The column is filled with spherical glass beads as the bed material. The heat transfer coefficients with Al2O3 nanofluid increased by 12% to 15% with the increase of volume concentration from 0.02% to 0.5% compared with water. The experimental values of axial temperature are in good agreement with the NTU-ε method proposed by Schumann’s model.

  2. Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use

    International Nuclear Information System (INIS)

    Bouadila, Salwa; Kooli, Sami; Lazaar, Mariem; Skouri, Safa; Farhat, Abdelhamid

    2013-01-01

    Highlights: • A new solar air heater collector using a phase change material. • Experimental study of the new solar air heater collector with latent storage. • Energy and exergy analysis of the solar heater with latent storage collector. • Nocturnal use of solar air heater collector. - Abstract: An experimental study was conducted to evaluate the thermal performance of a new solar air heater collector using a packed bed of spherical capsules with a latent heat storage system. Using both first and second law of thermodynamics, the energetic and exegetic daily efficiencies were calculated in Closed/Opened and Opened cycle mode. The solar energy was stored in the packed bed through the diurnal period and extracted at night. The experimentally obtained results are used to analyze the performance of the system, based on temperature distribution in different localization of the collectors. The daily energy efficiency varied between 32% and 45%. While the daily exergy efficiency varied between 13% and 25%

  3. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR) studies.

    Science.gov (United States)

    Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2015-12-01

    Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  4. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR studies

    Directory of Open Access Journals (Sweden)

    Rajeshkumar N. Vadgama

    2015-12-01

    Full Text Available Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15 in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  5. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    Science.gov (United States)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  6. The adsorption of copper in a packed-bed of chitosan beads: Modeling, multiple adsorption and regeneration

    OpenAIRE

    Neomagus, Hein W J P; Osifo, Peter O; Everson, Raymond C; Webster, Athena; Gun, Marius A

    2009-01-01

    In this study, exoskeletons of Cape rock lobsters were used as raw material in the preparation of chitin that was successively deacetylated to chitosan flakes. The chitosan flakes were modified into chitosan beads and the beads were cross-linked with glutaraldehyde in order to study copper adsorption and regeneration in a packed-bed column. Five consecutive adsorption and desorption cycles were carried out and a chitosan mass loss of 25% was observed, after the last cycle. Despite the loss of...

  7. Operational parameters and their influence on particle-side mass transfer resistance in a packed bed bioreactor

    OpenAIRE

    Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo

    2015-01-01

    The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, bead...

  8. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR) studies

    OpenAIRE

    Vadgama, Rajeshkumar N.; Odaneth, Annamma A.; Lali, Arvind M.

    2015-01-01

    Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B fr...

  9. Evaluation of Packed-Bed Reactor and Continuous Stirred Tank Reactor for the Production of Colchicine Derivatives

    OpenAIRE

    Dubey, Kashyap Kumar; Kumar, Dhirendra; Kumar, Punit; Haque, Shafiul; Jawed, Arshad

    2013-01-01

    Bioconversion of colchicine into its pharmacologically active derivative 3-demethylated colchicine (3-DMC) mediated by P450BM3 enzyme is an economic and promising strategy for the production of this inexpensive and potent anticancer drug. Continuous stirred tank reactor (CSTR) and packed-bed reactor (PBR) of 3 L and 2 L total volumes were compared for the production of 3-demethylated colchicine (3-DMC) a colchicine derivative using Bacillus megaterium MTCC*420 under aerobic conditions. Statis...

  10. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation

    International Nuclear Information System (INIS)

    Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-01-01

    Highlights: • Benzene was successfully degraded by dielectric barrier/packed-bed discharge plasmas. • Different electrode geometry has distinct effect on plasmas oxidation performance. • Benzene degradation and energy performance were enhanced when using the coil electrode. • The reaction products were well determined by online FTIR analysis. -- Abstract: In this study, the effects of electrode geometry on benzene degradation in a dielectric barrier/packed-bed discharge plasma reactor with different electrodes were systematically investigated. Three electrodes were employed in the experiments, these were coil, bolt, and rod geometries. The reactor using the coil electrode showed better performance in reducing the dielectric loss in the barrier compared to that using the bolt or rod electrodes. In the case of the coil electrode, both the benzene degradation efficiency and energy yield were higher than those for the other electrodes, which can be attributed to the increased role of surface mediated reactions. Irrespective of the electrode geometry, the packed-bed discharge plasma was superior to the dielectric barrier discharge plasma in benzene degradation at any specific applied voltage. The main gaseous products of benzene degradation were CO, CO 2 , H 2 O, and formic acid. Discharge products such as O 3 , N 2 O, N 2 O 5 , and HNO 3 were also detected in the outlet gas. Moreover, the presence of benzene inhibited the formation of ozone because of the competing reaction of oxygen atoms with benzene. This study is expected to offer an optimized approach combining dielectric barrier discharge and packed-bed discharge to improve the degradation of gaseous pollutants

  11. Experimental research of pressure drop in packed beds of monosized spheres a novel correlation for pressure drop calculation

    Directory of Open Access Journals (Sweden)

    Stamenić Mirjana S.

    2017-01-01

    Full Text Available Flow through packed beds of spheres is a complex phenomenon and it has been extensively studied. Although, there is many different correlations there is still no reliable universal equation for prediction of pressure drop. The paper presents the results of experimental research of pressure drop in packed bed of monosized spheres of three different diameters, 8, 11, and 13 mm set within cylindrical vessel of diameter dk = 74 mm, and two different heights of packed bed, hs = 300 and 400 mm. It has been proposed modification of widely used Ergun’s equation in the form of fp = [150+1.3•(Rep/(1-ε]•(1-ε2/(ε3×Rep and new correlation fp = 1/[(27.4-25700•dh/Rep+0.545+6.85•dh] for pressure drop calculation in simple and convenient form for hand and computer calculations. For total number of 362 experimental runs the correlation ratio of the modified Ergun’s relation was CR = 99.3%, and standard deviation SD = 12.2%, while novel relation has CR = 93.7% and SD = 5.4%. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 33049

  12. THE EFFECT OF THE THICKNESS OF A PACKED BED ON THE DYNAMIC AND THERMAL BEHAVIOR OF A SOLAR DRYER

    Directory of Open Access Journals (Sweden)

    S KHALDI

    2015-06-01

    Full Text Available Drying food in the sun is a safe, easy and economical way to preserve food, especially fruits. Cabinet dryers are the most popular equipment for fruit drying. Because of intermittent nature of solar energy, storage is required for uninterrupted supply in order to match the needs. The main objective of this study is to assess effectiveness of continuous solar dryer integrated with packed bed as thermal storage with natural airflow for drying figs (Ficuscarica. The cabinet dryer were envisaged theoretically (computational fluid dynamics (CFD. The distribution of the velocity and temperature of air within the solar dryer were presented during one day of August and under the climate conditions of Tlemcen (Algeria.  The effects of presence of a packed bed on the distribution of velocity and temperature of airflow and on the temperature of figs were analyzed. The results show that the solar dryer design, incorporating a packed bed enhances the capabilities and performance of the solar dryer, through increasing time of drying.

  13. Supported Photocatalyst for Removal of Emerging Contaminants from Wastewater in a Continuous Packed-Bed Photoreactor Configuration

    Directory of Open Access Journals (Sweden)

    Mª Emma Borges

    2015-02-01

    Full Text Available Water pollution from emerging contaminants (ECs or emerging pollutants is an important environmental problem. Heterogeneous photocatalytic treatment, as advanced oxidation treatment of wastewater effluents, has been proposed to solve this problem. In this paper, a heterogeneous photocatalytic process was studied for emergent contaminants removal using paracetamol as a model contaminant molecule. TiO2 photocatalytic activity was evaluated using two photocatalytic reactor configurations: Photocatalyst solid suspension in wastewater in a stirred photoreactor and TiO2 supported on glass spheres (TGS configuring a packed bed photoreactor. The surface morphology and texture of the TGS were monitored by scanning electron microscope (SEM. The influence of photocatalyst amount and wastewater pH were evaluated in the stirred photoreactor and the influence of wastewater flowrate was tested in the packed bed photoreactor, in order to obtain the optimal operation conditions. Moreover, results obtained were compared with those obtained from photolysis and adsorption studies, using the optimal operation conditions. Good photocatalytic activities have been observed and leads to the conclusion that the heterogeneous photocatalytic system in a packed bed is an effective method for removal of emerging pollutants.

  14. METHOD OF CALCULATION OF THE NON-STATIONARY TEMPERATURE FIELD INSIDE OF THERMAL PACKED BED ENERGY STORAGE

    Directory of Open Access Journals (Sweden)

    Ermuratschii V.V.

    2014-04-01

    Full Text Available e paper presents a method of the approximate calculation of the non-stationary temperature field inside of thermal packed bed energy storages with feasible and latent heat. Applying thermoelectric models and computational methods in electrical engineering, the task of computing non-stationary heat transfer is resolved with respect to third type boundary conditions without applying differential equations of the heat transfer. For sub-volumes of the energy storage the method is executed iteratively in spatiotemporal domain. Single-body heating is modeled for each sub-volume, and modeling conditions are assumed to be identical for remained bod-ies, located in the same sub-volume. For each iteration step the boundary conditions will be represented by re-sults at the previous step. The fulfillment of the first law of thermodynamics for system “energy storage - body” is obtained by the iterative search of the mean temperature of the energy storage. Under variable boundary con-ditions the proposed method maybe applied to calculating temperature field inside of energy storages with packed beds consisted of solid material, liquid and phase-change material. The method may also be employed to compute transient, power and performance characteristics of packed bed energy storages.

  15. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Jong, T.; Parry, D.L. [Charles Darwin University, Darwin, NT (Australia). Faculty for Educational Health & Science

    2006-07-15

    The aim of this study was to operate an upflow anaerobic packed bed reactor (UAPB) containing sulfate reducing bacteria (SRB) under acidic conditions similar to those found in acid mine drainage (AMD). The UAPB was filled with sand and operated under continuous flow at progressively lower pH and was shown to be capable of supporting sulfate reduction at pH values of 6.0, 5.0, 4.5, 4.0 and 3.5 in a synthetic medium containing 53.5 mmol l{sup -1} lactate. Sulfate reduction rates of 553-1052 mmol m{sup -3} d{sup -1} were obtained when the influent solution pH was progressively lowered from pH 6.0 to 4.0, under an optimal flow rate of 2.61 ml min{sup -1}. When the influent pH was further lowered to pH 3.5, sulfate reduction was substantially reduced with only about 1% sulfate removed at a rate of 3.35 mmol m{sup -3} d{sup -1} after 20 days of operation. However, viable SRB were recovered from the column, indicating that the SRB population was capable of surviving and metabolizing at low levels even at pH 3.5 conditions for at least 20 days. The changes in conductivity in the SRB column did not always occur with changes in pH and redox potential, suggesting that conductivity measurements may be more sensitive to SRB activity and could be used as an additional tool for monitoring SRB activity. The bioreactor containing SRB was able to reduce sulfate and generate alkalinity even when challenged with influent as low as pH 3.5, indicating that such treatment systems have potential for bioremediating highly acidic, sulfate contaminated waste waters.

  16. Treatment of chemical-pharmaceutical wastewater in packed bed anaerobic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nacheva, P.M.; Pena-Loera, B.; Moralez-Guzman, F. [Mexican Institute for Water Technology, Jiutepec (Mexico)

    2006-07-01

    Biological degradation in packed bed anaerobic mesophilic reactors with five different support materials was studied for the treatment of chemical-pharmaceutical wastewater with high COD (23-31 g/L), which contains toxic organic compounds. Experimental up-flow bio-filters were operated at different organic loads for a two-year period. Removals of 80-98% were obtained in the reactors with sand, anthracite and black tezontle, but at relatively low organic loads, less than 3.6 kg m{sup -3} d{sup -1}. The reactor with granular activated carbon (GAC) had a better performance; efficiencies higher than 95% were obtained at loads up to 17kg m{sup -3} d{sup -1} and higher than 80% with loads up to 26 kg m{sup -3} d{sup -1}. Second in performance was the reactor with red tezontle which allows COD removals higher than 80% with loads up to 6 kg m{sup -3} d{sup -1}. The use of GAC as support material allows greater biodegradation rates than the rest of the materials and it makes the process more resistant to organic load increases, inhibition effects and toxicity. Methanogenic activity was inhibited at loads higher than 21.9 kg m{sup -3} d{sup -1} in the GAC-reactor and at loads higher than 3.6 kg m{sup -3} d{sup -1} in the rest of the reactors. At loads lower than the previously mentioned, high methane production yield was obtained, 0.32-0.35 m{sup 33}CH4/kg CODremoved.

  17. ANALYSIS OF TRICKLE BED AND PACKED BUBBLE COLUMN BIOREACTORS FOR COMBINED CARBON OXIDATION AND NITRIFICATION

    Directory of Open Access Journals (Sweden)

    Iliuta I.

    2002-01-01

    Full Text Available Biological removal of nitrogen and carbon by combined nitrification-oxidation in gas-liquid trickle-bed reactors (TBRs and packed bubble columns (PBCs was analyzed theoretically using a transient two-dimensional model. The model describes TBR and PBC performances at steady state as well as their transient response to a pulse or step increase in inlet methanol and NH4+-nitrogen concentrations. The hydrodynamic parameters were determined from residence time distribution measurements, using an imperfect pulse method for time-domain analysis of nonideal pulse tracer response. A transient diffusion model of the tracer in the porous particle coupled with the piston-dispersion-exchange model was used to interpret the residence time distribution curves obtained. Gas-liquid mass transfer parameters were determined by a stationary method based on the least-squares fit of the calculated concentration profiles in gas phase to the experimental values. Analysis of steady-state performances showed that under like operating conditions, the TBR outperforms the PBC in terms of conversions. A pulse change in the inlet methanol or NH4+-nitrogen concentration causes a negligible transient change in the outlet methanol concentration and a negligible or high transient change in the outlet NH4+-nitrogen concentration. A step change in the inlet methanol concentration causes the negligible transient change in the methanol outlet concentration and a relatively important transient change in the NH4+-nitrogen outlet concentration. A step increase in the NH4+-nitrogen inlet concentration induces a drastic transient change in the NH4+-nitrogen outlet concentration but a negligible transient change in the methanol outlet concentration.

  18. Simple models for the continuous aerobic biodegradation of phenol in a packed bed reactor

    Directory of Open Access Journals (Sweden)

    Andrew Mark Gerrard

    2006-07-01

    Full Text Available This paper proposes the use of a preliminary, phenol removal step to reduce peak loads arriving at a conventional effluent plant. A packed bed reactor (PBR using polyurethane foam, porous glass and also cocoa fibres as the inert support material was used. Experiments have been carried out where the flow-rates, plus inlet and outlet phenol concentrations were measured. A simple, plug-flow model is proposed to represent the results. Zero, first order, Monod and inhibited kinetics rate equations were evaluated. It was found that the Monod model gave the best fit to the experimental data and allowed linear graphs to be plotted. The Monod saturation constant, K, is approximately 50 g m-3, and ka is around 900 s-1.Este artigo propõe o uso de uma etapa preliminar de remoção de fenol para redução de picos de carga na entrada de sistemas convencionais de tratamento de efluentes. Um reator de leito fixo (RLF foi usado, tendo como suportes inertes espuma de poliuretano, vidro poroso e também fibras de coco. Nos experimentos foram controladas a vazão e as concentrações de fenol de entrada e saída. Um simples modelo plug-flow é proposto para representar os resultados. Cinéticas de zero e primeira ordens, Monod e de inibição foram avaliadas. Foi verificado que o modelo de Monod foi o que melhor se ajustou aos dados experimentais, permitindo que gráficos lineares fossem traçados. A constante saturação de Monod, K, é de aproximadamente 50 g m-3 e ka em torno de 900 s-1.

  19. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed

    International Nuclear Information System (INIS)

    Chang, E-E; Pan, Shu-Yuan; Chen, Yi-Hung; Tan, Chung-Sung; Chiang, Pen-Chi

    2012-01-01

    Highlights: ► The carbonation conversion in a RPB was higher than that in traditional reactors. ► The optimum conditions were operated at 750 rpm and 65 °C for 30 min. ► The product on BOF slag was identified as crystallized calcite based on SEM and XRD. ► The diffusivity ranged from 10 −7 to 10 −6 cm 2 s −1 based on the shrinking core model. - Abstract: Carbon dioxide (CO 2 ) sequestration using the accelerated carbonation of basic oxygen furnace (BOF) slag in a high-gravity rotating packed bed (RPB) under various operational conditions was investigated. The effects of reaction time, reaction temperature, rotation speed and slurry flow rate on the CO 2 sequestration process were evaluated. The samples of reacted slurry were analyzed quantitatively using thermogravimetric analysis (TGA) and atomic absorption spectrometry (AAS) and qualitatively using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM). The sequestration experiments were performed at a liquid-to-solid ratio of 20:1 with a flow rate of 2.5 L min −1 of a pure CO 2 stream under atmospheric temperature and pressure. The results show that a maximum conversion of BOF slag was 93.5% at a reaction time of 30 min and a rotation speed of 750 rpm at 65 °C. The experimental data were utilized to determine the rate-limiting mechanism based on the shrinking core model (SCM), which was validated by the observations of SEM and TEM. Accelerated carbonation in a RPB was confirmed to be a viable method due to its higher mass-transfer rate.

  20. Gas flow calculation with a turbulence model in a packed bed; Ranryu model wo mochiita juten sonai no gas nagare no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, K [Kawasaki Steel Corp., Tokyo (Japan); Lockwood, F

    1996-06-01

    For the rationalization of blast furnace operation, the gas flow in a packed bed is calculated using a turbulence model. For accurately determining the mixing of gasses, dispersion of particulates in a turbulence, turbulence diffusion, response rate, etc., in a packed bed, turbulence characteristics need be elucidated. For the calculation of combustion behavior of powdered coal blown into the blast furnace tuyere, in particular, the evaluation of gas turbulence behavior in the blow pipe and packed bed is indispensable. The dissipation rate of {kappa} has been defined from the mixing length Lm with the hydraulic diameter of the packed bed as its function and the turbulence energy ({kappa}), and now a {kappa}-Lm model is proposed, capable of evaluating the turbulence behavior in the packed bed. The parameters in the model may be determined using the actually measured values about diffusion behavior. The diffusion behavior of a tracer blown into the packed bed is simulated, and then agreement is found between the calculated values and measured values. Oxygen distribution under simplified raceway conditions is calculated. Once in the raceway, the radial concentration gradient of oxygen is much gentler suddenly, indicating the excellent mixture characteristics of the packed layer. 21 refs., 9 figs.

  1. Lead Biosorption by Self-Immobilized Rhizopus nigricans Pellets in a Laboratory Scale Packed Bed Column: Mathematical Model and Experiment

    Directory of Open Access Journals (Sweden)

    Adela Kogej

    2010-01-01

    Full Text Available The biosorption of lead ions from aqueous solution on a self-immobilized Rhizopus nigricans biomass has been studied. Experiments were performed in a laboratory scale packed bed column at different liquid flow rates and biosorbent bed heights. Recorded experimental breakthrough curves were compared to those predicted by a mathematical model, which was developed to simulate a packed bed biosorption process by a soft, self-immobilized fungal biosorbent. In the range of examined experimental conditions, the biomass characteristics such as pellet porosity and biosorption capacity substantially affected the predicted response curve. General correlations for the estimation of the intra-pellet effective diffusivity, the external mass transfer coefficient, as well as axial dispersion were successfully applied in this biological system with specific mechanical properties. Under the experimental conditions, mass transfer is controlled by the external film resistance, while the intra-pellet mass transfer resistance, as well as the effect of axial dispersion, can be neglected. A new parameter α, the fraction of active biomass, with an average value of α=0.7, was introduced to take into account the specific biomass characteristics, and consequently the observed non-ideal liquid flow through the bed of fungal pellets.

  2. Packed- and fluidized-bed biofilm reactor performance for anaerobic wastewater treatment.

    Science.gov (United States)

    Denac, M; Dunn, I J

    1988-07-05

    Anaerobic degradation performance of a laboratory-scale packed-bed reactor (PBR) was compared with two fluidized-bed biofilm reactors (FBRs) on molasses and whey feeds. The reactors were operated under constant pH (7) and temperature (35 degrees C) conditions and were well mixed with high recirculation rates. The measured variables were chemical oxygen demand (COD), individual organic acids, gas composition, and gas rates. As carrier, sand of 0.3-0.5 mm diameter was used in the FBR, and porous clay spheres of 6 mm diameter were used in the PBR. Startup of the PBR was achieved with 1-5 day residence times. Start-up of the FBR was only successful if liquid residence times were held low at 2-3 h. COD degradations of 86% with molasses (90% was biodegradable) were reached in both the FBR and PBR at 6 h residence time and loadings of 10 g COD/L day. At higher loadings the FBR gave the best performance; even at 40-45 g COD/L day, with 6 h residence times, 70% COD was degraded. The PBR could not be operated above 20 g COD/L day without clogging. A comparison of the reaction rates show that the PBR and FBR per formed similarly at low concentrations in the reactors up to 1 g COD/L, while above 3 g COD/L the rates were 17.4 g COD/L day for the PBR and 38.4 g COD/L day for the FBR. This difference is probably due to diffusion limitations and a less active biomass content of the PBR compared with the fluidized bed.The results of dynamic step change experiments, in which residence times and feed concentrations were changed hanged at constant loading, demonstrated the rapid response of the reactors. Thus, the response times for an increase in gas rate or an increase in organic acids due to an increase in feed concentration were less than 1 day and could be explained by substrate limitation. Other slower responses were observed in which the reactor culture adapted over periods of 5-10 days; these were apparently growth related. An increase in loading of over 100% always resulted

  3. Storage capacity assessment of liquid fuels production by solar gasification in a packed bed reactor using a dynamic process model

    International Nuclear Information System (INIS)

    Kaniyal, Ashok A.; Eyk, Philip J. van; Nathan, Graham J.

    2016-01-01

    Highlights: • First analysis to assess storage requirements of a stand-alone packed bed, batch process solar gasifier. • 35 days of storage required for stand-alone solar system, whereas 8 h of storage required for hybrid system. • Sensitivity of storage requirement to reactor operation, solar region and solar multiple evaluated. - Abstract: The first multi-day performance analysis of the feasibility of integrating a packed bed, indirectly irradiated solar gasification reactor with a downstream FT liquids production facility is reported. Two fuel-loading scenarios were assessed. In one, the residual unconverted fuel at the end of a day is reused, while in the second, the residual fuel is discarded. To estimate a full year time-series of operation, a simplified statistical model was developed from short-period simulations of the 1-D heat transfer, devolatilisation and gasification chemistry model of a 150 kW th packed bed reactor (based on the authors’ earlier work). The short time-series cover a variety of solar conditions to represent seasonal, diurnal and cloud-induced solar transience. Also assessed was the influence of increasing the solar flux incident at the emitter plate of the packed bed reactor on syngas production. The combination of the annual time-series and daily model of syngas production was found to represent reasonably the seasonal transience in syngas production. It was then used to estimate the minimum syngas storage volume required to maintain a stable flow-rate and composition of syngas to a FT reactor over a full year of operation. This found that, for an assumed heliostat field collection area of 1000 m 2 , at least 64 days of storage is required, under both the Residual Fuel Re-Use and Discard scenarios. This figure was not sensitive to the two solar sites assessed, Farmington, New Mexico or Tonopah Airport, Nevada. Increasing the heliostat field collection area from 1000 to 1500 m 2 , led to an increase in the calculated daily rate

  4. Removal of nitrate, ammonia and phosphate from aqueous solutions in packed bed filter using biochar augmented sand media

    Directory of Open Access Journals (Sweden)

    El Hanandeh Ali

    2017-01-01

    Full Text Available Nutrients from wastewater are a major source of pollution because they can cause significant impact on the ecosystem. Accordingly, it is important that the nutrient concentrations are kept to admissible levels to the receiving environment. Often regulatory limits are set on the maximum allowable concentrations in the effluent. Therefore, wastewater must be treated to meet safe levels of discharge. In this study, laboratory investigation of the efficiency of packed bed filters to remove nitrate, ammonium and phosphate from aqueous solutions were conducted. Sand and sand augmented with hydrochloric acid treated biochar (SBC were used as packing media. Synthetic wastewater solution was prepared with PO43−, NO3−, NH4+ concentrations 20, 10, 50 mg/L, respectively. Each experiment ran for a period of five days; samples from the effluent were collected on alternate days. All experiments were duplicated. Over the experiment period, the average removal efficiency of PO43−, NO3−, NH4+ were 99.2%, 72.9%, 96.7% in the sand packed columns and 99.2%, 82.3%, 97.4% in the SBC packed columns, respectively. Although, the presence of biochar in the packing media had little effect on phosphate and ammonium removal, it significantly improved nitrate removal.

  5. Improved performance of parallel surface/packed-bed discharge reactor for indoor VOCs decomposition: optimization of the reactor structure

    International Nuclear Information System (INIS)

    Jiang, Nan; Hui, Chun-Xue; Li, Jie; Lu, Na; Shang, Ke-Feng; Wu, Yan; Mizuno, Akira

    2015-01-01

    The purpose of this paper is to develop a high-efficiency air-cleaning system for volatile organic compounds (VOCs) existing in the workshop of a chemical factory. A novel parallel surface/packed-bed discharge (PSPBD) reactor, which utilized a combination of surface discharge (SD) plasma with packed-bed discharge (PBD) plasma, was designed and employed for VOCs removal in a closed vessel. In order to optimize the structure of the PSPBD reactor, the discharge characteristic, benzene removal efficiency, and energy yield were compared for different discharge lengths, quartz tube diameters, shapes of external high-voltage electrode, packed-bed discharge gaps, and packing pellet sizes, respectively. In the circulation test, 52.8% of benzene was removed and the energy yield achieved 0.79 mg kJ −1 after a 210 min discharge treatment in the PSPBD reactor, which was 10.3% and 0.18 mg kJ −1 higher, respectively, than in the SD reactor, 21.8% and 0.34 mg kJ −1 higher, respectively, than in the PBD reactor at 53 J l −1 . The improved performance in benzene removal and energy yield can be attributed to the plasma chemistry effect of the sequential processing in the PSPBD reactor. The VOCs mineralization and organic intermediates generated during discharge treatment were followed by CO x selectivity and FT-IR analyses. The experimental results indicate that the PSPBD plasma process is an effective and energy-efficient approach for VOCs removal in an indoor environment. (paper)

  6. 3D Numerical Study of Multiphase Counter-Current Flow within a Packed Bed for Post Combustion Carbon Dioxide Capture

    Directory of Open Access Journals (Sweden)

    Li Yang

    2018-06-01

    Full Text Available The hydrodynamics within counter-current flow packed beds is of vital importance to provide insight into the design and operational parameters that may impact reactor and reaction efficiencies in processes used for post combustion CO2 capture. However, the multiphase counter-current flows in random packing used in these processes are complicated to visualize. Hence, this work aimed at developing a computational fluid dynamics (CFD model to study more precisely the complex details of flow inside a packed bed. The simulation results clearly demonstrated the development of, and changes in, liquid distributions, wetted areas, and film thickness under various gas and liquid flow rates. An increase in values of the We number led to a more uniform liquid distribution, and the flow patterns changed from droplet flow to film flow and trickle flow as the We number was increased. In contrast, an increase in gas flow rate had no significant effect on the wetted areas and liquid holdup. It was also determined that the number of liquid inlets affected flow behavior, and the liquid surface tension had an insignificant influence on pressure drop or liquid holdup; however, lower surface tension provided a larger wetted area and a thinner film. An experimental study, performed to enable comparisons between experimentally measured pressure drops and simulation-determined pressure drops, showed close correspondence and similar trends between the experimental data and the simulation data; hence, it was concluded that the simulation model was validated and could reasonably predict flow dynamics within a counter-current flow packed bed.

  7. Study on heat and mass transfer between a greenhouse considered as a solar air heater and a rock packed bed as ambient control system

    International Nuclear Information System (INIS)

    Ajona Maeztu, J.I.

    1990-01-01

    A general study on heat transfer in dry packed beds is made, with special emphasis in comparing different transient models and in identifying the required conditions by which the attained results are equivalent. The differences in thermal behaviour on packed beds, when simultaneous heat mass transfer occurs as wet air is used as heat transfer fluid and exchanges heat and water with the solid in the bed, is analyzed. We modelize wet packed beds considering them as one dimension adsorbents beds, with dispersive and non-dispersive models, where adsorption, condensation-evaporation and liquid water downward flow from condensate phenomena are present. Models were solved numerically and experiments with a rock bed with dry and wet air through it, were made to test assumptions and to further understand the behavior of the system, obtaining a pretty good agreement between expected and measured profiles of the temperature evolution within the packed bed. As a possible application of the wet rock bed for storage purposes, a forced ventilation greenhouse was characterized as a wet air solar heater and analyzed the energetic potential of storing the heat that has to be rejected during daytime to control the crop ambient conditions, in a rock bed for later use at night for heating. (author)

  8. Numerical Simulation of Flow and Heat Transfer in Structured Packed Beds with Smooth or Dimpled Spheres at Low Channel to Particle Diameter Ratio

    Directory of Open Access Journals (Sweden)

    Shiyang Li

    2018-04-01

    Full Text Available Packed beds are widely used in catalytic reactors or nuclear reactors. Reducing the pressure drop and improving the heat transfer performance of a packed bed is a common research aim. The dimpled structure has a complex influence on the flow and heat transfer characteristics. In the present study, the flow and heat transfer characteristics in structured packed beds with smooth or dimpled spheres are numerically investigated, where two different low channel to particle diameter ratios (N = 1.00 and N = 1.15 are considered. The pressure drop and the Nusselt number are obtained. The results show that, for N = 1.00, compared with the structured packed bed with smooth spheres, the structured packed bed with dimpled spheres has a lower pressure drop and little higher Nusselt number at 1500 < ReH < 14,000, exhibiting an improved overall heat transfer performance. However, for N = 1.15, the structured packed bed with dimpled spheres shows a much higher pressure drop, which dominantly affects the overall heat transfer performance, causing it to be weaker. Comparing the different channel to particle diameter ratios, we find that different configurations can result in: (i completely different drag reduction effect; and (ii relatively less influence on heat transfer enhancement.

  9. Biosorption of lead(II) and cadmium(II) by protonated Sargassum glaucescens biomass in a continuous packed bed column

    International Nuclear Information System (INIS)

    Naddafi, Kazem; Nabizadeh, Ramin; Saeedi, Reza; Mahvi, Amir Hossein; Vaezi, Forough; Yaghmaeian, Kamyar; Ghasri, Azar; Nazmara, Shahrokh

    2007-01-01

    Biosorption of lead(II) and cadmium(II) from aqueous solutions by protonated Sargassum glaucescens biomass was studied in a continuous packed bed column. The selective uptake of Pb 2+ and Cd 2+ was investigated in a binary system with initial concentration of 1 mM for each metal ion. The selective uptake capacities of Pb 2+ and Cd 2+ at complete exhaustion point were obtained 1.18 and 0.22 mmol/g, respectively; therefore, the biosorbent showed much higher relative affinity for Pb 2+ than for Cd 2+ . The optimum range of empty bed contact time (EBCT) was identified as 5-10 min in the packed bed column. The efficiency of biosorbent regeneration by 0.1 M HCl was achieved about 60%, so that the maximum uptake capacity of Pb 2+ by the regenerated biomass was determined to be 0.75 mmol/g while the same value for the original biomass was 1.24 mmol/g. The Thomas model was found in a suitable fitness with the experimental data (R 2 > 0.90 and ε% + with the uptake of heavy metals; hence, ion exchange was confirmed to be one of the main biosorption mechanisms

  10. Continuous adsorption and biotransformation of micropollutants by granular activated carbon-bound laccase in a packed-bed enzyme reactor.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Dosseto, Anthony; Richardson, Christopher; Price, William E; Nghiem, Long D

    2016-06-01

    Laccase was immobilized on granular activated carbon (GAC) and the resulting GAC-bound laccase was used to degrade four micropollutants in a packed-bed column. Compared to the free enzyme, the immobilized laccase showed high residual activities over a broad range of pH and temperature. The GAC-bound laccase efficiently removed four micropollutants, namely, sulfamethoxazole, carbamazepine, diclofenac and bisphenol A, commonly detected in raw wastewater and wastewater-impacted water sources. Mass balance analysis showed that these micropollutants were enzymatically degraded following adsorption onto GAC. Higher degradation efficiency of micropollutants by the immobilized compared to free laccase was possibly due to better electron transfer between laccase and substrate molecules once they have adsorbed onto the GAC surface. Results here highlight the complementary effects of adsorption and enzymatic degradation on micropollutant removal by GAC-bound laccase. Indeed laccase-immobilized GAC outperformed regular GAC during continuous operation of packed-bed columns over two months (a throughput of 12,000 bed volumes). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Transient thermal response of a packed bed for energy storage unit utilizing phase change material: experimental and numerical study

    International Nuclear Information System (INIS)

    Bemansour, A.

    2006-01-01

    The present work concerns the numerical and experimental study of the transient response of a packed bed latent heat thermal energy storage system. Experiments were carried out to measures the transient temperature distributions inside a cylindrical bed, which is randomly packed with spheres having uniform sizes and encapsulated the paraffin wax as a phase change material (PCM), with air as a working fluid. A two-dimensional separate phases formulation is used to develop a numerical analysis of the transient response of the bed, considering the influence of both axial and radial thermal dispersion. The fluid energy equation was transformed by finite difference approximation and solved by alternating direction implicit scheme, while the PCM energy equation was solved using fully explicit scheme. This analysis can be applied for both charging and recovery modes and a broad range of Reynolds numbers. Measurements of both fluid and PCM temperature were conducted at different axial and radial positions and at different operating parameters. Experimental measurements of temperature distribution compare favorably with the numerical results over a broad range of Reynolds numbers.(Author)

  12. Endoglucanase production with the newly isolated Myceliophtora sp. i-1d3b in a packed bed solid state fermentor

    Directory of Open Access Journals (Sweden)

    A. I. Zanelato

    2012-12-01

    Full Text Available This work is aimed to produce endoglucanase through solid state fermentation in a packed bed bioreactor with the use of the fungus Myceliophtora sp. I-1D3busing a mixture of wheat bran (WB and sugar cane bagasse (SCB as culture medium. Preliminary tests were performed in polypropylene plastic bags, controlling the variables temperature (40, 45, and 50ºC, initial moisture content (75, 80, and 85%, w.b., and weight proportion SCB/WB (1:1, 7:3, and 9:1. The highest enzyme activities in plastic bags were obtained using the substrate proportion of 7:3, 50ºC temperature, and 80% initial moisture content (878 U/grams of dry solid. High activities of filter-paper cellulase and xylanase were also obtained in plastic bags and some results are reported. For the packed bed experiments, the temperature (45 and 50ºC and the air flow rate (80, 100 and 120L/h were the controlled variables. Activity of endoglucanase was similar to plastic bag tests. A longitudinal gradient of moisture content, was observed increasing from the bottom to the top of the reactor, even though the longitudinal enzyme activity profile was flat for almost the whole bed. Air flow rate did not affect enzyme activity, while experiments carried out at 50ºC showed higher enzyme activities. The maximum temperature peak observed was at about 6ºC above the process temperature.

  13. Modeling the methanolysis of triglyceride catalyzed by immobilized lipase in a continuous-flow packed-bed reactor

    International Nuclear Information System (INIS)

    Tran, Dang-Thuan; Lin, Yi-Jan; Chen, Ching-Lung; Chang, Jo-Shu

    2014-01-01

    Highlights: • A Burkholderia lipase was immobilized on alkyl-grafted celite carriers. • Celite-alkyl-lipase catalyzed the methanolysis of triglyceride in packed-bed reactor. • The kinetics of the enzymatic transesterification follows Ping Pong Bi Bi mechanism. • Models were developed to discuss the mass transfer and enzyme kinetics in the PBR. - Abstract: A Burkholderia lipase was immobilized on celite grafted with long alkyl groups. The immobilized lipase-catalyzed methanolysis of sunflower oil in a packed-bed reactor (PBR) follows the Ping Pong Bi Bi mechanism. The external mass transfer and enzymatic reaction that simultaneously occurred in the PBR were investigated via the mathematical models. The overall biodiesel production in the PBR was verified to work in an enzymatic reaction-limited regime. Triglyceride conversion and biodiesel yield were higher under a lower reactant feeding rate, while a larger amount of biocatalyst would be required to achieve the designated conversion rate if a higher reactant feeding rate was employed. The PBR can achieve nearly complete conversion of triglyceride at a biocatalyst bed height of 60 cm (ca. 29 g biocatalyst) and a flow rate of 0.1 ml min −1 , whereas the biodiesel yield was lower than 67%, probably due to the positional specificity of Burkholderia lipase and the accumulation of glycerol

  14. A Preliminary Study of the Effect of Shifts in Packing Fraction on k-effective in Pebble-Bed Reactors

    International Nuclear Information System (INIS)

    Ougouag, Abderrafi Mohammed-El-Ami; Terry, William Knox

    2001-01-01

    A preliminary examination of the effect of pebble packing changes on the reactivity of a pebble-bed reactor (PBR) is performed. As a first step, using the MCNP code, the modeling of a PBR core as a continuous and homogeneous region is compared to the modeling as a collection of discrete pebbles of equal average fuel density. It is shown that the two modeling approaches give the same trends inasmuch as changes in keff are concerned. It is thus shown that for the purpose of identifying trends in keff changes, the use of a homogeneous model is sufficient. A homogeneous model is then used to assess the effect of pebble packing arrangement changes on the reactivity of a PBR core. It is shown that the changes can be large enough to result in prompt criticality. It is shown that for uranium fueled PBRs, thermal feedback could have the potential to offset the increase in activity, whereas for plutonium fueled systems, thermal feedback may not be sufficient for totally offsetting the packing-increase reactivity insertion and could even exacerbate the initial response. It is thus shown that a full study, including reactor kinetics, thermal feedback, and the dynamics of energy deposition and removal is warranted to fully characterize the potential consequences of packing shifts

  15. Investigations on a new internally-heated tubular packed-bed methanol–steam reformer

    KAUST Repository

    Nehe, Prashant; Vanteru, Mahendra Reddy; Kumar, Sudarshan

    2015-01-01

    Small-scale reformers for hydrogen production through steam reforming of methanol can provide an alternative solution to the demand of continuous supply of hydrogen gas for the operation of Proton Exchange Membrane Fuel Cells (PEMFCs). A packed

  16. Syngas fermentation by Clostridium carboxidivorans P7 in a horizontal rotating packed bed biofilm reactor with enhanced ethanol production

    International Nuclear Information System (INIS)

    Shen, Yanwen; Brown, Robert C.; Wen, Zhiyou

    2017-01-01

    Highlights: • A novel a horizontal rotating packed bed (h-RPB) reactor for syngas fermentation was reported. • The h-RPB reactor enhanced ethanol productivity by 3.3-folds compared to continuous stirred tank reactor (CSTR). • The h-RPB reactor has a unique feature of transfer gas from both bulk liquid phase and headspace phase. • The mass transfer in the headspace of h-PRB played an important role for enhanced ethanol production. - Abstract: Gasification of lignocellulosic biomass followed by syngas fermentation is a promising process for producing fuels and chemicals. Syngas fermentation, however, is commonly limited by low mass transfer rates. In this work, a horizontally oriented rotating packed bed (h-RPB) reactor was developed to improve mass transfer and enhance ethanol production. In the h-RPB reactor, cell attachment materials were packed in the reactor and half submerged in the liquid and half exposed to the headspace. With continuous rotation of the packing materials, the cells in biofilm were alternately in contact with liquid and headspace; thus, transport of syngas to the cells occurred in both the liquid phase and headspace. The volumetric mass transfer coefficient (k_La) of the h-RPB reactor was lower than that in a traditional continuous stirred tank reactor (CSTR), indicating the mass transfer in the liquid phase of h-PRB was lower than CSTR, and the mass transfer in the headspace phase played an important role in syngas fermentation. The syngas fermentation of Clostridium carboxidivorans P7 in h-RPB resulted in a 7.0 g/L titer and 6.7 g/L/day productivity of ethanol, respectively, 3.3 times higher than those obtained in a CSTR under the same operational conditions. The results demonstrate that the h-RPB reactor is an efficient system for syngas fermentation, making cellulosic ethanol biorefinery one step closer to technical and economic feasibility.

  17. CLC in packed beds using syngas and CuO/Al2O3: Model description and experimental validation

    International Nuclear Information System (INIS)

    Hamers, H.P.; Gallucci, F.; Cobden, P.D.; Kimball, E.; Sint Annaland, M. van

    2014-01-01

    Highlights: • CLC with CuO/Al 2 O 3 and syngas and air has been demonstrated experimentally. • Model predicts accurately only if kinetics describe the complete solid reduction. • CuO/Al 2 O 3 is proven to catalyze the reversed water gas shift reaction. • H 2 O is more effective to suppress carbon deposition on CuO/Al 2 O 3 than CO 2 . • The OC reaction rate is not permanently affected by exposure to H 2 S. - Abstract: The objective of this work is to study the performance of the oxygen carrier in a packed bed with periodic switching between oxidizing and reducing conditions. In this paper the performance of CuO/Al 2 O 3 as the oxygen carrier in a packed bed reactor with syngas as the fuel are investigated, while also studying the (possible) carbon deposition and the effect of sulphur impurities on the stability of the carrier. Both experiments and simulations are used in this work. Cyclic experiments (oxidation with air and reduction with syngas) have been carried out in a lab scale packed bed reactor with 13 wt% CuO/Al 2 O 3 . The experimental results were well described by a 1D reactor model, provided that critical attention was given to the reaction rate for the complete reduction reaction, including a dramatic decrease in reaction rate at high solid conversions. Feeding syngas (p H2 = p CO = 0.1 bar) resulted in 1.1% carbon deposition of the feed. Steam was proven to be more effective in reducing carbon deposition than CO 2 . Moreover, it has been found that CuO/Al 2 O 3 catalyzed the water gas shift reaction and the reaction rate was not permanently affected by exposure to H 2 S, two key factors for CLC operation. The results of this work imply that CuO/Al 2 O 3 is an effective oxygen carrier as the first packed bed reactor in a TSCLC process and that the developed model is able to describe the performance at larger scales accurately

  18. Kinetics of pyridine degradation along with toluene and methylene chloride with Bacillus sp. in packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uma, B.; Sandhya, S. [National Environmental Engineering Research Institute, CSIR-Complex, Madras (India)

    1998-04-01

    Bacillus coagulans strain isolated from contaminated soil was immobilised on activated carbon for degradation of pyridine, toluene and methylene chloride containing synthetic wastewaters. Pyridine was supplied as the only source of nitrogen in the wastewaters. Continuous runs in a packed bed laboratory reactor showed that immobilized B. coagulans can degrade pyridine along with other organics rapidly and the effluent ammonia is also controlled in presence of ``organic carbon``. About 644 mg/l of influent TOC was efficiently degraded (82.85%) at 64.05 mg/l/hr loading. (orig.) With 2 figs., 4 tabs., 15 refs.

  19. Evaluation of NaX and NaY packed beds for chromium uptake from multicomponent solution

    Directory of Open Access Journals (Sweden)

    Maria Angélica Simões Dornellas de Barros

    2014-04-01

    Full Text Available In this paper the removal of chromium from Cr/Ca/Mg/K and Cr/Ca/Mg/K/Na solutions was investigated in NaX and NaY packed beds. The breakthrough curves presented some overshooting phenomena where chromium ions displaced the previous exchanged cations. Length of unused bed, overall mass transfer coefficient, operational ratio and dimensionless variance were obtained. According to such mass transfer parameters it was concluded that the chromium uptake is influenced by the competition and interaction of the entering ions. Such influences were verified through some differences in the dynamic selectivity obtained for each system. NaY seemed to have a higher affinity towards Cr3+ and its sites were more efficiently used in the ion exchange process.

  20. Oxidation of SO{sub 2} in a trickle bed reactor packed with activated carbon at low liquid flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Suyadal, Y.; Oguz, H. [Ankara Univ. (Turkey). Dept. of Chemical Engineering

    2000-07-01

    In this study, the oxidation of SO{sub 2} on activated carbon (AcC) by using distilled water and air was carried out in a laboratory scale trickle bed reactor (TBR). Distilled water and air containing 1.7% (v/v) SO{sub 2} were fed co-currently downward through a fixed bed of AcC particles in a range of 1-7 cm{sup 3}/s and 10-27 cm{sup 3}/s, respectively. H{sub 2}SO{sub 3}/H{sub 2}SO{sub 4} solutions were the products obtained in the liqiuid phase. Steady-state experiments were performed in a column of 0.15 m packing height and 0.047 m column diameter at 20 C and atmospheric pressure. (orig.)

  1. Perchlorate remediation using packed-bed bioreactors and electricity generation in microbial fuel cells (MFCs)

    Science.gov (United States)

    Min, Booki

    Two pilot-scale fixed bed bioreactors were operated in continuous mode in order to treat groundwater contaminated by perchlorate. The bioreactors were constructed and operated side-by-side at the Texas Street Well Facility in Redlands, California. Each reactor was packed with either sand or plastic media. A perchlorate-reducing bacterium, Dechlorosoma sp. KJ, was used to inoculate the bioreactors. Perchlorate was successfully removed down to a non-detectable level (microbial fuel cells (MFCs), which were run either in batch or continuous mode. In batch experiments, both a pure culture (Geobactor metallireducens) and a mixed culture (wastewater inoculum) were used as the biocatalyst, and acetate was added as substrate in the anode chamber of the MFC. Power output in a membrane MFC with either inoculum was essentially the same, with 40 +/- 1 mW/m2 for G. metallireducens and 38 +/- 1 mW/m2 for mixed culture. A different type of the MFC containing a salt bridge instead of a membrane system was examined to generate power using the same substrate and pure culture as used in the membrane MFC. Power output in the salt bridge MFC was 2.2 mW/m 2. It was found that the lower power output was directly attributed to the higher internal resistance of the salt bridge system (19920 +/- 50 O) in comparison with that of the membrane system (1286 +/- 1 O). Continuous electricity generation was examined in a flat plate microbial fuel cell (FPMFC) using domestic wastewater and specific organic substrates. The FPMFC, containing a combined electrode/proton exchange membrane (PEM), was initially acclimated for one month to domestic wastewater, and then was operated as a plug flow reactor system. Power density using domestic wastewater as a substrate was 72 +/- 1 mW/m2 at a liquid flow rate of 0.39 mL/min (1.1 hr hydraulic retention time, HRT), and COD removal was 42%. At a longer HRT of 4.0 hr, the COD removal increased to 79%, and power density was 43 mW/m2. Several organic compounds

  2. A comparison between CFD simulation and experimental investigation of a packed-bed thermal energy storage system

    International Nuclear Information System (INIS)

    Cascetta, Mario; Cau, Giorgio; Puddu, Pierpaolo; Serra, Fabio

    2016-01-01

    Highlights: • Thermocline formation inside a sensible type packed bed during a complete cycle. • Thermal properties of both phases must be temperature-dependent in the simulation. • Bed porosity increases from the center to the container wall. • Thermal dispersion and solid conduction must be considered in the model. • The wall influences the radial temperature profile and the amount of energy stored. - Abstract: This work presents the comparison between CFD and experimental results obtained on a sensible thermal energy storage system based on alumina beads freely poured into a carbon steel tank. Experimental investigations of charging and discharging phases were carried out at a constant mass flow rate using air as heat transfer fluid. The experimental set-up was instrumented with several thermocouples to detect axial and radial temperature distribution as well as reservoir wall temperature. The experimental results were compared with those obtained from CFD simulations carried out with the FLUENT software. The computational domain consists of an axisymmetric tank of cylindrical shape filled with a porous bed coupled with the wall. The governing equations are solved for incompressible turbulent flow and fully developed forced convection, based on the two-phase transient model equation (LTNE-local thermal non-equilibrium) to calculate the temperature of fluid and solid phases. The porosity of the bed is considered variable in the radial direction, while the thermodynamic properties of both phases are temperature-dependent. The influence of the thermal dispersion within the porous bed, as well as the effective conductivity between the beads was considered. The heat transfer coefficient was calculated according to correlation for forced convection within porous media. Numerical results show a good agreement with experimental ones if thermal properties are considered temperature-dependent and the experimental temperature profile at the inlet of the bed is

  3. [Rapid startup and nitrogen removal characteristic of anaerobic ammonium oxidation reactor in packed bed biofilm reactor with suspended carrier].

    Science.gov (United States)

    Chen, Sheng; Sun, De-zhi; Yu, Guang-lu

    2010-03-01

    Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.

  4. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study.

    Science.gov (United States)

    Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen

    2011-01-01

    An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  5. Continuous Production of Lipase-Catalyzed Biodiesel in a Packed-Bed Reactor: Optimization and Enzyme Reuse Study

    Directory of Open Access Journals (Sweden)

    Hsiao-Ching Chen

    2011-01-01

    Full Text Available An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435 as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1∘C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31±2.07% and 82.81±.98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.

  6. Optimization of lipase-catalyzed biodiesel by isopropanolysis in a continuous packed-bed reactor using response surface methodology.

    Science.gov (United States)

    Chang, Cheng; Chen, Jiann-Hwa; Chang, Chieh-Ming J; Wu, Tsung-Ta; Shieh, Chwen-Jen

    2009-10-31

    Isopropanolysis reactions were performed using triglycerides with immobilized lipase in a solvent-free environment. This study modeled the degree of isopropanolysis of soybean oil in a continuous packed-bed reactor when Novozym 435 was used as the biocatalyst. Response surface methodology (RSM) and three-level-three-factor Box-Behnken design were employed to evaluate the effects of synthesis parameters, reaction temperature ( degrees C), flow rate (mL/min) and substrate molar ratio of isopropanol to soybean oil, on the percentage molar conversion of biodiesel by transesterification. The results show that flow rate and temperature have a significant effect on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions for synthesis were as follows: flow rate 0.1 mL/min, temperature 51.5 degrees C and substrate molar ratio 1:4.14. The predicted value was 76.62+/-1.52% and actual experimental value was 75.62+/-0.81% molar conversion. Moreover, continuous enzymatic process for seven days did not show any appreciable decrease in the percent of molar conversion (75%). This work demonstrates the applicability of lipase catalysis to prepare isopropyl esters by transesterification in solvent-free system with a continuous packed-bed reactor for industrial production.

  7. Modelling and Simulation of Packed Bed Catalytic Converter for Oxidation of Soot in Diesel Powered Vehicles Flue Gas

    Directory of Open Access Journals (Sweden)

    Mohammad Nasikin

    2010-10-01

    Full Text Available Diesel vehicle is used in Indonesia in very big number. This vehicle exhausts pollutants especially diesel soot that can be reduces by using a catalytic converter to convert the soot to CO2. To obtain the optimal dimension of catalytic converter it is needed a model that can represent the profile of soot weight, temperature and pressure along the catalytic converter. In this study, a model is developed for packed bed catalytic converter in an adiabatic condition based on a kinetic study that has been  reported previously. Calculation of developed equations in this model uses Polymath 5.X solver with Range Kutta Method. The simulation result shows that temperature profile along catalytic converter increases with the decrease of soot weight,  while pressure profile decreases. The increase of soot weight in entering gas increases the needed converter length. On the other hand, the increase of catalyst diameter does not affect to soot weight along converter and temperature profile, but results a less pressure drop. For 2.500 c diesel engine, packed bed catalytic converter with ellipse's cross sectional of 14,5X7,5 cm diagonal and 0,8 cm catalyst particle diameter, needs 4,1 cm length.

  8. External Mass Transfer Model for Hydrogen Peroxide Decomposition by Terminox Ultra Catalase in a Packed-Bed Reactor

    Directory of Open Access Journals (Sweden)

    Grubecki Ireneusz

    2017-06-01

    Full Text Available It is known that external diffusional resistances are significant in immobilized enzyme packed-bed reactors, especially at large scales. Thus, the external mass transfer effects were analyzed for hydrogen peroxide decomposition by immobilized Terminox Ultra catalase in a packed-bed bioreactor. For this purpose the apparent reaction rate constants, kP, were determined by conducting experimental works at different superficial velocities, U, and temperatures. To develop an external mass transfer model the correlation between the Colburn factor, JD, and the Reynolds number, Re, of the type JD = K Re(n-1 was assessed and related to the mass transfer coefficient, kmL. The values of K and n were calculated from the dependence (am kp-1 - kR-1 vs. Re-1 making use of the intrinsic reaction rate constants, kR, determined before. Based on statistical analysis it was found that the mass transfer correlation JD = 0.972 Re-0.368 predicts experimental data accurately. The proposed model would be useful for the design and optimization of industrial-scale reactors.

  9. Mean ascending velocity of powder entrained by gas in a packed bed; Juten sonai ni okeru kiryu ni dohansareru funtai no heikin josho sokudo

    Energy Technology Data Exchange (ETDEWEB)

    Ariyama, T; Sato, M; Asakawa, Y [NKK Corp., Tokyo (Japan)

    1996-01-20

    For the purpose of clarifying the behavior of fine particles entrained by upward gas in the packed bed like in a blast furnace, the mean ascending velocity of powder in the packed bed was measured by the residence time distribution of the tracer powder. According the results, it was found that the measured velocity was lower than the values predicted by the successive collision model of fine particles. The difference is considered to be caused by the stagnant zone of fine particles on the packed materials, and this behavior was confirmed by the observation in the two dimensional experimental apparatus. Namely, the dynamic hold-up of powder in the packed bed was composed of the particles entrained by the upward gas and the stagnant particles on the packed material, and the latter part was successively renewed by the powder carried by gas. Then, on the basis of the above results, the relation between stagnant time and local ascending velocity were experimentally correlated with solid-gas loading ratio, and it was found that there exists a certain relation among them. The model proposed by these experiments enabled to calculate the mean ascending velocity of powder in the packed bed. 6 refs., 11 figs., 1 tab.

  10. Multiple steady states detection in a packed-bed reactive distillation column using bifurcation analysis

    DEFF Research Database (Denmark)

    Ramzan, Naveed; Faheem, Muhammad; Gani, Rafiqul

    2010-01-01

    A packed reactive distillation column producing ethyl tert-butyl ether from tert-butyl alcohol and ethanol was simulated for detection of multiple steady states using Aspen Plus®. A rate-based approach was used to make the simulation model more realistic. A base-case was first developed and fine...

  11. Modeling chromatographic columns. Non-equilibrium packed-bed adsorption with non-linear adsorption isotherms

    NARCIS (Netherlands)

    Özdural, A.R.; Alkan, A.; Kerkhof, P.J.A.M.

    2004-01-01

    In this work a new mathematical model, based on non-equilibrium conditions, describing the dynamic adsorption of proteins in columns packed with spherical adsorbent particles is used to study the performance of chromatographic systems. Simulations of frontal chromatography, including axial

  12. Automatic determination of 3D orientations of fossilized oyster shells from a densely packed Miocene shell bed

    Science.gov (United States)

    Puttonen, Ana; Harzhauser, Mathias; Puttonen, Eetu; Mandic, Oleg; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2018-02-01

    Shell beds represent a useful source of information on various physical processes that cause the depositional condition. We present an automated method to calculate the 3D orientations of a large number of elongate and platy objects (fossilized oyster shells) on a sedimentary bedding plane, developed to support the interpretation of possible depositional patterns, imbrications, or impact of local faults. The study focusses on more than 1900 fossil oyster shells exposed in a densely packed Miocene shell bed. 3D data were acquired by terrestrial laser scanning on an area of 459 m2 with a resolution of 1 mm. Bivalve shells were manually defined as 3D-point clouds of a digital surface model and stored in an ArcGIS database. An individual shell coordinate system (ISCS) was virtually embedded into each shell and its orientation was determined relative to the coordinate system of the entire, tectonically tilted shell bed. Orientation is described by the rotation angles roll, pitch, and yaw in a Cartesian coordinate system. This method allows an efficient measurement and analysis of the orientation of thousands of specimens and is a major advantage compared to the traditional 2D approach, which measures only the azimuth (yaw) angles. The resulting data can variously be utilized for taphonomic analyses and the reconstruction of prevailing hydrodynamic regimes and depositional environments. For the first time, the influence of possible post-sedimentary vertical displacements can be quantified with high accuracy. Here, the effect of nearby fault lines—present in the reef—was tested on strongly tilted oyster shells, but it was found out that the fault lines did not have a statistically significant effect on the large tilt angles. Aside from the high reproducibility, a further advantage of the method is its non-destructive nature, which is especially suitable for geoparks and protected sites such as the studied shell bed.

  13. Use of aluminum sulfate (alum) to decrease ammonia emissions from beef cattle bedded manure packs

    Science.gov (United States)

    Confined cattle facilities are an increasingly common housing system in the Northern Great Plains of the United States. Ammonia volatilization from the surface of the floor and bedding in these confined facilities depends on several variables including pH, temperature, and moisture content. When pH ...

  14. Ammonia, total reduced sulfides, and greenhouse gases of pine chip and corn stover bedding packs

    Science.gov (United States)

    Bedding materials may affect air quality in livestock facilities. The objective of this study was to compare headspace concentrations of ammonia (NH3), total reduced sulfides (TRS), carbon dioxide (CO2),methane (CH4), and nitrous oxide (N2O) when pine wood chips and corn stover were mixed in various...

  15. Efflux Performance of Submicron Particles in Packed Bed under Periodic Pressure Conditions; Shuki atsuho ni yoru juten sonai sabumikuron biryushi no ryushutsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ping, Z; Iritani, E; Murase, T [Nagaya Univ. Nagoya (Japan). Department of Chemical Engineering

    1997-09-01

    Permeation experiments of ultrapure water were conducted under periodic pressure conditions using a packed bed obtained by dispersing submicron particles of polymethyl methacrylate (PMMA) uniformly into a packed bed of particles of White Alundum. It is clearly demonstrated that washing performance under periodic pressure conditions where the permeation pressure is applied periodically is improved dramatically, compared with that under constant pressure conditions. It is also shown that the effect of periodic pressure operation is especially noticeable in the initial stage of the pressurizing period, and that a pressurizing time smaller than 2 min is very effective under conditions examined in this study. 4 figs.

  16. Evaluation of an activated carbon packed bed for the adsorption of phenols from petroleum refinery wastewater.

    Science.gov (United States)

    El-Naas, Muftah H; Alhaija, Manal A; Al-Zuhair, Sulaiman

    2017-03-01

    The performance of an adsorption column packed with granular activated carbon was evaluated for the removal of phenols from refinery wastewater. The effects of phenol feed concentration (80-182 mg/l), feed flow rate (5-20 ml/min), and activated carbon packing mass (5-15 g) on the breakthrough characteristics of the adsorption system were determined. The continuous adsorption process was simulated using batch data and the parameters for a new empirical model were determined. Different dynamic models such as Adams-Bohart, Wolborsko, Thomas, and Yoon-Nelson models were also fitted to the experimental data for the sake of comparison. The empirical, Yoon-Nelson and Thomas models showed a high degree of fitting at different operation conditions, with the empirical model giving the best fit based on the Akaike information criterion (AIC). At an initial phenol concentration of 175 mg/l, packing mass of 10 g, a flow rate of 10 ml/min and a temperature of 25 °C, the SSE of the new empirical and Thomas models were identical (248.35) and very close to that of the Yoon-Nelson model (259.49). The values were significantly lower than that of the Adams-Bohart model, which was determined to be 19,358.48. The superiority of the new empirical model and the Thomas model was also confirmed from the values of the R 2 and AIC, which were 0.99 and 38.3, respectively, compared to 0.92 and 86.2 for Adams-Bohart model.

  17. Continuous D-tagatose production by immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor.

    Science.gov (United States)

    Ryu, Se-Ah; Kim, Chang Sup; Kim, Hye-Jung; Baek, Dae Heoun; Oh, Deok-Kun

    2003-01-01

    D-Tagatose was continuously produced using thermostable L-arabinose isomerase immobilized in alginate with D-galactose solution in a packed-bed bioreactor. Bead size, L/D (length/diameter) of reactor, dilution rate, total loaded enzyme amount, and substrate concentration were found to be optimal at 0.8 mm, 520/7 mm, 0.375 h(-1), 5.65 units, and 300 g/L, respectively. Under these conditions, the bioreactor produced about 145 g/L tagatose with an average productivity of 54 g tagatose/L x h and an average conversion yield of 48% (w/w). Operational stability of the immobilized enzyme was demonstrated, with a tagatose production half-life of 24 days.

  18. Mathematical modeling of Kluyveromyces marxianus growth in solid-state fermentation using a packed-bed bioreactor.

    Science.gov (United States)

    Mazutti, Marcio A; Zabot, Giovani; Boni, Gabriela; Skovronski, Aline; de Oliveira, Débora; Di Luccio, Marco; Rodrigues, Maria Isabel; Maugeri, Francisco; Treichel, Helen

    2010-04-01

    This work investigated the growth of Kluyveromyces marxianus NRRL Y-7571 in solid-state fermentation in a medium composed of sugarcane bagasse, molasses, corn steep liquor and soybean meal within a packed-bed bioreactor. Seven experimental runs were carried out to evaluate the effects of flow rate and inlet air temperature on the following microbial rates: cell mass production, total reducing sugar and oxygen consumption, carbon dioxide and ethanol production, metabolic heat and water generation. A mathematical model based on an artificial neural network was developed to predict the above-mentioned microbial rates as a function of the fermentation time, initial total reducing sugar concentration, inlet and outlet air temperatures. The results showed that the microbial rates were temperature dependent for the range 27-50 degrees C. The proposed model efficiently predicted the microbial rates, indicating that the neural network approach could be used to simulate the microbial growth in SSF.

  19. Understanding the performance of sulfate reducing bacteria based packed bed reactor by growth kinetics study and microbial profiling.

    Science.gov (United States)

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2016-07-15

    A novel marine waste extract (MWE) as alternative nitrogen source was explored for the growth of sulfate reducing bacteria (SRB). Variation of sulfate and nitrogen (MWE) showed that SRB growth follows an uncompetitive inhibition model. The maximum specific growth rates (μmax) of 0.085 and 0.124 h(-1) and inhibition constants (Ki) of 56 and 4.6 g/L were observed under optimized sulfate and MWE concentrations, respectively. The kinetic data shows that MWE improves the microbial growth by 27%. The packed bed bioreactor (PBR) under optimized sulfate and MWE regime showed sulfate removal efficiency of 62-66% and metals removal efficiency of 66-75% on using mine wastewater. The microbial community analysis using DGGE showed dominance of SRB (87-89%). The study indicated the optimum dosing of sulfate and cheap organic nitrogen to promote the growth of SRB over other bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Performance of a pilot-scale packed bed reactor for perchlorate reduction using a sulfur oxidizing bacterial consortium.

    Science.gov (United States)

    Boles, Amber R; Conneely, Teresa; McKeever, Robert; Nixon, Paul; Nüsslein, Klaus R; Ergas, Sarina J

    2012-03-01

    A novel sulfur-utilizing perchlorate reducing bacterial consortium successfully treated perchlorate (ClO₄⁻) in prior batch and bench-scale packed bed reactor (PBR) studies. This study examined the scale up of this process for treatment of water from a ClO ₄⁻ and RDX contaminated aquifer in Cape Cod Massachusetts. A pilot-scale upflow PBR (∼250-L) was constructed with elemental sulfur and crushed oyster shell packing media. The reactor was inoculated with sulfur oxidizing ClO₄⁻ reducing cultures enriched from a wastewater seed. Sodium sulfite provided a good method of dissolved oxygen removal in batch cultures, but was found to promote the growth of bacteria that carry out sulfur disproportionation and sulfate reduction, which inhibited ClO₄⁻ reduction in the pilot system. After terminating sulfite addition, the PBR successfully removed 96% of the influent ClO₄⁻ in the groundwater at an empty bed contact time (EBCT) of 12 h (effluent ClO₄⁻ of 4.2 µg L(-1)). Simultaneous ClO₄⁻ and NO₃⁻ reduction was observed in the lower half of the reactor before reactions shifted to sulfur disproportionation and sulfate reduction. Analyses of water quality profiles were supported by molecular analysis, which showed distinct groupings of ClO₄⁻ and NO₃⁻ degrading organisms at the inlet of the PBR, while sulfur disproportionation was the primary biological process occurring in the top potion of the reactor. Copyright © 2011 Wiley Periodicals, Inc.

  1. The performance of a trickle-bed reactor packed with a Pt/SDBC catalyst mixture for the CECE process

    International Nuclear Information System (INIS)

    Paek, Seungwoo; Ahn, Do-Hee; Choi, Heui-Joo; Kim, Kwang-Rag; Lee, Minsoo; Yim, Sung-Paal; Chung, Hongsuk; Song, Kyu-Min; Sohn, Soon Hwan

    2007-01-01

    The combined electrolysis and catalytic exchange (CECE) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy wastewater streams because of its high separation factor and mild operating conditions. A hydrophobic platinum/styrene-divinyl benzene copolymer (Pt/SDBC) catalyst which was developed for the liquid-phase catalytic exchange (LPCE) column of the Wolsong tritium removal facility (WTRF) has been tested in a trickle bed reactor for the design of the CECE process. An experimental apparatus has been built for the testing of the catalyst at various temperatures and gas velocities. The catalyst column was packed with a mixture of a hydrophobic catalyst and a hydrophilic packing (Dixon gauze ring) to improve the liquid distribution and vapor/liquid transfer area. Many tests have been carried out at Korea Atomic Energy Research Institute (KAERI) to measure the activity of the catalyst, K y a (1 s -1 ), under various operating conditions. K y a increases with the hydrogen flow rates in the range of 0.4-1.6 m s -1 at STP. The height of the catalyst column was determined from these K y a values according to the reaction temperatures and hydrogen flow rates

  2. The performance of a trickle-bed reactor packed with a Pt/SDBC catalyst mixture for the CECE process

    Energy Technology Data Exchange (ETDEWEB)

    Paek, Seungwoo [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)], E-mail: swpaek@kaeri.re.kr; Ahn, Do-Hee; Choi, Heui-Joo; Kim, Kwang-Rag; Lee, Minsoo; Yim, Sung-Paal; Chung, Hongsuk [Korea Atomic Energy Research Institute, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Song, Kyu-Min; Sohn, Soon Hwan [Korea Electric Power Research Institute, 103-16 Munji-dong, Yuseong-gu, Daejeon 305-380 (Korea, Republic of)

    2007-10-15

    The combined electrolysis and catalytic exchange (CECE) process with a hydrophobic catalyst is a very effective method to remove small quantities of tritium from light or heavy wastewater streams because of its high separation factor and mild operating conditions. A hydrophobic platinum/styrene-divinyl benzene copolymer (Pt/SDBC) catalyst which was developed for the liquid-phase catalytic exchange (LPCE) column of the Wolsong tritium removal facility (WTRF) has been tested in a trickle bed reactor for the design of the CECE process. An experimental apparatus has been built for the testing of the catalyst at various temperatures and gas velocities. The catalyst column was packed with a mixture of a hydrophobic catalyst and a hydrophilic packing (Dixon gauze ring) to improve the liquid distribution and vapor/liquid transfer area. Many tests have been carried out at Korea Atomic Energy Research Institute (KAERI) to measure the activity of the catalyst, K{sub y}a (1 s{sup -1}), under various operating conditions. K{sub y}a increases with the hydrogen flow rates in the range of 0.4-1.6 m s{sup -1} at STP. The height of the catalyst column was determined from these K{sub y}a values according to the reaction temperatures and hydrogen flow rates.

  3. Investigation of hydrodynamic behavior of a pilot-scale trickle bed reactor packed with hydrophobic catalyst using radiotracer technique

    International Nuclear Information System (INIS)

    Kumar, Rajesh; Mohan, Sadhana; Pant, H.J.; Sharma, V.K.; Mahajani, S.M.

    2010-01-01

    Exchange of isotopes of hydrogen between aqueous phase and hydrogen gas is one of the most efficient methods for separation of hydrogen isotopes and is commonly used for production of heavy water or removal of tritium from tritiated water effluents. The isotope exchange reaction can be effectively executed in a counter-current trickle bed reactor (TBR) packed with a novel metal (Pt, Pd, Ni) based hydrophobic catalyst as the conventional novel metal based hydrophilic catalysts become ineffective after they come in contact with liquid effluents. The overall exchange reaction in the TBR mainly consists of a gas-liquid mass transfer process that transfers reactants from liquid to gaseous phase followed by an isotopic exchange reaction between the reactants in gaseous phase in presence of a solid hydrophobic catalyst. However, due to water repellent nature of the catalyst, poor liquid distribution in the reactor is normally observed that deteriorates the gas-liquid mass transfer. Therefore, it was thought that if a mixture of hydrophobic catalyst and a suitable hydrophilic mass transfer packing is used to fill the TBR column then, it can improve the distribution or mixing of the liquid and gas phase and thus improve the gas-liquid mass transfer and overall performance of the reactor and needs to be confirmed

  4. Process engineering and optimization of glycerol separation in a packed-bed reactor for enzymatic biodiesel production.

    Science.gov (United States)

    Hama, Shinji; Tamalampudi, Sriappareddy; Yoshida, Ayumi; Tamadani, Naoki; Kuratani, Nobuyuki; Noda, Hideo; Fukuda, Hideki; Kondo, Akihiko

    2011-11-01

    A process model for efficient glycerol separation during methanolysis in an enzymatic packed-bed reactor (PBR) was developed. A theoretical glycerol removal efficiency from the reaction mixture containing over 30% methyl esters was achieved at a high flow rate of 540 ml/h. To facilitate a stable operation of the PBR system, a batch reaction prior to continuous methanolysis was conducted using oils with different acid values and immobilized lipases pretreated with methyl esters. The reaction system successfully attained the methyl ester content of over 30% along with reduced viscosity and water content. Furthermore, to obtain a high methyl ester content above 96% continuously, long-term lipase stability was confirmed by operating a bench-scale PBR system for 550 h, in which the intermediates containing methyl esters and residual glycerides were fed into the enzyme-packed columns connected in series. Therefore, the developed process model is considered useful for industrial biodiesel production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Hydrogen production from water gas shift reaction in a high gravity (Higee) environment using a rotating packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Hsin; Syu, Yu-Jhih [Department of Greenergy, National University of Tainan, Tainan 700 (China)

    2010-10-15

    Hydrogen production via the water gas shift reaction (WGSR) was investigated in a high gravity environment. A rotating packed bed (RPB) reactor containing a Cu-Zn catalyst and spinning in the range of 0-1800 rpm was used to create high centrifugal force. The reaction temperature and the steam/CO ratio ranged from 250 to 350 C and 2 to 8, respectively. A dimensionless parameter, the G number, was derived to account for the effect of centrifugal force on the enhancement of the WGSR. With the rotor speed of 1800 rpm, the induced centrifugal force acting on the reactants was as high as 234 g on average in the RPB. As a result, the CO conversion from the WGSR was increased up to 70% compared to that without rotation. This clearly revealed that the centrifugal force was conducive to hydrogen production, resulting from intensifying mass transfer and elongating the path of the reactants in the catalyst bed. From Le Chatelier's principle, a higher reaction temperature or a lower steam/CO ratio disfavors CO conversion; however, under such a situation the enhancement of the centrifugal force on hydrogen production from the WGSR tended to become more significant. Accordingly, a correlation between the enhancement of CO conversion and the G number was established. As a whole, the higher the reaction temperature and the lower the steam/CO ratio, the higher the exponent of the G number function and the better the centrifugal force on the WGSR. (author)

  6. Dynamic model of organic pollutant degradation in three dimensional packed bed electrode reactor.

    Science.gov (United States)

    Pang, Tianting; Wang, Yan; Yang, Hui; Wang, Tianlei; Cai, Wangfeng

    2018-04-21

    A dynamic model of semi-batch three-dimensional electrode reactor was established based on the limiting current density, Faraday's law, mass balance and a series of assumptions. Semi-batch experiments of phenol degradation were carried out in a three-dimensional electrode reactor packed with activated carbon under different conditions to verify the model. The factors such as the current density, the electrolyte concentration, the initial pH value, the flow rate of organic and the initial organic concentration were examined to know about the pollutant degradation in the three-dimensional electrode reactor. The various concentrations and logarithm of concentration of phenol with time were compared with the dynamic model. It was shown that the calculated data were in good agreement with experimental data in most cases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri

    2001-01-01

    The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.

  8. Rapid manganese removal from mine waters using an aerated packed-bed bioreactor.

    Science.gov (United States)

    Johnson, Karen L; Younger, Paul L

    2005-01-01

    In the UK, the Environmental Quality Standard for manganese has recently been lowered to 30 microg/L (annual average), which is less than the UK Drinking Water Inspectorate's Maximum Permitted Concentration Value (50 microg/L). Current passive treatment systems for manganese removal operate as open-air gravel-bed filters, designed to maximize either influent light and/or dissolved oxygen. This requires large areas of land. A novel enhanced bioremediation treatment system for manganese removal has been developed that consists of a passively aerated subsurface gravel bed. The provision of air at depth and the use of catalytic substrates help overcome the slow kinetics usually associated with manganese oxidation. With a residence time of only 8 h and an influent manganese concentration of approximately 20 mg/L, >95% of the manganese was removed. The treatment system also operates successfully at temperatures as low as 4 degrees C and in total darkness. These observations have positive implications for manganese treatment using this technique in both colder climates and where large areas of land are unavailable. Furthermore, as the operation of this passive treatment system continually generates fresh manganese oxyhydroxide, which is a powerful sorbent for most pollutant metals, it potentially has major ancillary benefits as a removal process for other metals, such as zinc.

  9. The effect of moisture content on solid-state anaerobic digestion of dairy manure from a sawdust-bedded pack barn

    Science.gov (United States)

    The effect of moisture content on solid-state anaerobic digestion of dairy manure from a Korean sawdust-bedded pack barn was determined using laboratory-scale digesters operated at three moisture levels (70, 76, and 83% on a wet basis) at 37 C for 85 days. Results showed that digesters containing m...

  10. Importance of spinel reaction kinetics in packed-bed chemical looping combustion using a CuO/Al2O3 oxygen carrier

    NARCIS (Netherlands)

    San Pio, M.A.; Sabatino, F.; Gallucci, F.; van Sint Annaland, M.

    2018-01-01

    Chemical looping combustion is especially competitive for electrical power generation with integrated CO2 capture when it is operated at high temperatures (1000–1200 °C) and high pressures (15 bar or higher). For these demanding conditions, dynamically operated packed bed reactors have been

  11. Transformation of 1,1,1-trichloroethane in an anaerobic packed-bed reactor at various concentrations of 1,1,1-trichloroethane, acetate and sulfate

    NARCIS (Netherlands)

    deBest, JH; Jongema, H; Weijling, A; Doddema, HJ; Janssen, DB; Harder, W

    Biotransformation of 1,1,1-trichloroethane (CH3CCl3) was observed in an anaerobic packed-bed reactor under conditions of both sulfate reduction and methanogenesis. Acetate (1 mM) served as an electron donor. CH3CCl3 was completely converted up to the highest investigated concentration of 10 mu M.

  12. Effect of mass-transport limitations on the performance of a packed bed membrane reactor for partial oxidations. Intraparticle mass transport

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    For partial oxidation systems, where the reaction order in oxygen of the formation rate of the target product is smaller than the reaction order in oxygen of the consecutive reaction rate toward the waste product, a packed bed membrane reactor can be applied to distributively dose oxygen along the

  13. Effect of Mass-Transport Limitations on the Performance of a Packed Bed Membrane Reactor for Partial Oxidations. Intraparticle Mass Transport

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kurten, U.; Kuipers, J.A.M.

    2007-01-01

    For partial oxidation systems, where the reaction order in oxygen of the formation rate of the target product is smaller than the reaction order in oxygen of the consecutive reaction rate toward the waste product, a packed bed membrane reactor can be applied to distributively dose oxygen along the

  14. Hydrogenation of Levulinic Acid to gamma-Valerolactone in Water Using Millimeter Sized Supported Ru Catalysts in a Packed Bed Reactor

    NARCIS (Netherlands)

    Piskun, A. S.; de Haan, J. E.; Wilbers, E.; de Bovenkamp, H. H. van; Tang, Z.; Heeres, Hero

    gamma-Valerolactone (GVL) has been identified as a sustainable platform chemical for the production of carbon-based chemicals. We here report an experimental study on the catalytic hydrogenation of levulinic acid (LA) in water to GVL in a packed bed reactor using supported Ru catalysts (carbon,

  15. Oxygen distribution in packed-bed membrane reactors for partial oxidations: effect of the radial porosity profiles on the product selectivity

    NARCIS (Netherlands)

    Kurten, U.; van Sint Annaland, M.; Kuipers, J.A.M.

    2004-01-01

    A two-dimensional, pseudohomogeneous reactor model was presented to describe the radial and axial concentration profiles in a packed-bed membrane reactor and the local velocity field while accounting for the influences due to the distributive membrane flow and the radial porosity profile. The effect

  16. Three-phase packed bed reactor with an evaporating solvent—I. Experimental: the hydrogenation of 2,4,6-trinitrotoluene in methanol

    NARCIS (Netherlands)

    van Gelder, K.B.; Damhof, J.K.; Kroijenga, P.J.; Westerterp, K.R.

    1990-01-01

    In this paper we present experimental data on the three-phase hydrogenation of 2,4,6-trinitrotoluene (TNT) to triaminotoluene. The experiments are performed in a cocurrent upflow packed bed reactor. Methanol is used as an evaporating solvent. The influence of the main operating parameters, the

  17. A packed bed membrane reactor for the oxidative dehydrogenation of propane on a Ga2O3 / MoO3 based catalyst

    NARCIS (Netherlands)

    Kotanjac, Ž.S.; Sint Annaland, van M.; Kuipers, J.A.M.

    2010-01-01

    Oxidative dehydrogenation of propane has been studied over a Ga2O3/MoO3 based catalyst. Using a differentially operated packed bed reactor with premixed oxygen and propane feed, the kinetic parameters for the main reaction and the consecutive and parallel reactions were experimentally determined. It

  18. Galacto-oligosaccharide production with immobilized ß-galactosidase in a packed-bed reactor vs. free ß-galactosidase in a batch reactor

    NARCIS (Netherlands)

    Warmerdam, A.; Benjamins, E.; Leeuw de, T.F.; Broekhuis, T.A.; Boom, R.M.; Janssen, A.E.M.

    2014-01-01

    We report here that the usage of immobilized enzyme in a continuous packed bed reactor (PBR) can be a good alternative for GOS production instead of the traditional use of free enzyme in a batch reactor. The carbohydrate composition of the product of the PBR with immobilized enzyme was comparable to

  19. Study of Co-Current and Counter-Current Gas-Liquid Two-Phase Flow Through Packed Bed in Microgravity

    Science.gov (United States)

    Revankar, Shripad T.

    2002-11-01

    The main goal of the project is to obtain new experimental data and development of models on the co-current and counter-current gas-liquid two-phase flow through a packed bed in microgravity and characterize the flow regime transition, pressure drop, void and interfacial area distribution, and liquid hold up. Experimental data will be obtained for earth gravity and microgravity conditions. Models will be developed for the prediction of flow regime transition, void fraction distribution and interfacial area concentration, which are key parameters to characterize the packed bed performance. Thus the specific objectives of the proposed research are to: (1) Develop experiments for the study of the gas liquid two-phase flow through the packed bed with three different flow combinations: co-current down flow, co-current upflow and counter current flow. (2) Develop pore scale and bed scale two-phase instrumentation for measurement of flow regime transition, void distribution and gas-liquid interfacial area concentration in the packed bed. (3) Obtain database on flow regime transition, pressure drop, void distribution, interfacial area concentration and liquid hold up as a function of bed characteristics such as bed particle size, porosity, and liquid properties such as viscosity and surface tension. (4) Develop mathematical model for flow regime transition, void fraction distribution and interfacial area concentration for co-current gas-liquid flow through the porous bed in gravity and micro gravity conditions.(4) Develop mathematical model for the flooding phenomena in counter-current gas-liquid flow through the porous bed in gravity and micro gravity conditions. The present proposal addresses the most important topic of HEDS-specific microgravity fluid physics research identified by NASA 's one of the strategic enterprises, OBPR Enterprise. The proposed project is well defined and makes efficient use of the ground-based parabolic flight research aircraft facility. The

  20. Experimental investigations on friction laws and dryout heat flux of particulate beds packed with multi-size spheres and irregular particles

    International Nuclear Information System (INIS)

    Li, Liangxing; Ma, Weimin

    2011-01-01

    This paper is concerned with reducing uncertainty in quantification of debris bed coolability in a hypothetical severe accident of light water reactors (LWRs). A test facility named POMECO-FL is constructed to investigate the friction laws of adiabatic single and two-phase flow in a particulate bed packed with multi-size spheres or irregular particles. The same types of particles were then loaded in the test section of the POMECO-HT facility to obtain the dryout heat flux of the volumetrically heated particulate bed. The POMECO-HT facility features a high power capacity (up to 2.1 MW/m 2 ) which enables coolability study on particulate bed with broad variations in porosity and particle diameters under both top-flooding and bottom-injection conditions. The results show that given the effective particle diameter obtained from single-phase flow through the packed bed with multi-size spheres or irregular particles, both the pressure drop and the dryout heat flux of two-phase flow through the bed can be predicted by the Reed model. The bottom injection of coolant increases the dryout heat flux significantly. Meanwhile, the elevation of the dryout position is moving upwards with increasing bottom-injection flowrate. The experimental data provides insights for interpretation of debris bed coolability, as well as high-quality data for validation of the coolability analysis models and codes. (author)

  1. Effect of oxygen on ethanol fermentation in packed-bed tapered-column reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hamamci, H.; Ryu, D.D.Y.

    1988-07-01

    In ethanol production with immobilized yeast a major problem is the provision of nutrients to these highly concentrated cells. O/sub 2/ being one of the nutrients of utmost importance to yeast cells, was fed into a column packed with beads with a cell loading of more than 40 g/l. Since addition of large volume of air or O/sub 2/ to a cylindrical column reactor would aggravate the problems of pressure build up and channelling caused by the evolving CO/sub 2/ gas, a tapered-column reactor and pulsed flow of oxygen gas was used. The supplement of O/sub 2/ gas to the tapered column increased the productivity from 21.1 g ethanol x (l gel x h)/sup -1/ to 26.7 g x (l gelxh)/sup -1/, when the ethanol concentration at the outlet was about 80 g/l. The yield coefficient of ethanol was also increased from 0.41 g ethanol/g glucose to 0.43 after O/sub 2/ supplement was started. The effects of frequency and duration of O/sub 2/ supplement were also determined.

  2. Stochastic model of flow and dispersion of fine particles in a packed bed; Kakuritsu katei wo mochiita juten sonai deno funtai no ryudo to bunsan model

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, K [Kawasaki Steel Corp., Tokyo (Japan); Lockwood, F

    1996-06-01

    For the calculation of pulverized coal combustion in a blast furnace blow pipe and tuyere, a model was built for the evaluation of the movement and dispersion of particles in a packed bed by use of a stochastic approach. In the stochastic particle trajectory calculation taking into consideration the impact of fluctuations in gas turbulence, interaction distance between particles and eddies and interaction time have to be determined, in addition to fluctuations in gas flow velocity (to be determined by measuring the instantaneous flow velocity in a normal distribution generated according to random numbers). The eddy life was determined using Shuen`s formula on the premise that the particle-eddy interaction occurs within the calculated life or the transit time, whichever is shorter. As for the turbulence energy {kappa}, it was determined by the {kappa}-{epsilon} model for the free space and by the {kappa}-Lm(mixing length) model for the packed bed. From the average of a multiplicity of particles in the experiment, such time average specific values as the average density and flow velocity vectors of particles in the space, and particle trajectories, were calculated, which proved to agree with values from experiments. Once in the packed bed, the pulverized coal underwent a sudden deceleration due to its interaction with particles in the packed bed, and the pulverized coal flow near the central axis was rapidly diffused in the packed bed. This model is expected to find its use in the study of pulverized coal combustion in the blast furnace. 18 refs., 12 figs., 2 tabs.

  3. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology

    International Nuclear Information System (INIS)

    Ortega-Fernández, Iñigo; Zavattoni, Simone A.; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno; Barbato, Maurizio C.

    2017-01-01

    Highlights: •A packed bed TES system is proposed for heat recovery in CAES technology. •A CFD-based approach has been developed to evaluate the behaviour of the TES unit. •TES system enhancement and improvement alternatives are also demonstrated. •TES performance evaluated according to the first and second law of thermodynamics. -- Abstract: Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative

  4. Animal welfare in cross-ventilated, compost-bedded pack, and naturally ventilated dairy barns in the upper Midwest.

    Science.gov (United States)

    Lobeck, K M; Endres, M I; Shane, E M; Godden, S M; Fetrow, J

    2011-11-01

    The objective of this cohort study was to investigate animal welfare in 2 newer dairy housing options in the upper Midwest, cross-ventilated freestall barns (CV) and compost-bedded-pack barns (CB), compared with conventional, naturally ventilated freestall barns (NV). The study was conducted on 18 commercial dairy farms, 6 of each housing type, in Minnesota and eastern South Dakota. The primary breed in all farms was Holstein; 1 CV and 1 NV herd had approximately 30% Jersey-Holstein crossbreds. All freestall herds used sand for bedding. Farms were visited 4 times (once in each season) between January and November 2008, and approximately 93% of all animals in each pen were visually scored on each visit. Outcome-based measurements of welfare (locomotion, hock lesions, body condition score, hygiene, respiration rates, mortality, and mastitis prevalence) were collected on each farm. Lameness prevalence (proportion of cows with locomotion score ≥3 on a 1 to 5 scale, where 1=normal and 5=severely lame) in CB barns (4.4%) was lower than that in NV (15.9%) and CV (13.1%) barns. Lameness prevalence was similar between CV and NV barns. Hock lesion prevalence (proportion of cows with a lesion score ≥2 on a 1 to 3 scale, where 1=normal, 2=hair loss, and 3=swelling) was lower in CB barns (3.8%) than in CV (31.2%) and NV barns (23.9%). Hygiene scores (1 to 5 scale, where 1=clean and 5=very dirty) were higher for CB (3.18) than CV (2.83) and NV (2.77) barns, with no differences between CV and NV barns. Body condition scores, respiration rates, mastitis prevalence, culling, and mortality rates did not differ among housing systems. The CV and NV barns were evaluated using the cow comfort index (proportion of cows lying down in a stall divided by all animals touching a stall) and the stall usage index (proportion of cows lying divided by all animals in the pen not eating). The CV barns tended to have greater cow comfort index (85.9%) than the NV barns (81.4%) and had greater

  5. Permeability change with dissolution and precipitation reaction induced by highly alkaline plume in packed bed with amorphous silica particles

    International Nuclear Information System (INIS)

    Komatsu, Kyo; Kadowaki, Junichi; Niibori, Yuichi; Mimura, Hitoshi; Usui, Hideo

    2008-01-01

    A large amount of cement is used to construct of the geological disposal system. Such a material alters the pH of groundwater to highly alkaline region. The highly alkaline plume contains rich Ca ion compared to the surrounding environment, and the Ca ion reacts with soluble silicic acid. Its product would deposit on the surface of flow-paths in the natural barrier and decrease the permeability. In this study, the influence of Ca ions in highly alkaline plume on flow-paths has been examined by using packed bed column. The column was packed with the amorphous silica particles of 75-150 μm in diameter. The Ca(OH) 2 solution (0.78 mM, 2.58 mM, 4.37 mM, and 8.48 mM, pH: 12.2-12.4) was continuously injected into the column at a constant flow rate (5 ml/min, and 2 ml/min), and the change of permeability was monitored. At the same time, the concentrations of [Ca] total and [Si] in the eluted solution were measured by the inductively coupled plasma atomic emission spectrometry (ICP-AES). The Ca(OH) 2 solutions were prepared with CO 2 -free pure water, and filtrated through 0.45 μm filter. The permeability was normalized by the initial permeability value. In the experiment results, the permeability dramatically changed with increasing Ca concentration, because Ca ions and H 4 SiO 4 (due to the dissolution of SiO 2 ) produce C-S-H gel between the packed particles in the column. The SEM images and XRD analyses showed that the surface of SiO 2 particles was covered with the C-S-H gel precipitation. On the other hand, when the Ca concentration was relatively low, the permeability did not show remarkable change. For the cross section of SiO 2 particles, EPMA analysis suggested the consumption of Ca in the inner pore of the SiO 2 particles. However, the time-change in the concentrations of Si and Ca was not always simple. Such time-change strongly depended not only on pH or Ca concentration, but also on the flow rates. This suggested that mass transport controls the chemical

  6. Studies on Pyrolysis Kinetic of Newspaper Wastes in a Packed Bed Reactor: Experiments, Modeling, and Product Characterization

    Directory of Open Access Journals (Sweden)

    Aparna Sarkar

    2015-01-01

    Full Text Available Newspaper waste was pyrolysed in a 50 mm diameter and 640 mm long reactor placed in a packed bed pyrolyser from 573 K to 1173 K in nitrogen atmosphere to obtain char and pyro-oil. The newspaper sample was also pyrolysed in a thermogravimetric analyser (TGA under the same experimental conditions. The pyrolysis rate of newspaper was observed to decelerate above 673 K. A deactivation model has been attempted to explain this behaviour. The parameters of kinetic model of the reactions have been determined in the temperature range under study. The kinetic rate constants of volatile and char have been determined in the temperature range under study. The activation energies 25.69 KJ/mol, 27.73 KJ/mol, 20.73 KJ/mol and preexponential factors 7.69 min−1, 8.09 min−1, 0.853 min−1 of all products (solid reactant, volatile, and char have been determined, respectively. A deactivation model for pyrolysis of newspaper has been developed under the present study. The char and pyro-oil obtained at different pyrolysis temperatures have been characterized. The FT-IR analyses of pyro-oil have been done. The higher heating values of both pyro-products have been determined.

  7. Stability of immobilized Rhizomucor miehei lipase for the synthesis of pentyl octanoate in a continuous packed bed bioreactor

    Directory of Open Access Journals (Sweden)

    E. Skoronski

    2014-09-01

    Full Text Available The enzymatic synthesis of organic compounds in continuous bioreactors is an efficient way to obtain industrially important chemicals. However, few works have focused on the study of the operational conditions and the bioprocess performance. In this work, the aliphatic ester pentyl octanoate was obtained by direct esterification using a continuous packed bed bioreactor containing the immobilized enzyme Lipozyme® RM IM as catalyst. Enzymatic deactivation was evaluated under different conditions for the operational parameters substrate/enzyme ratio (5.00, 1.67, 0.83 and 0.55 mmol substrate∙min-1∙g-1enzyme and temperature (30, 40, 50 and 60 °C. The optimal condition was observed at 30 ºC, which gave the minimum enzymatic deactivation rate and the maximum conversion to the desired product, yielding approximately 60 mmols of ester for an enzyme loading of 0.5 g into the bioreactor. A first-order deactivation model showed good agreement with the experimental data.

  8. The adsorption of copper in a packed-bed of chitosan beads: modeling, multiple adsorption and regeneration.

    Science.gov (United States)

    Osifo, Peter O; Neomagus, Hein W J P; Everson, Raymond C; Webster, Athena; vd Gun, Marius A

    2009-08-15

    In this study, exoskeletons of Cape rock lobsters were used as raw material in the preparation of chitin that was successively deacetylated to chitosan flakes. The chitosan flakes were modified into chitosan beads and the beads were cross-linked with glutaraldehyde in order to study copper adsorption and regeneration in a packed-bed column. Five consecutive adsorption and desorption cycles were carried out and a chitosan mass loss of 25% was observed, after the last cycle. Despite the loss of chitosan material, an improved efficiency in the second and third cycles was observed with the adsorbent utilizing 97 and 74% of its adsorbent capacity in the second and third cycles, respectively. The fourth and fifth cycles, however, showed a decreased efficiency, and breakage of the beads was observed after the fifth cycle. In the desorption experiments, 91-99% of the adsorbed copper was regenerated in the first three cycles. It was also observed that the copper can be regenerated at a concentration of about a thousand fold the initial concentration. The first cycle of adsorption could be accurately described with a shrinking core particle model combined with a plug flow column model. The input parameters for this model were determined by batch characterization methods, with as only fitting parameter, the effective diffusion coefficient of copper in the bead.

  9. The adsorption of copper in a packed-bed of chitosan beads: Modeling, multiple adsorption and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Osifo, Peter O., E-mail: petero@vut.ac.za [Department of Chemical Engineering, Vaal University of Technology, P/Bag X021, Vanderbijlpark 1900 (South Africa); Neomagus, Hein W.J.P.; Everson, Raymond C. [School of Chemical and Minerals Engineering, North-West University, P/Bag X6001, Potchefstroom 2520 (South Africa); Webster, Athena [University of Utah, Chemistry Department, Salt Lake City, UT 84112 (United States); Gun, Marius A. vd [Sulzer Elbar B.V., Spikweien 36, NL-5943 AD Lomm (Netherlands)

    2009-08-15

    In this study, exoskeletons of Cape rock lobsters were used as raw material in the preparation of chitin that was successively deacetylated to chitosan flakes. The chitosan flakes were modified into chitosan beads and the beads were cross-linked with glutaraldehyde in order to study copper adsorption and regeneration in a packed-bed column. Five consecutive adsorption and desorption cycles were carried out and a chitosan mass loss of 25% was observed, after the last cycle. Despite the loss of chitosan material, an improved efficiency in the second and third cycles was observed with the adsorbent utilizing 97 and 74% of its adsorbent capacity in the second and third cycles, respectively. The fourth and fifth cycles, however, showed a decreased efficiency, and breakage of the beads was observed after the fifth cycle. In the desorption experiments, 91-99% of the adsorbed copper was regenerated in the first three cycles. It was also observed that the copper can be regenerated at a concentration of about a thousand fold the initial concentration. The first cycle of adsorption could be accurately described with a shrinking core particle model combined with a plug flow column model. The input parameters for this model were determined by batch characterization methods, with as only fitting parameter, the effective diffusion coefficient of copper in the bead.

  10. The adsorption of copper in a packed-bed of chitosan beads: Modeling, multiple adsorption and regeneration

    International Nuclear Information System (INIS)

    Osifo, Peter O.; Neomagus, Hein W.J.P.; Everson, Raymond C.; Webster, Athena; Gun, Marius A. vd

    2009-01-01

    In this study, exoskeletons of Cape rock lobsters were used as raw material in the preparation of chitin that was successively deacetylated to chitosan flakes. The chitosan flakes were modified into chitosan beads and the beads were cross-linked with glutaraldehyde in order to study copper adsorption and regeneration in a packed-bed column. Five consecutive adsorption and desorption cycles were carried out and a chitosan mass loss of 25% was observed, after the last cycle. Despite the loss of chitosan material, an improved efficiency in the second and third cycles was observed with the adsorbent utilizing 97 and 74% of its adsorbent capacity in the second and third cycles, respectively. The fourth and fifth cycles, however, showed a decreased efficiency, and breakage of the beads was observed after the fifth cycle. In the desorption experiments, 91-99% of the adsorbed copper was regenerated in the first three cycles. It was also observed that the copper can be regenerated at a concentration of about a thousand fold the initial concentration. The first cycle of adsorption could be accurately described with a shrinking core particle model combined with a plug flow column model. The input parameters for this model were determined by batch characterization methods, with as only fitting parameter, the effective diffusion coefficient of copper in the bead.

  11. Mathematical Modeling of the Sugar Cane Bagasse'Sprotein Enrichment Processes, in a Packed-Bed Bioreactor

    International Nuclear Information System (INIS)

    Julián-Ricardo, María Caridad; Ramos-Sánchez, Luís Beltrán; Gómez-Atanay, Angel Osvaldo

    2014-01-01

    The residues of the sugar industry have been used usually, natural or processed in the animal alimentation and have been developed a lot of investigations that are allowed obtain protein enrichment products by solid state fermentation (SSF). However, the technologies employed in the production have limitations that are restraining their commercialization. This investigation was directed to find solutions to the problems that are presented and was planted like objective: to obtain a mathematical model for the scale-up of the sugar cane bagasse´s protein enrichment process, using the Candida utilis yeast, in a packed-bed bioreactor. The experimental work was realized in a pilot plant that have an installation for the air accommodation that is supply for the bioreactor, with a temperature of 30 ºC and more than 95 % of relative humidity. Was used a mathematical model compose by a pseudohomogenous energy balance and the mass balances for the biomass overgrowth and the substrate consumption. The validation studies, was realized by the temperatures comparisons axially measure in 10 L and 100 L bioreactor and the temperatures calculated by simulation. The statistic treatment demonstrate that doesn´t exist big differences between the middle temperatures, for a confidence level of 95 %. The analysis realized to characterize the obtained product, allowed establish that it is accord to quality specifications of the protein enrichment feed. (author)

  12. Optimization of the operation of packed bed bioreactor to improve the sulfate and metal removal from acid mine drainage.

    Science.gov (United States)

    Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta

    2017-09-15

    The present study discusses the potentiality of using anaerobic Packed Bed Bioreactor (PBR) for the treatment of acid mine drainage (AMD). The multiple process parameters such as pH, hydraulic retention time (HRT), concentration of marine waste extract (MWE), total organic carbon (TOC) and sulfate were optimized together using Taguchi design. The order of influence of the parameters towards biological sulfate reduction was found to be pH > MWE > sulfate > HRT > TOC. At optimized conditions (pH - 7, 20% (v/v) MWE, 1500 mg/L sulfate, 48 h HRT and 2300 mg/L TOC), 98.3% and 95% sulfate at a rate of 769.7 mg/L/d. and 732.1 mg/L/d. was removed from the AMD collected from coal and metal mine, respectively. Efficiency of metal removal (Fe, Cu, Zn, Mg and Ni) was in the range of 94-98%. The levels of contaminants in the treated effluent were below the minimum permissible limits of industrial discharge as proposed by Bureau of Indian Standards (IS 2490:1981). The present study establishes the optimized conditions for PBR operation to completely remove sulfate and metal removal from AMD at high rate. The study also creates the future scope to develop an efficient treatment process for sulfate and metal-rich mine wastewater in a large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Lipid for biodiesel production from attached growth Chlorella vulgaris biomass cultivating in fluidized bed bioreactor packed with polyurethane foam material.

    Science.gov (United States)

    Mohd-Sahib, Ainur-Assyakirin; Lim, Jun-Wei; Lam, Man-Kee; Uemura, Yoshimitsu; Isa, Mohamed Hasnain; Ho, Chii-Dong; Kutty, Shamsul Rahman Mohamed; Wong, Chung-Yiin; Rosli, Siti-Suhailah

    2017-09-01

    The potential to grow attached microalgae Chlorella vulgaris in fluidized bed bioreactor was materialized in this study, targeting to ease the harvesting process prior to biodiesel production. The proposed thermodynamic mechanism and physical property assessment of various support materials verified polyurethane to be suitable material favouring the spontaneous adhesion by microalgae cells. The 1-L bioreactor packed with only 2.4% (v/v) of 1.00-mL polyurethane foam cubes could achieve the highest attached growth microalgae biomass and lipid weights of 812±122 and 376±37mg, respectively, in comparison with other cube sizes. The maturity of attached growth microalgae biomass for harvesting could also be determined from the growth trend of suspended microalgae biomass. Analysis of FAME composition revealed that the harvested microalgae biomass was dominated by C16-C18 (>60%) and mixture of saturated and mono-unsaturated fatty acids (>65%), satiating the biodiesel standard with adequate cold flow property and oxidative stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biodegradation of p-nitrophenol using Arthrobacter chlorophenolicus A6 in a novel upflow packed bed reactor.

    Science.gov (United States)

    Sahoo, Naresh Kumar; Pakshirajan, Kannan; Ghosh, Pranab Kumar

    2011-06-15

    A novel packed bed reactor (PBR) was designed with cross flow aeration at multiple ports along the depth to improve the hydrodynamic conditions of the reactor, and the biodegradation efficiency of Arthrobacter chlorophenolicus A6 on p-nitrophenol (PNP) removal in PBR at different PNP loading rates were evaluated. The novel PBR was designed to improve the hydrodynamic features such as mixing time profile (t(m95)), oxygen mass transfer coefficient (k(L)a), and overall gas hold up capacity (ɛ(G)) of the reactor. PNP concentration in the influent was varied between 600 and 1400 mg l(-1) whereas the hydraulic retention time (HRT) in the reactor was varied between 18 and 7.5h. Complete removal of PNP was achieved in the reactor up to a PNP loading rate of 2787 mg l(-1)d(-1). More than 99.9% removal of PNP was achieved in the reactor for an influent concentration of 1400 mg l(-1) and at 18 h HRT. In the present study, PNP was utilized as sole source of carbon and energy by A. chlorophenolicus A6. Furthermore, the bioreactor showed good compatibility in handling shock loading of PNP. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Cyanuric acid biodegradation by a mixed bacterial culture of Agrobacterium tumefaciens and Acinetobacter sp. in a packed bed biofilm reactor.

    Science.gov (United States)

    Galíndez-Nájera, S P; Llamas-Martínez, M A; Ruiz-Ordaz, N; Juárez-Ramírez, C; Mondragón-Parada, M E; Ahuatzi-Chacón, D; Galíndez-Mayer, J

    2009-02-01

    Cyanuric acid (1,3,5-triazine-2,4,6-triol [OOOT]) is a common biodegradation byproduct of triazinic herbicides, frequently accumulated in soils or water when supplementary carbon sources are absent. A binary bacterial culture able to degrade OOOT was selected through a continuous selection process accomplished in a chemostat fed with a mineral salt (MS) medium containing cyanuric acid as the sole carbon and nitrogen source. By sequence comparison of their 16S rDNA amplicons, bacterial strains were identified as Agrobacterium tumefaciens, and Acinetobacter sp. When the binary culture immobilized in a packed bed reactor (PBR) was fed with MS medium containing OOOT (50 mg L(-1)), its removal efficiencies were about 95%; when it was fed with OOOT plus glucose (120 mg L(-1)) as a supplementary carbon source, its removal efficiencies were closer to 100%. From sessile cells, attached to PBR porous support, or free cells present in the outflowing medium, DNA was extracted and used for Random Amplification of Polymorphic DNA analysis. Electrophoretic patterns obtained were compared to those of pure bacterial strains, a clear predominance of A. tumefaciens in PBR was observed. Although in continuous suspended cell culture, a stable binary community could be maintained, the attachment capability of A. tumefaciens represented a selective advantage over Acinetobacter sp. in the biofilm reactor, favoring its predominance in the porous stone support.

  16. Biodegradation of p-nitrophenol using Arthrobacter chlorophenolicus A6 in a novel upflow packed bed reactor

    International Nuclear Information System (INIS)

    Sahoo, Naresh Kumar; Pakshirajan, Kannan; Ghosh, Pranab Kumar

    2011-01-01

    A novel packed bed reactor (PBR) was designed with cross flow aeration at multiple ports along the depth to improve the hydrodynamic conditions of the reactor, and the biodegradation efficiency of Arthrobacter chlorophenolicus A6 on p-nitrophenol (PNP) removal in PBR at different PNP loading rates were evaluated. The novel PBR was designed to improve the hydrodynamic features such as mixing time profile (t m95 ), oxygen mass transfer coefficient (k L a), and overall gas hold up capacity (ε G ) of the reactor. PNP concentration in the influent was varied between 600 and 1400 mg l -1 whereas the hydraulic retention time (HRT) in the reactor was varied between 18 and 7.5 h. Complete removal of PNP was achieved in the reactor up to a PNP loading rate of 2787 mg l -1 d -1 . More than 99.9% removal of PNP was achieved in the reactor for an influent concentration of 1400 mg l -1 and at 18 h HRT. In the present study, PNP was utilized as sole source of carbon and energy by A. chlorophenolicus A6. Furthermore, the bioreactor showed good compatibility in handling shock loading of PNP.

  17. Effects of pulse-to-pulse residual species on discharges in repetitively pulsed discharges through packed bed reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for conversion of toxic and waste gases, and CO2 removal. These discharges are repetitively pulsed having varying flow rates and internal geometries, which results in species from the prior pulse still being in the discharge zone at the time the following discharge pulse occurs. A non-negligible residual plasma density remains, which effectively acts as preionization. This residual charge changes the discharge properties of subsequent pulses, and may impact important PBR properties such as chemical selectivity. Similarly, the residual neutral reactive species produced during earlier pulses will impact the reaction rates on subsequent pulses. We report on results of a computational investigation of a 2D PBR using the plasma hydrodynamics simulator nonPDPSIM. Results will be discussed for air flowing though an array of dielectric rods at atmospheric pressure. The effects of inter-pulse residual species on PBR discharges will be quantified. Means of controlling the presence of residual species in the reactor through gas flow rate, pulse repetition, pulse width and geometry will be described. Comparisons will be made to experiments. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  18. Biodegradation of 4-bromophenol by Arthrobacter chlorophenolicus A6T in a newly designed packed bed reactor.

    Science.gov (United States)

    Sahoo, Naresh Kumar; Ghosh, Pranab Kumar; Pakshirajan, Kannan

    2013-02-01

    Bromophenol is listed as a priority pollutant by the U.S. EPA. However, there has been no report on the removal of bromophenol in any biological system that is operated in a continuous mode. The efficiency of Arthrobacter chlorophenolicus A6(T) on the biodegradation of 4-bromophenol (4-BP) in a newly designed packed bed reactor (PBR) was evaluated with different influent 4-BP concentrations between 400 mg l(-1) and 1200 mg l(-1) and hydraulic retention times (HRTs) between 24 h and 7.5 h. The response of the PBR to 4-BP shock loadings was also tested, and the bioreactor was found to adequately handle these shock loadings. The percentage of effluent toxicity in the PBR was tested using mixed microbial consortia as the test species; this experiment was performed using a 4-BP influent concentration of 1200 mg l(-1) and HRTs between 24 h and 7.5 h. A maximal 98% effluent toxicity removal was achieved when the PBR was operated at an HRT of 24 h. In the present study, 4-BP was used as the sole source of carbon and energy, and the complete removal of 4-BP was achieved with 4-BP loading rates of up to 2277 mg l(-1) day(-1). Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  19. Improved thermostable polyvinyl alcohol electrospun nanofibers with entangled naringinase used in a novel mini-packed bed reactor.

    Science.gov (United States)

    Nunes, Mário A P; Martins, Samuel; Rosa, M Emilia; Gois, Pedro M P; Fernandes, Pedro C B; Ribeiro, Maria H L

    2016-08-01

    Polyvinyl alcohol (PVA) electrospun nanofibers were produced using an electrospinning technique. Key parameters (e.g. collectors, distance from needle tip to collector, among others) that influence the structure and morphology of fibers were optimized. The naringinase entrapped in PVA nanofibers retained over 100% of its initial activity after 212h of operation, at 25°C. Chemical crosslinking with several boronic acids further increased the hydrolysis temperature (up to 85°C) and yielded nanofibers with thermal stability up to 121°C. A mini packed bed reactor (PBR) developed to establish the feasibility for continuous enzymatic operation, ran for 16days at 45°C. Highest naringenin biosynthesis was attained at a flow rate of 10mLh(-1). Highest volumetric (78molL(-1)h(-1)) and specific (26molh(-1)genzyme(-1)) productivities were attained at 30mLh(-1). The activity of NGase in electrospun nanofibers remained constant for almost 16days of operation at 10mLh(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A thermal packed-bed reactor and a silent discharge plasma cell for a two-stage treatment system

    International Nuclear Information System (INIS)

    Godoy-Cabrera, O G; Lopez-Callejas, R; Mercado-Cabrera, A; Barocio, S R; Valencia, R; Munoz-Castro, A; Eguiluz, R Pena; Piedad-Beneitez, A de la

    2006-01-01

    Dielectric barrier discharge cells (DBDCs) have proved their efficiency in the generation of cold plasmas for hazardous organic compound degradation. Here, we describe the design and construction of a dual thermal packed-bed reactor and DBDC-based system to carry out the degradation of hazardous organic compounds in both liquid and gas phases. The main components of this system are: (i) the thermal treatment system (ii) DBDC and (iii) resonant inverters of low (3.3 kHz) and high (100 kHz) calculated frequencies. The definition of the cell physical parameters considers: (a) a first-order degradation ratio of the compound and (b) the air breakdown at atmospheric pressure as a function of the transport carrier gas. The power consumed by the cells during the discharges was computed theoretically and experimentally. Using the dual system along with a gas chromatography diagnostic system, highly efficient degradations of a test compound (benzene) have been obtained, reaching 99.950% in the case of a cell experimentally operated at 3.3 kHz and up to 99.996% in another one at 94.3 kHz. An additional 3.7 times reduction in the latter case residence time with respect to the low frequency cell has been found

  1. Performance and regeneration of a pellet-packed-bed diesel-particulate trap; Ryutai jutenso diesel biryushi trap no seino oyobi saisei

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M; Nakai, S; Ikegami, M [Kyoto University, Kyoto (Japan); Hori, Y [Yamaha Motor Co. Ltd., Shizuoka (Japan)

    1997-10-01

    This paper demonstrates with the feasibility of a pellet-packed bed for trapping diesel particulates. After making pellets loose from the packed condition, regeneration is established by a circulation of pellets in the trap and collected particulates are efficiently dropped out through the wire mesh on the bottom of the trap. An experimental trap with the pellet-circulation system using a spiral feeder is tested on a single-cylinder test engine to show the trap and regeneration efficiencies. In addition, the condition of pellet circulation is observed using the transparent cylinder, based on which the design of pellet and trap sizes are discussed. 6 refs., 10 figs.

  2. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    Science.gov (United States)

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Modeling of an axial flow, spherical packed-bed reactor for naphtha reforming process in the presence of the catalyst deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Iranshahi, D.; Pourazadi, E.; Paymooni, K.; Bahmanpour, A.M.; Rahimpour, M.R.; Shariati, A. [Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345 (Iran, Islamic Republic of)

    2010-12-15

    Improving the octane number of the aromatics' compounds has always been an important matter in refineries and lots of investigations have been made concerning this issue. In this study, an axial-flow spherical packed-bed reactor (AF-SPBR) is considered for naphtha reforming process in the presence of catalyst deactivation. Model equations are solved by the orthogonal collocation method. The AF-SPBR results are compared with the plant data of a conventional tubular packed-bed reactor (TR). The effects of some important parameters such as pressure and temperature on aromatic and hydrogen production rates and catalyst activity have been investigated. Higher production rates of aromatics can successfully be achieved in this novel reactor. Moreover, results show the capability of flow augmentation in the proposed configuration in comparison with the TR. This study shows the superiority of AF-SPBR configuration to the conventional types. (author)

  4. Enzymatic synthesis of farnesyl laurate in organic solvent: initial water activity, kinetics mechanism, optimization of continuous operation using packed bed reactor and mass transfer studies.

    Science.gov (United States)

    Rahman, N K; Kamaruddin, A H; Uzir, M H

    2011-08-01

    The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V (max) = 5.80 mmol l(-1) min(-1) g enzyme(-1), K (m,A) = 0.70 mmol l(-1) g enzyme(-1), K (m,B) = 115.48 mmol l(-1) g enzyme(-1), K (i) = 11.25 mmol l(-1) g enzyme(-1). The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07 ± 0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited.

  5. Odorous volatile organic compounds, Escherichia coli, and nutrient concentrations when kiln-dried pine chips and corn stover bedding are used in beef bedded manure packs

    Science.gov (United States)

    Pine (Pinus spp.) bedding has been shown to lower the concentration of odorous volatile organic compounds (VOCs) and pathogenic bacteria compared with corn (Zea mays L.) stover bedding, but availability and cost limit the use of pine bedding in cattle confinement facilities. The objectives of this s...

  6. Operational parameters and their influence on particle-side mass transfer resistance in a packed bed bioreactor.

    Science.gov (United States)

    Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo

    2015-12-01

    The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, beads size, glucose concentration and flow rate have a significant effect on lag phase duration. The duration of lag phase for different size of beads (0.8, 2 and 4 mm) decreases by increasing flow rate and by decreasing the size of beads. Moreover, longer lag phase were found at higher glucose medium concentration and also with chitosan coated beads. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external (fluid side) mass transfer as a result of increase in flow rate as glucose is easily transported to the surface of the beads. Varying the size of beads is an additional factor: as it reduces the internal (particle side) mass transfer by reducing the size of beads. The reason behind this is the distance for reactants to reach active site of catalyst (cells) and the thickness of fluid created layer around alginate beads is reduced. The optimum combination of parameters consisting of smaller beads size (0.8 mm), higher flow rate of 90 ml/min and glucose concentration of 10 g/l were found to be the maximum condition for ethanol production.

  7. PRODUCTION OF MEDIUM-CHAIN ACYLGLYCEROLS BY LIPASE ESTERIFICATION IN PACKED BED REACTOR: PROCESS OPTIMIZATION BY RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    ZANARIAH MOHD DOM

    2014-06-01

    Full Text Available Medium-chain acylglycerols (or glycerides are formed of mono-, di- and triacylglycerol classes. In this study, an alternative method to produce MCA from esterifying palm oil fatty acid distillate (PFAD with the presence of oil palm mesocarp lipase (OPML which is a plant-sourced lipase and PFAD is also cheap by-product is developed in a packed bed reactor. The production of medium-chain acylglycerols (MCA by lipase-catalysed esterification of palm oil fatty acid distillate with glycerol are optimize in order to determine the factors that have significant effects on the reaction condition and high yield of MCA. Response surface methodology (RSM was applied to optimize the reaction conditions. The reaction conditions, namely, the reaction time (30-240 min, enzyme load (0.5-1.5 kg, silica gel load (0.2-1.0 kg, and solvent amount (200-600 vol/wt. Reaction time, enzyme loading and solvent amount strongly effect MCA synthesis (p0.05 influence on MCA yield. Best-fitting models were successfully established for MCA yield (R 2 =0.9133. The optimum MCA yield were 75% from the predicted value and 75.4% from the experimental data for 6 kg enzyme loading, a reaction time of 135min and a solvent amount of 350 vol/wt at 65ºC reaction temperature. Verification of experimental results under optimized reaction conditions were conducted, and the results agreed well with the predicted range. Esterification products (mono-, di- and triacylglycerol from the PBR were identified using Thin Layer Chromatography method. The chromatograms showed the successful fractionation of esterified products in this alternative method of process esterification.

  8. Treatment of ferrous-NTA-based NO x scrubber solution by an up-flow anaerobic packed bed bioreactor.

    Science.gov (United States)

    Chandrashekhar, B; Sahu, Nidhi; Tabassum, Heena; Pai, Padmaraj; Morone, Amruta; Pandey, R A

    2015-06-01

    A bench scale system consisting of an up-flow packed bed bioreactor (UAPBR) made of polyurethane foam was used for the treatment and regeneration of aqueous solution of ferrous-NTA scrubbed with nitric oxide (NO). The biomass in the UAPBR was sequentially acclimatized under denitrifying and iron reducing conditions using ethanol as electron donor, after which nitric oxide (NO) gas was loaded continuously to the system by absorption. The system was investigated for different parameters viz. pH, removal efficiency of nitric oxide, biological reduction efficiency of Fe(II)NTA-NO and COD utilization. The Fe(II)NTA-NO reduction efficiency reached 87.8 % at a loading rate of 0.24 mmol L(-1) h(-1), while the scrubber efficiency reached more than 75 % with 250 ppm NO. Stover-Kincannon and a Plug-flow kinetic model based on Michaelis-Menten equation were used to describe the UAPBR performance with respect to Fe(II)NTA-NO and COD removal. The Stover-Kincannon model was found capable of describing the Fe(II)NTA-NO reduction (R m = 8.92 mM h(-1) and K NO = 11.46 mM h(-1)) while plug-flow model provided better fit to the COD utilization (U m = 66.62 mg L(-1) h(-1), K COD = 7.28 mg L(-1)). Analyses for pH, Fe(III)NTA, ammonium, nitrite concentration, and FTIR analysis of the medium samples indicated degradation of NTA, which leads to ammonium and nitrite accumulation in the medium, and affect the regeneration process.

  9. Current challenges for pre-earthquake electromagnetic emissions: shedding light from micro-scale plastic flow, granular packings, phase transitions and self-affinity notion of fracture process

    Directory of Open Access Journals (Sweden)

    K. Eftaxias

    2013-10-01

    Full Text Available Are there credible electromagnetic (EM potential earthquake (EQ precursors? This a question debated in the scientific community and there may be legitimate reasons for the critical views. The negative view concerning the existence of EM potential precursors is enhanced by features that accompany their observation which are considered as paradox ones, namely, these signals: (i are not observed at the time of EQs occurrence and during the aftershock period, (ii are not accompanied by large precursory strain changes, (iii are not accompanied by simultaneous geodetic or seismological precursors and (iv their traceability is considered problematic. In this work, the detected candidate EM potential precursors are studied through a shift in thinking towards the basic science findings relative to granular packings, micron-scale plastic flow, interface depinning, fracture size effects, concepts drawn from phase transitions, self-affine notion of fracture and faulting process, universal features of fracture surfaces, recent high quality laboratory studies, theoretical models and numerical simulations. We try to contribute to the establishment of strict criteria for the definition of an emerged EM anomaly as a possibly EQ-related one, and to the explanation of potential precursory EM features which have been considered as paradoxes. A three-stage model for EQ generation by means of pre-EQ fracture-induced EM emissions is proposed. The claim that the observed EM potential precursors may permit a real-time and step-by-step monitoring of the EQ generation is tested.

  10. Current challenges for pre-earthquake electromagnetic emissions: shedding light from micro-scale plastic flow, granular packings, phase transitions and self-affinity notion of fracture process

    Science.gov (United States)

    Eftaxias, K.; Potirakis, S. M.

    2013-10-01

    Are there credible electromagnetic (EM) potential earthquake (EQ) precursors? This a question debated in the scientific community and there may be legitimate reasons for the critical views. The negative view concerning the existence of EM potential precursors is enhanced by features that accompany their observation which are considered as paradox ones, namely, these signals: (i) are not observed at the time of EQs occurrence and during the aftershock period, (ii) are not accompanied by large precursory strain changes, (iii) are not accompanied by simultaneous geodetic or seismological precursors and (iv) their traceability is considered problematic. In this work, the detected candidate EM potential precursors are studied through a shift in thinking towards the basic science findings relative to granular packings, micron-scale plastic flow, interface depinning, fracture size effects, concepts drawn from phase transitions, self-affine notion of fracture and faulting process, universal features of fracture surfaces, recent high quality laboratory studies, theoretical models and numerical simulations. We try to contribute to the establishment of strict criteria for the definition of an emerged EM anomaly as a possibly EQ-related one, and to the explanation of potential precursory EM features which have been considered as paradoxes. A three-stage model for EQ generation by means of pre-EQ fracture-induced EM emissions is proposed. The claim that the observed EM potential precursors may permit a real-time and step-by-step monitoring of the EQ generation is tested.

  11. The influence of process parameters in production of lipopeptide iturin A using aerated packed bed bioreactors in solid-state fermentation.

    Science.gov (United States)

    Piedrahíta-Aguirre, C A; Bastos, R G; Carvalho, A L; Monte Alegre, R

    2014-08-01

    The strain Bacillus iso 1 co-produces the lipopeptide iturin A and biopolymer poly-γ-glutamic acid (γ-PGA) in solid-state fermentation of substrate consisting of soybean meal, wheat bran with rice husks as an inert support. The effects of pressure drop, oxygen consumption, medium permeability and temperature profile were studied in an aerated packed bed bioreactor to produce iturin A, diameter of which was 50 mm and bed height 300 mm. The highest concentrations of iturin A and γ-PGA were 5.58 and 3.58 g/kg-dry substrate, respectively, at 0.4 L/min after 96 h of fermentation. The low oxygen uptake rates, being 23.34 and 22.56 mg O2/kg-dry solid substrate for each air flow rate tested generated 5.75 W/kg-dry substrate that increased the fermentation temperature at 3.7 °C. The highest pressure drop was 561 Pa/m at 0.8 L/min in 24 h. This is the highest concentration of iturin A produced to date in an aerated packed bed bioreactor in solid-state fermentation. The results can be useful to design strategies to scale-up process of iturin A in aerated packed bed bioreactors. Low concentration of γ-PGA affected seriously pressure drop, decreasing the viability of the process due to generation of huge pressure gradients with volumetric air flow rates. Also, the low oxygenation favored the iturin A production due to the reduction of free void by γ-PGA production, and finally, the low oxygen consumption generated low metabolic heat. The results show that it must control the pressure gradients to scale-up the process of iturin A production.

  12. Root Cause Assessment of Pressure Drop Rise of a Packed Bed of Lithium Hydroxide in the International Space Station Trace Contaminant Control System

    Science.gov (United States)

    Aguilera, Tatiana; Perry, Jay L.

    2009-01-01

    The trace contaminant control system (TCCS) located in the International Space Station s (ISS) U.S. laboratory module employs physical adsorption, thermal catalytic oxidation, and chemical adsorption to remove trace chemical contamination produced by equipment offgassing and anthropogenic sources from the cabin atmosphere. The chemical adsorption stage, consisting of a packed bed of granular lithium hydroxide (LiOH), is located after the thermal catalytic oxidation stage and is designed to remove acid gas byproducts that may be formed in the upstream oxidation stage. While in service on board the ISS, the LiOH bed exhibited a change in flow resistance that leading to flow control difficulties in the TCCS. Post flight evaluation revealed LiOH granule size attrition among other changes. An experimental program was employed to investigate mechanisms hypothesized to contribute to the change in the packed bed s flow resistance. Background on the problem is summarized, including a discussion of likely mechanisms. The experimental program is described, results are presented, and implications for the future are discussed.

  13. Aerobic biodegradation of 2,4-DNT and 2,6-DNT: Performance characteristics and biofilm composition changes in continuous packed-bed bioreactors

    International Nuclear Information System (INIS)

    Paca, J.; Halecky, M.; Barta, J.; Bajpai, R.

    2009-01-01

    This manuscript deals with continuous experiments for biodegradation of individual dinitrotoluenes by a defined mixed culture in packed-bed reactors (PBRs) containing either poraver or fire-clay as packing material. Removal efficiencies and volumetric biodegradation rates were measured as a function of the loading rate of 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) under steady-state conditions. The poraver reactor showed higher removal efficiencies for both the DNTs. The removal efficiency for 2,4-DNT remained greater than 90% in the poraver reactor whereas it dropped steadily from 85 to 65% in the fire-clay reactor as the organic loading rates were increased from 19 to 60 mg L -1 day -1 . Similar trends were seen for the volumetric degradation rate as well. In both the reactors, 2,4-DNT degraded more effectively than 2,6-DNT. The microbial consortium was characterized both in the inoculum as well as in the operating PBR. Cell numbers per gram dry packing material were similar in the two reactors. However, there was a distinct difference in the nature of microorganisms that were found in the two packings. The fire-clay contained a larger number of cells that were not primary degraders of DNTs

  14. Aerobic biodegradation of 2,4-DNT and 2,6-DNT: performance characteristics and biofilm composition changes in continuous packed-bed bioreactors.

    Science.gov (United States)

    Paca, J; Halecky, M; Barta, J; Bajpai, R

    2009-04-30

    This manuscript deals with continuous experiments for biodegradation of individual dinitrotoluenes by a defined mixed culture in packed-bed reactors (PBRs) containing either poraver or fire-clay as packing material. Removal efficiencies and volumetric biodegradation rates were measured as a function of the loading rate of 2,4-dinitrotoluene (2,4-DNT) and 2,6-dinitrotoluene (2,6-DNT) under steady-state conditions. The poraver reactor showed higher removal efficiencies for both the DNTs. The removal efficiency for 2,4-DNT remained greater than 90% in the poraver reactor whereas it dropped steadily from 85 to 65% in the fire-clay reactor as the organic loading rates were increased from 19 to 60 mg L(-1)day(-1). Similar trends were seen for the volumetric degradation rate as well. In both the reactors, 2,4-DNT degraded more effectively than 2,6-DNT. The microbial consortium was characterized both in the inoculum as well as in the operating PBR. Cell numbers per gram dry packing material were similar in the two reactors. However, there was a distinct difference in the nature of microorganisms that were found in the two packings. The fire-clay contained a larger number of cells that were not primary degraders of DNTs.

  15. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect

    Energy Technology Data Exchange (ETDEWEB)

    De Beer, M., E-mail: maritz.db@gmail.com [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Du Toit, C.G., E-mail: Jat.DuToit@nwu.ac.za [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Rousseau, P.G., E-mail: pieter.rousseau@uct.ac.za [Department of Mechanical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa)

    2017-04-01

    Highlights: • The radiation and conduction components of the effective thermal conductivity are separated. • Near-wall effects have a notable influence on the effective thermal conductivity. • Effective thermal conductivity is a function of the macro temperature gradient. • The effective thermal conductivity profile shows a characteristic trend. • The trend is a result of the interplay between conduction and radiation. - Abstract: The effective thermal conductivity represents the overall heat transfer characteristics of a packed bed of spheres and must be considered in the analysis and design of pebble bed gas-cooled reactors. During depressurized loss of forced cooling conditions the dominant heat transfer mechanisms for the passive removal of decay heat are radiation and conduction. Predicting the value of the effective thermal conductivity is complex since it inter alia depends on the temperature level and temperature gradient through the bed, as well as the pebble packing structure. The effect of the altered packing structure in the wall region must therefore also be considered. Being able to separate the contributions of radiation and conduction allows a better understanding of the underlying phenomena and the characteristics of the resultant effective thermal conductivity. This paper introduces a purpose-designed test facility and accompanying methodology that combines physical measurements with Computational Fluid Dynamics (CFD) simulations to separate the contributions of radiation and conduction heat transfer, including the wall effects. Preliminary results obtained with the methodology offer important insights into the trends observed in the experimental results and provide a better understanding of the interplay between the underlying heat transfer phenomena.

  16. Treatment of azo dye-containing wastewater by a Fenton-like process in a continuous packed-bed reactor filled with activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Isabel; Matos, Luis C. [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Duarte, Filipa [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto (Portugal); Maldonado-Hodar, F.J. [Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva, 18071 Granada (Spain); Mendes, Adelio [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto (Portugal); Madeira, Luis M., E-mail: mmadeira@fe.up.pt [Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto (Portugal)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Oxidation with the Fenton's reagent was carried out in a packed-bed reactor. Black-Right-Pointing-Pointer The packed-bed was filled with iron-impregnated activated carbon. Black-Right-Pointing-Pointer The increment of temperature increases the Chicago Sky Blue removal and mineralization. Black-Right-Pointing-Pointer The values of iron leaching were below 0.4 ppm in the outlet effluent. Black-Right-Pointing-Pointer It was possible to reach a dye conversion of 88% in steady-state. - Abstract: In this work, oxidation with a Fenton-like process of a dye solution was carried out in a packed-bed reactor. Activated carbon Norit RX 3 Extra was impregnated with ferrous sulfate and used as catalyst (7 wt.% of iron). The effect of the main operating conditions in the Chicago Sky Blue (CSB) degradation was analyzed. It was found that the increase in temperature leads to a higher removal of the dye and an increased mineralization. However, it also increases the iron leaching, but the values observed were below 0.4 ppm (thus, far below European Union limits). It was possible to reach, at steady-state, a dye conversion of 88%, with a total organic carbon (TOC) removal of ca. 47%, being the reactor operated at 50 Degree-Sign C, pH 3, W{sub cat}/Q = 4.1 g min mL{sup -1} (W{sub cat} is the mass of catalyst and Q the total feed flow rate) and a H{sub 2}O{sub 2} feed concentration of 2.25 mM (for a CSB feed concentration of 0.012 mM). The same performance was reached in three consecutive cycles.

  17. Characterising gas behaviour during gas-liquid co-current up-flow in packed beds using magnetic resonance imaging

    OpenAIRE

    Collins, James HP; Sederman, Andrew John; Gladden, Lynn Faith; Afeworki, Mobae; Kushnerick, J Douglas; Thomann, Hans

    2016-01-01

    Magnetic resonance (MR) imaging techniques have been used to study gas phase dynamics during co-current up-flow in a column of inner diameter 43 mm, packed with spherical non-porous elements of diameters of 1.8, 3 and 5 mm. MR measurements of gas hold-up, bubble-size distribution, and bubble-rise velocities were made as a function of flow rate and packing size. Gas and liquid flow rates were studied in the range of 20–250 cm3 s−1 and 0–200 cm3 min−1, respectively. The gas hold-up within the b...

  18. Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor.

    Science.gov (United States)

    Oliveira, Felisbela; Salgado, José Manuel; Abrunhosa, Luís; Pérez-Rodríguez, Noelia; Domínguez, José M; Venâncio, Armando; Belo, Isabel

    2017-07-01

    Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this work was to maximize the production of Aspergillus ibericus lipase under SSF of olive pomace (OP) and wheat bran (WB), evaluating the effect on lipase production of C/N ratio, lipids, phenols, content of sugars of substrates and nitrogen source addition. Moreover, the implementation of the SSF process in a packed-bed bioreactor and the improvement of lipase extraction conditions were assessed. Low C/N ratios and high content of lipids led to maximum lipase production. Optimum SSF conditions were achieved with a C/N mass ratio of 25.2 and 10.2% (w/w) lipids in substrate, by the mixture of OP:WB (1:1) and supplemented with 1.33% (w/w) (NH 4 ) 2 SO 4 . Studies in a packed-bed bioreactor showed that the lower aeration rates tested prevented substrate dehydration, improving lipase production. In this work, the important role of Triton X-100 on lipase extraction from the fermented solid substrate has been shown. A final lipase activity of 223 ± 5 U g -1 (dry basis) was obtained after 7 days of fermentation.

  19. Dry reforming of methane via plasma-catalysis: influence of the catalyst nature supported on alumina in a packed-bed DBD configuration

    Science.gov (United States)

    Brune, L.; Ozkan, A.; Genty, E.; Visart de Bocarmé, T.; Reniers, F.

    2018-06-01

    These days, the consideration of CO2 as a feedstock has become the subject of more interest. The reutilization of CO2 is already possible via cold plasma techniques operating at atmospheric pressure. A promising technology is the dielectric barrier discharge (DBD). In most cases DBDs exhibit a low energy efficiency for CO2 conversion. However, several routes can be used to increase this efficiency and hence, the product formation. One of these routes is the packed-bed DBD configuration with porous beads inside the gap of the DBD, which also allows the coupling of plasma with catalysis. Catalysts can be introduced in such a configuration to exploit the synergistic effect between plasma and catalytically active surfaces, leading to a more efficient process. In this article, the dry reforming of methane (DRM) is studied, which aims to convert both CO2 and CH4, another greenhouse gas, at the same time. The conversions and energy costs of the DRM process are investigated and compared in both the packed-bed DBD configurations containing catalysts (Co, Cu or Ni) and the classical DBD. The change in filamentary behavior is studied in detail and correlated with the obtained conversions using gas chromatography, mass spectrometry and using an oscilloscope. A characterization of the catalysts on the beads is also carried out. Both the CO2 and CH4 conversions are clearly increased with the plasma-catalysis. Moreover, CH4 conversions as high as 90% can be obtained in certain conditions with copper catalysts.

  20. Special topics reports for the reference tandem mirror fusion breeder: liquid metal MHD pressure drop effects in the packed bed blanket. Vol. 1

    International Nuclear Information System (INIS)

    McCarville, T.J.; Berwald, D.H.; Wong, C.P.C.

    1984-09-01

    Magnetohydrodynamic (MHD) effects which result from the use of liquid metal coolants in magnetic fusion reactors include the modification of flow profiles (including the suppression of turbulence) and increases in the primary loop pressure drop and the hydrostatic pressure at the first wall of the blanket. In the reference fission-suppressed tandem mirror fusion breeder design concept, flow profile modification is a relatively minor concern, but the MHD pressure drop in flowing the liquid lithium coolant through an annular packed bed of beryllium/thorium pebbles is directly related to the required first wall structure thickness. As such, it is a major concern which directly impacts fissile breeding efficiency. Consequently, an improved model for the packed bed pressure drop has been developed. By considering spacial averages of electric fields, currents, and fluid flow velocities the general equations have been reduced to simple expressions for the pressure drop. The averaging approach results in expressions for the pressure drop involving a constant which reflects details of the flow around the pebbles. Such details are difficult to assess analytically, and the constant may eventually have to be evaluated by experiment. However, an energy approach has been used in this study to bound the possible values of the constant, and thus the pressure drop. In anticipation that an experimental facility might be established to evaluate the undetermined constant as well as to address other uncertainties, a survey of existing facilities is presented

  1. Evaluation of co-pyrolysis petrochemical wastewater sludge with lignite in a thermogravimetric analyzer and a packed-bed reactor: Pyrolysis characteristics, kinetics, and products analysis.

    Science.gov (United States)

    Mu, Lin; Chen, Jianbiao; Yao, Pikai; Zhou, Dapeng; Zhao, Liang; Yin, Hongchao

    2016-12-01

    Co-pyrolysis characteristics of petrochemical wastewater sludge and Huolinhe lignite were investigated using thermogravimetric analyzer and packed-bed reactor coupled with Fourier transform infrared spectrometer and gas chromatography. The pyrolysis characteristics of the blends at various sludge blending ratios were compared with those of the individual materials. Thermogravimetric experiments showed that the interactions between the blends were beneficial to generate more residues. In packed-bed reactor, synergetic effects promoted the release of gas products and left less liquid and solid products than those calculated by additive manner. Fourier transform infrared spectrometer analysis showed that main functional groups in chars gradually disappeared with pyrolysis temperatures increasing, and H 2 O, CH 4 , CO, and CO 2 appeared in volatiles during pyrolysis. Gas compositions analysis indicated that, the yields of H 2 and CO clearly increased as the pyrolysis temperature and sludge blending ratio increasing, while the changes of CH 4 and CO 2 yields were relatively complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Enhancing the Bioconversion of Winery and Olive Mill Waste Mixtures into Lignocellulolytic Enzymes and Animal Feed by Aspergillus uvarum Using a Packed-Bed Bioreactor.

    Science.gov (United States)

    Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2015-10-28

    Wineries and olive oil industries are dominant agro-industrial activities in southern European regions. Olive pomace, exhausted grape marc, and vine shoot trimmings are lignocellulosic residues generated by these industries, which could be valued biotechnologically. In the present work these residues were used as substrate to produce cellulases and xylanases through solid-state fermentation using Aspergillus uvarum MUM 08.01. For that, two factorial designs (3(2)) were first planned to optimize substrate composition, temperature, and initial moisture level. Subsequently, the kinectics of cellulolytic enzyme production, fungal growth, and fermented solid were characterized. Finally, the process was performed in a packed-bed bioreactor. The results showed that cellulase activity improved with the optimization processes, reaching 33.56 U/g, and with the packed-bed bioreactor aeration of 0.2 L/min, reaching 38.51 U/g. The composition of fermented solids indicated their potential use for animal feed because cellulose, hemicellulose, lignin, and phenolic compounds were partially degraded 28.08, 10.78, 13.3, and 28.32%, respectively, crude protein was increased from 8.47 to 17.08%, and the mineral contents meet the requirements of main livestock.

  3. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-De Jesus, A.; Romano-Baez, F.J.; Leyva-Amezcua, L.; Juarez-Ramirez, C.; Ruiz-Ordaz, N. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico); Galindez-Mayer, J. [Departamento de Ingenieria Bioquimica, Escuela Nacional de Ciencias Biologicas, IPN. Prol. Carpio y Plan de Ayala, Colonia Santo Tomas, s/n. CP 11340, Mexico, D.F. (Mexico)], E-mail: cmayer@encb.ipn.mx

    2009-01-30

    For the aerobic biodegradation of the fungicide and defoliant 2,4,6-trichlorophenol (2,4,6-TCP), a bench-scale packed-bed bioreactor equipped with a net draft tube riser for liquid circulation and oxygenation (PB-ALR) was constructed. To obtain a high packed-bed volume relative to the whole bioreactor volume, a high A{sub D}/A{sub R} ratio was used. Reactor's downcomer was packed with a porous support of volcanic stone fragments. PB-ALR hydrodynamics and oxygen mass transfer behavior was evaluated and compared to the observed behavior of the unpacked reactor operating as an internal airlift reactor (ALR). Overall gas holdup values {epsilon}{sub G}, and zonal oxygen mass transfer coefficients determined at various airflow rates in the PB-ALR, were higher than those obtained with the ALR. When comparing mixing time values obtained in both cases, a slight increment in mixing time was observed when reactor was operated as a PB-ALR. By using a mixed microbial community, the biofilm reactor was used to evaluate the aerobic biodegradation of 2,4,6-TCP. Three bacterial strains identified as Burkholderia sp., Burkholderia kururiensis and Stenotrophomonas sp. constituted the microbial consortium able to cometabolically degrade the 2,4,6-TCP, using phenol as primary substrate. This consortium removed 100% of phenol and near 99% of 2,4,6-TCP. Mineralization and dehalogenation of 2,4,6-TCP was evidenced by high COD removal efficiencies ({approx}95%), and by the stoichiometric release of chloride ions from the halogenated compound ({approx}80%). Finally, it was observed that the microbial consortium was also capable to metabolize 2,4,6-TCP without phenol as primary substrate, with high removal efficiencies (near 100% for 2,4,6-TCP, 92% for COD and 88% for chloride ions)

  4. An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor.

    Science.gov (United States)

    Touitou, Jamal; Burch, Robbie; Hardacre, Christopher; McManus, Colin; Morgan, Kevin; Sá, Jacinto; Goguet, Alexandre

    2013-05-21

    This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 μm (O.D.) thermocouple has been inserted in a 250 μm (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.

  5. Continuous Process for Biodiesel Production in Packed Bed Reactor from Waste Frying Oil Using Potassium Hydroxide Supported on Jatropha curcas Fruit Shell as Solid Catalyst

    Directory of Open Access Journals (Sweden)

    Achanai Buasri

    2012-08-01

    Full Text Available The transesterification of waste frying oil (WFO with methanol in the presence of potassium hydroxide catalyst supported on Jatropha curcas fruit shell activated carbon (KOH/JS was studied. The catalyst systems were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and the Brunauer–Emmett–Teller (BET method. The effects of reaction variables such as residence time, reaction temperature, methanol/oil molar ratio and catalyst bed height in packed bed reactor (PBR on the yield of biodiesel were investigated. SEM images showed that KOH was well distributed on the catalyst support. The optimum conditions for achieving the conversion yield of 86.7% consisted of a residence time of 2 h, reaction temperature of 60 °C, methanol/oil molar ratio of 16 and catalyst bed height of 250 mm. KOH/JS could be used repeatedly five times without any activation treatment, and no significant activity loss was observed. The results confirmed that KOH/JS catalyst had a great potential to be used for industrial application in the transesterification of WFO. The fuel properties of biodiesel were also determined.

  6. Mathematical Models of Absorption of Poorly Soluble Gas in Co-Current Packed Bed Column under Periodically Changing Conditions

    Czech Academy of Sciences Publication Activity Database

    Vychodilová, Hana; Jiřičný, Vladimír; Staněk, Vladimír

    2004-01-01

    Roč. 18, č. 2 (2004), s. 117-127 ISSN 0352-9568 R&D Projects: GA ČR GA104/03/1558 Institutional research plan: CEZ:AV0Z4072921 Keywords : trickle bed * oxygen absorption * transient conditions Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.328, year: 2004

  7. Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst.

    Science.gov (United States)

    Son, Sung Mo; Kimura, Hiroko; Kusakabe, Katsuki

    2011-01-01

    Esterification of oleic acid was performed in a three-phase fixed-bed reactor with a cation exchange resin catalyst (Amberlyst-15) at high temperature, which was varied from 80 to 120 °C. The fatty acid methyl ester (FAME) yields in the fixed-bed reactor were increased with increases in the reaction temperature, methanol flow rate and bed height. Moreover, the FAME yields were higher than those obtained using a batch reactor due to an equilibrium shift toward the product that resulted from continuous evaporation of the produced water. In addition, there was no catalyst deactivation during the esterification of oleic acid. However, addition of sunflower oil to the oleic acid reduced the FAME yield obtained from simultaneous esterification and transesterification. The FAME yield was 97.5% at a reaction temperature of 100 °C in the fixed-bed with a height of 5 cm when the methanol and oleic acid feed rates were 8.6 and 9.0 mL/h, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    Directory of Open Access Journals (Sweden)

    Marchetti Leonardo

    2006-04-01

    Full Text Available Abstract Background Olive mill wastewater (OMW is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter

  9. Practical study on the electrochemical simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater using a packed-bed cathode

    Directory of Open Access Journals (Sweden)

    Meshaal F. Alebrahim

    2017-06-01

    Full Text Available In this work, electrochemical-simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater containing different ratios of copper to zinc was studied using a packed-bed continuous-recirculation flow electrolytic reactor. The total nominal initial concentration of both metals, circulating rate of flow and nominal initial pH were held constant. Parameters affecting the removal percent and current efficiency of removal, such as applied current and time of electrolysis were investigated. Results revealed that increased current intensity accelerated the removal of metals and diminish current efficiency. It was also observed that selective removal of both metals is possible when the applied current was of small intensity. Moreover, the factors that led to loss of faradaic efficiency were discussed.

  10. Performance Study of Chromium (VI Removal in Presence of Phenol in a Continuous Packed Bed Reactor by Escherichia coli Isolated from East Calcutta Wetlands

    Directory of Open Access Journals (Sweden)

    Bhaswati Chakraborty

    2013-01-01

    Full Text Available Organic pollutants, like phenol, along with heavy metals, like chromium, are present in various industrial effluents that pose serious health hazard to humans. The present study looked at removal of chromium (VI in presence of phenol in a counter-current continuous packed bed reactor packed with E. coli cells immobilized on clay chips. The cells removed 85% of 500 mg/L of chromium (VI from MS media containing glucose. Glucose was then replaced by 500 mg/L phenol. Temperature and pH of the MS media prior to addition of phenol were 30°C and 7, respectively. Hydraulic retention times of phenol- and chromium (VI-containing synthetic media and air flow rates were varied to study the removal efficiency of the reactor system. Then temperature conditions of the reactor system were varied from 10°C to 50°C, the optimum being 30°C. The pH of the media was varied from pH 1 to pH 12, and the optimum pH was found to be 7. The maximum removal efficiency of 77.7% was achieved for synthetic media containing phenol and chromium (VI in the continuous reactor system at optimized conditions, namely, hydraulic retention time at 4.44 hr, air flow rate at 2.5 lpm, temperature at 30°C, and pH at 7.

  11. Performance Study of Chromium (VI) Removal in Presence of Phenol in a Continuous Packed Bed Reactor by Escherichia coli Isolated from East Calcutta Wetlands

    Science.gov (United States)

    Chakraborty, Bhaswati; Indra, Suvendu; Hazra, Ditipriya; Betai, Rupal; Ray, Lalitagauri; Basu, Srabanti

    2013-01-01

    Organic pollutants, like phenol, along with heavy metals, like chromium, are present in various industrial effluents that pose serious health hazard to humans. The present study looked at removal of chromium (VI) in presence of phenol in a counter-current continuous packed bed reactor packed with E. coli cells immobilized on clay chips. The cells removed 85% of 500 mg/L of chromium (VI) from MS media containing glucose. Glucose was then replaced by 500 mg/L phenol. Temperature and pH of the MS media prior to addition of phenol were 30°C and 7, respectively. Hydraulic retention times of phenol- and chromium (VI)-containing synthetic media and air flow rates were varied to study the removal efficiency of the reactor system. Then temperature conditions of the reactor system were varied from 10°C to 50°C, the optimum being 30°C. The pH of the media was varied from pH 1 to pH 12, and the optimum pH was found to be 7. The maximum removal efficiency of 77.7% was achieved for synthetic media containing phenol and chromium (VI) in the continuous reactor system at optimized conditions, namely, hydraulic retention time at 4.44 hr, air flow rate at 2.5 lpm, temperature at 30°C, and pH at 7. PMID:24073400

  12. The influence of TiO2 and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor

    International Nuclear Information System (INIS)

    Wang Lizhang; Zhao Yuemin; Fu Jianfeng

    2008-01-01

    The electrochemical oxidation of phenolic wastewater in a lab-scale reactor, packed into granular activated carbon (GAC) with Ti/SnO 2 anodes and stainless steel cathodes, was interpreted in this study. GAC saturated rapidly if it was only used as sorbent, but application of suitable electric energy for the system simultaneously could recover the adsorption ability of GAC and maintain the continuous running effectively. The titanium dioxide (TiO 2 ) as catalyst and airflow were also applied to the electrochemical reactor to examine the enhancement for phenol oxidation process. Results revealed that the electrochemical degradation of phenol could be reasonably described by first-order kinetics. In addition, it was illustrated that acid region, increased voltage, more dosage of TiO 2 and higher aeration intensity were all beneficial parameters for phenol oxidation rates. By inspecting the relationship between the rate constants (k) and influencing factors, respectively, an overall kinetic model for phenol oxidation was proposed. The kinetics obtained from the experiments under corresponding electrochemical conditions could provide an accurate estimation of phenol concentration effluent and better design of the packed bed reactor

  13. The influence of TiO{sub 2} and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lizhang [College of Environment and Spatial Informatics, China University of Mining and Technology, South Jiefang Road, Quanshan District, Xuzhou City, Jiangsu 221008 (China)], E-mail: wlzh0731@126.com; Zhao Yuemin [School of Chemical Engineering and Technology, China University of Mining and Technology, South Jiefang Road, Quanshan District, Xuzhou City, Jiangsu 221008 (China)], E-mail: ymzhao@cumt.edu.cn; Fu Jianfeng [Department of Environmental Engineering, Southeast University, Nanjing City, Jiangsu 210096 (China)

    2008-12-30

    The electrochemical oxidation of phenolic wastewater in a lab-scale reactor, packed into granular activated carbon (GAC) with Ti/SnO{sub 2} anodes and stainless steel cathodes, was interpreted in this study. GAC saturated rapidly if it was only used as sorbent, but application of suitable electric energy for the system simultaneously could recover the adsorption ability of GAC and maintain the continuous running effectively. The titanium dioxide (TiO{sub 2}) as catalyst and airflow were also applied to the electrochemical reactor to examine the enhancement for phenol oxidation process. Results revealed that the electrochemical degradation of phenol could be reasonably described by first-order kinetics. In addition, it was illustrated that acid region, increased voltage, more dosage of TiO{sub 2} and higher aeration intensity were all beneficial parameters for phenol oxidation rates. By inspecting the relationship between the rate constants (k) and influencing factors, respectively, an overall kinetic model for phenol oxidation was proposed. The kinetics obtained from the experiments under corresponding electrochemical conditions could provide an accurate estimation of phenol concentration effluent and better design of the packed bed reactor.

  14. Long-term studies in COD elimination and nitrification in an overcongested packed-bed reactor (biofilter); Langzeituntersuchungen zur CSB-Elimination und Nitrifikation in einem ueberstauten Festbettreaktor (Biofilter)

    Energy Technology Data Exchange (ETDEWEB)

    Engelhart, M.; Dichtl, N. [Technische Univ. Braunschweig (Germany). Inst. fuer Siedlungswasserwirtschaft

    1999-07-01

    On a semi-technical scale, two process combinations were tested for their suitability for COD elimination and nitrification in combination with an overcongested packed-bed reactor (biofilter). (orig.) [German] Im halbtechnischen Massstab wurden zwei Verfahrenskombinationen unter Einbeziehung eines ueberstauten Festbettreaktors (Biofilter) auf ihre Tauglichkeit zur CSB-Elimination und Nitrifikation untersucht. (orig.)

  15. BIODEGRADATION OF SUGARCANE VINASSES BY THE WHITE-ROT FUNGI Pleurotus ostreatus IN A PACKED BED REACTOR

    Directory of Open Access Journals (Sweden)

    W.A. Tapie

    2016-08-01

    Full Text Available Sugarcane vinasses are considered a complex effluent because of its organic load, low pH, high temperature, and by the presence of recalcitrant substances such as melanoidins and phenolic compounds. The aim of this work was to evaluate the potential of the fungus Pleurotus ostreatus to carry out the biodegradation of sugarcane vinasses in a fixed-bed bioreactor. The experiments evidence the potential of the fungus Pleurotus ostreatus to carry out the decolorization (83%, the removal of the Chemical Oxygen Demand (COD=87% and the Biochemical Oxygen Demand (BOD5=92%, the reduction of total suspended solids (83% and volatile suspended solids (72% of vinasses. The technical simplicity of the proposed alternative as well as process performance reveals the potential of the fungus Pleurotus ostreatus for the treatment of sugarcane mill effluents.

  16. Adsorption equilibrium and kinetics of Immunoglobulin G on a mixed-mode adsorbent in batch and packed bed configuration.

    Science.gov (United States)

    Gomes, Pedro Ferreira; Loureiro, José Miguel; Rodrigues, Alírio E

    2017-11-17

    It is commonly accepted that efficient protein separation and purification to the desired level of purity is one bottleneck in pharmaceutical industries. MabDirect MM is a new type of mixed mode adsorbent, especially designed to operate in expanded bed adsorption (EBA) mode. In this study, equilibrium and kinetics experiments were carried out for the adsorption of Human Immunoglobulin G (hIgG) protein on this new adsorbent. The effects of ionic strength and pH are assessed. Langmuir isotherms parameters are obtained along with the estimation of the effective pore diffusion coefficient (D pe ) by fitting the batch adsorption kinetics experiments with the pore diffusion model. The maximum adsorption of the IgG protein on the MabDirect MM adsorbent, 149.7±7.1mg·g dry -1 , was observed from a pH 5.0 buffer solution without salt addition. Adding salt to the buffer solution, and/or increasing pH, decreases the adsorption capacity which is 4.7±0.4mg·g dry -1 for pH 7.0 with 0.4M NaCl in solution. Regarding the D pe estimation, a value of 15.4×10 -6 cm 2 ·min -1 was obtained for a pH 5.0 solution without salt. Increasing the salt concentration and/or the pH value will decrease the effective pore diffusion, the lowest D pe (0.16×10 -6 cm 2 ·min -1 ) value being observed for an IgG solution at pH 7.0 with 0.4M NaCl. Fixed bed experiments were conducted with the purpose to validate the equilibrium and kinetic parameters obtained in batch. For a feed concentration of 0.5 g·L -1 of IgG in pH 5.0 buffer solution with 0.4M NaCl, a dynamic binding capacity at 10% of breakthrough of 5.3mg·g wet -1 (15.4mg IgG ·mL resin -1 ) was obtained, representing 62% of the saturation capacity. As far as the authors know, this study is the first one concerning the adsorption of hIgG on this type of mixed mode chromatography adsorbent. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Capturing Lithium from Wastewater Using a Fixed Bed Packed with 3-D MnO2 Ion Cages.

    Science.gov (United States)

    Luo, Xubiao; Zhang, Kai; Luo, Jinming; Luo, Shenglian; Crittenden, John

    2016-12-06

    3-D MnO 2 ion cages (CMO) were fabricated and shown to have a high capacity for lithium removal from wastewater. CMO had a maximum Li(I) adsorption capacity of 56.87 mg/g, which is 1.38 times greater than the highest reported value (41.36 mg/g). X-ray photoelectron spectroscopy indicated that the stability of the -Mn-O-Mn-O- skeleton played an essential role in Li adsorption. The lattice clearance had a high charge density, forming a strong electrostatic field. The Dubinin-Ashtakhov (DA) site energy distribution model based on Polanyi theory described the linear increase of Li adsorption capacity (Q 0 ) with increasing temperature (Q 0 = k 3 × E m + d 3 = k 3 × (a × T) + d 3 ). Furthermore, the pore diffusion model (PDM) accurately predicted the lithium breakthrough (R 2 ≈ 0.99). The maximum number of bed volumes (BVs) treated was 1374, 1972, and 2493 for 200 μg/L at 20, 30, and 40 °C, respectively. Higher temperatures increased the number of BVs that may be treated, which implies that CMO will be useful in treating industrial Li(I) wastewater in regions with different climates (e.g., Northern or Southern China).

  18. Modeling and optimization of sunflower oil methanolysis over quicklime bits in a packed bed tubular reactor using the response surface methodology

    International Nuclear Information System (INIS)

    Miladinović, Marija R.; Stamenković, Olivera S.; Banković, Predrag T.; Milutinović-Nikolić, Aleksandra D.; Jovanović, Dušan M.; Veljković, Vlada B.

    2016-01-01

    Highlights: • Sunflower oil methanolysis in a continuous packed bed reactor was optimized. • Thermally-activated, low-cost quicklime bits were used as a catalyst. • Process was optimized by 3"3 full factorial design and Box-Behnken design. • Box-Behnken design is recommended for optimizing biodiesel production processes. • FAME content in the ester phase obtained under the optimum conditions was >98%. - Abstract: The effect of the residence time (i.e. liquid flow rate through the reactor), methanol-to-oil molar ratio and reaction temperature on the fatty acid methyl esters (FAMEs) content at the output of a continuous packed bed tubular reactor was modeled by the response surface methodology (RSM) combined with the 3"3 full factorial design (FFD) with replication or the Box-Behnken design (BBD) with five center points. The methanolysis of sunflower oil was carried out at the residence time of 1.0, 1.5 and 2.0 h, the methanol-to-oil molar ratios of 6:1, 12:1 and 18:1 and the reaction temperature of 40, 50 and 60 °C under the atmospheric pressure. Based on the used experimental designs, the model equations containing only linear and two-factor interaction terms were developed for predicting the FAME content, which were validated through the use of the unseen data. Applying the analysis of variance (ANOVA), all three factors were shown to have a significant influence on the FAME content. Acceptable statistical predictability and accuracy resulted from both designs since the values of the coefficient of determination were close to unity while the values of the mean relative percentage deviation were relatively low (<±10%). In addition, both designs predicted the maximum FAME content of above 99%, which agreed closely with the actual FAME content (98.8%). The same optimal reaction temperature (60 °C) and residence time (2.0 h) were determined by both designs while the BBD model suggested a slightly lower methanol-to-oil molar ratio (12.2:1) than the 3"3 FFD

  19. Ni(II) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns

    International Nuclear Information System (INIS)

    Ersoez, Arzu; Say, Ridvan; Denizli, Adil

    2004-01-01

    Solid-phase extraction (SPE) columns packed with materials based on molecularly imprinted polymers (MIPs) were used to develop selective separation and preconcentration for Ni(II) ion from aqueous solutions. SPE is more rapid, simple and economical method than the traditional liquid-liquid extraction. MIPs were used as column sorbent to increase the grade of selectivity in SPE columns. In this study, we have developed a polymer obtained by imprinting with Ni(II) ion as a ion-imprinted SPE sorbent. For this purpose, NI(II)-methacryloylhistidinedihydrate (MAH/Ni(II)) complex monomer was synthesized and polymerized with cross-linking ethyleneglycoldimethacrylate to obtain [poly(EGDMA-MAH/Ni(II))]. Then, Ni(II) ions were removed from the polymer getting Ni(II) ion-imprinted sorbent. The MIP-SPE preconcentration procedure showed a linear calibration curve within concentration range from 0.3 to 25 ng/ml and the detection limit was 0.3 ng/ml (3 s) for flame atomic absorption spectrometry (FAAS). Ni(II) ion-imprinted microbeads can be used several times without considerable loss of adsorption capacity. When the adsorption capacity of nickel imprinted microbeads were compared with non-imprinted microbeads, nickel imprinted microbeads have higher adsorption capacity. The K d (distribution coefficient) values for the Ni(II)-imprinted microbeads show increase in K d for Ni(II) with respect to both K d values of Zn(II), Cu(II) and Co(II) ions and non-imprinted polymer. During that time K d decreases for Zn(II), Cu(II) and Co(II) ions and the k' (relative selectivity coefficient) values which are greater than 1 for imprinted microbeads of Ni(II)/Cu(II), Ni(II)/Zn(II) and Ni(II)/Co(II) are 57.3, 53.9, and 17.3, respectively. Determination of Ni(II) ion in sea water showed that the interfering matrix had been almost removed during preconcentration. The column was good enough for Ni determination in matrixes containing similar ionic radii ions such as Cu(II), Zn(II) and Co(II)

  20. Calcium oxide/carbon dioxide reactivity in a packed bed reactor of a chemical heat pump for high-temperature gas reactors

    International Nuclear Information System (INIS)

    Kato, Yukitaka; Yamada, Mitsuteru; Kanie, Toshihiro; Yoshizawa, Yoshio

    2001-01-01

    The thermal performance of a chemical heat pump that uses a calcium oxide/carbon dioxide reaction system was discussed as a heat storage system for utilizing heat output from high temperature gas reactors (HTGR). Calcium oxide/carbon dioxide reactivity for the heat pump was measured using a packed bed reactor containing 1.0 kg of reactant. The reactor was capable of storing heat at 900 deg. C by decarbonation of calcium carbonate and generating up to 997 deg. C by carbonation of calcium oxide. The amount of stored heat in the reactor was 800-900 kJ kg -1 . The output temperature of the reactor could be controlled by regulating the carbonation pressure. The thermal storage performance of the reactor was superior to that of conventional sensible heat storage systems. A heat pump using this CaO/CO 2 reactor is expected to contribute to thermal load leveling and to realize highly efficient utilization of HTGR output due to the high heat storage density and high-quality temperature output of the heat pump

  1. Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres

    Energy Technology Data Exchange (ETDEWEB)

    Arkar, C.; Medved, S. [University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, 1000 Ljubljana (Slovenia)

    2005-11-01

    With the integration of latent-heat thermal energy storage (LHTES) in building services, solar energy and the coldness of ambient air can be efficiently used to reduce the energy used for heating and cooling and to improve the level of living comfort. For this purpose, a cylindrical LHTES containing spheres filled with paraffin was developed. For the proper modelling of the LHTES thermal response the thermal properties of the phase change material (PCM) must be accurately known. This article presents the influence of the accuracy of thermal property data of the PCM on the result of the prediction of the LHTES's thermal response. A packed bed numerical model was adapted to take into account the non-uniformity of the PCM's porosity and the fluid's velocity. Both are the consequence of a small tube-to-sphere diameter ratio, which is characteristic of the developed LHTES. The numerical model can also take into account the PCM's temperature-dependent thermal properties. The temperature distribution of the latent heat of the paraffin (RT20) used in the experiment in the form of apparent heat capacity was determined using a differential scanning calorimeter (DSC) at different heating and cooling rates. A comparison of the numerical and experimental results confirmed our hypothesis relating to the important role that the PCM's thermal properties play, especially during slow running processes, which are characteristic for our application.

  2. A feasible enzymatic process for D-tagatose production by an immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor.

    Science.gov (United States)

    Kim, Hye-Jung; Ryu, Se-Ah; Kim, Pil; Oh, Deok-Kun

    2003-01-01

    To develop a feasible enzymatic process for d-tagatose production, a thermostable l-arabinose isomerase, Gali152, was immobilized in alginate, and the galactose isomerization reaction conditions were optimized. The pH and temperature for the maximal galactose isomerization reaction were pH 8.0 and 65 degrees C in the immobilized enzyme system and pH 7.5 and 60 degrees C in the free enzyme system. The presence of manganese ion enhanced galactose isomerization to tagatose in both the free and immobilized enzyme systems. The immobilized enzyme was more stable than the free enzyme at the same pH and temperature. Under stable conditions of pH 8.0 and 60 degrees C, the immobilized enzyme produced 58 g/L of tagatose from 100 g/L galactose in 90 h by batch reaction, whereas the free enzyme produced 37 g/L tagatose due to its lower stability. A packed-bed bioreactor with immobilized Gali152 in alginate beads produced 50 g/L tagatose from 100 g/L galactose in 168 h, with a productivity of 13.3 (g of tagatose)/(L-reactor.h) in continuous mode. The bioreactor produced 230 g/L tagatose from 500 g/L galactose in continuous recycling mode, with a productivity of 9.6 g/(L.h) and a conversion yield of 46%.

  3. Performance of an enzymatic packed bed reactor running on babassu oil to yield fatty ethyl esters (FAEE in a solvent-free system

    Directory of Open Access Journals (Sweden)

    Aline Simões

    2015-06-01

    Full Text Available The transesterification reaction of babassu oil with ethanol mediated by Burkholderia cepacia lipase immobilized on SiO2-PVA composite was assessed in a packed bed reactor running in the continuous mode. Experiments were performed in a solvent-free system at 50 °C. The performance of the reactor (14 mm ×210 mm was evaluated using babassu oil and ethanol at two molar ratios of 1:7 and 1:12, respectively, and operational limits in terms of substrate flow rate were determined. The system’s performance was quantified for different flow rates corresponding to space times between 7 and 13 h. Under each condition, the impact of the space time on the ethyl esters formation, the transesterification yield and productivity were determined. The oil to ethanol molar ratio was found as a critical parameter in the conversion of babassu oil into the correspondent ethyl esters. The highest transesterification yield of 96.0 ± 0.9% and productivity of 41.1 ± 1.6 mgester gcatalyst-1h-1 were achieved at the oil to ethanol molar ratio of 1:12 and for space times equal or higher than 11 h. Moreover, the immobilized lipase was found stable with respect to its catalytic characteristics, exhibiting a half-life of 32 d.

  4. Dripping and evolution behavior of primary slag bearing TiO2 through the coke packed bed in a blast-furnace hearth

    Science.gov (United States)

    Liu, Yan-xiang; Zhang, Jian-liang; Wang, Zhi-yu; Jiao, Ke-xin; Zhang, Guo-hua; Chou, Kuo-chih

    2017-02-01

    To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces, experiments were carried out based on the laboratory-scale packed bed systems. It is concluded that the initial temperature of slag dripping increases with decreasing FeO content and increasing TiO2 content. The slag holdup decreases when the FeO content is in the range of 5wt%-10wt%, whereas it increases when the FeO content exceeds 10wt%. Meanwhile, the slag holdup decreases when the TiO2 content increases from 5wt% to 10wt% but increases when the TiO2 content exceeds 10wt%. Moreover, slag/coke interface analysis shows that the reaction between FeO and TiO2 occurs between the slag and the coke. The slag/coke interface is divided into three layers: slag layer, iron-rich layer, and coke layer. TiO2 in the slag is reduced by carbon, and the generated Ti diffuses into iron.

  5. Successive pretreatment and enzymatic saccharification of sugarcane bagasse in a packed bed flow-through column reactor aiming to support biorefineries.

    Science.gov (United States)

    Terán-Hilares, R; Reséndiz, A L; Martínez, R T; Silva, S S; Santos, J C

    2016-03-01

    A packed bed flow-through column reactor (PBFTCR) was used for pretreatment and subsequent enzymatic hydrolysis of sugarcane bagasse (SCB). Alkaline pretreatment was performed at 70 °C for 4h with fresh 0.3M NaOH solution or with liquor recycled from a previous pretreatment batch. Scheffersomyces stipitis NRRL-Y7124 was used for fermentation of sugars released after enzymatic hydrolysis (20 FPU g(-1) of dry SCB). The highest results for lignin removal were 61% and 52%, respectively, observed when using fresh NaOH or the first reuse of the liquor. About 50% of cellulosic and 57% of hemicellulosic fractions of pretreated SCBs were enzymatically hydrolyzed and the maximum ethanol production was 23.4 g L(-1) (ethanol yield of 0.4 gp gs(-1)), with near complete consumption of both pentoses and hexoses present in the hydrolysate during the fermentation. PBFTCR as a new alternative for SCB-biorefineries is presented, mainly considering its simple configuration and efficiency for operating with a high solid:liquid ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Electrodeposition of copper from a copper sulfate solution using a packed-bed continuous-recirculation flow reactor at high applied electric current

    Directory of Open Access Journals (Sweden)

    Meshaal F. Alebrahim

    2015-09-01

    Full Text Available The purpose of this study is mainly to investigate the performance of a packed-bed continuous-recirculation flow reactor at high applied electric current in removing copper, Cu(II, from simulated electrolyte by electrodeposition. The effects of pHo, circulation rate of flow, initial copper concentration, intensity of the applied current and the method of application of electric current, as to have a constant value during all the time of electrolysis or to be decreased with time, on copper electrodeposition and current efficiency are revealed. The results showed that the increase in pH (provided not lead to the deposition of Cu(OH2, initial concentration of the copper and flow rate increased the electrodeposition of copper as well as improved current efficiency. However, increasing intensity of the applied electric current led to an increase in the electrodeposition of copper and decreased electrical efficiency. It was also observed that reducing the intensity of applied electric current with time during the electrolysis process while maintaining other operating variables constant led to a significant reduction in the consumption of electrical energy used in the process of copper removal by electrodeposition; a reduction of 41.6% could be achieved.

  7. Bioconversion of D-galactose to D-tagatose: continuous packed bed reaction with an immobilized thermostable L-arabinose isomerase and efficient purification by selective microbial degradation.

    Science.gov (United States)

    Liang, Min; Chen, Min; Liu, Xinying; Zhai, Yafei; Liu, Xian-wei; Zhang, Houcheng; Xiao, Min; Wang, Peng

    2012-02-01

    The continuous enzymatic conversion of D-galactose to D-tagatose with an immobilized thermostable L-arabinose isomerase in packed-bed reactor and a novel method for D-tagatose purification were studied. L-arabinose isomerase from Thermoanaerobacter mathranii (TMAI) was recombinantly overexpressed and immobilized in calcium alginate. The effects of pH and temperature on D-tagatose production reaction catalyzed by free and immobilized TMAI were investigated. The optimal condition for free enzyme was pH 8.0, 60°C, 5 mM MnCl(2). However, that for immobilized enzyme was pH 7.5, 75°C, 5 mM MnCl(2). In addition, the catalytic activity of immobilized enzyme at high temperature and low pH was significantly improved compared with free enzyme. The optimum reaction yield with immobilized TMAI increased by four percentage points to 43.9% compared with that of free TMAI. The highest productivity of 10 g/L h was achieved with the yield of 23.3%. Continuous production was performed at 70°C; after 168 h, the reaction yield was still above 30%. The resultant syrup was then incubated with Saccharomyces cerevisiae L1 cells. The selective degradation of D-galactose was achieved, obtaining D-tagatose with the purity above 95%. The established production and separation methods further potentiate the industrial production of D-tagatose via bioconversion and biopurification processes.

  8. Continuous preparation of nanoscale zero-valent iron using impinging stream-rotating packed bed reactor and their application in reduction of nitrobenzene

    Science.gov (United States)

    Jiao, Weizhou; Qin, Yuejiao; Luo, Shuai; Feng, Zhirong; Liu, Youzhi

    2017-02-01

    Nanoscale zero-valent iron (nZVI) was continuously prepared by high-gravity reaction precipitation through a novel impinging stream-rotating packed bed (IS-RPB). Reactant solutions of FeSO4 and NaBH4 were conducted into the IS-RPB with flow rates of 60 L/h and rotating speed of 1000 r/min for the preparation of nZVI. As-prepared nZVI obtained by IS-RPB were quasi-spherical morphology and almost uniformly distributed with a particle size of 10-20 nm. The reactivity of nZVI was estimated by the degradation of 100 ml nitrobenzene (NB) with initial concentration of 250 mg/L. The optimum dosage of nZVI obtained by IS-RPB was 4.0 g/L as the NB could be completely removed within 10 min, which reduced 20% compared with nZVI obtained by stirred tank reactor (STR). The reduction of NB and production of aniline (AN) followed pseudo-first-order kinetics, and the pseudo-first-order rate constants were 0.0147 and 0.0034 s-1, respectively. Furthermore, the as-prepared nZVI using IS-RPB reactor in this work can be used within a relatively wide range pH of 1-9.

  9. Acidolysis of terebinth fruit oil with palmitic and caprylic acids in a recirculating packed bed reactor: optimization using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Koçak, D.; Keskin, H.; Fadiloglu, S.; Gögüs, F.

    2016-07-01

    The acidolysis reaction of terebinth fruit oil with caprylic and palmitic acid has been investigated. The reaction was catalyzed by lipase (Lipozyme IM from Rhizomucormiehei) and carried out in recirculating packed bed reactor. The effects of reaction parameters have been analyzed using response surface methodology. Reaction time (3.5–6.5 h), enzyme load (10–20%), substrate flow rate (4–8 mL·min−1 ) and substrate mole ratios (Terebinth oil : Palmitic acid : Caprylic acid, 1:1.83:1.22–1:3.07:2.05) were evaluated. The optimum reaction conditions were 5.9 h reaction time, 10% enzyme load, 4 mL·min−1 substrate flow rate and 1:3.10:2.07 substrate mole ratio. The structured lipid obtained at these optimum conditions had 52.23% desired triacylglycerols and a lower caloric value than that of terebinth fruit oil. The melting characteristics and microstructure of the structured lipid were similar to those of commercial margarine fat extracts. The results showed that the structured lipid had the highest oxidative stability among the studied fats. (Author)

  10. Continuous preparation of nanoscale zero-valent iron using impinging stream-rotating packed bed reactor and their application in reduction of nitrobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Weizhou, E-mail: jwz0306@126.com; Qin, Yuejiao [North University of China, Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering (China); Luo, Shuai [Virginia Polytechnic Institute and State University, Department of Civil and Environmental Engineering (United States); Feng, Zhirong; Liu, Youzhi [North University of China, Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering (China)

    2017-02-15

    Nanoscale zero-valent iron (nZVI) was continuously prepared by high-gravity reaction precipitation through a novel impinging stream-rotating packed bed (IS-RPB). Reactant solutions of FeSO{sub 4} and NaBH{sub 4} were conducted into the IS-RPB with flow rates of 60 L/h and rotating speed of 1000 r/min for the preparation of nZVI. As-prepared nZVI obtained by IS-RPB were quasi-spherical morphology and almost uniformly distributed with a particle size of 10–20 nm. The reactivity of nZVI was estimated by the degradation of 100 ml nitrobenzene (NB) with initial concentration of 250 mg/L. The optimum dosage of nZVI obtained by IS-RPB was 4.0 g/L as the NB could be completely removed within 10 min, which reduced 20% compared with nZVI obtained by stirred tank reactor (STR). The reduction of NB and production of aniline (AN) followed pseudo-first-order kinetics, and the pseudo-first-order rate constants were 0.0147 and 0.0034 s{sup −1}, respectively. Furthermore, the as-prepared nZVI using IS-RPB reactor in this work can be used within a relatively wide range pH of 1–9.

  11. Efficient preparation of enantiopure D-phenylalanine through asymmetric resolution using immobilized phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1 in a recirculating packed-bed reactor.

    Directory of Open Access Journals (Sweden)

    Longbao Zhu

    Full Text Available An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA. The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h⁻¹ and 0.32 g L⁻¹ h⁻¹, respectively. The optical purity (eeD of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (eeD>99% in the scaled-up reactor reached 7.2 g L⁻¹ h⁻¹. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine.

  12. Efficient preparation of enantiopure D-phenylalanine through asymmetric resolution using immobilized phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1 in a recirculating packed-bed reactor.

    Science.gov (United States)

    Zhu, Longbao; Zhou, Li; Huang, Nan; Cui, Wenjing; Liu, Zhongmei; Xiao, Ke; Zhou, Zhemin

    2014-01-01

    An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA). The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR) was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h⁻¹ and 0.32 g L⁻¹ h⁻¹, respectively. The optical purity (eeD) of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (eeD>99%) in the scaled-up reactor reached 7.2 g L⁻¹ h⁻¹. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine.

  13. Biodegradation of 4-bromophenol by Arthrobacter chlorophenolicus A6 in batch shake flasks and in a continuously operated packed bed reactor.

    Science.gov (United States)

    Sahoo, Naresh Kumar; Pakshirajan, Kannan; Ghosh, Pranab Kumar

    2014-04-01

    The present study investigated growth and biodegradation of 4-bromophenol (4-BP) by Arthrobacter chlorophenolicus A6 in batch shake flasks as well as in a continuously operated packed bed reactor (PBR). Batch growth kinetics of A. chlorophenolicus A6 in presence of 4-BP followed substrate inhibition kinetics with the estimated biokinetic parameters value of μ max = 0.246 h(-1), K i = 111 mg L(-1), K s  = 30.77 mg L(-1) and K = 100 mg L(-1). In addition, variations in the observed and theoretical biomass yield coefficient and maintenance energy of the culture were investigated at different initial 4-BP concentration. Results indicates that the toxicity tolerance and the biomass yield of A. chlorophenolicus A6 towards 4-BP was found to be poor as the organism utilized the substrate mainly for its metabolic maintenance energy. Further, 4-BP biodegradation performance by the microorganism was evaluated in a continuously operated PBR by varying the influent concentration and hydraulic retention time in the ranges 400-1,200 mg L(-1) and 24-7.5 h, respectively. Complete removal of 4-BP was achieved in the PBR up to a loading rate of 2,276 mg L(-1) day(-1).

  14. Enzymatic production of biodiesel from waste cooking oil in a packed-bed reactor: an engineering approach to separation of hydrophilic impurities.

    Science.gov (United States)

    Hama, Shinji; Yoshida, Ayumi; Tamadani, Naoki; Noda, Hideo; Kondo, Akihiko

    2013-05-01

    An engineering approach was applied to an efficient biodiesel production from waste cooking oil. In this work, an enzymatic packed-bed reactor (PBR) was integrated with a glycerol-separating system and used successfully for methanolysis, yielding a methyl ester content of 94.3% and glycerol removal of 99.7%. In the glycerol-separating system with enhanced retention time, the effluent contained lesser amounts of glycerol and methanol than those in the unmodified system, suggesting its promising ability to remove hydrophilic impurities from the oil layer. The PBR system was also applied to oils with high acid values, in which fatty acids could be esterified and the large amount of water was extracted using the glycerol-separating system. The long-term operation demonstrated the high lipase stability affording less than 0.2% residual triglyceride in 22 batches. Therefore, the PBR system, which facilitates the separation of hydrophilic impurities, is applicable to the enzymatic biodiesel production from waste cooking oil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Packed-Bed Reactor Study of NETL Sample 196c for the Removal of Carbon Dioxide from Simulated Flue Gas Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, James S.; Hammache, Sonia; Gray, McMahan L.; Fauth Daniel J.; Pennline, Henry W.

    2012-04-24

    An amine-based solid sorbent process to remove CO2 from flue gas has been investigated. The sorbent consists of polyethylenimine (PEI) immobilized onto silica (SiO2) support. Experiments were conducted in a packed-bed reactor and exit gas composition was monitored using mass spectrometry. The effects of feed gas composition (CO2 and H2O), temperature, and simulated steam regeneration were examined for both the silica support as well as the PEI-based sorbent. The artifact of the empty reactor was also quantified. Sorbent CO2 capacity loading was compared to thermogravimetric (TGA) results to further characterize adsorption isotherms and better define CO2 working capacity. Sorbent stability was monitored by periodically repeating baseline conditions throughout the parametric testing and replacing with fresh sorbent as needed. The concept of the Basic Immobilized Amine Sorbent (BIAS) Process using this sorbent within a system where sorbent continuously flows between the absorber and regenerator was introduced. The basic tenet is to manipulate or control the level of moisture on the sorbent as it travels around the sorbent circulation path between absorption and regeneration stages to minimize its effect on regeneration heat duty.

  16. Performance evaluation of poly-urethane foam packed-bed chemical scrubber for the oxidative absorption of NH3 and H2S gases.

    Science.gov (United States)

    Nisola, Grace M; Valdehuesa, Kris Niño G; Anonas, Alex V; Ramos, Kristine Rose M; Lee, Won-Keun; Chung, Wook-Jin

    2018-01-02

    The feasibility of open-pore polyurethane (PU) foam as packing material for wet chemical scrubber was tested for NH 3 and H 2 S removals. The foam is inexpensive, light-weight, highly porous (low pressure drop) and provides large surface area per unit volume, which are desirable properties for enhanced gas/liquid mass transfer. Conventional HCl/HOCl (for NH 3 ) and NaOH/NaOCl (for H 2 S) scrubbing solutions were used to absorb and oxidize the gases. Assessment of the wet chemical scrubbers reveals that pH and ORP levels are important to maintain the gas removal efficiencies >95%. A higher re-circulation rate of scrubbing solutions also proved to enhance the performance of the NH 3 and H 2 S columns. Accumulation of salts was confirmed by the gradual increase in total dissolved solids and conductivity values of scrubbing solutions. The critical elimination capacities at >95% gas removals were found to be 5.24 g NH 3 -N/m 3 -h and 17.2 g H 2 S-S/m 3 -h at an empty bed gas residence time of 23.6 s. Negligible pressure drops (scrubbers for NH 3 and H 2 S removals from high-volume dilute emissions.

  17. On the role of heat and mass transfer into laser processability during selective laser melting AlSi12 alloy based on a randomly packed powder-bed

    Science.gov (United States)

    Wang, Lianfeng; Yan, Biao; Guo, Lijie; Gu, Dongdong

    2018-04-01

    A newly transient mesoscopic model with a randomly packed powder-bed has been proposed to investigate the heat and mass transfer and laser process quality between neighboring tracks during selective laser melting (SLM) AlSi12 alloy by finite volume method (FVM), considering the solid/liquid phase transition, variable temperature-dependent properties and interfacial force. The results apparently revealed that both the operating temperature and resultant cooling rate were obviously elevated by increasing the laser power. Accordingly, the resultant viscosity of liquid significantly reduced under a large laser power and was characterized with a large velocity, which was prone to result in a more intensive convection within pool. In this case, the sufficient heat and mass transfer occurred at the interface between the previously fabricated tracks and currently building track, revealing a strongly sufficient spreading between the neighboring tracks and a resultant high-quality surface without obvious porosity. By contrast, the surface quality of SLM-processed components with a relatively low laser power notably weakened due to the limited and insufficient heat and mass transfer at the interface of neighboring tracks. Furthermore, the experimental surface morphologies of the top surface were correspondingly acquired and were in full accordance to the calculated results via simulation.

  18. HTR-proteus pebble bed experimental program core 4: random packing with a 1:1 moderator-to-fuel pebble ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snoj, Luka [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Lengar, Igor [Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Koberl, Oliver [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2014-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  19. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORE 4: RANDOM PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Leland M. Montierth

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering

  20. Production of structured lipids by acidolysis of an EPA-enriched fish oil and caprylic acid in a packed bed reactor: analysis of three different operation modes.

    Science.gov (United States)

    González Moreno, P A; Robles Medina, A; Camacho Rubio, F; Camacho Páez, B; Molina Grima, E

    2004-01-01

    Structured triacylglycerols (ST) enriched in eicosapentaenoic acid (EPA) in position 2 of the triacylglycerol (TAG) backbone were synthesized by acidolysis of a commercially available EPA-rich oil (EPAX4510, 40% EPA) and caprylic acid (CA), catalyzed by the 1,3-specific immobilized lipase Lipozyme IM. The reaction was carried out in a packed bed reactor (PBR) operating in two ways: (1) by recirculating the reaction mixture from the exit of the bed to the substrate reservoir (discontinuous mode) and (2) in continuous mode, directing the product mixture leaving the PBR to a product reservoir. By operating in these two ways and using a simple kinetic model, representative values for the apparent kinetic constants (kX) for each fatty acid (native, Li or odd, M) were obtained. The kinetic model assumes that the rate of incorporation of a fatty acid into TAG per amount of enzyme, rX (mole/(h g lipase)) is proportional to the extent of the deviation from the equilibrium for each fatty acid (i.e., the difference of concentration between the fatty acid in the triacylglycerol and the concentration of the same fatty acid in the triacylglycerol once the equilibrium of the acidolysis reaction is reached). The model allows comparing the two operating modes through the processing intensity, defined as mLt/(V[TG]0) and mL/(q[TG]0), for the discontinuous and continuous operation modes, respectively. In discontinuous mode, ST with 59.5% CA and 9.6% EPA were obtained. In contrast, a ST with 51% CA and 19.6% EPA were obtained when using the continuous operation mode. To enhance the CA incorporation when operating in continuous mode, a two-step acidolysis reaction was performed (third operation mode). This continuous two-step process yields a ST with a 64% CA and a 15% EPA. Finally, after purifying the above ST in a preparative silica gel column, impregnated with boric acid, a ST with 66.9% CA and 19.6% EPA was obtained. The analysis by reverse phase and Ag+ liquid chromatography of

  1. Generation of continuous packed bed reactor with PVA-alginate blend immobilized Ochrobactrum sp. DGVK1 cells for effective removal of N,N-dimethylformamide from industrial effluents

    Energy Technology Data Exchange (ETDEWEB)

    Sanjeev Kumar, S.; Kumar, M. Santosh [Department of Biochemistry, Gulbarga University, Gulbarga 585106, Karnataka (India); Siddavattam, D. [Department of Animal Sciences, University of Hyderabad, Hyderabad 500046 (India); Karegoudar, T.B., E-mail: goudartbk@gmail.com [Department of Biochemistry, Gulbarga University, Gulbarga 585106, Karnataka (India)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Removal of DMF was compared by free and immobilized cells of Ochrobactrum sp. DGVK1. Black-Right-Pointing-Pointer Ochrobactrum sp. DGVK1 cells entrapped in PVA-alginate have shown more tolerance. Black-Right-Pointing-Pointer PVA-alginate beads removed DMF even in the presence of other organic solvents. Black-Right-Pointing-Pointer Removal of DMF from industrial effluents by PVA-alginate blended batch operations. Black-Right-Pointing-Pointer Development of industrially feasible remediation strategy for DMF removal. - Abstract: Effective removal of dimethylformamide (DMF), the organic solvent found in industrial effluents of textile and pharma industries, was demonstrated by using free and immobilized cells of Ochrobactrum sp. DGVK1, a soil isolate capable of utilizing DMF as a sole source of carbon, nitrogen. The free cells have efficiently removed DMF from culture media and effluents, only when DMF concentration was less than 1% (v/v). Entrapment of cells either in alginate or in polyvinyl alcohol (PVA) failed to increase tolerance limits. However, the cells of Ochrobactrum sp. DGVK1 entrapped in PVA-alginate mixed matrix tolerated higher concentration of DMF (2.5%, v/v) and effectively removed DMF from industrial effluents. As determined through batch fermentation, these immobilized cells have retained viability and degradability for more than 20 cycles. A continuous packed bed reactor, generated by using PVA-alginate beads, efficiently removed DMF from industrial effluents, even in the presence of certain organic solvents frequently found in effluents along with DMF.

  2. Calculation of the packing fraction in a pebble-bed ADS and redesigning of the Transmutation Advanced Device for Sustainable Energy Applications (TADSEA)

    International Nuclear Information System (INIS)

    García, L.; Pérez, J.; García, C.; Escrivá, A.; Rosales, J.; Abánades, A.

    2012-01-01

    Highlights: ► We based our study on an ADS for TRU transmutation and high temperature production. ► We calculated the number of pebbles that fit in a cylindrical ADS core. ► In both ADS design options studied, the mass of Pu isotopes reduces considerably. ► The system can reach coolant outlet temperatures high enough for hydrogen production. ► The maximum temperature values obtained in the ADS are not dangerous for TRISO fuel. - Abstract: One of the main problems that should be addressed in the use of nuclear fuels for heat and electricity production is the management of nuclear waste from conventional nuclear power plants and its inventory minimization. Fast reactors and Accelerator Driven Systems (ADSs) are the main options for reducing the long-lived radioactive waste inventory. In previous studies, the conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made. The TADSEA is a pebble-bed ADS cooled by helium and moderated by graphite; it uses as fuel small amounts of transuranic elements in the form of TRISO particles, confined in 3 cm radius graphite pebbles. It has been conceived for Plutonium (Pu) and Minor Actinides (MA) transmutation and for achieving very high helium temperatures at the core's outlet to match the thermal requirements for hydrogen production by high temperature electrolysis (HTE) or by the iodine-sulfur (I–S) thermo-chemical cycle. In this paper, a geometrical method for calculating the real number of pebbles that fit in a cylindrical ADS core, according to its size and pebble configuration, is described. Based on its results, the packing fraction influence on the TADSEA's main work parameters is studied, and the redesign of the previous configuration is done in order to maintain the exit thermal power established in the preliminary design. Results have shown the capability of the system to reach coolant outlet temperatures high enough for its application to hydrogen

  3. Continuous preparation of Fe{sub 3}O{sub 4} nanoparticles through Impinging Stream-Rotating Packed Bed reactor and their electrochemistry detection toward heavy metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hong-Lei [Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan, 030051 (China); Zhou, Shao-Feng [Shanxi Province Key Laboratory of Functional Nanocomposites, North University of China, Taiyuan, 030051 (China); Gao, Jing [Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan, 030051 (China); Liu, You-Zhi, E-mail: lyzzhongxin@126.com [Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering, North University of China, Taiyuan, 030051 (China)

    2016-06-25

    We reported the continuous preparation and electrochemical behavior toward heavy metal ions of the Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs). This Fe{sub 3}O{sub 4} NPs were fabricated through a novel Impinging Stream-Rotating Packed Bed reactor with a high production rate of 2.23 kg/hour. The as-prepared Fe{sub 3}O{sub 4} NPs were quasi-spherical with a mean diameter of about 10 nm and shown the characteristics of superparamagnetism with the saturated magnetization of 60.5 emu/g. The electrochemical characterization of the as-prepared Fe{sub 3}O{sub 4} NPs toward heavy metal ions were evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The results indicated that the modified electrode could be used to individual detection of Pb(II), Cu(II), Hg(II) and Cd(II). In particular, the modified electrode exhibited the selective detection toward Pb(II) with higher sensitivity of 14.9 μA/μM, while the response to Cu(II), Hg(II) and Cd(II) were negligible. Besides, the modified electrode shown good stability and potential practical applicability in the electrochemical determination of Pb(II). This above results offered a simple method for continuous preparation sensing materials in the application field of electrochemical detection of toxic metal ions through the technology of process intensification. - Highlights: • Fe{sub 3}O{sub 4} nanoparticles were continuous prepared through IS-RPB reactor. • The Fe{sub 3}O{sub 4} nanoparticles showed selective detection of heavy metal ions. • It exhibited favorable sensitivity (14.9 μA μM{sup −1}) and LOD (0.119 μM) for Pb(II). • The as-prepared nanoparticles showed favorable potential application.

  4. Biodegradation of the herbicide Diuron in a packed bed channel and a double biobarrier with distribution of oxygenated liquid by airlift devices: influence of oxygen limitation.

    Science.gov (United States)

    Castañón-González, J Humberto; Galíndez-Mayer, Juvencio; Ruiz-Ordaz, Nora; Rocha-Martínez, Lizeth; Peña-Partida, José Carlos; Marrón-Montiel, Erick; Santoyo-Tepole, Fortunata

    2016-01-25

    From agricultural soils, where the herbicide Diuron has been frequently applied, a microbial community capable of degrading Diuron and 3,4-dichloroaniline was obtained. The volumetric rates and degradation efficiencies of Diuron and 3,4-DCA were evaluated in two distinct biofilm reactors, which differ in their operating conditions. One is a horizontal fixed bed reactor; plug-flow operated (PF-PBC) with severe limitation of oxygen. In this reactor, the air was supplied to an equalizer reservoir at the start of the PF-PBC reactor. The other is a compartmentalized aerobic biobarrier with internal recirculation of liquid aerated through airlift devices (ALB), continuously or intermittently operated. Both reactors were inoculated with a microbial community capable of degrading Diuron, isolated from a sugarcane field. In the oxygen-limited PF-PBC reactor, 3,4-DCA accumulation was detected, mainly in the middle zone of the packed channel. On the contrary, in the fully aerobic ALB reactor, minimal accumulation of catabolic byproducts was detected, and high Diuron removal efficiencies and removal rates were obtained when it was continuously operated in steady-state conditions. Additionally, the influence of oxygen limitation on the kinetic behavior of the PF-PBC reactor was determined, and a method to estimate the local removal rates of Diuron RV,CD along the plug-flow channel is described. It was observed that the local values of the instantaneous removal rate of Diuron dCD/dt are high in the aerobic region of the PF-PBC reactor; but, suddenly decay in the reactor zones limited by dissolved oxygen. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Upflow anaerobic sludge blanket-hollow centered packed bed (UASB-HCPB) reactor for thermophilic palm oil mill effluent (POME) treatment

    International Nuclear Information System (INIS)

    Poh, P.E.; Chong, M.F.

    2014-01-01

    Upflow anaerobic sludge blanket-hollow centered packed bed (UASB-HCPB) reactor was developed with the aim to minimize operational problems in the anaerobic treatment of Palm Oil Mill Effluent (POME) under thermophilic conditions. The performance of UASB-HCPB reactor on POME treatment was investigated at 55 °C. Subsequent to start-up, the performance of the UASB-HCPB reactor was evaluated in terms of i) effect of hydraulic retention time (HRT); ii) effect of organic loading rate (OLR); and iii) effect of mixed liquor volatile suspended solid (MLVSS) concentration on thermophilic POME treatment. Start-up up of the UASB-HCPB reactor was completed in 36 days, removing 88% COD and 90% BOD respectively at an OLR of 28.12 g L −1  d −1 , producing biogas with 52% of methane. Results from the performance study of the UASB-HCPB reactor on thermophilic POME treatment indicated that HRT of 2 days, OLR of 27.65 g L −1  d −1 and MLVSS concentration of 14.7 g L −1 was required to remove 90% of COD and BOD, 80% of suspended solid and at the same time produce 60% of methane. - Highlights: • UASB-HCPB was proposed for POME treatment under thermophilic conditions. • Start-up up of the UASB-HCPB reactor was completed in 36 days. • 88% COD and 90% BOD were removed at an OLR of 28.12 g COD/L.day during start-up. • HRT of 2 days and OLR of 27.65 g COD/L.day was required to produce 60% methane. • Methanosarcina sp. forms the majority of microbial population in the UASB section

  6. Continuous preparation of Fe3O4 nanoparticles through Impinging Stream-Rotating Packed Bed reactor and their electrochemistry detection toward heavy metal ions

    International Nuclear Information System (INIS)

    Fan, Hong-Lei; Zhou, Shao-Feng; Gao, Jing; Liu, You-Zhi

    2016-01-01

    We reported the continuous preparation and electrochemical behavior toward heavy metal ions of the Fe 3 O 4 nanoparticles (Fe 3 O 4 NPs). This Fe 3 O 4 NPs were fabricated through a novel Impinging Stream-Rotating Packed Bed reactor with a high production rate of 2.23 kg/hour. The as-prepared Fe 3 O 4 NPs were quasi-spherical with a mean diameter of about 10 nm and shown the characteristics of superparamagnetism with the saturated magnetization of 60.5 emu/g. The electrochemical characterization of the as-prepared Fe 3 O 4 NPs toward heavy metal ions were evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The results indicated that the modified electrode could be used to individual detection of Pb(II), Cu(II), Hg(II) and Cd(II). In particular, the modified electrode exhibited the selective detection toward Pb(II) with higher sensitivity of 14.9 μA/μM, while the response to Cu(II), Hg(II) and Cd(II) were negligible. Besides, the modified electrode shown good stability and potential practical applicability in the electrochemical determination of Pb(II). This above results offered a simple method for continuous preparation sensing materials in the application field of electrochemical detection of toxic metal ions through the technology of process intensification. - Highlights: • Fe 3 O 4 nanoparticles were continuous prepared through IS-RPB reactor. • The Fe 3 O 4 nanoparticles showed selective detection of heavy metal ions. • It exhibited favorable sensitivity (14.9 μA μM −1 ) and LOD (0.119 μM) for Pb(II). • The as-prepared nanoparticles showed favorable potential application.

  7. Adsorption of Reactive Red 2 from aqueous solutions using Fe{sub 3}O{sub 4} nanoparticles prepared by co-precipitation in a rotating packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chia-Chang, E-mail: higee@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Lin, Yu-Shung [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Ho, Jui-Min [Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China)

    2016-05-05

    A rotating packed bed (RPB) that was operated at a rotating speed of 1800 rpm with liquid flow rates of 0.5 L/min was used to prepare Fe{sub 3}O{sub 4} nanoparticles (RPB-Fe{sub 3}O{sub 4}). The RPB-Fe{sub 3}O{sub 4} had a smaller average size and a narrower size distribution than the Fe{sub 3}O{sub 4} that was obtained from Aldrich, and so had a greater capacity to adsorb RR2. The effects of pH, Fe{sub 3}O{sub 4} dosage, initial RR2 concentration, and temperature on the adsorption of RR2 were examined experimentally using RPB-Fe{sub 3}O{sub 4}. A thermodynamic study revealed that the adsorption process was spontaneous and exothermic. The adsorption behavior was more consistent with the Langmuir model than with the Freundlich model, and the maximum adsorption capacity was 97.8 mg/g. At pH 3, 25 °C, an Fe{sub 3}O{sub 4} dosage of 0.30 g/L, and an initial RR2 concentration of 10 mg/L, RPB-Fe{sub 3}O{sub 4} effectively adsorbed RR2 with a removal efficiency of approximately 95% in 10 min. These promising results clearly reveal the potential of RPB-Fe{sub 3}O{sub 4} for use in the effective removal of dyes from aqueous solutions. - Highlights: • A novel magnetic adsorbent (Fe{sub 3}O{sub 4} nanoparticles) was prepared in RPB. • 95% removal of RR2 was achieved in 10 min using Fe{sub 3}O{sub 4} nanoparticles. • This investigation provides a novel treatment of dye-contaminated wastewater.

  8. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  9. Immobilisation of laccase on Eupergit supports and its application for the removal of endocrine disrupting chemicals in a packed-bed reactor.

    Science.gov (United States)

    Lloret, L; Hollmann, F; Eibes, G; Feijoo, G; Moreira, M T; Lema, J M

    2012-06-01

    Laccase from Myceliophthora thermophila was covalently immobilised on Eupergit C and Eupergit C 250L yielding specific activities of up to 17 and 80 U/g, respectively. Due to its superior activity, Eupergit C 250L was chosen for further research. The somewhat lower catalytic efficiency (based on the ratio between the turnover number and the Michaelis constant, k(cat)/K(M)) of the immobilised enzyme in comparison with that of the free enzyme was balanced by its increased stability and broader operational window related to temperature and pH. The feasibility of the immobilised laccase was tested by using a packed bed reactor (PBR) operating in consecutive cycles for the removal of Acid Green 27 dye as model substrate. High degrees of elimination were achieved (88, 79, 69 and 57% in 4 consecutive cycles), while the levels of adsorption on the support varied from 18 to 6%, proving that dye removal took place mainly due to the action of the enzyme. Finally, a continuous PBR with the solid biocatalyst was applied for the treatment of a solution containing the following endocrine disrupting chemicals: estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). At steady-state operation, E1 was degraded by 65% and E2 and EE2 were removed up to 80% and only limited adsorption of these compounds on the support, between 12 and 22%, was detected. In addition, a 79% decrease in estrogenic activity was detected in the effluent of the enzymatic reactor while only 14% was attained by inactivated laccase.

  10. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2012-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  11. Calculation of the packing fraction in a pebble-bed ADS and redesigning of the Transmutation Advanced Device for Sustainable Energy Applications (TADSEA)

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L., E-mail: maiden@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Av. Salvador Allende y Luaces, Ciudad de la Habana, 10400 (Cuba); Perez, J., E-mail: jcurbelo@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Av. Salvador Allende y Luaces, Ciudad de la Habana, 10400 (Cuba); Garcia, C., E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Av. Salvador Allende y Luaces, Ciudad de la Habana, 10400 (Cuba); Escriva, A., E-mail: aescriva@iqn.upv.es [Instituto de Ingenieria Energetica (IIE), Universidad Politecnica de Valencia (UPV), Camino de Vera s/n, 46022 Valencia (Spain); Rosales, J., E-mail: jrosales@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), Av. Salvador Allende y Luaces, Ciudad de la Habana, 10400 (Cuba); Abanades, A., E-mail: abanades@etsii.upm.es [Escuela Superior de Ingenieros Industriales (ETSII), Universidad Politecnica de Madrid (UPM), J. Gutierrez Abascal, 2, 28006 Madrid (Spain)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We based our study on an ADS for TRU transmutation and high temperature production. Black-Right-Pointing-Pointer We calculated the number of pebbles that fit in a cylindrical ADS core. Black-Right-Pointing-Pointer In both ADS design options studied, the mass of Pu isotopes reduces considerably. Black-Right-Pointing-Pointer The system can reach coolant outlet temperatures high enough for hydrogen production. Black-Right-Pointing-Pointer The maximum temperature values obtained in the ADS are not dangerous for TRISO fuel. - Abstract: One of the main problems that should be addressed in the use of nuclear fuels for heat and electricity production is the management of nuclear waste from conventional nuclear power plants and its inventory minimization. Fast reactors and Accelerator Driven Systems (ADSs) are the main options for reducing the long-lived radioactive waste inventory. In previous studies, the conceptual design of a Transmutation Advanced Device for Sustainable Energy Applications (TADSEA) has been made. The TADSEA is a pebble-bed ADS cooled by helium and moderated by graphite; it uses as fuel small amounts of transuranic elements in the form of TRISO particles, confined in 3 cm radius graphite pebbles. It has been conceived for Plutonium (Pu) and Minor Actinides (MA) transmutation and for achieving very high helium temperatures at the core's outlet to match the thermal requirements for hydrogen production by high temperature electrolysis (HTE) or by the iodine-sulfur (I-S) thermo-chemical cycle. In this paper, a geometrical method for calculating the real number of pebbles that fit in a cylindrical ADS core, according to its size and pebble configuration, is described. Based on its results, the packing fraction influence on the TADSEA's main work parameters is studied, and the redesign of the previous configuration is done in order to maintain the exit thermal power established in the preliminary design

  12. Pathways of 3-biofules (hydrogen, ethanol and methane) production from petrochemical industry wastewater via anaerobic packed bed baffled reactor inoculated with mixed culture bacteria

    International Nuclear Information System (INIS)

    Elreedy, Ahmed; Tawfik, Ahmed; Enitan, Abimbola; Kumari, Sheena; Bux, Faizal

    2016-01-01

    Highlights: • Bio-energy production from MEG contaminated wastewater via AnPBBR, was assessed. • Maximum concurrent H_2 and CH_4 production of 6.57 and 3.57 L/d were obtained. • Maximum ethanol generation of 237.13 mg/L was observed at a HRT of 9 h. • At OLRs up to 4 gCOD/L/d, MEG biodegradability of 71–98% was achieved. • AnPBBR economically achieved shorter payback period (6.25 y), compared to ABR. - Abstract: Simultaneous production of 3-biofuels (hydrogen, ethanol and methane) as by-products of the biodegradation of petrochemical wastewater containing MEG via anaerobic packed bed baffled reactor (AnPBBR), was extensively investigated. A four-chambered reactor supported by polyurethane sheets, was operated at a constant hydraulic retention time (HRT) of 36 h and different organic loading rates (OLRs) of 0.67, 1, 2 and 4 gCOD/L/d. The maximum specific H_2 and CH_4 production rates of 438.07 ± 43.02 and 237.80 ± 21.67 ml/L/d were respectively achieved at OLR of 4 gCOD/L/d. The residual bio-ethanol significantly increased from 57.15 ± 2.31 to 240.19 ± 34.69 mg/L at increasing the OLR from 0.67 to 4 gCOD/L/d, respectively. The maximum MEG biodegradability of 98% was attained at the lowest OLR. Compartment-wise profiles revealed that the maximum H_2 and ethanol production were achieved at HRT of 9 h (1st compartment), while the CH_4 production was peaked at HRTs of 27 and 36 h (last two compartments). Kinetic studies using Stover–Kincannon and completely stirred tank reactor (CSTR) in series models were successfully applied to the AnPBBR overall and compartment-to-compartment performance, respectively. The economic evaluation strongly revealed the potentials of using AnPBBR for simultaneous treatment and bio-energy production from petrochemical wastewater as compared to the classical anaerobic baffled reactor (ABR). Microbial analysis using Illumina MiSeq sequencing showed a diversity of bacterial community in AnPBBR. Proteobacteria (36

  13. Comparative discussion of the activated sludge and packed bed techniques in biological sewage water cleaning; Vergleichende Betrachtung von Belebungs- und Festbettverfahren fuer die biologische Abwasserreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Kroiss, H [Technische Univ., Vienna (Germany). Inst. fuer Wasserguete und Abfallwirtschaft

    1994-12-31

    It is reasonable to state that, given proper planning, erection and careful operation, both activated sludge plants and packed bed reactors with a biofilm are capable of meeting extremely high demands on the quality of the effluent. What was to be shown is the fact that operating behaviour and demands on measurement and control techniques differ considerably. Rating depends on different criteria, according to the technique chosen, and also cost calculation is largely determined in each case by special local conditions. All this makes it difficult to compare solutions with one another or to transfer experience gathered in one plant to another application. So the choice of the best possible method in a given case remains an interesting task.- One must try to make as objective a comparison as possible of different solutions according to the relevant criteria, beyond what is quantifiable merely in terms of finance.- Any decision taken on the basis of such a comparison is bound to reflect also the values that the decision-makers hold. But it should always be possible when taking decisions about processes to leave ideology out of consideration. (orig.) [Deutsch] Es kann festgestellt werden, dass sowohl Belebungsanlagen wie auch Biofilmreaktoren bei richtiger Planung, Errichtung und sorgfaeltigem Betrieb in der Lage sind, auch extrem hohe Ansprueche an die Ablaufguete zu erfuellen. Was gezeigt werden sollte, ist der Umstand, dass erhebliche Unterschiede im Betriebsverhalten und in den Anforderungen an die Mess- und Regeltechnik bestehen. Fuer die Bemessung sind je nach Verfahren andere Kriterien massgebend, und auch fuer die Kostenrechnung gilt, dass die speziellen oertlichen Bedingung bei jedem Anwendungsfall von ausschlaggebender Bedeutung sind. Das alles hat zur Folge, dass es sehr schwierig ist, verschiedene Loesungsmoeglichkeiten miteinander zur vergleichen, oder die Erfahrung von einer Anlage auf einen anderen Anwendungsfall zu uebertragen. Die Auswahl des ``besten

  14. Acidolysis of terebinth fruit oil with palmitic and caprylic acids in a recirculating packed bed reactor: optimization using response surface methodology

    Directory of Open Access Journals (Sweden)

    Koçak Yanık, D.

    2016-06-01

    Full Text Available The acidolysis reaction of terebinth fruit oil with caprylic and palmitic acid has been investigated. The reaction was catalyzed by lipase (Lipozyme IM from Rhizomucormiehei and carried out in recirculating packed bed reactor. The effects of reaction parameters have been analyzed using response surface methodology. Reaction time (3.5–6.5 h, enzyme load (10–20%, substrate flow rate (4–8 mL·min-1 and substrate mole ratios (Terebinth oil : Palmitic acid : Caprylic acid, 1:1.83:1.22–1:3.07:2.05 were evaluated. The optimum reaction conditions were 5.9 h reaction time, 10% enzyme load, 4 mL·min-1 substrate flow rate and 1:3.10:2.07 substrate mole ratio. The structured lipid obtained at these optimum conditions had 52.23% desired triacylglycerols and a lower caloric value than that of terebinth fruit oil. The melting characteristics and microstructure of the structured lipid were similar to those of commercial margarine fat extracts. The results showed that the structured lipid had the highest oxidative stability among the studied fats.Se ha investigado la reacción de acidolisis del aceite de pistacho con los ácidoscaprílico y palmítico. La reacción fue catalizada por la lipasa Lipozyme IM de Rhizomucormiehei y realizada mediante recirculación del reactor de lecho compacto. Los efectos de los parámetros de la reacción han sido analizados mediante el uso de la metodología de superficie de respuesta. El tiempo de reacción (3.5 hasta 6.5 h, la carga de enzima (10–20%, el caudal de sustrato (4–8 mL·min-1 relaciones molares de los sustrato (aceite de pistacho: ácido palmítico: ácido caprílico, 1: 1,83: 1,22–1: 3,07: 2,05 fueron evaluados. Las condiciones óptimas de reacción fueron 5,9 h de tiempo de reacción, el 10% de carga de la enzima, 4 mL·min-1 de caudal de sustrato y 1: 3,10: 2,07 de relación molar de sustratos. Los lípidos estructurados obtenidos en las condiciones óptimas tenías 52,23% de triacilgliceroles

  15. Micro-Scale Thermoacoustics

    Science.gov (United States)

    Offner, Avshalom; Ramon, Guy Z.

    2016-11-01

    Thermoacoustic phenomena - conversion of heat to acoustic oscillations - may be harnessed for construction of reliable, practically maintenance-free engines and heat pumps. Specifically, miniaturization of thermoacoustic devices holds great promise for cooling of micro-electronic components. However, as devices size is pushed down to micro-meter scale it is expected that non-negligible slip effects will exist at the solid-fluid interface. Accordingly, new theoretical models for thermoacoustic engines and heat pumps were derived, accounting for a slip boundary condition. These models are essential for the design process of micro-scale thermoacoustic devices that will operate under ultrasonic frequencies. Stability curves for engines - representing the onset of self-sustained oscillations - were calculated with both no-slip and slip boundary conditions, revealing improvement in the performance of engines with slip at the resonance frequency range applicable for micro-scale devices. Maximum achievable temperature differences curves for thermoacoustic heat pumps were calculated, revealing the negative effect of slip on the ability to pump heat up a temperature gradient. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).

  16. Evaluation of polymeric materials packed in fixed bed column for oil water remediation; Avaliacao de materiais polimericos empacotados em colunas de leito fixo para a remediacao de aguas oleosas

    Energy Technology Data Exchange (ETDEWEB)

    Queiros, Yure G.C.; Barros, Cintia Chagas; Oliveira, Roberta S.; Marques, Luiz R.S.; Cunha, Luciana; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano], e-mail: yuregomes@ima.ufrj.br, e-mail: elucas@ima.ufrj.br

    2007-07-01

    Polymeric resins are being tried as an alternative material for treating oily waters from the petroleum industry, which have already been treated by conventional methods. The objective of this work has been to evaluate the purification degree of synthetic oily waters when treated in fixed bed columns packed with polymeric resins made up of hydrophilic and lipophilic moieties. The analysis used for characterizing the total grease and oil content (TOG) was fluorimetry. Starting oily waters of average TOG 50 ppm were prepared. Data obtained from eluted waters did not outweigh 10% of the TOG values of starting solutions in some blends of resins with a pretty good mechanical stability under the increase of pressure. Organoclay material showed a good retention performance, but has presented a mechanical instability too, compromising its use for larger amounts of wastewater. (author)

  17. Solid-state Fermentation of Xylanase from Penicillium canescens 10-10c in a Multi-layer-packed Bed Reactor

    Science.gov (United States)

    Assamoi, Antoine A.; Destain, Jacqueline; Delvigne, Frank; Lognay, Georges; Thonart, Philippe

    Xylanase is produced by Penicillium canescens 10-10c from soya oil cake in static conditions using solid-state fermentation. The impact of several parameters such as the nature and the size of inoculum, bed-loading, and aeration is evaluated during the fermentation process. Mycelial inoculum gives more production than conidial inoculum. Increasing the quantity of inoculum enhances slightly xylanase production. Forced aeration induces more sporulation of strain and reduces xylanase production. However, forced moistened air improves the production compared to production obtained with forced dry air. In addition, increasing bed-loading reduces the specific xylanase production likely due to the incapacity of the Penicillium strain to grow deeply in the fermented soya oil cake mass. Thus, the best cultivation conditions involve mycelial inoculum form, a bed loading of 1-cm height and passive aeration. The maximum xylanase activity is obtained after 7 days of fermentation and attains 10,200 U/g of soya oil cake. These levels are higher than those presented in the literature and, therefore, show all the potentialities of this stock and this technique for the production of xylanase.

  18. Transfer of reaction-technical findings from pilot-scale nitrogen elimination to technical-scale organic packed beds; Uebertragung von reaktionstechnischen Erkenntnissen an Pilotanlagen zur Stickstoffentfernung auf grosstechnische Biofestbettanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Ante, A.; Brambach, R. [Lurgi Bamag GmbH, Butzbach (Germany)

    1999-07-01

    Organic packed beds offer some process engineering advantages: first of all an enormously high turnover rate per unit of space, low temperature dependence and, because of the flow pipe characteristics, the possibility to achieve very low effluent concentrations. In addition, the filtration effect binds solids, hence the concentration of solids in the effluent is very low. The formation of biofilm enhances this filter effect. Decisive kinetic parameters for nitrification systems are the rated temperature, the ratio of COD to N, and peak loads. For denitrification the design parameters are, beside temperature, loading with solids, the specific surface of the carrier material and filtration speed. In extensive investigations process variants were studied. They enhance the rate of turnover of nitrification with the aid of auxiliaries or through oxygen enrichment of process air to such an extent as to permit aimed buffering of peak ammonium freights. This constitutes a process-technical solution to one of the gravest drawbacks of packed-bed technology. (orig.) [German] Biofestbettanlagen bieten einige verfahrenstechnische Vorteile, in erster Linie eine enorm hohe Raumumsatzleistung, eine geringere Temperaturabhaengigkeit und aufgrund der Stroemungsrohrcharakteristik die Moeglichkeit sehr geringe Ablaufkonzentrationen zu erreichen. Zudem ist mit der Filtration aufgrund der Filterwirkung eine sehr geringe Feststoffkonzentration im Ablauf verbunden. Diese Filterwirkung wird durch die Ausbildung des Biofilmes noch untestuetzt. Die entscheidenden kinetischen Auslegungsgroessen fuer die Nitrifikation sind die Auslegungstemperatur, das CSB:N-Verhaeltnis sowie die Spitzenbelastungen. Fuer die Denitrifikation stellen neben der Temperatur, die Feststoffbeladung, die spezifische Oberflaeche des Traegermaterials sowie die Filtergeschwindigkeit die Auslegungsparameter dar. Durch umfangreiche Untersuchungen wurden Verfahrensvarianten erforscht, welche durch den Einsatz von

  19. Microscale magnetic compasses

    Science.gov (United States)

    Shiozawa, Hidetsugu; Zhang, Desai; Eisterer, Michael; Ayala, Paola; Pichler, Thomas; McCartney, Martha R.; Smith, David J.

    2017-09-01

    Microscale magnetic compasses have been synthesized with high yield. These ferromagnetic iron carbide nano-particles, which are encapsulated in a pair of parallel carbon needles, change their orientation in response to an external magnetic field. Electron holography reveals magnetic fields confined to the vicinity of the bicone-shaped particles, which are composed of only a few ferromagnetic domains. Aligned magnetically and encapsulated in an acrylate polymer matrix, these micro-compasses exhibit anisotropic bulk magnetic permeability with an easy axis normal to the needle direction that can be understood as a result of the anisotropic demagnetizing field of a non-spherical single-domain particle. This novel type of material with orthogonal magnetic and structural axes could be highly useful as magnetic components in electromagnetic wave absorbent materials and magnetorheological fluids.

  20. PERMEABILITY REDUCTION PHENOMENA IN PACKED BEDS, FIBER MATS, AND WET WEBS OF PAPER EXPOSED TO FLOW OF LIQUIDS AND SUSPENSIONS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2009-02-01

    Full Text Available Filter media, including those prepared from cellulosic materials, often suffer from permeability loss during continued use. To help understand such issues, one can take advantage of an extensive body of related research in such fields as industrial filtration, water purification, enhanced oil recovery, chromatography, paper manufacture, and the leaching of pollutants from impoundments. Though the mechanisms that appear to govern permeability-loss phenomena depend a lot on the details of various applications, the published research has revealed a number of common features. In particular, flow through a porous bed or fiber mat can be markedly reduced by deposition of particles or colloidal matter in positions that either block or partially restrict fluid flow. Progress has been achieved in the development of mechanistic models, as well as the use of such models in numerical simulations to explain various experimental findings. Further research of this type needs to be applied to cellulosic materials, which tend to be much more elongated in comparison to the bed materials and suspended matter considered most often by most researchers active in research related to permeability loss.

  1. Correlation between interstitial flow and pore structure in packed bed. 1st Report. Axial velocity measurement using MRI and visualization of axial channel flow; Juten sonai ryudo to kugeki kozo no sokan. 1. MRI ni yoru jikuhoko ryusoku bunpu no keisoku to jikiuhoko channel ryu no kashika

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K; Yokouchi, Y; Hirai, S [Tokyo Institute of Technology, Tokyo (Japan)

    2000-02-25

    Structure and velocity measurements using magnetic resonance imaging (MRI) have been performed experimentally to obtain a correlation between pore structure and interstitial flow through the packed bed of 5 mm diameter in the tube of 36 mm ID. To measure axial velocity maps of water flow through the packed bed, the phase method of using the phase difference of water spin magnetization between flowing and stagnant fluids by applying magnetic fields with bipolar gradients was employed. The spatial resolution of the obtained map in 0.2 mm x 0.2 mm x 0.5 mm. It was made clear from the obtained axial velocity maps that channel flows with higher axial velocity were induced not only near the wall but also in the internal region of the packed bed. Furthermore, pore structure of the packed bed was characterized from multi-slice images by partitioning of void space and combining of each pore section along the axial direction to analyze the structure-flow correlation. It was found from image analysis that axial channels with long and straight void space existed in the pore structure, and that most of the channel flows with higher axial velocity were induced in the axial channels. The flow rate through an axial channel depends on the square of the averaged cross section of the axial channel. (author)

  2. Oil/water displacement in microfluidic packed beds under weakly water-wetting conditions: competition between precursor film flow and piston-like displacement

    Science.gov (United States)

    Tanino, Yukie; Zacarias-Hernandez, Xanat; Christensen, Magali

    2018-02-01

    Optical microscopy was used to measure depth-averaged oil distribution in a quasi-monolayer of crushed marble packed in a microfluidic channel as it was displaced by water. By calibrating the transmitted light intensity to oil thickness, we account for depth variation in the fluid distribution. Experiments reveal that oil saturation at water breakthrough decreases with increasing Darcy velocity, U_{ {w}}, between capillary numbers {Ca} = μ _{ {w}} U_{ {w}}/σ = 9× 10^{-7} and 9× 10^{-6}, where μ _{ {w}} is the dynamic viscosity of water and σ is the oil/water interfacial tension, under the conditions considered presently. In contrast, end-point (long-time) remaining oil saturation depends only weakly on U_{ {w}}. This transient dependence on velocity is attributed to the competition between precursor film flow, which controls early time invasion dynamics but is inefficient at displacing oil, and piston-like displacement, which controls ultimate oil recovery. These results demonstrate that microfluidic experiments using translucent grains and fluids are a convenient tool for quantitative investigation of sub-resolution liquid/liquid displacement in porous media.

  3. Caffeine degradation by Rhizopus delemar in packed bed column bioreactor using coffee husk as substrate Degradação de cafeína por Rhizopus delemar em biorreator de colunas usando casca de café como substrato

    Directory of Open Access Journals (Sweden)

    Cristiane Vanessa Tagliari

    2003-11-01

    Full Text Available Various microorganisms including bacteria, yeast and fungi can degrade caffeine. There are few publications about caffeine degradation pathway in filamentous fungi, mainly by solid-state fermentation (SSF. Studies were carried out on degradation of caffeine and their metabolites by filamentous fungi in SSF using coffee husk as substrate. The purpose of this work was to investigate the caffeine degradation pathway by Rhizopus delemar in packed bed column fermenter and to compare this degradation metabolism with glass flasks fermentation. The methylxanthines were quantified by HPLC analysis. The experiments were realized with the optimized conditions in previous experiments: pH 6.5, 28ºC, inoculation rate 10(6 spores/g substrate, aeration rate 60 mL/min and initial moisture 73%. Under these conditions, after 72 hous of fermentation was achieved only 0.19% of caffeine and 0.014% of theophylline in the coffee husk. The strain proved to be able for caffeine and theophylline degradation by SSF in packed bed column bioreactor.Diversos microrganismos incluindo bactérias, fungos e leveduras são capazes de assimilar a cafeína de meios sintéticos ou de resíduos de café. Existem poucos trabalhos sobre a via de degradação da cafeína em fungos filamentosos, principalmente por fermentação no estado sólido (FES. Estudos de degradação da cafeína por fungos filamentosos em FES usando casca de café como substrato vêm sendo realizados. O objetivo deste trabalho foi investigar a via de degradação da cafeína por Rhizopus delemar em biorreator de colunas aeradas e comparar este metabolismo de degradação com o da fermentação em frascos de vidro. As metilxantinas foram quantificadas por análises em HPLC. Os experimentos foram realizados com as condições otimizadas previamente: pH 6,5, 28ºC, 10(6 espores/g substrato, vazão de ar 60 mL/min e 73% de umidade inicial. Após 90 horas de fermentação, 65% da cafeína foi reduzida, resultando 0

  4. Development of an ultrahigh-temperature process for the enzymatic hydrolysis of lactose. IV. Immobilization of two thermostable beta-glycosidases and optimization of a packed-bed reactor for lactose conversion.

    Science.gov (United States)

    Petzelbauer, Inge; Kuhn, Bernhard; Splechtna, Barbara; Kulbe, Klaus D; Nidetzky, Bernd

    2002-03-20

    Recombinant hyperthermostable beta-glycosidases from the archaea Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) were covalently attached onto the insoluble carriers chitosan, controlled pore glass (CPG), and Eupergit C. For each enzyme/carrier pair, the protein-binding capacity, the immobilization yield, the pH profiles for activity and stability, the activity/temperature profile, and the kinetic constants for lactose hydrolysis at 70 degrees C were determined. Eupergit C was best among the carriers in regard to retention of native-like activity and stability of Ss beta Gly and CelB over the pH range 3.0-7.5. Its protein binding capacity of approximately 0.003 (on a mass basis) was one-third times that of CPG, while immobilization yields were typically 80% in each case. Activation energies for lactose conversion by the immobilized enzymes at pH 5.5 were in the range 50-60 kJ/mol. This is compared to values of approximately 75 kJ/mol for the free enzymes. Immobilization expands the useful pH range for CelB and Ss beta Gly by approximately 1.5 pH units toward pH 3.5 and pH 4.5, respectively. A packed-bed enzyme reactor was developed for the continuous conversion of lactose in different media, including whey and milk, and operated over extended reaction times of up to 14 days. The productivities of the Eupergit C-immobilized enzyme reactor were determined at dilution rates between 1 and 12 h(-1), and using 45 and 170 g/L initial lactose. Results of kinetic modeling for the same reactor, assuming plug flow and steady state, suggest the presence of mass-transfer limitation of the reaction rate under the conditions used. Formation of galacto-oligosaccharides in the continuous packed-bed reactor and in the batch reactor using free enzyme was closely similar in regard to yield and individual saccharide components produced. Copyright 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 619-631, 2002; DOI 10.1002/bit.10110

  5. HTR-PROTEUS pebble bed experimental program cores 9 & 10: columnar hexagonal point-on-point packing with a 1:1 moderator-to-fuel pebble ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  6. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  7. Power Packing

    Centers for Disease Control (CDC) Podcasts

    2011-08-16

    In this podcast for kids, the Kidtastics talk about how to pack a lunch safely, to help keep you from getting sick.  Created: 8/16/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/16/2011.

  8. Packing Smart

    Centers for Disease Control (CDC) Podcasts

    2011-08-22

    In this podcast for kids, the Kidtastics talk about packing a lunch that's not boring and is full of the power and energy kids need to make it through the day.  Created: 8/22/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 8/22/2011.

  9. Statistical Thermodynamics and Microscale Thermophysics

    Science.gov (United States)

    Carey, Van P.

    1999-08-01

    Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.

  10. Microscale technologies for cell engineering

    CERN Document Server

    Gaharwar, Akhilesh

    2016-01-01

    This book offers readers cutting-edge research at the interface of polymer science and engineering, biomedical engineering, materials science, and biology. State-of-the-art developments in microscale technologies for cell engineering applications are covered, including technologies relevant to both pluripotent and adult stem cells, the immune system, and somatic cells of the animal and human origin. This book bridges the gap in the understanding of engineering biology at multiple length scale, including microenvironmental control, bioprocessing, and tissue engineering in the areas of cardiac, cartilage, skeletal, and vascular tissues, among others. This book also discusses unique, emerging areas of micropatterning and three-dimensional printing models of cellular engineering, and contributes to the better understanding of the role of biophysical factors in determining the cell fate. Microscale Technologies for Cell Engineering is valuable for bioengineers, biomaterial scientists, tissue engineers, clinicians,...

  11. Particle fuel bed tests

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H 2 for 12 hours with no visible reaction or weight loss

  12. Microscale combustion and power generation

    CERN Document Server

    Cadou, Christopher; Ju, Yiguang

    2014-01-01

    Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of these devices to realize their full potential. Engineers and scientists working in energy-related fields will find: An overview of the fundamental physics and phenomena of microscale combustion; Presentations of the latest modeling and simulation techniques for gasphase and catalytic micro-reactors; The latest results from experiments in small-scale liquid film, microtube, and porous combustors, micro-thrusters, a...

  13. Bed Bugs

    Science.gov (United States)

    Prevent, identify, and treat bed bug infestations using EPA’s step-by-step guides, based on IPM principles. Find pesticides approved for bed bug control, check out the information clearinghouse, and dispel bed bug myths.

  14. The art and science of forming packed analytical high-performance liquid chromatography columns.

    Science.gov (United States)

    Kirkland, J J; Destefano, J J

    2006-09-08

    Columns of packed particles still are the most popular devices for high-performance liquid chromatography (HPLC) separations because of their great utility, excellent performance and wide variety. However, the forming of packed beds for efficient, stable columns traditionally has been an art where the basics of how to form optimum beds generally was not well understood. The recent development of monolith rods was introduced in part to overcome the difficulty of producing stable beds of packing particles. However, these materials are less versatile than packed particle columns. Technology developments in recent years have produced a better understanding among those skilled in the practice of how to form optimized packed beds, and this has led to widely available, high-quality commercial columns. This presentation discusses the developments that led to the present state of column packing technology. Important steps in the packing of efficient, stable beds are described. The key step of selecting the best solvent for the slurry packing method is emphasized. Factors affecting the mechanical stability of packed columns also are discussed. The early art of packing columns now has evolved into a more scientific approach that allows the packing of good columns with a minimum of effort and time.

  15. New Structured Packing CUB for Purification of Exhaust Gases

    Directory of Open Access Journals (Sweden)

    Irina Novikova

    2016-10-01

    Full Text Available New structured packing for heat and mass transfer processes named CUB is presented in our article. The packing can be applied in packed towers for exhaust gas cleaning instead random packing, for example, rings type that are the most used in such processes. The advantages of the new packing over random packing are lower pressure drop, capability of purification and as a consequence long-term service of the packing. The researches of intensity of liquid-phase mass-transfer in packed bed depending on liquid spray rate and gas velocity were carried out. Obtained data show that packing CUB is more effective than the most popular type of structured packing under all other conditions being equal. As experimental data shown heat transfer coefficient was up by 17% and mass transfer coefficient was up by 51%. We found out optimal geometry of cross section of the new packing, namely, number of elements and parameters of one element. The new construction of structured packing is applicable for both type of column cross-section round and square.

  16. Towards microscale electrohydrodynamic three-dimensional printing

    International Nuclear Information System (INIS)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-01-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics. (paper)

  17. Towards microscale electrohydrodynamic three-dimensional printing

    Science.gov (United States)

    He, Jiankang; Xu, Fangyuan; Cao, Yi; Liu, Yaxiong; Li, Dichen

    2016-02-01

    It is challenging for the existing three-dimensional (3D) printing techniques to fabricate high-resolution 3D microstructures with low costs and high efficiency. In this work we present a solvent-based electrohydrodynamic 3D printing technique that allows fabrication of microscale structures like single walls, crossed walls, lattice and concentric circles. Process parameters were optimized to deposit tiny 3D patterns with a wall width smaller than 10 μm and a high aspect ratio of about 60. Tight bonding among neighbour layers could be achieved with a smooth lateral surface. In comparison with the existing microscale 3D printing techniques, the presented method is low-cost, highly efficient and applicable to multiple polymers. It is envisioned that this simple microscale 3D printing strategy might provide an alternative and innovative way for application in MEMS, biosensor and flexible electronics.

  18. Fluidised bed heat exchangers

    International Nuclear Information System (INIS)

    Elliott, D.E.; Healey, E.M.; Roberts, A.G.

    1974-01-01

    Problems that have arisen during the initial stages of development of fluidised bed boilers in which heat transfer surfaces are immersed in fluidised solids are discussed. The very high heat transfer coefficients that are obtained under these conditions can be exploited to reduce the total heat transfer surface to a fraction of that in normal boilers. However, with the high heat flux levels involved, tube stressing becomes more important and it is advantageous to use smaller diameter tubes. One of the initial problems was that the pumping power absorbed by the fluidised bed appeared to be high. The relative influence of the fluidising velocity (and the corresponding bed area), tube diameter, tube spacing, heat transfer coefficient and bed temperature on pumping power and overall cost was determined. This showed the importance of close tube packing and research was undertaken to see if this would adversely affect the heat transfer coefficient. Pressure operation also reduces the pumping power. Fouling and corrosion tests in beds burning coal suggest that higher temperatures could be reached reliably and cost studies show that, provided the better refractory metals are used, the cost of achieving higher temperatures is not unduly high. It now remains to demonstrate at large scale that the proposed systems are viable and that the methods incorporated to overcome start up and part lead running problems are satisfactory. The promising role of these heat transfer techniques in other applications is briefly discussed

  19. Tunable random packings

    International Nuclear Information System (INIS)

    Lumay, G; Vandewalle, N

    2007-01-01

    We present an experimental protocol that allows one to tune the packing fraction η of a random pile of ferromagnetic spheres from a value close to the lower limit of random loose packing η RLP ≅0.56 to the upper limit of random close packing η RCP ≅0.64. This broad range of packing fraction values is obtained under normal gravity in air, by adjusting a magnetic cohesion between the grains during the formation of the pile. Attractive and repulsive magnetic interactions are found to affect stongly the internal structure and the stability of sphere packing. After the formation of the pile, the induced cohesion is decreased continuously along a linear decreasing ramp. The controlled collapse of the pile is found to generate various and reproducible values of the random packing fraction η

  20. Advances in microscale separations towards nanoproteomics applications

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Lian; Piehowski, Paul D.; Shi, Tujin; Smith, Richard D.; Qian, Wei-Jun

    2017-11-01

    Microscale separations (e.g., liquid chromatography or capillary electrophoresis) coupled with mass spectrometry (MS) has become the primary tool for advanced proteomics, an indispensable technology for gaining understanding of complex biological processes. While significant advances have been achieved in MS-based proteomics, the current platforms still face a significant challenge in overall sensitivity towards nanoproteomics (i.e., with less than 1 g total amount of proteins available) applications such as cellular heterogeneity in tissue pathologies. Herein, we review recent advances in microscale separation techniques and integrated sample processing systems that improve the overall sensitivity and coverage of the proteomics workflow, and their contributions towards nanoproteomics applications.

  1. Slow creep in soft granular packings.

    Science.gov (United States)

    Srivastava, Ishan; Fisher, Timothy S

    2017-05-14

    Transient creep mechanisms in soft granular packings are studied numerically using a constant pressure and constant stress simulation method. Rapid compression followed by slow dilation is predicted on the basis of a logarithmic creep phenomenon. Characteristic scales of creep strain and time exhibit a power-law dependence on jamming pressure, and they diverge at the jamming point. Microscopic analysis indicates the existence of a correlation between rheology and nonaffine fluctuations. Localized regions of large strain appear during creep and grow in magnitude and size at short times. At long times, the spatial structure of highly correlated local deformation becomes time-invariant. Finally, a microscale connection between local rheology and local fluctuations is demonstrated in the form of a linear scaling between granular fluidity and nonaffine velocity.

  2. Wake modelling combining mesoscale and microscale models

    DEFF Research Database (Denmark)

    Badger, Jake; Volker, Patrick; Prospathospoulos, J.

    2013-01-01

    In this paper the basis for introducing thrust information from microscale wake models into mesocale model wake parameterizations will be described. A classification system for the different types of mesoscale wake parameterizations is suggested and outlined. Four different mesoscale wake paramet...

  3. Microscale vortex laser with controlled topological charge

    Science.gov (United States)

    Wang, Xing-Yuan; Chen, Hua-Zhou; Li, Ying; Li, Bo; Ma, Ren-Min

    2016-12-01

    A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities. Project supported by the “Youth 1000 Talent Plan” Fund, Ministry of Education of China (Grant No. 201421) and the National Natural Science Foundation of China (Grant Nos. 11574012 and 61521004).

  4. Packing Degenerate Graphs Greedily

    Czech Academy of Sciences Publication Activity Database

    Allen, P.; Böttcher, J.; Hladký, J.; Piguet, Diana

    2017-01-01

    Roč. 61, August (2017), s. 45-51 ISSN 1571-0653 R&D Projects: GA ČR GJ16-07822Y Institutional support: RVO:67985807 Keywords : tree packing conjecture * graph packing * graph processes Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics

  5. Packing force data correlations

    International Nuclear Information System (INIS)

    Heiman, S.M.

    1994-01-01

    One of the issues facing valve maintenance personnel today deals with an appropriate methodology for installing and setting valve packing that will minimize leak rates, yet ensure functionality of the the valve under all anticipated operating conditions. Several variables can affect a valve packing's ability to seal, such as packing bolt torque, stem finish, and lubrication. Stem frictional force can be an excellent overall indicator of some of the underlying conditions that affect the sealing characteristics of the packing and the best parameter to use when adjusting the packing. This paper addresses stem friction forces, analytically derives the equations related to these forces, presents a methodology for measuring these forces on valve stems, and attempts to correlate the data directly to the underlying variables

  6. Column-to-column packing variation of disposable pre-packed columns for protein chromatography.

    Science.gov (United States)

    Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois

    2017-12-08

    In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Fluid dynamics of packed columns principles of the fluid dynamic design of columns for gas/liquid and liquid/liquid systems

    CERN Document Server

    Mackowiak, Jerzy

    2010-01-01

    This book describes the basic design principles of columns equipped with modern lattice packings and structured packed beds, as generally used in industry. It provides support to engineers as well as graduate students in their daily design work.

  8. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  9. HTR-Proteus Pebble Bed Experimental Program Cores 5,6,7,&8: Columnar Hexagonal Point-on-Point Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snoj, Luka [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lengar, Igor [Idaho National Lab. (INL), Idaho Falls, ID (United States); Koberl, Oliver [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  10. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 5, 6, 7, & 8: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:2 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  11. Optimized packings with applications

    CERN Document Server

    Pintér, János

    2015-01-01

    This volume presents a selection of case studies that address a substantial range of optimized object packings (OOP) and their applications. The contributing authors are well-recognized researchers and practitioners. The mathematical modelling and numerical solution aspects of each application case study are presented in sufficient detail. A broad range of OOP problems are discussed: these include various specific and non-standard container loading and object packing problems, as well as the stowing of hazardous and other materials on container ships, data centre resource management, automotive engineering design, space station logistic support, cutting and packing problems with placement constraints, the optimal design of LED street lighting, robust sensor deployment strategies, spatial scheduling problems, and graph coloring models and metaheuristics for packing applications. Novel points of view related to model development and to computational nonlinear, global, mixed integer optimization and heuristic st...

  12. Cell packing structures

    KAUST Repository

    Pottmann, Helmut; Jiang, Caigui; Hö binger, Mathias; Wang, Jun; Bompas, Philippe; Wallner, Johannes

    2015-01-01

    optimization schemes for the computation of quad-based support structures. Hex-dominant structures may be designed via Voronoi tessellations, power diagrams, sphere packings and various extensions of these concepts. Apart from the obvious application as load

  13. Wafer integrated micro-scale concentrating photovoltaics

    Science.gov (United States)

    Gu, Tian; Li, Duanhui; Li, Lan; Jared, Bradley; Keeler, Gordon; Miller, Bill; Sweatt, William; Paap, Scott; Saavedra, Michael; Das, Ujjwal; Hegedus, Steve; Tauke-Pedretti, Anna; Hu, Juejun

    2017-09-01

    Recent development of a novel micro-scale PV/CPV technology is presented. The Wafer Integrated Micro-scale PV approach (WPV) seamlessly integrates multijunction micro-cells with a multi-functional silicon platform that provides optical micro-concentration, hybrid photovoltaic, and mechanical micro-assembly. The wafer-embedded micro-concentrating elements is shown to considerably improve the concentration-acceptance-angle product, potentially leading to dramatically reduced module materials and fabrication costs, sufficient angular tolerance for low-cost trackers, and an ultra-compact optical architecture, which makes the WPV module compatible with commercial flat panel infrastructures. The PV/CPV hybrid architecture further allows the collection of both direct and diffuse sunlight, thus extending the geographic and market domains for cost-effective PV system deployment. The WPV approach can potentially benefits from both the high performance of multijunction cells and the low cost of flat plate Si PV systems.

  14. Shelving 6 pack crisps

    OpenAIRE

    Garriga Torrecillas, Núria; Otrubova, Natalie; Worm, Robert; Larroque, Thibaut

    2017-01-01

    6-Pack crisps are one of the main products sold by PepsiCo using the standard shelf storage options offered by Tesco PLC. While presenting specific packaging involves a multitude of variables. This report focusses on cognitive recognition, brand confusion and product attractiveness. PepsiCo asked the research team to investigate innovative ways of presenting the crisp 6-pack variant on instore displays. research shows that attraction is crucial in the form of expected rewards. The combination...

  15. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  16. Micro-Scalable Thermal Control Device

    Science.gov (United States)

    Moran, Matthew E. (Inventor)

    2002-01-01

    A microscalable thermal control module consists of a Stirling cycle cooler that can be manipulated to operate at a selected temperature within the heating and cooling range of the module. The microscalable thermal control module is particularly suited for controlling the temperature of devices that must be maintained at precise temperatures. It is particularly suited for controlling the temperature of devices that need to be alternately heated or cooled. The module contains upper and lower opposing diaphragms, with a regenerator region containing a plurality of regenerators interposed between the diaphragms. Gaps exist on each side of each diaphragm to permit it to oscillate freely. The gap on the interior side one diaphragm is in fluid connection with the gap on the interior side of the other diaphragm through regenerators. As the diaphragms oscillate working gas is forced through the regenerators. The surface area of each regenerator is sufficiently large to effectively transfer thermal energy to and from the working gas as it is passed through them. The phase and amplitude of the oscillations can be manipulated electronically to control the steady state temperature of the active thermal control surface, and to switch the operation of the module from cooling to heating, or vice versa. The ability of the microscalable thermal control module to heat and cool may be enhanced by operating a plurality of modules in series, in parallel, or in connection through a shared bottom layer.

  17. Mathematical Modeling of the Sugar Cane Bagasse'Sprotein Enrichment Processes, in a Packed-Bed Bioreactor; Modelación matemática del proceso de enriquecimiento proteico del bagazo de caña de azúcar en un biorreactor de lecho fijo

    Energy Technology Data Exchange (ETDEWEB)

    Julián-Ricardo, María Caridad; Ramos-Sánchez, Luís Beltrán, E-mail: maria.julian@reduc.edu.cu [Departamento de Ingeniería Química, Universidad de Camagüey, Camagüey (Cuba); Gómez-Atanay, Angel Osvaldo [Departamento Comercial, SOMEC-Camagüey (Cuba)

    2014-07-01

    The residues of the sugar industry have been used usually, natural or processed in the animal alimentation and have been developed a lot of investigations that are allowed obtain protein enrichment products by solid state fermentation (SSF). However, the technologies employed in the production have limitations that are restraining their commercialization. This investigation was directed to find solutions to the problems that are presented and was planted like objective: to obtain a mathematical model for the scale-up of the sugar cane bagasse´s protein enrichment process, using the Candida utilis yeast, in a packed-bed bioreactor. The experimental work was realized in a pilot plant that have an installation for the air accommodation that is supply for the bioreactor, with a temperature of 30 ºC and more than 95 % of relative humidity. Was used a mathematical model compose by a pseudohomogenous energy balance and the mass balances for the biomass overgrowth and the substrate consumption. The validation studies, was realized by the temperatures comparisons axially measure in 10 L and 100 L bioreactor and the temperatures calculated by simulation. The statistic treatment demonstrate that doesn´t exist big differences between the middle temperatures, for a confidence level of 95 %. The analysis realized to characterize the obtained product, allowed establish that it is accord to quality specifications of the protein enrichment feed. (author)

  18. Rapid quantification of biomarkers during kerogen microscale pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Stott, A.W.; Abbott, G.D. [Fossil Fuels and Environmental Geochemistry NRG, The University, Newcastle-upon-Tyne (United Kingdom)

    1995-02-01

    A rapid, reproducible method incorporating closed system microscale pyrolysis and thermal desorption-gas chromatography/mass spectrometry has been developed and applied to the quantification of sterane biomarkers released during pyrolysis of the Messel oil shale kerogen under confined conditions. This method allows a substantial experimental concentration-time data set to be collected at accurately controlled temperatures, due to the low thermal inertia of the microscale borosilicate glass reaction vessels, which facilitates kinetic studies of biomarker reactions during kerogen microscale pyrolysis

  19. Gas-solid trickle flow hydrodynamics in a packed column

    NARCIS (Netherlands)

    Westerterp, K.R.; Kuczynski, M.

    1987-01-01

    The pressure gradient and the static and the dynamic hold-up have been measured for a system consisting of a Fluid Cracking Catalyst (FCC) of 30–150 × 10−6 m diameter, trickling over a packed bed and with a gas streaming in countercurrent flow. The experiments were carried out at ambient conditions

  20. The Microscale Inorganic Laboratory: Safety, Economy and Versatility.

    Science.gov (United States)

    Szafran, Zvi; And Others

    1989-01-01

    Discussed are four major advantages to the use of microscale laboratories for teaching chemistry. Included are effects on waste generation, laboratory safety, reagent variety, and laboratory efficiency. (CW)

  1. Battery Pack Thermal Design

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad

    2016-06-14

    This presentation describes the thermal design of battery packs at the National Renewable Energy Laboratory. A battery thermal management system essential for xEVs for both normal operation during daily driving (achieving life and performance) and off-normal operation during abuse conditions (achieving safety). The battery thermal management system needs to be optimized with the right tools for the lowest cost. Experimental tools such as NREL's isothermal battery calorimeter, thermal imaging, and heat transfer setups are needed. Thermal models and computer-aided engineering tools are useful for robust designs. During abuse conditions, designs should prevent cell-to-cell propagation in a module/pack (i.e., keep the fire small and manageable). NREL's battery ISC device can be used for evaluating the robustness of a module/pack to cell-to-cell propagation.

  2. Nanoscale and microscale phenomena fundamentals and applications

    CERN Document Server

    Khandekar, Sameer

    2015-01-01

    The book is an outcome of research work in the areas of nanotechnology, interfacial science, nano- and micro-fluidics and manufacturing, soft matter, and transport phenomena at nano- and micro-scales. The contributing authors represent prominent research groups from Indian Institute of Technology Bombay, Indian Institute of Technology Kanpur and Indian Institute of Science, Bangalore. The book has 13 chapters and the entire work presented in the chapters is based on research carried out over past three years. The chapters are designed with number of coloured illustrations, figures and tables. The book will be highly beneficial to academicians as well as industrial professionals working in the mentioned areas.

  3. Microscale autonomous sensor and communications module

    Science.gov (United States)

    Okandan, Murat; Nielson, Gregory N

    2014-03-25

    Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.

  4. Micro-Scale Avionics Thermal Management

    Science.gov (United States)

    Moran, Matthew E.

    2001-01-01

    Trends in the thermal management of avionics and commercial ground-based microelectronics are converging, and facing the same dilemma: a shortfall in technology to meet near-term maximum junction temperature and package power projections. Micro-scale devices hold the key to significant advances in thermal management, particularly micro-refrigerators/coolers that can drive cooling temperatures below ambient. A microelectromechanical system (MEMS) Stirling cooler is currently under development at the NASA Glenn Research Center to meet this challenge with predicted efficiencies that are an order of magnitude better than current and future thermoelectric coolers.

  5. Microscale Canopy Interactions in Aquatic Phototrophs

    DEFF Research Database (Denmark)

    Lichtenberg, Mads

    . This was investigated in a range of aquatic phototrophs such as macroalgae, reef-building corals, and photosynthetic biofilms. As a first step, we demonstrate that a microscale stratification of the internal light- and chemical environment exists across the investigated systems, with concomitant internal gradients...... of photosynthesis and respiration. We further investigate this by compiling a closed radiative energy budget of a coral and find that corals are highly efficient light collectors that can display photosynthetic quantum efficiencies close to the theoretical limit. Using a similar approach, we then investigate i) how...

  6. Economics Action Pack.

    Science.gov (United States)

    McDonald's Corp., Oak Brook, IL.

    One of five McDonald's Action Packs, this learning package introduces intermediate grade students to basic economic concepts. The fourteen activities include the topics of consumption (4 activities), production (5), the market system (3), a pretest, and a posttest. Specific titles under consumption include The Wonderful Treasure Tree (introduction…

  7. Optimal Packed String Matching

    DEFF Research Database (Denmark)

    Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany

    2011-01-01

    In the packed string matching problem, each machine word accommodates – characters, thus an n-character text occupies n/– memory words. We extend the Crochemore-Perrin constantspace O(n)-time string matching algorithm to run in optimal O(n/–) time and even in real-time, achieving a factor – speed...

  8. Education: DNA replication using microscale natural convection.

    Science.gov (United States)

    Priye, Aashish; Hassan, Yassin A; Ugaz, Victor M

    2012-12-07

    There is a need for innovative educational experiences that unify and reinforce fundamental principles at the interface between the physical, chemical, and life sciences. These experiences empower and excite students by helping them recognize how interdisciplinary knowledge can be applied to develop new products and technologies that benefit society. Microfluidics offers an incredibly versatile tool to address this need. Here we describe our efforts to create innovative hands-on activities that introduce chemical engineering students to molecular biology by challenging them to harness microscale natural convection phenomena to perform DNA replication via the polymerase chain reaction (PCR). Experimentally, we have constructed convective PCR stations incorporating a simple design for loading and mounting cylindrical microfluidic reactors between independently controlled thermal plates. A portable motion analysis microscope enables flow patterns inside the convective reactors to be directly visualized using fluorescent bead tracers. We have also developed a hands-on computational fluid dynamics (CFD) exercise based on modeling microscale thermal convection to identify optimal geometries for DNA replication. A cognitive assessment reveals that these activities strongly impact student learning in a positive way.

  9. Microbial metabolomics in open microscale platforms

    Science.gov (United States)

    Barkal, Layla J.; Theberge, Ashleigh B.; Guo, Chun-Jun; Spraker, Joe; Rappert, Lucas; Berthier, Jean; Brakke, Kenneth A.; Wang, Clay C. C.; Beebe, David J.; Keller, Nancy P.; Berthier, Erwin

    2016-01-01

    The microbial secondary metabolome encompasses great synthetic diversity, empowering microbes to tune their chemical responses to changing microenvironments. Traditional metabolomics methods are ill-equipped to probe a wide variety of environments or environmental dynamics. Here we introduce a class of microscale culture platforms to analyse chemical diversity of fungal and bacterial secondary metabolomes. By leveraging stable biphasic interfaces to integrate microculture with small molecule isolation via liquid–liquid extraction, we enable metabolomics-scale analysis using mass spectrometry. This platform facilitates exploration of culture microenvironments (including rare media typically inaccessible using established methods), unusual organic solvents for metabolite isolation and microbial mutants. Utilizing Aspergillus, a fungal genus known for its rich secondary metabolism, we characterize the effects of culture geometry and growth matrix on secondary metabolism, highlighting the potential use of microscale systems to unlock unknown or cryptic secondary metabolites for natural products discovery. Finally, we demonstrate the potential for this class of microfluidic systems to study interkingdom communication between fungi and bacteria. PMID:26842393

  10. Microscale Insight into Microbial Seed Banks.

    Science.gov (United States)

    Locey, Kenneth J; Fisk, Melany C; Lennon, J T

    2016-01-01

    Microbial dormancy leads to the emergence of seed banks in environmental, engineered, and host-associated ecosystems. These seed banks act as reservoirs of diversity that allow microbes to persist under adverse conditions, including extreme limitation of resources. While microbial seed banks may be influenced by macroscale factors, such as the supply of resources, the importance of microscale encounters between organisms and resource particles is often overlooked. We hypothesized that dimensions of spatial, trophic, and resource complexity determine rates of encounter, which in turn, drive the abundance, productivity, and size of seed banks. We tested this using >10,000 stochastic individual based models (IBMs) that simulated energetic, physiological, and ecological processes across combinations of resource, spatial, and trophic complexity. These IBMs allowed realistic dynamics and the emergence of seed banks from ecological selection on random variation in species traits. Macroscale factors like the supply and concentration of resources had little effect on resource encounter rates. In contrast, encounter rates were strongly influenced by interactions between dispersal mode and spatial structure, and also by the recalcitrance of resources. In turn, encounter rates drove abundance, productivity, and seed bank dynamics. Time series revealed that energetically costly traits can lead to large seed banks and that recalcitrant resources can lead to greater stability through the formation of seed banks and the slow consumption of resources. Our findings suggest that microbial seed banks emerge from microscale dimensions of ecological complexity and their influence on resource limitation and energetic costs.

  11. Solidification at the micro-scale

    International Nuclear Information System (INIS)

    Howe, A.

    2003-01-01

    The experimental determination and computer simulation of the micro-segregation accompanying the solidification of alloys continues to be a subject of much academic and industrial interest. Both are subject to progressively more sophisticated analyses, and a discussion is offered regarding the development and practical use of such studies. Simple steels are particularly difficult targets for such work: solidification does not end conveniently in a eutectic, the rapid diffusion particularly in the delta-ferrite phase obscures most evidence of what had occurred at the micro-scale during solidification, and one or more subsequent solid state phase transformations further obscure such details. Also, solidification at the micro-scale is inherently variable: the usual, dendrite morphologies encountered are, after all, instabilities in growth behaviour, and therefore such variability should be expected. For questions such as the relative susceptibility of different grades to particular problems, it is the average, typical behaviour that is of interest, whereas for other questions such as the on-set of macro-segregation, the local variability is paramount. Depending on the question being asked, and indeed the accuracy with which validatory data are available, simple pseudo-analytical equations employing various limiting assumptions, or sophisticated models which remove the need for most such limitations, could be appropriate. This paper highlights the contribution to such studies of various collaborative research forums within the European Union with which the author is involved. (orig.) [de

  12. Pulsing flow in trickle bed columns

    NARCIS (Netherlands)

    Blok, Jan Rudolf

    1981-01-01

    In the operation of a packed column with cocurrent downflow of gas and liquid (trickle bed) several flowpatterns can be observed depending on the degree of interaction between gas and liquid. At low liquid and gas flow rates - low interaction - gascontinuous flow occurs. In this flowregime, the

  13. MICRO-SCALE ENERGY DIRECTORS FOR ULTRASONIC WELDING

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a replication tool (1) for producing a part (4) with a microscale textured replica surface (5a, 5b, 5c, 5d). The replication tool (1) comprises a tool surface (2a, 2b) defining a general shape of the item (4). The tool surface (2a, 2b) comprises a microscale structured ma...

  14. Microscale Experiments in Chemistry–The Need of the New ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Microscale Experiments in Chemistry – The Need of the New Millenium - Organic Qualitative Analysis and Mixture Separation on Microscale. Shriniwas L Kelkar Dilip D Dhavale. Series Article Volume 6 Issue 7 July 2001 pp 6-12 ...

  15. The ring of fire: the relative importance of fuel packing versus intrinsic leaf flammability

    NARCIS (Netherlands)

    Grootemaat, S.; Wright, I.J.; Cornelissen, J.H.C.; Viegas, D.X.

    2014-01-01

    Two different experimental set-ups were used to disentangle the relative importance of intrinsic leaf traits versus fuel packing for the flammability in fuel beds. Dried leaves from 25 Australian perennial species were burnt in fuel bed rings under controlled conditions. The flammability parameters

  16. Assessing the clogging and permeability of degrading packed bed ...

    African Journals Online (AJOL)

    In South Africa, the need for water treatment is increasing, especially in the mining sector. As active water treatment technologies are expensive, the mining sector has an increasing need for passive water treatment technology, with low maintenance and operating costs, yet efficient water treatment ability. Literature on ...

  17. The Six Pack Model

    DEFF Research Database (Denmark)

    Andersen, Henrik; Ritter, Thomas

    Ever seen a growth strategies fail because it was not connect ed to the firm’s customer base? Or a customer relationship strategy falters just because it was the wrong thing to do with that given customer? This article presents the six pack model, a tool that makes growth profitable and predictable....... Not all customers can and should grow – thus a firm needs to classify its customers in order to implement the right customer strategy....

  18. Argo packing friction research update

    International Nuclear Information System (INIS)

    VanTassell, D.M.

    1994-01-01

    This paper focuses on the issue of valve packing friction and its affect on the operability of motor- and air-operated valves (MOVs and AOVs). At this time, most nuclear power plants are required to perform postmaintenance testing following a packing adjustment or replacement. In many cases, the friction generated by the packing does not impact the operability window of a valve. However, to date there has not been a concerted effort to substantiate this claim. To quantify the effects of packing friction, it has become necessary to develop a formula to predict the friction effects accurately. This formula provides a much more accurate method of predicting packing friction than previously used factors based strictly on stem diameter. Over the past 5 years, Argo Packing Company has been developing and testing improved graphite packing systems at research facilities, such as AECL Chalk River and Wyle Laboratories. Much of this testing has centered around reducing and predicting friction that is related to packing. In addition, diagnostic testing for Generic Letter 89-10 MOVs and AOVs has created a significant data base. In July 1992 Argo asked several utilities to provide running load data that could be used to quantify packing friction repeatability and predictability. This technical paper provides the basis to predict packing friction, which will improve calculations for thrust requirements for Generic Leter 89-10 and future AOV programs. In addition, having an accurate packing friction formula will improve packing performance when low running loads are identified that would indicate insufficient sealing force

  19. Effects of hydrodynamic interaction on random adhesive loose packings of micron-sized particles

    Directory of Open Access Journals (Sweden)

    Liu Wenwei

    2017-01-01

    Full Text Available Random loose packings of monodisperse spherical micron-sized particles under a uniform flow field are investigated via an adhesive discrete-element method with the two-way coupling between the particles and the fluid. Characterized by a dimensionless adhesion parameter, the packing fraction follows the similar law to that without fluid, but results in larger values due to the hydrodynamic compression. The total pressure drop through the packed bed shows a critical behaviour at the packing fraction of ϕ ≈ 0.22 in the present study. The normalized permeability of the packed bed for different parameters increases with the increase of porosities and is also in consistent with the Kozeny-Carman equation.

  20. Microscale soft robotics motivations, progress, and outlook

    CERN Document Server

    Kim, Jaeyoun (Jay)

    2017-01-01

    This book presents the technological basics and applications of small-scale (mm to sub-mm in length-scales) soft robots and devices, written for researchers in both academia and industry. Author Jaeyoun Kim presents technological motivations, enabling factors, and examples in an inter-linked fashion, making it easy for readers to understand and explore how microscale soft robots are a solution to researchers in search of technological platforms for safe, human-friendly biomedical devices. A compact and timely introduction, this book summarizes not only the enabling factors for soft robots and MEMS devices, but also provides a survey of progress in the field and looks to the future in terms of the material, design, and application aspects this new technology demonstrates.

  1. Micro-Scale Regenerative Heat Exchanger

    Science.gov (United States)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  2. Modeling microscale heat transfer using Calore.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

    2005-09-01

    Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

  3. Sub-millimeter arbitrary arrangements of monolithically micro-scale electrical double layer capacitors

    International Nuclear Information System (INIS)

    Laszczyk, Karolina U; Kazufumi, Kobashi; Sakurai, Shunsuke; Sekiguchi, Atsuko; Futaba, Don N; Yamada, Takeo; Hata, Kenji

    2015-01-01

    We report the investigation on the reproducibility of micro-scale electric double layer capacitors (micro-EDLCs). The micro-EDLC components were fabricated parallel using photolithography, wet and dry processing. Electrodes of the micro-EDLCs are highly dense packed Single Wall Carbon Nanotubes (SWCNTs) that form a mesh structure. The micro- EDLCs are connected 1-10 in series and in parallel being unified electrical circuits to tune the capacitance and the operational voltage. To confirm the reproducibility of the cells as well as the yield we performed electrochemical measurements in order to define the performance uniformity between cells strings and individual cells connected in a string. For 1-10 cells in series and in parallel the trends for the capacitance and operational voltage satisfied electrophysics rules governing cells addition. However, the measurements of the individual cells in a string revealed the significant performance discrepancy that might result in a shorten life cycling of a circuit. (paper)

  4. Cation exchange separation of 16 rare earth metals by microscale high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Ishii, D.; Hirose, A.; Iwasaki, Y.

    1978-01-01

    The separation of rare earth metals has been studied with a microcolumn of 0.5 mm i.d. and 75 mm length, packed with TSK LS-212 high-performance cation exchange resin. A micro-feeder (Model MF-2, from Azumadenki Kogyo) was used to drive carrier and sample solutions through the ion exchange column and detection cell. By combining a 250 μl syringe and a 0.5 mm i.d. sampling tube the micro-feeder, 0.1-1.0 μl rare earth metals were separated within 38 min, using only 304 μl of 0.4M α-hydroxy-isobutyric acid solution adjusted to pH 3.1-6.0 with ammonia solution as gradient carrier solution. The gradient elution was successfully performed by applying a new technique developed for microscale liquid chromatography. (author)

  5. Sub-millimeter arbitrary arrangements of monolithically micro-scale electrical double layer capacitors

    Science.gov (United States)

    Laszczyk, Karolina U.; Kazufumi, Kobashi; Sakurai, Shunsuke; Sekiguchi, Atsuko; Futaba, Don N.; Yamada, Takeo; Hata, Kenji

    2015-12-01

    We report the investigation on the reproducibility of micro-scale electric double layer capacitors (micro-EDLCs). The micro-EDLC components were fabricated parallel using photolithography, wet and dry processing. Electrodes of the micro-EDLCs are highly dense packed Single Wall Carbon Nanotubes (SWCNTs) that form a mesh structure. The micro- EDLCs are connected 1-10 in series and in parallel being unified electrical circuits to tune the capacitance and the operational voltage. To confirm the reproducibility of the cells as well as the yield we performed electrochemical measurements in order to define the performance uniformity between cells strings and individual cells connected in a string. For 1-10 cells in series and in parallel the trends for the capacitance and operational voltage satisfied electrophysics rules governing cells addition. However, the measurements of the individual cells in a string revealed the significant performance discrepancy that might result in a shorten life cycling of a circuit.

  6. To Pack or Not to Pack? A Randomized Trial of Vaginal Packing After Vaginal Reconstructive Surgery.

    Science.gov (United States)

    Westermann, Lauren B; Crisp, Catrina C; Oakley, Susan H; Mazloomdoost, Donna; Kleeman, Steven D; Benbouajili, Janine M; Ghodsi, Vivian; Pauls, Rachel N

    2016-01-01

    Placement of vaginal packing after pelvic reconstructive surgery is common; however, little evidence exists to support the practice. Furthermore, patients have reported discomfort from the packs. We describe pain and satisfaction in women treated with and without vaginal packing. This institutional review board-approved randomized-controlled trial enrolled patients undergoing vaginal hysterectomy with prolapse repairs. The primary outcome was visual analog scales (VASs) for pain on postoperative day 1. Allocation to "packing" ("P") or "no-packing" ("NP") arms occurred intraoperatively at the end of surgery. Visual analog scales regarding pain and satisfaction were completed early on postoperative day 1 before packing removal. Visual analog scale scores for pain, satisfaction, and bother attributable to packing were recorded before discharge. All packing and perineal pads were weighed to calculate a "postoperative vaginal blood loss." Perioperative data were collected from the hospital record. Our sample size estimation required 74 subjects. Ninety-three women were enrolled. After exclusions, 77 were randomized (P, 37; NP, 40). No differences were found in surgical information, hemoglobin levels, or narcotic use between groups. However, "postoperative vaginal blood loss" was greater in packed subjects (P discharge (P, 35.0 vs NP, 40.0; P = 0.43] were not significantly different between treatment arms. Likewise, VAS scores for satisfaction before removal of packing (P, 81.0 vs NP, 90.0; P = 0.08] and before discharge (P, 90.0 vs NP, 90.5; P = 0.60] were not significantly different. Packed patients noted lower nursing verbal pain scores (P = 0.04) and used less ketorolac (P = 0.01). Bother from packing was low overall. Although there was no difference based on VAS, women receiving vaginal packing had lower nursing documented pain and used less ketorolac than packed women. Vaginal packing may provide benefit and can remain part of the surgical practice.

  7. Cell packing structures

    KAUST Repository

    Pottmann, Helmut

    2015-03-03

    This paper is an overview of architectural structures which are either composed of polyhedral cells or closely related to them. We introduce the concept of a support structure of such a polyhedral cell packing. It is formed by planar quads and obtained by connecting corresponding vertices in two combinatorially equivalent meshes whose corresponding edges are coplanar and thus determine planar quads. Since corresponding triangle meshes only yield trivial structures, we focus on support structures associated with quad meshes or hex-dominant meshes. For the quadrilateral case, we provide a short survey of recent research which reveals beautiful relations to discrete differential geometry. Those are essential for successfully initializing numerical optimization schemes for the computation of quad-based support structures. Hex-dominant structures may be designed via Voronoi tessellations, power diagrams, sphere packings and various extensions of these concepts. Apart from the obvious application as load-bearing structures, we illustrate here a new application to shading and indirect lighting. On a higher level, our work emphasizes the interplay between geometry, optimization, statics, and manufacturing, with the overall aim of combining form, function and fabrication into novel integrated design tools.

  8. ExactPack Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, Robert Jr. [Los Alamos National Laboratory; Israel, Daniel M. [Los Alamos National Laboratory; Doebling, Scott William [Los Alamos National Laboratory; Woods, Charles Nathan [Los Alamos National Laboratory; Kaul, Ann [Los Alamos National Laboratory; Walter, John William Jr [Los Alamos National Laboratory; Rogers, Michael Lloyd [Los Alamos National Laboratory

    2016-05-09

    For code verification, one compares the code output against known exact solutions. There are many standard test problems used in this capacity, such as the Noh and Sedov problems. ExactPack is a utility that integrates many of these exact solution codes into a common API (application program interface), and can be used as a stand-alone code or as a python package. ExactPack consists of python driver scripts that access a library of exact solutions written in Fortran or Python. The spatial profiles of the relevant physical quantities, such as the density, fluid velocity, sound speed, or internal energy, are returned at a time specified by the user. The solution profiles can be viewed and examined by a command line interface or a graphical user interface, and a number of analysis tools and unit tests are also provided. We have documented the physics of each problem in the solution library, and provided complete documentation on how to extend the library to include additional exact solutions. ExactPack’s code architecture makes it easy to extend the solution-code library to include additional exact solutions in a robust, reliable, and maintainable manner.

  9. Flooding characteristics of Goodloe packing

    International Nuclear Information System (INIS)

    Begovich, J.M.; Watson, J.S.

    1976-08-01

    Experimental flooding data for the countercurrent flow of air and water in a 7.62-cm-diam glass column filled with Goodloe packing were compared with a correlation reported by the packing manufacturer. Flooding rates observed in this study were as low as one-half those predicted by the correlation. Rearranging the packing by inverting the column and removing some packing segments yielded results similar to the correlation for liquid-to-gas (L/G) mass flow rate ratios greater than 10, but the experimental flooding curve fell significantly below the correlation at lower L/G ratios. When the column was repacked with new packing, the results were essentially the same as those obtained in the inverted column. Thus, it is believed that a carefully packed column is more likely to yield flooding rates similar to those obtained in the new or inverted columns rather than rates predicted by the original correlation

  10. A review of aqueous foam in microscale.

    Science.gov (United States)

    Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal; Nguyen, Anh V

    2018-06-01

    In recent years, significant progress has been achieved in the study of aqueous foams. Having said this, a better understanding of foam physics requires a deeper and profound study of foam elements. This paper reviews the studies in the microscale of aqueous foams. The elements of aqueous foams are interior Plateau borders, exterior Plateau borders, nodes, and films. Furthermore, these elements' contribution to the drainage of foam and hydraulic resistance are studied. The Marangoni phenomena that can happen in aqueous foams are listed as Marangoni recirculation in the transition region, Marangoni-driven flow from Plateau border towards the film in the foam fractionation process, and Marangoni flow caused by exposure of foam containing photosurfactants under UV. Then, the flow analysis of combined elements of foam such as PB-film along with Marangoni flow and PB-node are studied. Next, we contrast the behavior of foams in different conditions. These various conditions can be perturbation in the foam structure caused by injected water droplets or waves or using a non-Newtonian fluid to make the foam. Further review is about the effect of oil droplets and particles on the characteristics of foam such as drainage, stability and interfacial mobility. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Microscale diffusion analysis of gaseous radioactive effluents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung Woo; Chang, Kwang Phil; Jeong, Guy Soo; Lee, Kwang Hee; Choi, Yong Seok; An, Jin Young [Sungkyunkwan University, Seoul (Korea, Republic of)

    1997-07-01

    The state-of-the art review and relevant data bases have been made in this study. Microscale wind-field model has been made and applied to the site= of a target domestic plant - Younggwang units. Following researches have been made; - Review of modeling status in U.S.A., European countries, and Japan, those theoretical backgrounds, and experimental activities - Graphical display of topographical grid data in the surrounding with the Younggwang N.P.P. and basic investigation of the surrounding geography - Survey of site meteorological data of the Younggwang N.P.P.; precipitation distribution, yearly average wind direction and joint frequency, seasonal wind rose, distribution of seasonal sea and land breeze, joint frequency with respect to the atmospheric stability, mixing height - Presentation of a draft to update the existing Korea real-time dose assessment system, FADAS and to interface to the AWS(Automatic Weather System) of the Korea Meteorology Administration. - Establishment of nested-grid system with micro- and macro- scale cells around the Younggwang nuclear power plant -Consideration of solar radiation effect by using land-use map -Analysis of wind field in the region of 30 x 30 km n the Younggwang site (Author) 67 refs., 20 tabs., 28 figs.

  12. A MEMS sensor for microscale force measurements

    International Nuclear Information System (INIS)

    Majcherek, S; Aman, A; Fochtmann, J

    2016-01-01

    This paper describes the development and testing of a new MEMS-based sensor device for microscale contact force measurements. A special MEMS cell was developed to reach higher lateral resolution than common steel-based load cells with foil-type strain gauges as mechanical-electrical converters. The design provided more than one normal force measurement point with spatial resolution in submillimeter range. Specific geometric adaption of the MEMS-device allowed adjustability of its measurement range between 0.5 and 5 N. The thin film nickel-chromium piezo resistors were used to achieve a mechanical-electrical conversion. The production process was realized by established silicon processing technologies such as deep reactive ion etching and vapor deposition (sputtering). The sensor was tested in two steps. Firstly, the sensor characteristics were carried out by application of defined loads at the measurement points by a push-pull tester. As a result, the sensor showed linear behavior. A measurement system analysis (MSA1) was performed to define the reliability of the measurement system. The measured force values had the maximal relative deviation of 1% to average value of 1.97 N. Secondly, the sensor was tested under near-industrial conditions. In this context, the thermal induced relaxation behavior of the electrical connector contact springs was investigated. The handling of emerging problems during the characterization process of the sensor is also described. (paper)

  13. Modeling of micro-scale thermoacoustics

    Energy Technology Data Exchange (ETDEWEB)

    Offner, Avshalom [The Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Ramon, Guy Z., E-mail: ramong@technion.ac.il [Department of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2016-05-02

    Thermoacoustic phenomena, that is, onset of self-sustained oscillations or time-averaged fluxes in a sound wave, may be harnessed as efficient and robust heat transfer devices. Specifically, miniaturization of such devices holds great promise for cooling of electronics. At the required small dimensions, it is expected that non-negligible slip effects exist at the solid surface of the “stack”-a porous matrix, which is used for maintaining the correct temporal phasing of the heat transfer between the solid and oscillating gas. Here, we develop theoretical models for thermoacoustic engines and heat pumps that account for slip, within the standing-wave approximation. Stability curves for engines with both no-slip and slip boundary conditions were calculated; the slip boundary condition curve exhibits a lower temperature difference compared with the no slip curve for resonance frequencies that characterize micro-scale devices. Maximum achievable temperature differences across the stack of a heat pump were also calculated. For this case, slip conditions are detrimental and such a heat pump would maintain a lower temperature difference compared to larger devices, where slip effects are negligible.

  14. Modeling of micro-scale thermoacoustics

    International Nuclear Information System (INIS)

    Offner, Avshalom; Ramon, Guy Z.

    2016-01-01

    Thermoacoustic phenomena, that is, onset of self-sustained oscillations or time-averaged fluxes in a sound wave, may be harnessed as efficient and robust heat transfer devices. Specifically, miniaturization of such devices holds great promise for cooling of electronics. At the required small dimensions, it is expected that non-negligible slip effects exist at the solid surface of the “stack”-a porous matrix, which is used for maintaining the correct temporal phasing of the heat transfer between the solid and oscillating gas. Here, we develop theoretical models for thermoacoustic engines and heat pumps that account for slip, within the standing-wave approximation. Stability curves for engines with both no-slip and slip boundary conditions were calculated; the slip boundary condition curve exhibits a lower temperature difference compared with the no slip curve for resonance frequencies that characterize micro-scale devices. Maximum achievable temperature differences across the stack of a heat pump were also calculated. For this case, slip conditions are detrimental and such a heat pump would maintain a lower temperature difference compared to larger devices, where slip effects are negligible.

  15. A microscale protein NMR sample screening pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo; Swapna, G. V. T.; Huang, Yuanpeng J.; Aramini, James M. [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States); Anklin, Clemens [Bruker Biospin Corporation (United States); Conover, Kenith; Hamilton, Keith; Xiao, Rong; Acton, Thomas B.; Ertekin, Asli; Everett, John K.; Montelione, Gaetano T., E-mail: guy@cabm.rutgers.ed [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States)

    2010-01-15

    As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30-200 {mu}g in 8-35 {mu}l volume. Extensive automation has been made possible by the combination of database tools, mechanization of key process steps, and the use of a micro-cryoprobe that gives excellent data while requiring little optimization and manual setup. In this perspective, we describe the overall process used by the NESG for screening NMR samples as part of a sample optimization process, assessing optimal construct design and solution conditions, as well as for determining protein rotational correlation times in order to assess protein oligomerization states. Database infrastructure has been developed to allow for flexible implementation of new screening protocols and harvesting of the resulting output. The NESG micro NMR screening pipeline has also been used for detergent screening of membrane proteins. Descriptions of the individual steps in the NESG NMR sample design, production, and screening pipeline are presented in the format of a standard operating procedure.

  16. Packing for food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A G [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2006-07-01

    Joint FAO/IAEA/WHO Expert Committee approved the use of radiation treatment of foods. Nowadays food packaging are mostly made of plastics, natural or synthetic, therefore effect of irradiation on these materials is crucial for packing engineering for food irradiation technology. By selecting the right polymer materials for food packaging it can be ensured that the critical elements of material and product performance are not compromised. When packaging materials are in contact with food at the time of irradiation that regulatory approvals sometimes apply. The review of the R-and-D and technical papers regarding material selection, testing and approval is presented in the report. The most information come from the USA where this subject is well elaborated, the International Atomic Energy Agency (IAEA) reports are reviewed as well. The report can be useful for scientists and food irradiation plants operators. (author)

  17. Packing for food irradiation

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    2006-01-01

    Joint FAO/IAEA/WHO Expert Committee approved the use of radiation treatment of foods. Nowadays food packaging are mostly made of plastics, natural or synthetic, therefore effect of irradiation on these materials is crucial for packing engineering for food irradiation technology. By selecting the right polymer materials for food packaging it can be ensured that the critical elements of material and product performance are not compromised. When packaging materials are in contact with food at the time of irradiation that regulatory approvals sometimes apply. The review of the R-and-D and technical papers regarding material selection, testing and approval is presented in the report. The most information come from the USA where this subject is well elaborated, the International Atomic Energy Agency (IAEA) reports are reviewed as well. The report can be useful for scientists and food irradiation plants operators. (author)

  18. Polarizable protein packing

    KAUST Repository

    Ng, Albert H.

    2011-01-24

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol -1] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011 Copyright © 2011 Wiley Periodicals, Inc.

  19. Mass transfer models analysis for the structured packings

    International Nuclear Information System (INIS)

    Suastegui R, A.O.

    1997-01-01

    The models that have been developing, to understand the mechanism of the mass transfer through the structured packings, present limitations for their application, existing then uncertainty in order to use them in the chemical industrial processes. In this study the main parameters used in the mass transfer are: the hydrodynamic of the bed of the column, the geometry of the bed, physical-chemical properties of the mixture and the flow regime of the operation between the flows liquid-gas. The sensibility of each one of these parameters generate an arduous work to develop right proposals and good interpretation of the phenomenon. With the purpose of showing the importance of these parameters mentioned in the mass transfer, this work is analyzed the process of absorption for the system water-air, using the models to the structured packings in packed columns. The models selected were developed by Bravo and collaborators in 1985 and 1992, in order to determine the parameters previous mentioned for the system water-air, using a structured packing built in the National Institute of Nuclear Research. In this work is showed the results of the models application and their discussion. (Author)

  20. Comparison of correlations for heat transfer in sphere-pac beds

    International Nuclear Information System (INIS)

    Fundamenski, W.R.; Gierszewski, P.J.

    1991-08-01

    The design of a tritium breeding blanket for a fusion reactor requires the knowledge of heat transfer within the blanket. In this paper three models for effective bed heat transfer are compared against the experimental database in order to choose a reference correlation to be used in blanket design. Two parameters are used to describe heat transfer in a packed bed: effective thermal conductivity of the bed, and a heat transfer coefficient at the bed-solid interface

  1. Random packing of digitized particles

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.

    2013-01-01

    The random packing of regularly and irregularly shaped particles has been studied extensively. Within this paper, packing is studied from the perspective of digitized particles. These digitized particles are developed for and used in cellular automata systems, which are employed for the simple

  2. Random packing of digitized particles

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos

    2012-01-01

    The random packing of regularly and irregularly shaped particles has been studied extensively. Within this paper, packing is studied from the perspective of digitized particles. These digitized particles are developed for and used in cellular automata systems, which are employed for the simple

  3. BNGS B valve packing program

    International Nuclear Information System (INIS)

    Cumming, D.

    1995-01-01

    The Bruce B Valve Packing Program began in 1987. The early history and development were presented at the 1992 International CANDU Maintenance conference. This presentation covers the evolution of the Bruce B Valve Packing Program over the period 1992 to 1995. (author)

  4. Heuristics for Multidimensional Packing Problems

    DEFF Research Database (Denmark)

    Egeblad, Jens

    for a minimum height container required for the items. The main contributions of the thesis are three new heuristics for strip-packing and knapsack packing problems where items are both rectangular and irregular. In the two first papers we describe a heuristic for the multidimensional strip-packing problem...... that is based on a relaxed placement principle. The heuristic starts with a random overlapping placement of items and large container dimensions. From the overlapping placement overlap is reduced iteratively until a non-overlapping placement is found and a new problem is solved with a smaller container size...... of this heuristic are among the best published in the literature both for two- and three-dimensional strip-packing problems for irregular shapes. In the third paper, we introduce a heuristic for two- and three-dimensional rectangular knapsack packing problems. The two-dimensional heuristic uses the sequence pair...

  5. Absorption in a three-phase fluidized bed I: Hydrodynamic investigations

    Directory of Open Access Journals (Sweden)

    Pejanović Srđan M.

    2003-01-01

    Full Text Available The hydrodynamic properties of a three phase fluidized bed with low density inert spherical packing, fluidized by the interaction of a gas flowing upwards and a liquid flowing downwards through the column, were investigated. It was found that the pressure drop, liquid hold up and dynamic bed height increase with both increasing liquid and gas flow rate. While the dynamic bed height and minimum fluidization velocity remain unchanged, both the pressure drop and liquid hold up increase with increasing density of the packing. Therefore, an increase in packing density causes more intensive mass transfer between the fluid phases than packed columns. It was shown that increase of the liquid flow rate causes an increase of both the effective liquid and gas velocity through the fluidized bed, which may also improve mass transfer.

  6. Accounting for porous structure in effective thermal conductivity calculations in a pebble bed reactor

    International Nuclear Information System (INIS)

    Antwerpen, W. van; Rousseau, P.G.; Toit, C.G. du

    2009-01-01

    A proper understanding of the mechanisms of heat transfer, flow and pressure drop through a packed bed of spheres is of utmost importance in the design of a high temperature pebble bed reactor. A thorough knowledge of the porous structure within the packed bed is important to any rigorous analysis of the transport phenomena, as all the heat and flow mechanisms are influenced by the porous structure. In this paper a new approach is proposed to simulate the effective thermal conductivity employing a combination of new and existing correlations for randomly packed beds. More attention is given to packing structure based on coordination number and contact angles, resulting in a more rigorous differentiation between the bulk and near-wall regions. The model accounts for solid conduction, gas conduction, contact area, surface roughness as well as radiation. (author)

  7. Nasal packing with ventilated nasal packs; a comparison with traditional vaseline nasal pack

    International Nuclear Information System (INIS)

    Alam, J.; Siddiqui, M.W.; Abbas, A.; Sami, M.; Ayub, Z.

    2017-01-01

    To compare the benefits of ventilated nasal packing with traditional vaseline guaze nasal packing. Study Design: Randomized controlled trial. Place and Duration of Study: This study was conducted at CMH Multan, from Jun 2014 to Dec 2014. Material and Methods: In this study, sample size of 80 patients was calculated using WHO calculator. Patients were divided in two groups using lottery method endotracheal tube and piece of surgical glove filled with ribbon guaze was utilized for fabricated ventilated nasal pack and compared with traditional nasal packs. Nasal obstruction and sleep disturbance were studied at eight hours and twenty-four hours following surgery using visual analog scale. Results: Mean nasal obstruction with ventilated nasal pack was 45.62 +- 6.17 and with Vaseline nasal pack was 77.67 +- 4.85 which was statistically significant (p=0.001) in both the groups. Mean sleep disturbance in both the groups was 46.32 +- 5.23 and 68.75 +- 2.70 respectively which was statistically significant (p=0.001) in both the groups. Conclusion: Patients with ventilated nasal packs were found to have better tolerance to nasal packs due to less nasal obstruction and sleep disturbance

  8. Deterministic indexing for packed strings

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Skjoldjensen, Frederik Rye

    2017-01-01

    Given a string S of length n, the classic string indexing problem is to preprocess S into a compact data structure that supports efficient subsequent pattern queries. In the deterministic variant the goal is to solve the string indexing problem without any randomization (at preprocessing time...... or query time). In the packed variant the strings are stored with several character in a single word, giving us the opportunity to read multiple characters simultaneously. Our main result is a new string index in the deterministic and packed setting. Given a packed string S of length n over an alphabet σ...

  9. Emergence of traveling wave endothermic reaction in a catalytic fixed bed under microwave heating

    International Nuclear Information System (INIS)

    Gerasev, Alexander P.

    2017-01-01

    This paper presents a new phenomenon in a packed bed catalytic reactor under microwave heating - traveling wave (moving reaction zones) endothermic chemical reaction. A two-phase model is developed to simulate the nonlinear dynamic behavior of the packed bed catalytic reactor with an irreversible first-order chemical reaction. The absorbed microwave power was obtained from Lambert's law. The structure of traveling wave endothermic chemical reaction was explored. The effects of the gas velocity and microwave power on performance of the packed bed catalytic reactor were presented. Finally, the effects of the change in the location of the microwave source at the packed bed reactor was demonstrated. - Highlights: • A new phenomenon - traveling waves of endothermic reaction - is predicted. • The physical and mathematical model of a packed bed catalytic reactor under microwave heating is presented. • The structure of the traveling waves is explored. • The configuration of heating the packed bed reactor via microwave plays a key role.

  10. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis

    2008-01-01

    Coauthored by one of the creators of the most efficient space packing solution, the Weaire-Phelan structure, The Pursuit of Perfect Packing, Second Edition explores a problem of importance in physics, mathematics, chemistry, biology, and engineering: the packing of structures. Maintaining its mathematical core, this edition continues and revises some of the stories from its predecessor while adding several new examples and applications. The book focuses on both scientific and everyday problems ranging from atoms to honeycombs. It describes packing models, such as the Kepler conjecture, Voronoï decomposition, and Delaunay decomposition, as well as actual structure models, such as the Kelvin cell and the Weaire-Phelan structure. The authors discuss numerous historical aspects and provide biographical details on influential contributors to the field, including emails from Thomas Hales and Ken Brakke. With examples from physics, crystallography, engineering, and biology, this accessible and whimsical bo...

  11. Expanded-bed chromatography in primary protein purification.

    Science.gov (United States)

    Anspach, F B; Curbelo, D; Hartmann, R; Garke, G; Deckwer, W D

    1999-12-31

    Chromatography in stable expanded beds enables proteins to be recovered directly from cultivations of microorganisms or cells and preparations of disrupted cells, without the need for prior removal of suspended solids. The general performance of an expanded bed is comparable to a packed bed owing to reduced mixing of the adsorbent particles in the column. However, optimal operating conditions are more restricted than in a packed bed due to the dependence of bed expansion on the size and density of the adsorbent particles as well as the viscosity and density of the feedstock. The feedstock composition may become the most limiting restriction owing to interactions of adsorbent particles with cell surfaces, DNA and other substances, leading to their aggregation and consequently to bed instabilities and channeling. Despite these difficulties, expanded-bed chromatography has found widespread applications in the large scale purification of proteins from mammalian cell and microbial feedstocks in industrial bioprocessing. The basics and implementation of expanded-bed chromatography, its advantages as well as problems encountered in the use of this technique for the direct extraction of proteins from unclarified feedstocks are addressed.

  12. New iodine filter pack design

    International Nuclear Information System (INIS)

    Blackbee, B.A.

    1977-10-01

    To enable Naval Emergency Monitoring Teams to fulfil their role in the field it was necessary to locate or design a replacement filter pack for the collection of radioactive iodine air samples. Collaboration with the Berkeley Laboratories of the Central Electricity Generating Board provided the necessary starting point for a suitable type of package. Further development by NGTE (West Drayton) yielded the improved filter pack which is the subject of this memorandum. (author)

  13. Reaction Scale and Green Chemistry: Microscale or Macroscale, Which is Greener?

    Science.gov (United States)

    Duarte, Rita C. C.; Ribeiro, M. Gabriela T. C.; Machado, Adelio A. S. C.

    2017-01-01

    The different ways microscale and green chemistry allow reducing the deleterious impacts of chemistry on human health and the environment are discussed in terms of their different basic paradigms: green chemistry follows the ecologic paradigm and microscale the risk paradigm. A study of the synthesis of 1-bromobutane at macro- ? microscale (109.3…

  14. Direct measurement of the microscale conductivity of conjugated polymer monolayers

    DEFF Research Database (Denmark)

    Bøggild, Peter; Grey, Francois; Hassenkam, T.

    2000-01-01

    The in-plane conductivity of conjugated polymer monolayers is mapped here for the first time on the microscale using a novel scanning micro four-point probe (see Figure). The probe allows the source, drain, and voltage electrodes to be positioned within the same domain and the mapping results...

  15. Micro-scale heterogeneity in water temperature | Dallas | Water SA

    African Journals Online (AJOL)

    Micro-scale heterogeneity in water temperature was examined in 6 upland sites in the Western Cape, South Africa. Hourly water temperature data converted to daily data showed that greatest differences were apparent in daily maximum temperatures between shallow- and deep-water biotopes during the warmest period of ...

  16. Bacterial community structure at the microscale in two different soils

    Czech Academy of Sciences Publication Activity Database

    Michelland, R.; Thioulouse, J.; Kyselková, Martina; Grundmann, G.L.

    2016-01-01

    Roč. 72, č. 3 (2016), s. 717-724 ISSN 0095-3628 Institutional support: RVO:60077344 Keywords : abundancy-occupancy relationship * bacteria community structure * frequency-occupancy relationship * microscale in soil * soil microbial diversity * soil structure Subject RIV: EH - Ecology, Behaviour Impact factor: 3.630, year: 2016

  17. Microscale technology and biocatalytic processes: Opportunities and challenges for synthesis

    DEFF Research Database (Denmark)

    Wohlgemuth, Roland; Plazl, Igor; Žnidaršič-Plazl, Polona

    2015-01-01

    Despite the expanding presence of microscale technology in chemical synthesis and energy production as well as in biomedical devices and analytical and diagnostic tools, its potential in biocatalytic processes for pharmaceutical and fine chemicals, as well as related industries, has not yet been...

  18. Coexistence of solidlike and fluidlike states in a deep gas-fluidized bed

    NARCIS (Netherlands)

    Wang, J.; Hoef, van der M.A.; Kuipers, J.A.M.

    2010-01-01

    Characterizing regime transition in gas-fluidized beds is of fundamental importance for the successful applications of fluidization technology. In this study, we show that a state-of-the-art two-fluid model has the ability to correctly predict the transition from packed bed to fully bubbling

  19. Integrating packing and distribution problems and optimization through mathematical programming

    Directory of Open Access Journals (Sweden)

    Fabio Miguel

    2016-06-01

    Full Text Available This paper analyzes the integration of two combinatorial problems that frequently arise in production and distribution systems. One is the Bin Packing Problem (BPP problem, which involves finding an ordering of some objects of different volumes to be packed into the minimal number of containers of the same or different size. An optimal solution to this NP-Hard problem can be approximated by means of meta-heuristic methods. On the other hand, we consider the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW, which is a variant of the Travelling Salesman Problem (again a NP-Hard problem with extra constraints. Here we model those two problems in a single framework and use an evolutionary meta-heuristics to solve them jointly. Furthermore, we use data from a real world company as a test-bed for the method introduced here.

  20. The pursuit of perfect packing

    CERN Document Server

    Weaire, Denis

    2000-01-01

    In 1998 Thomas Hales dramatically announced the solution of a problem that has long teased eminent mathematicians: what is the densest possible arrangement of identical spheres? The Pursuit of Perfect Packing recounts the story of this problem and many others that have to do with packing things together. The examples are taken from mathematics, physics, biology, and engineering, including the arrangement of soap bubbles in foam, atoms in a crystal, the architecture of the bee''s honeycomb, and the structure of the Giant''s Causeway. Using an informal style and with key references, the book also includes brief accounts of the lives of many of the scientists who devoted themselves to problems of packing over many centuries, together with wry comments on their efforts. It is an entertaining introduction to the field for both specialists and the more general public.

  1. Domain Discretization and Circle Packings

    DEFF Research Database (Denmark)

    Dias, Kealey

    A circle packing is a configuration of circles which are tangent with one another in a prescribed pattern determined by a combinatorial triangulation, where the configuration fills a planar domain or a two-dimensional surface. The vertices in the triangulation correspond to centers of circles...... to domain discretization problems such as triangulation and unstructured mesh generation techniques. We wish to ask ourselves the question: given a cloud of points in the plane (we restrict ourselves to planar domains), is it possible to construct a circle packing preserving the positions of the vertices...... and constrained meshes having predefined vertices as constraints. A standard method of two-dimensional mesh generation involves conformal mapping of the surface or domain to standardized shapes, such as a disk. Since circle packing is a new technique for constructing discrete conformal mappings, it is possible...

  2. Cylinder valve packing nut studies

    Energy Technology Data Exchange (ETDEWEB)

    Blue, S.C. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.

  3. Development of Chinese HTR-PM pebble bed equivalent conductivity test facility

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cheng; Yang, Xingtuan; Jiang, Shengyao [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2016-01-15

    The first two 250-MWt high-temperature reactor pebble bed modules (HTR-PM) have been installing at the Shidaowan plant in Shandong Province, China. The values of the effective thermal conductivity of the pebble bed core are essential parameters for the design. For their determination, Tsinghua University in China has proposed a full-scale heat transfer experiment to conduct comprehensive thermal transfer tests in packed pebble bed and to determine the effective thermal conductivity.

  4. Study of Pressure Drop in Fixed Bed Reactor Using a Computational Fluid Dynamics (CFD Code

    Directory of Open Access Journals (Sweden)

    Soroush Ahmadi

    2018-04-01

    Full Text Available Pressure drops of water and critical steam flowing in the fixed bed of mono-sized spheres are studied using SolidWorks 2017 Flow Simulation CFD code. The effects of the type of bed formation, flow velocity, density, and pebble size are evaluated. A new equation is concluded from the data, which is able to estimate pressure drop of a packed bed for high particle Reynolds number, from 15,000 to 1,000,000.

  5. From micro-scale 3D simulations to macro-scale model of periodic porous media

    Science.gov (United States)

    Crevacore, Eleonora; Tosco, Tiziana; Marchisio, Daniele; Sethi, Rajandrea; Messina, Francesca

    2015-04-01

    In environmental engineering, the transport of colloidal suspensions in porous media is studied to understand the fate of potentially harmful nano-particles and to design new remediation technologies. In this perspective, averaging techniques applied to micro-scale numerical simulations are a powerful tool to extrapolate accurate macro-scale models. Choosing two simplified packing configurations of soil grains and starting from a single elementary cell (module), it is possible to take advantage of the periodicity of the structures to reduce the computation costs of full 3D simulations. Steady-state flow simulations for incompressible fluid in laminar regime are implemented. Transport simulations are based on the pore-scale advection-diffusion equation, that can be enriched introducing also the Stokes velocity (to consider the gravity effect) and the interception mechanism. Simulations are carried on a domain composed of several elementary modules, that serve as control volumes in a finite volume method for the macro-scale method. The periodicity of the medium involves the periodicity of the flow field and this will be of great importance during the up-scaling procedure, allowing relevant simplifications. Micro-scale numerical data are treated in order to compute the mean concentration (volume and area averages) and fluxes on each module. The simulation results are used to compare the micro-scale averaged equation to the integral form of the macroscopic one, making a distinction between those terms that could be computed exactly and those for which a closure in needed. Of particular interest it is the investigation of the origin of macro-scale terms such as the dispersion and tortuosity, trying to describe them with micro-scale known quantities. Traditionally, to study the colloidal transport many simplifications are introduced, such those concerning ultra-simplified geometry that usually account for a single collector. Gradual removal of such hypothesis leads to a

  6. Thermal-hydraulic modeling of porous bed reactors

    International Nuclear Information System (INIS)

    Araj, K.J.; Nourbakhsh, H.P.

    1987-01-01

    Optimum design of nuclear reactor core requires an iterative approach between the thermal-hydraulic, neutronic and operational analysis. This paper concentrates on the thermal-hydraulic behavior of a hydrogen cooled, small particle bed reactor (PBR). The PBR core, modeled here, consists of a hexagonal array of fuel elements embedded in a moderator matrix. The fuel elements are annular packed beds of fuel particles held between two porous cylindrical frits. These particles, 500 to 600 μm in diameter, have a uranium carbide core, which is coated by two layers of graphite and an outer coating of zirconium carbide. Coolant flow, radially inward, from the cold frit through the packed bed and hot frit and axially out the channel, formed by the hot frit, to a common plenum. 5 refs., 1 fig., 2 tabs

  7. Biological treatment of aqueous effluents in a bacterial bed

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-14

    Biological treatment of aqueous effluents in a bacterial bed is carried out effectively for refinery waters having a low five-day BOD by using a plastic packing to support the bacteria in place of the less reliable pozzolana (volcanic ash) formerly employed. Such biofilters, developed by Lurgi S.A., are more sensitive to BOD overloading than activated sludge beds, so that very stable operating conditions are required. In these bacterial beds, the water trickles over the plastic packing and becomes oxygenated, which leads to degradation of undesirable substances in the water. In the refinery, this process can give excellent results when properly carried out, but the biofilter may generate suspended matter under unsatisfactory operating conditions, and is therefore usually placed upstream from the flocculation and filtration units. To date, all installations have remained below the required standard limit of 30 mg/l. of suspended matter.

  8. Measurement of thermal expansion for a Li2TiO3 pebble bed

    International Nuclear Information System (INIS)

    Hisashi Tanigawa; Mikio Enoeda; Masato Akiba

    2006-01-01

    In the current design of the blanket with ceramic breeders, pebbles of breeding materials are packed into a container and used as a pebble bed. Thermal and mechanical conditions externally loaded on the bed affect thermal and mechanical properties of the bed. It is necessary to analyze thermo-mechanical properties of the bed under controlled thermal and mechanical conditions. In the present paper, thermal expansion of a Li 2 TiO 3 pebble bed was investigated. Our apparatus consists of a tensile test-apparatus and a measurement chamber. Pebbles of Li 2 TiO 3 with 2 mm diameter were used. They were packed into a container made of alumina. At first, thermal expansion of the apparatus was calibrated because the measured deformation included thermal expansions of the load rods and the container. Instead of the pebble bed, a column made of copper was installed and thermal expansion of the system was measured for the calibration. Taking into account the estimated thermal expansion of the column, thermal expansion of the rods and the container could be analyzed. Based on the correction, thermal expansion of the pebble bed was measured under compression of 0.1 MPa. Temperature of the bed was regulated from room temperature to 973 K. From the measured expansion of the bed, average thermal expansion coefficient was estimated. For the beds with different packing factors ranging from 65.5 to 68.5 %, thermal expansion coefficients were 1.4 ± 0. 10-5 K -1 . In the first measurement of the beds without pre-loading, expansion coefficients were larger for the cooling process than heating. When the beds were successively heated and cooled, the difference decreased. This means that relocation of the pebbles arises in the first heat treatment and progress of compaction is larger in the cooling process than heating. After a few heat treatments, packing states of the beds reach stable and expansion coefficients for both heat and cooling processes are close. In the case of the beds that

  9. Practice Hospital Bed Safety

    Science.gov (United States)

    ... Home For Consumers Consumer Updates Practice Hospital Bed Safety Share Tweet Linkedin Pin it More sharing options ... It depends on the complexity of the bed." Safety Tips CDRH offers the following safety tips for ...

  10. Bed Bugs and Schools

    Science.gov (United States)

    Bed bugs have long been a pest – feeding on blood, causing itchy bites and generally irritating their human hosts. They are successful hitchhikers, and can move from an infested site to furniture, bedding, baggage, boxes, and clothing.

  11. Separation of rate processes for isotopic exchange between hydrogen and liquid water in packed columns 10

    International Nuclear Information System (INIS)

    Butler, J.P.; Hartog, J. den; Goodale, J.W.; Rolston, J.H.

    1977-01-01

    Wetproofed platinum catalysts in packed columns promote isotopic exchange between counter-current streams of hydrogen saturated with water vapour and liquid water. The net rate of deuterium transfer from isotopically enriched hydrogen has been measured and separated into two rate processes involving the transfer of deuterium from hydrogen to water vapour and from water vapour to liquid. These are compared with independent measurements of the two rate processes to test the two-step successive exchange model for trickle bed reactors. The separated transfer rates are independent of bed height and characterize the deuterium concentrations of each stream along the length of the bed. The dependences of the transfer rates upon hydrogen and liquid flow, hydrogen pressure, platinum loading and the effect of dilution of the hydrophobic catalyst with inert hydrophilic packing are reported. The results indicate a third process may be important in the transfer of deuterium between hydrogen and liquid water. (author)

  12. Towards optimal packed string matching

    DEFF Research Database (Denmark)

    Ben-Kiki, Oren; Bille, Philip; Breslauer, Dany

    2014-01-01

    -size string-matching instruction wssm is available in contemporary commodity processors. The other word-size maximum-suffix instruction wslm is only required during the pattern pre-processing. Benchmarks show that our solution can be efficiently implemented, unlike some prior theoretical packed string...

  13. Modeling stationary and moving pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2015-01-01

    Highlights: • The stationary and moving pebbles in a PBR are numerically studied by DEM. • The packing structure of stationary pebbles is simulated by a filling process. • The packing structural properties are obtained and analyzed. • The dynamic behavior of pebbles is predicted and discussed. - Abstract: This paper presents a numerical study of the stationary and moving pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). The packing structure of stationary pebbles is simulated by a filling process that terminates with the settling of the pebbles into a PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of the PBR is opened during the operation of the PBR, the stationary pebbles start to flow downward and are removed at the bottom of the PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment

  14. Tribological properties of silicate materials on nano and microscale

    International Nuclear Information System (INIS)

    Tordjeman, Ph.; Morel, N.; Ramonda, M.

    2009-01-01

    We studied the friction properties of four model silicate materials at the nanoscale and microscale. From nanotribology, we characterized the tribological properties at single asperity contact scale and from microtribology, we characterized the tribological properties at multi asperity contact scale. First, for each material we measured chemical composition by XPS, Young's modulus by acoustical microscopy and roughness σ by atomic force microscopy (AFM). Second, we measured the nanofriction coefficients with an AFM and the microfriction coefficients with a ball probe tribometer, for three hardnesses of the ball probe. We identified one friction mechanism at the nanoscale (sliding friction) and two friction mechanisms at the microscale (sliding friction and yielding friction). Comparison of the nano and microfriction coefficients at the same sliding friction regime shown, that the tribological properties of these materials didn't depend on roughness.

  15. Self-assembly kinetics of microscale components: A parametric evaluation

    Science.gov (United States)

    Carballo, Jose M.

    The goal of the present work is to develop, and evaluate a parametric model of a basic microscale Self-Assembly (SA) interaction that provides scaling predictions of process rates as a function of key process variables. At the microscale, assembly by "grasp and release" is generally challenging. Recent research efforts have proposed adapting nanoscale self-assembly (SA) processes to the microscale. SA offers the potential for reduced equipment cost and increased throughput by harnessing attractive forces (most commonly, capillary) to spontaneously assemble components. However, there are challenges for implementing microscale SA as a commercial process. The existing lack of design tools prevents simple process optimization. Previous efforts have characterized a specific aspect of the SA process. However, the existing microscale SA models do not characterize the inter-component interactions. All existing models have simplified the outcome of SA interactions as an experimentally-derived value specific to a particular configuration, instead of evaluating it outcome as a function of component level parameters (such as speed, geometry, bonding energy and direction). The present study parameterizes the outcome of interactions, and evaluates the effect of key parameters. The present work closes the gap between existing microscale SA models to add a key piece towards a complete design tool for general microscale SA process modeling. First, this work proposes a simple model for defining the probability of assembly of basic SA interactions. A basic SA interaction is defined as the event where a single part arrives on an assembly site. The model describes the probability of assembly as a function of kinetic energy, binding energy, orientation and incidence angle for the component and the assembly site. Secondly, an experimental SA system was designed, and implemented to create individual SA interactions while controlling process parameters independently. SA experiments

  16. The Maximum Resource Bin Packing Problem

    DEFF Research Database (Denmark)

    Boyar, J.; Epstein, L.; Favrholdt, L.M.

    2006-01-01

    Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find...

  17. Hardness of approximation for strip packing

    DEFF Research Database (Denmark)

    Adamaszek, Anna Maria; Kociumaka, Tomasz; Pilipczuk, Marcin

    2017-01-01

    Strip packing is a classical packing problem, where the goal is to pack a set of rectangular objects into a strip of a given width, while minimizing the total height of the packing. The problem has multiple applications, for example, in scheduling and stock-cutting, and has been studied extensively......)-approximation by two independent research groups [FSTTCS 2016,WALCOM 2017]. This raises a questionwhether strip packing with polynomially bounded input data admits a quasi-polynomial time approximation scheme, as is the case for related twodimensional packing problems like maximum independent set of rectangles or two...

  18. Effects of microscale inertia on dynamic ductile crack growth

    Science.gov (United States)

    Jacques, N.; Mercier, S.; Molinari, A.

    2012-04-01

    The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.

  19. Micro-Scale Properties of Different Bora Types

    Directory of Open Access Journals (Sweden)

    Vinko Šoljan

    2018-03-01

    Full Text Available In this paper we use 20 Hz wind measurements on three levels (2, 5, and 10 m to investigate the differences in micro-scale properties of different bora types, i.e., deep and shallow bora with further subdivision to cyclonic and anticyclonic bora cases. Using Fourier spectral analysis, we investigate a suitable turbulence averaging scale and bora gust pulsations. The obtained data set is further used to test the Monin–Obukhov similarity theory, the surface layer stratification, the behavior of the terms in the prognostic turbulence kinetic energy equation, and the wind profiles. One of our main goals is to identify possible micro-scale differences between shallow and deep bora types because of the possible different mountain wave dynamics in those flows. We found that a turbulence averaging scale of 30 min is suitable for this location and is in agreement with previous bora studies. The wind speed power spectral densities of all selected bora episodes showed pulsations with periods of 2–8 min. This suggests that mountain wave breaking was present in all cases, regardless of flow depth and synoptic type. The stability parameter analysis confirmed the near-neutral thermal stratification of bora; a consequence of intensive mechanical mixing. No significant differences related to bora type were observed in other micro-scale parameters.

  20. Valve packing manual. A maintenance application guide

    International Nuclear Information System (INIS)

    Aikin, J.A.; McCutcheon, R.G.; Cumming, D.

    1997-01-01

    Since 1970, AECL Chalk River Mechanical Equipment Development (MED) branch has invested over 175 person years in testing related to improving valve packing performance. Successful developments, including, 'live-loading', reduced packing heights, and performance-based packing qualification testing have been implemented. Since 1986, MED and the Integrated Valve Actuator Program Task Force - Valve Packing Steering Committee (IVAP-VPSC) have been involved in the development of combination die-formed graphite packing for use in CANDU plants. Many reports, articles, and specifications have been issued. Due to the large amount of test data and reports, a more user-friendly document has been prepared for everyday use. The Valve Packing Manual is based on many years of MED research and testing, as well as operating experience from CANDU nuclear generating stations (NGS). Since 1986, packing research and testing has been funded by the CANDU Owners Group (COG), the Electric Power Research Institute (EPRI), and participating valve packing manufacturers. The Valve Packing Manual (VPM) provides topical summaries of all work related to valve packing done since 1985. It includes advances in configuration design, stem packing friction, materials specifications, and installation procedures. This paper provides an overview on the application of the VPM with a focus on qualification testing, packing configuration, and stem packing friction. (author)

  1. Hypostatic jammed packings of frictionless nonspherical particles

    OpenAIRE

    VanderWerf, Kyle; Jin, Weiwei; Shattuck, Mark D.; O'Hern, Corey S.

    2017-01-01

    We perform computational studies of static packings of a variety of nonspherical particles including circulo-lines, circulo-polygons, ellipses, asymmetric dimers, and dumbbells to determine which shapes form hypostatic versus isostatic packings and to understand why hypostatic packings of nonspherical particles can be mechanically stable despite having fewer contacts than that predicted from na\\"ive constraint counting. To generate highly accurate force- and torque-balanced packings of circul...

  2. Safer v. Estate of Pack.

    Science.gov (United States)

    1996-07-11

    The Superior Court of New Jersey, Appellate Division, recognized "a physician's duty to warn those known to be at risk of avoidable harm from a genetically transmissible condition." During the 1950s, Dr. George Pack treated Donna Shafer's father for a cancerous blockage of the colon and multiple polyposis. In 1990, Safer was diagnosed with the same condition, which she claims is inherited, and, if not diagnosed and treated, invariably will lead to metastic colorectal cancer. Safer alleged that Dr. Pack knew the hereditary nature of the disease, yet failed to warn the immediate family, thus breaching his professional duty to warn. The court did not follow the analysis of the trial court, that a physician has no legal duty to warn the child of a patient of the genetic risk of disease because no physician and patient relationship exists between the doctor and the child.

  3. Fast Searching in Packed Strings

    DEFF Research Database (Denmark)

    Bille, Philip

    2009-01-01

    Given strings P and Q the (exact) string matching problem is to find all positions of substrings in Q matching P. The classical Knuth-Morris-Pratt algorithm [SIAM J. Comput., 1977] solves the string matching problem in linear time which is optimal if we can only read one character at the time....... However, most strings are stored in a computer in a packed representation with several characters in a single word, giving us the opportunity to read multiple characters simultaneously. In this paper we study the worst-case complexity of string matching on strings given in packed representation. Let m...... word-RAM with logarithmic word size we present an algorithm using time O(n/log(sigma) n + m + occ) Here occ is the number of occurrences of P in Q. For m = o(n) this improves the O(n) bound...

  4. Longitudinal dispersion coefficient depending on superficial velocity of hydrogen isotopes flowing in column packed with zeolite pellets at 77.4 K

    Energy Technology Data Exchange (ETDEWEB)

    Kotoh, K. [Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Kubo, K.; Takashima, S.; Moriyama, S.T. [Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Tanaka, M. [National Institute for Fusion Science, Oroshi-cho, Toki, Gifu (Japan); Sugiyama, T. [Faculty of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    Authors have been developing a cryogenic pressure swing adsorption system for hydrogen isotope separation. In the problem of its design and operation, it is necessary to predict the concentration profiles developing in packed beds of adsorbent pellets. The profiling is affected by the longitudinal dispersion of gas flowing in packed beds, in addition to the mass transfer resistance in porous media of adsorbent pellets. In this work, an equation is derived for estimating the packed-bed dispersion coefficient of hydrogen isotopes, by analyzing the breakthrough curves of trace D{sub 2} or HD replacing H{sub 2} adsorbed in synthetic zeolite particles packed columns at the liquefied nitrogen temperature 77.4 K. Since specialized for hydrogen isotopes, this equation can be considered to estimate the dispersion coefficients more reliable for the cryogenic hydrogen isotope adsorption process, than the existing equations. (authors)

  5. Particle bed reactor nuclear rocket concept

    International Nuclear Information System (INIS)

    Ludewig, H.

    1991-01-01

    The particle bed reactor nuclear rocket concept consists of fuel particles (in this case (U,Zr)C with an outer coat of zirconium carbide). These particles are packed in an annular bed surrounded by two frits (porous tubes) forming a fuel element; the outer one being a cold frit, the inner one being a hot frit. The fuel element are cooled by hydrogen passing in through the moderator. These elements are assembled in a reactor assembly in a hexagonal pattern. The reactor can be either reflected or not, depending on the design, and either 19 or 37 elements, are used. Propellant enters in the top, passes through the moderator fuel element and out through the nozzle. Beryllium used for the moderator in this particular design to withstand the high radiation exposure implied by the long run times

  6. Application of discrete element method to study mechanical behaviors of ceramic breeder pebble beds

    International Nuclear Information System (INIS)

    An Zhiyong; Ying, Alice; Abdou, Mohamed

    2007-01-01

    In this paper, the discrete element method (DEM) approach has been applied to study mechanical behaviors of ceramic breeder pebble beds. Directly simulating the contact state of each individual particle by the physically based interaction laws, the DEM numerical program is capable of predicting the mechanical behaviors of non-standard packing structures. The program can also provide the data to trace the evolution of contact characteristics and forces as deformation proceeds, as well as the particle movement when the pebble bed is subjected to external loadings. Our numerical simulations focus on predicting the mechanical behaviors of ceramic breeder pebble beds, which include typical fusion breeder materials in solid breeder blankets. Current numerical results clearly show that the packing density and the bed geometry can have an impact on the mechanical stiffness of the pebble beds. Statistical data show that the contact forces are highly related to the contact status of the pebbles

  7. Random packing of colloids and granular matter

    NARCIS (Netherlands)

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials

  8. Complications of balloon packing in epistaxis

    NARCIS (Netherlands)

    Vermeeren, Lenka; Derks, Wynia; Fokkens, Wytske; Menger, Dirk Jan

    2015-01-01

    Although balloon packing appears to be efficient to control epistaxis, severe local complications can occur. We describe four patients with local lesions after balloon packing. Prolonged balloon packing can cause damage to nasal mucosa, septum and alar skin (nasal mucosa, the cartilaginous skeleton

  9. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weijing [School of Civil Engineering, The University of Sydney, Sydney (Australia); Pupeschi, Simone [Institute for Applied Materials, Karlsruhe Institute of Technology (KIT) (Germany); Hanaor, Dorian [School of Civil Engineering, The University of Sydney, Sydney (Australia); Institute for Materials Science and Technologies, Technical University of Berlin (Germany); Gan, Yixiang, E-mail: yixiang.gan@sydney.edu.au [School of Civil Engineering, The University of Sydney, Sydney (Australia)

    2017-05-15

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  10. Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds

    International Nuclear Information System (INIS)

    Dai, Weijing; Pupeschi, Simone; Hanaor, Dorian; Gan, Yixiang

    2017-01-01

    Highlights: • This study explicitly demonstrates the influence of the gas pressure on the effective thermal conductivity of pebble beds. • The gas pressure influence is shown to correlated to the pebble size. • The effective thermal conductivity is linked to thermal-mechanical properties of pebbles and packing structure. - Abstract: Lithium ceramics have been considered as tritium breeder materials in many proposed designs of fusion breeding blankets. Heat generated in breeder pebble beds due to nuclear breeding reaction must be removed by means of actively cooled plates while generated tritiums is recovered by purge gas slowly flowing through beds. Therefore, the effective thermal conductivity of pebble beds that is one of the governing parameters determining heat transport phenomenon needs to be addressed with respect to mechanical status of beds and purge gas pressure. In this study, a numerical framework combining finite element simulation and a semi-empirical correlation of gas gap conduction is proposed to predict the effective thermal conductivity. The purge gas pressure is found to vary the effective thermal conductivity, in particular with the presence of various sized gaps in pebble beds. Random packing of pebble beds is taken into account by an approximated correlation considering the packing factor and coordination number of pebble beds. The model prediction is compared with experimental observation from different sources showing a quantitative agreement with the measurement.

  11. Hydrogen isotopic exchange reaction in a trickle-bed

    International Nuclear Information System (INIS)

    Paek, Seung Woo; Ahn, Do Hee; Kim, Kwang Rag; Lee, Min Soo; Yim, Sung Paal; Chung, Hong Suk

    2005-01-01

    The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is ideally suited for extracting tritium from water because of its high separation factor and mild operating conditions. This process for different hydrogen isotope applications has been developed by AECL. A laboratory scale CECE was built and operated at Mound Laboratory. Belgium and Japan have also developed independently similar processes which are based on a hydrophobic catalyst. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. The liquid phase catalytic exchange columns having various structures were developed; and it has been recognized that a multistage type and a trickle-bed type are promising. The multistage type gave more successful results than the trickle-bed type. However, the structure of the column is complicated. The trickle-bed type has a significant advantage in that the structure of the column is quite simple: the hydrophobic catalysts or the catalysts and packings are packed within the column. This structure would lead us to a smaller column height than the multistage type. This paper deals with the experiment for the hydrogen isotope exchange in a trickle-bed reactor packed with a hydrophobic catalyst and the design of the catalytic column for the CECE to tritium recovery from light water

  12. Hydrogen isotopic exchange reaction in a trickle-bed

    Energy Technology Data Exchange (ETDEWEB)

    Paek, Seung Woo; Ahn, Do Hee; Kim, Kwang Rag; Lee, Min Soo; Yim, Sung Paal; Chung, Hong Suk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The CECE (Combined Electrolysis Catalytic Exchange) with a hydrophobic catalyst is ideally suited for extracting tritium from water because of its high separation factor and mild operating conditions. This process for different hydrogen isotope applications has been developed by AECL. A laboratory scale CECE was built and operated at Mound Laboratory. Belgium and Japan have also developed independently similar processes which are based on a hydrophobic catalyst. The CECE column is composed of an electrolysis cell and a liquid phase catalytic exchange column. The liquid phase catalytic exchange columns having various structures were developed; and it has been recognized that a multistage type and a trickle-bed type are promising. The multistage type gave more successful results than the trickle-bed type. However, the structure of the column is complicated. The trickle-bed type has a significant advantage in that the structure of the column is quite simple: the hydrophobic catalysts or the catalysts and packings are packed within the column. This structure would lead us to a smaller column height than the multistage type. This paper deals with the experiment for the hydrogen isotope exchange in a trickle-bed reactor packed with a hydrophobic catalyst and the design of the catalytic column for the CECE to tritium recovery from light water.

  13. Modeling stationary and dynamic pebbles in a pebble bed reactor

    International Nuclear Information System (INIS)

    Zhao, Xiang; Montgomery, Trent; Zhang, Sijun

    2011-01-01

    This paper presents a numerical study of the stationary and dynamic pebbles in a pebble bed reactor (PBR) by means of discrete element method (DEM). At first, the packing structure of stationary pebbles is simulated by filling process until the settling of pebbles into PBR. The packing structural properties are obtained and analyzed. Subsequently, when the outlet of PBR is open during the operational maintenance of PBR, the stationary pebbles start to flow downward and are removed at the bottom of PBR. The dynamic behavior of pebbles is predicted and discussed. Our results indicate the DEM can offer both macroscopic and microscopic information for PBR design calculations and safety assessment. (author)

  14. Cover stones on liquefiable soil bed under waves

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Hatipoglu, Figen; Fredsøe, Jørgen

    2010-01-01

    The paper describes the results of an experimental study on the behavior of cover stones on a liquefiable soil bed exposed to a progressive wave. The soil was silt with d50=0.098mm. Stones, the size of 4cm, were used as cover material. The effect of packing density of stones, and that of number...... of stone layers (including the effect of an intermediate filter layer) were investigated. Pore pressure was measured across the soil depth. The experiments show that the soil liquefaction depended mainly on two parameters: the packing density of stones, and the number of stone layers. When the liquefaction...

  15. Fluid-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.; Schoebotham, N.

    1981-02-01

    In Energy Equipment Company's two-stage fluidized bed system, partial combustion in a fluidized bed is followed by burn-off of the generated gases above the bed. The system can be retrofitted to existing boilers, and can burn small, high ash coal efficiently. It has advantages when used as a hot gas generator for process drying. Tests on a boiler at a Cadbury Schweppes plant are reported.

  16. Heat Transfer in a Fixed Bed of Straw Char

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Jensen, Anker

    2003-01-01

    A model for the thermal conductivity of a straw char bed has been developed. The model extends the work of Yagi and Kunii to describe heat transfer in a bed of cylinders, using a relationship between the interparticle distance and the external porosity. To verify the model, thermal conductivity...... the experimental uncertainty over the range of conditions investigated. The heat transfer model was used in a parametric study to evaluate the effect of gas flow rate, particle diameter, porosity, and temperature on the thermal conductivity in a straw char bed....... experiments were performed on shredded and un-shredded straw char samples, varying particle size, bed packing (loose or dense), and temperature. Predictions with the model, using the measured external porosity and particle diameter as input parameters, are in agreement with measurements within...

  17. Fluidised bed combustion system

    International Nuclear Information System (INIS)

    McKenzie, E.C.

    1976-01-01

    Fluidized bed combustion systems that facilitates the maintenance of the depth of the bed are described. A discharge pipe projects upwardly into the bed so that bed material can flow into its upper end and escape downwardly. The end of the pipe is surrounded by an enclosure and air is discharged into the enclosure so that material will enter the pipe from within the enclosure and have been cooled in the enclosure by the air discharged into it. The walls of the enclosure may themselves be cooled

  18. Transient core-debris bed heat-removal experiments and analysis

    International Nuclear Information System (INIS)

    Ginsberg, T.; Klein, J.; Klages, J.; Schwarz, C.E.; Chen, J.C.

    1982-08-01

    An experimental investigation is reported of the thermal interaction between superheated core debris and water during postulated light-water reactor degraded core accidents. Data are presented for the heat transfer characteristics of packed beds of 3 mm spheres which are cooled by overlying pools of water. Results of transient bed temperature and steam flow rate measurements are presented for bed heights in the range 218 mm-433 mm and initial particle bed temperatures between 530K and 972K. Results display a two-part sequential quench process. Initial frontal cooling leaves pockets or channels of unquenched spheres. Data suggest that heat transfer process is limited by a mechanism of countercurrent two-phase flow. An analytical model which combines a bed energy equation with either a quasisteady version of the Lipinski debris bed model or a critical heat flux model reasonably well predicts the characteristic features of the bed quench process. Implications with respect to reactor safety are discussed

  19. A laboratory-scale comparison of rate of spread model predictions using chaparral fuel beds – preliminary results

    Science.gov (United States)

    D.R. Weise; E. Koo; X. Zhou; S. Mahalingam

    2011-01-01

    Observed fire spread rates from 240 laboratory fires in horizontally-oriented single-species live fuel beds were compared to predictions from various implementations and modifications of the Rothermel rate of spread model and a physical fire spread model developed by Pagni and Koo. Packing ratio of the laboratory fuel beds was generally greater than that observed in...

  20. Effects of the gas-liquid ratio on the optimum catalyst quantity for the CECE process with a homogeneously packed LPCE column

    International Nuclear Information System (INIS)

    Sugiyama, T.; Ushida, A.; Yamamoto, I.

    2008-01-01

    In order to improve the separative performance of a combined electrolysis catalytic exchange (CECE) process, we have carried out experimental studies on hydrogen isotope separation by a CECE process using a liquid phase catalytic exchange (LPCE) column of trickle-type packed beds. Two types of trickle beds were tested in our previous study. One was the layered bed, where layers of Kogel catalysts and Dixon gauze rings were alternately filled in the column. The other was the homogeneous bed, where Kogel catalysts and Dixon gauze rings were homogeneously mixed and filled in the column. We found that (1) the homogeneously packed bed was more efficient than the layered packed bed, and (2) the catalyst quantity was optimal, which resulted in the highest separative performance. In this study, the effect of the gas-liquid ratio (G/L) on the optimum catalyst quantity was studied experimentally in a homogeneously packed bed. When the value of G/L was 1.7, total separation factors were relatively small and the optimum catalyst quantity could not be determined. On the other hand, when the values of G/L were 0.9 and 0.7, the values of the total separation factors had maximums and the optimal quantities of the catalyst were clearly obtained