Unsteady unidirectional micropolar fluid flow
无
2011-01-01
This paper considers the unsteady unidirectional flow of a micropolar fluid, produced by the sudden application of an arbitrary time dependent pressure gradient, between two parallel plates. The no-slip and the no-spin boundary conditions are used. Exact solutions for the velocity and microrotation distributions are obtained based on the use of the complex inversion formula of Laplace transform. The solution of the problem is also considered if the upper boundary of the flow is a free surface. The particula...
Numerical analysis of capillary compensated micropolar fluid lubricated hole-entry journal bearings
Nathi Ram
2016-06-01
Full Text Available The micropolar lubricated symmetric/asymmetric hole-entry bearings using capillary restrictor have been analyzed in the present work. Reynolds equation for micropolar lubricant has been derived and solved by FEM. The results have been computed using selected parameters of micropolar lubricant for hole-entry hydrostatic/hybrid journal bearings. A significant increase in damping and stiffness coefficients is observed for bearings having micropolar parameter N2=0.9, lm=10 than similar bearings under Newtonian lubricant. The threshold speed gets increased when symmetric bearing lubricated under micropolar fluid than Newtonian lubricant. The threshold speed gets increased when symmetric bearing lubricated under micropolar fluid than Newtonian lubricant.
Micropolar Fluids Using B-spline Divergence Conforming Spaces
Sarmiento, Adel
2014-06-06
We discretized the two-dimensional linear momentum, microrotation, energy and mass conservation equations from micropolar fluids theory, with the finite element method, creating divergence conforming spaces based on B-spline basis functions to obtain pointwise divergence free solutions [8]. Weak boundary conditions were imposed using Nitsche\\'s method for tangential conditions, while normal conditions were imposed strongly. Once the exact mass conservation was provided by the divergence free formulation, we focused on evaluating the differences between micropolar fluids and conventional fluids, to show the advantages of using the micropolar fluid model to capture the features of complex fluids. A square and an arc heat driven cavities were solved as test cases. A variation of the parameters of the model, along with the variation of Rayleigh number were performed for a better understanding of the system. The divergence free formulation was used to guarantee an accurate solution of the flow. This formulation was implemented using the framework PetIGA as a basis, using its parallel stuctures to achieve high scalability. The results of the square heat driven cavity test case are in good agreement with those reported earlier.
Laminar flow of micropolar fluid in rectangular microchannels
Shangjun Ye; Keqin Zhu; Wen Wang
2006-01-01
Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a micropolar fluid model where the effects of micro-rotation of fluid molecules were taken into account. But both the curl of velocity vector and the curl of micro-rotation gyration vector were given incorrectly in the Cartesian coordinates and then the micro-rotation gyration vector had only one component in the (z)-direction. Besides, the gradient term of the divergence of micro-rotation gyration vector was missed improperly in the angular moment equation. In this paper. the governing equations for laminar flows of micropolar fluid in rectangular microchannels are reconstructed. The numerical results of velocity profiles and micro-rotation gyrations are obtained by a procedure based on the Chebyshev collocation method. The micropolar effects on velocity and micro-rotation gyration are discussed in detail.
On the tribological characteristics of dynamically loaded journal bearing with micropolar fluids
WANG; Xiaoli; WANG; Kongying; ZHU; Keqin
2004-01-01
The addition of the additives to the lubricant oil to enhance the characteristics of the lubricant will influence the performance of the bearings. Based on the theory of micropolar fluids, the tribological characteristics of a dynamically-loaded journal bearing are numerically studied. Comparisons are made between the Newtonian fluids and the micropolar fluids. It is shown that for a dynamically-loaded journal bearing, the micropolar fluids yield an increase not only in the friction force, but also in the friction coefficient. In addition, the oil film pressure and the oil film thickness are obviously higher than that of Newtonian fluids.
The effect of nanoparticles added to heated micropolar fluid
Nering, Konrad; Rup, Kazimierz
2016-10-01
This paper presents an analysis of momentum, angular momentum and heat transfer during the unsteady natural convection in micropolar nanofluids. Presented phenomena are modelled in the vicinity of a vertical plate and heat flux which rises suddenly at a given moment, using the boundary layer concept. Differential equations of angular momentum conservation are used according to the theory of micropolar fluids developed by Eringen. Finite difference method is used to solve the equations for conservation of mass, energy, momentum and angular momentum. Selected nanofluids treated as single phase fluids contain small particles with diameter size d = 10 nm and d = 38.4 nm. In particular, two ethylene glycol based nanofluids and one water-based nanofluid are analysed. Volume fraction of these solutions is 6%. First ethylene glycol solution contain Al2 O3 nanoparticles (d = 38.4 nm), and the second ethylene glycol solution contained Cu nanoparticles (d = 10 nm). Water based nanofluid contain Al2 O3 nanoparticles (d = 38.4 nm). As a result of solving conservation equations, unsteady velocity field (U, V), temperature (T), microrotation component normal to (x, y) plane (N), velocity gradient ∂U/∂Y and temperature gradient ∂T/∂Y are obtained. These results are compared to theoretical and experimental results presented in literature. At the end of this paper, heat transfer enhancement for analysed nanofluids is estimated.
Studying effect of MHD on thin films of a micropolar fluid
Abdel-Rahman, Gamal M., E-mail: gamalm60@yahoo.co [Department of Mathematics, Faculty of Science, Benha University, 13518 Benha (Egypt)
2009-11-15
This paper deals with the study of the effect of MHD on thin films of a micropolar fluid. These thin films are considered for three different geometries, namely: (i) flow down an inclined plane, (ii) flow on a moving belt and (iii) flow down a vertical cylinder. The transformed boundary layer governing equations of a micropolar fluid and the resulting system of coupled non-linear ordinary differential equations are solved numerically by using shooting method. Numerical results were presented for velocity and micro-rotation profiles within the boundary layer for different parameters of the problem including micropolar fluid parameters, magnetic field parameter, etc., which are also discussed numerically and illustrated graphically.
Heat Transfer Characteristics of Wavy-Wall Channels in Micropolar Fluids
无
2002-01-01
Forced convection flow through a sinusoidally curved converging-diverging channel in micropolar fluids has been investigated numerically. A simple coordinate transformation is employed to transform the complex wavy-wall channel to a parallel-plate channel, and the cubic spline alternating-direction implicit method is then used to solve the flow patterns and heat transfer characteristics. The effects of the wavy geometry, vortex viscosity parameter and Reynolds number on skin-friction coefficient and Nusselt number have been examined in detail. Results show that the flow through a sinusoidally curved converging-diverging channel forms a strong forward flow and a reticular vortex within each wave for larger Reynolds number and wavy amplitudes. The heat transfer rate of a micropolar fluid is smaller than that of a Newtonian fluid, but the skin friction of a micropolar fluid is larger than that of a Newtonian fluid. Moreover, both Reynolds number and wavy amplitude tend to enhance the total heat transfer rate, irrespective of whether the fluids are Newtonian fluids or micropolar fluids.
Stability of stationary solutions for inflow problem on the micropolar fluid model
Yin, Haiyan
2017-04-01
In this paper, we study the asymptotic behavior of solutions to the initial boundary value problem for the micropolar fluid model in a half-line R+:=(0,∞). We prove that the corresponding stationary solutions of the small amplitude to the inflow problem for the micropolar fluid model are time asymptotically stable under small H1 perturbations in both the subsonic and degenerate cases. The microrotation velocity brings us some additional troubles compared with Navier-Stokes equations in the absence of the microrotation velocity. The proof of asymptotic stability is based on the basic energy method.
MHD non-Newtonian micropolar fluid flow and heat transfer in channel with stretching walls
M. ASHRAF; N. JAMEEL; K. ALI
2013-01-01
A study is presented for magnetohydrodynamics (MHD) flow and heat trans-fer characteristics of a viscous incompressible electrically conducting micropolar fluid in a channel with stretching walls. The micropolar model introduced by Eringen is used to describe the working fluid. The transformed self similar ordinary differential equations together with the associated boundary conditions are solved numerically by an algorithm based on quasi-linearization and multilevel discretization. The effects of some physical parameters on the flow and heat transfer are discussed and presented through tables and graphs. The present investigations may be beneficial in the flow and thermal control of polymeric processing.
Remarks on Hierarchic Control for a Linearized Micropolar Fluids System in Moving Domains
Jesus, Isaías Pereira de, E-mail: isaias@ufpi.edu.br [Universidade Federal do Piauí, Dpto. Matemática (Brazil)
2015-12-15
We study a Stackelberg strategy subject to the evolutionary linearized micropolar fluids equations in domains with moving boundaries, considering a Nash multi-objective equilibrium (non necessarily cooperative) for the “follower players” (as is called in the economy field) and an optimal problem for the leader player with approximate controllability objective. We will obtain the following main results: the existence and uniqueness of Nash equilibrium and its characterization, the approximate controllability of the linearized micropolar system with respect to the leader control and the existence and uniqueness of the Stackelberg–Nash problem, where the optimality system for the leader is given.
A. A. SIDDIQUI; A. LAKHTAKIA
2013-01-01
Analytic expressions for speed, flux, microrotation, stress, and couple stress in a micropolar fluid exhibiting a steady, symmetric, and one-dimensional electro-osmotic flow in a uniform cylindrical microcapillary were derived under the constraint of the Debye-H¨uckel approximation, which is applicable when the cross-sectional radius of the microcapillary exceeds the Debye length, provided that the zeta potential is suﬃciently small in magnitude. Since the aciculate particles in a micropolar fluid can rotate without translation, micropolarity affects the fluid speed, fluid flux, and one of the two non-zero components of the stress tensor. The axial speed in a micropolar fluid intensifies when the radius increases. The stress tensor is confined to the region near the wall of the mi-crocapillary, while the couple stress tensor is uniform across the cross-section.
Accelerated micropolar fluid--flow past an uniformly rotating circular cylinder
Siddiqui, Abuzar Abid
2016-01-01
In this paper, we formulated the non-steady flow due to the uniformly accelerated and rotating circular cylinder from rest in a stationary, viscous, incompressible and micropolar fluid. This flow problem is examined numerically by adopting a special scheme comprising the Adams-Bashforth Temporal Fourier Series method and the Runge-Kutta Temporal Special Finite-Difference method. This numerical scheme transforms the governing equation for micropolar fluids for this problem into system of finite-difference equations. This system was further solved numerically by point SOR-method. These results were also further extrapolated by the Richardson extrapolation method. This scheme is valid for all values of the flow and fluid-parameters and for all time. Moreover the boundary conditions of the vorticity and the spin at points far from the cylinder are being imposed and encountered too. The results are compared with existing results (for non-rotating circular cylinder in Newtonian fluids). The comparison is good. The ...
Effects of Hall current and radiation absorption on MHD micropolar fluid in a rotating system
P.V. Satya Narayana
2013-12-01
Full Text Available The objective of this paper is to study the effects of Hall current and radiation absorption on MHD free convection mass transfer flow of a micropolar fluid in a rotating frame of reference. A uniform magnetic field acts perpendicular to the porous surface in which absorbs micropolar fluid with a constant suction velocity. The entire system rotates about the axes normal to the plate with uniform angular velocity Ω. The dimensionless governing equations for this investigation are reduced to a system of linear differential equations using regular perturbation method, and equations are solved analytically. The influence of various flow parameters of the flow field has been discussed and explained graphically. The present study is of immediate interest in geophysical, cosmically fluid dynamics, medicine, biology, and all those processes which are greatly embellished by a strong magnetic field with a low density of the gas.
Theoretical investigation of micropolar fluid flow between two porous disks
P Valipour; S E Ghasemi; M Vatani
2015-01-01
The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method (OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.
Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating.
Qasim, Muhammad; Khan, Ilyas; Shafie, Sharidan
2013-01-01
This article looks at the steady flow of Micropolar fluid over a stretching surface with heat transfer in the presence of Newtonian heating. The relevant partial differential equations have been reduced to ordinary differential equations. The reduced ordinary differential equation system has been numerically solved by Runge-Kutta-Fehlberg fourth-fifth order method. Influence of different involved parameters on dimensionless velocity, microrotation and temperature is examined. An excellent agreement is found between the present and previous limiting results.
Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating.
Muhammad Qasim
Full Text Available This article looks at the steady flow of Micropolar fluid over a stretching surface with heat transfer in the presence of Newtonian heating. The relevant partial differential equations have been reduced to ordinary differential equations. The reduced ordinary differential equation system has been numerically solved by Runge-Kutta-Fehlberg fourth-fifth order method. Influence of different involved parameters on dimensionless velocity, microrotation and temperature is examined. An excellent agreement is found between the present and previous limiting results.
Convective stability analysis of a micropolar fluid layer by variational method
无
2011-01-01
This paper studies Rayleigh-B'enard convection of micropolar fluid layer heated from below with realistic boundary conditions.A specific approach for stability analysis of a convective problem based on variational principle is applied to characterize the Rayleigh number for quite general nature of bounding surfaces.The analysis consists of replacing the set of field equations by a variational principle and the expressions for Rayleigh number are then obtained by using trial function satisfying the essential...
Chen, Wen Ruey
2016-10-01
This paper studies the steady laminar natural convection of micropolar fluids in the complex annuli between the inner sphere and outer vertical cylinder to present a numerical analysis of the flow and heat transfer characteristics with buoyancy effects. Computations were carried out systematically by the several different parameters of geometric ratio, micropolar material parameter and Rayleigh number to determine the average Nusselt number and the skin friction coefficient on the flow and the thermal fields.
Accelerated micropolar fluid-flow past an uniformly rotating circular cylinder
Siddiqui, Abuzar Abid
2016-10-01
In this paper, we formulated the non-steady flow due to the uniformly accelerated and rotating circular cylinder from rest in a stationary, viscous, incompressible and micropolar fluid. This flow problem is examined numerically by adopting a special scheme comprising the Adams-Bashforth Temporal Fourier Series method and the Runge-Kutta Temporal Special Finite-Difference method. This numerical scheme transforms the governing equation into a system of finite-difference equations. This system was further solved numerically by point successive-over-relaxation method. These results were also further extrapolated by the Richardson extrapolation method. This scheme is valid for all values of the flow and fluid-parameters and for all time. Moreover the boundary conditions of the vorticity and the spin at points far from the cylinder are being imposed and encountered too. The results are compared with existing results (for non-rotating circular cylinder in Newtonian fluids). The comparison is good. The enhancement of lift and reduction in drag is observed if the micropolarity effects are intensified. Same is happened if the rotation of a cylinder increases. Furthermore, the vortex-pair in the wake is delayed to successively higher times as rotation parameter increases. In addition, the rotation helps not only in dissolving vortices adjacent to the cylinder and adverse pressure region but also in dissolving the boundary layer separation. Furthermore, the rotation reduces the micropolar spin boundary layer.
Hari R. Kataria
2017-03-01
Full Text Available We study theoretically the boundary layer flow of an incompressible micropolar fluid under uniform magnetic field and motion takes place due to the buoyancy force between vertical walls. The governing unsteady boundary layer momentum, angular momentum and energy equations of micropolar fluid are nondimensionalized and solved numerically. Analytic result for steady state case is also discussed. The effects of magnetic parameter (M, vortex viscosity parameter (R, Prandtl number (Pr and material parameter (b on velocity, micro-rotation and Temperature profiles are discussed through several figures.
M. N. Mahmud
2009-01-01
Full Text Available The combined effects of a uniform vertical magnetic field and a nonuniform basic temperature profile on the onset of steady Marangoni convection in a horizontal layer of micropolar fluid are studied. The closed-form expression for the Marangoni number M for the onset of convection, valid for polynomial-type basic temperature profiles upto a third order, is obtained by the use of the single-term Galerkin technique. The critical conditions for the onset of convection have been presented graphically.
D SRINIVASACHARYA; K HIMA BINDU
2017-05-01
The objective of this paper is to examine the nature of irreversibilities in the form of entropy generation for a micropolar fluid flow through an inclined porous pipe with convective boundary conditions. The governing equations are non-dimensionlized and then linearized using a quasilinearization method. The resulting linearized equations are solved by Chebyshev spectral collocation method. The velocity, microrotation and temperature profiles are presented graphically for various values of governing parameters. Further, these profilesare used to evaluate the entropy generation and Bejan number
Conjugate transfer of heat and mass in unsteady flow of a micropolar fluid with wall couple stress
Asma Khalid
2015-12-01
Full Text Available This is an attempt to investigate the unsteady flow of a micropolar fluid with free convection caused due to temperature and concentration differences. Micropolar fluid is taken over a vertical plate oscillating in its own plane. Wall couple stress is engaged at the bounding plate together with isothermal temperature and constant mass diffusion. Problem is modelled in terms of coupled partial differential equations together with some physical conditions and then written in non-dimensional form. Exact solutions are determined using the Laplace transform method. For convenience, they are expressed in simplified form using exponential functions and complementary error functions. Using computational software MATHCAD, analytical results of velocity, temperature, microrotation and concentration are plotted in graphs and discussed for various embedded parameters. Results of skin friction, wall couple stress, rate of heat transfer (Nusselt number and rate of mass transfer (Sherwood number are also evaluated. Present results of micropolar fluid are graphically compared with published results of Newtonian fluid. It is found that micropolar fluid velocity is smaller than Newtonian fluid.
Unsteady Mixed Convection Boundary Layer from a Circular Cylinder in a Micropolar Fluid
Anati Ali
2010-01-01
Full Text Available Most industrial fluids such as polymers, liquid crystals, and colloids contain suspensions of rigid particles that undergo rotation. However, the classical Navier-Stokes theory normally associated with Newtonian fluids is inadequate to describe such fluids as it does not take into account the effects of these microstructures. In this paper, the unsteady mixed convection boundary layer flow of a micropolar fluid past an isothermal horizontal circular cylinder is numerically studied, where the unsteadiness is due to an impulsive motion of the free stream. Both the assisting (heated cylinder and opposing cases (cooled cylinder are considered. Thus, both small and large time solutions as well as the occurrence of flow separation, followed by the flow reversal are studied. The flow along the entire surface of a cylinder is solved numerically using the Keller-box scheme. The obtained results are compared with the ones from the open literature, and it is shown that the agreement is very good.
Yasmin Asia
2016-01-01
Full Text Available The unsteady laminar incompressible flow and heat transfer characteristics of an electrically conducting micropolar fluid in a porous channel with expanding or contracting walls is investigated. The relevant partial differential equations have been reduced to ordinary ones. The reduced system of ordinary differential equations (ODEs has been solved numerically by lower-upper (LU triangular factorization or Gaussian elimination and successive over relaxation (SOR method. The effects of some physical parameters such as magnetic parameter, micropolar parameters, wall expansion ratio, permeability Reynolds number and Prandtl number on the velocity, microrotation, temperature and the shear and couple stresses are discussed.
Effect of induced magnetic field on peristaltic flow of a micropolar fluid in an asymmetric channel
Shit, G C; Ng, E Y K; 10.1002/cnm.1397
2010-01-01
Of concern in this paper is an investigation of peristaltic transport of a physiological fluid in an asymmetric channel under long wave length and low-Reynolds number assumptions. The flow is assumed to be incompressible, viscous, electrically conducting micropolar fluid and the effect of induced magnetic field is taken into account. Exact analytical solutions obtained for the axial velocity, microrotation component, stream line pattern, magnetic force function, axial-induced magnetic field as well as the current density distribution across the channel. The flow phenomena for the pumping characteristics, trapping and reflux are also investigated. The results presented reveal that the velocity decreases with the increase of magnetic field as well as the coupling parameter. Moreover, the trapping fluid can be eliminated by the application of an external magnetic field. Thus, the study bears the promise of important applications in physiological systems.
Impact of inclined magnetic field on micropolar Casson fluid using Keller box algorithm
Iqbal, Z.; Mehmood, R.; Azhar, Ehtsham; Mehmood, Zaffar
2017-04-01
The present study examines the influence of an inclined magnetic field on a micropolar Casson fluid flow over a stretching sheet. Viscous dissipation effects are also taken into consideration. The governing physical problem is presented using the traditional Navier-Stokes theory. By means of the scaling group of transformation, a consequential system of equations is transformed into a set of nonlinear ordinary differential equations which are then solved using the implicit finite-difference approximation (Keller box method). The working fluid is examined for several sundry parameters graphically and in tabular form. It is observed that with an increase in inclination angle, the velocity profile decreases while temperature enhances. The Eckert number enhances flow velocity and temperature, whereas it decreases shear stress at the wall and heat transfer rate. The rheological fluid parameter contributes to the decline of velocity and temperature for weak as well as strong concentrations of micro elements.
Regularity criteria for the 3D magneto-micropolar fluid equations via the direction of the velocity
Zujin Zhang
2015-02-01
We consider sufficient conditions to ensure the smoothness of solutions to 3D magneto-micropolar fluid equations. It involves only the direction of the velocity and the magnetic field. Our result extends to the cases of Navier–Stokes and MHD equations.
Azma, Sahra; Rezazadeh, Ghader; Shabani, Rasoul; Alizadeh-Haghighi, Elnaz
2016-06-01
Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In micro-resonators in which the characteristic dimensions are comparable to the dimensions of the fluid molecules, the assumption of the continuum fluid theory is no longer justified and the use of micro-polar fluid theory is indispensable. In this paper a mathematical model was presented in order to predict the viscous fluid damping in a laterally oscillating finger of a micro-resonator considering micro-polar fluid theory. The coupled governing partial differential equations of motion for the vibration of the finger and the micro-polar fluid field have been derived. Considering spin and no-spin boundary conditions, the related shape functions for the fluid field were presented. The obtained governing differential equations with time varying boundary conditions have been transformed to an enhanced form with homogenous boundary conditions and have been discretized using a Galerkin-based reduced order model. The effects of physical properties of the micro-polar fluid and geometrical parameters of the oscillating structure on the damping ratio of the system have been investigated.
Sahra Azma; Ghader Rezazadeh; Rasoul Shabani; Elnaz Alizadeh-Haghighi
2016-01-01
Viscous damping is a dominant source of energy dissipation in laterally oscillating micro-structures. In micro-resonators in which the characteristic dimensions are compa-rable to the dimensions of the fluid molecules, the assumption of the continuum fluid theory is no longer justified and the use of micro-polar fluid theory is indispensable. In this paper a mathematical model was presented in order to predict the viscous fluid damping in a laterally oscillating finger of a micro-resonator considering micro-polar fluid theory. The coupled governing partial differential equations of motion for the vibration of the finger and the micro-polar fluid field have been derived. Considering spin and no-spin boundary conditions, the related shape functions for the fluid field were presented. The obtained governing differential equations with time varying boundary conditions have been trans-formed to an enhanced form with homogenous boundary conditions and have been discretized using a Galerkin-based reduced order model. The effects of physical properties of the micro-polar fluid and geometrical parameters of the oscillat-ing structure on the damping ratio of the system have been investigated.
Abd-Alla, A.M., E-mail: mohmrr@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Abo-Dahab, S.M., E-mail: sdahb@yahoo.com [Maths Department, Faculty of Science, Taif University (Saudi Arabia); Maths Department, Faculty of Science, SVU, Qena 83523 (Egypt); Al-Simery, R.D. [Maths Department, Faculty of Science, Taif University (Saudi Arabia)
2013-12-15
In this paper, the effects of both rotation and magnetic field of a micropolar fluid through a porous medium induced by sinusoidal peristaltic waves traveling down the channel walls are studied analytically and computed numerically. Closed-form solutions under the consideration of long wavelength and low-Reynolds number is presented. The analytical expressions for axial velocity, pressure rise per wavelength, mechanical efficiency, spin velocity, stream function and pressure gradient are obtained in the physical domain. The effect of the rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude in the wave frame is analyzed theoretically and computed numerically. Numerical results are given and illustrated graphically in each case considered. Comparison was made with the results obtained in the presence and absence of rotation and magnetic field. The results indicate that the effect of rotation, density, Hartmann number, permeability, coupling number, micropolar parameter and the non-dimensional wave amplitude are very pronounced in the phenomena. - Highlights: • The effects of induced magnetic field and rotation in peristaltic motion of a two dimensional of a micropolar fluid through a porous medium • The exact and closed form solutions are presented • Different wave shapes are considered to observe the behavior of the axial velocity, pressure rise, mechanical efficiency, spin velocity, stream function and pressure gradient.
Magnetohydrodynamic stagnation point flow towards a stretching vertical sheet in a micropolar fluid
Ishak, A.; Nazar, R.; Pop, I.
2007-03-01
The analysis of steady two-dimensional stagnation point flow of an incompressible micropolar and electrically conducting fluid subject to a transverse uniform magnetic field towards a stretching vertical sheet is investigated when the sheet is stretched in its own plane with a velocity and a temperature proportional to the distance from the stagnation point. The governing system of partial differential equations is transformed to ordinary differential equations, which then are solved numerically using a finite difference scheme known as the Keller-box method. The velocity, microrotation and temperature distributions as well as the skin friction coefficient and the local Nusselt number are obtained for various parameters. Both the assisting and the opposing buoyant flows are considered. It is found that dual solutions exist for the opposing flow, for some regions of the buoyancy parameter, while for the assisting flow the solution is unique. Tables 3, Figs 14, Refs 26.
Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet in a micropolar fluid
Yacob Nor Azizah
2013-01-01
Full Text Available An analysis is carried out for the steady two-dimensional mixed convection flow adjacent to a stretching vertical sheet immersed in an incompressible electrically conducting micropolar fluid. The stretching velocity and the surface temperature are assumed to vary linearly with the distance from the leading edge. The governing partial differential equations are transformed into a system of ordinary differential equations, which is then solved numerically using a finite difference scheme known as the Keller box method. The effects of magnetic and material parameters on the flow and heat transfer characteristics are discussed. It is found that the magnetic field reduces both the skin friction coefficient and the heat transfer rate at the surface for any given K and λ. Conversely, both of them increase as the material parameter increases for fixed values of M and λ.
Peristaltic flow of a micropolar fluid with nano particles in small intestine
Akbar, Noreen Sher; Nadeem, S.
2013-12-01
The present article analyzed the peristaltic flow of a nanofluid in a uniform tube for micropolar fluid. The governing equations for proposed model are developed in cylindrical coordinates system. The flow is discussed in a wave frame of reference moving with velocity of the wave c. Under the assumptions of longwave length the reduced coupled nonlinear differential equations of momentum, energy, and concentrations are solved by Homotopy perturbation method is used to get the solutions for velocity, temperature, nano particle, microrotation component. The solutions consists Brownian motion number N b, thermophoresis number N t, local temperature Grashof number B r and local nano particle Grashof number G r . The effects of various parameters involved in the problem are investigated for pressure rise, pressure gradient, temperature and concentration profile. Five different waves are taken into account for analysis. Streamlines have been plotted at the end of the article.
Heat transfer in micropolar fluid flow under the influence of magnetic field
Kocić Miloš M.
2016-01-01
Full Text Available In this paper, the steady flow and heat transfer of an incompressible electrically conducting micropolar fluid through a parallel plate channel is investigated. The upper and lower plates have been kept at the two constant different temperatures and the plates are electrically insulated. Applied magnetic field is perpendicular to the flow, while the Reynolds number is significantly lower than one i.e. considered problem is in induction-less approximation. The general equations that describe the discussed problem under the adopted assumptions are reduced to ordinary differential equations and three closed-form solutions are obtained. The velocity, micro-rotation and temperature fields in function of Hartmann number, the coupling parameter and the spin-gradient viscosity parameter are graphically shown and discussed.
Mansour, M A; El-Kabeir, S M
2000-01-01
Steady laminar boundary layer analysis of heat and mass transfer characteristics in magnetohydrodynamic (MHD) flow of a micropolar fluid on a circular cylinder maintained at uniform heat and mass flux has been conducted. The solution of the energy equation inside the boundary layer is obtained as a power series of the distance measured along the surface from the front stagnation point of the cylinder. The results of dimensionless temperature, Nusselt number, wall shear stress, wall couple stress and Sherwood number have been presented graphically for various values of the material parameters. The results indicate that the micropolar fluids display a reduction in drag as well as heat transfer rate when compared with Newtonian fluids.
Effects of chemical reactions on MHD micropolar fluid flow past a vertical plate in slip-flow regime
R.C.Chaudhary; Abhay Kumar Jha
2008-01-01
Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order.A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time.The free stream velocity follows an exponentially increasing or decreasing small perturbation law.Using the approximate method,the expressions for the velocity microrotation,temperature,and concentration are obtained.Futher,the results of the skin friction coefficient,the couple stress coefficient,and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.
JC MISRA; S CHANDRA; GC SHIT; PK KUNDU
2014-01-01
The electroosmotic flow of a micropolar fluid in a microchannel bounded by two parallel porous plates undergoing periodic vibration is studied. The equations for conservation of linear and angular momentums and Gauss’s law of charge distribution are solved within the framework of the Debye-H¨uckel approximation. The fluid velocity and microrotation are assumed to depend linearly on the Reynolds number. The study shows that the amplitude of microrotation is highly sensitive to the changes in the magnitude of the suction velocity and the width of the microchannel. An increase in the micropolar parameter gives rise to a decrease in the amplitude of microrotation. Numerical estimates reveal that the microrotation of the suspended microelements in blood also plays an important role in controlling the electro-osmotically actuated flow dynamics in micro-bio-fluidic devices.
Xin-hui SI; Lian-cun ZHENG; Xin-xin ZHANG; Ying CHAO
2010-01-01
The flow of a micropolar fluid in a semi-porous channel with an expanding or contracting wall is investigated.The governing equations are reduced to ordinary ones by using similar transformations.To get the analytic solution to the problem,the homotopy analysis method(HAM)is employed to obtain the expressions for velocity fields.Graphs are sketched and discussed for various parameters,especially the effect of the expansion ratio on velocity and micro-rotation fields.
Khairy Zaimi
2014-01-01
Full Text Available This paper considers the problem of a steady two-dimensional stagnation-point flow and heat transfer of an incompressible micropolar fluid over a nonlinearly stretching/shrinking sheet. A similarity transformation is employed to convert the partial differential equations into nonlinear ordinary ones which are then solved numerically using a shooting method. Numerical results obtained are presented graphically, showing the effects of the micropolar or material parameter and the stretching/shrinking parameter on the flow field and heat transfer characteristics. The dual solutions are found to exist in a limited range of the stretching/shrinking parameter for the shrinking case, while unique solutions are possible for all positive values of the stretching/shrinking parameter (stretching case. It is also observed that the skin friction coefficient and the magnitude of the local Nusselt number increase as the material parameter increases.
Kh. S. Mekheimer
2008-01-01
Full Text Available A serious pathological condition is encountered when some blood constituents deposited on the blood vessels get detached from the wall, join the blood stream again and form a clot. Study of the peristaltic transport of a micropolar fluid in an annular region is investigated under low Reynolds number and long wavelength approximations. We model a small artery as a tube having a sinusoidal wave travelling down its wall and a clot model inside it. Closed form solutions are obtained for the velocity and the microrotation components, as well as the stream function, and they contain new additional parameters, namely, δ, the height of the clot, N, the coupling number and m, the micropolar parameter. The pressure rise and friction force on the inner and the outer tubes have been discussed for various values of the physical parameters of interest.
Effect of fluid viscosity on wave propagation in a cylindrical bore in micropolar elastic medium
Sunita Deswal; Sushil K Tomar; Rajneesh Kumar
2000-10-01
Wave propagation in a cylindrical bore filled with viscous liquid and situated in a micropolar elastic medium of infinite extent is studied. Frequency equation for surface wave propagation near the surface of the cylindrical bore is obtained and the effect of viscosity and micropolarity on dispersion curves is observed. The earlier problems of Biot and of Banerji and Sengupta have been reduced as a special case of our problem.
Diksha Gupta
2014-01-01
Full Text Available The objective of this investigation is to analyze the effect of unsteadiness on the mixed convection boundary layer flow of micropolar fluid over a permeable shrinking sheet in the presence of viscous dissipation. At the sheet a variable distribution of suction is assumed. The unsteadiness in the flow and temperature fields is caused by the time dependence of the shrinking velocity and surface temperature. With the aid of similarity transformations, the governing partial differential equations are transformed into a set of nonlinear ordinary differential equations, which are solved numerically, using variational finite element method. The influence of important physical parameters, namely, suction parameter, unsteadiness parameter, buoyancy parameter and Eckert number on the velocity, microrotation, and temperature functions is investigated and analyzed with the help of their graphical representations. Additionally skin friction and the rate of heat transfer have also been computed. Under special conditions, an exact solution for the flow velocity is compared with the numerical results obtained by finite element method. An excellent agreement is observed for the two sets of solutions. Furthermore, to verify the convergence of numerical results, calculations are conducted with increasing number of elements.
Unsteady MHD Mixed Convection Flow of a Micropolar Fluid Over a Vertical Wedge
Roy, N. C.; Gorla, R. S. R.
2017-05-01
An analysis is presented to investigate the unsteady magnetohydrodynamic (MHD) mixed convection boundary-layer flow of a micropolar fluid over a vertical wedge in the presence of thermal radiation and heat generation or absorption. The free-stream velocity and surface temperature are assumed to be oscillating in magnitude but not in the direction of the oncoming flow velocity. The governing equations have been solved by two distinct methods, namely, the finite difference method for the entire frequency range, and the series solution for low frequency range and the asymptotic series expansion method for the high frequency range. Numerical solutions provide a good agreement with the series solutions. The amplitudes of skin friction and couple stress coefficients are found to be strongly dependent on the Richardson number and the vortex viscosity parameter. The Prandtl number, the conduction-radiation parameter, the surface temperature parameter and the pressure gradient parameter significantly affect the amplitudes of skin friction, couple stress and surface heat transfer rates. However, the amplitudes of skin friction coefficient are considerably affected by the magnetic field parameter, whereas the amplitudes of heat transfer rate are appreciably changed with the heat generation or absorption parameter. In addition, results are presented for the transient skin friction, couple stress and heat transfer rate with the variations of the Richardson number, the vortex viscosity parameter, the pressure gradient parameter and the magnetic field parameter.
Gupta, Diksha; Kumar, Lokendra; Singh, Bani
2014-01-01
The objective of this investigation is to analyze the effect of unsteadiness on the mixed convection boundary layer flow of micropolar fluid over a permeable shrinking sheet in the presence of viscous dissipation. At the sheet a variable distribution of suction is assumed. The unsteadiness in the flow and temperature fields is caused by the time dependence of the shrinking velocity and surface temperature. With the aid of similarity transformations, the governing partial differential equations are transformed into a set of nonlinear ordinary differential equations, which are solved numerically, using variational finite element method. The influence of important physical parameters, namely, suction parameter, unsteadiness parameter, buoyancy parameter and Eckert number on the velocity, microrotation, and temperature functions is investigated and analyzed with the help of their graphical representations. Additionally skin friction and the rate of heat transfer have also been computed. Under special conditions, an exact solution for the flow velocity is compared with the numerical results obtained by finite element method. An excellent agreement is observed for the two sets of solutions. Furthermore, to verify the convergence of numerical results, calculations are conducted with increasing number of elements.
Periyadurai, K.; Muthtamilselvan, M.; Doh, Deog-Hee
2016-12-01
In the present study, the effect of inclined magnetic field on natural convection of micro-polar fluid in a square cavity with uniform and nonuniform heated thin plate built in centrally is investigated numerically. The vertical walls are cooled while the top and bottom walls are insulated. The thin plate is assumed to be isothermal with a linearly varying temperature. The governing equations were solved by finite volume method using second order central difference scheme and upwind differencing scheme. The numerical investigation is carried out for different governing parameters namely, the Hartmann number, inclination angle of magnetic field, Rayleigh number, vortex viscosity and source non-uniformity parameters. The result shows that the heat transfer rate is decreased when increasing Hartmann number, inclination angle of magnetic field and vortex viscosity parameter. It is found that the non-uniformity parameter affects the fluid flow and temperature distribution especially for the high Rayleigh numbers. Finally, the overall heat transfer rate of micro-polar fluids is found to be smaller than that of Newtonian fluid.
Wei, Ruiying; Guo, Boling; Li, Yin
2017-09-01
The Cauchy problem for the three-dimensional compressible magneto-micropolar fluid equations is considered. Existence of global-in-time smooth solutions is established under the condition that the initial data are small perturbations of some given constant state. Moreover, we obtain the time decay rates of the higher-order spatial derivatives of the solution by combining the Lp-Lq estimates for the linearized equations and the Fourier splitting method, if the initial perturbation is small in H3-norm and bounded in L1-norm.
Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk; Meraj, M. A. [Department of Mathematics, CIIT Sahiwal 57000 (Pakistan); Ashraf, M.; Batool, K. [Department of CASPAM, Bahauddin Zakariya University, Multan 63000 (Pakistan); Hussain, M. [Department of Sciences & Humanities, National University of computer & Emerging Sciences, Islamabad 44000 (Pakistan)
2015-07-15
This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.
Sui, Jize; Zhao, Peng; Cheng, Zhengdong; Zheng, Liancun; Zhang, Xinxin
2017-02-01
The rheological and heat-conduction constitutive models of micropolar fluids (MFs), which are important non-Newtonian fluids, have been, until now, characterized by simple linear expressions, and as a consequence, the non-Newtonian performance of such fluids could not be effectively captured. Here, we establish the novel nonlinear constitutive models of a micropolar fluid and apply them to boundary layer flow and heat transfer problems. The nonlinear power law function of angular velocity is represented in the new models by employing generalized "n-diffusion theory," which has successfully described the characteristics of non-Newtonian fluids, such as shear-thinning and shear-thickening fluids. These novel models may offer a new approach to the theoretical understanding of shear-thinning behavior and anomalous heat transfer caused by the collective micro-rotation effects in a MF with shear flow according to recent experiments. The nonlinear similarity equations with a power law form are derived and the approximate analytical solutions are obtained by the homotopy analysis method, which is in good agreement with the numerical solutions. The results indicate that non-Newtonian behaviors involving a MF depend substantially on the power exponent n and the modified material parameter K 0 introduced by us. Furthermore, the relations of the engineering interest parameters, including local boundary layer thickness, local skin friction, and Nusselt number are found to be fitted by a quadratic polynomial to n with high precision, which enables the extraction of the rapid predictions from a complex nonlinear boundary-layer transport system.
RamReddy, Ch.; Pradeepa, T.
2016-09-01
The significance of nonlinear temperaturedependent density relation and convective boundary condition on natural convection flow of an incompressible micropolar fluid with homogeneous-heterogeneous reactions is analyzed. In spite of the complicated nonlinear structure of the present setup and to allow all the essential features, the representation of similarity transformations for the system of non-dimensional fluid flow equations is attained through Lie group transformations and hence the governing similarity equations are worked out by a numerical approach known as spectral quasi-linearization method. It is noticed that in the presence of the nonlinear convection parameter enhance the velocity, species concentration, heat transfer rate, skin friction, but decreases the temperature and wall couple stress.
Rajneesh Kumar; Rajani Rani Gupta
2009-01-01
In this paper, the effect of angle inclination at the interface of a viscous fluid and thermoelastic micropolar honeycomb solid due to inclined load is investigated. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. Expressions of stresses, temperature distribution, and pressures in the transformed domain are obtained by introducing po-tential functions. The numerical inversion technique is used to obtain the solution in the physical domain. The frequency domain expressions for steady state are also obtained with appropriate change of variables. Graphic representations due to the response of different sources and changes of angle inclination are shown. Some particular cases are also discussed.
REDHA ALOUAOUI
2015-06-01
Full Text Available In this paper, we examine the thermal radiation effect on heat and mass transfer in steady laminar boundary layer flow of an incompressible viscous micropolar fluid over a vertical flat plate, with the presence of a magnetic field. Rosseland approximation is applied to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on different profiles. The conclusion is drawn that the flow field, temperature, concentration and microrotation as well as the skin friction coefficient and the both local Nusselt and Sherwood numbers are significantly influenced by Magnetic parameter, material parameter and thermal radiation parameter.
Wenqiang Zhao
2014-11-01
Full Text Available This work studies the long-time behavior of two-dimensional micropolar fluid flows perturbed by the generalized time derivative of the infinite dimensional Wiener processes. Based on the omega-limit compactness argument as well as some new estimates of solutions, it is proved that the generated random dynamical system admits an H^1-random attractor which is compact in H^1 space and attracts all tempered random subsets of L^2 space in H^1 topology. We also give a general abstract result which shows that the continuity condition and absorption of the associated random dynamical system in H^1 space is not necessary for the existence of random attractor in H^1 space.
Mostafa A.A. Mahmoud
2012-04-01
Full Text Available In this work, the effects of slip velocity on the flow and heat transfer for an electrically conducting micropolar fluid over a permeable stretching surface with variable heat flux in the presence of heat generation (absorption and a transverse magnetic field are investigated. The governing partial differential equations describing the problem are converted to a system of non-linear ordinary differential equations by using the similarity transformation, which is solved numerically using the Chebyshev spectral method. The effects of the slip parameter on the flow, micro-rotation and temperature profiles as well as on the local skin-friction coefficient, the wall couple stress and the local Nusselt number are presented graphically. The numerical results of the local skin-friction coefficient, the wall couple stress and the local Nusselt number are given in a tabular form and discussed.
Abdullah, Ilyani; Amin, Norsarahaida
2008-01-01
The present study deals with the effect of body acceleration together with surface irregularities on blood flow in artery. Prolonged exposure to high level unintended acceleration may cause serious health problems in the cardiovascular system. The situations like riding in vehicles, flying in airplanes and fast body movements during sport activities can lead to the impairment of certain physiological functions. A micropolar model of blood flow through an irregular arterial stenosis is considered. The governing equations involving unsteady nonlinear two-dimensional partial differential equations are solved employing finite difference scheme. Computational results on the velocity profiles and the flow characteristics are presented.
Odelu Ojjela
2016-06-01
Full Text Available The aim of the present study is to investigate the Hall and ion slip currents on an incompressible free convective flow, heat and mass transfer of a micropolar fluid in a porous medium between expanding or contracting walls with chemical reaction, Soret and Dufour effects. Assume that the walls are moving with a time dependent rate of the distance and the fluid is injecting or sucking with an absolute velocity. The walls are maintained at constant but different temperatures and concentrations. The governing partial differential equations are reduced into nonlinear ordinary differential equations by similarity transformations and then the resultant equations are solved numerically by quasilinearization technique. The results are analyzed for velocity components, microrotation, temperature and concentration with respect to different fluid and geometric parameters and presented in the form of graphs. It is noticed that with the increase in chemical reaction, Hall and ion slip parameters the temperature of the fluid is enhanced whereas the concentration is decreased. Also for the Newtonian fluid, the numerical values of axial velocity are compared with the existing literature and are found to be in good agreement.
Mahmood, Asad, E-mail: asadmahmood_86@yahoo.com [Department of Mathematics and Statistics, International Islamic University, Islamabad 44000 (Pakistan); Chen, Bin [School of Environment, Beijing Normal University, Beijing 100875 (China); Ghaffari, Abuzar [Department of Mathematics and Statistics, International Islamic University, Islamabad 44000 (Pakistan)
2016-10-15
Hydromagnetic stagnation point flow and heat transfer over a nonlinearly stretching/shrinking surface of micropolar fluid is investigated. The numerical simulation is carried out through Chebyshev Spectral Newton Iterative Scheme, after transforming the governing equations into dimensionless boundary layer form. The dual solutions are reported for different values of magnetic and material parameters against the limited range of stretching/shrinking parameter. It is also noted that second solution only occurs for the negative values of stretching/shrinking parameter, whereas for the positive values unique solution exists. The effects of dimensionless parameters are described through graphs. It is seen that the flow and heat transfer rates can be controlled through the material parameter and magnetic force. - Highlights: • Constitutive equations of micropolar fluid and heat transfer are employed. • Magnetic effect on velocity and temperature profile of micropolar fluid is observed. • Dual solution is reported in the region of stagnation point flow. • A numerical technique i.e. Chebyshev Spectral Newton Iterative Scheme is applied to obtain the desire results.
Lok, Yian Yian [Academic Service Center, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, Norsarahaida [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, Ioan [Faculty of Mathematics, University of Cluj, R-3400, CP 253, Cluj (Romania)
2003-11-01
The growth of the boundary layer flow of a viscous and incompressible micro-polar fluid started impulsively from rest near the rear stagnation point of a two-dimensional plane surface is studied theoretically. The transformed non-similar boundary-layer equations are solved numerically using a very efficient finite-difference method known as Keller-box method. This method may present well-behaved solutions for the transient (small time) solution up to the separation boundary layer flow. Numerical results are given for the reduced velocity and micro-rotation profiles, as well as for the skin friction coefficient when the material parameter K takes the values K=0 (Newtonian fluid), 0.5, 1, 1.1, 1.5, 2, 2.5 and 3 with the boundary condition for micro-rotation n=0 (strong concentration of microelements) and n=1/2 (weak concentration of microelements), respectively. Important features of these flow characteristics are shown on graphs and in tables. (authors)
Vortices Diffusion in a Micropolar Luquid
Brutyan M.A.
2010-12-01
Full Text Available Solutions are found that describe vortex flow within the framework of micropolar liquid theory. These solutions are similar to well-known exact solutions of Oseen and Taylor for classical Newtonian fluid. It is shown that Oseen problem of a line vortex decay in micropolar liquid is not self-similar and does not have an exact solution. Integral invariants and numerical solution of the problem are provided. It is found that for Taylor problem of a vortex lattice diffusion the influence of micropolarity tends to more intensive vortex decay then in a classic Navier-Stokes fluid.
M.A.A.MAHMOUD; S.E.WAHEED
2014-01-01
The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is investigated. The governing non-linear partial differential equations describing the problem are reduced to a system of non-linear ordinary differential equations using similarity transformations solved numerically using the Chebyshev spectral method. Numerical results for velocity, angular velocity and temperature profiles are shown graphically and discussed for different values of the inverse Darcy number, the heat generation/absorption parameter, and the melting parameter. The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple stress, and the local Nusselt number are tabulated and discussed. The results show that the inverse Darcy number has the effect of enhancing both velocity and temperature and suppressing angular velocity. It is also found that the local skin-friction coefficient decreases, while the local Nusselt number increases as the melting parameter increases.
Lok, Y.Y. [Center for Academic Services, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)
2006-12-15
The unsteady mixed convection boundary-layer flow of a micro-polar fluid near the region of the stagnation point on a double-infinite vertical flat plate is studied. It is assumed that the unsteadiness is caused by the impulsive motion of the free stream velocity and by sudden increase or sudden decrease in the surface temperature from the uniform ambient temperature. The problem is reduced to a system of non-dimensional partial differential equations, which is solved numerically using the Keller-box method. This method may present well-behaved solutions for the transient (small time) solution and those of the steady-state flow (large time) solution. It was found that there is a smooth transition from the small-time solution (initial unsteady-state flow) to the large-time solution (final steady-state flow). Further, it is shown that for both assisting and opposing cases and a fixed value of the Prandtl number, the reduced steady-state skin friction and the steady-state heat transfer from the wall (or Nusselt number) decrease with the increase of the material parameter. On the other hand, it is shown that with the increase of the Prandtl number and a fixed value of the material parameter, the reduced steady-state skin friction decreases when the flow is assisting and it increases when the flow is opposing. (author)
Micropolarity Effects on the Bickley-Plane-Laminar-Jet
Siddiqui, Abuzar Abid
2015-01-01
In this study, it was formulated the boundary-value-problem (BVP), comprising partial differential equations (PDEs), of steady flow for plane, laminar jet of a micropolar fluid. A new similarity transformation/solution was derived which is valid not only for the Newtonian fluids but also for the micropolar fluids. Obviously, this transformation will be transformed the PDEs into the ordinary differential equations (ODEs). These ODEs were solved numerically by the finite difference method. The obtained results were compared with existing results [1, 12] for the Newtonian fluids. The comparison was favourable. As the aciculate particles in a micropolar fluid can rotate without translation, the micropolarity effects must have influence on fluid-speed, microrotation, stresses, couple stresses and discharge. This influence was highlighted in the present study. If viscosity coupling parameter K1 (being the measure of micropolarity) increases then microrotation, fluid-flux, stresses and couple stresses intensify in t...
Uddin Ziya
2014-01-01
Full Text Available In this paper a numerical model is developed to examine the effect of thermal radiation on magnetohydrodynamic heat transfer flow of a micropolar fluid past a non-conducting wedge in presence of heat source/sink. In the model it is assumed that the fluid is viscous, incompressible and electrically conducting. The Hall and ion slip effects have also been taken into consideration. The model contains highly non-linear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. These equations are then solved numerically by Shooting technique along with the Runge-Kutta-Fehlberg integration scheme for entire range of parameters with appropriate boundary conditions. The effects of various parameters involved in the problem have been studied with the help of graphs. Numerical values of skin friction coefficients and Nusselt number are presented in tabular form. The results showed that the micropolar fluids are better to reduce local skin drag as compared to Newtonian fluids and the presence of heat sink increases the heat transfer rate.
A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW
He Ji-huan
2003-01-01
The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.
RamReddy, Ch.; Naveen, P.; Srinivasacharya, D.
2017-06-01
The objective of the present study is to investigate the effect of nonlinear variation of density with temperature and concentration on the mixed convective flow of a micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of the convective boundary condition. In order to analyze all the essential features, the governing non-dimensional partial differential equations are transformed into a system of ordinary differential equations using a local non-similarity procedure and then the resulting boundary value problem is solved using a successive linearisation method (SLM). By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the micropolar parameter and non-Darcy parameter tend to increase the skin friction and the reverse change is observed in wall couple stress, mass and heat transfer rates. The influence of the nonlinear concentration parameter is more prominent on all the physical characteristics of the present model, compared with that of nonlinear temperature parameter.
Shit, G C
2012-01-01
With an aim to investigate the effect of externally imposed body acceleration and magnetic field on pulsatile flow of blood through an arterial segment having stenosis is under consideration in this paper. The flow of blood is presented by a unsteady micropolar fluid and the heat transfer characteristics have been taken into account. The non-linear equations that governing the flow are solved numerically using finite difference technique by employing a suitable coordinate transformation. The numerical results have been observed for axial and microrotation component of velocity, fluid acceleration, wall shear stress(WSS), flow resistance, temperature and the volumetric flow rate. It thus turns out that the rate of heat transfer increases with the increase of Hartmann number $H$, while the wall shear stress has a reducing effect on the Hartmann number $H$ and an enhancing effect on microrotation parameter $K$ as well as the constriction height $\\delta$.
微极流体向受热面的MHD驻点流动%MHD Stagnation Point Flow of a Micropolar Fluid Towards a Heated Surface
M·M·阿斯拉夫
2011-01-01
The problem of two dimensional stagnation point flow of an electrically conducting micropolar fluid impinging normally on a heated surface in the presence of a uniform transverse magnetic field was analyzed. The governing continuity, momentum, angular momentum, and heat equations together with the associated boundary conditions were reduced to dimensionless form using suitable similarity transformations. The reduced self similar non-linear equations were then solved numerically by an algorithm based on finite difference discretization. The results were further refined by Richardson' s extrapolation. The effects of the magnetic parameter, the micropolar parameters, and the Prandtl number on the flow and temperature fields were predicted in tabular and graphical forms to show the important features of the solution.The study shows that the velocity and thermal boundary layers become thinner as the magnetic parameter is increased. The micropolar fluids display more reduction in shear stress as well as heat transfer rate than that exhibited by Newtonian fluids, which is beneficial in the flow and thermal control of polymeric processing.%分析了有均匀横向磁场作用时,导电微极流体垂直冲击受热面时形成的二维驻点流动问题.应用适当的相似转换,将连续、动量、角动量及热量的控制方程,及其相应的边界条件,简化为无量纲形式.然后,利用以有限差分离散化为基础的算法,求解简化了的自相似非线性方程.用Richardson外推法,进一步求精其结果.以图表形式表示磁场参数、微极性参数、Prandtl数对流动和温度场的影响,说明了其解的重要特性.研究表明,随着磁场参数的增大,速度和热边界层厚度变小了.与Newton流体相比较,微极流体的剪应力和传热率出现明显的减少,这对聚合物生产过程中流体的流动和热量控制是有益的.
Dulal Pal
2016-03-01
Full Text Available This paper deals with the perturbation analysis of mixed convection heat and mass transfer of an oscillatory viscous electrically conducting micropolar fluid over an infinite moving permeable plate embedded in a saturated porous medium in the presence of transverse magnetic field. Analytical solutions are obtained for the governing basic equations. The effects of permeability, chemical reaction, viscous dissipation, magnetic field parameter and thermal radiation on the velocity distribution, micro-rotation, skin friction and wall couple stress coefficients are analyzed in detail. The results indicate that the effect of increasing the chemical reaction has a tendency to decrease the skin friction coefficient at the wall, while opposite trend is seen by increasing the permeability parameter of the porous medium. Also micro-rotational velocity distribution increases with an increase in the magnetic field parameter.
Khilap Singh
2016-01-01
Full Text Available A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.
N. Sandeep
2015-12-01
Full Text Available The aim of the present study is to investigate the influence of non-uniform heat source/sink, mass transfer and chemical reaction on an unsteady mixed convection boundary layer flow of a magneto-micropolar fluid past a stretching/shrinking sheet in the presence of viscous dissipation and suction/injection. The governing equations of the flow, heat and mass transfer are transformed into system of nonlinear ordinary differential equations by using similarity transformation and then solved numerically using Shooting technique with Matlab Package. The influence of non-dimensional governing parameters on velocity, microrotation, temperature and concentration profiles are discussed and presented with the help of their graphical representations. Also, friction factor, heat and mass transfer rates have been computed and presented through tables. Under some special conditions, present results are compared with the existed results to check the accuracy and validity of the present study. An excellent agreement is observed with the existed results.
Zaib, Aurang; Shafie, Sharidan
2015-09-01
The effect of slip and thermophoresis on an unsteady magnetohydrodynamic stagnation-point-flow micropolar fluid with heat and mass transfer towards a shrinking sheet has been investigated. The governing equations are reduced to a system of non-dimensional partial differential equations by using similarity transformation, before being solved numerically using the Keller-box method. The effects of various physical parameters on the velocity, microrotation, temperature, and concentration profiles as well as the reduced skin friction, the reduced Nusselt number, and the reduced Sherwood number are analyzed and discussed graphically. It is found that the concentration boundary layer thickness decreases with increasing values of the thermophoresis. Comparison with previously published results under the limiting cases is made and found to be in excellent agreement.
Khilap Singh
2016-01-01
Full Text Available The effects of chemical reaction on heat and mass transfer flow of a micropolar fluid in a permeable channel with heat generation and thermal radiation is studied. The Rosseland approximations are used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been transformed into ordinary differential equation by using the similarity variables. The relevant nonlinear equations have been solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. The physical significance of interesting parameters on the flow and heat transfer characteristics as well as the local skin friction coefficient, wall couple stress, and the heat transfer rate are thoroughly examined.
Mahmood, Asad; Chen, Bin; Ghaffari, Abuzar
2016-10-01
Hydromagnetic stagnation point flow and heat transfer over a nonlinearly stretching/shrinking surface of micropolar fluid is investigated. The numerical simulation is carried out through Chebyshev Spectral Newton Iterative Scheme, after transforming the governing equations into dimensionless boundary layer form. The dual solutions are reported for different values of magnetic and material parameters against the limited range of stretching/shrinking parameter. It is also noted that second solution only occurs for the negative values of stretching/shrinking parameter, whereas for the positive values unique solution exists. The effects of dimensionless parameters are described through graphs. It is seen that the flow and heat transfer rates can be controlled through the material parameter and magnetic force.
Nepal C. Roy
2016-06-01
Full Text Available Unsteady mixed convection boundary-layer flow of an electrically conducting micropolar fluid past a circular cylinder is investigated taking into account the effect of thermal radiation and heat generation or absorption. The reduced non-similar boundary-layer equations are solved using the finite difference method. It is found that the magnitude of the friction factor and the couple stress significantly increases due to the increase of the mixed convection parameter, the conduction-radiation parameter, the surface temperature parameter, the heat absorption parameter and the frequency parameter. However the magnitude of the heat transfer rate decreases with these parameters. The converse characteristics are observed for the Prandtl number. The magnitude of the couple stress and the heat transfer rate is seen to decrease whereas the magnitude of the skin factor increases with increasing the vortex viscosity parameter. The magnetic field parameter reduces the skin factor, couple stress and heat transfer rate. The amplitude of oscillation of the transient skin factor and couple stress gradually increases owing to an increase of $\\xi$. But the transient heat transfer rate is found to be oscillating with almost the same amplitude for any value of $\\xi$. The amplitude of oscillation of the transient skin factor and couple stress increases with an increase of $S$ and $\\xi$ while the amplitude of the transient heat transfer rate increases with increasing Pr and $S$.
B.I. Olajuwon
2014-12-01
Full Text Available Heat and mass transfer effects on unsteady flow of a viscoelastic micropolar fluid over an infinite moving permeable plate in a saturated porous medium in the presence of a transverse magnetic field with Hall effect and thermal radiation are studied. The governing system of partial differential equations is transformed to dimensionless equations using dimensionless variables. The dimensionless equations are then solved analytically using perturbation technique to obtain the expressions for velocity, microrotation, temperature and concentration. With the help of graphs, the effects of magnetic field parameter M, thermal radiation parameter Nr, Hall current parameter m, K, viscoelastic parameter a, and slip parameter h on the velocity, microrotation, temperature and concentration fields within the boundary layer are discussed. The result showed that increase in Nr and m increases translational velocity across the boundary layer while (a decreases translational velocity in the vicinity of the plate but the reverse happens when away from the plate. As h increases the translational velocity across the boundary layer increases. The higher the values of Nr, the higher the micro-rotational velocity effect while m lowers it. Also the effects n, a, m, Nr, Pr and Sc on the skin friction coefficient, Nusselt number and Sherwood numbers are presented numerically in tabular form. The result also revealed that increase in n reduces the skin friction coefficient. Pr enhances the rate of heat transfer while Sc enhances the rate of mass transfer.
Fazle Mabood
2016-01-01
Full Text Available This study presents a numerical analysis on the effects of Soret, variable thermal conductivity, viscous-Ohmic dissipation, non-uniform heat sources, on steady two-dimensional hydromagnetic mixed convective heat and mass transfer flow of a micropolar fluid over a stretching sheet embedded in a non-Darcian porous medium with thermal radiation and chemical reaction. The governing differential equations are transformed into a set of non-linear coupled ordinary differential equations which are then solved numerically by using the fifth-order Runge-Kutta-Fehlberg method with shooting technique. Numerical solutions are obtained for the velocity, angular velocity, temperature and concentration profiles for various parametric values, and then results are presented graphically as well as skin-friction coefficient, and also local Nusselt number and local Sherwood number for different physical parameters are shown graphically and in tabular form. A critical analysis with earlier published papers was done, and the results were found to be in accordance with each other.
D·特里帕蒂; M·K·乔伯; P·K·古泊塔; 吴承平
2011-01-01
The Stokes flow of micro-polar fluids by peristaltic pumping through the cylindrical tube under the effect of slip boundary condition was studied. The motion of wall was governed by the sinusoidal wave equation. Analytical and numerical solutions for axial velocity, micro-polar vector, stream function, pressure gradient, friction force and mechanical efficiency were obtained by using the lubrication theory. The impacts of emerging parameters such as coupling number, micro-polar parameter and slip parameter on pumping characteristic, friction force and trapping phenomena were depicted graphically. Numerical computation infers that more pressure requires for peristaltic pumping when coupling number is large while opposite behavior is found for micro-polar parameter and the slip parameter. The size of trapped bolus reduces with coupling number and micro-polar parameter whereas it blows up with slip parameter.%计及管道边界条件滑移的影响,研究微极流体蠕动泵,经由圆柱形管道输运的Stokes流动.壁面运动的控制方程为正弦波方程.使用润滑理论,得到了轴向速度、微转动向量、流函数、压力梯度、摩擦力和机械效率的解析数值解.用图形表示出构成参数,如像耦合参数、微极参数和表征蠕流泵特性的滑移参数、摩擦力和俘获现象的影响.数值计算表明,当耦合参数较大时,需要蠕动泵的压力更大,而微极参数和滑移参数正相反.俘获团块的大小随耦合参数和微极参数的减小而缩小,而随滑移参数的增大而缩小.
Arifuzzaman, S. M.; Rana, B. M. Jewel; Ahmed, R.; Ahmmed, S. F.
2017-06-01
High order chemically reactive micropolar fluid flow through an infinite vertical porous medium with thermal diffusion, mass diffusion, MHD, thermal radiation and heat sink has been studied. A flow model is established by employing the well-known boundary layer approximations. In order to obtain non-dimensional system of equations, a similarity transformation is applied on the flow model. The stability and convergence analysis have been analyzed. The obtained non-dimensional equations have been solved by explicit finite difference method. The effects of various parameters entering into the problem on velocity, angular velocity, temperature and concentration are shown graphically.
A micropolar mixture theory of multi-component porous media
Lu HUANG; Cheng-gang ZHAO
2009-01-01
A mixture theory is developed for multi-component micropolar porous media with a combination of the hybrid mixture theory and the micropolar continuum theory.The system is modeled as multi-component micropolar elastic solids saturated with multicomponent micropolar viscous fluids. Balance equations are given through the mixture theory. Constitutive equations are developed based on the second law of thermodynamics and constitutive assumptions. Taking account of compressibility of solid phases,the volume fraction of fluid as an independent state variable is introduced in the free energy function,and the dynamic compatibility condition is obtained to restrict the change of pressure difference on the solid-fluid interface. The constructed constitutive equations are used to close the field equations. The linear field equations are obtained using a linearization procedure,and the micropolar thermo-hydro-mechanical component transport model is established. This model can be applied to practical problems,such as contaminant,drug,and pesticide transport. When the proposed model is supposed to be porous media,and both fluid and solid are single-component,it will almost agree with Eringen's model.
Micropolarity-Ramification of Laminar/Turbulent Circular-Plane-Jet
Siddiqui, Abuzar Abid
2016-01-01
In the present work we formulated the boundary-value-problem, comprising partial differential equations (PDEs) of steady flow for laminar/turbulent circular jet of a micropolar fluid. A new boundary layer-similarity transformation/solution was derived which is valid not only for the Newtonian fluids but also for the micropolar fluids. Through this transformation PDEs are transformed into the ordinary differential equations (ODEs). These ODEs were solved numerically by the finite-difference method. The obtained results were compared with existing results [9] for the Newtonian fluids. The comparison was favourable. The micropolarity influences were highlighted in the present work. The axial-fluid-speed and normal stress-component decreases but radial-fluid-speed, microspin and one of the normal stress-component increase as the micropolarity effect enhances. The fluid-speed, microspin, shear stresses, normal stresses and couple stresses are dominant in the vicinity of the jet-source whereas they all vanish as fa...
Pantokratoras, A
2007-01-01
In the paper [Chaos, Solitons & Fractals, 2006, vol. 30, pp. 851-858]the authors treat the boundary layer flow of a micropolar fluid along a horizontal flat plate with blowing or suction. The fluid viscosity and thermal conductivity are assumed functions of temperature. The boundary layer equations are transformed into ordinary ones and subsequently are solved using the Chebyshev finite difference method. However, there are some deficiencies and errors in this paper.
Sunil; Pavan Kumar Bharti; Divya Sharma; R. C. Sharma
2004-01-01
The effect of the magnetic field dependent (MFD) viscosity on the thermal convection in a ferromagnetic fluid in the presence of a uniform vertical magnetic field is considered for a fluid layer in a porous medium, heated from below...
Kumar Hitesh
2016-01-01
Full Text Available The present paper analyzes the chemically reacting free convection MHD micropolar flow, heat and mass transfer in porous medium past an infinite vertical plate with radiation and viscous dissipation. The non-linear coupled partial differential equations are solved numerically using an implicit finite difference scheme known as Keller-box method. The results for concentration, transverse velocity, angular velocity and temperature are obtained and effects of various parameters on these functions are presented graphically. The numerical discussion with physical interpretations for the influence of various parameters also presented.
Unsteady natural convection in micropolar nanofluids
Rup Kazimierz
2014-09-01
Full Text Available This paper presents the analysis of momentum, angular momentum and heat transfer during unsteady natural convection in micropolar nanofluids. Selected nanofluids treated as single phase fluids contain small particles with diameter size 10-38.4 nm. In particular three water-based nanofluids were analyzed. Volume fraction of these solutions was 6%. The first of the analyzed nanofluids contained TiO2 nanoparticles, the second one contained Al2O3 nanoparticles, and the third one the Cu nanoparticles.
Ferromagnetic Flow of Viscous Fluid in a Slot between Fixed Surfaces of Revolution
Jerzy Sawicki
2016-12-01
Full Text Available In this paper the steady laminar flow of viscous incompressible ferromagnetic fluid is considered in a slot between fixed surfaces of revolution having a common axis of symmetry. The boundary layer ferromagnetic equations for axial symmetry are expressed in terms of the intrinsic curvilinear orthogonal coordinate system x, θ ,y.The method of perturbation is used to solve the boundary layer equations. As a result, the formulae defining such parameters of the flow as the velocity components vx, vy, and the pressure , were obtained.
A. M. Salem
2013-01-01
Full Text Available A numerical model is developed to study the effects of temperature-dependent viscosity on heat and mass transfer flow of magnetohydrodynamic(MHD micropolar fluids with medium molecular weight along a permeable stretching surface embedded in a non-Darcian porous medium in the presence of viscous dissipation and chemical reaction. The governing boundary equations for momentum, angular momentum (microrotation, and energy and mass transfer are transformed to a set of nonlinear ordinary differential equations by using similarity solutions which are then solved numerically by shooting technique. A comparison between the analytical and the numerical solutions has been included. The effects of the various physical parameters entering into the problem on velocity, microrotation, temperature and concentration profiles are presented graphically. Finally, the effects of pertinent parameters on local skin-friction coefficient, local Nusselt number and local Sherwood number are also presented graphically. One important observation is that for some kinds of mixtures (e.g., H2, air with light and medium molecular weight, the magnetic field and temperature-dependent viscosity effects play a significant role and should be taken into consideration as well.
Dynamical problem of micropolar viscoelasticity
Rajneesh Kumar; Suman Choudhary
2001-09-01
The dynamic problem in micropolar viscoelastic medium has been investigated by employing eigen value approach after applying Laplace and Fourier transformations. An example of infinite space with concentrated force at the origin has been presented to illustrate the application of the approach. The integral transforms have been inverted by using a numerical technique to obtain the displacement components, force stresses, couple stress and microrotation in the physical domain. The results for these quantities are given and illustrated graphically.
RESTUDY OF COUPLED FIELD THEORIES FOR MICROPOLAR CONTINUA(Ⅰ)-MICROPOLAR THERMOELASTICITY
戴天民
2002-01-01
Problems of micropolar thermoelasticity have been presented and discussed by sone authors in the traditional framework of micropolar continuum field theory. In this paper the theory of micropolar thermoelasticity is restudied. The reason why it was restricted to a linear one is analyzed. The rather general principle of virtual work and the new formulation for the virtual work of internal forces as well as the rather complete Hamilton principle in micropolar thermoelasticity are established. From this new Hamilton principle not only the equations of motion, the balance equation of entropy, the boundary conditions of stress, couple stress and heat, but also the boundary conditions of displacement,microrotation and temperature are simultaneously derived.
On the micropolar flow in a circular pipe: the effects of the viscosity coefficients
无
2011-01-01
This paper considers the stationary flow of incompressible micropolar fluid through a thin cylindrical pipe governed by the pressure drop between pipe's ends. Its goal is to investigate the influence of the viscosity coefficients on the effective flow. Depending on the magnitude of viscosity coefficients with respect to the pipe's thickness, it derives different asymptotic models and discusses their properties.
Micropolar boundary layer flow at a stagnation point on a moving wall with suction and injection
Hassanien, I. A.; Hady, F. M.
1988-10-01
The flow of a micropolar fluid at a two-dimensional stagnation point on a moving wall with suction and injection is studied. Numerical computations were carried out on a VME-2955 computer. The effects of the suction/injection parameter and dimensionless material parameters are discussed.
R.S. Tripathy
2016-09-01
The governing equations of the flow have been transformed into ordinary differential equations by using similarity transformation technique and solved using the Runge-Kutta method associated with shooting technique. The numerical solutions are achieved showing the effects of pertinent parameters. For verification of the present findings the results of this study have been compared with the earlier works in particular cases; Darcian and non-Darcian fluids are discussed separately. It is worth reporting that effect of porosity of the medium combined with inertia gives rise to a transverse compression producing thinner boundary layer the solution by finite element method (FEM and Runge–Kutta method, do agree within a reasonable error limit.
S. S. Motsa
2012-01-01
Full Text Available The problem of magnetomicropolar fluid flow, heat, and mass transfer with suction through a porous medium is numerically analyzed. The problem was studied under the effects of chemical reaction, Hall, ion-slip currents, and variable thermal diffusivity. The governing fundamental conservation equations of mass, momentum, angular momentum, energy, and concentration are converted into a system of nonlinear ordinary differential equations by means of similarity transformation. The resulting system of coupled nonlinear ordinary differential equations is the then solved using a fairly new technique known as the successive linearization method together with the Chebyshev collocation method. A parametric study illustrating the influence of the magnetic strength, Hall and ion-slip currents, Eckert number, chemical reaction and permeability on the Nusselt and Sherwood numbers, skin friction coefficients, velocities, temperature, and concentration was carried out.
Modeling the natural convective flow of micropolar nanofluids
Bourantas, Georgios
2014-01-01
A micropolar model for nanofluidic suspensions is proposed in order to investigate theoretically the natural convection of nanofluids. The microrotation of the nanoparticles seems to play a significant role into flow regime and in that manner it possibly can interpret the controversial experimental data and theoretical numerical results over the natural convection of nanofluids. Natural convection of a nanofluid in a square cavity is studied and computations are performed for Rayleigh number values up to 106, for a range of solid volume fractions (0 ≤ φ ≤ 0.2) and, different types of nanoparticles (Cu, Ag, Al2O3 and TiO 2). The theoretical results show that the microrotation of the nanoparticles in suspension in general decreases overall heat transfer from the heated wall and should not therefore be neglected when computing heat and fluid flow of micropolar fluids, as nanofluids. The validity of the proposed model is depicted by comparing the numerical results obtained with available experimental and theoretical data. © 2013 Elsevier Ltd. All rights reserved.
Fabrication of ferromagnetic rolled-up microtubes for magnetic sensors on fluids
Bermudez Urena, Esteban; Mei Yongfeng; Coric, Emica; Schmidt, Oliver G [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Makarov, Denys [Department of Physics, University of Konstanz, Universitaetstrasse 10, D-78457 Konstanz (Germany); Albrecht, Manfred, E-mail: ebermudez85@gmail.co [Chemnitz University of Technology, Institute of Physics, Reichenhainer Str. 70, D-09107 Chemnitz (Germany)
2009-03-07
Ferromagnetic microtubes are fabricated by the deterministic release of thin magnetic films from a photoresist sacrificial layer. Crucial steps towards the fabrication of well positioned and uniform single rolled-up tubes are presented, where the final and main approach consists of releasing angled deposited magnetic films by dissolving an underlying patterned photoresist layer. Microtubes from soft magnetic Ni{sub 80}Fe{sub 20} films and Co/Pt multilayer stacks with perpendicular magnetic anisotropy are obtained with predefined lengths and diameters down to 1.5 {mu}m. The nonlinear rotational dynamics of the tubes in viscous fluids is investigated. Sensitivities to viscosity variations for tubes with different lengths are observed and suggest their potential application as single sensing probes in a wide range of viscosities. Moreover, the variation in the characteristic critical frequency of the rotational motion for chains of magnetically coupled microtubes agrees with the expected changes in the theoretical shape factor of cylindrical particles. Evidence of tube remagnetization during the rotation opens the way to investigate properties such as the switching fields of individual tubes.
The nonlocal elastomagnetoelectrostatics of disordered micropolar media
Kabychenkov, A. F.; Lisiovskii, F. V., E-mail: lisf@rambler.ru [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Fryazino Branch) (Russian Federation)
2016-08-15
The interactions of electric, magnetic, and elastic subsystems in nonlinear disordered micropolar media that possess a bending–torsion tensor and an nonsymmetric strain tensor have been studied in the framework of phenomenological elastomagnetoelectrostatics. A system of nonlinear equations for determining the ground state of these media has been obtained by the variational method. It is shown that nonuniform external and internal rotations not only create elastic stresses, but also generate additional electric and magnetic fields, while nonuniform elastic stresses and external fields induce internal rotations. The nonlocal character of the micropolar media significantly influences elementary excitations and nonlinear dynamic processes.
Gupta R.R.
2014-02-01
Full Text Available The present investigation deals with the propagation of waves in a micropolar transversely isotropic half space with an overlying inviscid fluid layer. Effects of fluid loading and anisotropy on the phase velocity, attenuation coefficient, specific loss and relative frequency shift. Finally, a numerical solution was carried out for aluminium epoxy material and the computer simulated results for the phase velocity, attenuation coefficient, specific loss and relative frequency shift are presented graphically. A particular case for the propagation of Rayleigh waves in a micropolar transversely isotropic half-space is deduced and dispersion curves are plotted for the same as functions of the wave number. An amplitude of displacements and microrotation together with the path of surface particles are also calculated for the propagation of Rayleigh waves in the latter case
Accelerated micropolar fluid–flow past an uniformly rotating circular cylinder
Abuzar Abid Siddiqui
2016-10-01
Full Text Available In this paper, we formulated the non-steady flow due to the uniformly accelerated and rotating circular cylinder from rest in a stationary, viscous, incompressible and micropolar fluid. This flow problem is examined numerically by adopting a special scheme comprising the Adams-Bashforth Temporal Fourier Series method and the Runge-Kutta Temporal Special Finite-Difference method. This numerical scheme transforms the governing equation into a system of finite-difference equations. This system was further solved numerically by point successive-over-relaxation method. These results were also further extrapolated by the Richardson extrapolation method. This scheme is valid for all values of the flow and fluid-parameters and for all time. Moreover the boundary conditions of the vorticity and the spin at points far from the cylinder are being imposed and encountered too. The results are compared with existing results (for non-rotating circular cylinder in Newtonian fluids. The comparison is good. The enhancement of lift and reduction in drag is observed if the micropolarity effects are intensified. Same is happened if the rotation of a cylinder increases. Furthermore, the vortex-pair in the wake is delayed to successively higher times as rotation parameter increases. In addition, the rotation helps not only in dissolving vortices adjacent to the cylinder and adverse pressure region but also in dissolving the boundary layer separation. Furthermore, the rotation reduces the micropolar spin boundary layer.
Mechanical sources in orthotropic micropolar continua
Rajneesh Kumar; Suman Choudhary
2002-06-01
The present paper is concerned with the problem of an orthotropic micropolar half-space subjected to concentrated and distributed loads. The disturbance due to normal and tangential loads are investigated by employing eigen-value approach. The integral transforms have been inverted by using a numerical technique to obtain the normal displacement, normal force stress and tangential couple stress in the physical domain. The results of these quantities are given and illustrated graphically.
Modeling Dislocations and Disclinations with Finite Micropolar Elastoplasticity
2006-02-01
proposed three-term multiplicative decompositions for continuum elastoplasticity exclusive of damage , although each within a slightly different context...Modeling Dislocations and Disclinations With Finite Micropolar Elastoplasticity by John D. Clayton, David L. McDowell, and Douglas J. Bammann...and Disclinations With Finite Micropolar Elastoplasticity John D. Clayton Weapons and Materials Research Directorate, ARL David L. McDowell
Mryglod, I M; Omelyan, I P; Folk, R
2001-04-02
The magnetic phase transition in a Heisenberg fluid is studied by means of the finite size scaling technique. We find that even for larger systems, considered in an ensemble with fixed density, the critical exponents show deviations from the expected lattice values similar to those obtained previously. This puzzle is clarified by proving the importance of the leading correction to the scaling that appears due to Fisher renormalization with the critical exponent equal to the absolute value of the specific heat exponent alpha. The appearance of such new corretions to scaling is a general feature of systems with constraints.
Propagation of Transverse Waves in Elastic-Micropolar Porous Semispaces
Hsia, Shao-Yi; Chiu, Shih-Ming; Su, Chih-Chun; Chen, Teng-Hui
2007-11-01
Porous materials are widely used in the passive noise control field as sound absorbers. Conventional models of porous materials are assumed to have a rigid frame and show finite bulk elasticity. However, in the case of acoustical waves — characterized by high frequencies and small wavelengths — the effect of microstructure becomes significant. This effect of microstructure has resulted in the development of new types of waves, not found in the classical theory of elasticity. Generalized continuum theories include the construction of the linear theory of micropolar elasticity that consists of deformation and microrotation with six degrees of freedom, and hence can be used to study the acoustical characteristics of composites with a granular structure. In this study, we investigated transverse wave propagation and its reflection and transmission from a plane interface between two different elastic-micropolar porous interfaces in perfect contact. The micropolar porous composite was constructed using hollow glass microbubbles embedded in an epoxy matrix with six material constants that can be used as the acoustical absorbers. It was found that there are different wave types in a micropolar porous material for the incident \\mathit{SV} (vertical transverse) or \\mathit{SH} (horizontal transverse) wave. It was also found that these two coupled sets of transverse waves, when traveling with different velocities, are dominated by the critical value of microinertia, showing the influence of the micropolar porous characteristics.
Viscous effect at an orthotropic micropolar boundary surface
Rajneesh Kumar; Praveen Ailawalia
2005-08-01
Steady state responses at viscous ﬂuid/ orthotropic micropolar solid interfaces to moving point loads have been studied. An eigenvalue approach using the Fourier transform has been employed to solve the problem. The displacement, microrotation and stress components for the orthotropic micropolar solids so obtained in the physical domain are computed numerically by applying numerical inversion technique. Viscosity and anisotropy effects on normal displacement, normal force stress and tangential couple stress have been shown graphically for a particular model. Some special cases of interest have been presented.
Thermo elastic waves with thermal relaxation in isotropic micropolar plate
Soumen Shaw; Basudeb Mukhopadhyay
2011-04-01
In the present investigation, we have discussed about the features of waves in different modes of wave propagation in an inﬁnitely long thermoelastic, isotropic micropolar plate, when the generalized theory of Lord–Shulman (L–S) is considered. A more general dispersion equation is obtained. The different analytic expressions in symmetric and anti-symmetric vibration for short as well as long waves are obtained in different regions of phase velocities. It is found that results agree with that of the existing results predicted by Sharma and Eringen in the context of various theories of classical as well as micropolar thermoelasticity.
Micropolar Lubricant Effects on the Performance of a Two- Lobe Bearing with Pressure Dam
SANYAM SHARMA
2010-10-01
Full Text Available Two lobe bearings are commonly used in the high speed rotating machineries industries. The use of two lobe bearings, considered to be more stable than ordinary plain cylindrical bearings. In the upper half the dam is provided and relief track in the lower half. Performance of two lobe pressure dam bearings under micropolarfluid is evaluated. Finite element method is used to solve the modified Reynolds equation. . Fluid film pressures are obtained by solving modified Reynolds equation, thus pressure obtained is used to find performance characteristics of this bearing. Results are obtained for various micropolar parameter like coupling number andnon-dimensional characteristics length. The results show that Two-lobe Pressure dam bearing is superior to twolobe bearing,
The Effect of Variable Viscosities on Micropolar Flow of Two Nanofluids
Nadeem, S.; Ahmed, Z.; Saleem, S.
2016-12-01
A study of nanofluids is carried out that reveals the effect of rotational inertia and other physical parameters on the heat transfer and fluid flow. Temperature-dependent dynamic viscosity makes the microrotation viscosity parameter and the micro inertia density variant as well. The governing nonlinear partial differential equations are converted into a set of nonlinear ordinary differential equations by introducing suitable similarity transformations. These reduced nonlinear differential equations are then solved numerically by Keller-box method. The obtained numerical and graphical result discloses many interesting behaviour of nanofluids. It is seen that the temperature gradient decreases with the increase in viscosity parameter. Also, it is observed that with the fixed values of micropolar parameter and viscosity parameter, the velocity gradient near the wall increases with increasing values of solid particle volume fraction parameter. A suitable comparison of results is also presented in this study.
Micropolarizing device for long wavelength infrared polarization imaging.
Wendt, Joel Robert; Carter, Tony Ray; Samora, Sally; Cruz-Cabrera, Alvaro Augusto; Vawter, Gregory Allen; Kemme, Shanalyn A.; Alford, Charles Fred; Boye, Robert R.; Smith, Jody Lynn
2006-11-01
The goal of this project is to fabricate a four-state pixelated subwavelength optical device that enables mid-wave infrared (MWIR) or long-wave infrared (LWIR) snapshot polarimetric imaging. The polarization information can help to classify imaged materials and identify objects of interest for numerous remote sensing and military applications. While traditional, sequential polarimetric imaging produces scenes with polarization information through a series of assembled images, snapshot polarimetric imaging collects the spatial distribution of all four Stokes parameters simultaneously. In this way any noise due to scene movement from one frame to the next is eliminated. We fabricated several arrays of subwavelength components for MWIR polarization imaging applications. Each pixel unit of the array consists of four elements. These elements are micropolarizers with three or four different polarizing axis orientations. The fourth element sometimes has a micro birefringent waveplate on the top of one of the micropolarizers. The linear micropolarizers were fabricated by patterning nano-scale metallic grids on a transparent substrate. A large area birefringent waveplate was fabricated by deeply etching a subwavelength structure into a dielectric substrate. The principle of making linear micropolarizers for long wavelengths is based upon strong anisotropic absorption of light in the nano-metallic grid structures. The nano-metallic grid structures are patterned with different orientations; therefore, the micropolarizers have different polarization axes. The birefringent waveplate is a deeply etched dielectric one-dimensional subwavelength grating; therefore two orthogonally polarized waves have different phase delays. Finally, in this project, we investigated the near field and diffractive effects of the subwavelength element apertures upon detection. The fabricated pixelated polarizers had a measured extinction ratios larger than 100:1 for pixel sizes in the order of 15
Deformation due to distributed sources in micropolar thermodiffusive medium
Sachin Kaushal
2010-10-01
Full Text Available The general solution to the field equations in micropolar generalized thermodiffusive in the context of G-L theory is investigated by applying the Laplace and Fourier transform's as a result of various sources. An application of distributed normal forces or thermal sources or potential sources has been taken to show the utility of the problem. To get the solution in the physical form, a numerical inversion technique has been applied. The transformed components of stress, temperature distribution and chemical potential for G-L theory and CT theory has been depicted graphically and results are compared analytically to show the impact of diffusion, relaxation times and micropolarity on these quantities. Some special case of interest are also deduced from present investigation.
Isaac Lare Animasaun
2016-06-01
Full Text Available The problem of unsteady convective with thermophoresis, chemical reaction and radiative heat transfer in a micropolar fluid flow past a vertical porous surface moving through binary mixture considering temperature dependent dynamic viscosity and constant vortex viscosity has been investigated theoretically. For proper and correct analysis of fluid flow along vertical surface with a temperature lesser than that of the free stream, Boussinesq approximation and temperature dependent viscosity model were modified and incorporated into the governing equations. The governing equations are converted to systems of ordinary differential equations by applying suitable similarity transformations and solved numerically using fourth-order Runge–Kutta method along with shooting technique. The results of the numerical solution are presented graphically and in tabular forms for different values of parameters. Velocity profile increases with temperature dependent variable fluid viscosity parameter. Increase of suction parameter corresponds to an increase in both temperature and concentration within the thin boundary layer.
Axisymmetric free vibrations of infinite micropolar thermoelastic plate
Rajneesh Kumar; Geeta Partap
2007-01-01
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation.The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.
Rayleigh-type waves in nonlocal micropolar solid half-space.
Khurana, Aarti; Tomar, S K
2017-01-01
Propagation of Rayleigh type surface waves in nonlocal micropolar elastic solid half-space has been investigated. Two modes of Rayleigh-type waves are found to propagate under certain approximations. Frequency equations of these Rayleigh type modes and their conditions of existence have been derived. These frequency equations are found to be dispersive in character due to the presence of micropolarity and nonlocality parameters in the medium. One of the frequency equations is a counterpart of the classical Rayleigh waves and the other is new and has appeared due to micropolarity of the medium. Phase speeds of these waves are computed numerically for Magnesium crystal and their variation against wavenumber are presented graphically. Comparisons have been made between the phase speeds of Rayleigh type waves through nonlocal micropolar, local micropolar and elastic solid half-spaces. Copyright © 2016 Elsevier B.V. All rights reserved.
RAYLEIGH LAMB WAVES IN MICROPOLAR ISOTROPIC ELASTIC PLATE
Rajneesh Kumar; Geeta Partap
2006-01-01
The propagation of waves in a homogeneous isotropic micropolar elastic cylindrical plate subjected to stress free conditions is investigated. The secular equations for symmetric and skew symmetric wave mode propagation are derived. At short wave limit,the secular equations for symmetric and skew symmetric waves in a stress free circular plate reduces to Rayleigh surface wave frequency equation. Thin plate results are also obtained. The amplitudes of displacements and microrotation components are obtained and depicted graphically. Some special cases are also deduced from the present investigations. The secular equations for symmetric and skew symmetric modes are also presented graphically.
Effects of ﬂuid layer at micropolar orthotropic boundary surface
Rajneesh Kumar; Praveen Ailawalia
2004-12-01
Effects of a ﬂuid layer at a micropolar orthotropic elastic solid interface to a moving point load have been studied. After using the Fourier transform an eigen value approach has been employed to solve the problem. The displacement, microrotation and stress components for a micropolar orthotropic elastic solid so obtained in the physical domain are computed numerically by applying the numerical inversion technique. Micropolarity and anisotropy effects along with that of the depth of the ﬂuid layer on various expressions have been depicted graphically for a particular model. Some special cases of interest have been presented.
戴天民
2002-01-01
The theories of thermopiezoelectricity and magnetoelasticity for micropolar continua have been systematically developed by W. Nowacki. In this paper, the theories are restudied. The reason why they were restricted to linear cases is analyzed. The more general conservation principle of energy, energy balance equation and Hamilton principle of thermopiezoelectricity and magnetoelasticity for micropolar continua are established. The corresponding complete equations of motion and boundary conditions as well as balance equations of energy rate for local and nonlocal micropolar thermopiezoelectricity and magnetothermoelasticity are naturally derived. By means of two new functionals and total variation the boundary conditions of displacement, microrotation, electric potential and temperature are also given.
Vardanyan S. A.
2007-09-01
Full Text Available In the framework of the asymmetrical momental micropolar theory in the present work the boundary value problem of thermal stresses in a three-dimensional thin plate with independent fields of displacements and rotations is studied on the basis of asymptotic method. Depending on the values of physical dimensionless constants of the material three applied two-dimensional theories of thermoelasticity of micropolar thin plate are constructed (theories with independent rotations, with constrained rotations and with small shift rigidity.
Shamshuddin, MD.; Anwar Bég, O.; Sunder Ram, M.; Kadir, A.
2017-08-01
Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic, incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland's diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted.
Huxley, Andrew D.
2015-07-01
The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a 'standard' theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the 'standard' model and from each other.
Huxley, Andrew D.
2015-07-15
Highlights: • Review of ferromagnetic superconductors. • Covers UGe{sub 2}, URhGe and UCoGe and briefly other materials. • The focus is on experimental data and the pairing mechanism. - Abstract: The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a ‘standard’ theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the ‘standard’ model and from each other.
Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry
Zhang, Zhigang; Cheng, Teng; Qiu, Kang; Zhang, Qingchuan, E-mail: zhangqc@ustc.edu.cn, E-mail: wgchu@nanoctr.cn; Wu, Xiaoping [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027 (China); Dong, Fengliang; Chu, Weiguo, E-mail: zhangqc@ustc.edu.cn, E-mail: wgchu@nanoctr.cn [Nanofabrication Laboratory, National Center for Nanoscience and Technology, Beijing 100190 (China)
2014-10-15
Pixelated micropolarizer array (PMA) is a novel concept for real-time visible imaging polarimetry. A 320 × 240 aluminum PMA fabricated by electron beam lithography is described in this paper. The period, duty ratio, and depth of the grating are 140 nm, 0.5, and 100 nm, respectively. The units are standard square structures and the metal nanowires of the grating are collimating and uniformly thick. The extinction ratio of 75 and the maximum polarization transmittance of 78.8% demonstrate that the PMA is suitable for polarization imaging. When the PMA is applied to real-time polarization imaging, the degree of linear polarization image and the angle of linear polarization image are calculated from a single frame image. The polarized target object is highlighted from the unpolarized background, and the surface contour of the target object can be reflected by the polarization angle.
Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry.
Zhang, Zhigang; Dong, Fengliang; Cheng, Teng; Qiu, Kang; Zhang, Qingchuan; Chu, Weiguo; Wu, Xiaoping
2014-10-01
Pixelated micropolarizer array (PMA) is a novel concept for real-time visible imaging polarimetry. A 320 × 240 aluminum PMA fabricated by electron beam lithography is described in this paper. The period, duty ratio, and depth of the grating are 140 nm, 0.5, and 100 nm, respectively. The units are standard square structures and the metal nanowires of the grating are collimating and uniformly thick. The extinction ratio of 75 and the maximum polarization transmittance of 78.8% demonstrate that the PMA is suitable for polarization imaging. When the PMA is applied to real-time polarization imaging, the degree of linear polarization image and the angle of linear polarization image are calculated from a single frame image. The polarized target object is highlighted from the unpolarized background, and the surface contour of the target object can be reflected by the polarization angle.
Magnetically controlled ferromagnetic swimmers
Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.
2017-03-01
Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control.
Magnetically controlled ferromagnetic swimmers
Hamilton, Joshua K.; Petrov, Peter G.; Winlove, C. Peter; Gilbert, Andrew D.; Bryan, Matthew T.; Ogrin, Feodor Y.
2017-01-01
Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control. PMID:28276490
Sameh E. Ahmed
2016-03-01
Full Text Available This paper examines numerically the thermal and flow field characteristics of the laminar steady mixed convection flow in a square lid-driven enclosure filled with water-based micropolar nanofluids by using the finite volume method. While a uniform heat source is located on a part of the bottom of the enclosure, both the right and left sidewalls are considered adiabatic together with the remaining parts of the bottom wall. The upper wall is maintained at a relatively low temperature. Both the upper and left sidewalls move at a uniform lid-driven velocity and four different cases of the moving lid ordinations are considered. The fluid inside the enclosure is a water based micropolar nanofluid containing different types of solid spherical nanoparticles: Cu, Ag, Al2O3, and TiO2. Based on the numerical results, the effects of the dominant parameters such as Richardson number, nanofluid type, length and location of the heat source, solid volume fractions, moving lid orientations and dimensionless viscosity are examined. Comparisons with previously numerical works are performed and good agreements between the results are observed. It is found that the average Nusselt number along the heat source decreases as the heat source length increases while it increases when the solid volume fraction increases. Also, the results of the present study indicate that both the local and the average Nusselt numbers along the heat source have the highest value for the fourth case (C4. Moreover, it is observed that both the Richardson number and moving lid ordinations have a significant effect on the flow and thermal fields in the enclosure.
Sargsyan S.H.
2014-03-01
Full Text Available In the present paper, the system of equations of three-dimensional micropolar theory of elasticity, written down for thin shell as singularly perturbed with small geometric parameter system, is analyzed asymptotically: the internal iteration process and boundary layers are constructed, their interaction is studied, boundary conditions are obtained for each of them. Then, the main specific properties of the asymptotic solution accepting as hypotheses, general applied theory of micropolar elastic thin shells is constructed and it is shown that the constructed theory is asymptotically correct. Passing from the micropolar theory of thin shells to the classical theory, it is shown, that this applied classical theory of thin shells, when transverse shifts are taken into account, is asymptotically correct theory in relation to the other corrected theories of thin shells.
Rayleigh Waves in a Rotating Orthotropic Micropolar Elastic Solid Half-Space
Baljeet Singh
2013-01-01
Full Text Available A problem on Rayleigh wave in a rotating half-space of an orthotropic micropolar material is considered. The governing equations are solved for surface wave solutions in the half space of the material. These solutions satisfy the boundary conditions at free surface of the half-space to obtain the frequency equation of the Rayleigh wave. For numerical purpose, the frequency equation is approximated. The nondimensional speed of Rayleigh wave is computed and shown graphically versus nondimensional frequency and rotation-frequency ratio for both orthotropic micropolar elastic and isotropic micropolar elastic cases. The numerical results show the effects of rotation, orthotropy, and nondimensional frequency on the nondimensional speed of the Rayleigh wave.
Rajneesh Kumar; Mahabir Barak
2007-01-01
The present study is concerned with the reflection and transmission of plane waves at an interface between homogenous invisicid liquid half space and a micropolar liquid-saturated porous solid half space. The reflection and transmission coefficients of various reflected and transmitted waves with the angle of incident have been obtained.Numerical calculation has been performed for amplitude ratios of various reflected and transmitted waves. Micropolarity and porosity effects on the reflection and transmission coefficients have been depicted graphically. Some particular cases have been deduced from the present formulation.
Reﬂection of plane micropolar viscoelastic waves at a loosely bonded solid-solid interface
Baljeet Singh
2002-10-01
A solution of the ﬁeld equations governing small motions of a micropolar viscoelastic solid half-space is employed to study the reﬂection and transmission of plane waves at a loosely bonded interface between two dissimilar micropolar viscoelastic solid half-spaces. The amplitude ratios for various reﬂected and refracted waves are computed for a particular model for different values of bonding parameter. The variations of these amplitude ratios with the angle of incidence are shown graphically. Effects of bonding parameter and viscosity on the amplitude ratios are shown.
Seal device for ferromagnetic containers
Meyer, Ross E.; Jason, Andrew J.
1994-01-01
A temporary seal or patch assembly prevents the escape of contents, e.g., fluids and the like, from within a container having a breach therethrough until the contents can be removed and/or a repair effected. A frame that supports a sealing bladder can be positioned over the breach and the frame is then attached to the container surface, which must be of a ferromagnet material, by using switchable permanent magnets. The permanent magnets are designed to have a first condition that is not attracted to the ferromagnetic surface and a second conditions whereby the magnets are attracted to the surface with sufficient force to support the seal assembly on the surface. Latching devices may be attached to the frame and engage the container surface with hardened pins to prevent the lateral movement of the seal assembly along the container surface from external forces such as fluid drag or gravity.
Khurana, Aarti; Tomar, S. K.
2008-04-01
Reflection and transmission phenomena of a plane longitudinal displacement wave impinging obliquely at a plane interface between a micropolar elastic solid half-space and a chiral elastic solid half-space are investigated. The incident wave is assumed to be striking at the plane interface after propagating through the micropolar elastic solid half-space. The reflection and transmission coefficients are obtained by utilizing two possible sets of boundary conditions, for a specific model and there values corresponding to two boundary conditions are also compared graphically. The effect of chirality parameter on various reflection and transmission coefficients have been noticed and shown graphically. Results of Lakhtakia et al. [Reflection of elastic plane waves at a planar achiral-chiral interface, Journal of the Acoustical Society of America 87 (1990) 2314-2318] and Miklowitz [The Theory of Elastic Waves and Waveguides, North-Holland, New York, 1978] have also been reduced as special cases from the present formulation.
Three-Fold Symmetry Restrictions on Two-Dimensional Micropolar Materials
Warren, W. E.; Byskov, Esben
Analysis of the mechanical properties of engineering materials with micro-structure generally requires modification of the concept of a simple material. One approach is the theory of micropolar materials which introduces an independent rotation of a material element and the resulting stress...
Surface effects in anti-plane deformations of a micropolar elastic solid: integral equation methods
Sigaeva, Taisiya; Schiavone, Peter
2016-03-01
The theory of linear micropolar elasticity is used in conjunction with a new representation of micropolar surface mechanics to develop a comprehensive model for the deformations of a linearly micropolar elastic solid subjected to anti-plane shear loading. The proposed model represents the surface effect as a thin micropolar film of separate elasticity, perfectly bonded to the bulk. This model captures not only the micro-mechanical behavior of the bulk which is known to be considerable in many real materials but also the contribution of the surface effect which has been experimentally well observed for bodies with significant size-dependency and large surface area to volume ratios. The contribution of the surface mechanics to the ensuing boundary-value problem gives rise to a highly nonstandard boundary condition not accommodated by classical studies in this area. Nevertheless, the corresponding interior and exterior mixed boundary-value problems are formulated and reduced to systems of singular integro-differential equations using a representation of solutions in the form of modified single-layer potentials. Analysis of these systems demonstrates that the classical Noether theorems reduce to Fredholms theorems leading to results on well-posedness of the corresponding mathematical model.
Micropolar curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models
Zozulya V.V.
2017-01-01
Full Text Available New models for micropolar plane curved rods have been developed. 2-D theory is developed from general 2-D equations of linear micropolar elasticity using a special curvilinear system of coordinates related to the middle line of the rod and special hypothesis based on assumptions that take into account the fact that the rod is thin.High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First stress and strain tensors,vectors of displacements and rotation and body force shave been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby all equations of elasticity including Hooke’s law have been transformed to the corresponding equations for Fourier coefficients. Then in the same way as in the theory of elasticity, system of differential equations in term of displacements and boundary conditions for Fourier coefficients have been obtained. The Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and 2-D equations of linear micropolar elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scale when taking in to account micropolar couple stress and rotation effects.
Baljeet Singh
2000-12-01
A solution of the field equations governing small motions of a micropolar viscoelastic solid half-space with stretch is employed to study the reflection and transmission at the interface between a liquid and a micropolar viscoelastic solid with stretch. The amplitude ratios for various reflected and refracted waves are computed and depicted graphically. Effects of axial stretch and viscosity on the amplitude ratios are discussed.
Asymmetric Ferromagnet-Superconductor-Ferromagnet Switch
Cadden-Zimansky, P.; Bazaliy, Ya.B.; Litvak, L.M.; Jiang, J.S.; Pearson, J.; Gu, J.Y.; You, Chun-Yeol; Beasley, M.R.; Bader, S.D.
2011-11-04
In layered ferromagnet-superconductor-ferromagnet F{sub 1} /S/F{sub 2} structures, the critical temperature T{sub c} of the superconductors depends on the magnetic orientation of the ferromagnetic layers F{sub 1} and F{sub 2} relative to each other. So far, the experimentally observed magnitude of change in T{sub c} for structures utilizing weak ferromagnets has been 2 orders of magnitude smaller than is expected from calculations. We theoretically show that such a discrepancy can result from the asymmetry of F/S boundaries, and we test this possibility by performing experiments on structures where F{sub 1} and F{sub 2} are independently varied. Our experimental results indicate that asymmetric boundaries are not the source of the discrepancy. If boundary asymmetry is causing the suppressed magnitude of T{sub c} changes, it may only be possible to detect in structures with thinner ferromagnetic layers.
Electrically detected ferromagnetic resonance
Goennenwein, S.T.B.; Schink, S.W.; Brandlmaier, A.; Boger, A.; Opel, M.; Gross, R.; Keizer, R.S.; Klapwijk, T.M.; Gupta, A.; Huebl, H.; Bihler, C.; Brandt, M.S.
2007-01-01
We study the magnetoresistance properties of thin ferromagnetic CrO2 and Fe3O4 films under microwave irradiation. Both the sheet resistance ρ and the Hall voltage VHall characteristically change when a ferromagnetic resonance (FMR) occurs in the film. The electrically detected ferromagnetic resonanc
Some basic principles for the linear theory of piezoelectric micropolar elastodynamics
无
2010-01-01
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity,in a simple and unified way proposed by Luo,some basic principles in the linear theory of piezoelectric micropolar elastodynamics can be established systematically. In this paper,an important integral relation in terms of convolutions is given,which can be considered as the generalized principle of virtual work in mechanics. Based on this relation,it is not only possible to obtain the principle of virtual work and the reciprocal theorem,but also to systematically derive the complementary functionals for the eleven-field,nine-field and six-field simplified Gurtin-type variational principles and the potential energy-functional for the three-field one in the linear theory of piezoelectric micropolar elastodynamics by the generalized Legendre transformations given in this paper. Furthermore,with this approach,the intrinsic relationships among various principles can be explained clearly.
Micropolarizer of Ordered Ni Nanowire Arrays Embedded in Porous Anodic Alumina Membrane
PANG Yan-Tao; MENG Guo-Wen; SHAN Wen-Jun; FANG Qi; ZHANG Li-De
2003-01-01
A micropolarizer of nickel nanowire arrays within an anodic alumina membrane (AAM) was fabricated by an-odization of pure Al and electrodeposition of Ni, respectively. X-ray diffraction, scanning electron microscopy and transmission-electron microscopy reveal that the nanowires are polycrystal and have an average diameter of 70 nm. Spectrophotometer measurements show that the nickel nanowire arrays embedded in the AAM can only transmit polarized light vertical to the wires. An extinction ratio of 25 to 30 dB and an average insertion loss of 1.07dB in the wavelength range of l-2.5fj.rn were obtained, respectively. Thus, Ni nanowire/AAM can be used as a wire grid type micropolarizer.
ZHANG; Yan; FAN; Jing-yu
2009-01-01
Being a wide variety of thin-layered interconnection components in electronics packaging with relatively small scale and heterogeneous materials, conventional numerical methods may be time consuming and even inefficacious to obtain an accurate prediction for the interface behavior under mechanical and/or thermal loading. Rather than resort to a fully spatial discretization in the vicinity of this interface zone, an interface model was proposed within the framework of micropolar theory by introducing discontinuous approximation. A fracture description was used to represent the microscopic failure progress inside the interface. The micropolar interface model was then numerically implemented with the finite element method. As an application, the interface behavior of a packaging system with anisotropic conductive adhesive(ACA)joint was analyzed, demonstrating its applicability and great efficiency.
Response of orthotropic micropolar elastic medium due to time harmonic source
Rajneesh Kumar; Suman Choudhary
2004-02-01
The present paper is concerned with the plane strain problem in homogeneous micropolar orthotropic elastic solids. The disturbance due to time harmonic concentrated source is investigated by employing eigen-value approach. The integral transforms have been inverted by using a numerical technique to obtain the component of displacement, force stress and couple stress in the physical domain. The results of these quantities are given and illustrated graphically.
Rajneesh Kumar
2014-01-01
Full Text Available The reflection of plane waves at the free surface of thermally conducting micropolar elastic medium with two temperatures is studied. The theory of thermoelasticity with and without energy dissipation is used to investigate the problem. The expressions for amplitudes ratios of reflected waves at different angles of incident wave are obtained. Dissipation of energy and two-temperature effects on these amplitude ratios with angle of incidence are depicted graphically. Some special and particular cases are also deduced.
Andrea Nobili
2015-01-01
Full Text Available Three generalizations of the Timoshenko beam model according to the linear theory of micropolar elasticity or its special cases, that is, the couple stress theory or the modified couple stress theory, recently developed in the literature, are investigated and compared. The analysis is carried out in a variational setting, making use of Hamilton’s principle. It is shown that both the Timoshenko and the (possibly modified couple stress models are based on a microstructural kinematics which is governed by kinosthenic (ignorable terms in the Lagrangian. Despite their difference, all models bring in a beam-plane theory only one microstructural material parameter. Besides, the micropolar model formally reduces to the couple stress model upon introducing the proper constraint on the microstructure kinematics, although the material parameter is generally different. Line loading on the microstructure results in a nonconservative force potential. Finally, the Hamiltonian form of the micropolar beam model is derived and the canonical equations are presented along with their general solution. The latter exhibits a general oscillatory pattern for the microstructure rotation and stress, whose behavior matches the numerical findings.
Dispersion of Soluble Matters in Newton—dipolar Stratified fluid and Effects of Peripheral Layer
ZhangJiLU; ShoushengDONG; 等
1998-01-01
In the paper,the dispersion law and the concentration distributions of soluble matters in ewton-dipolar fluids flowing through a circular tube have been investigated.Main results are:(1) for the dependence of M on λ(or H),the completely opposite trends are obtained in the cases with and without the peripheral layer.(2) effects of δ on M have the minimum values near δ=0.85-0.9,(3) various models such as couple stress,micropolar,dipolar,Newton-newtonican,Newton-couple stress and Newton-micropolar model etc.are all special cases of Newton-dipolar fluid(where Mz=0).When Mz≠0,however,there are evident differences between the Newton-dipolar fluid and the Newton-couple stress fluid,the Newton-micropoloar fluid.
Miyazaki, Terunobu
2012-01-01
This book covers both basic physics of ferromagnetism such as magnetic moment, exchange coupling, magnetic anisotropy and recent progress in advanced ferromagnetic materials. Special interests are focused on NdFeB permanent magnets and the materials studied in the field of spintronics. In the latter, development of tunnel magnetoresistance effect through so called giant magnetoresistance effect is explained.
Global existence and uniqueness of nonlinear evolutionary fluid equations
Qin, Yuming; Wang, Taige
2015-01-01
This book presents recent results on nonlinear evolutionary fluid equations such as the compressible (radiative) magnetohydrodynamics (MHD) equations, compressible viscous micropolar fluid equations, the full non-Newtonian fluid equations and non-autonomous compressible Navier-Stokes equations. These types of partial differential equations arise in many fields of mathematics, but also in other branches of science such as physics and fluid dynamics. This book will be a valuable resource for graduate students and researchers interested in partial differential equations, and will also benefit practitioners in physics and engineering.
Gwinner, Joachim
2016-12-01
This contribution deals with unilateral contact problems with Tresca friction (given friction model) in hemitropic mi-cropolar elasticity. Based on a boundary integral approach such problems can be reduced to boundary variational inequalities. This suggests the use of boundary element methods for their numerical treatment. With higher order approximation this leads to a nonconforming approximation what can numerically be realized by means of Gauss-Lobatto quadrature. The contribution is based on the recent papers [7, 8] of the author and on joint work [3] with A. Gachechiladze, R. Gachechi-ladze, and D. Natroshvili.
Singh R.
2016-02-01
Full Text Available In this study an eigen value approach has been employed to examine the mechanical force applied along with a transverse magnetic field in a two dimensional generalized magneto micropolar thermoelastic infinite space. Results have been obtained by treating rotational velocity to be invariant. Integral transforms have been applied to solve the system of partial differential equations. Components of displacement, normal stress, tangential couple stress, temperature distribution, electric field and magnetic field have been obtained in the transformed domain. Finally numerical inversion technique has been used to invert the result in the physical domain. Graphical analysis has been done to described the study.
RENEWAL OF BASIC LAWS AND PRINCIPLES FOR POLAR CONTINUUM THEORIES (Ⅰ)-MICROPOLAR CONTINUA
戴天民
2003-01-01
Based on the restudies of existing polar continuum theories rather completesystems of basic balance laws and equations for micropolar continuum theory are presented.In these new systems not only the additional angular momentum, surface moment and bodymoment produced by the linear momentum, surface force and body force, respectively, butalso the additional velocity produced by the angular velocity are considered. The newcoupled balance laws of linear momentum, angular momentum and energy arereestablished. From them the new coupled local and nonlocal balance equatiors arenaturally derived. Via contrast it can be clearly seen that the new results are believed to berather general and complete.
Graham, C D
2009-01-01
This book is a textbook for graduate students and researchers who are interested in ferromagnetism. The emphasis is primarily on explanation of physical concepts rather than on a rigorous theoretical treatment.
Itinerant Ferromagnetism and Superconductivity
Karchev, Naoum
2004-01-01
Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...
Chen Mingtao
2011-01-01
Full Text Available Abstract This article is concerned with global strong solutions of the micro-polar, compressible flow with density-dependent viscosity coefficients in one-dimensional bounded intervals. The important point in this article is that the initial density may vanish in an open subset.
A micromechanical approach for the micropolar modeling of heterogeneous periodic media
M.L. De Bellis,
2014-07-01
Full Text Available Computational homogenization is adopted to assess the homogenized two-dimensional response of periodic composite materials where the typical microstructural dimension is not negligible with respect to the structural sizes. A micropolar homogenization is, therefore, considered coupling a Cosserat medium at the macro-level with a Cauchy medium at the micro-level, where a repetitive Unit Cell (UC is selected. A third order polynomial map is used to apply deformation modes on the repetitive UC consistent with the macro-level strain components. Hence, the perturbation displacement field arising in the heterogeneous medium is characterized. Thus, a newly defined micromechanical approach, based on the decomposition of the perturbation fields in terms of functions which depend on the macroscopic strain components, is adopted. Then, to estimate the effective micropolar constitutive response, the well known identification procedure based on the Hill-Mandel macro-homogeneity condition is exploited. Numerical examples for a specific composite with cubic symmetry are shown. The influence of the selection of the UC is analyzed and some critical issues are outlined.
Effective Flow of Micropolar Fluid through a Thin or Long Pipe
Igor Pažanin
2011-01-01
the ratio between pipe's thickness and its length. In the case of circular pipe, we obtain the explicit formulae for the approximation showing explicitly the effects of microstructure on the flow. We prove the corresponding error estimate justifying the obtained asymptotic model.
Gating a ferromagnetic semiconductor
Bove, A.; Altomare, F.; Kundtz, N.; Chang, A. M.; Cho, Y. J.; Liu, X.; Furdyna, J.
2007-03-01
Ferromagnetic semiconductors have the potential of revolutionizing the way current electronic devices work: more so, because they are compatible with current fabrication lines and can easily be integrated with today's technology. Particular interest lies in III-V Diluted Magnetic Semiconductor (DMS), where the ferromagnetism is hole-mediated and the Curie temperature can therefore be tuned by changing the concentration of free carriers. In these systems, most of the effort is currently applied toward the fabrication of devices working at room-temperature: this implies high carrier density accompanied by low mobility and short mean free path. We will report our results for a ferromagnetic 2DHG system with low carrier density (˜3.4E12 cm-2) and mobility (˜ 1000 cm^2/(Vs)), and we will discuss the effects of local gating in light of possible applications to the fabrication of ferromagnetic quantum dots. T. Dietl et al., Phys. Rev. B 63, 195205 (2001). H. Ohno et al., Nature 408, 944 (2000)
Effect of rotation in magneto-micropolar thermoelastic medium due to mechanical and thermal sources
Kumar, Rajneesh [Department of Mathematics, Kurukshetra University, Kurukshetra 136 119 (India)], E-mail: rajneesh_kuk@rediffmail.com; Rupender [Department of Mathematics, Kurukshetra University, Kurukshetra 136 119 (India)], E-mail: rupee_kuk@rediffmail.com
2009-08-30
In this work, a two dimensional problem in electromagnetic micropolar generalized thermoelastic medium, in the presence of a transverse magnetic field subjected to mechanical force or thermal source (concentrated or uniformly distributed), is investigated. The entire elastic medium is rotating with a uniform angular velocity. Laplace and Fourier transform techniques are used to solve the problem and the Descartes' method along with irreducible case of Cardan's method is used to obtain the roots of eight degree equation. The transformed components of normal strain, normal stress, tangential couple stress, temperature distribution, induced electric field and magnetic field are obtained. The integral transforms have been inverted by using a numerical technique. Magnetic effects and effect of rotation have been depicted graphically on the resulting quantities. Particular cases of interest are also deduced from the present investigation.
Moving heat source response in micropolar half-space with two-temperature theory
Shaw, Soumen; Mukhopadhyay, Basudeb
2013-03-01
The present paper deals with the moving heat source response in a homogeneous, isotropic, micropolar semi-infinite medium in the presence of a finite rotation about its axis. In this context, two-temperature generalized thermoelasticity theory has been considered. In order to obtain the physical aspects of displacement, microrotation, stress distribution and temperature changes, a complex quartic equation has been solved by employing Descartes' algorithm with the help of an irreducible Cardan's method. To illustrate the analytical developments, the numerical solutions have been carried out for aluminum-epoxy composite, and the variations in displacement, microrotation, stress distribution and temperature changes have been shown graphically. This work may find applications in geophysics.
Elastodynamics of axi-symmetric deformation in magneto-micropolar generalized thermoelastic medium
Rajneesh Kumar; Rupender
2009-01-01
The present investigation is concerned with an axiosymmetric problem in the electromagnetic micropolar thermoelastic half-space whose surface is subjected to the mechanical or thermal source. Laplace and Hankel transform techniques are used to solve the problem. Various types of sources are taken to illustrate the utility of the approach. Integral transforms are inverted by using a numerical technique to obtain the components of stresses, temperature distribution, and induced electric and magnetic fields. The ex-pressions of these quantities are illustrated graphically to depict the magnetic effect for two different generalized thermoelasticity theories, i.e., Lord and Shulman (L-S theory) and Green and Lindsay (G-L theory). Some particular interesting cases are also deduced from the present investigation.
Magnetite micropolar nanofluid non-aligned MHD flow with mixed convection
Tabassum, Rabil; Mehmood, R.; Akbar, N. S.
2017-06-01
The magnetite micropolar nanofluid ( Fe3O4 /water) oblique flow in the presence of mixed convection and magnetic field is considered in the present investigation. Magnetite nanoparticles are added to water in order to examine the temperature and velocity characteristics of the flow. Appropriate transformations are employed to obtain the governing equations. Numerical solutions are attained by the Range-Kutta-Fehlberg integration scheme with the shooting method. Characteristics of flow velocity profiles, temperature distribution, micro-rotation, shear stress and heat flux are remarkably influenced by magnetic parameter, magnetite nanoparticles volume fraction and mixed convection parameter. The obtained results indicate that the shear stress at the wall decreases but the local heat flux increases with increase in the nanoparticles volume fraction. Moreover, an increase in the magnetic field strength consequently enhances the shear stress at the surface but decreases the local heat transfer rate at the surface.
Precessing Ferromagnetic Needle Magnetometer.
Jackson Kimball, Derek F; Sushkov, Alexander O; Budker, Dmitry
2016-05-13
A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency Ω under conditions where its intrinsic spin dominates over its rotational angular momentum, Nℏ≫IΩ (I is the moment of inertia of the needle about the precession axis and N is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin Nℏ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of N spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum uncertainty, the sensitivity of a precessing needle magnetometer can far surpass that of magnetometers based on spin precession of atoms in the gas phase. Under conditions where noise from coupling to the environment is subdominant, the scaling with measurement time t of the quantum- and detection-limited magnetometric sensitivity is t^{-3/2}. The phenomenon of ferromagnetic needle precession may be of particular interest for precision measurements testing fundamental physics.
Frequency mixer having ferromagnetic film
Khitun, Alexander; Roshchin, Igor V.; Galatsis, Kosmas; Bao, Mingqiang; Wang, Kang L.
2016-03-29
A frequency conversion device, which may include a radiofrequency (RF) mixer device, includes a substrate and a ferromagnetic film disposed over a surface of the substrate. An insulator is disposed over the ferromagnetic film and at least one microstrip antenna is disposed over the insulator. The ferromagnetic film provides a non-linear response to the frequency conversion device. The frequency conversion device may be used for signal mixing and amplification. The frequency conversion device may also be used in data encryption applications.
A mixture theory for geophysical fluids
A. C. Eringen
2004-01-01
Full Text Available A continuum theory is developed for a geophysical fluid consisting of two species. Balance laws are given for the individual components of the mixture, modeled as micropolar viscous fluids. The continua allow independent rotational degrees of freedom, so that the fluids can exhibit couple stresses and a non-symmetric stress tensor. The second law of thermodynamics is used to develop constitutive equations. Linear constitutive equations are constituted for a heat conducting mixture, each species possessing separate viscosities. Field equations are obtained and boundary and initial conditions are stated. This theory is relevant to an atmospheric mixture consisting of any two species from rain, snow and/or sand. Also, this is a continuum theory for oceanic mixtures, such as water and silt, or water and oil spills, etc.
Soliton dynamics in planar ferromagnets and anti-ferromagnets
LINFang-hua; SHATAHJalal
2003-01-01
The aim of this paper is to present a rigorous mathematical proof of the dynamical laws for the topological solitons( magnetic vortices) in ferromagnets and anti-ferromagnets. It is achieved through the conservation laws for the topological vorticity and the weak convergence methods.
Ferromagnet / superconductor oxide superlattices
Santamaria, Jacobo
2006-03-01
The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic
Dowben, Peter
2007-08-01
Since its introduction by de Groot and colleagues in the early 1980s [1], the concept of half metallic ferromagnetism has attracted great interest. Idealized, half-metals have only one spin channel for conduction: the spin-polarized band structure exhibits metallic behavior for one spin channel, while the other spin band structure exhibits a gap at the Fermi level. Due to the gap for one spin direction, the density of states at the Fermi level has, theoretically, 100 & spin polarization. This gap in the density of states in one spin at the Fermi level, for example ↓ so N(↓) (E(F)) = 0, also causes the resistance of that channel to go to infinity. At zero or low temperatures, the nonquasiparticle density of states (electron correlation effects), magnons and spin disorder reduce the polarization from the idealized 100 & polarization. At higher temperatures magnon-phonon coupling and irreversible compositional changes affect polarization further. Strategies for assessing and reducing the effects of finite temperatures on the polarization are now gaining attention. The controversies surrounding the polarization stability of half metallic ferromagnets are not, however, limited to the consideration of finite temperature effects alone. While many novel half metallic materials have been predicted, materials fabrication can be challenging. Defects, surface and interface segregation, and structural stability can lead to profound decreases in polarization, but can also suppress long period magnons. There is a 'delicate balance of energies required to obtain half metallic behaviour: to avoid spin flip scattering, tiny adjustments in atomic positions might occur so that a gap opens up in the other spin channel' [2]. When considering 'spintronics' devices, a common alibi for the study of half metallic systems, surfaces and interfaces become important. Free enthalpy differences between the surface and the bulk will lead to spin minority surface and interface states, as well
PREFACE: Half Metallic Ferromagnets
Dowben, Peter
2007-08-01
Since its introduction by de Groot and colleagues in the early 1980s [1], the concept of half metallic ferromagnetism has attracted great interest. Idealized, half-metals have only one spin channel for conduction: the spin-polarized band structure exhibits metallic behavior for one spin channel, while the other spin band structure exhibits a gap at the Fermi level. Due to the gap for one spin direction, the density of states at the Fermi level has, theoretically, 100 & spin polarization. This gap in the density of states in one spin at the Fermi level, for example ↓ so N↓ (EF) = 0, also causes the resistance of that channel to go to infinity. At zero or low temperatures, the nonquasiparticle density of states (electron correlation effects), magnons and spin disorder reduce the polarization from the idealized 100 & polarization. At higher temperatures magnon-phonon coupling and irreversible compositional changes affect polarization further. Strategies for assessing and reducing the effects of finite temperatures on the polarization are now gaining attention. The controversies surrounding the polarization stability of half metallic ferromagnets are not, however, limited to the consideration of finite temperature effects alone. While many novel half metallic materials have been predicted, materials fabrication can be challenging. Defects, surface and interface segregation, and structural stability can lead to profound decreases in polarization, but can also suppress long period magnons. There is a 'delicate balance of energies required to obtain half metallic behaviour: to avoid spin flip scattering, tiny adjustments in atomic positions might occur so that a gap opens up in the other spin channel' [2]. When considering 'spintronics' devices, a common alibi for the study of half metallic systems, surfaces and interfaces become important. Free enthalpy differences between the surface and the bulk will lead to spin minority surface and interface states, as well as
Optical Orientation in Ferromagnet/Semiconductor Hybrids
Korenev, V. L.
2008-01-01
The physics of optical pumping of semiconductor electrons in the ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of the ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of the semiconductor. Spin-spin interactions near the interface ferromagnet/semiconductor play crucial role in the optical readout and the manipulation of ferromagnetism.
Ferromagnetic Objects Magnetovision Detection System
Michał Nowicki
2013-12-01
Full Text Available This paper presents the application of a weak magnetic fields magnetovision scanning system for detection of dangerous ferromagnetic objects. A measurement system was developed and built to study the magnetic field vector distributions. The measurements of the Earth’s field distortions caused by various ferromagnetic objects were carried out. The ability for passive detection of hidden or buried dangerous objects and the determination of their location was demonstrated.
Properties of twisted ferromagnetic filaments
Belovs, Mihails; Cebers, Andrejs [University of Latvia, Zellu 8, LV-1002 (Latvia)], E-mail: aceb@tesla.sal.lv
2009-02-01
The full set of equations for twisted ferromagnetic filaments is derived. The linear stability analysis of twisted ferromagnetic filament is carried out. Two different types of the buckling instability are found - monotonous and oscillatory. The first in the limit of large twist leads to the shape of filament reminding pearls on the string, the second to spontaneous rotation of the filament, which may constitute the working of chiral microengine.
Non-ferromagnetic overburden casing
Vinegar, Harold J. (Bellaire, TX); Harris, Christopher Kelvin (Houston, TX); Mason, Stanley Leroy (Allen, TX)
2010-09-14
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one system for electrically insulating an overburden portion of a heater wellbore is described. The system may include a heater wellbore located in a subsurface formation and an electrically insulating casing located in the overburden portion of the heater wellbore. The casing may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the casing.
Ferromagnetism beyond Lieb's theorem
Costa, Natanael C.; Mendes-Santos, Tiago; Paiva, Thereza; Santos, Raimundo R. dos; Scalettar, Richard T.
2016-10-01
The noninteracting electronic structures of tight-binding models on bipartite lattices with unequal numbers of sites in the two sublattices have a number of unique features, including the presence of spatially localized eigenstates and flat bands. When a uniform on-site Hubbard interaction U is turned on, Lieb proved rigorously that at half-filling (ρ =1 ) the ground state has a nonzero spin. In this paper we consider a "CuO2 lattice" (also known as "Lieb lattice," or as a decorated square lattice), in which "d orbitals" occupy the vertices of the squares, while "p orbitals" lie halfway between two d orbitals; both d and p orbitals can accommodate only up to two electrons. We use exact determinant quantum Monte Carlo (DQMC) simulations to quantify the nature of magnetic order through the behavior of correlation functions and sublattice magnetizations in the different orbitals as a function of U and temperature; we have also calculated the projected density of states, and the compressibility. We study both the homogeneous (H) case, Ud=Up , originally considered by Lieb, and the inhomogeneous (IH) case, Ud≠Up . For the H case at half-filling, we found that the global magnetization rises sharply at weak coupling, and then stabilizes towards the strong-coupling (Heisenberg) value, as a result of the interplay between the ferromagnetism of like sites and the antiferromagnetism between unlike sites; we verified that the system is an insulator for all U . For the IH system at half-filling, we argue that the case Up≠Ud falls under Lieb's theorem, provided they are positive definite, so we used DQMC to probe the cases Up=0 ,Ud=U and Up=U ,Ud=0 . We found that the different environments of d and p sites lead to a ferromagnetic insulator when Ud=0 ; by contrast, Up=0 leads to to a metal without any magnetic ordering. In addition, we have also established that at density ρ =1 /3 , strong antiferromagnetic correlations set in, caused by the presence of one fermion on each
Kantor, M. M.; Nikabadze, M. U.; Ulukhanyan, A. R.
2013-05-01
Nowadays, microcontinuous mechanics (mechanics of media with microstructure) is being developed very intensively, which is testified by recently published papers [1-14] and by many others, as well as by the symposiumdedicated to the hundredth anniversary of the brothers Cosserat monograph [15], held inParis in 2009. A survey of foreign papers is given in [16], and a special place is occupied by earlier publications of Soviet scientists on micropolar theory of elasticity [17-24]. A brief survey of Cosserat theory of elasticity and an analysis and prospects of such theories in mechanics of rigid deformable bodies is given in [21]. It should be noted that, in a majority of cases, the structure strength calculations are based on the classical theory of elasticity. But there are materials such as animal bones, graphite, several polymers, polyurethane films, porous materials (pumice), various synthetic materials, and materials with inclusions which, under certain conditions, exhibit micropolar properties. There are effects which cannot be prescribed by the classical theory. In statics, nonclassical behavior can be observed in bending of thin films and cantilevers, in torsion of thin and thin-walled rods, and in the case of stress concentration near holes, corner points, cracks, and inclusions. For example, thin specimens are more rigid in bending and torsion as is prescribed by the classical theory [25-27]. The stress concentration near holes decreases, and the concentration factor depends on the radius [28]. The stress concentration near cracks also becomes lower. Conversely, the stress concentration near inclusions is higher than predicted by the classical theory [29-31]. If the material has no center of symmetry of elastic properties, then calculations according to the micropolar theory shows that the specimen is twisted in tension [32]. In dynamical problems, several phenomena also differ from the classical concepts. For example, shear waves propagate with dispersion
Flocking ferromagnetic colloids
Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.
2017-01-01
Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks). PMID:28246633
Dynamical response of vibrating ferromagnets
Gaganidze, E; Ziese, M
2000-01-01
The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of t...
Theory of disordered Heisenberg ferromagnets
Stubbs, R. M.
1973-01-01
A Green's function technique is used to calculate the magnetic properties of Heisenberg ferromagnets in which the exchange interactions deviate randomly in strength from the mean interaction. Systems of sc, bcc, and fcc topologies and of general spin values are treated. Disorder produces marked effects in the density of spin wave states, in the form of enhancement of the low-energy density and extension of the energy band to higher values. The spontaneous magnetization and the Curie temperature decrease with increasing disorder. The effects of disorder are shown to be more pronounced in the ferromagnetic than in the paramagnetic phase.
Thermoelectric Detection of Ferromagnetic Resonance of a Nanoscale Ferromagnet
Bakker, F. L.; Flipse, J.; Slachter, A.; Wagenaar, D.; van Wees, B. J.
2012-01-01
We present thermoelectric measurements of the heat dissipated due to ferromagnetic resonance of a Permalloy strip. A microwave magnetic field, produced by an on-chip coplanar strip waveguide, is used to drive the magnetization precession. The generated heat is detected via Seebeck measurements on a
Abdel-wahed, Mohamed S.
2017-03-01
A mathematical simulation to the cooling process of a flat moving surface using a weak concentration micropolar-nanofluid as a cooling medium has been investigated. The modelling based on the conservation equations of the unsteady case for the momentum and thermal boundary layer taking into consider the effect of suction process and thermal radiation. Using similarity transformation technique, the conservation equations have been transformed to ordinary differential equations that are solved numerically for general case and analytically for the steady case. Surface shear stress, couple shear stress, and the rate of heat transfer are deduced, and the impact of these physical characteristics on the final quality and the mechanical properties of the surface to be cooled discussed.
Jiu, Quansen; Liu, Jitao; Wu, Jiahong; Yu, Huan
2017-10-01
This paper focuses on the initial- and boundary-value problem for the two-dimensional micropolar equations with only angular velocity dissipation in a smooth bounded domain. The aim here is to establish the global existence and uniqueness of solutions by imposing natural boundary conditions and minimal regularity assumptions on the initial data. Besides, the global solution is shown to possess higher regularity when the initial datum is more regular. To obtain these results, we overcome two main difficulties: one due to the lack of full dissipation and one due to the boundary conditions. In addition to the global regularity problem, we also examine the large time behavior of solutions and obtain explicit decay rates.
Novel room temperature ferromagnetic semiconductors
Gupta, Amita
2004-11-01
Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous
Novel room temperature ferromagnetic semiconductors
Gupta, Amita [KTH Royal Inst. of Technology, Stockholm (Sweden)
2004-06-01
Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous
Spin Seebeck effect in a weak ferromagnet
Arboleda, Juan David; Arnache Olmos, Oscar; Aguirre, Myriam Haydee; Ramos, Rafael; Anadon, Alberto; Ibarra, Manuel Ricardo
2016-06-01
We report the observation of room temperature spin Seebeck effect (SSE) in a weak ferromagnetic normal spinel Zinc Ferrite (ZFO). Despite the weak ferromagnetic behavior, the measurements of the SSE in ZFO show a thermoelectric voltage response comparable with the reported values for other ferromagnetic materials. Our results suggest that SSE might possibly originate from the surface magnetization of the ZFO.
On the theory of ferromagnetism
Ruijgrok, Th.W.
1962-01-01
An attempt is made to specify the conditions under which Heisenberg's model of ferromagnetism is correct. It is found that in addition to the exchange term there are other terms in the hamiltonian, describing the effects of the band width and of polar states. The new hamiltonian, which has a simple
Skyrmion Excitations in Planar Ferromagnets
WANG Ji-Biao; REN Ji-Rong; LI Ran
2009-01-01
By making use of the (φ)-mapping topological current theory and the decomposition of gauge potential theory, we investigate the (2+1)-dimensional skyrmion excitations in ferromagnets. We also discuss the branch processes of these skyrmions and the generation and annihilation of skyrmion-antiskyrmion pairs.
Agazzi, Federico M; Falcone, R Dario; Silber, Juana J; Correa, N Mariano
2011-10-27
We have investigated, for the first time, the effect of the composition of the nonpolar organic media on the benzyl-n-hexadecyl-dimethylammonium chloride (BHDC) reversed micelles (RMs) properties at fixed temperature. To achieve this goal we have used the solvatochromic behavior of 1-methyl-8-oxyquinolinium betaine (QB) as absorption probe and dynamic light scattering (DLS), to monitor droplet sizes, interfacial micropolarity, and sequestrated water structure of water/BHDC/n-heptane:benzene RMs. DLS results confirm the formation of the water/BHDC/n-heptane:benzene RMs at every n-heptane mole fraction (X(Hp)) investigated, that is, X(Hp) = 0.00, 0.13, 0.21, 0.30, and 0.38. Also, DLS was used to measure the RMs diffusion coefficient and to calculate the apparent droplet hydrodynamic diameter (d(App)) at different compositions of the nonpolar organic medium. The data suggest that as the n-heptane content increases, the interdroplet attractive interactions also increase with the consequent increment in the droplet size. Moreover, the interdroplet attractive interactions can be "switched on (increased)" or "switched off (decreased)" by formulation of appropriate n-heptane:benzene mixtures. Additionally, QB spectroscopy was used to obtain the "operational" critical micellar concentration (cmc) and to investigate both the RMs interfacial micropolarity and the sequestrated water structure in every RMs studied. The results show that BHDC RMs are formed at lower surfactant concentration when n-heptane or water content increases. When the interdroplet interaction "switches on", the RMs droplet sizes growth expelling benzene molecules from the RMs interface, favoring the water-BHDC interaction at the interface with the consequent increases in the interfacial micropolarity. Therefore, changing the solvent blend is possible to affect dramatically the interfacial micropolarity, the droplet sizes and the structure of the entrapped water.
Josephson junctions with ferromagnetic interlayer
Wild, Georg Hermann
2012-03-04
We report on the fabrication of superconductor/insulator/ferromagnetic metal/superconductor (Nb/AlO{sub x}/Pd{sub 0.82}Ni{sub 0.18}/Nb) Josephson junctions (SIFS JJs) with high critical current densities, large normal resistance times area products, and high quality factors. For these junctions, a transition from 0- to {pi}-coupling is observed for a thickness d{sub F}=6 nm of the ferromagnetic Pd{sub 0.82}Ni{sub 0.18} interlayer. The magnetic field dependence of the critical current of the junctions demonstrates good spatial homogeneity of the tunneling barrier and ferromagnetic interlayer. Magnetic characterization shows that the Pd{sub 0.82}Ni{sub 0.18} has an out-of-plane anisotropy and large saturation magnetization indicating negligible dead layers at the interfaces. A careful analysis of Fiske modes up to about 400 GHz provides valuable information on the junction quality factor and the relevant damping mechanisms. Whereas losses due to quasiparticle tunneling dominate at low frequencies, at high frequencies the damping is explained by the finite surface resistance of the junction electrodes. High quality factors of up to 30 around 200 GHz have been achieved. They allow to study the junction dynamics, in particular the switching probability from the zero-voltage into the voltage state with and without microwave irradiation. The experiments with microwave irradiation are well explained within semi-classical models and numerical simulations. In contrast, at mK temperature the switching dynamics without applied microwaves clearly shows secondary quantum effects. Here, we could observe for the first time macroscopic quantum tunneling in Josephson junctions with a ferromagnetic interlayer. This observation excludes fluctuations of the critical current as a consequence of an unstable magnetic domain structure of the ferromagnetic interlayer and affirms the suitability of SIFS Josephson junctions for quantum information processing.
Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.
Stamopoulos, D; Aristomenopoulou, E
2015-01-01
Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.
Isotope shift of the ferromagnetic transition temperature in itinerant ferromagnets
Yanagisawa, Takashi; Hase, Izumi; Odagiri, Kosuke
2017-02-01
We present a theory of the isotope effect of the Curie temperature Tc in itinerant ferromagnets. The isotope effect in ferromagnets occurs via the electron-phonon vertex correction and the effective attractive interaction mediated by the electron-phonon interaction. The decrease of the Debye frequency increases the relative strength of the Coulomb interaction, which results in a positive isotope shift of Tc when the mass M of an atom increases. Following this picture, we evaluate the isotope effect of Tc by using the Stoner theory and a spin-fluctuation theory. When Tc is large enough as large as or more than 100 K, the isotope effect on Tc can be measurable. Recently, precise measurements on the oxygen isotope effect on Tc have been performed for itinerant ferromagnet SrRuO3 with Tc ∼ 160 K. A clear isotope effect has been observed with the positive shift of Tc ∼ 1 K by isotope substitution (16O →18O). This experimental result is consistent with our theory.
Microwave metamaterials with ferromagnetic microwires
Panina, L. V.; Ipatov, M.; Zhukova, V.; Zhukov, A.; Gonzalez, J.
2011-06-01
This paper discusses a new type of wire media based on amorphous ferromagnetic microwires. The combination of two effects, namely, a strong dispersion of the effective permittivity in metallic wire composites (resonance or plasmonic type) and giant magnetoimpedance effect in wires, will result in unusual property that an effective dielectric response may strongly depend on the wire magnetization which can be changed with external stimuli: magnetic field, mechanical stress and temperature.
Dynamical response of vibrating ferromagnets
Gaganidze, E.; Esquinazi, P.; Ziese, M.
2000-02-01
The resonance frequency of vibrating ferromagnetic reeds in a homogeneous magnetic field can be substantially modified by intrinsic and extrinsic field-related contributions. Searching for the physical reasons of the field-induced resonance frequency change and to study the influence of the spin glass state on it, we have measured the low-temperature magnetoelastic behavior and the dynamical response of vibrating amorphous and polycrystalline ferromagnetic ribbons. We show that the magnetoelastic properties depend strongly on the direction of the applied magnetic field. The influence of the re-entrant spin glass transition on these properties is discussed. We present clear experimental evidence that for applied fields perpendicular to the main area of the samples the behavior of ferromagnetic reeds is rather independent of the material composition and magnetic state, exhibiting a large decrease of the resonance frequency. This effect can be very well explained with a model based on the dynamical response of the reed and the magnetomechanical pole effect within a domain rotation model and is not related to magnetoelasticity.
Critical behaviour of coupled organic ferromagnet chains
Guo Ji-Yong; Chen Yu-Guang; Chen Hong
2005-01-01
The interchain coupling in a model, which is most relevant to organic ferromagnets, is studied by a kind of mean field theory. A full phase diagram is given for this model. It is shown that the interchain coupling dramatically affects the ferromagnetic order in the ground state. When the interchain coupling reaches a critical value, the high-spin ground state disappears and the system may transit from ferromagnetic phase into Kondo-singlet phase.
On the Absence of Ferromagnetism in Typical 2D Ferromagnets
Biskup, Marek
2010-04-06
We consider the Ising systems in d dimensions with nearest-neighbor ferromagnetic interactions and long-range repulsive (antiferromagnetic) interactions that decay with power s of the distance. The physical context of such models is discussed; primarily this is d = 2 and s = 3 where, at long distances, genuine magnetic interactions between genuine magnetic dipoles are of this form.We prove that when the power of decay lies above d and does not exceed d + 1, then for all temperatures the spontaneous magnetization is zero. In contrast, we also show that for powers exceeding d + 1 (with d {ge} 2) magnetic order can occur.
Coherent quantum trasport in ferromagnet-superconductor-ferromagnet graphene junctions
M Salehi
2010-09-01
Full Text Available In this paper, we investigate the coherent quantum transport in grapheme-based ferromagnet-superconductor-ferromagent junctions within the framework of BCS theory using DBdG quasiparticles equation .The coherency with the finite size of superconductor region has two characteristic features subgap electron transport and oscillations of differential conductance. we show that periodic vanishing of the Andreev reflection at the energies called geometrical resonances above the superconducting gap is a striking consequence of quasiparticles interference. We suggest to make devices that produce polarized spin-current with possible applications in spintronics.
An extension to flat band ferromagnetism
Gulacsi, M.; Kovacs, G.; Gulacsi, Z.
2014-11-01
From flat band ferromagnetism, we learned that the lowest energy half-filled flat band gives always ferromagnetism if the localized Wannier states on the flat band satisfy the connectivity condition. If the connectivity conditions are not satisfied, ferromagnetism does not appear. We show that this is not always the case namely, we show that ferromagnetism due to flat bands can appear even if the connectivity condition does not hold due to a peculiar behavior of the band situated just above the flat band.
Anomalous Hall Effect in a Kagome Ferromagnet
Ye, Linda; Wicker, Christina; Suzuki, Takehito; Checkelsky, Joseph; Joseph Checkelsky Team
The ferromagnetic kagome lattice is theoretically known to possess topological band structures. We have synthesized large single crystals of a kagome ferromagnet Fe3Sn2 which orders ferromagnetically well above room temperature. We have studied the electrical and magnetic properties of these crystals over a broad temperature and magnetic field range. Both the scaling relation of anomalous Hall effect and anisotropic magnetic susceptibility show that the ferromagnetism of Fe3Sn2 is unconventional. We discuss these results in the context of magnetism in kagome systems and relevance to the predicted topological properties in this class of compounds. This research is supported by DMR-1231319.
Schapers, T; Nitta, J; Heersche, HB; Takayanagi, H
2002-01-01
The spin dependent conductance of a ferromagnet/two-dimensional electron gas ferromagnet structure is theoretically examined in the ballistic transport regime. It is shown that the spin signal can be improved considerably by making use of the spin filtering effect of a barrier at the ferromagnet two
Radioactive Probes on Ferromagnetic Surfaces
2002-01-01
On the (broad) basis of our studies of nonmagnetic radioactive probe atoms on magnetic surfaces and at interfaces, we propose to investigate the magnetic interaction of magnetic probe atoms with their immediate environment, in particular of rare earth (RE) elements positioned on and in ferromagnetic surfaces. The preparation and analysis of the structural properties of such samples will be performed in the UHV chamber HYDRA at the HMI/Berlin. For the investigations of the magnetic properties of RE atoms on surfaces Perturbed Angular Correlation (PAC) measurements and Mössbauer Spectroscopy (MS) in the UHV chamber ASPIC (Apparatus for Surface Physics and Interfaces at CERN) are proposed.
Structural changes concurrent with ferromagnetic transition
Yang Sen; Bao Hui-Xin; Zhou Chao; Wang Yu; Ren Xiao-Bing; Song Xiao-Ping; Yoshitaka Matsushita
2013-01-01
Ferromagnetic transition has generally been considered to involve only an ordering of magnetic moment with no change in the host crystal structure or symmetry,as evidenced by a wealth of crystal structure data from conventional X-ray diffractometry (XRD).However,the existence of magnetostriction in all known ferromagnetic systems indicates that the magnetic moment is coupled to the crystal lattice; hence there is a possibility that magnetic ordering may cause a change in crystal structure.With the development of high-resolution synchrotron XRD,more and more magnetic transitions have been found to be accompanied by simultaneous structural changes.In this article,we review our recent progress in understanding the structural change at a ferromagnetic transition,including synchrotron XRD evidence of structural changes at the ferromagnetic transition,a phenomenological theory of crystal structure changes accompanying ferromagnetic transitions,new insight into magnetic morphotropic phase boundaries (MPB) and so on.Two intriguing implications of non-centric symmetry in the ferromagnetic phase and the first-order nature of ferromagnetic transition are also discussed here.In short,this review is intended to give a self-consistent and logical account of structural change occurring simultaneously with a ferromagnetic transition,which may provide new insight for developing highly magneto-responsive materials.
Spin relaxation in metallic ferromagnets
Berger, L.
2011-02-01
The Elliott theory of spin relaxation in metals and semiconductors is extended to metallic ferromagnets. Our treatment is based on the two-current model of Fert, Campbell, and Jaoul. The d→s electron-scattering process involved in spin relaxation is the inverse of the s→d process responsible for the anisotropic magnetoresistance (AMR). As a result, spin-relaxation rate 1/τsr and AMR Δρ are given by similar formulas, and are in a constant ratio if scattering is by solute atoms. Our treatment applies to nickel- and cobalt-based alloys which do not have spin-up 3d states at the Fermi level. This category includes many of the technologically important magnetic materials. And we show how to modify the theory to apply it to bcc iron-based alloys. We also treat the case of Permalloy Ni80Fe20 at finite temperature or in thin-film form, where several kinds of scatterers exist. Predicted values of 1/τsr and Δρ are plotted versus resistivity of the sample. These predictions are compared to values of 1/τsr and Δρ derived from ferromagnetic-resonance and AMR experiments in Permalloy.
Spin-orbit ferromagnetic resonance
Ferguson, Andrew
2013-03-01
In conventional magnetic resonance techniques the magnitude and direction of the oscillatory magnetic field are (at least approximately) known. This oscillatory field is used to probe the properties of a spin ensemble. Here, I will describe experiments that do the inverse. I will discuss how we use a magnetic resonance technique to map out the current-induced effective magnetic fields in the ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P). These current-induced fields have their origin in the spin-orbit interaction. Effective magnetic fields are observed with symmetries which resemble the Dresselhaus and Rashba spin-orbit interactions and which depend on the diagonal and off-diagonal strain respectively. Ferromagnetic semiconductor materials of different strains, annealing conditions and concentrations are studied and the results compared with theoretical calculations. Our original study measured the rectification voltage coming from the product of the oscillatory magnetoresistance, during magnetisation precession, and the alternating current. More recently we have developed an impedance matching technique which enables us to extract microwave voltages from these high resistance (10 k Ω) samples. In this way we measure the microwave voltage coming from the product of the oscillating magneto-resistance and a direct current. The direct current is observed to affect the magnetisation precession, indicating that anti-damping as well as field-like torques can originate from the spin-orbit interaction.
VARIATIONAL PRINCIPLE FOR WAVE ANALYSIS OF SATURATED MICRO-POLAR SOIL%微极饱和土波动分析中的变分原理
付兵; 王振宇
2012-01-01
主要给出饱和多孔微极介质波动方程变分所对应的泛函表达式和有限元离散化方程。首先对u-U形式的饱和多孔微极介质波动方程和边界条件进行Laplace变换，形成力学中的非齐次边值问题，然后构造变分后满足波动方程和边界条件的泛函，最后将有限元插值形式代入泛函表达式得到单元体的有限元离散方程。此方程对微极饱和多孔介质的动力固结问题数值分析具有重要意义。%Functional representations corresponding to the variational principle for the elastic pragmatic wave equations of saturated porous micro-polar medium and their discretized equations obtained by the f＇mite element method are presented here. Firstly, the dynamic consolidation equations of saturated micro-polar soil given by u-U format and the relevant boundary conditions are transformed by Laplace transformation, so the non-homogeneous boundary problems in mechanics are engendered. Next, the function which satisfy the wave equations and boundary conditions after variation are composed through mathematic theory. In the end, the interpolation forms of the finite element method are inserted into the functional representations and the discretized equations of an element are obtained. It is significant for the numerical analysis on dynamic consolidation problems of saturated porous micro-polar medium.
Hydrogen in ferromagnetic semiconductors for planar spintronics
Farshchi, Rouin
This dissertation documents the use of hydrogen for controlling electrical and magnetic properties of ferromagnetic semiconductors, particularly GaMnAs. With minimal structural perturbation, hydrogen forms complexes with Mn acceptors and renders them neutral, thereby substantially increasing electrical resistivity and removing ferromagnetism. A major finding presented herein is that laser annealing can be used to controllably dissociate the Mn-H complexes and restore ferromagnetism. Structural, electrical, and magnetic effects of the laser activation process are thoroughly explored through experiments and numerical modeling. Local laser activation with tightly-focused ultra-short laser pulses allows for high-resolution direct-writing of ferromagnetic patterns in semiconductors, introducing a new paradigm for device design. Prospects for laser formation of high-temperature phases in ferromagnetic semiconductors are investigated. Finally, several device concepts incorporating the laser activation process are discussed as building blocks towards planar all-semiconductor spintronics.
Intermittent flow regimes near the convection threshold in ferromagnetic nanofluids.
Krauzina, Marina T; Bozhko, Alexandra A; Putin, Gennady F; Suslov, Sergey A
2015-01-01
The onset and decay of convection in a spherical cavity filled with ferromagnetic nanofluid and heated from below are investigated experimentally. It is found that, unlike in a single-component Newtonian fluid where stationary convection sets in as a result of supercritical bifurcation and where convection intensity increases continuously with the degree of supercriticality, convection in a multicomponent ferromagnetic nanofluid starts abruptly and has an oscillatory nature. The hysteresis is observed in the transition between conduction and convection states. In moderately supercritical regimes, the arising fluid motion observed at a fixed temperature difference intermittently transitions from quasiharmonic to essentially irregular oscillations that are followed by periods of a quasistationary convection. The observed oscillations are shown to result from the precession of the axis of a convection vortex in the equatorial plane. When the vertical temperature difference exceeds the convection onset value by a factor of 2.5, the initially oscillatory convection settles to a steady-state regime with no intermittent behavior detected afterward. The performed wavelet and Fourier analyses of thermocouple readings indicate the presence of various oscillatory modes with characteristic periods ranging from one hour to several days.
Ghanbari, Mina; Hossainpour, Siamak; Rezazadeh, Ghader
2015-11-01
This paper deals with the analysis of a novel micro-electromechanical sensor for measurement of microscale fluid physical properties. The proposed sensor is made up of a micro-beam with one end fixed and a micro-plate as a sensing element at its free end, which is immersed in a microscale fluid media. As fluids show different behavior in microscale than in macroscale, the microscale fluid media have been modeled based on micro-polar theory. So non-classical properties of fluid that are absent in macroscale flows need to be measured. In order to actuate the sensor longitudinally, an AC voltage is applied to the piezoelectric layers on the upper and lower surfaces of the micro-beam. Coupled governing partial differential equations of motion of the fluid field and longitudinal vibration of the micro-beam have been derived based on micro-polar theory. The obtained governing differential equations with time-varying boundary conditions have been simplified and transformed to an enhanced form with homogenous boundary conditions. Then, they have been discretized over the beam and fluid domain using Galerkin-based reduced-order model. The dynamic response of the sensing element for different piezoelectric actuation voltages and different exciting frequencies has been studied. It has been shown that by investigating damping and inertial effect fluid loading on response of the micro-beam, properties of a microscale fluid can be measured. At the end, effects of geometrical parameters of the sensor on the response of sensing element have been studied.
Vortex state in ferromagnetic nanoparticles
Betto, Davide; Coey, J. M. D.
2014-05-01
The evolution of the magnetic state of a soft ferromagnetic nanoparticle with its size is usually thought to be from superparamagnetic single domain to blocked single domain to a blocked multidomain structure. Néel pointed out that a vortex configuration produces practically no stray field at the cost of an increase in the exchange energy, of the order of RJS2lnR /c, where JS2 is the bond energy, R is the particle radius, and c is of the order of the exchange length. A vortex structure is energetically cheaper than single domain when the radius is greater than a certain value. The correct sequence should include a vortex configuration between the single domain and the multidomain states. The critical size is calculated for spherical particles of four important materials (nickel, magnetite, permalloy, and iron) both numerically and analytically. A vortex state is favored in materials with high magnetisation.
Persistent currents in ferromagnetic condensates
Lamacraft, Austen
2017-06-01
Persistent currents in Bose condensates with a scalar order parameter are stabilized by the topology of the order parameter manifold. In condensates with multicomponent order parameters it is topologically possible for supercurrents to "unwind" without leaving the manifold. We study the energetics of this process in the case of ferromagnetic condensates using a long wavelength energy functional that includes both the superfluid and spin stiffnesses. Exploiting analogies to an elastic rod and rigid body motion, we show that the current carrying state in a 1D ring geometry transitions between a spin helix in the energy minima and a solitonlike configuration at the maxima. The relevance to recent experiments in ultracold atoms is briefly discussed.
Magnetization of Coupled Ultrathin Ferromagnetic Films
WANG Huai-Yu; ZHOU Yun-Song; WANG Chong-Yu
2002-01-01
The magnetization of coupled ferromagnetic films is calculated by Green's function method. The coupling can either be ferromagnetic or antiferromagnetic. For the latter case, a concept of pseudo-spin is suggested to make calculation possible. A pseudo-spin is actually an anti-spin with its properties being analogue to other known anti particles such as a hole. The decreasing of Curie point as the coupling strength decays is computed. It is noted that with the same strength, antiferromagnetic coupling has higher Curie point than ferromagnetic coupling.
Ma, Ji; Liu, Chunting; Chen, Kezheng
2016-01-01
In this work, a facile and versatile solution route was used to fabricate room-temperature ferromagnetic fish bone-like, pteridophyte-like, poplar flower-like, cotton-like Cu@Cu2O architectures and golfball-like Cu@ZnO architecture. The ferromagnetic origins in these architectures were found to be around metal-semiconductor interfaces and defects, and the root cause for their ferromagnetism lay in charge transfer processes from metal Cu to semiconductors Cu2O and ZnO. Owing to different metallization at their interfaces, these architectures exhibited different ferromagnetic behaviors, including coercivity, saturation magnetization as well as magnetic interactions. PMID:27680286
High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb
Tu, Nguyen Thanh [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physics, Ho Chi Minh City University of Pedagogy, 280, An Duong Vuong Street, District 5, Ho Chi Minh City 748242 (Viet Nam); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Anh, Le Duc [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2016-05-09
We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.
Hybrid models for complex fluids
Tronci, Cesare
2010-01-01
This paper formulates a new approach to complex fluid dynamics, which accounts for microscopic statistical effects in the micromotion. While the ordinary fluid variables (mass density and momentum) undergo usual dynamics, the order parameter field is replaced by a statistical distribution on the order parameter space. This distribution depends also on the point in physical space and its dynamics retains the usual fluid transport features while containing the statistical information on the order parameter space. This approach is based on a hybrid moment closure for Yang-Mills Vlasov plasmas, which replaces the usual cold-plasma assumption. After presenting the basic properties of the hybrid closure, such as momentum map features, singular solutions and Casimir invariants, the effect of Yang-Mills fields is considered and a direct application to ferromagnetic fluids is presented. Hybrid models are also formulated for complex fluids with symmetry breaking. For the special case of liquid crystals, a hybrid formul...
Conserved momenta of a ferromagnetic soliton
Tchernyshyov, Oleg, E-mail: olegt@jhu.edu
2015-12-15
Linear and angular momenta of a soliton in a ferromagnet are commonly derived through the application of Noether’s theorem. We show that these quantities exhibit unphysical behavior: they depend on the choice of a gauge potential in the spin Lagrangian and can be made arbitrary. To resolve this problem, we exploit a similarity between the dynamics of a ferromagnetic soliton and that of a charged particle in a magnetic field. For the latter, canonical momentum is also gauge-dependent and thus unphysical; the physical momentum is the generator of magnetic translations, a symmetry combining physical translations with gauge transformations. We use this analogy to unambiguously define conserved momenta for ferromagnetic solitons. General considerations are illustrated on simple models of a domain wall in a ferromagnetic chain and of a vortex in a thin film.
Modified Heisenberg Ferromagnet Model and Integrable Equation
无
2005-01-01
We investigate some integrable modified Heisenberg ferromagnet models by using the prolongation structure theory. Through associating them with the motion of curve in Minkowski space, the corresponding coupled integrable equations are presented.
Josephson tunnel junctions with ferromagnetic interlayer
Weides, M.P.
2006-07-01
Superconductivity and ferromagnetism are well-known physical properties of solid states that have been widely studied and long thought about as antagonistic phenomena due to difference in spin ordering. It turns out that the combination of both superconductor and ferromagnet leads to a very rich and interesting physics. One particular example, the phase oscillations of the superconducting order parameter inside the ferromagnet, will play a major role for the devices discussed in this work. In this thesis, I present Josephson junctions with a thin Al{sub 2}O{sub 3} tunnel barrier and a ferromagnetic interlayer, i.e. superconductor-insulator-ferromagnet-superconductor (SIFS) stacks. The fabrication of junctions was optimized regarding the insulation of electrodes and the homogeneity of the current transport. The junctions were either in the 0 or {pi} coupled ground state, depending on the thickness of the ferromagnetic layer and on temperature. The influence of ferromagnetic layer thickness on the transport properties and the coupling (0, {pi}) of SIFS tunnel junctions was studied. Furthermore, using a stepped ferromagnetic layer with well-chosen thicknesses, I obtained the so-called 0-{pi} Josephson junction. At a certain temperature this 0-{pi} junction can be made perfectly symmetric. In this case the ground state corresponds to a vortex of supercurrent creating a magnetic flux which is a fraction of the magnetic flux quantum {phi}{sub 0}. Such structures allow to study the physics of fractional vortices and to build various electronic circuits based on them. The SIFS junctions presented here have an exponentially vanishing damping at T {yields} 0. The SIFS technology developed within the framework of this work may be used to construct classical and quantum devices such as oscillators, memory cells and qubits. (orig.)
Ferromagnetism in metallocene-doped fullerenes
Mihailovic, D
2003-01-01
Ferromagnetism in fullerene-based systems doped with metallocenes is reviewed. These compounds form a ferromagnetic state by spin-coupling between pi electrons on fullerene units, while the metallocene molecules do not contribute to the spin ordering. One of these compounds has the highest critical temperature (19 K) for this class of compound. The magnetic properties of these materials are very strongly dependent on the crystallization conditions. Refs. 19 (author)
Resonance frequency in ferromagnetic superlattices
Qiu Rongke; Huang Andong [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Li Da; Zhang Zhidong, E-mail: rkqiu@163.com [Shenyang National Laboratory for Materials Science, Institute of Metal Research and International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China)
2011-10-19
The resonance frequency in two-layer and three-layer ferromagnetic superlattices is studied, using the Callen's Green function method, the Tyablikov decoupling approximation and the Anderson-Callen decoupling approximation. The effects of interlayer exchange coupling, anisotropy, external magnetic field and temperature on the resonance frequency are investigated. It is found that the resonance frequencies increase with increasing external magnetic field. In a parameter region of the asymmetric system, each sublayer corresponds to its own resonance frequency. The anisotropy of a sublayer affects only the resonance frequency corresponding to this sublayer. The stronger the anisotropy, the higher is the resonance frequency. The interlayer exchange coupling affects only the resonance frequencies belonging to the sublayers connected by it. The stronger the interlayer exchange coupling, the higher are the resonance frequencies. All the resonance frequencies decrease as the reduced temperature increases. The results direct the method to enhance and adjust the resonance frequency of magnetic multilayered materials with a wide band.
Electronic structure of half-metallic ferromagnets and spinel ferromagnetic insulators
Szotek, Z [Daresbury Laboratory, Daresbury, Warrington WA4 4AD, Cheshire (United Kingdom); Temmerman, W M [Daresbury Laboratory, Daresbury, Warrington WA4 4AD, Cheshire (United Kingdom); Svane, A [Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Petit, L [Computer Science and Mathematics Division, and Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Strange, P [School of Chemistry and Physics, Keele University, Staffordshire ST5 5BG (United Kingdom); Stocks, G M [Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States); Koedderitzsch, D [Fachbereich Physik, Martin-Luther-Universitaet Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06099 Halle (Germany); Hergert, W [Fachbereich Physik, Martin-Luther-Universitaet Halle-Wittenberg, Friedemann-Bach-Platz 6, D-06099 Halle (Germany); Winter, H [INFP, Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany)
2004-12-08
We discuss an application of the self-interaction-corrected local spin density (SIC-LSD) approximation to study electronic structure of some half-metallic ferromagnets and ferromagnetic insulators of current interest in spintronics. Both d- and f-electron materials are considered, and we concentrate on the nominal valence and ground state properties of these systems.
Current Induced Heat Generation in Ferromagnet-Quantum Dot-Ferromagnet System
Lili Zhao
2015-06-01
Full Text Available We study the heat generation in ferromagnet-quantum dot-ferromagnet system by the non-equilibrium Green’s functions method. Heat generation under the influence of ferromagnet leads is very different compared with a system with normal metal leads. The significant effects in heat generation are caused by the polarization angle θ associated with the orientation of polarized magnetic moment of electron in the ferromagnetic terminals. From the study of heat generation versus source drain bias (Q-eV curves, we find that the heat generation decreases as θ increases from 0 to 0.7π. The heat generation versus gate voltage (Q-eVg curves also display interesting behavior with increasing polarization angle θ. Meanwhile, heat generation is influenced by the relative angle θ of magnetic moment in the ferromagnetic leads. These results will provide theories to this quantum dot system as a new material of spintronics.
Tunable magnon Weyl points in ferromagnetic pyrochlores
Mook, Alexander; Mertig, Ingrid
2016-01-01
The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction is shown to possess Weyl points, i.\\,e., pairs of topological nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out-of-plane shifts the Weyl points toward the center $\\bar{\\Gamma}$ of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i.\\,e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the $(111)$ surface, identify candidates of established ferromagnetic pyrochlores whic...
Ferromagnetism of polythiophene-capped Au nanoparticles
Suzuki, K.; Zhang, H.; Saito, K.; Garitaonandia, J. S.; Goikolea, E.; Insausti, M.
2011-04-01
The magnetic and electrical transport properties of regioregular poly(3-hexylthiophene)-capped Au nanoparticles (NPs) doped with iodine have been investigated to clarify the effectiveness of conductive polymer capping on the induction of ferromagnetism in Au. The room-temperature magnetization curve of the undoped polythiophene-capped Au NPs exhibits a clear hysteresis behavior with a coercive force of 160 Oe. The spontaneous magnetization normalized by the mass of Au is 2.0 × 10-2 emu/g. The spontaneous magnetization was found virtually unaffected by iodine doping, whereas the electrical conductivity is enhanced dramatically to ˜10 S/cm. Our results show that polythiophene capping could lead to spontaneous magnetic polarization in Au NPs, and the conductivity of the polymer capping does not affect the ferromagnetism of the Au nanoparticles, opening a possibility for further investigation into the magnetotransport behavior of ferromagnetic Au NPs.
Rapidly solidified ferromagnetic shape memory alloys
Craciunescu, C. M.; Ercuta, A.; Mitelea, I.; Valeanu, M.; Teodorescu, V. S.; Lupu, N.; Chiriac, H.
2008-05-01
Ferromagnetic shape memory alloys have been manufactured by various techniques involving rapid solidification. Bulk alloys have been obtained by extracting the melted alloy in especially designed copper molds; glass coated wires have been obtained by drawing the melt from glass recipients followed by water cooling and ribbons have been fabricated by melt-spinning. Microstructural observations show particular solidification aspects of fractured areas, while ferromagnetic behavior has been detected in glass coated wires obtained by rapid solidification. The martensitic microstructure was observed on Co-Ni-Ga rapid solidified bulk alloys and Fe-Pd ribbons. The memory effect was detected using a Vibran system that allows the detection of the phase transition for the ribbons and by visual observation for other specimens. The conclusions of the observations are related to the comparison between the ferromagnetic behaviors of shape memory alloys solidified using different techniques.
Simple and advanced ferromagnet/molecule spinterfaces
Gruber, M.; Ibrahim, F.; Djedhloul, F.; Barraud, C.; Garreau, G.; Boukari, S.; Isshiki, H.; Joly, L.; Urbain, E.; Peter, M.; Studniarek, M.; Da Costa, V.; Jabbar, H.; Bulou, H.; Davesne, V.; Halisdemir, U.; Chen, J.; Xenioti, D.; Arabski, J.; Bouzehouane, K.; Deranlot, C.; Fusil, S.; Otero, E.; Choueikani, F.; Chen, K.; Ohresser, P.; Bertran, F.; Le Fèvre, P.; Taleb-Ibrahimi, A.; Wulfhekel, W.; Hajjar-Garreau, S.; Wetzel, P.; Seneor, P.; Mattana, R.; Petroff, F.; Scheurer, F.; Weber, W.; Alouani, M.; Beaurepaire, E.; Bowen, M.
2016-10-01
Spin-polarized charge transfer between a ferromagnet and a molecule can promote molecular ferromagnetism 1, 2 and hybridized interfacial states3, 4. Observations of high spin-polarization of Fermi level states at room temperature5 designate such interfaces as a very promising candidate toward achieving a highly spin-polarized, nanoscale current source at room temperature, when compared to other solutions such as half-metallic systems and solid-state tunnelling over the past decades. We will discuss three aspects of this research. 1) Does the ferromagnet/molecule interface, also called an organic spinterface, exhibit this high spin-polarization as a generic feature? Spin-polarized photoemission experiments reveal that a high spin-polarization of electronics states at the Fermi level also exist at the simple interface between ferromagnetic cobalt and amorphous carbon6. Furthermore, this effect is general to an array of ferromagnetic and molecular candidates7. 2) Integrating molecules with intrinsic properties (e.g. spin crossover molecules) into a spinterface toward enhanced functionality requires lowering the charge transfer onto the molecule8 while magnetizing it1,2. We propose to achieve this by utilizing interlayer exchange coupling within a more advanced organic spinterface architecture. We present results at room temperature across the fcc Co(001)/Cu/manganese phthalocyanine (MnPc) system9. 3) Finally, we discuss how the Co/MnPc spinterface's ferromagnetism stabilizes antiferromagnetic ordering at room temperature onto subsequent molecules away from the spinterface, which in turn can exchange bias the Co layer at low temperature10. Consequences include tunnelling anisotropic magnetoresistance across a CoPc tunnel barrier11. This augurs new possibilities to transmit spin information across organic semiconductors using spin flip excitations12.
Ferromagnetism in an Itinerant Electron Cluster
LIGang; TIANGuang-Shan
2005-01-01
In the present paper, we study the existence of metallic ferromagnetism in a cluster of nanometer scale,which is described by the Hubbard model defined on a complete graph. Therefore, the system is highly frustrated with respect to electron hopping. By solving the model exactly, we show that its ground state is fully spin-polarized at half-rilling, even if the Coulomb interaction is finite. This conclusion is in sharp contrast to the well-known result for the Hubbard model on a bipartite lattice. As a result, our exact solution strongly suggests that frustration may play an important role in causing metallic ferromagnetism.
Ferromagnetism in an Itinerant Electron Cluster
LI Gang; TIAN Guang-Shan
2005-01-01
In the present paper, we study the existence of metallic ferromagnetism in a cluster of nanometer scale,which is described by the Hubbard model defined on a complete graph. Therefore, the system is highly frustrated with respect to electron hopping. By solving the model exactly, we show that its ground state is fully spin-polarized at half-filling, even if the Coulomb interaction is finite. This conclusion is in sharp contrast to the well-known result for the Hubbard model on a bipartite lattice. As a result, our exact solution strongly suggests that frustration may play an important role in causing metallic ferromagnetism.
Cosmic Neutrino Background as a Ferromagnet
Arias, Paola; Lopez-Sarrion, Justo
2013-01-01
If cosmic background neutrinos interact very weakly with each other, through spin-spin interactions, then they may have experienced a phase transition, leading to a ferromagnetic ordering. The small magnetic field resulting from ferromagnetic ordering -- if present before galaxy formation -- could act as a primordial seed of the magnetic fields observed in several galaxies. Our findings suggest that the magnetization could occur in the right epoch, if the exchange gauge boson of neutrino-neutrino interaction is a massless boson beyond the Standard Model, with a coupling constant of $2.2\\times 10^{-13} \\left(\\frac{m_\
Wellhead with non-ferromagnetic materials
Hinson, Richard A [Houston, TX; Vinegar, Harold J [Bellaire, TX
2009-05-19
Wellheads for coupling to a heater located in a wellbore in a subsurface formation are described herein. At least one wellhead may include a heater located in a wellbore in a subsurface formation; and a wellhead coupled to the heater. The wellhead may be configured to electrically couple the heater to one or more surface electrical components. The wellhead may include at least one non-ferromagnetic material such that ferromagnetic effects are inhibited in the wellhead. Systems and methods for using such wellheads for treating a subsurface formation are described herein.
More on generalized Heisenberg ferromagnet models
Oh, P; Oh, Phillial; Park, Q Han
1996-01-01
We generalize the integrable Heisenberg ferromagnet model according to each Hermitian symmetric spaces and address various new aspects of the generalized model. Using the first order formalism of generalized spins which are defined on the coadjoint orbits of arbitrary groups, we construct a Lagrangian of the generalized model from which we obtain the Hamiltonian structure explicitly in the case of CP(N-1) orbit. The gauge equivalence between the generalized Heisenberg ferromagnet and the nonlinear Schr\\"{o}dinger models is given. Using the equivalence, we find infinitely many conserved integrals of both models.
Three dimensional dynamics of ferromagnetic swimmer
Erglis, K.; Livanovics, R. [Department of Physics, University of Latvia, Zellu 8, Ri-bar ga LV-1002 (Latvia); Cebers, A., E-mail: aceb@tesla.sal.l [Department of Physics, University of Latvia, Zellu 8, Ri-bar ga LV-1002 (Latvia)
2011-05-15
It is shown that a flexible ferromagnetic filament self-propels perpendicularly to the AC magnetic field during a limited period of time due to the instability of the planar motion with respect to three dimensional perturbations. The transition from the oscillating U-like shapes to the oscillating S-like shapes is characterized by the calculated Wr number. - Research Highlights: A ferromagnetic filament self-propels perpendicularly to the AC field. During the self-propulsion cycle the filament moves both forward and backward. The self-propulsion stops due to the three dimensional instability. The mechanism of the self-propulsion is similar to that used by some microorganisms.
Vortex dynamics in ferromagnetic/superconducting bilayers
Cieplak, M.Z.; Adamus, Z. [Polish Acad Sci, Inst Phys, PL-02668 Warsaw, (Poland); Konczykowski, M. [CEA, DSM, DRECAM, Lab Solides Irradies, Ecole Polytechnique, CNRS-UMR 7642, F-91128 Palaiseau (France); Zhu, L.Y.; Chien, C.L. [Johns Hopkins Univ, Dept Phys and Astron, Baltimore, MD 21218 (United States)
2008-07-01
The dependence of vortex dynamics on the geometry of magnetic domain pattern is studied in the superconducting/ferromagnetic bilayers, in which niobium is a superconductor, and Co/Pt multilayer with perpendicular magnetic anisotropy serves as a ferromagnetic layer. Magnetic domain patterns with different density of domains per surface area and different domain size, w, are obtained for Co/Pt with different thickness of Pt. The dense patterns of domains with the size comparable to the magnetic penetration depth (w {>=} {lambda}) produce large vortex pinning and smooth vortex penetration, while less dense patterns with larger domains (w {>=}{>=} {lambda}) enhance pinning less effectively and result in flux jumps during flux motion. (authors)
Itinerant Ferromagnetism in Ultracold Fermi Gases
Heiselberg, Henning
2012-01-01
Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...
Fabrication of high quality ferromagnetic Josephson junctions
Weides, M. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany) and CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany)]. E-mail: m.weides@fz-juelich.de; Tillmann, K. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich, D-52425 Juelich (Germany); Kohlstedt, H. [Institute for Solid State Research, Research Centre Juelich, D-52425 Juelich (Germany); CNI-Center of Nanoelectronic Systems for Information Technology, Research Centre Juelich, D-52425 Juelich (Germany); Department of Material Science and Engineering and Department of Physics, University of Berkeley, CA 94720 (United States)
2006-05-15
We present ferromagnetic Nb/Al{sub 2}O{sub 3}/Ni{sub 60}Cu{sub 40}/Nb Josephson junctions (SIFS) with an ultrathin Al{sub 2}O{sub 3} tunnel barrier. The junction fabrication was optimized regarding junction insulation and homogeneity of current transport. Using ion-beam-etching and anodic oxidation we defined and insulated the junction mesas. The additional 2 nm thin Cu-layer below the ferromagnetic NiCu (SINFS) lowered interface roughness and ensured very homogeneous current transport. A high yield of junctional devices with j {sub c} spreads less than 2% was obtained.
Integrable Heisenberg Ferromagnet Equations with self-consistent potentials
Zhunussova, Zh Kh; Tungushbaeva, D I; Mamyrbekova, G K; Nugmanova, G N; Myrzakulov, R
2013-01-01
In this paper, we consider some integrable Heisenberg Ferromagnet Equations with self-consistent potentials. We study their Lax representations. In particular we give their equivalent counterparts which are nonlinear Schr\\"odinger type equations. We present the integrable reductions of the Heisenberg Ferromagnet Equations with self-consistent potentials. These integrable Heisenberg Ferromagnet Equations with self-consistent potentials describe nonlinear waves in ferromagnets with magnetic fields.
Flexible ferromagnetic filaments and the interface with biology
Erglis, K.; Belovs, M. [University of Latvia, Zellu 8, Riga LV-1002 (Latvia); Cebers, A. [University of Latvia, Zellu 8, Riga LV-1002 (Latvia)], E-mail: aceb@tesla.sal.lv
2009-04-15
Flexible ferromagnetic filaments are studied both theoretically and experimentally. Two main deformation modes of the filament at magnetic field inversion are theoretically described and observed experimentally by using DNA-linked chains of ferromagnetic particles. Anomalous orientation of ferromagnetic filaments perpendicular to AC field with a frequency which is high enough is predicted and confirmed experimentally. By experimental studies of magnetotactic bacteria it is demonstrated how these properties of ferromagnetic filaments may be used to measure the flexibility of the chain of magnetosomes.
Temperature limited heater utilizing non-ferromagnetic conductor
Vinegar,; Harold J. (Bellaire, TX), Harris; Kelvin, Christopher [Houston, TX
2012-07-17
A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.
Refrigerating fluids; Fluides frigorigenes
Anon.
1999-03-01
Refrigerating fluids are experiencing a real revolution since few years. CFCs with their destructive effect on the ozone layer are now prohibited while HCFCs will be progressively eliminated and replaced by HFCs. However, HFCs can contribute to the increase of the greenhouse effect. The solutions proposed by thermal engineering professionals consist in the confinement of air-conditioning installations (elimination of recurrent leaks) and in the improvement of installations efficiency. HCFC fluids like the R 22 are still widely used in air-conditioning but they are supposed to be replaced by HFC fluids like the R 134a, the R 407C or the R 410A. This short paper gives a brief presentation of these fluids and of their chemical characteristics. (J.S.)
Intrinsic Ferromagnetism in Eu doped ZnO
Assadi, M. H. N.; Zhang,Y.B.; Ionescu, M.; Photongkam, P.; Li, S.
2010-01-01
We report room temperature ferromagnetism in as-implanted Eu doped ZnO (ZnO:Eu). To address the origin of ferromagnetism ab initio calculations of ZnO:Eu system are performed. Results show that the ferromagnetism is induced by ZnO point defects as Eu ions in perfect ZnO tend to align antiferromagnetically.
Ferromagnets as pure spin current generators and detectors
Qu, Danru; Miao, Bingfeng; Chien, Chia -Ling; Huang, Ssu -Yen
2015-09-08
Provided is a spintronics device. The spintronics can include a ferromagnetic metal layer, a positive electrode disposed on a first surface portion of the ferromagnetic metal layer, and a negative electrode disposed on a second surface portion of the ferromagnetic metal.
Hamidreza Emamipour
2013-01-01
Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.
Static Theory for Planar Ferromagnets and Antiferromagnets
Feng Bo HANG; Fang Hua LIN
2001-01-01
Here we generalize the "BBH"-asymptotic analysis to a simplified mathematical model for the planar ferromagnets and antiferromagncts. To develop such a static theory is a necessary step for a rigorous mathematical justification of dynamical laws for the magnetic vortices formally derived in [1] and [2].
Ferromagnetic hysteresis and the effective field
Naus, H.W.L.
2002-01-01
The Jiles-Atherton model of the behavior of ferromagnetic materials determines the irreversible magnetization from the effective field by using a differential equation. This paper presents an exact, analytical solution to the equation, one displaying hysteresis. The inclusion of magnetomechanical co
Neutron Depolarization in Submicron Ferromagnetic Materials
Rekveldt, M.Th.
1989-01-01
The neutron depolarization technique is based on the loss of polarization of a polarized neutron beam after transmission through ferromagnetic substances. This loss, caused by Larmor precession in individual domains, determines the mean domain size, the mean square direction cosines of the domains a
Silicon spintronics with ferromagnetic tunnel devices
Jansen, R.; Dash, S. P.; Sharma, S.; Min, B. C.
In silicon spintronics, the unique qualities of ferromagnetic materials are combined with those of silicon, aiming at creating an alternative, energy-efficient information technology in which digital data are represented by the orientation of the electron spin. Here we review the cornerstones of
Integrable hierarchies of Heisenberg ferromagnet equation
Nugmanova, G.; Azimkhanova, A.
2016-08-01
In this paper we consider the coupled Kadomtsev-Petviashvili system. From compatibility conditions we obtain the form of matrix operators. After using a gauge transformation, obtained a new type of Lax representation for the hierarchy of Heisenberg ferromagnet equation, which is equivalent to the gauge coupled Kadomtsev-Petviashvili system.
Magnetic Properties of Uranium Based Ferromagnetic Superconductors
Sakarya, S.
2007-01-01
Ferromagnetism and superconductivity have long been thought to be mutually exclusive. Recently however it was found that the compounds UGe2, URhGe and UIr belong to a class of materials in which ferromagnetisme and superconductivity appear simultaneously. One characteristic property of these compoun
Measurment Of Residual Stress In Ferromagnetic Materials
Namkung, Min; Yost, William T.; Kushnick, Peter W.; Grainger, John L.
1992-01-01
Magnetoacoustic (MAC) and magnetoacoustic emission (MAE) techniques combined to provide complete characterization of residual stresses in ferromagnetic structural materials. Combination of MAC and MAE techniques makes it possible to characterize residual tension and compression without being limited by surface conditions and unavailability of calibration standards. Significant in field of characterization of materials as well as detection of fatigue failure.
Angular and linear momentum of excited ferromagnets
Yan, P.; Kamra, A.; Cao, Y.; Bauer, G.E.W.
2013-01-01
The angular momentum vector of a Heisenberg ferromagnet with isotropic exchange interaction is conserved, while under uniaxial crystalline anisotropy the projection of the total spin along the easy axis is a constant of motion. Using Noether's theorem, we prove that these conservation laws persist i
Magnetization dissipation in ferromagnets from scattering theory
Brataas, A.; Tserkovnyak, Y.; Bauer, G.E.W.
2011-01-01
The magnetization dynamics of ferromagnets is often formulated in terms of the Landau-Lifshitz-Gilbert (LLG) equation. The reactive part of this equation describes the response of the magnetization in terms of effective fields, whereas the dissipative part is parametrized by the Gilbert damping tens
Effect of ferromagnetic nanoparticle on dyes biodegradation
Apostol, Laura; Pereira, Luciana; Pereira, Raquel; Alves, M.M.; Gavrilescu, M.
2011-01-01
In this study the biodecolourisation of two dyes, a xanthene dye, Erythrosine B (Ery B) and an azo dye, Reactive Red 51 (RR120), was investigated colourdecolourisationunder batch anaerobic conditions by using non - acclimated anaerobic granular sludge. The effect of ferromagnetic nanoparticle (FN) (as adsorbent or mediator) on dyes removal was experienced.
Silicon spintronics with ferromagnetic tunnel devices
Jansen, R.; Dash, S. P.; Sharma, S.; Min, B. C.
2012-01-01
In silicon spintronics, the unique qualities of ferromagnetic materials are combined with those of silicon, aiming at creating an alternative, energy-efficient information technology in which digital data are represented by the orientation of the electron spin. Here we review the cornerstones of sil
Measurment Of Residual Stress In Ferromagnetic Materials
Namkung, Min; Yost, William T.; Kushnick, Peter W.; Grainger, John L.
1992-01-01
Magnetoacoustic (MAC) and magnetoacoustic emission (MAE) techniques combined to provide complete characterization of residual stresses in ferromagnetic structural materials. Combination of MAC and MAE techniques makes it possible to characterize residual tension and compression without being limited by surface conditions and unavailability of calibration standards. Significant in field of characterization of materials as well as detection of fatigue failure.
Convective stability of a vertical layer of magnetizable fluid in a uniform magnetic field
Bashtovoy, V.G.; Pavlinov, M.I.
1978-01-01
An infinitely large plane vertical layer of magnetizable fluid is considered, this layer being heated from below and bounded on both lateral surfaces by ferromagnetic half-spaces. The fluid and the ferromagnetic material on both sides have the same pyromagnetic coefficient. The possibility of overcoming a convective instability of such a fluid layer in a uniform magnetic field is demonstrated by a solution of the equilibrium equation. The result indicates that such a magnetic field raises the stability threshold to full stabilization of the fluid layer, with the instability range in terms of the Rayleigh number now having both a lower and an upper limit. 3 references.
Viscosity of magnetorheological fluids using Iron-silicon nanoparticles.
Kim, Jong Hee; Kim, CheolGi; Lee, Seung Goo; Hong, Tae Min; Choi, Joon Hong
2013-09-01
Fe-6.5Si fine particles were mechanically fabricated by a milling method for use in magnetorheological fluids. Oleic acid was used as a surfactant for the dispersed substance for preparing the hydrophobic fluid with silicon oil as a dispersing medium. Further, oleic acid and sodium dodecyl benzene sulfonate were used as surfactants, forming a bilayer structure, for preparing the hydrophilic fluid with polyethylene glycol as a dispersing medium. The adsorption of oleic acid onto the Fe-Si particles was achieved by oxidizing the particle surface with trimethylamine N-oxide dihydrate. In order to make a comparative examination of the fluid properties, ferromagnetic nanoparticles were synthesized by chemical precipitation and the subsequent process was accompanied under the same conditions as applied for the magnetorheological fluid. The fluid particles were characterized by magnetization measurements. The viscosity of the fluids was obtained at various concentrations under an external field. The viscosity values of the magnetorheological fluid were higher than those of the ferromagnetic fluid. Moreover, they increased considerably by using silicon oil as the dispersing medium as well as under an applied magnetic field and at higher fluid concentrations. The magnetorheological fluids may be effectively resistant to a strong impact from outside when the appropriate fluid concentration is used and a magnetic field is applied for increasing the shear strength of the fluids.
Dynamics of ferromagnetic nanowires in a rotating magnetic field
Lixin Yang
2015-07-01
Full Text Available Manipulating nanowires with external magnetic fields has emerged as a powerful tool in various engineering applications, which prompts an urgent need to better understand the dynamics of nanowire rotation under different control conditions. In this article, the motion of ferromagnetic nickel (Ni nanowires under a rotating magnetic field was investigated both theoretically and experimentally. The synchronous and asynchronous rotations were characterized in detail. Analytical models were developed for the major modes of motion by solving the governing equations of rotation. Particularly, a selection of theoretical formula for fluid viscous torque on nanowires of large aspect ratios was made based on the computational fluid dynamics simulation results. The comparisons of the theoretical prediction and the experimental data showed very good agreement. The effects of various system variables, such as the strength and rotating frequency of the magnetic field and the nanowire aspect ratio, were examined. Hence, the insights gained from this work can be applied to future exploration of magnetic manipulation of nanowires.
Magnetic-fluid microelectromechanical light modulator
SEO Jong-wook; WANG Xi-jun
2005-01-01
A new microfluidic microelectromechanical light modulator using a magnetic fluid is introduced. The optical reflection from the device is modulated by applying an electric current into an electrode, which is enclosed by ferromagnetic thin films as in an inductive head for a magnetic data storage device. The magnetic field produced by the current exerts a magnetic force on the magnetic fluid and drives the fluid to cover the cell surface. The surface tension of the fluid provides a restoring force when the field is reduced. The actuation of the fluid is completed in about 12 ms for both thin-to-thick and thick-to-thin fluid film switchings by magnetic forces and surface tension forces, respectively. It was observed that the switching speed was almost independent of the driving current, and no considerable thermal effect were observed when driven by a current up to 100 mA.
Room temperature ferromagnetism in Teflon due to carbon dangling bonds.
Ma, Y W; Lu, Y H; Yi, J B; Feng, Y P; Herng, T S; Liu, X; Gao, D Q; Xue, D S; Xue, J M; Ouyang, J Y; Ding, J
2012-03-06
The ferromagnetism in many carbon nanostructures is attributed to carbon dangling bonds or vacancies. This provides opportunities to develop new functional materials, such as molecular and polymeric ferromagnets and organic spintronic materials, without magnetic elements (for example, 3d and 4f metals). Here we report the observation of room temperature ferromagnetism in Teflon tape (polytetrafluoroethylene) subjected to simple mechanical stretching, cutting or heating. First-principles calculations indicate that the room temperature ferromagnetism originates from carbon dangling bonds and strong ferromagnetic coupling between them. Room temperature ferromagnetism has also been successfully realized in another polymer, polyethylene, through cutting and stretching. Our findings suggest that ferromagnetism due to networks of carbon dangling bonds can arise in polymers and carbon-based molecular materials.
... carefully. Removing a sample of the fluid through amniocentesis can provide information about the sex, health, and development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Cunningham FG, ...
Kröger, M; Hess, S
2003-01-01
We review, apply and compare diverse approaches to the theoretical understanding of the dynamical and rheological behaviour of ferrofluids and magnetorheological (MR) fluids subject to external magnetic and flow fields. Simple models are introduced which are directly solvable by nonequilibrium Brownian or molecular dynamics computer simulation. In particular, the numerical results for ferrofluids quantify the domain of validity of uniaxial alignment of magnetic moments (in and) out of equilibrium. A Fokker-Planck equation for the dynamics of the magnetic moments - corresponding to the Brownian dynamics approach - and its implications are analysed under this approximation. The basic approach considers the effect of external fields on the dynamics of ellipsoid shaped permanent ferromagnetic domains (aggregates), whose size should depend on the strength of flow and magnetic field, the magnetic interaction parameter and concentration (or packing fraction). Results from analytic calculations and from simulation ar...
Ferromagnetism in single-valent manganites
Troyanchuk, I.O., E-mail: troyan@physics.by [Scientific-Practical Materials Research Centre NAS of Belarus, P. Brovki str. 19, 220072 Minsk (Belarus); Bushinsky, M.V. [Scientific-Practical Materials Research Centre NAS of Belarus, P. Brovki str. 19, 220072 Minsk (Belarus); Sikolenko, V. [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Efimov, V. [Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russian Federation); Volkov, N.V. [Kirensky Institute of Physics, Akademgorodok 50, bld. 38, 660036 Krasnoyarsk (Russian Federation); Többens, D.M. [Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Ritter, C. [Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9 (France); Raveau, B. [Laboratoire CRISMAT, UMR 6508 associée au CNRS, ISMRA et Universite de Caen 6, Boulevard du Marechal Juin, 14050 Caen Cedex (France)
2015-01-15
Highlights: • Structural and magnetization measurements have been performed on the La{sub 0.7}Sr{sub 0.3}Mn{sub 0.85}Nb{sub 0.15−x}Mg{sub x}O{sub 3} stoichiometric compounds. • Ferromagnetism in single-valent manganites can be understood in terms of the superexchange scenario assuming dominant role of covalency. • The Mn–O–Mn bond angle is the key factor for p–d orbital hybridization associated with covalency which leads to positive superexchange interactions between localized e{sub g} electrons and, hence, ferromagnetism. - Abstract: Structural and magnetization measurements have been performed on the La{sub 0.7}Sr{sub 0.3}Mn{sub 0.85}Nb{sub 0.15-x}{sup 5+}Mg{sub x}{sup 2+}O{sub 3} stoichiometric compounds. With rise of the Mg{sup 2+} content the formal oxidation state manganese increases from +3 (x=0) up to +3.55 (x=0.15). The compositions with 0⩽x≤0.08 undergo a structural transition from rhombohedral to orthorhombic symmetry below room temperature whereas x=0.1 and x=0.15 compounds are rhombohedral down to 2 K. The structural parameters evidence that the orthorhombic phase is not long-range orbitally ordered and that the structural transition is associated with a steric effect. The Mg-free compound is ferromagnetic with the Curie point of around 150 K and a magnetic moment of 3.1 μ{sub B}/Mn. The substitution of Nb{sup 5+} with Mg{sup 2+} leads to a gradual weakening of the ferromagnetic component while in the x=0.15 compound A-type antiferromagnetic short-range order is stabilized in spite of macroscopic R3{sup ¯}c symmetry. All the compositions show insulating behavior. It is suggested that ferromagnetism is originated from superexchange interactions via oxygen. Covalence enhances the positive part of the superexchange interactions whereas structural disorder induced by Nb{sup 5+} and Mg{sup 2+} ions leads to suppression of ferromagnetism.
Ising Ferromagnet: Zero-Temperature Dynamic Evolution
Murilo-Castro de Oliveira, P; Sidoravicious, V; Stein, D L
2006-01-01
The dynamic evolution at zero temperature of a uniform Ising ferromagnet on a square lattice is followed by Monte Carlo computer simulations. The system always eventually reaches a final, absorbing state, which sometimes coincides with a ground state (all spins parallel), and sometimes does not (parallel stripes of spins up and down). We initiate here the numerical study of ``Chaotic Time Dependence'' (CTD) by seeing how much information about the final state is predictable from the randomly generated quenched initial state. CTD was originally proposed to explain how nonequilibrium spin glasses could manifest equilibrium pure state structure, but in simpler systems such as homogeneous ferromagnets it is closely related to long-term predictability and our results suggest that CTD might indeed occur in the infinite volume limit.
Double negative metamaterials based on ferromagnetic microwires
Carbonell, Jorge; García-Miquel, Héctor; Sánchez-Dehesa, José
2010-01-01
Ferromagnetic microwires are investigated as fundamental components to generate metamaterials with double negative parameters. Electric and magnetic responses are, respectively, based on the finite conductivity and ferromagnetic resonance of the wires that in turn depend on their chemical composition. Tuning properties of samples are investigated in terms of the composition of the alloy and the applied magnetic field. The samples are measured and simulated in a waveguide environment for a large microwave frequency range. Numerical modeling supports the experimental results and helps to understand the physics involved in the transmission phenomena. Radius and conductivity of the wires are pointed out as the most critical parameters to generate a double negative response in terms of permittivity and permeability.
Shot Noise in Ferromagnetic Superconductor Tunnel Junctions
无
2006-01-01
In this paper, the superconducting order parameter and the energy spectrum of the Bogoliubov excitations are obtained from the Bogoliubov-de Gennes (BdG) equation for a ferromagnetic superconductor (FS). Taking into account the rough interface scattering effect, we calculate the shot noise and the differential conductance of the normal- metal insulator ferromagnetic superconductor junction. It is shown that the exchange energy Eh in FS can lead to splitting of the differential shot noise peaks and the conductance peaks. The energy difference between the two splitting peaks is equal to 2Eh. The rough interface scattering strength results in descent of conductance peaks and the shot noise-to-current ratio but increases the shot noise.
Anisotropic magnetocapacitance in ferromagnetic-plate capacitors
Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.
2015-04-01
The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.
Photoinduced itinerant ferromagnetism in copper octacyanomolybdates
Ohara, Jun; Yamamoto, Shoji
2017-06-01
We make a microscopic theory of the photoswitchable magnetism in copper octacyanomolybdates. By numerically solving a time-dependent Schrödinger equation based on the relevant extended Hubbard model, we reproduce magnetization by green-light irradiation and subsequent demagnetization by orange-light irradiation. At the onset of the ferromagnetism, the charge-transfer gap disappears. In an attempt to stimulate experimental investigations, we simulate time evolution of the angle-resolved photoemission spectroscopy and optical-conductivity spectra.
Raman characterization of bulk ferromagnetic nanostructured graphite
Pardo, Helena, E-mail: hpardo@fq.edu.uy [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Divine Khan, Ngwashi [Mantfort University, Leicester (United Kingdom); Faccio, Ricardo [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay); Araujo-Moreira, F.M. [Grupo de Materiais e Dispositivos-CMDMC, Departamento de Fisica e Engenharia Fisica, UFSCar, Caixa Postal 676, 13565-905, Sao Carlos SP (Brazil); Fernandez-Werner, Luciana [Centro NanoMat, Polo Tecnologico de Pando, Facultad de Quimica, Universidad de la Republica, Cno. Aparicio Saravia s/n, 91000, Pando, Canelones (Uruguay); Crystallography, Solid State and Materials Laboratory (Cryssmat-Lab), DETEMA, Facultad de Quimica, Universidad de la Republica, Gral. Flores 2124, P.O. Box 1157, Montevideo (Uruguay)
2012-08-15
Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm{sup -1} showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.
Squeezing States of Magnons in a Ferromagnet
无
2006-01-01
In this paper, we conduct an investigation into magnon self-squeezing states in a ferromagnet. In these states, the quantum fluctuations of the spin components can be lower than the zero-point quantum fluctuations of the coherent states. Through calculating the expectation values of spin fluctuations we gain the condition of achieving magnon self-squeezing. We introduce the mean-field theory for dealing with the nonlinear interaction term of Hamiltonian of magnon system.
Ferromagnetic Resonance in Gd/Co Multilayers
A. V. Svalov; V. O. Vas'kovskiy; J. M. Barandiaran; G. V. Kurlyandskaya; L. Lezama; J. Gutiérrez; N. G. Bebenin; D. Schmool
2001-01-01
Magnetometric and ferromagnetic resonance (MFR) measurements have been performed on the polycrystalline multilayered structure, [Gd(7.5 nm)/Co(3nm)]20. The temperature dependence of magnetization of the sample suggests a compensation temperature Tcomp in the region of 240K, implying that the Co and Gd layers are antiferromagnetically aligned. The FMR curves are strongly temperature dependent, particularly in the vicinity of Tcomp.
Dynamical magnetic effects in photoexcited ferromagnetic semiconductors
Chovan, J. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P. O. Box 1527, 711 10 Heraklion (Greece); Kavousanaki, E.G. [Department of Physics, University of Crete, P. O. Box 2208, 710 03 Heraklion (Greece); Perakis, I.E. [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P. O. Box 1527, 711 10 Heraklion (Greece); Department of Physics, University of Crete, P. O. Box 2208, 710 03 Heraklion (Greece)
2006-08-15
We develop a theory of photoinduced dynamical magnetic effects in III-Mn-V ferromagnetic semiconductors valid in presence of strong carrier spin relaxation and dephasing. We treat relaxation by using the Lindblad semigroup method and calculate the nonlinear response numerically. We predict Mn-spin relaxation and precession towards the direction determined by nonlinear optical polarization. These effects occur during the pulse. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
On a Nonlocal Damping Model in Ferromagnetism
M. Moumni
2015-01-01
Full Text Available We consider a mathematical model describing nonlocal damping in magnetization dynamics. The model consists of a modified form of the Landau-Lifshitz-Gilbert (LLG equation for the evolution of the magnetization vector in a rigid ferromagnet. We give a global existence result and characterize the long time behaviour of the obtained solutions. The sensitivity of the model with respect to large and small nonlocal damping parameters is also discussed.
Topological superconductivity induced by ferromagnetic metal chains
Li, Jian; Chen, Hua; Drozdov, Ilya K.; Yazdani, A.; Bernevig, B. Andrei; MacDonald, A. H.
2014-12-01
Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition-metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some properties of this type of system by using a Slater-Koster tight-binding model to account for important features of the electronic structure of the transition-metal chains on the superconducting substrate. We predict that topological superconductivity is nearly universal when ferromagnetic transition-metal chains form straight lines on superconducting substrates and that it is possible for more complex chain structures. When the chain is weakly coupled to the substrate and is longer than superconducting coherence lengths, its proximity-induced superconducting gap is ˜Δ ESO/J where Δ is the s -wave pair potential on the chain, ESO is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and J is the exchange splitting of the ferromagnetic chain d bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find, in agreement with the experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence length defined by the p -wave superconducting gap. We conclude that Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong s -wave pairing and strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic composition and structure of the chain. Finally, we note that in the absence of disorder, a new chain magnetic symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple
Hierarchical Modeling of Ferromagnetic SMAs and Composites
2006-01-01
Chapter 4. Processing of Particulate FSMA Composites ............................ 38 Chapter 5. Processing of FSMA Laminated Composites by Plasma ...shear of a ferromagnetic materia ,tf, and (e) reverse transformation shear stress, Tl. 1.414 1110 . . ...... . . . .... ....... 80 -1.411 414 X •:. ~40...useful comparison parameter. We measured the saturation magnetization(Ms) of Fe-TiNi particulate composites that we processed by using Spark Plasma
Ferromagnetic nanoparticles suspensions in twisted nematic
Cîrtoaje, Cristina; Petrescu, Emil; Stan, Cristina; Creangă, Dorina
2016-05-01
Ferromagnetic nanoparticles insertions in nematic liquid crystals (NLC) in twisted configuration are studied and a theoretical model is proposed to explain the results. Experimental observation revealed that nanoparticles tend to overcrowd in long strings parallel to the rubbing direction of the alignment substrate of the LC cell. Their behavior under external field was studied and their interaction with their nematic host is described using elastic continuum theory.
Tunable Magnon Weyl Points in Ferromagnetic Pyrochlores
Mook, Alexander; Henk, Jürgen; Mertig, Ingrid
2016-10-01
The dispersion relations of magnons in ferromagnetic pyrochlores with Dzyaloshinskii-Moriya interaction are shown to possess Weyl points, i. e., pairs of topologically nontrivial crossings of two magnon branches with opposite topological charge. As a consequence of their topological nature, their projections onto a surface are connected by magnon arcs, thereby resembling closely Fermi arcs of electronic Weyl semimetals. On top of this, the positions of the Weyl points in reciprocal space can be tuned widely by an external magnetic field: rotated within the surface plane, the Weyl points and magnon arcs are rotated as well; tilting the magnetic field out of plane shifts the Weyl points toward the center Γ ¯ of the surface Brillouin zone. The theory is valid for the class of ferromagnetic pyrochlores, i. e., three-dimensional extensions of topological magnon insulators on kagome lattices. In this Letter, we focus on the (111) surface, identify candidates of established ferromagnetic pyrochlores which apply to the considered spin model, and suggest experiments for the detection of the topological features.
As diffusion in ferromagnetic {alpha}-Fe
Perez, R.A.; Dyment, F. [Comision Nacional de Energia Atomica (CNEA), Departamento de Materiales, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Torres, D.N. [Comision Nacional de Energia Atomica (CNEA), Departamento de Materiales, Buenos Aires (Argentina)
2009-11-15
Diffusion of As in {alpha}-Fe was studied. Diffusion couples were formed by ion implantation; measurements were made in the 673-1073 K temperature range using the heavy ion Rutherford backscattering (HIRBS) technique as the analysis tool. A curved Arrhenius plot was obtained, as a product of the ferromagnetism effect on diffusion; the previously developed model for diffusion of non-magnetic impurities in ferromagnetic Fe fits the data perfectly well. As diffusion is, on average, two orders of magnitude faster than self-diffusion given its smaller atomic radius (110 pm against 140 pm for Fe). Assuming a total increment in the activation energy due to the ferromagnetic alignment {alpha}Q=40 kJ mol{sup -1}, diffusion parameters for the paramagnetic region could be extrapolated, these being the pre-exponential factor D{sub 0} {sup p}=10{sup -5} m{sup 2}s{sup -1} and the activation energy Q{sup p}=197 kJ mol{sup -1}. (orig.)
Robust ferromagnetism carried by antiferromagnetic domain walls
Hirose, Hishiro T.; Yamaura, Jun-Ichi; Hiroi, Zenji
2017-02-01
Ferroic materials, such as ferromagnetic or ferroelectric materials, have been utilized as recording media for memory devices. A recent trend for downsizing, however, requires an alternative, because ferroic orders tend to become unstable for miniaturization. The domain wall nanoelectronics is a new developing direction for next-generation devices, in which atomic domain walls, rather than conventional, large domains themselves, are the active elements. Here we show that atomically thin magnetic domain walls generated in the antiferromagnetic insulator Cd2Os2O7 carry unusual ferromagnetic moments perpendicular to the wall as well as electron conductivity: the ferromagnetic moments are easily polarized even by a tiny field of 1 mT at high temperature, while, once cooled down, they are surprisingly robust even in an inverse magnetic field of 7 T. Thus, the magnetic domain walls could serve as a new-type of microscopic, switchable and electrically readable magnetic medium which is potentially important for future applications in the domain wall nanoelectronics.
Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films
Remes, Zdenek [Institute of Physics ASCR v.v.i., Cukrovarnicka 10, 162 00 Prague 6 (Czech Republic); Sun, Shih-Jye, E-mail: sjs@nuk.edu.tw [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Varga, Marian [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Chou, Hsiung [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Hsu, Hua-Shu [Department of Applied Physics, National Pingtung University of Education, Pingtung 900, Taiwan (China); Kromka, Alexander [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Horak, Pavel [Nuclear Physics Institute, 250 68 Rez (Czech Republic)
2015-11-15
The nanocrystalline diamond films turn to be ferromagnetic after implanting various nitrogen doses on them. Through this research, we confirm that the room-temperature ferromagnetism of the implanted samples is derived from the measurements of magnetic circular dichroism (MCD) and superconducting quantum interference device (SQUID). Samples with larger crystalline grains as well as higher implanted doses present more robust ferromagnetic signals at room temperature. Raman spectra indicate that the small grain-sized samples are much more disordered than the large grain-sized ones. We propose that a slightly large saturated ferromagnetism could be observed at low temperature, because the increased localization effects have a significant impact on more disordered structure. - Highlights: • Nitrogen implanted nanocrystalline diamond films exhibit ferromagnetism at room temperature. • Nitrogen implants made a Raman deviation from the typical nanocrystalline diamond films. • The ferromagnetism induced from the structure distortion is dominant at low temperature.
Micromagnetic modeling of the shielding properties of nanoscale ferromagnetic layers
Iskandarova, I. M.; Knizhnik, A. A.; Popkov, A. F.; Potapkin, B. V.; Stainer, Q.; Lombard, L.; Mackay, K.
2016-09-01
Ferromagnetic shields are widely used to concentrate magnetic fields in a target region of space. Such shields are also used in spintronic nanodevices such as magnetic random access memory and magnetic logic devices. However, the shielding properties of nanostructured shields can differ considerably from those of macroscopic samples. In this work, we investigate the shielding properties of nanostructured NiFe layers around a current line using a finite element micromagnetic model. We find that thin ferromagnetic layers demonstrate saturation of magnetization under an external magnetic field, which reduces the shielding efficiency. Moreover, we show that the shielding properties of nanoscale ferromagnetic layers strongly depend on the uniformity of the layer thickness. Magnetic anisotropy in ultrathin ferromagnetic layers can also influence their shielding efficiency. In addition, we show that domain walls in nanoscale ferromagnetic shields can induce large increases and decreases in the generated magnetic field. Therefore, ferromagnetic shields for spintronic nanodevices require careful design and precise fabrication.
Dinia, A. E-mail: aziz.dinia@ipcms.u-strasbg.fr; Colis, S.; Schmerber, G.; Ayoub, J.P
2004-05-01
We experimentally evidenced the presence of an indirect exchange coupling between hard and soft ferromagnetic electrodes through a ZnS barrier in magnetic tunnel junctions. For a 2 nm thick ZnS barrier, a negative shift of about -25 Oe is observed in asymmetric magnetization minor loop. This is attributed to a ferromagnetic interaction between the CoFe/Fe soft bilayer and the thick CoFe layer. The amplitude of the observed shift decreased as the thickness of the ZnS barrier increased, which agrees with theoretical models that the exchange interaction is mediated by spin polarized tunneling.
New Spin-Wave Mode in Weak Ferromagnetic Fermi Liquids
Petkova, Penka I.
1999-01-01
We study a phenomenological model for weak ferromagnetic Fermi liquids and investigate the properties of the spin waves in the model. The Landau kinetic equation is used to derive, in addition to the known Goldstone mode, a new spin-wave mode -- the first Silin-like ferromagnetic mode. We discuss the role of the interaction parameter F^a_1 on the behavior of the Goldstone mode and the first Silin-like ferromagnetic mode.
Quantum transport in ferromagnetic graphene: Role of Berry curvature
Chowdhury, Debashree; Basu, Banasri [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata 700 108 (India)
2014-12-10
The magnetic effects in ferromagnetic graphene basically depend on the principle of exchange interaction when ferromagntism is induced by depositing an insulator layer on graphene. Here we deal with the consequences of non-uniformity in the exchange coupling strength of the ferromagnetic graphene. We discuss how the in- homogeneity in the coordinate and momentum of the exchange vector field can provide interesting results in the conductivity analysis of the ferromagnetic graphene. Our analysis is based on the Kubo formalism of quantum transport.
Zhang, Xiaomin; Zhang, Long; Chu, Zhongxiang; Peng, Song
2016-09-01
In this paper, the periodic structure material is modeled as the continuum homogeneous micro-polar media subjecting to thermo-mechanical interaction. Meanwhile, a series of equivalent quantities such as the equivalent stress, couple stress, displacement gradient and torsion tensor were defined by the integral forms of the boundary values of the external surface force, moment, displacement and the angular displacement, and were proved to satisfy the equivalence conditions of virtual work. Based on above works, the displacement boundary value problem was established to deduce the equivalent constitutive equation. Assume the representative volume element is composed of the spatial cross-framework, and applying the boundary value problem of displacement on frame structures, the equivalent elastic coefficients, temperature coefficients of equivalent stress and the temperature gradient coefficients of equivalent couple stress are deduced. In addition, themethod can also be extended to the stress boundary value problem to deduce the equivalent constitutive equation. The calculations indicate that the equivalent result can be obtained from the two kinds of boundary value problems.
Phase transitions in pure and dilute thin ferromagnetic films
Korneta, W.; Pytel, Z.
1983-10-01
The mean-field model of a thin ferromagnetic film where the nearest-neighbor exchange coupling in surface layers can be different from that inside the film is considered. The phase diagram, equations for the second-order phase-transition lines, and the spontaneous magnetization profiles near the phase transitions are given. It is shown that there is no extra-ordinary transition in a thin film. If the thickness of the film tends to infinity the well-known results for the mean-field model of a semi-infinite ferromagnet are obtained. The generalization for disordered dilute thin ferromagnetic films and semi-infinite ferromagnets is also given.
Room temperature ferromagnetism in ZnO prepared by microemulsion
Qingyu Xu
2011-09-01
Full Text Available Clear room temperature ferromagnetism has been observed in ZnO powders prepared by microemulsion. The O vacancy (VO clusters mediated by the VO with one electron (F center contributed to the ferromagnetism, while the isolated F centers contributed to the low temperature paramagnetism. Annealing in H2 incorporated interstitial H (Hi in ZnO, and removed the isolated F centers, leading to the suppression of the paramagnetism. The ferromagnetism has been considered to originate from the VO clusters mediated by the Hi, leading to the enhancement of the coercivity. The ferromagnetism disappeared after annealing in air due to the reduction of Hi.
Khan, Sabeel M.; Hammad, M.; Sunny, D. A.
2017-08-01
In this article, the influence of thermal relaxation time and chemical reaction is studied on the MHD upper-convected viscoelastic fluid with internal structure using the Cattaneo-Christov heat flux equation for the first time in the literature. The flow-governing equations are formulated and are converted into their respective ordinary differential equations (ODEs) with the application of similarity functions. The resulting system of coupled nonlinear ODEs is solved along with the prescribed conditions at boundary using a finite-difference code in MATLAB. Influence of chemical reaction, thermal relaxation time and internal material parameter on the macroscopic and micropolar velocities as well as on the temperature and concentration profiles is examined along with other physical parameters ( e.g., magnetic parameter, Eckert number, Prandtl number and fluid relaxation time). The accuracy of the obtained numerical solution is shown by comparing the physical parameters of interest with particular cases of existing results in the literature.
Althammer, M.; Meyer, S.; Nakayama, H.; Schreier, M.; Altmannshofer, S.; Weiler, M.; Huebl, H.; Gesprägs, S.; Opel, M.; Gross, R.; Meier, D.; Klewe, C.; Kuschel, T.; Schmalhorst, J.M.; Reiss, G.; Shen, L.; Gupta, A.; Chen, Y.T.; Bauer, G.E.W.; Saitoh, E.; Goennenwein, S.T.B.
2013-01-01
We experimentally investigate and quantitatively analyze the spin Hall magnetoresistance effect in ferromagnetic insulator/platinum and ferromagnetic insulator/nonferromagnetic metal/platinum hybrid structures. For the ferromagnetic insulator, we use either yttrium iron garnet, nickel ferrite, or ma
Das, Kalipada; Das, I.
2017-03-01
In our present study, we address in detail magnetic and magneto-transport properties of well known half metallic La0.67Sr0.33MnO3 (LSMO) and charge order suppressed ferromagnetic La0.48Ca0.52MnO3 (LCMO) nanoparticles. The average particle size for LSMO and LCMO is ˜20 nm and ˜25 nm, respectively. With respect to their magnetic properties, both compounds exhibit ferromagnetic behavior, whereas they markedly differ in their magneto-transport characteristics. The magnetoresistive properties of LSMO nanoparticles indicate low field magnetoresistance and tendency for saturation at higher field values. In addition to the sharp low field magnetoresistance, we have achieved significantly large magnetoresistance at higher values of external magnetic field for the ferromagnetic LCMO nanoparticles. To address such anomalous behavior in these two different classes of ferromagnetic materials, we introduce the re-entrant core-shell type structure formation in charge ordered nanoparticles (LCMO) when charge ordering is completely suppressed.
Loeffler, J.; Wagner, W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Kostorz, G. [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Wiedenmann, A. [HMI Berlin (Germany)
1997-09-01
Magnetic small-angle neutron scattering measurements were performed on nanostructured ferromagnetic materials on the basis of Fe, Ni and Co, produced preferentially by the inert-gas condensation technique, with the aim to determine the magnetic microstructure of mesoscopic small-particle systems. (author) 1 fig., 3 refs.
Room Temperature Ferromagnetic Mn:Ge(001
George Adrian Lungu
2013-12-01
Full Text Available We report the synthesis of a room temperature ferromagnetic Mn-Ge system obtained by simple deposition of manganese on Ge(001, heated at relatively high temperature (starting with 250 °C. The samples were characterized by low energy electron diffraction (LEED, scanning tunneling microscopy (STM, high resolution transmission electron microscopy (HRTEM, X-ray photoelectron spectroscopy (XPS, superconducting quantum interference device (SQUID, and magneto-optical Kerr effect (MOKE. Samples deposited at relatively elevated temperature (350 °C exhibited the formation of ~5–8 nm diameter Mn5Ge3 and Mn11Ge8 agglomerates by HRTEM, while XPS identified at least two Mn-containing phases: the agglomerates, together with a Ge-rich MnGe~2.5 phase, or manganese diluted into the Ge(001 crystal. LEED revealed the persistence of long range order after a relatively high amount of Mn (100 nm deposited on the single crystal substrate. STM probed the existence of dimer rows on the surface, slightly elongated as compared with Ge–Ge dimers on Ge(001. The films exhibited a clear ferromagnetism at room temperature, opening the possibility of forming a magnetic phase behind a nearly ideally terminated Ge surface, which could find applications in integration of magnetic functionalities on semiconductor bases. SQUID probed the co-existence of a superparamagnetic phase, with one phase which may be attributed to a diluted magnetic semiconductor. The hypothesis that the room temperature ferromagnetic phase might be the one with manganese diluted into the Ge crystal is formulated and discussed.
Spin Transport in Ferromagnetic and Antiferromagnetic Textures
Akosa, Collins A.
2016-12-07
In this dissertation, we provide an accurate description of spin transport in magnetic textures and in particular, we investigate in detail, the nature of spin torque and magnetic damping in such systems. Indeed, as will be further discussed in this thesis, the current-driven velocity of magnetic textures is related to the ratio between the so-called non-adiabatic torque and magnetic damping. Uncovering the physics underlying these phenomena can lead to the optimal design of magnetic systems with improved efficiency. We identified three interesting classes of systems which have attracted enormous research interest (i) Magnetic textures in systems with broken inversion symmetry: We investigate the nature of magnetic damping in non-centrosymmetric ferromagnets. Based on phenomenological and microscopic derivations, we show that the magnetic damping becomes chiral, i.e. depends on the chirality of the magnetic texture. (ii) Ferromagnetic domain walls, skyrmions and vortices: We address the physics of spin transport in sharp disordered magnetic domain walls and vortex cores. We demonstrate that upon spin-independent scattering, the non-adiabatic torque can be significantly enhanced. Such an enhancement is large for vortex cores compared to transverse domain walls. We also show that the topological spin currents owing in these structures dramatically enhances the non-adiabaticity, an effect unique to non-trivial topological textures (iii) Antiferromagnetic skyrmions: We extend this study to antiferromagnetic skyrmions and show that such an enhanced topological torque also exist in these systems. Even more interestingly, while such a non-adiabatic torque inuences the undesirable transverse velocity of ferromagnetic skyrmions, in antiferromagnetic skyrmions, the topological non-adiabatic torque directly determines the longitudinal velocity. As a consequence, scaling down the antiferromagnetic skyrmion results in a much more efficient spin torque.
Micromagnetic simulation of a ferromagnetic particle
Ntallis N.
2014-01-01
Full Text Available In this work, the magnetic behaviour of a ferromagnetic particle has been investigated by means of micromagnetic modelling, using the Finite Element Method. The simulations were performed on an ellipsoidal particle with uniaxial magnetocrystalline anisotropy by varying the anisotropy constant, the shape and dimensions of the particle. The results indicate the critical particle size for different reversal modes. Above a critical size the formation and motion of domain walls is clearly observed. The associated nucleation and coercive fields are estimated from the demagnetization curves.
Spin transport in ferromagnetically contacted carbon nanotubes
Meyer, C.; Morgan, C.; Schneider, C.M. [Peter Gruenberg Institut, PGI-6, Forschungszentrum Juelich and JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany)
2011-11-15
We present magnetoresistance (MR) measurements on carbon nanotubes (CNTs) with different ferromagnetic leads. A sample with permalloy (Ni{sub 80}Fe{sub 20}) contacts shows the expected tunneling-type MR effect. Measurements on devices with CoPd contacts show a larger change of resistance with magnetic field. However, only minor loops are observed, which is explained with domain wall pinning. This is supported by magnetic force microscopy (MFM) measurements, which reveal a complicated bubble and stripe domain pattern. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Ferromagnetism in Electronic Models for Manganites
Riera, Jose; Hallberg, Karen; Dagotto, Elbio
1996-01-01
Ground state properties of the Kondo model for manganese oxides in one dimension are studied using numerical techniques. The large Hund coupling ($J_{H}$) limit is specially analyzed. A robust region of fully saturated ferromagnetism (FM) is identified at all densities. For open boundary conditions it is shown exactly that the ground state is FM at $J_{H} = \\infty$. Hole-spin phase separation competing with FM was also observed when a large exchange $J$ between the $Mn^{3+}$ ions is used. As ...
Transport properties in ferromagnet UTeS
Ikeda, Shugo [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: ikeda.shugo@jaea.go.jp; Sakai, Hironori [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Matsuda, Tatsuma D. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Aoki, Dai [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Homma, Yoshiya [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Yamamoto, Etsuji [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nakamura, Akio [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Shiokawa, Yoshinobu [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Haga, Yoshinori [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Onuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)
2007-03-15
The ferromagnet UTeS with the Curie temperature T{sub C}=87K has been studied by measuring the magnetoresistance and Hall resistivity. The Hall coefficient at 0.5T shows a large peak around T{sub C}, reflecting the extraordinary Hall effect. The present extraordinary Hall effect was, however, suppressed by applying a magnetic field of 5.5T. From the results of the electrical resistivity and Hall resistivity measurements, UTeS was found to be a semimetal.
Spin Excitations in Dissipative Ferromagnetic Nanoshells
V.V. Kulish
2016-10-01
Full Text Available In the paper, dipole-exchange radial-angular spin excitations in a spherical ferromagnetic nanoshell are investigated. For such excitations, a differential equation for the magnetic potential is found, with account for the magnetic dipole-dipole interaction, the exchange interaction, the anisotropy effects and the dissipation. The equation is solved for the three cases – the case of a thin shell, the case of short waves and the case of radial excitations. For each of these cases, the dispersion relation and the spectrum of possible excitation frequencies are found.
Ferromagnetic erbium studied by {mu}SR
Hartmann, O. [Uppsala Univ. (Sweden). Dept. of Theoretical Physics; Lidstroem, E. [Uppsala Univ. (Sweden). Dept. of Theoretical Physics; Ekstroem, M. [Uppsala Univ. (Sweden). Dept. of Theoretical Physics; Waeppling, R. [Uppsala Univ. (Sweden). Dept. of Theoretical Physics; Asch, L. [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Kalvius, G.M. [Technische Univ. Muenchen, Garching (Germany). Physik-Department
1997-04-01
The ferromagnetic cone phase of erbium has been studied with {mu}SR. Two processing muon signals were observed with nearly equal intensities at T {approx} 15 K. At lower temperatures, one of the signals is gradually reduced and disappeared below 5 K. The two observed muon frequencies and their depolarisation behaviour show that the magnetic structure deduced from neutron and X-ray scattering must be modified and that a ``squaring up`` of the structure is likely to occur as the temperature is lowered. (orig.).
Ferromagnetic erbium studied by {mu}SR
Hartmann, Ola; Lidstroem, Erik; Ekstroem, Mikael; Waeppling, Roger [Uppsala University, Department of Physics (Sweden); Asch, L.; Kalvius, G.M. [TU Muenich, Physics Department (Germany)
1997-04-15
The ferromagnetic cone phase of erbium has been studied with {mu}SR. Two precessing muon signals were observed with nearly equal intensities at T {approx} 15 K. At lower temperatures, one of the signals is gradually reduced and disappeared below 5 K. The two observed muon frequencies and their depolarisation behaviour show that the magnetic structure deduced from neutron and X-ray scattering must be modified and that a 'squaring up' of the structure is likely to occur as the temperature is lowered.
Spin transport in half-metallic ferromagnets
Ohnuma, Y.; Matsuo, M.; Maekawa, S.
2016-11-01
We theoretically investigate spin transport in half-metallic ferromagnets at finite temperatures. The side-jump and skew-scattering contributions to spin Hall conductivity are derived using the Kubo formula. The electron-magnon interaction causes a finite density of states in the energy gap of the minority-spin band and induces spin Hall conductivity. We show that spin Hall conductivity is proportional to T3 /2, with T being temperature, and is sensitive to T . We propose that spin Hall conductivity may be a tool to study the minority-spin state.
Carbon Nanotubes Filled with Ferromagnetic Materials
Albrecht Leonhardt
2010-08-01
Full Text Available Carbon nanotubes (CNT filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.
Vanishing magnetic interactions in ferromagnetic thin films.
Dunn, J Hunter; Karis, O; Andersson, C; Arvanitis, D; Carr, R; Abrikosov, I A; Sanyal, B; Bergqvist, L; Eriksson, O
2005-06-03
We have used element-specific hysteresis measurements, based on the x-ray magnetic circular dichroism technique, to investigate magnetic trilayer structures composed of Fe and Ni layers. Within a critical regime we have discovered a class of structures in which the exchange interaction, the mechanism responsible for the macroscopic magnetism, can become vanishingly small. The experimental observations are supported by first principles theory and are explained as arising from a cancellation of several competing magnetic interactions. Hence, we have discovered a system with a novel exchange interaction between magnetic layers in direct contact that replaces the conventional exchange interaction in ferromagnets.
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
Hansen, Klaus Marius
2001-01-01
Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....
Drazin, Philip
1987-01-01
Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)
Spin-orbit torques in two-dimensional Rashba ferromagnets
Qaiumzadeh, A.; Duine, R. A.|info:eu-repo/dai/nl/304830127; Titov, M.
2015-01-01
Magnetization dynamics in single-domain ferromagnets can be triggered by a charge current if the spin-orbit coupling is sufficiently strong. We apply functional Keldysh theory to investigate spin-orbit torques in metallic two-dimensional Rashba ferromagnets in the presence of spin-dependent
General performance characteristics of an irreversible ferromagnetic Stirling refrigeration cycle
Lin, G.; Bruck, E.H.; Tegus, O.; Zhang, L.
2004-01-01
A new magnetic-refrigeration-cycle model using ferromagnetic materials as a cyclic working substance is set up, in which finite-rate heat transfer, heat leak and regeneration time are taken into account. On the basis of the thermodynamic properties of a ferromagnetic material, the general performanc
Spin dynamics of the ferromagnetic superconductor UGe 2
Raymond, S.; Huxley, A.
2004-07-01
Inelastic neutron scattering was used to study the low-energy magnetic excitations of the ferromagnetic superconductor UGe 2. The ferromagnetic fluctuations are of Ising nature with a non-conserved magnetization and have an intermediate behavior between localized and itinerant magnetism.
Spin dynamics of the ferromagnetic superconductor UGe{sub 2}
Raymond, S.; Huxley, A
2004-07-15
Inelastic neutron scattering was used to study the low-energy magnetic excitations of the ferromagnetic superconductor UGe{sub 2}. The ferromagnetic fluctuations are of Ising nature with a non-conserved magnetization and have an intermediate behavior between localized and itinerant magnetism.
Phase transitions for continuous-spin Ising ferromagnets
Beijeren, H. van; Sylvester, G.S.
1978-01-01
We study the comparison of continuous-spin ferromagnetic Ising models which differ only in their a priori single-spin weighting measures, and characterize the relationship of two even weighting measures ν′, ν on R such that the spin expectations of any ferromagnet with single-spin weighting measure
Spin Heat Accumulation Induced by Tunneling from a Ferromagnet
Vera-Marun, I.J.; Wees, B.J. van; Jansen, R.
2014-01-01
An electric current from a ferromagnet into a nonmagnetic material can induce a spin-dependent electron temperature. Here, it is shown that this spin heat accumulation, when created by tunneling from a ferromagnet, produces a non-negligible voltage signal that is comparable to that due to the coexis
Magnetic excitons in singlet-ground-state ferromagnets
Birgeneau, R.J.; Als-Nielsen, Jens Aage; Bucher, E.
1971-01-01
The authors report measurements of the dispersion of singlet-triplet magnetic excitons as a function of temperature in the singlet-ground-state ferromagnets fcc Pr and Pr3Tl. Well-defined excitons are observed in both the ferromagnetic and paramagnetic regions, but with energies which are nearly...
Intertwined nematic orders in a frustrated ferromagnet
Iqbal, Yasir; Ghosh, Pratyay; Narayanan, Rajesh; Kumar, Brijesh; Reuther, Johannes; Thomale, Ronny
2016-12-01
We investigate the quantum phases of the frustrated spin-1/2 J1-J2-J3 Heisenberg model on the square lattice with ferromagnetic J1 and antiferromagnetic J2 and J3 interactions. Using the pseudofermion functional renormalization group technique, we find an intermediate paramagnetic phase located between classically ordered ferromagnetic, stripy antiferromagnetic, and incommensurate spiral phases. We observe that quantum fluctuations lead to significant shifts of the spiral pitch angles compared to the classical limit. By computing the response of the system with respect to various spin rotation and lattice symmetry-breaking perturbations, we identify a complex interplay between different nematic spin states in the paramagnetic phase. While retaining time-reversal invariance, these phases either break spin-rotation symmetry, lattice-rotation symmetry, or a combination of both. We therefore propose the J1-J2-J3 Heisenberg model on the square lattice as a paradigmatic example where different intimately connected types of nematic orders emerge in the same model.
Anisotropy of a cubic ferromagnet at criticality
Kudlis, A.; Sokolov, A. I.
2016-10-01
Critical fluctuations change the effective anisotropy of cubic ferromagnet near the Curie point. If the crystal undergoes phase transition into orthorhombic phase and the initial anisotropy is not too strong, reduced anisotropy of nonlinear susceptibility acquires at Tc the universal value δ4*=2/v* 3 (u*+v*) where u* and v* are coordinates of the cubic fixed point on the flow diagram of renormalization group equations. In the paper, the critical value of the reduced anisotropy is estimated within the pseudo-ɛ expansion approach. The six-loop pseudo-ɛ expansions for u*, v*, and δ4* are derived for the arbitrary spin dimensionality n . For cubic crystals (n =3 ) higher-order coefficients of the pseudo-ɛ expansions obtained turn out to be so small that use of simple Padé approximants yields reliable numerical results. Padé resummation of the pseudo-ɛ series for u*, v*, and δ4* leads to the estimate δ4*=0.079 ±0.006 , indicating that detection of the anisotropic critical behavior of cubic ferromagnets in physical and computer experiments is certainly possible.
Titanium nitride room-temperature ferromagnetic nanoparticles
Morozov, Iu.G., E-mail: morozov@ism.ac.ru [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belousova, O.V. [Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, 8 Academician Osipyan Street, Chernogolovka, Moscow Region, 142432 (Russian Federation); Belyakov, O.A. [Ogarev Mordovia State University, Saransk, 68 Bol' shevistskaya Street, 430005 (Russian Federation); Parkin, I.P., E-mail: i.p.parkin@ucl.ac.uk [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Sathasivam, S. [Department of Chemistry, Materials Chemistry Research Centre, University College London, 20 Gordon Street, London, WC1H 0AJ (United Kingdom); Kuznetcov, M.V., E-mail: maxim1968@mail.ru [All-Russian Research Institute on Problems of Civil Defense and Emergencies of Emergency Control Ministry of Russia (EMERCOM), 7 Davidkovskaya Street, Moscow, 121352 (Russian Federation)
2016-08-05
Cubic and near-spherical TiN nanoparticles ranging in average size from 20 to 125 nm were prepared by levitation-jet aerosol synthesis through condensation of titanium vapor in an inert gas flow with gaseous nitrogen injection. The nanoparticles were characterized by using scanning electron microscopy (SEM), X-ray diffraction (XRD), BET measurements, UV–Vis, FT-IR, Raman spectroscopy, XPS, and vibrating-sample magnetometry. Room-temperature ferromagnetism with maximum magnetization up to 2.5 emu/g was recorded for the nanoparticles. The results indicate that the observed ferromagnetic ordering was related to the defect Ti–N structures on the surface of nanoparticles. This suggestion is in good correlation with the measured spectroscopical data. - Highlights: • Levitation-jet aerosol synthesis of TiN nanoparticles (NPs). • SEM, XRD, BET, UV–vis, FT-IR, Raman, XPS and magnetic characterization of the NPs. • Correlation between optical and XPS measurements data and maximum magnetization of the NPs.
Room-temperature ferromagnetism in cerium dioxide powders
Rakhmatullin, R. M., E-mail: rrakhmat@kpfu.ru; Pavlov, V. V.; Semashko, V. V.; Korableva, S. L. [Kazan Federal University, Institute of Physics (Russian Federation)
2015-08-15
Room-temperature ferromagnetism is detected in a CeO{sub 2} powder with a grain size of about 35 nm and a low (<0.1 at %) manganese and iron content. The ferromagnetism in a CeO{sub 2} sample with a submicron crystallite size and the same manganese and iron impurity content is lower than in the nanocrystalline sample by an order of magnitude. Apart from ferromagnetism, both samples exhibit EPR spectra of localized paramagnetic centers, the concentration of which is lower than 0.01 at %. A comparative analysis of these results shows that the F-center exchange (FCE) mechanism cannot cause ferromagnetism. This conclusion agrees with the charge-transfer ferromagnetism model proposed recently.
Geometrical dependence of spin current absorption into a ferromagnetic nanodot
Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi
2016-10-01
We have investigated the absorption property of the diffusive pure spin current due to a ferromagnetic nanodot in a laterally configured ferromagnetic/nonmagnetic hybrid nanostructure. The spin absorption in a nano-pillar-based lateral-spin-valve structure was confirmed to increase with increasing the lateral dimension of the ferromagnetic dot. However, the absorption efficiency was smaller than that in a conventional lateral spin valve based on nanowire junctions because the large effective cross section of the two dimensional nonmagnetic film reduces the spin absorption selectivity. We also found that the absorption efficiency of the spin current is significantly enhanced by using a thick ferromagnetic nanodot. This can be understood by taking into account the spin absorption through the side surface of the ferromagnetic dot quantitatively.
Shen, Jin; Wang, Chunlei; Xu, Shuhong; Lv, Changgui; Zhang, Ruohu; Cui, Yiping
2017-01-01
In this work, highly luminescent quaternary CuNiInS nanocrystals (NCs) are put forward as a good prototype for investigating defect-induced room temperature ferromagnetism. A ferromagnetic Ni cation can preserve the strong luminescence of NCs without introducing intermediate energy levels in the center of the forbidden band. The strong luminescence of NCs is used as an indicator for monitoring the concentration of vacancy defects inside them, facilitating the investigation of the origin of room temperature ferromagnetism in CuNiInS NCs. Our results reveal that the patching of Cu vacancies ({{{{V}}}{{Cu}}}-) with Ni will result in bound magnetic polarons composed of both {{{{V}}}{{Cu}}}- and a substitution of Cu by Ni ({{{{Ni}}}{{Cu}}}+), giving rise to the room temperature ferromagnetism of CuNiInS NCs. Either the ferromagnetic Ni or the non-ferromagnetic Cu cation can tune the magnetism of CuNiInS NCs because of the change of bound magnetic polaron concentration at the altered concentration ratio of {{{{V}}}{{Cu}}}- and {{{{Ni}}}{{Cu}}}+.
无
1998-01-01
Based on the two-band model, we investigate the tunnel magnetoresistance(TMR) in ferromagnet/insulator(semiconductor)/ferromagnet(FM/I(S)/FM) tunnel junction covered on both sides by nonmagnetic metal layers subjected to an electric field. Our results show that TMR oscillates with the thickness of ferromagnetic layers owing to the quantum-size effect and can reach very large value under suitable conditions, which may in general not be reached in FM/I(S)/FM with infinitely thick ferromagnetic layer. Although the electric field causes the change of the oscillation period, phase and amplitude of the TMR, a large TMR is still obtained in some situations with the electric field. Furthermore, the electric field does not change the feature that TMR varies monotonously with the change of magnetization angle of the middle ferromagnetic layer.
FMR investigations of half-metallic ferromagnets
Rameev, B.; Yildiz, F.; Kazan, S.; Aktas, B.; Gupta, A.; Tagirov, L. R.; Rata, D.; Buergler, D.; Gruenberg, P.; Schneider, C. M.; Kämmerer, S.; Reiss, G.; Hütten, A.
2006-05-01
Thin films of various half-metallic ferromagnets, such as chromium dioxide (CrO2) and Heusler alloys (Co2Cr0.6Fe0.4Al, Co2MnSi) have been investigated by ferromagnetic resonance (FMR) technique. It is demonstrated that FMR is a very efficient method to study the nanoscale magnetic properties, in particular to probe the magnetic anisotropy and magnetic inhomogeneities of ferromagnetic thin films. Epitaxial CrO2 thin films of various thicknesses (25-535 nm) have been deposited on TiO2(100) substrates by chemical vapor deposition process. It is shown that the magnetic behavior of the CrO2 films results from a competition between the magnetocrystalline and strain anisotropies. For the ultrathin CrO2 film (25 nm) the magnetic easy axis switches from the c-direction to the b-direction of the rutile structure. Thin-film Co2Cr0.6Fe0.4Al samples (25 nm or 100 nm) have been grown by DC magnetron sputtering either on unbuffered SiO2(100) substrates or on the substrates capped by a 50 nm thick V buffer layer. The effects of the vanadium buffer layer and of the film thickness are revealed by FMR studies of the Co2Cr0.6Fe0.4Al samples. Well-resolved multiple spin-wave modes are observed in the unbuffered Co2Cr0.6Fe0.4Al sample with a thickness of 100 nm and the exchange stiffness constant has been estimated. Thin films of Co2MnSi (4-100 nm) have been grown by DC sputtering on silicon substrates on top of a 42 nm thick V seed layer and capped either by Al2O3 or by Co and V layers. A set of the 80 nm thick films has been annealed at different temperatures in the range of 425-550 °C. FMR studies of the Co2MnSi samples shows that at the fixed annealing temperature (450 °C) the highest magnetization is observed in the sample with a thickness of 61 nm, while the thicker samples (100 nm) reveal not only a lower magnetization but greater magnetic inhomogeneity as well. An annealing treatment at T ≥ 450 °C is essential to obtain higher magnetization as well as uniform magnetic
Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.
2016-10-01
A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (techniques. The measurements were carried out on epitaxial Heusler alloy (Co2FeSi or Co2MnSi)/n-GaAs heterostructures. Lateral spin valve devices were fabricated by electron beam and photolithography. We compare measurements carried out by the new FMR-based technique with traditional non-local and three-terminal Hanle measurements. A full model appropriate for the measurements will be introduced, and a broader discussion in the context of spin pumping experimenments will be included in the talk. The new technique provides a simple and powerful means for detecting spin accumulation at high temperatures. Reference: C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296
Perfect GMR effect in gapped graphene-based ferromagnetic normal ferromagnetic junctions
Hossein Karbaschi; Gholam Reza Rashedi
2015-01-01
We investigate the quantum transport property in gapped graphene-based ferromagnetic/normal/ferromagnetic (FG/NG/FG) junctions by using the Dirac–Bogoliubov–de Gennes equation. The graphene is fabricated on SiC and BN substrates separately, so carriers in FG/NG/FG structures are considered as massive relativistic particles. Transmission prob-ability, charge, and spin conductances are studied as a function of exchange energy of ferromagnets (h), size of graphene gap, and thickness of normal graphene region (L) respectively. Using the experimental values of Fermi energy in the normal graphene part (EFN∼400 meV) and energy gap in graphene (260 meV for SiC and 50 meV for BN substrate), it is shown that this structure can be used for both spin-up and spin-down polarized current. The latter case has different behavior of gapped FG/NG/FG from that of gapless FG/NG/FG structures. Also perfect charge giant magnetoresistance is observed in a range of EFN−mv2F
Magnetoresistive system with concentric ferromagnetic asymmetric nanorings
Avila, J. I., E-mail: javila@ulg.ac.be; Tumelero, M. A.; Pasa, A. A.; Viegas, A. D. C. [Laboratório de Filmes Finos e Superfícies (LFFS), Departamento de Física, Universidade Federal de Santa Catarina, CP 476 Florianópolis (Brazil)
2015-03-14
A structure consisting of two concentric asymmetric nanorings, each displaying vortex remanent states, is studied with micromagnetic calculations. By orienting in suitable directions, both the asymmetry of the rings and a uniform magnetic field, the vortices chiralities can be switched from parallel to antiparallel, obtaining in this way the analogue of the ferromagnetic and antiferromagnetic configurations found in bar magnets pairs. Conditions on the thickness of single rings to obtain vortex states, as well as formulas for their remanent magnetization are given. The concentric ring structure enables the creation of magnetoresistive systems comprising the qualities of magnetic nanorings, such as low stray fields and high stability. A possible application is as contacts in spin injection in semiconductors, and estimations obtained here of magnetoresistance change for a cylindrical spin injection based device show significant variations comparable to linear geometries.
Orbital magnetization in dilute ferromagnetic semiconductors
Śliwa, Cezary; Dietl, Tomasz
2014-07-01
The relationship between the modern and classical Landau's approach to carrier orbital magnetization is studied theoretically within the envelope function approximation, taking ferromagnetic (Ga,Mn)As as an example. It is shown that while the evaluation of hole magnetization within the modern theory does not require information on the band structure in a magnetic field, the number of basis wave functions must be much larger than in the Landau approach to achieve the same quantitative accuracy. A numerically efficient method is proposed, which takes advantages of these two theoretical schemes. The computed magnitude of orbital magnetization is in accord with experimental values obtained by x-ray magnetic circular dichroism in (III,Mn)V compounds. The direct effect of the magnetic field on the hole spectrum is studied too, and employed to interpret a dependence of the Coulomb blockade maxima on the magnetic field in a single electron transistor with a (Ga,Mn)As gate.
UGe{sub 2}: a ferromagnetic superconductor
Flouquet, J.; Huxley, A.; Sheikin, I.; Kernavanois, N.; Braithwaite, D.; Ressouche, E. [Departement de Recherche Fondamentale sur la Matiere Condensee, SPSMS, CEA/Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Watanabe, Shinji; Miyake, Kazumasa [Department of Physical Science, Osaka University, Toyonaka, Osaka (Japan)
2001-03-01
The discovery of superconductivity within the ferromagnetic phase of the heavy-fermion compound UGe{sub 2} provides a fresh perspective from which to search for new mechanisms of unconventional superconductivity. We review here our recent neutron scattering experiments, which in particular fail to find evidence for a charge density (or spin density) wave below a characteristic temperature T{sub X}. Nevertheless the existence of such a state qualitatively accounts for transport measurements, and is not inconsistent with band-structure calculations that suggest nesting might occur across a majority spin Fermi surface. Finally we describe an anomalous behavior of the upper critical field. This is analyzed within a strong coupling formalism in which the superconductivity is driven by fluctuations due to a proximity to the charge density wave transition. (author)
Kundu, Pijush K; Dowling, David R
2011-01-01
Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations-whether in the liquid or gaseous state or both-is introduced and comprehensively covered in this widely adopted text. Revised and updated by Dr. David Dowling, Fluid Mechanics, 5e is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level. Along with more than 100 new figures, the text has been reorganized and consolidated to provide a better flow and more cohesion of topics.Changes made to the
Possible room temperature ferromagnetism in silicon doped tellurium semiconductor
Mishra, P.K., E-mail: pkmishra@barc.gov.in [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Babu, P.D., E-mail: pdbabu@csr.res.in [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC, Mumbai 400085 (India); Ravikumar, G. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, R.; Roy, Mainak; Phapale, S. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sastry, P.U. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)
2015-08-05
Highlights: • In this work we report the observation of ferromagnetism in a silicon doped tellurium sample at room temperature. • Isothermal magnetization hysteresis measurements shows ferromagnetism persists up to room temperature. • We ascribe the origin of ferromagnetism to possible modification of electronic band or generation of local magnetic moment by silicon doping into the parent tellurium lattice. • Potentially this could be a new type of room-temperature magnetic semiconductor that is not based on any oxide or nitride. - Abstract: We have found direct evidence of ferromagnetism in a silicon doped tellurium sample, a new type of magnetic semiconductor that is not based on any oxide or nitride. Room temperature ferromagnetism was very apparent from the magnetization hysteresis. Isothermal magnetization hysteresis loop and differences in ZFC and FC branches of magnetization shows that the ferromagnetic transition temperature is above room temperature. Observation of magnetization hysteresis only at low magnetic fields is indicative of smaller domain size. Average estimated magnetic moment μ per domain is 2.6 μ{sub B}. The origin of ferromagnetism could be ascribed to modification of electronic band or generation of local magnetic moment by silicon doping into the parent tellurium lattice.
Interfacial Symmetry Control of Emergent Ferromagnetism at the Nanoscale.
Grutter, A J; Vailionis, A; Borchers, J A; Kirby, B J; Flint, C L; He, C; Arenholz, E; Suzuki, Y
2016-09-14
The emergence of complex new ground states at interfaces has been identified as one of the most promising routes to highly tunable nanoscale materials. Despite recent progress, isolating and controlling the underlying mechanisms behind these emergent properties remains among the most challenging materials physics problems to date. In particular, generating ferromagnetism localized at the interface of two nonferromagnetic materials is of fundamental and technological interest. Moreover, the ability to turn the ferromagnetism on and off would shed light on the origin of such emergent phenomena and is promising for spintronic applications. We demonstrate that ferromagnetism confined within one unit cell at the interface of CaRuO3 and CaMnO3 can be switched on and off by changing the symmetry of the oxygen octahedra connectivity at the boundary. Interfaces that are symmetry-matched across the boundary exhibit interfacial CaMnO3 ferromagnetism while the ferromagnetism at symmetry-mismatched interfaces is suppressed. We attribute the suppression of ferromagnetic order to a reduction in charge transfer at symmetry-mismatched interfaces, where frustrated bonding weakens the orbital overlap. Thus, interfacial symmetry is a new route to control emergent ferromagnetism in materials such as CaMnO3 that exhibit antiferromagnetism in bulk form.
Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles.
Zhu, Zhonghua; Gao, Daqiang; Dong, Chunhui; Yang, Guijin; Zhang, Jing; Zhang, Jinlin; Shi, Zhenhua; Gao, Hua; Luo, Honggang; Xue, Desheng
2012-03-21
Nanoparticles of superconducting YBa(2)Cu(3)O(7-δ) were synthesized via a citrate pyrolysis technique. Room temperature ferromagnetism was revealed in the samples by a vibrating sample magnetometer. Electron spin resonance spectra at selected temperatures indicated that there is a transition from the normal to the superconducting state at temperatures below 100 K. The M-T curves with various applied magnetic fields showed that the superconducting transition temperatures are 92 K and 55 K for the air-annealed and the post-annealed samples, respectively. Compared to the air-annealed sample, the saturation magnetization of the sample by reheating the air-annealed one in argon atmosphere is enhanced but its superconductivity is weakened, which implies that the ferromagnetism maybe originates from the surface oxygen defects. By superconducting quantum interference device measurements, we further confirmed the ferromagnetic behavior at high temperatures and interesting upturns in field cooling magnetization curves within the superconducting region are found. We attributed the upturn phenomena to the coexistence of ferromagnetism and superconductivity at low temperatures. Room temperature ferromagnetism of superconducting YBa(2)Cu(3)O(7-δ) nanoparticles has been observed in some previous related studies, but the issue of the coexistence of ferromagnetism and superconductivity within the superconducting region is still unclear. In the present work, it will be addressed in detail. The cooperation phenomena found in the spin-singlet superconductors will help us to understand the nature of superconductivity and ferromagnetism in more depth.
UGe2: A ferromagnetic spin-triplet superconductor
Huxley, Andrew; Sheikin, Ilya; Ressouche, Eric; Kernavanois, Nolwenn; Braithwaite, Daniel; Calemczuk, Roberto; Flouquet, Jacques
2001-04-01
The identification of a spin-triplet superfluid phase in 3He naturally led to more general theoretical predictions that spin triplet superconductivity might occur near to a ferromagnetic instability in some metals. The recent discovery of superconductivity near a ferromagnetic quantum critical point in UGe2 now calls for these predictions to be reexamined experimentally. In this light it initially appears surprising that superconductivity in UGe2 has only been detected in the ferromagnetic phase and not also at pressures above the critical pressure for the suppression of ferromagnetism. In this paper we provide evidence that the superconductivity is indeed a bulk property. We also observe the evolution with pressure of the magnetic order by neutron scattering and find that the ferromagnetic component of the order is still present at a pressure and temperature where superconductivity is found. In resistivity measurements we identify an additional transition within the ferromagnetic state. The characteristic temperature of this transition, Tx, decreases with pressure and disappears at a pressure Px close to the pressure at which the superconductivity is strongest. Evidence is presented that this transition is also induced by a magnetic field at pressures just above Px. An observed unusual reentrant behavior of the superconductivity with field at a pressure of 13.5 kbar is then qualitatively explained. These results suggest that the transition at Px is intricately related to the appearance of superconductivity, which could explain why the superconductivity is apparently confined to the ferromagnetic phase.
Spin-wave modes of ferromagnetic films
Arias, R. E.
2016-10-01
The spin-wave modes of ferromagnetic films have been studied for a long time experimentally as well as theoretically, either in the magnetostatic approximation or also considering the exchange interaction. A theoretical method is presented that allows one to determine with ease the exact frequency dispersion relations of dipole-exchange modes under general conditions: an obliquely applied magnetic field, and surface boundary conditions that allow for partial pinning, which may be of different origins. The method is a generalization of Green's theorem to the problem of solving the linear dynamics of ferromagnetic spin-wave modes. Convolution integral equations for the magnetization and the magnetostatic potential of the modes are derived on the surfaces of the film. For the translation-invariant film these become simple local algebraic equations at each in-plane wave vector. Eigenfrequencies result from imposing a 6 ×6 determinant to be null, and spin-wave modes follow everywhere through solving linear 6 ×6 inhomogeneous systems. An interpretation of the results is that the Green's functions represent six independent plane-wave solutions to the equations of motion, with six associated complex perpendicular wave vectors: volume modes correspond to the cases in which two of these are purely real at a given frequency. Furthermore, the convolution extinction equations enforce the boundary conditions: this is possible at specific eigenfrequencies for a given in-plane wave vector. Magnetostatic modes may also be obtained in detail. At low frequencies and for some obliquely applied magnetic fields, magnetostatic and dipole-exchange volume modes may have forward or backward character depending on the frequency range.
Microwave permeability of metamaterials based on ferromagnetic composites
Adenot-Engelvin, Anne-Lise [CEA Le Ripault, BP 16 37260 Mounts (France)]. E-mail: anne-lise.adenot-engelvin@cea.fr; Dudek, Christophe [CEA Le Ripault, BP 16 37260 Mounts (France); LEMA, UMR 6157 CNSR, Universite de Tours, 37000 TOURS (France); Acher, Olivier [CEA Le Ripault, BP 16 37260 Mounts (France)
2006-05-15
In this paper, we focus on metamaterials based on ferromagnetic composite combined with an inductive pattern. CoFeSiB amorphous ferromagnetic glass-coated microwires and thin films are involved in the composite. The inductive pattern is a coiling of Copper wire with a varying number of loops. We derived the microwave permeability of the ferromagnetic material inside the inductive pattern through a Landau-Gilbert model of gyromagnetism. In agreement with experimental results, the engineering of resonance frequency of the sample is achieved through the number of loops of the coiling.
Microwave permeability of metamaterials based on ferromagnetic composites
Adenot-Engelvin, Anne-Lise; Dudek, Christophe; Acher, Olivier
2006-05-01
In this paper, we focus on metamaterials based on ferromagnetic composite combined with an inductive pattern. CoFeSiB amorphous ferromagnetic glass-coated microwires and thin films are involved in the composite. The inductive pattern is a coiling of Copper wire with a varying number of loops. We derived the microwave permeability of the ferromagnetic material inside the inductive pattern through a Landau-Gilbert model of gyromagnetism. In agreement with experimental results, the engineering of resonance frequency of the sample is achieved through the number of loops of the coiling.
Tunnel magnetoresis-tance(TMR) in ferromagnetic metalinsulator granular films
无
2001-01-01
We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal- insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal particles. The theoretical and ex-perimental results including electrical resistivity, magnetore-sistance and their temperature dependence are described. Limitations to the applications of the ferromagnetic metal- insulator granular films are also discussed. Additionally, a brief survey of another two magnetic properties, high- fre-quency property and giant Hall effect (GHE) associated strongly with the granular structures is also presented.
Andreev Tunneling Through a Ferromagnet/Quantum-Dot/Superconductor System
RAO Hong-Hu; ZHU Yu; LIN Tsung-Han
2002-01-01
We study Andreev tunneling through a ferromagnet/quantum-dot (QD)/superconductor system. By usingnonequilibrum Green function method, the averaged occupation of electrons in QD and the Andreev tunneling currentare studied. Comparing to the norma-metal/quantum-dot/superconductor, the system shows significant changes: (i)The averaged occupations of spin-up and spin-down electrons are not equal. (ii) With the increase of the polarizationof ferromagnetic lead, the Andreev reflection current decreases. (iii) However, even the ferromagnetic lead reaches fullpolarization, the averaged occupation of spin-down electrons is not zero. The physics of these changes is discussed.
Brorsen, Michael
These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....
Possible mechanism for d0 ferromagnetism mediated by intrinsic defects
Zhang, Zhenkui
2014-01-01
We examine the effects of several intrinsic defects on the magnetic behavior of ZnS nanostructures using hybrid density functional theory to gain insights into d0 ferromagnetism. Previous studies have predicted that the magnetism is due to a coupling between partially filled defect states. By taking into account the electronic correlations, we find an additional splitting of the defect states in Zn vacancies and thus the possibility of gaining energy by preferential filling of hole states, establishing ferromagnetism between spin polarized S 3p holes. We demonstrate a crucial role of neutral S vacancies in promoting ferromagnetism between positively charged S vacancies. S dangling bonds on the nanoparticle surface also induce ferromagnetism. This journal is
Emergent vortices at a ferromagnetic superconducting oxide interface
Petrović, A. P.; Paré, A.; Paudel, T. R.; Lee, K.; Holmes, S.; Barnes, C. H. W.; David, A.; Wu, T.; Tsymbal, E. Y.; Panagopoulos, C.
2014-10-01
Understanding the cohabitation arrangements of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface remains an open challenge. Probing this coexistence with sub-Kelvin magnetotransport experiments, we demonstrate that a hysteretic in-plane magnetoresistance develops below the superconducting transition for ≤ft| {{H}//} \\right| \\lt 0.15 T, independently of the carrier density or oxygen annealing. This hysteresis is argued to arise from vortex depinning within a thin (\\lt 20 nm) superconducting layer, mediated by discrete ferromagnetic dipoles located solely above the layer. The pinning strength may be modified by varying the superconducting channel thickness via electric field-effect doping. No evidence is found for bulk magnetism or finite-momentum pairing, and we conclude that ferromagnetism is strictly confined to the interface, where it competes with superconductivity. Our work indicates that oxide interfaces are ideal candidate materials for the growth and analysis of nanoscale superconductor/ferromagnet hybrids.
Highly thermal-stable ferromagnetism by a natural composite
Ma, Tianyu; Gou, Junming; Hu, Shanshan; Liu, Xiaolian; Wu, Chen; Ren, Shuai; Zhao, Hui; Xiao, Andong; Jiang, Chengbao; Ren, Xiaobing; Yan, Mi
2017-01-01
All ferromagnetic materials show deterioration of magnetism-related properties such as magnetization and magnetostriction with increasing temperature, as the result of gradual loss of magnetic order with approaching Curie temperature TC. However, technologically, it is highly desired to find a magnetic material that can resist such magnetism deterioration and maintain stable magnetism up to its TC, but this seems against the conventional wisdom about ferromagnetism. Here we show that a Fe-Ga alloy exhibits highly thermal-stable magnetization up to the vicinity of its TC, 880 K. Also, the magnetostriction shows nearly no deterioration over a very wide temperature range. Such unusual behaviour stems from dual-magnetic-phase nature of this alloy, in which a gradual structural-magnetic transformation occurs between two magnetic phases so that the magnetism deterioration is compensated by the growth of the ferromagnetic phase with larger magnetization. Our finding may help to develop highly thermal-stable ferromagnetic and magnetostrictive materials.
Exchange bias training effect in coupled all ferromagnetic bilayer structures.
Binek, Ch; Polisetty, S; He, Xi; Berger, A
2006-02-17
Exchange coupled bilayers of soft and hard ferromagnetic thin films show remarkable analogies to conventional antiferromagnetic/ferromagnetic exchange bias heterostructures. Not only do all these ferromagnetic bilayers exhibit a tunable exchange bias effect, they also show a distinct training behavior upon cycling the soft layer through consecutive hysteresis loops. In contrast with conventional exchange bias systems, such all ferromagnetic bilayer structures allow the observation of training induced changes in the bias-setting hardmagnetic layer by means of simple magnetometry. Our experiments show unambiguously that the exchange bias training effect is driven by deviations from equilibrium in the pinning layer. A comparison of our experimental data with predictions from a theory based upon triggered relaxation phenomena shows excellent agreement.
Spin dynamics and spin freezing at ferromagnetic quantum phase transitions
Schmakat, P.; Wagner, M.; Ritz, R.; Bauer, A.; Brando, M.; Deppe, M.; Duncan, W.; Duvinage, C.; Franz, C.; Geibel, C.; Grosche, F. M.; Hirschberger, M.; Hradil, K.; Meven, M.; Neubauer, A.; Schulz, M.; Senyshyn, A.; Süllow, S.; Pedersen, B.; Böni, P.; Pfleiderer, C.
2015-07-01
We report selected experimental results on the spin dynamics and spin freezing at ferromagnetic quantum phase transitions to illustrate some of the most prominent escape routes by which ferromagnetic quantum criticality is avoided in real materials. In the transition metal Heusler compound Fe2TiSn we observe evidence for incipient ferromagnetic quantum criticality. High pressure studies in MnSi reveal empirical evidence for a topological non-Fermi liquid state without quantum criticality. Single crystals of the hexagonal Laves phase compound Nb1- y Fe2+ y provide evidence of a ferromagnetic to spin density wave transition as a function of slight compositional changes. Last but not least, neutron depolarisation imaging in CePd1- x Rh x underscore evidence taken from the bulk properties of the formation of a Kondo cluster glass.
Reentrant ferromagnetism and its stability in magnetic semiconductors
Zutic, Igor; Erwin, Steven; Petukhov, Andre
2007-03-01
The magnetization of a ferromagnetic material normally decays monotonically with increasing temperature. Here we demonstrate theoretically the possibility of quite different behavior: reentrant ferromagnetism in semiconductors [1]. Reentrant magnetism can arise in semiconductors because as the temperature rises, the resulting higher concentration of thermally excited carriers can enhance the exchange coupling between magnetic impurities. This opens the possibility of materials exhibiting a transition from the low-temperature paramagnetic phase, in which carriers are frozen out, to a ferromagnetic phase at higher temperature. Thus, in the absence of other ferromagnetic mechanisms there will be two critical temperatures, Tc1 Zuti'c, A. Petukhov, S. C. Erwin, preprint. [2] I. Zuti'c, J. Fabian, S. C. Erwin, Phys. Rev. Lett. 97, 026602 (2006).
Theoretical models of ferromagnetic III-V semiconductors
Jungwirth, T.; Sinova, Jairo; Kučera, J.; MacDonald, A. H.
2002-01-01
Recent materials research has advanced the maximum ferromagnetic transition temperature in semiconductors containing magnetic elements toward room temperature. Reaching this goal would make information technology applications of these materials likely. In this article we briefly review the status of work over the past five years which has attempted to achieve a theoretical understanding of these complex magnetic systems. The basic microscopic origins of ferromagnetism in the (III,Mn)V compoun...
Novel Majorana mode and magnetoresistance in ferromagnetic superconducting topological insulator
Goudarzi, Hadi; Khezerlou, Maryam; Asgarifar, Samin
2017-01-01
Among the potential applications of topological insulators, we investigate theoretically the effect of coexistence of proximity-induced ferromagnetism and superconductivity on the surface states of 3-dimensional topological insulator, where the superconducting electron-hole excitations can be significantly affected by the magnetization of ferromagnetic order. We find that, Majorana mode energy, as a verified feature of TI F/S structure, along the interface sensitively depends on the magnitude...
Damped Topological Magnons in the Kagome-Lattice Ferromagnets
Chernyshev, A. L.; Maksimov, P. A.
2016-10-01
We demonstrate that interactions can substantially undermine the free-particle description of magnons in ferromagnets on geometrically frustrated lattices. The anharmonic coupling, facilitated by the Dzyaloshinskii-Moriya interaction, and a highly degenerate two-magnon continuum yield a strong, nonperturbative damping of the high-energy magnon modes. We provide a detailed account of the effect for the S =1 /2 ferromagnet on the kagome lattice and propose further experiments.
Superconducting proximity effect in a mesoscopic ferromagnetic wire
Giroud, M.; Courtois, H.; Hasselbach, K.; Mailly, D.; Pannetier, B.
1998-01-01
We present an experimental study of the transport properties of a ferromagnetic metallic wire (Co) in metallic contact with a superconductor (Al). As the temperature is decreased below the Al superconducting transition, the Co resistance exhibits a significant dependence on both temperature and voltage. The differential resistance data show that the decay length for the proximity effect is much larger than we would simply expect from the exchange field of the ferromagnet.
Magnetization Profiles of Ferromagnetic Ising Films in a Transverse Field
WANG Xiao-Guang; PAN Shao-Hua; YANG Guo-Zhen
2000-01-01
Within the framework of the mean field theory, we study the magnetization profiles of ferromagnetic Ising films in a transverse field. By the transfer matrix method, we first derive a general nonlinear equation for phase transition temperatures and then calculate the magnetization profiles of the system. The method proposed here can be applied to ferromagnetic films with arbitrary surface layer number, bulk layer number, exchange interaction constants and transverse fields.
Strong Exchange Anisotropy in Heavy Atom Radical Ferromagnets
Winter, Stephen
2012-02-01
The discovery twenty years ago of ferromagnetic ordering in ``light atom'' p-block (N, O based) radicals appeared to provide a major conceptual advance, suggesting the possibility of a new era in non-metal molecular magnetism. However, the weak through-space magnetic exchange interactions present in these early radical-based ferromagnets afforded very low Curie temperatures TC (JACS 130, 8414-8425 (2008), JACS 133, 8126-8129 (2011).
Odd triplet superconductivity in superconductor ferromagnet structures: a survey
Bergeret, F.S. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica de la Materia Condensada C-V, Madrid (Spain); Volkov, A.F. [Ruhr-Universitaet Bochum, Theoretische Physik III, Bochum (Germany); Russian Academy of Sciences, Institute for Radioengineering and Electronics, Moscow (Russian Federation); Efetov, K.B. [Ruhr-Universitaet Bochum, Theoretische Physik III, Bochum (Germany); L.D. Landau Institute for Theoretical Physics RAS, Moscow (Russian Federation)
2007-11-15
We review the main features of odd triplet superconductivity in superconductor-ferromagnet (S/F) structures. We discuss the different types of superconducting condensate that can be experimentally observed and pay special attention to the triplet component induced in a ferromagnet which is in contact with a superconductor. The triplet component is an even function of the momentum and an odd function of the frequency and leads to novel phenomena. (orig.)
Elimination of Ferromagnetic Particles Aggregation for Investigation by Electron Microscopy
О.S. Kuzema
2011-01-01
Full Text Available It has been described the device for sample preparation of highly dispersed ferromagnetic powders including micropowders for permanent magnets, magnetic carriers, machine and mechanism components’ wear products contained in lubricants for investigation of these materials by light and electron microscopy. The device eliminates the coalescence of ferromagnetic particles and improves reliability of the results of such objects investigation. The technique of such device application has been described and exemplified for various materials investigation.
Evidence of weak ferromagnetism in chromium(III) oxide particles
Vazquez-Vazquez, Carlos E-mail: qfmatcvv@usc.es; Banobre-Lopez, Manuel; Lopez-Quintela, M.A.; Hueso, L.E.; Rivas, J
2004-05-01
The low temperature (4
Fluid dynamics of dilatant fluid
Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko
2012-01-01
A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...... of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...... reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits the shear thickening oscillation (i.e., the oscillatory shear flow alternating between the thickened and the relaxed states). The results of numerical simulations are presented for one- and two...
Spin Orbit Torque in Ferromagnetic Semiconductors
Li, Hang
2016-06-21
Electrons not only have charges but also have spin. By utilizing the electron spin, the energy consumption of electronic devices can be reduced, their size can be scaled down and the efficiency of `read\\' and `write\\' in memory devices can be significantly improved. Hence, the manipulation of electron spin in electronic devices becomes more and more appealing for the advancement of microelectronics. In spin-based devices, the manipulation of ferromagnetic order parameter using electrical currents is a very useful means for current-driven operation. Nowadays, most of magnetic memory devices are based on the so-called spin transfer torque, which stems from the spin angular momentum transfer between a spin-polarized current and the magnetic order parameter. Recently, a novel spin torque effect, exploiting spin-orbit coupling in non-centrosymmetric magnets, has attracted a massive amount of attention. This thesis addresses the nature of spin-orbit coupled transport and torques in non-centrosymmetric magnetic semiconductors. We start with the theoretical study of spin orbit torque in three dimensional ferromagnetic GaMnAs. Using the Kubo formula, we calculate both the current-driven field-like torque and anti-damping-like torque. We compare the numerical results with the analytical expressions in the model case of a magnetic Rashba two-dimensional electron gas. Parametric dependencies of the different torque components and similarities to the analytical results of the Rashba two-dimensional electron gas in the weak disorder limit are described. Subsequently we study spin-orbit torques in two dimensional hexagonal crystals such as graphene, silicene, germanene and stanene. In the presence of staggered potential and exchange field, the valley degeneracy can be lifted and we obtain a valley-dependent Berry curvature, leading to a tunable antidamping torque by controlling the valley degree of freedom. This thesis then addresses the influence of the quantum spin Hall
Seemann, K. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material-forschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)], E-mail: klaus.seemann@imf.fzk.de; Leiste, H. [Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Institut fuer Material-forschung I, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Kovacs, A. [Institute of Scientific and Industrial Research, 8-1 Mihogaoka, Ibaraki, Osaka 5670047 (Japan)
2008-07-15
In order to describe high-frequency damping mechanisms of ferromagnetic films by means of the imaginary part of the frequency-dependant permeability, CMOS compatible ferromagnetic Fe{sub 36}Co{sub 44}Hf{sub 9}N{sub 11} films were deposited by reactive r.f. magnetron sputtering on oxidised 5x5 mm{sup 2}x380 {mu}m (1 0 0)-silicon substrates with a 6-in. Fe{sub 38}Co{sub 47}Hf{sub 15} target, as well as magnetic field annealing between 300 and 600 deg. C. An in-plane uniaxial anisotropy of around 4.5 mT as well as an excellent soft magnetic behaviour with a saturation polarisation of approximately 1.4 T could be observed after heat treatment at the above-mentioned temperatures, which drives these films to a high-frequency suitability. Ferromagnetic resonance frequencies of approximately up to 2.4 GHz could be obtained. The frequency-dependant permeability was measured with a broadband permeameter. Depending on the heat treatment, an increase of the full-width at half-maximum (FWHM) of the imaginary part of the frequency-dependant permeability is discussed in terms of two-magnon scattering, anisotropy-type competition and local resonance generation through predominant grain growth causing magnetisation and anisotropy inhomogeneities in the magnetic films. The grain size of the films was determined by (HRTEM) imaging and amounts from a few nanometres for films heat treated at 300 deg. C to more than 10 nm at 600 deg. C where the FWHM {delta}f{sub eff} and the Landau-Lifschitz-Gilbert equation damping parameter {alpha}{sub eff} increases with d{sub nm}{sup 2} and d{sub nm} (e.g. d{sub nm} is the grain diameter of the nonmagnetic Hf-N phase), respectively.
Bernard, Peter S
2015-01-01
This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.
Ferromagnetic resonance of particulate magnetic recording tapes
Netzelmann, U.
1990-08-01
The room-temperature ferromagnetic resonance (FMR) spectra of γ-Fe2O3, CrO2, and barium ferrite particulate magnetic recording tapes have been measured at microwave frequencies of 9.35 and 35 GHz for various orientations of the static and high-frequency magnetic fields with respect to the tape. For CrO2 tapes, the influence of the width of the angular distribution of the particle orientations on the FMR spectra has been studied from the nearly isotropic case up to the highly oriented case. Hysteretic behavior for a CrO2 tape as well as the effect of tape calendering for a γ-Fe2O3 tape has been observed by FMR. Experimental results are found to be in reasonable agreement with results of theoretical calculations based on a model of an ellipsoidal single-domain particle with both shape and magnetocrystalline anisotropy. Magnetostatic interaction inside the magnetic film has been introduced by expressing the total magnetostatic energy as a combination of a part dependent on particle shape and a part dependent on the shape of the tape. As a result of a comparison of experimental data with calculated data from the model, the magnetocrystalline easy axis of the CrO2 particles is found to be parallel with the particle axis.
Effective surface anisotropy in polycrystalline ferromagnetic nanowires
Holanda, J.; Campos, C.L.A.V.; Franca, C.A.; Padrón-Hernández, E., E-mail: padron@df.ufpe.br
2014-12-25
Highlights: • Here we make a mixing of two models. A macroscopic and a microscopic model. • The principal idea in this paper is to write the free magnetic energy for a soft magnetic cylindrical nanowire and make the comparison with our previous models. • The model is tested to determine the effective constant in Ni nanowires. - Abstract: Here we express the effective surface anisotropy for soft ferromagnetic nanowires as the function of the micro-structural behaviors. Many papers about these systems determine the reversal modes for the magnetization to explain magnetic properties of the nanowires. Our previous works related morphological structure with magnetic properties. The principal idea in this paper is to write the free magnetic energy for a soft magnetic cylindrical nanowire and make the comparison with our previous models. In this way we include the macroscopic effective anisotropy due to the disordered atoms and ignoring other microstructure terms related in our previous works. From this idea and our last model to these systems, we made an association that permit to express the effective anisotropy in function of the principal morphological characteristics of nanowires. The model is tested to determine the numerical value of the mentioned constant in Ni nanowires obtained by electrodeposition in porous anodic aluminum oxide membranes using the Transmission Electron Microscopy.
Single ferromagnetic layer magnetic random access memory
Xing, M.-J.; Jalil, M. B. A.; Ghee Tan, Seng; Jiang, Y.
2013-08-01
We propose a magnetic random access memory (MRAM) device in which both the writing and reading processes are realized within a single ferromagnetic (FM) layer. The FM layer is sandwiched between layers of heavy element and oxide to enhance the Rashba spin-orbit coupling (RSOC). When the in-plane FM moments are oriented at some intermediate angle to the current direction, the RSOC effect induces a spin accumulation in the FM layer, which in turn generates a Rashba spin torque field via the s-d exchange interaction. This field acts as the writing field of the memory device. The RSOC also induces a charge accumulation in the transverse direction via the inverse spin Hall effect (ISHE), which can be used to realize the memory read-out. The writing and read-out processes of the proposed memory are modeled numerically via the non-equilibrium Green's function technique. Besides the advantages of Rashba spin torque writing, i.e., no spin injection and symmetrical data-writing process, this single FM layer MRAM design does away with having a giant magnetoresistive or magnetic tunnel junction multilayer structure by utilizing the ISHE for the read-out process.
Ferromagnetic properties of fcc Gd thin films
Bertelli, T. P., E-mail: tambauh@gmail.com; Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y. [Universidade Federal do Espírito Santo, Departamento de Física, Vitória/ES 29075-910 (Brazil); Pessoa, M. S. [Universidade Federal do Espírito Santo, Departamento de Ciências Naturais, São Mateus/ES 29932-540 (Brazil)
2015-05-28
Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.
Laser-induced torques in metallic ferromagnets
Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy
2016-10-01
We study laser-induced torques in bcc Fe, hcp Co, and L 10 FePt based on first-principles electronic structure calculations and the Keldysh nonequilibrium formalism. We find that the torques have two contributions, one from the inverse Faraday effect (IFE) and one from the optical spin-transfer torque (OSTT). Depending on the ferromagnet at hand and on the quasiparticle broadening the two contributions may be of similar magnitude, or one contribution may dominate over the other. Additionally, we determine the nonequilibrium spin polarization in order to investigate its relation to the torque. We find the torques and the perpendicular component of the nonequilibrium spin polarization to be odd in the helicity of the laser light, while the spin polarization that is induced parallel to the magnetization is helicity independent. The parallel component of the nonequilibrium spin polarization is orders of magnitude larger than the perpendicular component. In the case of hcp Co we find good agreement between the calculated laser-induced torque and a recent experiment.
Stripe glasses in ferromagnetic thin films
Principi, Alessandro; Katsnelson, Mikhail I.
2016-02-01
Domain walls in magnetic multilayered systems can exhibit a very complex and fascinating behavior. For example, the magnetization of thin films of hard magnetic materials is in general perpendicular to the thin-film plane, thanks to the strong out-of-plane anisotropy, but its direction changes periodically, forming an alternating spin-up and spin-down stripe pattern. The latter is stabilized by the competition between the ferromagnetic coupling and dipole-dipole interactions, and disappears when a moderate in-plane magnetic field is applied. It has been suggested that such a behavior may be understood in terms of a self-induced stripe glassiness. In this paper we show that such a scenario is compatible with the experimental findings. The strong out-of-plane magnetic anisotropy of the film is found to be beneficial for the formation of both stripe-ordered and glassy phases. At zero magnetic field the system can form a glass only in a narrow interval of fairly large temperatures. An in-plane magnetic field, however, shifts the glass transition towards lower temperatures, therefore enabling it at or below room temperature. In good qualitative agreement with the experimental findings, we show that a moderate in-plane magnetic field of the order of 50 mT can lead to the formation of defects in the stripe pattern, which sets the onset of the glass transition.
Spin-dependent delay time in ferromagnet/insulator/ferromagnet heterostructures
Xie, ZhengWei; Zheng Shi, De; Lv, HouXiang [College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066, Sichuan (China)
2014-07-07
We study theoretically spin-dependent group delay and dwell time in ferromagnet/insulator/ferromagnet (FM/I/FM) heterostructure. The results indicate that, when the electrons with different spin orientations tunnel through the FM/I/FM junction, the spin-up process and the spin-down process are separated on the time scales. As the self-interference delay has the spin-dependent features, the variations of spin-dependent dwell-time and spin-dependent group-delay time with the structure parameters appear different features, especially, in low incident energy range. These different features show up as that the group delay times for the spin-up electrons are always longer than those for spin-down electrons when the barrier height or incident energy increase. In contrast, the dwell times for the spin-up electrons are longer (shorter) than those for spin-down electrons when the barrier heights (the incident energy) are under a certain value. When the barrier heights (the incident energy) exceed a certain value, the dwell times for the spin-up electrons turn out to be shorter (longer) than those for spin-down electrons. In addition, the group delay time and the dwell time for spin-up and down electrons also relies on the comparative direction of magnetization in two FM layers and tends to saturation with the thickness of the barrier.
Donoso, Roberto; Rössler, Jaime; Llano-Gil, Sandra; Fuentealba, Patricio; Cárdenas, Carlos
2016-09-01
In this work, a model to explain the unusual stability of atomic lithium clusters in their highest spin multiplicity is presented and used to describe the ferromagnetic bonding of high-spin Li10 and Li8 clusters. The model associates the (lack of-)fitness of Heisenberg Hamiltonian with the degree of (de-)localization of the valence electrons in the cluster. It is shown that a regular Heisenberg Hamiltonian with four coupling constants cannot fully explain the energy of the different spin states. However, a more simple model in which electrons are located not at the position of the nuclei but at the position of the attractors of the electron localization function succeeds in explaining the energy spectrum and, at the same time, explains the ferromagnetic bond found by Shaik using arguments of valence bond theory. In this way, two different points of view, one more often used in physics, the Heisenberg model, and the other in chemistry, valence bond, come to the same answer to explain those atypical bonds.
Yaser Hajati
2016-02-01
Full Text Available We study the transport properties in a ferromagnetic/nonmagnetic/ferromagnetic (FNF silicene junction in which an electrostatic gate potential, U, is attached to the nonmagnetic region. We show that the electrostatic gate potential U is a useful probe to control the band structure, quasi-bound states in the nonmagnetic barrier as well as the transport properties of the FNF silicene junction. In particular, by introducing the electrostatic gate potential, both the spin and valley conductances of the junction show an oscillatory behavior. The amplitude and frequency of such oscillations can be controlled by U. As an important result, we found that by increasing U, the second characteristic of the Klein tunneling is satisfied as a result of the quasiparticles chirality which can penetrate through a potential barrier. Moreover, it is found that for special values of U, the junction shows a gap in the spin and valley-resolve conductance and the amplitude of this gap is only controlled by the on-site potential difference, Δz. Our findings of high controllability of the spin and valley transport in such a FNF silicene junction may improve the performance of nano-electronics and spintronics devices.
Wang, Bo-Yao; Lin, Po-Han; Tsai, Ming-Shian; Shih, Chun-Wei; Lee, Meng-Ju; Huang, Chun-Wei; Jih, Nae-Yeou; Wei, Der-Hsin
2016-08-01
This study demonstrates the effect of antiferromagnet-induced perpendicular magnetic anisotropy (PMA) on ferromagnetic/antiferromagnetic/ferromagnetic (FM/AFM/FM) trilayers and reveals its interplay with a long-range interlayer coupling between separated FM layers. In epitaxially grown 12 monolayer (ML) Ni/Co/Mn/5 ML Co/Cu(001) films, magnetic hysteresis loops and element-resolved magnetic domain imaging showed that the magnetization direction of the top layers of 12 ML Ni/Co films could be changed from the in-plane direction to the perpendicular direction, when the thickness of the Mn films (tMn) was greater than a critical value close to the thickness threshold associated with the onset of AFM ordering (tMn=3.5 ML). The top FM layers exhibited a significantly enhanced PMA when tMn increased further, and this enhancement can be attributed to a strengthened AFM ordering of the volume moments of the Mn films, as evidenced by the presence of induced domain frustration. By contrast, the long-range interlayer coupling presented clear effects only when tMn was at a lower coverage.
Near room temperature ferromagnetism of copper phthalocyanine thin films
Wang, XueYan, E-mail: xueyanadeline@163.com; Zheng, JianBang; Chen, Lei; Qiao, Kai; Xu, JiaWei; Cao, ChongDe
2015-11-30
Highlights: • The α-CuPc films without and with light Ni-doping were characterized by X-ray photoelectron spectroscopy to confirm the absence of other ferromagnetic impurities. • The α-CuPc film exhibited ferromagnetic hysteresis with saturation magnetization of ∼6.77 emu/cm{sup 3} and coercivity of ∼96 Oe at 280 K, while that of the Ni-doped α-CuPc film are ∼0.69 emu/cm{sup 3} and ∼113 Oe, respectively. • Through the density functional theory calculations, the origin of the ferromagnetism arise from Cu 3d states and N 2s2p electronic spin polarization, as well as p–d exchange coupling interactions, and spin-unbalanced electronic structure of C 2p induced by the π–π interactions. - Abstract: We reported near room temperature ferromagnetism of α-CuPc films without and with light Ni-doping. Two samples were characterized by X-ray photoelectron spectroscopy (XPS) to confirm the absence of other ferromagnetic impurities. The α-CuPc film exhibited ferromagnetic hysteresis with saturation magnetization of ∼6.77 emu/cm{sup 3} and coercivity of ∼96 Oe at 280 K, while that of the Ni-doped α-CuPc film are ∼0.69 emu/cm{sup 3} and ∼113 Oe, respectively. Through the density functional theory (DFT) calculations, the origin of the ferromagnetism arise from Cu 3d states and N 2s2p electronic spin polarization, as well as p-d exchange coupling interactions, and spin-unbalanced electronic structure of C 2p induced by the π–π interactions.
Caimmi R.
2008-01-01
Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating (Ωf1 = Ωf2 = Ωf3 = 0 figures with some given random velocity component distributions, and rotating (Ωf1 = Ωf2 = Ωf3 figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respect to a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluids and further attention is devoted to axisymmetric configurations where, for selected coordinate axes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and vice versa. A microscopical analysis of systematic and random motions is performed under a few general hypotheses, by reversing the sign of tangential or axial velocity components of an assigned fraction of particles, leaving the distribution function and other parameters unchanged (Meza 2002. The application of the reversion process to tangential velocity components is found to imply the conversion of random motion rotation kinetic energy into systematic motion rotation kinetic energy. The application of the reversion process to axial velocity components is found to imply the conversion of random motion translation kinetic energy into systematic motion translation kinetic energy, and the loss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic energy. A number of special situations are investigated in greater
Oscillatory instability of convection in ferromagnetic nanofluid and in transformer oil
Krauzina, Marina T.; Bozhko, Aleksandra A.; Krauzin, Pavel V.; Suslov, Sergey A.
2016-12-01
Stability of a mechanical equilibrium of ferromagnetic nanofluid and transformer oil in a spherical cavity carved inside a Plexiglas block heated from below is investigated experimentally. It is shown that in a fluid left at rest prior to the start of experiment the onset of convection is delayed and the convective motion arises abruptly acquiring a finite equilibrium amplitude at supercritical temperature differences. Convection has an oscillatory character associated with a precession of a vortex axis in the equatorial plane. A hysteresis is detected in the reverse transition to a quiescent state. Oscillations in the investigated ferro-nanofluid have been observed during the complete experimental runs (up to several weeks). Similar oscillations in transformer oil have been detected only in the beginning of experimental runs. They were observed to eventually decay resulting in a stationary convection.
Emergent long-range couplings in arrays of fluid cells
Abraham, Douglas Bruce [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-08-07
We present a system exhibiting extraordinarily long-range cooperative effects, on a length scale far exceeding the bulk correlation length. We give a theoretical explanation of these phenomena based on the mesoscopic picture of phase coexistence in finite systems, which is confirmedly Monte Carlo (MC) simulation studies. Our work demonstrates that such action-at-a-distance can occur in classical systems involving simple or complex fluids, such as colloid-polymer mixtures, or ferromagnets.
Ferromagnetism and glassiness on the surface of topological insulators
Liu, Chun-Xiao; Roy, Bitan; Sau, Jay D.
2016-12-01
We investigate the nature of the ordering among magnetic adatoms, randomly deposited on the surface of topological insulators. Restricting ourselves to dilute impurity and weak coupling (between itinerant fermion and magnetic impurities) limit, we show that for arbitrary amount of chemical doping away from the apex of the surface Dirac cone the magnetic impurities tend to arrange themselves in a spin-density-wave pattern, with the periodicity approximately π /kF , where kF is the Fermi wave vector, when magnetic moment for impurity adatoms is isotropic. However, when magnetic moment possesses strong Ising or easy-axis anisotropy, pursuing both analytical and numerical approaches we show that the ground state is ferromagnetic for low to moderate chemical doping, despite the fragmentation of the system into multiple ferromagnetic islands. For high doping away from the Dirac point as well, the system appears to fragment into many ferromagnetic islands, but the magnetization in these islands is randomly distributed. Such magnetic ordering with net zero magnetization is referred to here as ferromagnetic spin glass, which is separated from the pure ferromagnet state by a first order phase transition. We generalize our analysis for cubic topological insulators (supporting three Dirac cones on a surface) and demonstrate that the nature of magnetic orderings and the transition between them remains qualitatively the same. We also discuss the possible relevance of our analysis to recent experiments.
Indium oxide: A transparent, conducting ferromagnetic semiconductor for spintronic applications
Babu, S. Harinath; Kaleemulla, S.; Rao, N. Madhusudhana; Krishnamoorthi, C.
2016-10-01
The optical and electrical properties are the two important dimensions of Indium oxide and its derivatives (indium tin oxide) and were well studied to understand the origin of wide electronic band gap and high electrical conductivity at room temperature. In2O3 and its derivatives find many applications in electronic and optoelectronic domains based on the above properties. The recent discovery of ferromagnetism in In2O3 at room temperature become a third dimension and lead to intensive research on enhancement of ferromagnetic strength by various means such as dopants and synthesis protocols and extrinsic parameters. The research lead to enormous experimental data and theoretical models proliferation over the past one decade with diverse insights into the origin of ferromagnetism in In2O3 based dilute magnetic semiconductors. The experimental data and theoretical models of ferromagnetism in In2O3 has been thoroughly surveyed in the literature and compiled all the data and presented for easy of understanding in this review. We have identified best chemical composition, geometry and synthesis protocols for strongest ferromagnetic strength and suitable theoretical model of magnetism has been presented in this review.
Caimmi, R.
2008-06-01
Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating $(widetilde{Omega_1}=widetilde{Omega_2}= widetilde{Omega_3}=0$ figures with some given random velocity component distributions, and rotating $(widetilde{Omega_1} ewidetilde{Omega_2} e widetilde{Omega_3} $ figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respectto a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluidsand further attention is devoted to axisymmetric configurations where, for selected coordinateaxes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and viceversa. A microscopical analysis of systematic and random motions is performed under a fewgeneral hypotheses, by reversing the sign of tangential or axial velocity components of anassigned fraction of particles, leaving the distribution function and other parametersunchanged (Meza 2002. The application of the reversion process to tangential velocitycomponents is found to imply the conversion of random motion rotation kinetic energy intosystematic motion rotation kinetic energy. The application ofthe reversion process to axial velocity components is found to imply the conversionof random motion translation kinetic energy into systematic motion translation kinetic energy, and theloss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic
Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; Liu, J.; Macias, B.; Martin, D. S.; Minkoff, L.; Ploutz-Snyder, R.; Ribeiro, L. C.; Sargsyan, A.; Smith, S. M.
2017-01-01
Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid
Simulation of dynamic magnetic particle capture and accumulation around a ferromagnetic wire
Choomphon-anomakhun, Natthaphon; Ebner, Armin D.; Natenapit, Mayuree; Ritter, James A.
2017-04-01
A new approach for modeling high gradient magnetic separation (HGMS)-type systems during the time-dependent capture and accumulation of magnetic particles by a ferromagnetic wire was developed. This new approach assumes the fluid (slurry) viscosity, comprised of water and magnetic particles, is a function of the magnetic particle concentration in the fluid, with imposed maxima on both the particle concentration and fluid viscosity to avoid unrealistic limits. In 2-D, the unsteady-state Navier-Stokes equations for compressible fluid flow and the unsteady-state continuity equations applied separately to the water and magnetic particle phases in the slurry were solved simultaneously, along with the Laplace equations for the magnetic potential applied separately to the slurry and wire, to evaluate the velocities and concentrations around the wire in a narrow channel using COMSOL Multiphysics. The results from this model revealed very realistic magnetically attractive and repulsive zones forming in time around the wire. These collection zones formed their own impermeable viscous phase during accumulation that was also magnetic with its area and magnetism impacting locally both the fluid flow and magnetic fields around the wire. These collection zones increased with an increase in the applied magnetic field. For a given set of conditions, the capture ability peaked and then decreased to zero at infinite time during magnetic particle accumulation in the collection zones. Predictions of the collection efficiency from a steady-state, clean collector, trajectory model could not show this behavior; it also agreed only qualitatively with the dynamic model and then only at the early stages of collection and more so at a higher applied magnetic field. Also, the collection zones decreased in size when the accumulation regions included magnetic particle magnetization (realistic) compared to when they excluded it (unrealistic). Overall, this might be the first time a mathematical
Ferromagnetic resonance response of electron-beam patterned arrays of ferromagnetic nanoparticles
Jung, Sukkoo; Watkins, Byron; Feller, Jeffrey; Ketterson, John; Chandrasekhar, Venkat
2001-03-01
We report on the fabrication and the dynamic magnetic properties of periodic permalloy dot arrays. Electron-beam lithography and e-gun evaporation have been used to make the arrays with the aspect ratio of 2 (dot diameter : 40 nm, height : 80 nm) and periods of 100 - 200 nm. The magnetic properties of the arrays and their interactions have been investigated by ferromagnetic resonance (FMR), magnetic force microscopy (MFM), and SQUID magnetometry. The measured FMR data show that the position and magnitude of resonant absorption peaks strongly depend on the angle between magnetic field and the lattice structure. The results of dot arrays with various kinds of structural parameters will be presented. Supported by Army Research Office, DAAD19-99-1-0334/P001
Meng, Hao, E-mail: menghao1982@shu.edu.cn [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China); National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Wu, Xiuqiang [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Ren, Yajie [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China)
2015-01-14
We study the supercurrent in clean superconductor-ferromagnet-superconductor heterostructure containing a noncollinear magnetic domain in the ferromagnetic region. It is demonstrated that the magnetic domain can lead to a spin-flip scattering process, which reverses the spin orientations of the singlet Cooper pair and simultaneously changes the sign of the corresponding electronic momentum. If the ferromagnetic layers on both sides of magnetic domain have the same features, the long-range proximity effect will take place. That is because the singlet Cooper pair will create an exact phase-cancellation effect and gets an additional π phase shift as it passes through the entire ferromagnetic region. Then, the equal spin triplet pair only exists in the magnetic domain region and can not diffuse into the other two ferromagnetic layers. So, the supercurrent mostly arises from the singlet Cooper pairs, and the equal spin triplet pairs are not involved. This result can provide a approach for generating the long-range supercurrent.
Ferromagnetic behavior and exchange bias effect in akaganeite nanorods
Tadic, Marin, E-mail: marint@vinca.rs [Condensed Matter Physics Laboratory, Vinca Institute of Nuclear Science, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Milosevic, Irena; Motte, Laurence [Laboratoire CSPBAT, UMR 7244 CNRS Université Paris 13, 93017 Bobigny Cedex (France); Kralj, Slavko [Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Saboungi, Marie-Louise [CNRS, University of Orleans, F-45071 Orleans 2 (France); IMPMC, Sorbonne Univ-UPMC Univ Paris 06, UMR CNRS 7590, Museum National d' Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, F-75005 Paris (France)
2015-05-04
We report ferromagnetic-like properties and exchange bias effect in akaganeite (β-FeOOH) nanorods. They exhibit a Néel temperature T{sub N} = 259 K and ferromagnetic-like hysteresis behavior both below and above T{sub N}. An exchange bias effect is observed below T{sub N} and represents an interesting behavior for akaganeite nanorods. These results are explained on the basis of a core-shell structure in which the core has bulk akaganeite magnetic properties (i.e., antiferromagnetic ordering) while the shell exhibits a disordered spin state. Thus, the nanorods show ferromagnetic properties and an exchange bias effect at the same time, increasing their potential for use in practical applications.
Topological insulator in junction with ferromagnets: Quantum Hall effects
Chudnovskiy, A. L.; Kagalovsky, V.
2015-06-01
The ferromagnet-topological insulator-ferromagnet (FM-TI-FM) junction exhibits thermal and electrical quantum Hall effects. The generated Hall voltage and transverse temperature gradient can be controlled by the directions of magnetizations in the FM leads, which inspires the use of FM-TI-FM junctions as electrical and as heat switches in spintronic devices. Thermal and electrical Hall coefficients are calculated as functions of the magnetization directions in ferromagnets and the spin-relaxation time in TI. Both the Hall voltage and the transverse temperature gradient decrease but are not completely suppressed even at very short spin-relaxation times. The Hall coefficients turn out to be independent of the spin-relaxation time for symmetric configuration of FM leads.
Mode-selectable ultrasonic transducer for cylindrical ferromagnetic waveguides
Kim, Youngkyu; Lee, Hocheol; Cho, Seung Hyun; Kim, Yoon Young
2003-07-01
Ultrasonic inspection techniques using magnetostrictive transducers have received much attention in recent years as non-contact, non-destructive means of inspecting ferromagnetic materials. By the selection of a desired mode and thus the rejection of the unwanted modes among propagating waves in a waveguide, different types of flaws existing in a cylindrical ferromagnetic waveguide can be effectively detected. However, desired mode selection methods have not been fully developed yet. The purpose of this research is to present a mangetostrictive sensor based technique for the selection of either the bending or longitudinal waves alone in a ferromagnetic waveguide. To achieve this goal, new bias magnet configurations, particularly for bending mode selection are suggested. Several experimental results are conducted to verify the effectiveness of the suggested magnetostrictive sensors.
Ferromagnetic microwire composites from sensors to microwave applications
Peng, Hua-Xin; Phan, Manh-Huong
2016-01-01
Situated at the forefront of interdisciplinary research on ferromagnetic microwires and their multifunctional composites, this book starts with a comprehensive treatment of the processing, structure, properties and applications of magnetic microwires. Special emphasis is placed on the giant magnetoimpedance (GMI) effect, which forms the basis for developing high-performance magnetic sensors. After defining the key criteria for selecting microwires for various types of GMI sensors, the book illustrates how ferromagnetic microwires are employed as functional fillers to create a new class of composite materials with multiple functionalities for sensing and microwave applications. Readers are introduced to state-of-the-art fabrication methods, microwave tunable properties, microwave absorption and shielding behaviours, as well as the metamaterial characteristics of these newly developed ferromagnetic microwire composites. Lastly, potential engineering applications are proposed so as to highlight the most promisin...
Large magnetostriction from morphotropic phase boundary in ferromagnets.
Yang, Sen; Bao, Huixin; Zhou, Chao; Wang, Yu; Ren, Xiaobing; Matsushita, Yoshitaka; Katsuya, Yoshio; Tanaka, Masahiko; Kobayashi, Keisuke; Song, Xiaoping; Gao, Jianrong
2010-05-14
For more than half of a century, morphotropic phase boundary (MPB) in ferroelectric materials has drawn constant interest because it can significantly enhance the piezoelectric properties. However, MPB has been studied merely in ferroelectric systems, not in another large class of ferroic systems, the ferromagnets. In this Letter, we report the existence of an MPB in a ferromagnetic system TbCo2-DyCo2. Such a magnetic MPB involves a first-order magnetoelastic transition, at which both magnetization direction and crystal structure change simultaneously. The MPB composition demonstrates a 3-6 times larger "figure of merit" of magnetostrictive response compared with that of the off-MPB compositions. The finding of MPB in ferromagnets may help to discover novel high-performance magnetostrictive and even magnetoelectric materials.
Ferromagnetism in Mn-doped Sb(2)Te.
Luo, H; Gibson, Q; Krizan, J; Cava, R J
2014-05-21
We report that Sb2Te, a natural superlattice phase consisting of two elemental Sb2 layers interleaved with single Sb2Te3 layers, becomes ferromagnetic at low temperatures on doping with small percentages of Mn. Ferromagnetism appears for Mn concentrations as low as Sb1.98Mn0.02Te, where a ferromagnetic Tc of ~8.6 K is observed. Tc decreases with increasing Mn content in the stoichiometric materials but increases with increasing Te excess in materials of the type Sb1.93-yMn0.07Te1+y, starting at ~3 K at y = 0 and reaching a Tc of ~8.9 K at y = 0.06.
Microscopic model for all optical switching in ferromagnets
Cornelissen, T. D.; Córdoba, R.; Koopmans, B.
2016-04-01
The microscopic mechanism behind the all optical switching (AOS) in ferromagnets has triggered intense scientific debate. Here, the microscopic three-temperature model is utilized to describe AOS in a perpendicularly magnetized ferromagnetic Co/Pt system. We demonstrate that AOS in such a ferromagnet can be explained with the Inverse Faraday Effect (IFE). The influence of the strength and lifetime of the IFE induced field pulse on the switching process are investigated. We found that because of strong spin-orbit coupling, the minimal lifetime of the IFE needed to obtain switching is of the order of 0.1 ps, which is shorter than previously assumed. Moreover, spatial images of the domain pattern after AOS in Co/Pt, as well as their dependence on applying an opposite magnetic field, are qualitatively reproduced.
Nonlocal spin-transport measurement of superconductor-ferromagnet nanostructures
Kolenda, Stefan; Wolf, Michael J.; Huebler, Florian; Beckmann, Detlef [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany)
2015-07-01
We present measurements of the nonlocal conductance of nanostructures with several ferromagnetic electrodes lying perpendicular on a superconducting wire. In these structures nonlocal conductance is mostly given by diffusion of quasiparticles, which are injected by one of the electrodes and detected by an other one. Applying a magnetic field induces a Zeeman splitting in the quasiparticles density of states, which suppresses the relaxation of injected spin imbalance, thus spin transport over distances of several micrometers is found. While in the previous experiments the magnetic field was aligned parallel to the ferromagnetic electrodes, we also show measurements applying the magnetic field noncollinear with the magnetization of the ferromagnetic electrodes. We compare our results to the previous case.
Electron transport in a mesoscopic superconducting ferromagnetic hybrid conductor
Giroud, M.; Hasselbach, K.; Courtois, H.; Pannetier, B. [Centre de Recherche sur les Tres Basses Temperatures, CNRS, 38 - Grenoble (France); Mailly, D. [Laboratoire de Photonique et de Nanostructures, 91 - Marcoussis (France)
2003-01-01
We present electrical transport experiments performed on submicron hybrid devices made of a ferromagnetic conductor (Co) and a superconducting (Al) electrode. The sample was patterned in order to separate the contributions of the Co conductor and of the Co-Al interface. We observed a strong influence of the Al electrode superconductivity on the resistance of the Co conductor. This effect is large only when the interface is highly transparent. We characterized the dependence of the observed resistance decrease on temperature, bias current and magnetic field. As the differential resistance of the ferromagnet exhibits a non-trivial asymmetry, we claim that the magnetic domain structure plays an important role in the electron transport properties of superconducting / ferromagnetic conductors. (authors)
Ballistic spin filtering across the ferromagnetic-semiconductor interface
Y.H. Li
2012-03-01
Full Text Available The ballistic spin-filter effect from a ferromagnetic metal into a semiconductor has theoretically been studied with an intention of detecting the spin polarizability of density of states in FM layer at a higher energy level. The physical model for the ballistic spin filtering across the interface between ferromagnetic metals and semiconductor superlattice is developed by exciting the spin polarized electrons into n-type AlAs/GaAs superlattice layer at a much higher energy level and then ballistically tunneling through the barrier into the ferromagnetic film. Since both the helicity-modulated and static photocurrent responses are experimentally measurable quantities, the physical quantity of interest, the relative asymmetry of spin-polarized tunneling conductance, could be extracted experimentally in a more straightforward way, as compared with previous models. The present physical model serves guidance for studying spin detection with advanced performance in the future.
Conserved nonlocal dynamics and critical behavior of uranium ferromagnetic superconductors.
Singh, Rohit; Dutta, Kishore; Nandy, Malay K
2017-01-01
A recent theoretical study [Phys. Rev. Lett. 112, 037202 (2014)10.1103/PhysRevLett.112.037202] has revealed that systems such as uranium ferromagnetic superconductors obey conserved dynamics. To capture the critical behavior near the paramagnetic to ferromagnetic phase transition of these compounds, we study the conserved critical dynamics of a nonlocal Ginzburg-Landau model. A dynamic renormalization-group calculation at one-loop order yields the critical indices in the leading order of ε=d_{c}-d, where d_{c}=4-2ρ is the upper critical dimension, with ρ an exponent in the nonlocal interaction. The predicted static critical exponents are found to be comparable with the available experimentally observed critical exponents for strongly uniaxial uranium ferromagnetic superconductors. The corresponding dynamic exponent z and linewidth exponent w are found to be z=4-ρε/4+O(ε^{2}) and w=1+ρ+3ε/4+O(ε^{2}).
Optically oriented electron spin transmission across ferromagnet/semiconductor interfaces
Taniyama, T.; Suzuki, I.; Wada, E.; Shirahata, Y.; Naito, T.; Itoh, M.; Yamaguchi, M.
2011-10-01
Electron spin transmission across ferromagnetic metal/semiconductor interfaces with different ferromagnetic contacts, i.e., Fe and FeGa, is studied using optical spin orientation method. The bias dependence of spin dependent photocurrent, which is the difference between the photocurrents excited with left- and right- handed circularly polarized lights, is found to show a dip-like feature at -0.058 and 0.021 V for Fe and FeGa contacts, respectively. The origin of the bias dependence of the spin dependent photocurrent is discussed on the basis of the Breit-Wigner type resonant tunneling process via interface resonant states, comparing the results for the both contacts. The results also indicate that the control of interface states is crucial to achieve efficient spin filtering effect at the ferromagnet/semiconductor interfaces.
Larmor diffraction in the ferromagnetic superconductor UGe{sub 2}
Ritz, Robert; Pfleiderer, Christian [Physik Department E21, TU Muenchen, D-85748 Garching (Germany); Sokolov, Dmitry; Huxley, Andrew [School of Physics and Astronomy, Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Keller, Thomas [MPI fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany)
2010-07-01
Larmor Diffaction (LD) is a neutron resonance spin-echo technique which allows the study of the lattice constant as well the distribution of lattice constants. It was traditionally thought that neutron spin-echo measurements cannot be used in materials such as superconductors or ferromagnets, because they strongly depolarize a polarized neutron beam. In UGe{sub 2} we are able to demonstrate that this technique may be applied in ferromagnetic superconductors with a magnetic Ising anisotropy. UGe{sub 2} exhibits two ferromagnetic phases which are separated by a transition at temperature T{sub x}. With increasing hydrostatic pressure superconductivity emerges at the pressure for which T{sub x} is suppressed. Using LD we studied the temperature dependence of the lattice constant as well as the distribution of lattice constants for all three axis of UGe{sub 2} down to 0.5 K and at pressures up to 12 kbar.
Conserved nonlocal dynamics and critical behavior of uranium ferromagnetic superconductors
Singh, Rohit; Dutta, Kishore; Nandy, Malay K.
2017-01-01
A recent theoretical study [Phys. Rev. Lett. 112, 037202 (2014), 10.1103/PhysRevLett.112.037202] has revealed that systems such as uranium ferromagnetic superconductors obey conserved dynamics. To capture the critical behavior near the paramagnetic to ferromagnetic phase transition of these compounds, we study the conserved critical dynamics of a nonlocal Ginzburg-Landau model. A dynamic renormalization-group calculation at one-loop order yields the critical indices in the leading order of ɛ =dc-d , where dc=4 -2 ρ is the upper critical dimension, with ρ an exponent in the nonlocal interaction. The predicted static critical exponents are found to be comparable with the available experimentally observed critical exponents for strongly uniaxial uranium ferromagnetic superconductors. The corresponding dynamic exponent z and linewidth exponent w are found to be z =4 -ρ ɛ /4 +O (ɛ2) and w =1 +ρ +3 ɛ /4 +O (ɛ2) .
Magnetotransport effects in lateral and vertical ferromagnetic semiconductor junctions
Rüster, Christian
2005-01-01
This work is an investigation of giant magnetoresistance (GMR), tunneling magnetoresistance (TMR) and tunneling anisotropic magnetoresistance (TAMR)effects in (Ga,Mn) based ferromagnetic semiconductor junctions. Detailed results are published in the following articles: [1] C. Rüster, T. Borzenko, C. Gould, G. Schmidt, L.W. Molenkamp, X. Liu, T.J.Wojtowicz, J.K. Furdyna, Z.G. Yu and M. Flatt´e, Very Large Magnetoresistance in Lateral Ferromagnetic (Ga,Mn)As Wires with Nanoconstrictions, Physic...
Color Ferromagnetism and Quantum Hall states in Quark Matter
Iwazaki, A
2003-01-01
We discuss a possibility of the presence of a stable color ferromagnetic state in SU(2) gauge theory of quark matter; a color magnetic field is spontaneously generated due tothe gluon's dynamics. The state arises between the hadronic state and the color superconducting state when the density of quarks is varied. Although the state has been known to have unstable modes, we show that unstable modes form quantum Hall states, in which the instability disappears. Namely, the quark matter possesses a stable phase with the ferromagnetic state and the quantum Hall state of gluons.
Magnetic excitations in the ferromagnetic superconductor UGe2 under pressure
Kepa, M. W.; Sokolov, D. A.; Böhm, M.; Huxley, A. D.
2014-12-01
Ferromagnetism and superconductivity coexist in UGe2 under pressures in the range of 10-16 kbar. Here, equal spin electrons are paired to give a spin triplet state but the pairing mechanism is still not verified experimentally. The work presented here attempts to verify whether the longitudinal magnetic fluctuations associated with a magnetic transition within the ferromagnetic state might be responsible for the electron pairing. We show that the energy scale of these fluctuations must be smaller than those associated with the second order phase transition at the Curie temperature. Furthermore, there is no significant change of the energy scale of the fluctuations at the Curie temperature as a function of pressure.
Inverse Proximity Effect in Superconductor-ferromagnet Bilayer Structures
Xia, Jing
2010-04-05
Measurements of the polar Kerr effect using a zero-area-loop Sagnac magnetometer on Pb/Ni and Al/(Co-Pd) proximity-effect bilayers show unambiguous evidence for the 'inverse proximity effect,' in which the ferromagnet (F) induces a finite magnetization in the superconducting (S) layer. To avoid probing the magnetic effects in the ferromagnet, the superconducting layer was prepared much thicker than the light's optical penetration depth. The sign and size of the effect, as well as its temperature dependence agree with recent predictions by Bergeret et al.[1].
Size and shape effects on Curie temperature of ferromagnetic nanoparticles
无
2007-01-01
A simplified model was developed to describe the Curie temperature suppression of ferromagnetic nanoparticles. Based on a size and shape dependent model of cohesive energy, the critical temperature variations of ferromagnetic nanoparticles were deduced. It is predicted that the Curie temperature of nanoparticles depends on both size and shape conditions, among which the temperature suppression is strongly influenced by the particle size and the shape effect is comparably minor. The calculation values for freestanding nanoparticles are in good agreement with other theoretical model and the experimental results. The model is also potential for predictions for the nanoparticles embedded in different substrates.
Nuclear ferromagnetism and superconductivity at negative nuclear temperatures
Dyugaev, A M; Vider, P
2001-01-01
The quantitative theory of effects of the ferromagnetism on the metal superconductivity is proposed with an account of the spin-spin electron-nuclear interaction. The nuclear ferromagnetism at the negative temperatures, when the nuclear magnetization is directed against the external magnetic field, does not suppress but rather facilitates the superconductivity. The critical magnetic field of the Be metals and TiH sub 2 sub . sub 0 sub 7 hydrate may by one order exceed the critical field of the nonmagnetic superconductor
Magnetotunable left-handed FeSiB ferromagnetic microwires.
Labrador, Alberto; Gómez-Polo, Cristina; Pérez-Landazábal, José Ignacio; Zablotskii, Vitalii; Ederra, Iñigo; Gonzalo, Ramón; Badini-Confalonieri, Giovanni; Vázquez, Manuel
2010-07-01
The magnetotunable left-handed characteristics of Fe(77.5)Si(12.5)B(10) glass-coated ferromagnetic microwires are analyzed in array and single microwire configuration, employing a rectangular waveguide working in X band. While the negative permeability is ascribed to the natural ferromagnetic resonance (NFMR) of the highly and positive magnetostrictive microwire, the negative permittivity features of the medium are attributed to the interaction of the microwires with the metallic rectangular waveguide. The dependence of the NFMR frequency on the applied external magnetic field enables the design of magnetotunable left-handed systems with wide-frequency band.
Sukhov A.
2014-07-01
Full Text Available For a composite multiferroic chain corresponding to a BaTiO3/Fe-interface we report theoretical calculations of the spectra of ferromagnetic resonance relying on the solution of the coupled Landau-Khalatnikov equation for the FE polarization and the Landau-Lifshitz-Gilbert equation for the magnetization motion. We focus on the role of the system size. Additionally, we find that although the magnetoelectric coupling strength remains linear upon the electric field variation, its dependence on the thickness of the ferromagnet is not linear.
Ruban, Anatoly I
This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...
Off-axis electron holography of ferromagnetic multilayer nanowires
Akhtari-Zavareh, Azadeh; Carignan, L. P.; Yelon, A.
2014-01-01
We have used electron holography to investigate the local magnetic behavior of isolated ferromagnetic nanowires (NWs) in their remanent states. The NWs consisted of periodic magnetic layers of soft, high-saturation magnetization CoFeB alloys, and non-magnetic layers of Cu. All NWs were fabricated...
Magnetic exitations in the itinerant ferromagnet UFe2
Paolasini, L.; Lander, G.H.; Shapiro, S.M.;
1996-01-01
UFe2 (Laves phase, fee crystal structure) is a ferromagnet with T-C=165 K, Previous neutron elastic measurements have established that the Fe moment is 0.6 mu(B) and that the moment on the U atom is almost zero because of the cancellation of the spin and orbital moments, which are both about 0...
Nagaoka ferromagnetism in large-spin fermionic and bosonic systems
Miyashita, Seiji; Ogata, Masao; De Raedt, Hans
2009-01-01
We study the magnetic properties of itinerant quantum magnetic particles, described by a generalized Hubbard model with large spin (S>1/2), which may be realized in optical lattices of laser-cooled atom systems. In fermion systems (half-integer spins), an extended form of Nagaoka ferromagnetism may
Low temperature magnetic force microscopy on ferromagnetic and superconducting oxides
Sirohi, Anshu; Sheet, Goutam
2016-05-01
We report the observation of complex ferromagnetic domain structures on thin films of SrRuO3 and superconducting vortices in high temperature superconductors through low temperature magnetic force microscopy. Here we summarize the experimental details and results of magnetic imaging at low temperatures and high magnetic fields. We discuss these data in the light of existing theoretical concepts.
Tuning Ferromagnetism at Interfaces between Insulating Perovskite Oxides
Ganguli, Nirmal; Kelly, Paul J.
2014-01-01
We use density functional theory calculations to show that the LaAlO 3 |SrTiO 3 interface between insulating perovskite oxides is borderline in satisfying the Stoner criterion for itinerant ferromagnetism and explore other oxide combinations with a view to satisfying it more amply. The larger latt
Controllable 0-π Josephson junctions containing a ferromagnetic spin valve
Gingrich, E. C.; Niedzielski, Bethany M.; Glick, Joseph A.; Wang, Yixing; Miller, D. L.; Loloee, Reza; Pratt, W. P., Jr.; Birge, Norman O.
2016-06-01
Superconductivity and ferromagnetism are antagonistic forms of order, and rarely coexist. Many interesting new phenomena occur, however, in hybrid superconducting/ferromagnetic systems. For example, a Josephson junction containing a ferromagnetic material can exhibit an intrinsic phase shift of π in its ground state for certain thicknesses of the material. Such `π-junctions' were first realized experimentally in 2001 (refs ,), and have been proposed as circuit elements for both high-speed classical superconducting computing and for quantum computing. Here we demonstrate experimentally that the phase state of a Josephson junction containing two ferromagnetic layers can be toggled between 0 and π by changing the relative orientation of the two magnetizations. These controllable 0-π junctions have immediate applications in cryogenic memory, where they serve as a necessary component to an ultralow power superconducting computer. Such a fully superconducting computer is estimated to be orders of magnitude more energy-efficient than current semiconductor-based supercomputers. Phase-controllable junctions also open up new possibilities for superconducting circuit elements such as superconducting `programmable logic', where they could function in superconducting analogues to field-programmable gate arrays.
Final Report. Novel Behavior of Ferromagnet/Superconductor Hybrid Systems
Birge, Norman [Michigan State Univ., East Lansing, MI (United States)
2016-09-26
Final report for grant DE-FG02-06ER46341. This work has produced a most convincing experimental demonstration that spin-triplet supercurrent can appear in Josephson junctions containing ferromagnetic materials, even when the superconducting electrodes are conventional, spin-singlet superconductors.
Tuning Ferromagnetism at Interfaces between Insulating Perovskite Oxides
Ganguli, N.; Kelly, Paul J.
2014-01-01
We use density functional theory calculations to show that the LaAlO 3 |SrTiO 3 interface between insulating perovskite oxides is borderline in satisfying the Stoner criterion for itinerant ferromagnetism and explore other oxide combinations with a view to satisfying it more amply. The larger
Spin Filtering of Hot Holes in a Metallic Ferromagnet
Banerjee, T.; Haq, E.; Siekman, M.H.; Lodder, J.C.; Jansen, R.
2005-01-01
Spin-dependent transport of nonequilibrium holes in ferromagnetic thin films and trilayers is investigated using ballistic hole magnetic microscopy. For Co, the hole attenuation length is short and increases from 6 to 10 Å in the energy range 0.8 to 2 eV. The hole transmission of a Ni81Fe19/Au/Co tr
Nagaoka ferromagnetism in large-spin fermionic and bosonic systems
Miyashita, Seiji; Ogata, Masao; De Raedt, Hans
2009-01-01
We study the magnetic properties of itinerant quantum magnetic particles, described by a generalized Hubbard model with large spin (S>1/2), which may be realized in optical lattices of laser-cooled atom systems. In fermion systems (half-integer spins), an extended form of Nagaoka ferromagnetism may
Ferromagnetism in CuO-ZnO multilayers
Chandran, Sudakar; Kirby, B. J.; Padmanabhan, K.; Lawes, G.; Naik, R.; Kumar, Sanjiv; Naik, V. M.
2008-03-01
The magnetic properties of CuO-ZnO heterostructures are examined to elucidate the origin of the ferromagnetic signature in Cu doped ZnO. The CuO and ZnO layer thickness varied from 15 nm to 350 nm, and we observed no significant diffusion of either Cu^2+ in the ZnO layers or of Zn^2+ in the CuO layers using Rutherford backscattering spectrometry. Bulk magnetization measurements established that the multilayers exhibit a ferromagnetic moment at room temperature, with a saturation magnetization (˜2-5 emu/cc of CuO) that depends on the CuO size, but not the CuO-ZnO interfacial area. Polarized neutron reflection studies suggest that the ferromagnetism arises from the CuO layers, and not from the interdiffusion of CuO and ZnO. These results indicate that the ferromagnetism in these multicomponent structures arises from the uncompensated surface spins of CuO nanoparticles in the layer rather than from regions of interdiffusing ZnO and CuO.
Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions
LI Xiao-Wei
2011-01-01
We study heat transport in a graphene ferromagnet-insulator-superconducting junction. It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor (FIS) junction is an oscillatory function of the barrier strength x in the thin-barrier limit. The gate potential U0 decreases the amplitude of thermal conductance oscillation. Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh. The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.%@@ We study heat transport in a graphene ferromagnet-insulator-superconducting junction.It is found that the thermal conductance of the graphene ferromagnet-insulator-superconductor(FIS)junction is an oscillatory function of the barrier strength X in the thin-barrier limit.The gate potential Uo decreases the amplitude of thermal conductance oscillation.Both the amplitude and phase of the thermal conductance oscillation varies with the exchange energy Eh.The thermal conductance of a graphene FIS junction displays the usual exponential dependence on temperature, reflecting the s-wave symmetry of superconducting graphene.
Investigation of Room temperature Ferromagnetism in Mn doped Ge
Colakerol Arslan, Leyla; Toydemir, Burcu; Onel, Aykut Can; Ertas, Merve; Doganay, Hatice; Gebze Inst of Tech Collaboration; Research Center Julich Collaboration
2014-03-01
We present a systematic investigation of structural, magnetic and electronic properties of MnxGe1 -x single crystals. MnxGe1-x films were grown by sequential deposition of Ge and Mn by molecular-beam epitaxy at low substrate temperatures in order to avoid precipitation of ferromagnetic Ge-Mn intermetallic compounds. Reflected high energy electron diffraction and x-ray diffraction observations revealed that films are epitaxially grown on Si (001) substrates from the initial stage without any other phase formation. Magnetic measurements carried out using a physical property measurement system showed that all samples exhibited ferromagnetism at room temperature. Electron spin resonance indicates the presence of magnetically ordered localized spins of divalent Mn ions. X-ray absorption measurements at the Mn L-edge confirm significant substitutional doping of Mn into Ge-sites. The ferromagnetism was mainly induced by Mn substitution for Ge site, and indirect exchange interaction of these magnetic ions with the intrinsic charge carriers is the origin of ferromagnetism. The magnetic interactions were better understood by codoping with nonmagnetic impurities. This work was supported by Marie-Curie Reintegration Grant (PIRG08-GA-2010-276973).
Thermodynamics of the Heisenberg ferromagnet in an applied magnetic field.
Flax, L.
1972-01-01
The anisotropic-Heisenberg-ferromagnet formalism developed previously is examined to include an applied magnetic field for the isotropic case in the random-phase approximation. Thermodynamic quantities such as magnetization, susceptibility, and the derivative of magnetization with respect to temperature are studied near the Curie point.
Frustrated Ferromagnetic Spin Chain near the Transition Point
ZHU Ren-Gui
2011-01-01
@@ The one-dimensional quantum spin-1/2 model with nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic interaction is considered.The Hamiltonian is firstly rewritten in a form with rotated spin operators,then bosonized by using the linear spin wave approximation and then treated by using the Green function approach.An integral expression of the quantum correction to the classical ground state energy is derived.The critical behavior of the ground state energy in the vicinity of the transition point from the ferromagnetic to the singlet ground state is analyzed by numerical calculation and the result is-8γ2.%The one-dimensional quantum spin-1/2 model with nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic interaction is considered. The Hamiltonian is firstly rewritten in a form with rotated spin operators, then bosonized by using the linear spin wave approximation and then treated by using the Green function approach. An integral expression of the quantum correction to the classical ground state energy is derived. The critical behavior of the ground state energy in the vicinity of the transition point from the ferromagnetic to the singlet ground state is analyzed by numerical calculation and the result is -8r2.
Geometric space-time integration of ferromagnetic materials
Frank, J.E.
2003-01-01
The Landau-Lifshitz equation (LLE) governing the flow of magnetic spin in a ferromagnetic material is a PDE with a noncanonical Hamiltonian structure. In this paper we derive a number of new formulations of the LLE as a partial differential equation on a multisymplectic structure. Using this form we
Current-induced magnetization dynamics in disordered itinerant ferromagnets
Tserkovnyak, Y.; Skadsem, H.J.; Brataas, A.; Bauer, G.E.W.
2006-01-01
Current-driven magnetization dynamics in ferromagnetic metals is studied in a self-consistent adiabatic local-density approximation in the presence of spin-conserving and spin-dephasing impurity scattering. Based on a quantum kinetic equation, we derive Gilbert damping and spin-transfer torques ente
Geometric space-time integration of ferromagnetic materials
Frank, J.E.
2004-01-01
The Landau-Lifshitz equation (LLE) governing the flow of magnetic spin in a ferromagnetic material is a PDE with a noncanonical Hamiltonian structure. In this paper we derive a number of new formulations of the LLE as a partial differential equation on a multisymplectic structure. Using this form we
Ferromagnetic behavior of formyl-group-carrying stable thioaminyl radicals.
Miura, Yozo; Nakamura, Shogo; Teki, Yoshio
2003-10-17
Four formyl-group-carrying thioaminyl radicals were generated, and one radical could be isolated as radical crystals. Magnetic susceptibility measurements of the isolated radical showed a ferromagnetic regular linear-chain interaction of 2J/k(B) = 3.2 K, which was explained in terms of the X-ray crystallographic results.
Distribution of ferromagnetic moments in crystals under external twisting
Zavorotnev, Yu.D., E-mail: zavorotnev.yurii@gmail.com [Donetsk Institute for Physics and Engineering, NAS of Ukraine, 72 R.Luxemburg Street, 83114 Donetsk (Ukraine); Pashinskaya, E.H.; Varyukhin, V.N. [Donetsk Institute for Physics and Engineering, NAS of Ukraine, 72 R.Luxemburg Street, 83114 Donetsk (Ukraine); Popova, O.Yu. [Donetsk National Technical University, 58 Artema Street, 83001 Donetsk (Ukraine)
2014-01-15
In an easy-axis ferromagnet, the effect of superposition of severe plastic deformation by twisting (SPDT) perpendicular to the “easy axis” on the ferromagnetic order parameter (OP) distribution is studied. The consideration is carried out within the frameworks of phenomenological theory of Landau. It is shown that SPDT effects the results in occurrence of the normal component of the magnetic OP and periodical change of OP modulus. The law of distribution of the magnetic moment is determined by proximity of the temperature of the crystal and any phase transition. - Highlights: • The effect of application of external twisting deformation to a ferromagnetic crystal of easy-axis type is studied theoretically. • The deformation axis is directed normally to the easy axis of the crystal. • The consideration is carried out within the frameworks of a phenomenological model. • It is shown that in this case, a spiral long-period structure is formed. • Besides, spatial distribution of the modulus of ferromagnetic vector changes depending on the temperature and the twisting moment.
Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles
Varón, Miriam; Beleggia, Marco; Jordanovic, Jelena
2015-01-01
Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100-400 nm and lengths of up to some hundred microns. Lorenz microsco...
Topological Superconductivity in Ferromagnetic Metal Chains: Part I
Li, Jian; Chen, Hua; Drozdov, Ilya; Yazdani, Ali; Bernevig, Bogdan; MacDonald, Allan
2015-03-01
Recent experiments have demonstrated superconductivity induced in ferromagnetic atomic chains as a new route to the research of Majorana physics. In this talk we discuss the theory behind these experiments. We will first present a generic picture for how superconductivity is induced in ferromagnetic metal chains through coupling to a superconductor with strong spin-orbit coupling, and explain why this hybrid system is a plausible new platform in searching for topological superconductivity. We will then present a tight-binding model associated with the existing experiments. We reveal a new chain magnetic symmetry that is able to stabilize multiple Majorana end modes in the absence of disorder, resulting in a one-dimensional crystalline topological superconductor. We show phase diagrams in terms of such topological phases and point out their relevance to the existing experiments. In the last part of this talk we will briefly discuss some other directions of research based on the new platform, including braiding Majorana quasi-particles in ferromagnetic chains, as well as realizing topological superconductivity in two-dimensional ferromagnetic thin films.
Anomalous Specific Heat around Ferromagnetic Instability in Metals
Ishigaki, Aya; Moriya, Tôru
1996-02-01
The low-temperature specific heat around the ferromagnetic instability is studied by using the self-consistent renormalization (SCR) theory of spin fluctuations with particular attention to the crossover between the Fermi liquid (γT+ηT3ln T+···) and the quantum critical (-Tln T) regimes.
Ferroelectricity and ferromagnetism in EuTiO3 nanowires
Morozovska, Anna N.; Glinchuk, Maya D.; Behera, Rakesh K.; Zaulychny, Basil; Deo, Chaitanya S.; Eliseev, Eugene A.
2011-11-01
We predicted the ferroelectric-ferromagnetic multiferroic properties of EuTiO3 nanowires and generated the phase diagrams in coordinates of temperature and wire radii. The calculations were performed within the Landau-Ginzburg-Devonshire theory with phenomenological parameters extracted from tabulated experimental data and first-principles calculations. Since bulk EuTiO3 is antiferromagnetic at temperatures lower than 5.5 K and paraelectric at all temperatures, our goal was to investigate the possibility of inducing the ferroelectric and ferromagnetic properties of EuTiO3 by reducing the bulk to nanosystems. Our results indicate that ferroelectric spontaneous polarization of ˜0.1-0.5 C/m2 is induced in EuTiO3 nanowires due to the intrinsic surface stress, which is inversely proportional to the nanowire radius. Spontaneous polarization exists at temperatures lower than 300 K for wire diameter of ˜4 lattice constants with 10 N/m surface stress coefficient. Due to the strong biquadratic magnetoelectric coupling, the spontaneous polarization in turn induces the ferromagnetic phase at temperatures lower than 30 K for 2-nm nanowire and at temperatures lower than 10 K for 4-nm nanowire in EuTiO3. Thus, we predicted that the EuTiO3 nanowires can be the new ferroelectric-ferromagnetic multiferroic.
Spin-accumulation-induced resistance in mesoscopic ferromagnet- superconductor junctions
Jedema, F.J.; van Wees, Bart; Hoving, B.H.; Filip, A.T.; Klapwijk, T.M
1999-01-01
We present a description of spin-polarized transport in mesoscopic ferromagnet-superconductor (F/S) systems, where the transport is diffusive and the interfaces are transparent. It is shown that the spin reversal associated with Andreev reflection generates an excess spin density close to the F/S in
Neutron scattering studies of ferromagnetic superconductor UGe2 under pressure
Sokolov, D. A.; Huxley, A. D.; Ritz, R.; Pfleiderer, C.; Keller, T.
2010-03-01
Observation of an unconventional superconductivity in ferromagnetic UGe2 when ferromagnetism is suppressed by pressure indicates a dramatic modification of its electronic structure near the Quantum Critical Point [1]. We present high resolution measurements of the lattice constants of ferromagnetic superconductor UGe2 under pressure probed by a novel technique, which utilizes Larmor precession of polarized neutrons and surpasses the resolution of conventional scattering methods by an order of magnitude. We have observed sharp anomalies at the Curie temperature, TC and at TX, which marks the crossover regime. Our studies under pressure of 10, and 12 kbar indicate that the sharp anomaly corresponding to TC shifted to lower temperature in agreement with a phase diagram. At the pressure corresponding to an onset of superconductivity, 10kbar, the lattice expansion corresponding to ferromagnetic transition undergoes a first order transition and increases by a factor of 3. The results indicate a complex response of the electronic structure of UGe2 to external pressure and suggest a strong magnetoelastic coupling as one of multiple energy scales that stabilize superconductivity in UGe2. [1] S. S. Saxena, et al., Nature 406, 587 (2000)
Temperature dependence of ferromagnetic resonance measurements in nanostructured line arrays
Raposo V.
2014-07-01
Full Text Available We report the effect of temperature on the ferromagnetic resonance (FMR spectra of nanostructured line arrays. Different temperature dependences are observed for permalloy an nickel based samples. The qualitative features of the temperature dependence of the resonance field and linewidth can be described by the usual expression of slow relaxing linewidth mechanism and Bloch equation.
From ballistic transport to tunneling in electromigrated ferromagnetic breakjunctions
Bolotin, Kirill I; Kuemmeth, Ferdinand; Pasupathy, Abhay N
2006-01-01
We fabricate ferromagnetic nanowires with constrictions whose cross section can be reduced gradually from 100 x 30 nm(2) to the atomic scale and eventually to the tunneling regime by means of electromigration. The contacts are mechanically and thermally stable. We measure low-temperature magnetor...
Ferromagnetic germanide in Ge nanowire transistors for spintronics application.
Tang, Jianshi; Wang, Chiu-Yen; Hung, Min-Hsiu; Jiang, Xiaowei; Chang, Li-Te; He, Liang; Liu, Pei-Hsuan; Yang, Hong-Jie; Tuan, Hsing-Yu; Chen, Lih-Juann; Wang, Kang L
2012-06-26
To explore spintronics applications for Ge nanowire heterostructures formed by thermal annealing, it is critical to develop a ferromagnetic germanide with high Curie temperature and take advantage of the high-quality interface between Ge and the formed ferromagnetic germanide. In this work, we report, for the first time, the formation and characterization of Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire transistors, in which the room-temperature ferromagnetic germanide was found through the solid-state reaction between a single-crystalline Ge nanowire and Mn contact pads upon thermal annealing. The atomically clean interface between Mn(5)Ge(3) and Ge with a relatively small lattice mismatch of 10.6% indicates that Mn(5)Ge(3) is a high-quality ferromagnetic contact to Ge. Temperature-dependent I-V measurements on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) nanowire heterostructure reveal a Schottky barrier height of 0.25 eV for the Mn(5)Ge(3) contact to p-type Ge. The Ge nanowire field-effect transistors built on the Mn(5)Ge(3)/Ge/Mn(5)Ge(3) heterostructure exhibit a high-performance p-type behavior with a current on/off ratio close to 10(5), and a hole mobility of 150-200 cm(2)/(V s). Temperature-dependent resistance of a fully germanided Mn(5)Ge(3) nanowire shows a clear transition behavior near the Curie temperature of Mn(5)Ge(3) at about 300 K. Our findings of the high-quality room-temperature ferromagnetic Mn(5)Ge(3) contact represent a promising step toward electrical spin injection into Ge nanowires and thus the realization of high-efficiency spintronic devices for room-temperature applications.
... Home Visit Global Sites Search Help? Pleural Fluid Analysis Share this page: Was this page helpful? Formal name: Pleural Fluid Analysis Related tests: Pericardial Fluid Analysis , Peritoneal Fluid Analysis , ...
Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S
2016-05-21
Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.
Prajapat, C. L.; Singh, Surendra; Paul, Amitesh; Bhattacharya, D.; Singh, M. R.; Mattauch, S.; Ravikumar, G.; Basu, S.
2016-05-01
Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.
Shot noises of spin and charge currents in a ferromagnet-quantum-dot-ferromagnet system
Hong-kang ZHAO; Jian WANG
2008-01-01
We have investigated the shot noises of charge and spin current by considering the spin polarized electron tunneling through a ferromagnet-quantum-dotferromagnet system.We have derived the spin polarized current noise matrix,from which we can derive general expressions of shot noises associated with charge and spin currents.The spin and charge currents are intimately related to the polarization angles,and they behave quite differently from each other.The shot noise of charge current is symmetric about the gate voltage whose structure is modified by the Zeeman field considerably.There exists oscillations in spin current shot noise in the absence of source-drain bias at zero temperature,and it is asym metric in the positive and negative regimes of sourcedrain voltage. The shot noise of spin current behaves quite differently from the shot noise of charge current,since the spin current components Isx,Isy oscillate sinusoidally with the frequency ωγ in the γth lead,while the Isz component of spin current is independent of time.
Quantum Lifshitz Field Theory of a Frustrated Ferromagnet.
Balents, Leon; Starykh, Oleg A
2016-04-29
We propose a universal nonlinear sigma model field theory for one-dimensional frustrated ferromagnets, which applies in the vicinity of a "quantum Lifshitz point," at which the ferromagnetic state develops a spin wave instability. We investigate the phase diagram resulting from perturbations of the exchange and of magnetic field away from the Lifshitz point, and uncover a rich structure with two distinct regimes of different properties, depending upon the value of a marginal, dimensionless, parameter of the theory. In the regime relevant for one-dimensional systems with low spin, we find a metamagnetic transition line to a vector chiral phase. This line terminates in a critical end point, beyond which there is at least one multipolar or "spin nematic" phase. We show that the field theory is asymptotically exactly soluble near the Lifshitz point.
Ferromagnetic and antiferromagnetic order in bacterial vortex lattices
Wioland, Hugo; Woodhouse, Francis G.; Dunkel, Jörn; Goldstein, Raymond E.; Goldstein Lab Team
2013-11-01
In conventional electronic materials, spins can organize into ordered phases that give rise to ferromagnetic or antiferromagnetic behavior. Here, we report similar observations in a completely different system: a suspension of swimming bacteria. When a dense Bacillus subtilis suspension is confined to a small circular chamber, it can spontaneously form a stable vortex (``spin'') state that can persist for several minutes. By coupling up to 100 such chambers in microfluidic devices, we are able to realize bacterial spin lattices of different geometries. Depending on that geometry and the effective coupling strength between neighboring vortices, we observe the formation of stable ``antiferromagnetic'' and ``ferromagnetic'' bacterial vortex states, that appear to be controlled by the subtle competition between bacterial boundary layer flows and bulk dynamics.
Tuning Ferromagnetism at Interfaces between Insulating Perovskite Oxides
Ganguli, Nirmal; Kelly, Paul J.
2014-09-01
We use density functional theory calculations to show that the LaAlO3|SrTiO3 interface between insulating perovskite oxides is borderline in satisfying the Stoner criterion for itinerant ferromagnetism and explore other oxide combinations with a view to satisfying it more amply. The larger lattice parameter of a LaScO3|BaTiO3 interface is found to be less favorable than the greater interface distortion of LaAlO3|CaTiO3. Compared to LaAlO3|SrTiO3, the latter is predicted to exhibit robust magnetism with a larger saturation moment and a higher Curie temperature. Our results provide support for a "two phase" picture of coexistent superconductivity and ferromagnetism.
Tuning ferromagnetism at interfaces between insulating perovskite oxides.
Ganguli, Nirmal; Kelly, Paul J
2014-09-19
We use density functional theory calculations to show that the LaAlO3|SrTiO3 interface between insulating perovskite oxides is borderline in satisfying the Stoner criterion for itinerant ferromagnetism and explore other oxide combinations with a view to satisfying it more amply. The larger lattice parameter of a LaScO3|BaTiO3 interface is found to be less favorable than the greater interface distortion of LaAlO3|CaTiO3. Compared to LaAlO3|SrTiO3, the latter is predicted to exhibit robust magnetism with a larger saturation moment and a higher Curie temperature. Our results provide support for a "two phase" picture of coexistent superconductivity and ferromagnetism.
Tailoring Giant Magneto-impedance Effect in Ultrasoft Ferromagnetic Microwires
Chaturvedi, A.; Ruiz, A.; Mukherjee, P.; Srikanth, H.; Phan, M. H.; Larin, V. S.
2012-02-01
Research on soft ferromagnetic microwires exhibiting giant magneto-impedance (GMI) effect, which is a large change of the ac impedance of a ferromagnetic conductor in a static magnetic field, for advanced magnetic sensor applications is an area of topical interest. In this study we show how the GMI effect and its field sensitivity are optimized in Co-B-Si-Mn microwires by varying the magnetic core to glass shell diameter ratio (d). The microwires have been fabricated by the glass-coated melt spinning method. The largest values of GMI (245%) and its field sensitivity 25%/Oe are achieved at f = 13MHz for the microwires with d = 0.86. The d dependence of the magneto-impedance has been analyzed based on those of the magneto-resistance and magneto-reactance. Our studies indicate that the microwires with optimized GMI response are attractive candidate materials for structural health self-monitoring and magnetic biosensing applications.
Magnetism in structures with ferromagnetic and superconducting layers
Zhaketov, V. D.; Nikitenko, Yu. V., E-mail: nikiten@nf.jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Radu, F. [Helmholtz-Zentrum Berlin für Materialen un Energie (Germany); Petrenko, A. V. [Joint Institute for Nuclear Research (Russian Federation); Csik, A. [MTA Atomki, Institute for Nuclear Research (Hungary); Borisov, M. M.; Mukhamedzhanov, E. Kh. [Russian Research Centre Kurchatov Institute (Russian Federation); Aksenov, V. L. [Russian Research Centre Kurchatov Institute, Konstantinov St. Petersburg Nuclear Physics Institute (Russian Federation)
2017-01-15
The influence of superconductivity on ferromagnetism in the layered Ta/V/Fe{sub 1–x}V{sub x}/V/Fe{sub 1–x}V{sub x}/Nb/Si structures consisting of ferromagnetic and superconducting layers is studied using polarized neutron reflection and scattering. It is experimentally shown that magnetic structures with linear sizes from 5 nm to 30 μm are formed in these layered structures at low temperatures. The magnetization of the magnetic structures is suppressed by superconductivity at temperatures below the superconducting transition temperatures in the V and Nb layers. The magnetic states of the structures are shown to undergo relaxation over a wide magnetic-field range, which is caused by changes in the states of clusters, domains, and Abrikosov vortices.
Ferromagnetic interaction model of activity level in workplace communication
Akitomi, Tomoaki; Ara, Koji; Watanabe, Jun-ichiro; Yano, Kazuo
2013-03-01
The nature of human-human interaction, specifically, how people synchronize with each other in multiple-participant conversations, is described by a ferromagnetic interaction model of people’s activity levels. We found two microscopic human interaction characteristics from a real-environment face-to-face conversation. The first characteristic is that people quite regularly synchronize their activity level with that of the other participants in a conversation. The second characteristic is that the degree of synchronization increases as the number of participants increases. Based on these microscopic ferromagnetic characteristics, a “conversation activity level” was modeled according to the Ising model. The results of a simulation of activity level based on this model well reproduce macroscopic experimental measurements of activity level. This model will give a new insight into how people interact with each other in a conversation.
Monte Carlo simulation of the hysteresis phenomena on ferromagnetic nanotubes.
Salazar-Enríquez, C D; Restrepo, J; Restrepo-Parra, E
2012-06-01
In this work the hysteretic properties of single wall ferromagnetic nanotubes were studied. Hysteresis loops were computed on the basis of a classical Heisenberg model involving nearest neighbor interactions and using a Monte Carlo method implemented with a single spin movement Metropolis dynamics. Nanotubes with square and hexagonal unit cells were studied varying their diameter, temperature and magneto-crystalline anisotropy. Effects of the diameter were found stronger in the square unit cell magnetic nanotubes (SMNTs) than in the hexagonal unit cell magnetic nanotubes (HMNTs). The ferromagnetic behavior was observed in SMNTs at higher temperature than in HMNTs. Moreover in both cases, SMNTs and HMNTs, the magneto-crystalline anisotropy in the longitudinal direction showed a linear correspondence with the coercive field.
Superconductivity and ferromagnetism in nanomaterial NbSe2
Gill, Raminder
2017-07-01
Finding of superconductivity (SC) in ultra thin layer of Niobium diselenide (NbSe2) caught the attention of each condensed matter physicist in the era of nanotechnology. The coexistence of SC and magnetism have been a topic of interesting research in solid-state physics since the discovery of superconductivity. Ferromagnetism induced in any compound could destroy superconductivity by disturbing the cooper pairing of electrons of the atoms. The interplay between ferromagnetism (FM) and SC in nanomaterial NBSe2 impressed to study and to know the exact mechanism behind this coexistence which can lead to a very interesting research: superconductivity at room temperature. In this paper, I have theoretically studied the coexistence of SC and FM in NbSe2 and how this material could be useful in finding many high Tc nanomaterials.
Disorder-Induced Stabilization of the Quantum Hall Ferromagnet
Piot, B. A.; Desrat, W.; Maude, D. K.; Kazazis, D.; Cavanna, A.; Gennser, U.
2016-03-01
We report on an absolute measurement of the electronic spin polarization of the ν =1 integer quantum Hall state. The spin polarization is extracted in the vicinity of ν =1 (including at exactly ν =1 ) via resistive NMR experiments performed at different magnetic fields (electron densities) and Zeeman energy configurations. At the lowest magnetic fields, the polarization is found to be complete in a narrow region around ν =1 . Increasing the magnetic field (electron density) induces a significant depolarization of the system, which we attribute to a transition between the quantum Hall ferromagnet and the Skyrmion glass phase theoretically expected as the ratio between Coulomb interactions and disorder is increased. These observations account for the fragility of the polarization previously observed in high mobility 2D electron gas and experimentally demonstrate the existence of an optimal amount of disorder to stabilize the ferromagnetic state.
Spin filter and spin valve in ferromagnetic graphene
Song, Yu; Dai, Gang
2015-06-01
We propose and demonstrate that a EuO-induced and top-gated graphene ferromagnetic junction can be simultaneously operated as a spin filter and a spin valve. We attribute such a remarkable result to a coexistence of a half-metal band and a common energy gap for opposite spins in ferromagnetic graphene. We show that both the spin filter and the spin valve can be effectively controlled by a back gate voltage, and they survive for practical metal contacts and finite temperature. Specifically, larger single spin currents and on-state currents can be reached with contacts with work functions similar to graphene, and the spin filter can operate at higher temperature than the spin valve.
Ferromagnetic Ground States in Face-Centered Cubic Hubbard Clusters
Souza, T. X. R.; Macedo, C. A.
2016-01-01
In this study, the ground state energies of face-centered cubic Hubbard clusters are analyzed using the Lanczos method. Examination of the ground state energy as a function of the number of particle per site n showed an energy minimum for face-centered cubic structures. This energy minimum decreased in n with increasing coulombic interaction parameter U. We found that the ground state energy had a minimum at n = 0.6, when U = 3W, where W denotes the non-interacting energy bandwidth and the face-centered cubic structure was ferromagnetic. These results, when compared with the properties of nickel, shows strong similarity with other finite temperature analyses in the literature and supports the Hirsh’s conjecture that the interatomic direct exchange interaction dominates in driving the system into a ferromagnetic phase. PMID:27583653
Coupling between ferromagnetic electrodes through ZnS barrier
Fix, T. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France)]. E-mail: thomas.fix@ipcms.u-strasbg.fr; Colis, S. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France); Schmerber, G. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France); Ulhaq, C. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France); Dinia, A. [IPCMS-GMI (UMR 7504 du CNRS), ULP-ECPM, 23 rue du Loess, BP43 F-67034 Strasbourg (France)
2005-02-01
Magnetization measurements are performed on CoFe{sub 2}/ZnS/CoFe{sub 2}/NiFe structures to investigate the interactions between ferromagnetic electrodes through the ZnS barrier. Negative shifts observed in magnetization minor loops indicate a ferromagnetic interaction. The influence of the hard-layer deposition temperature on this shift and on the hard-layer coercive field is considered. The amplitude of the shift decreases as the thickness of the ZnS layer increases. The decrease in this shift at low temperature confirms the presence of an indirect exchange coupling between the magnetic electrodes mediated by spin-polarized quantum tunneling through the ZnS layer.
Hybrid superconductor-ferromagnet transistor-like device
Nevirkovets, I P [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Belogolovskii, M A [Donetsk Institute for Physics and Engineering, National Academy of Sciences of Ukraine, 72 R. Luxemburg Street, Donetsk 83114 (Ukraine)
2011-02-15
We demonstrate theoretically and experimentally that a ferromagnetic layer as thin as a few nanometres, which is almost transparent for non-superconducting charge transport, can be used as a cut-off filter to block transport of charge-carrier superconducting correlations. This property may be exploited in some applications, as is exemplified by the case of double-barrier S{sub 1}IS{sub 2}FIS{sub 3} multi-terminal devices (with S, I, and F denoting a superconductor, an insulator, and a ferromagnetic metal, respectively), whose principle of operation is based on a nonequilibrium superconducting state driven by tunnel injection of quasiparticles. Using the F layer makes the device asymmetric and considerably improves input-output isolation in comparison with the formerly investigated symmetric S{sub 1}IS{sub 2}IS{sub 3} devices.
Tuning ferromagnetism in zinc oxide nanoparticles by chromium doping
Kaur, Palvinder; Pandey, S. K.; Kumar, Sanjeev; Negi, N. S.; Chen, C. L.; Rao, S. M.; Wu, M. K.
2015-11-01
Zn1- x Cr x O nanoparticles with x = 0.0, 0.01, 0.03 and 0.05 were synthesized by the sol-gel technique. Powder X-ray diffraction (XRD) studies reveal that chromium (Cr) incorporates into the ZnO crystal lattice without disturbing the parent hexagonal (wurtzite) structure. Transmission electron microscopy (TEM) measurements show that the average size of these nanoparticles is in the range 15-25 nm. Optical absorption studies show that the band gap of ZnO nanoparticles varies with Cr doping. Photoluminescence (PL) studies depict the presence of defects in Cr-doped nanoparticles. Undoped ZnO exhibits diamagnetic behavior while Cr-doped ZnO samples exhibit weak ferromagnetism to anti-ferromagnetism depending on the Cr content.
Superconductivity and ferromagnetism in nanostructured Bi{sub 3}Ni
Schoenemann, R.; Herrmannsdoerfer, T.; Naumann, M.; Wosnitza, J. [Dresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden-Rossendorf (Germany); Skrotzki, R. [Dresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden-Rossendorf (Germany); Department of Chemistry and Food Chemistry, TU Dresden (Germany); Kaiser, M.; Heise, M.; Ruck, M. [Department of Chemistry and Food Chemistry, TU Dresden (Germany); Kummer, K. [European Synchrotron Radiation Facility (ESRF), Grenoble (France); Graf, D. [National High Magnetic Field Laboratory and Department of Physics, Florida State University, Tallahassee, Florida (United States)
2014-07-01
We have demonstrated the coexistence of superconductivity and ferromagnetism in Bi{sub 3}Ni nanostructures which have been prepared by making use of novel chemical-reaction paths. Here, we present recent experiments on novel nanostructures, such as supercrystals consisting of packed Bi{sub 3}Ni nanofibers. We have investigated their magnetic and electrical-transport properties by means of XMCD, SQUID magnetometry, pulsed-field susceptometry, and ac-resistance measurements in a wide field and temperature range. Resistivity measurements demonstrate that superconductivity persists well above the Pauli limiting field - with strong anisotropy. These results will be presented in the context of a coexistence of superconductivity and ferromagnetism. Part of this work was performed at the NHMFL and ESRF beamline ID08.
Magnetoanisotropic Andreev reflection in ferromagnet-superconductor junctions.
Högl, Petra; Matos-Abiague, Alex; Žutić, Igor; Fabian, Jaroslav
2015-09-11
Andreev reflection spectroscopy of ferromagnet-superconductor (FS) junctions [corrected] is an important probe of spin polarization. We theoretically investigate spin-polarized transport in FS junctions in the presence of Rashba and Dresselhaus interfacial spin-orbit fields and show that Andreev reflection can be controlled by changing the magnetization orientation. We predict a giant in- and out-of-plane magnetoanisotropy of the junction conductance. If the ferromagnet is highly spin polarized-in the half-metal limit-the magnetoanisotropic Andreev reflection depends universally on the spin-orbit fields only. Our results show that Andreev reflection spectroscopy can be used for sensitive probing of interfacial spin-orbit fields in a FS junction.
Bound States of a Ferromagnetic Wire in a Superconductor.
Sau, Jay D; Brydon, P M R
2015-09-18
We consider the problem of bound states in strongly anisotropic ferromagnetic impurities in a superconductor, motivated by recent experiments that claim to observe Majorana modes at the ends of ferromagnetic wires on a superconducting substrate [S. Nadj-Perge et al., Science 346, 602 (2014)]. Generalizing the successful theory of bound states of spherically symmetric impurities, we consider a wirelike potential using both analytical and numerical approaches. We find that away from the ends of the wire the bound states form bands with pronounced van Hove singularities, giving rise to subgap peaks in the local density of states. For sufficiently strong magnetization of the wire, we show that this process generically produces a sharp peak at zero energy in the local density of states near the ends of the wire. This zero-energy peak has qualitative similarities to the claimed signature of a Majorana mode observed in the aforementioned experiment.
Giant ferromagnetic π -d interaction in a phthalocyanine molecule
Murakawa, H.; Kanda, A.; Ikeda, M.; Matsuda, M.; Hanasaki, N.
2015-08-01
We experimentally demonstrate that the ferromagnetic intramolecular π -d interaction works between an itinerant π -electron spin and a localized d -electron's magnetic moment in the iron-phthalocyanine (Pc) molecular compound. The evaluation of the hidden π -d coupling is achieved by preparing the isolated Fe(Pc )(CN ) 2 molecular solution with unpaired π - and d -electron spins, which is generated through the oxidization by iodine bromide (IBr). The monotonic increase of the magnetization with IBr addition and the saturation value of the Curie constant indicate the ferromagnetic π -d coupling. Furthermore, through the magnetization measurements of the single crystals of neutral π radical Fe(Pc )(CN ) 2.2 CHCl3 , we reveal that the on-site π -d interaction in Fe(Pc )(CN ) 2 is extremely large (Jπ d/kB>500 K ) among those in other molecular materials.
Soliton switching in a site-dependent ferromagnet
Senjudarvannan, R.; Sathishkumar, P.; Vijayalakshmi, S.
2017-02-01
Switching of soliton in a ferromagnetic medium offers the possibility of developing a new innovative approach for information storage technologies. The nonlinear spin dynamics of a site-dependent Heisenberg ferromagnetic spin chain with Gilbert damping under the influence of external magnetic field is expressed in the form of the Landau-Lifshitz-Gilbert equation in the classical continuum limit. The corresponding evolution equation is developed through stereographic projection technique by projecting the unit sphere of spin onto a complex plane. The exact soliton solutions are constructed by solving the associated evolution equation through the modified extended tanh-function method. The impact of damping and external magnetic field on the magnetic soliton under the invariant inhomogeneity is investigated and finally, the magnetization switching in the form of shape changing solitons are demonstrated.
Large magnetocaloric effect in sintered ferromagnetic EuS
Matsumoto, Koichi; Li, Liang; Hirai, Shinji; Nakamura, Eiji; Murayama, Daiki; Ura, Yutaro; Abe, Satoshi
2016-10-01
We present magnetocaloric effect measurements of the ferromagnetic semiconductor EuS in the vicinity of its ordering temperature. Single phase EuS powder was synthesized by CS2 gas sulfurization of Eu2O3. A sintered compact with relative density over 95% was prepared by pulsed electric current sintering of the powder. Temperature and magnetic field dependence of the magnetization and specific heat were characteristic of a paramagnetic to ferromagnetic second order phase transition. The entropy change induced by an external magnetic field and the specific heat were both close to those of a single crystal. We obtained an entropy-temperature (S-T) diagram of the EuS sintered compact. Carnot cycle liquefaction of hydrogen using EuS was compared with several other materials, with results indicating that sintered EuS is an excellent magnetic refrigerant for hydrogen liquefaction.
Bolometric detection of ferromagnetic resonance in YIG slab
Tu, Sa; Białek, Marcin; Zhang, Youguang; Zhao, Weisheng; Yu, Haiming; Ansermet, Jean-Philippe
2017-10-01
The resistance of the Pt bar deposited on the YIG slab was monitored while the magnetic field was ramped through the ferromagnetic resonance with the YIG slab facing a coplanar waveguide resonator excited at 4.3 GHz excitation. The resistance change provides detection of the ferromagnetic resonance with a high signal-to-noise ratio. It is ascribed to a change in the temperature of the Pt bars. The thermal origin of the signal is confirmed by the observation that the signal vanishes when field modulation is applied at frequencies above 6 Hz. The spin pumping effect was vanishingly small, and the anisotropic magnetoresistance of the Pt bar, though quite easily observed, would imply a rectification voltage that is much smaller than the bolometric effect.
Neutron scattering study of the ferromagnetic superconductor UGe2
Kernavanois, N.; Grenier, B.; Huxley, A.; Ressouche, E.; Sanchez, J. P.; Flouquet, J.
2001-11-01
Unpolarized and polarized neutron scattering experiments have been performed at ambient pressure on a single crystal of the itinerant electron superconductor UGe2 in both the ferromagnetic and the paramagnetic phases. Unpolarized neutrons have confirmed the ZrGa2-type orthorhombic crystal structure of UGe2 and a ferromagnetic ordering below TC=53 K with the moments aligned along the a axis. No evidence of any modulated component for the magnetic structure has been found. Polarized neutron data have shown a large and almost spherical magnetization distribution at the U sites and no induced moment at the Ge sites. Refinements of the magnetic structure factors within the dipolar approximation allow the magnitude of the orbital and spin uranium moments to be quantified, and a comparison to the measured static magnetization reveals that there is no diffuse contribution.
Optical spectra of the heavy fermion uniaxial ferromagnet UGe2
Guritanu, V.; Armitage, N. P.; Tediosi, R.; Saxena, S. S.; Huxley, A.; van der Marel, D.
2008-11-01
We report a detailed study of UGe2 single crystals using infrared reflectivity and spectroscopic ellipsometry. The optical conductivity suggests the presence of a low-frequency interband transition and a narrow free-carrier response with strong frequency dependence of the scattering rate and effective mass. We observe sharp increase in the low-frequency mass and reduction in scattering rate below the upper ferromagnetic transition TC=53K indicating the emergence of a heavy fermion state triggered by the ferromagnetic order. The characteristic changes are exhibited most strongly at an energy scale below 12 meV. They recover their unrenormalized value above TC and for ω>40meV . In contrast no sign of an anomaly is seen at the lower transition temperature of unknown nature, Tx˜30K , observed in transport and thermodynamic experiments.
Calculation of Gilbert damping in ferromagnetic ﬁlms
Edwards D. M.
2013-01-01
Full Text Available The Gilbert damping constant in the phenomenological Landau-Lifshitz-Gilbert equation which describes the dynamics of magnetization, is calculated for Fe, Co and Ni bulk ferromagnets, Co ﬁlms and Co/Pd bilayers within a nine-band tight-binding model with spin-orbit coupling included. The calculational effciency is remarkably improved by introducing ﬁnite temperature into the electronic occupation factors and subsequent summation over the Matsubara frequencies. The calculated dependence of Gilbert damping constant on scattering rate for bulk Fe, Co and Ni is in good agreement with the results of previous ab initio calculations. Calculations are reported for ferromagnetic Co metallic ﬁlms and Co/Pd bilayers. The dependence of the Gilbert damping constant on Co ﬁlm thickness, for various scattering rates, is studied and compared with recent experiments.
The paramagnetic properties of ferromagnetic mixed-spin chain system
Hu, Ai-Yuan, E-mail: huaiyuanhuyuanai@126.com; Wu, Zhi-Min; Cui, Yu-Ting; Qin, Guo-Ping
2015-01-15
The double-time Green's function method is used to investigate the paramagnetic properties of ferromagnetic mixed-spin chain system within the random-phase approximation and Anderson–Callen's decoupling approximation. The analytic expressions of the transverse susceptibility, longitudinal susceptibility and correlation length are obtained under transverse and longitudinal magnetic field. Using the analytic expressions of the transverse and longitudinal susceptibility to fit the experimental results, our results well agree with experimental data and the results from the high temperature series expansion within a simple Padé approximation. - Highlights: • We investigate the magnetic properties of a ferromagnetic mixed-spin chain system. • We use the double-time temperature-dependent Green's function technique. • Different single-ion anisotropy values for different spin values are considered. • Our results agree with experimental data and the results from the other theoretical methods.
Zn-Mn-O: Ferromagnet at room temperature
Milivojević Dušan D.
2007-01-01
Full Text Available Semiconductor Zn-Mn-O crystallites were synthesized by a solid state reaction method starting from the thermal decomposition of the appropriate oxalates. Samples were thermally treated in air at temperatures ranging from 400 to 900°C. The nominal concentrations of manganese werex = 0.01, 0.02, 0.04 and 0.10. The samples were investigated by the X-ray powder diffraction method, magnetization measurements and by electron paramagnetic resonance. X-ray diffractgrams show a dominant wurtzite structure of Zn-Mn-O. Room temperature ferromagnetism was observed in Zn-Mn-O samples with manganese concentrations x ≤ 0.04, thermally treated at low temperature (500°C. The saturation magnetization for the sample with x = 0.01 was 0.05 μB/Mn. The room temperature ferromagnetism seems to be due to the diffusion of Zn into the Mn-oxides grains.
The Mobility Edge in Disordered Ferromagnetic Doped Semiconductors
Nielsen, Erik; Bhatt, R. N.
2007-03-01
While the clearest example of ferromagnetism in doped semiconductors is seen in diluted magnetic semiconductors such as Ga1-xMnxAs, under certain conditions, semiconductors doped with non-magnetic impurities may also exhibit ferromagnetic ground states. We present numerical results of the nature of single particle states in such a positionally disordered three-dimensional system with a maximally spin-polarized ground state using a realistic potential for hydrogenic centers. In particular, we identify the mobility edges, which mark the energies at which single particle states become delocalized, and whose location relative to the Fermi energy determine electronic transport in the system. We describe the dependence of the mobility edges on impurity density and potential, and discuss the variation of conductivity with impurity and carrier density. H. Ohno, Science 281, 951 (1998) Erik Nielsen and R. N. Bhatt, APS March Meeting 2006. R. N. Bhatt and T. M. Rice, Physical Review B 23, 1920 (1981).
Magnetic relaxation in chain-of-spheres ferromagnetic particles
Yang, J S
2002-01-01
The thermal activation of elongated ferromagnetic particles is analyzed using a chain-of-spheres model. The spheres within the chain are assumed to be coupled magnetically with dipolar interaction. The effect of uniaxial magnetocrystalline anisotropy along the chain is also taken into account. It was shown that the behavior of thermal switching critically depends on the relative strength of shape anisotropy and magnetocrystalline anisotropy, field orientation, sweep field rate and temperature.
Analysis of ultra-narrow ferromagnetic domain walls
Jenkins, Catherine; Paul, David
2012-01-10
New materials with high magnetic anisotropy will have domains separated by ultra-narrow ferromagnetic walls with widths on the order of a few unit cells, approaching the limit where the elastic continuum approximation often used in micromagnetic simulations is accurate. The limits of this approximation are explored, and the static and dynamic interactions with intrinsic crystalline defects and external driving elds are modeled. The results developed here will be important when considering the stability of ultra-high-density storage media.
The partition function of a ferromagnet up to three loops
Hofmann, C P, E-mail: christoph@ucol.mx [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima, Colima 28045 (Mexico)
2011-04-01
The low-temperature behavior of ferromagnets with a spontaneously broken symmetry O(3) {yields} O(2) is analyzed within the perspective of effective Lagrangians. The leading coefficients of the low-temperature expansion for the partition function are calculated up to three loops and the manifestation of the spin-wave interaction in this series is discussed. The effective field theory method has the virtue of being completely systematic and model-independent.
Is gadolinium a helical antiferromagnet or a collinear ferromagnet?
S N Kaul
2003-03-01
Controversial issues concerning the nature of magnetic ordering in gadolinium are brieﬂy reviewed. The recent experimental results are shown to resolve most of such issues in that they rule out the possibility of a helical spin structure in Gd and clearly bring out the role of long-range dipolar interactions in stabilising collinear ferromagnetic order for temperatures between the spin-reorientation temperature and the Curie point.
Theory of ferromagnetic (III,Mn)V semiconductors
Jungwirth, T.; Sinova, Jairo; Mašek, J.; Kučera, J.; MacDonald, A. H.
2006-07-01
The body of research on (III,Mn)V diluted magnetic semiconductors (DMSs) initiated during the 1990s has concentrated on three major fronts: (i) the microscopic origins and fundamental physics of the ferromagnetism that occurs in these systems, (ii) the materials science of growth and defects, and (iii) the development of spintronic devices with new functionalities. This article reviews the current status of the field, concentrating on the first two, more mature research directions. From the fundamental point of view, (Ga,Mn)As and several other (III,Mn)V DMSs are now regarded as textbook examples of a rare class of robust ferromagnets with dilute magnetic moments coupled by delocalized charge carriers. Both local moments and itinerant holes are provided by Mn, which makes the systems particularly favorable for realizing this unusual ordered state. Advances in growth and postgrowth-treatment techniques have played a central role in the field, often pushing the limits of dilute Mn-moment densities and the uniformity and purity of materials far beyond those allowed by equilibrium thermodynamics. In (III,Mn)V compounds, material quality and magnetic properties are intimately connected. This review focuses on the theoretical understanding of the origins of ferromagnetism and basic structural, magnetic, magnetotransport, and magneto-optical characteristics of simple (III,Mn)V epilayers, with the main emphasis on (Ga,Mn)As. Conclusions are arrived at based on an extensive literature covering results of complementary ab initio and effective Hamiltonian computational techniques, and on comparisons between theory and experiment. The applicability of ferromagnetic semiconductors in microelectronic technologies requires increasing Curie temperatures from the current record of 173K in (Ga,Mn)As epilayers to above room temperature. The issue of whether or not this is a realistic expectation for (III,Mn)V DMSs is a central question in the field and motivates many of the analyses
Reversal of exchange bias in nanocrystalline antiferromagnetic-ferromagnetic bilayers
Prados, C; Hernando, A; Montone, A
2002-01-01
The sign of the exchange bias in field cooled nanocrystalline antiferromagnetic-ferromagnetic bilayers (Co-O and Ni-O/permalloy) is reversed at temperatures approaching the antiferromagnetic (AFM) blocking temperature. A similar phenomenon is observed after magnetic training processes at similar temperatures. These effects can be explained assuming that the boundaries of nanocrystalline grains in AFM layers exhibit lower transition temperatures than grain cores.
Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films
Kim, Ki Yeon; Lee, Jeong Soo
2008-02-15
This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.
Transport through hybrid superconducting/ferromagnetic double-path junction
Facio, T.J.S. [Departamento de Física e Química, Universidade Estadual Paulista – UNESP, 15385-000, Ilha Solteira, SP (Brazil); Orellana, P.A. [Departamento de Física, Universidad Técnica Federico Santa Maria, Av. Vicuña Mackenna, 3939, Santiago (Chile); Jurelo, A.R. [Departamento de Física, Universidade Estadual de Ponta Grossa – UEPG, 84030-000, Ponta Grossa, PR (Brazil); Figueira, M.S. [Instituto de Física, Universidade Federal Fluminense, 24210-340, Niterói, RJ (Brazil); Cabrera, G.G. [Instituto de Física ‘Gleb Wataghin’, Universidade Estadual de Campinas – UNICAMP, 13083-859, Campinas, SP (Brazil); Siqueira, E.C., E-mail: ecosta@utfpr.edu.br [Departamento de Física, Universidade Tecnológica Federal do Paraná – UTFPR, 84016-210, Ponta Grossa, PR (Brazil)
2017-02-05
In this paper we study a double-path junction formed by a ferromagnetic and a superconductor lead. The first path connects the superconductor and ferromagnet directly while the second path connects these metals through a quantum dot. The whole system works as an Aharonov–Bohm interferometer allowing the study of the interference between these two paths under the presence of spin imbalance and Andreev bound states. We considered the effect of Fano interference on the electronic transmittance through the quantum dot and observed two regimes of conduction depending on the strength of the direct coupling. For the weak coupling regime, the transmittance presented the usual four resonances due to the Andreev bound states whereas for the strong coupling regime the profile was inverted and resonances became anti-resonances. However, even in the strong coupling regime it was possible to observe a central resonance due to the interference between the Andreev bound states. We have also studied the signatures of Fano interference on the average occupation within the quantum dot. The spin accumulation was analyzed and how it depends on the direct coupling and an external magnetic field applied to the system. The results obtained may be used in a possible experimental implementation of this system in order to probe spin related effects in ferromagnetic superconductor nanostructures. - Highlights: • An Aharonov–Bohm interferometer composed by a quantum-dot coupled to a superconductor and ferromagnetic lead is studied. • The transmittance through the QD is determined by the interplay between Andreev and Fano interference. • Spin accumulation within the quantum dot is studied as a function of bias/gate voltages and an external magnetic flux.
Loeffler, J.; Wagner, W.; Svygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Meier, J.; Doudin, B.; Ansermet, J.P. [Ecole Polytechnique Federale, Lausanne (Switzerland)
1997-09-01
The magnetic properties of nanostructured materials on the basis of Fe and Ni have been investigated with a SQUID magnetometer, complementary to the small-angle neutron scattering study reported in the same volume. Measurements of the coercive field in a temperature range from 5 to 300 K confirm the validity of the random anisotropy model for our nanostructured systems. Furthermore, we obtain information about the presence and distribution of the antiferromagnetic oxides, joining the ferromagnetic grains. (author) 2 figs., 3 refs.
Long range anti-ferromagnetic spin model for prebiotic evolution
Nokura, Kazuo [Shonan Institute of Technology, Fujisawa 251-8511 (Japan)
2003-11-28
I propose and discuss a fitness function for one-dimensional binary monomer sequences of macromolecules for prebiotic evolution. The fitness function is defined by the free energy of polymers in the high temperature random coil phase. With repulsive interactions among the same kind of monomers, the free energy in the high temperature limit becomes the energy function of the one-dimensional long range anti-ferromagnetic spin model, which is shown to have a dynamical phase transition and glassy states.
Direct evidence for ferromagnetic spin polarization in gold nanoparticles
Yamamoto, Y; Miura, T; Teranishi, T.; Miyake, M.; Hori, H.; Suzuki, M.; Kawamura, N.; Miyagawa, H; T. Nakamura; Kobayashi, K
2004-01-01
We report the first direct observation of ferromagnetic spin polarization of Au nanoparticles with a mean diameter of 1.9 nm using X-ray magnetic circular dichroism (XMCD). Owing to the element selectivity of XMCD, only the gold magnetization is explored. Magnetization of gold atoms estimated by XMCD shows a good agreement with the results obtained by conventional magnetometry. This result is evidence of intrinsic spin polarization in nano-sized gold.
Direct Observation of Ferromagnetic Spin Polarization in Gold Nanoparticles
Yamamoto, Y; Miura, T; Suzuki, M.; Kawamura, N.; Miyagawa, H; T. Nakamura; Kobayashi, K; Teranishi, T.; Hori, H.
2004-01-01
We report the first direct observation of ferromagnetic spin polarization of Au nanoparticles with a mean diameter of 1.9 nm using x-ray magnetic circular dichroism (XMCD). Owing to the element selectivity of XMCD, only the gold magnetization is explored. Magnetization of gold atoms as estimated by XMCD shows a good agreement with results obtained by conventional magnetometry. This evidences intrinsic spin polarization in nanosized gold.
Ferroelectricity and ferromagnetism in EuTiO3 nanowires
Morozovska, Anna N.; Glinchuk, Maya D.; Behera, Rakesh K.; Zaylichniy, Basyl Y.; Deo, Chaitanya S.; Eliseev, Eugene A.
2011-01-01
We predicted the ferroelectric-ferromagnetic multiferroic properties of EuTiO3 nanowires and generated the phase diagrams in coordinates of temperature and wire radii. The calculations were performed within the Landau-Ginzburg-Devonshire theory with phenomenological parameters extracted from tabulated experimental data and first principles calculations. Since bulk EuTiO3 is antiferromagnetic at temperatures lower than 5.5 K and paraelectric at all temperatures, our goal was to investigate the...
New Preisach model for structured particulate ferromagnetic media
Stancu, Alexandru [Faculty of Physics, Department of Electricity and Electronics, ' Alexandru Ioan Cuza' University, Blvd. Carol I, 700506 Iasi (Romania)]. E-mail: alstancu@uaic.ro; Stoleriu, Laurentiu [Faculty of Physics, Department of Electricity and Electronics, ' Alexandru Ioan Cuza' University, Blvd. Carol I, 700506 Iasi (Romania); Postolache, Petronel [Faculty of Physics, Department of Electricity and Electronics, ' Alexandru Ioan Cuza' University, Blvd. Carol I, 700506 Iasi (Romania); Tanasa, Radu [Faculty of Physics, Department of Electricity and Electronics, ' Alexandru Ioan Cuza' University, Blvd. Carol I, 700506 Iasi (Romania)
2005-04-15
In this paper a Preisach-type model, named Preisach model for patterned media (PMPM, or PM{sup 2}), that successfully describes magnetization processes in structured particulate ferromagnetic media and in strongly correlated particulate media is presented. The PM{sup 2} provides explicit expressions for the magnetization curves, which makes it numerically very efficient. It obeys the exact wiping-out property and describes non-congruent minor hysteresis loops measured within given field limits.
Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review
Carlos Morón; Carolina Cabrera; Alberto Morón; Alfonso García; Mercedes González
2015-01-01
Currently there are many types of sensors that are used in lots of applications. Among these, magnetic sensors are a good alternative for the detection and measurement of different phenomena because they are a “simple” and readily available technology. For the construction of such devices there are many magnetic materials available, although amorphous ferromagnetic materials are the most suitable. The existence in the market of these materials allows the production of different kinds of senso...
Modeling of Hysteresis Losses in Ferromagnetic Laminations under Mechanical Stress
Rasilo, Paavo; Singh, Deepak; Aydin, Ugur; Martin, Floran; Kouhia, Reijo; Belahcen, Anouar; Arkkio, Antero
2015-01-01
A novel approach for predicting magnetic hysteresis loops and losses in ferromagnetic laminations under mechanical stress is presented. The model is based on combining a Helmholtz free energy -based anhysteretic magnetoelastic constitutive law to a vector Jiles-Atherton hysteresis model. This paper focuses only on unidirectional and parallel magnetic fields and stresses, albeit the model is developed in full 3-D configuration in order to account also for strains perpendicular to the loading d...
A study of periodic and aperiodic ferromagnetic antidot lattices
Bhat, Vinayak S.
This thesis reports our study of the effect of domain wall pinning by ferromagnetic (FM) metamaterials [1] in the form of periodic antidot lattices (ADL) on spin wave spectra in the reversible regime. This study was then extended to artificial quasicrystals in the form of Penrose P2 tilings (P2T). Our DC magnetization study of these metamaterials showed reproducible and temperature dependent knee anomalies in the hysteretic regime that are due to the isolated switching of the FM segments. Our dumbbell model analysis [2] of simulated magnetization maps indicates that FM switching in P2T is nonstochastic . We have also acquired the first direct, two-dimensional images of the magnetization of Permalloy films patterned into P2T using scanning electron microscopy with polarization analysis (SEMPA). Our SEMPA images demonstrate P2T behave as geometrically frustrated networks of narrow ferromagnetic film segments having near-uniform, bipolar (Ising-like) magnetization, similar to artificial spin ices (ASI). We find the unique aperiodic translational symmetry and diverse vertex coordination of multiply-connected P2T induce a more complex spin-ice behavior driven by exchange interactions in vertex domain walls, which differs markedly from the behavior of disconnected ASI governed only by dipolar interactions. Keywords: Ferromagnetic Antidot Lattices, Metamaterials, Ferromagnetic Resonance, Artificial Quasicrystal, Artificial Spin Ice. [1] VV Kruglyak et al. "Magnonic metamaterials". In: Metamaterial, edited by X.-Y. Jiang (InTech, 2012) (2012). [2] Claudio Castelnovo, Roderich Moessner, and Shivaji L Sondhi. "Magnetic monopoles in spin ice". In: Nature 451.7174 (2008), pp. 42--45.
Ferromagnetic shadow mask for spray coating of polymer patterns
Keller, Stephan Sylvest; Bosco, Filippo; Boisen, Anja
2013-01-01
We present the fabrication of a wafer-scale shadow mask with arrays of circular holes with diameters of 150–400 μm. Standard UV photolithography is used to define 700 μm thick SU-8 structures followed by electroplating of nickel and etching of the template. The ferromagnetic properties of the sha...... of the shadow mask allow magnetic clamping to the substrate and spray coating of well defined polymer patterns....
Dynamical mean-field theory for flat-band ferromagnetism
Nguyen, Hong-Son; Tran, Minh-Tien
2016-09-01
The magnetically ordered phase in the Hubbard model on the infinite-dimensional hyper-perovskite lattice is investigated within dynamical mean-field theory. It turns out for the infinite-dimensional hyper-perovskite lattice the self-consistent equations of dynamical mean-field theory are exactly solved, and this makes the Hubbard model exactly solvable. We find electron spins are aligned in the ferromagnetic or ferrimagnetic configuration at zero temperature and half filling of the edge-centered sites of the hyper-perovskite lattice. A ferromagnetic-ferrimagnetic phase transition driven by the energy level splitting is found and it occurs through a phase separation. The origin of ferromagnetism and ferrimagnetism arises from the band flatness and the virtual hybridization between macroscopically degenerate flat bands and dispersive ones. Based on the exact solution in the infinite-dimensional limit, a modified exact diagonalization as the impurity solver for dynamical mean-field theory on finite-dimensional perovskite lattices is also proposed and examined.
Ferromagnetic resonance features of degenerate GdN semiconductor
Vidyasagar, Reddithota, E-mail: dr.vidyasagar1979@gmail.com [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Kobe 657-8501 (Japan); Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Kobe 657-8501 (Japan); Sakurai, Takahiro; Shimokawa, Tokuro [Centre for Support to Research and Education Activities, Kobe University, 1-1 Rokkodai, Kobe 657-8501 (Japan); Ohta, Hitoshi [Molecular Photoscience Research Center and Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe 657-8501 (Japan)
2017-06-15
Using X-band Ferromagnetic Resonance (FMR) Spectroscopy, we demonstrate the microscopic ferromagnetic resonance features of degenerated GdN semiconductor. The FMR spectrum suggests a single resonance mode below 10 K; interestingly, this particular structure is found to exhibit a peculiar magnetic resonance (PMR) on the top of the uniform FMR while temperature increases from 12–36 K. The low-field PMR mode attributed to the differently magnetized part of the film with an easy in-plane axis. The narrow-field gap between PMR and uniform FMR suggests the strong coupling owning to the differently magnetized part with easy in-plane axis and the magnetized part with an out-of-plane axis. The saturation magnetization, cubic magnetocrystalline anisotropy, and uniaxial anisotropy of GdN epitaxial film have been evaluated by the angular-dependence FMR. - Highlights: • Observation of peculiar magnetic resonance (PMR) on the top of ferromagnetic resonance (FMR). • Newly evolving PMR manifests differently magnetized part of the film with an easy in-plane axis. • Narrow gap between PMR and FMR owing to the strong interaction between two spin–wave resonances. • Uniaxial anisotropy increases with GdN thickness decreases.
(Ga,Fe)Sb: A p-type ferromagnetic semiconductor
Tu, Nguyen Thanh; Anh, Le Duc; Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan)
2014-09-29
A p-type ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 3.9%–13.7%) has been grown by low-temperature molecular beam epitaxy (MBE) on GaAs(001) substrates. Reflection high energy electron diffraction patterns during the MBE growth and X-ray diffraction spectra indicate that (Ga,Fe)Sb layers have the zinc-blende crystal structure without any other crystallographic phase of precipitates. Magnetic circular dichroism (MCD) spectroscopy characterizations indicate that (Ga,Fe)Sb has the zinc-blende band structure with spin-splitting induced by s,p-d exchange interactions. The magnetic field dependence of the MCD intensity and anomalous Hall resistance of (Ga,Fe)Sb show clear hysteresis, demonstrating the presence of ferromagnetic order. The Curie temperature (T{sub C}) increases with increasing x and reaches 140 K at x = 13.7%. The crystal structure analyses, magneto-transport, and magneto-optical properties indicate that (Ga,Fe)Sb is an intrinsic ferromagnetic semiconductor.
Ferromagnetism in ZnO doped with alkaline elements
Wang, Yiren; Piao, Jingyuan; Xin, Guozhong; Lu, Yunhao; Ao, Zhimin; Bao, Nina; Ding, Jun; Li, Sean; Yi, Jiabao
We have observed room temperature ferromagnetism (RTFM) in ZnO doped with alkaline elements Using first-principles calculations we found the magnetization in these systems is originated from the O2p hole states around Zn vacancies. Calculations indicate that the formation energy of Zn vacancies alone is rather high while further investigation indicates the formation can be much stabilized by the alkaline dopants in the form of defect complexes. By calculating the formation energy of concerned defects and complexes, we found the role of the dopants that under a certain doping concentration: Zn vacancy, substitutional and interstitial dopants can form a defect complex, which can lower formation energy, therefore stabilizing Zn vacancies. Moreover K dopants have shown unique functions on the ferromagnetism since the substitutional K can induce magnetic moments to the system by forming partial zinc vacancy via lattice distortion. Hence K doped ZnO can be magnetic at low doping concentrations. Experimentally, Li, Na doped ZnO films and K doped ZnO nanorods with different doping levels are synthesized, RTFM can be observed in all these systems. The magnetization is found to be greatly influenced by the doping concentrations. The experimental results have shown good consistence with our theoretical calculations. Our studies can inspire the defect induced ferromagnetism as a new route for the fabrication of new diluted magnetic semiconductors.
Inconvenient magnetocaloric effect in ferromagnetic shape memory alloys
Khovaylo, Vladimir, E-mail: khovaylo@misis.ru [National University of Science and Technology “MISiS”, Moscow 119049 (Russian Federation)
2013-11-15
Highlights: ► Critical analysis of the available experimental results on isothermal magnetic entropy change in ferromagnetic shape memory alloys Ni–Mn–X (X = Ga, In, Sn, Sb) is given. ► Based on available in literature experimental data on total entropy change at martensitic transformation it is shown that the isothermal magnetic entropy change in Ni–Mn–X (X = Ga, In, Sn, Sb) should not greatly exceed 30 J/kg K. -- Abstract: Critical analysis available in the literature experimental results on magnetocaloric effect in ferromagnetic shape memory alloys Ni–Mn–X (X = Ga, In, Sn, Sb) is given. Based on a model developed by Pecharsky et al. [22], it is shown that the isothermal magnetic field-induced entropy change in the Ni–Mn–X alloys should not greatly exceed 30 J/kg K. Considering thermodynamics of temperature- and magnetic field-induced martensitic transformations, it is demonstrated that a contribution of the structural subsystem to the magnetocaloric effect in the Ni–Mn–X alloys studied so far is irreversible in magnetic fields below 5 T. This makes ferromagnetic shape memory alloys an inconvenient system for the practical application in modern magnetic refrigeration technology.
Ferroplasmons: Intense Localized Surface Plasmons in Metal-Ferromagnetic Nanoparticles
Sachan, Ritesh [University of Tennessee, Knoxville (UTK); Malasi, Abhinav [ORNL; Ge, Jingxuan [Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, USA; Yadavali, Sagar P [ORNL; Gangopadhyay, Anup [Washington University, St. Louis; Krishna, Dr. Hare [Washington University, St. Louis; Garcia, Hernando [Southern Illinois University; Duscher, Gerd J M [ORNL; Kalyanaraman, Ramki [University of Tennessee, Knoxville (UTK)
2014-01-01
Interaction of photons with matter at length scales far below their wavelengths has given rise to many novel phenomena, including localized surface plasmon resonance (LSPR). However, LSPR with narrow bandwidth (BW) is observed only in a select few noble metals, and ferromagnets are not among them. Here, we report the discovery of LSPR in ferromagnetic Co and CoFe alloy (8% Fe) in contact with Ag in the form of bimetallic nanoparticles prepared by pulsed laser dewetting. These plasmons in metal-erromagnetic nanostructures, or ferroplasmons (FP) for short, are in the visible spectrum with comparable intensity and BW to those of the LSPRs from the Ag regions. This finding was enabled by electron energy-loss mapping across individual nanoparticles in a monochromated scanning transmission electron microscope. The appearance of the FP is likely due to plasmonic interaction between the contacting Ag and Co nanoparticles. Since there is no previous evidence for materials that simultaneously show ferromagnetism and such intense LSPRs, this discovery may lead to the design of improved plasmonic materials and applications. It also demonstrates that materials with interesting plasmonic properties can be synthesized using bimetallic nanostructures in contact with each other.
Suppression of superconductivity in superconductor/ferromagnet multilayers
Hwang, T. J.; Kim, D. H. [Yeungnam University, Gyeongsan (Korea, Republic of)
2016-03-15
Suppression of the superconducting transition temperature (Tc) of NbN thin films in superconductor/ferromagnet multilayers has been investigated. Both superconducting NbN and ferromagnetic FeN layers were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an Ar-N2 gas mixture. The thickness of FeN films was fixed at 20 nm, while the thickness of NbN films was varied from 3 nm to 90 nm. Tc suppression was clearly observed in NbN layers up to 70 nm thickness when NbN layer was in proximity with FeN layer. For a given thickness of NbN layer, the magnitude of Tc suppression was increased in the order of Si/FeN/NbN, Si/NbN/FeN, and Si/FeN/NbN/FeN structure. This result can be used to design a spin switch whose operation is based on the proximity effect between superconducting and ferromagnetic layers.
Theoretical Study of Interplay Between Superconductivity and Itinerant Ferromagnetism
Subhra Kakani
2014-08-01
Full Text Available Following Green’s function technique and equation of motion method, the coexistence of superconductivity (SC and itinerant ferromagnetism (FM is investigated in a single band homogenous system. Self consistent equations for SC and FM order parameters, Δ and m or I respectively are derived. It is shown that there generally exists a coexistent (Δ ≠ 0, and m or I ≠ 0 solutions to the coupled equations of the order parameter in the, temperature range 0 < T < min(TC, TFM, where TC and TFM are respectively the superconducting and ferromagnetic transition temperatures. Expressions for specific heat, density of states, free energy and critical field are derived. The specific heat has linear temperature dependence as opposed to the exponential decrease in the BCS theory. The density of states for a finite m increases as opposed to that of a ferromagnetic metal. Free energy study reveals that FMSC state has lowest energy than the normal FM state and therefore realized at low enough temperature .Effect of small external field is also studied. The theory is applied to explain the observations in uranium based intermetallics systems UCoGe and UIr. The agreement between theory and experiments is quite encouraging.
Defects and ferromagnetism in transition metal doped zinc oxide
Thapa, Sunil
Transition metal doped zinc oxide has been studied recently due to its potential application in spintronic devices. The magnetic semiconductor, often called Diluted Magnetic Semiconductors (DMS), has the ability to incorporate both charge and spin into a single formalism. Despite a large number of studies on ferromagnetism in ZnO based DMS and the realization of its room temperature ferromagnetism, there is still a debate about the origin of the ferromagnetism. In this work, the synthesis and characterization of transition metal doped zinc oxide have been carried out. The sol-gel method was used to synthesize thin films, and they were subsequently annealed in air. Characterization of doped zinc oxide films was carried out using the UV-visible range spectrometer, scanning electron microscopy, superconducting quantum interference device (SQUID), x-ray diffraction(XRD) and positron annihilation spectroscopy. Hysteresis loops were obtained for copper and manganese doped zinc oxide, but a reversed hysteresis loop was observed for 2% Al 3% Co doped zinc oxide. The reversed hysteresis loop has been explained using a two-layer model.
Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene
2017-01-01
Nitrogen doping opens possibilities for tailoring the electronic properties and band gap of graphene toward its applications, e.g., in spintronics and optoelectronics. One major obstacle is development of magnetically active N-doped graphene with spin-polarized conductive behavior. However, the effect of nitrogen on the magnetic properties of graphene has so far only been addressed theoretically, and triggering of magnetism through N-doping has not yet been proved experimentally, except for systems containing a high amount of oxygen and thus decreased conductivity. Here, we report the first example of ferromagnetic graphene achieved by controlled doping with graphitic, pyridinic, and chemisorbed nitrogen. The magnetic properties were found to depend strongly on both the nitrogen concentration and type of structural N-motifs generated in the host lattice. Graphenes doped below 5 at. % of nitrogen were nonmagnetic; however, once doped at 5.1 at. % of nitrogen, N-doped graphene exhibited transition to a ferromagnetic state at ∼69 K and displayed a saturation magnetization reaching 1.09 emu/g. Theoretical calculations were used to elucidate the effects of individual chemical forms of nitrogen on magnetic properties. Results showed that magnetic effects were triggered by graphitic nitrogen, whereas pyridinic and chemisorbed nitrogen contributed much less to the overall ferromagnetic ground state. Calculations further proved the existence of exchange coupling among the paramagnetic centers mediated by the conduction electrons. PMID:28110530
Transport through hybrid superconducting/ferromagnetic double-path junction
Facio, T. J. S.; Orellana, P. A.; Jurelo, A. R.; Figueira, M. S.; Cabrera, G. G.; Siqueira, E. C.
2017-02-01
In this paper we study a double-path junction formed by a ferromagnetic and a superconductor lead. The first path connects the superconductor and ferromagnet directly while the second path connects these metals through a quantum dot. The whole system works as an Aharonov-Bohm interferometer allowing the study of the interference between these two paths under the presence of spin imbalance and Andreev bound states. We considered the effect of Fano interference on the electronic transmittance through the quantum dot and observed two regimes of conduction depending on the strength of the direct coupling. For the weak coupling regime, the transmittance presented the usual four resonances due to the Andreev bound states whereas for the strong coupling regime the profile was inverted and resonances became anti-resonances. However, even in the strong coupling regime it was possible to observe a central resonance due to the interference between the Andreev bound states. We have also studied the signatures of Fano interference on the average occupation within the quantum dot. The spin accumulation was analyzed and how it depends on the direct coupling and an external magnetic field applied to the system. The results obtained may be used in a possible experimental implementation of this system in order to probe spin related effects in ferromagnetic superconductor nanostructures.
Thermophysical Properties of Fluids and Fluid Mixtures
Sengers, Jan V.; Anisimov, Mikhail A.
2004-05-03
The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.
Dynamical spin injection at a quasi-one-dimensional ferromagnet-graphene interface
Singh, S.; Ahmadi, A.; Mucciolo, E. R.; Barco, E. del [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Cherian, C. T. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Graphene Research Center, National University of Singapore, Singapore 117542 (Singapore); Özyilmaz, B. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); NanoCore, 4 Engineering Drive 3, National University of Singapore, Singapore 117576 (Singapore); Graphene Research Center, National University of Singapore, Singapore 117542 (Singapore); NUS Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 117456 (Singapore)
2015-01-19
We present a study of dynamical spin injection from a three-dimensional ferromagnet into two-dimensional single-layer graphene. Comparative ferromagnetic resonance (FMR) studies of ferromagnet/graphene strips buried underneath the central line of a coplanar waveguide show that the FMR linewidth broadening is the largest when the graphene layer protrudes laterally away from the ferromagnetic strip, indicating that the spin current is injected into the graphene areas away from the area directly underneath the ferromagnet being excited. Our results confirm that the observed damping is indeed a signature of dynamical spin injection, wherein a pure spin current is pumped into the single-layer graphene from the precessing magnetization of the ferromagnet. The observed spin pumping efficiency is difficult to reconcile with the expected backflow of spins according to the standard spin pumping theory and the characteristics of graphene, and constitutes an enigma for spin pumping in two-dimensional structures.
李绿洲; 蒋继乐; 卫荣汉; 李俊鹏; 田煜; 丁建宁
2016-01-01
Magnetic thin films are widely used in magnetic recording and magnetorheology, and also in magnetic lubrication such as ferromagnetic fluids. Polymethylmethacrylate (PMMA) is used as a coating material on the surface of the magnetic material in an electromagnetic system because of its good dielectric properties. In this study, the tribological behavior of reciprocating motion between ferromagnetic films coated with PMMA films under a magnetic field is evalu-ated. The system of ferromagnetic films coated with PMMA films based on glass is called ferromagnetic/PMMA double membrane in this paper. Two pieces of membranes in each tribological experiment are absolutely the same. Two kinds of experimental conditions, that is, under dry friction and silicone oil lubrication, are used to investigate the influences of load and magnetic field strength on the friction performance of ferromagnetic/PMMA double membranes. Experimental results show that the magnetic field directly affects the friction performance of a ferromagnetic /PMMA double-film system, and the performance changes with the normal load and intensity of the magnetic field. However, the influence of magnetic field on the tribological property in the dry friction mode is different from that in the silicone oil lubrication mode. The influences of magnetic force and the changes of the physical properties of the friction pair on friction and friction coeﬃcient, which are both induced by the magnetic field, are analyzed. The theoretical analysis results are in good agreement with the experimental date. This work provides a basis for designing and controlling magnetic film interface media.
Defect-induced ferromagnetism in crystalline SrTiO3
Osten, Julia; Potzger, Kay; Shalimov, Artem; Talut, Georg; Reuther, Helfried; Arpaci, Seda; Buerger, Danilo; Schmidt, Heidemarie [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Levin, Alexander.A. [Institut fuer Strukturphysik, Technische Universitaet Dresden, 01062 (Germany); Nestler, Tina; Meyer, Dirk C. [Institut fuer Experimentelle Physik, Technische Universitaet Bergakademie Freiberg, 09596 Freiberg (Germany)
2011-07-01
Ion irradiation of high-quality SrTiO3 single crystals leads to room-temperature ferromagnetism. Structural analysis revealed oxygen deficient (polycrystalline) SrTiO3, Sr2Ti6O13, or Ruddlesden-Popper like secondary phases at the sample surface induced by the irradiation. The lack of potentially ferromagnetic secondary phases suggests defects to be the origin of the observed ferromagnetic signal.
N. Gierse
2015-03-01
The key results of this study are that very high heat fluxes are accessible in the operation space of ferromagnetic pebbles, that ferromagnetic pebbles are compatible with tokamak operation and current divertor designs, that the heat removal capability of ferromagnetic pebbles increases as λq decreases and, finally, that for fusion relevant values of q∥ pebble diameters below 100 μm are required.
Development of eddy current testing system using magnetic saturation in ferromagnetic materials
Sung, Je Joong; Ahn, Hyung Keun; Shin, Yong Hoon [Sae An Engineering Corperation, Seoul (Korea, Republic of); Seo, Dong Man [Kunjang College, Kunsan (Korea, Republic of)
2002-11-15
Ferromagnetic materials have difficulties of eddy current test using traditional eddy current equipment due to their electric character of high permeability and anomalous magnetic flux. Development of on-line eddy current test equipment for ferromagnetic materials is a goal of this research. as the first step for it, in this paper, a prove for ferromagnetic materials was developed and practical test was performed with it at a manufactory. For magnetic saturation of inside of ferromagnetic material, DC power supply was used. As increasement of applied voltage, signals of defects were distinguished.
Transforming from paramagnetism to room temperature ferromagnetism in CuO by ball milling
Daqiang Gao
2011-12-01
Full Text Available In this work, we experimentally demonstrate that it is possible to induce ferromagnetism in CuO by ball milling without any ferromagnetic dopant. The magnetic measurements indicate that paramagnetic CuO is driven to the ferromagnetic state at room temperature by ball milling gradually. The saturation magnetization of the milled powders is found to increase with expanding the milling time and then decrease by annealing under atmosphere. The fitted X-ray photoelectron spectroscopy results indicate that the observed induction and weaken of the ferromagnetism shows close relationship with the valence charged oxygen vacancies (Cu1+-VO in CuO.
Ferromagnetism in Co-doped (La,Sr)TiO3
Fix, T.; Liberati, M.; Aubriet, H.; Sahonta, S.-L.; Bali, R.; Becker, C.; Ruch, D.; MacManus-Driscoll, J.L.; Arenholz, E.; Blamire, M.G.
2009-04-21
The origin of ferromagnetism in Co-doped (La,Sr)TiO{sub 3} epitaxial thin films is discussed. While the as-grown samples are not ferromagnetic at room temperature or at 10 K, ferromagnetism at room temperature appears after annealing the films in reducing conditions and disappears after annealing in oxidizing conditions. Magnetic measurements, x-ray absorption spectroscopy, x-ray photoemission spectroscopy and transmission electron microscopy experiments indicate that within the resolution of the instruments the activation of the ferromagnetism is not due to the presence of pure Co.
Transport critical-current density of superconducting films with hysteretic ferromagnetic dots
Nuria Del-Valle
2012-06-01
Full Text Available Superconductor-ferromagnet hybrids present a rich and complex phenomenology. Particularly, a hysteretic behavior on the transport critical-current density, as a function of a uniform perpendicular applied field, has been experimentally found in superconducting films with some embedded ferromagnets. Here we analyze the interaction superconductor-ferromagnets by means of an iterative model based on the critical-state model with field-dependent internal critical-current density and compare the results with actual transport measurements. By using arguments of field compensation, we show how the change in the magnetization of the ferromagnetic inclusions is responsible for the observed hysteresis on the transport critical current.
Spin-Transfer-Torques at a Ferromagnet/Antiferromagnet Interface
Tsoi, Maxim
2009-03-01
Spintronics in ferromagnetic systems is built on a complementary set of phenomena in which the magnetic configuration of the system influences its transport properties and vice versa. Giant magnetoresistance (GMR) [1] and spin- transfer-torque (STT) [2] phenomena are typical examples of such interconnections. Recently, MacDonald and co-workers [3] predicted that corresponding effects ought to occur in systems where ferromagnetic (F) components are replaced by antiferromagnets (AFM). I will present our experimental search for these new AFM effects which may potentially lead to a new all-antiferromagnetic spintronics where antiferromagnets are used in place of ferromagnets. In particular I will focus on our experiments with exchange-biased spin valves [4] where extreme current densities were found to affect the exchange bias at F/AFM interface [5-7]. As exchange bias is known to be associated with interfacial AFM magnetic moments, our observation can be taken as the first evidence of STT effect in AFM materials. [4pt] [1] M. N. Baibich et al., Phys. Rev. Lett. 61, 2472 (1988); G. Binasch et al., Phys. Rev. B 39, 4828 (1989). [0pt] [2] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996); L. Berger, J. Appl. Phys. 81, 4880 (1997); M. Tsoi et al., Phys. Rev. Lett. 80, 4281 (1998). [0pt] [3] A. S. N'uñez et al., Phys. Rev. B 73, 214426 (2006); [0pt] [4] Z. Wei et al., Phys. Rev. Lett. 98, 116603 (2007). [0pt] [5] S. Urazhdin and N. Anthony, Phys. Rev. Lett. 99, 046602 (2007). [0pt] [6] X-L.Tang et al., Appl. Phys. Lett. 91, 122504 (2007). [0pt] [7] N. V. Dai et al., Phys. Rev. B77, 132406 (2008).
Ferromagnetism in Cr-doped passivated AlN nanowires
Kanoun, Mohammed
2014-01-01
We apply first principles calculations to predict the effect of Cr doping on the electronic and magnetic properties of passivated AlN nanowires. We compare the energetics of the possible dopant sites and demonstrate the favorable configuration ferromagnetic ordering. The charge density of the pristine passivated AlN nanowires is used to elucidate the bonding character. Spin density maps demonstrate an induced spin polarization for N atoms next to dopant atoms, though most of the magnetism is carried by the Cr atoms. Cr-doped AlN nanowires turn out to be interesting for spintronic devices. © 2014 the Partner Organisations.
Size dependence of Peltier cooling in ferromagnet/Au nanopillars
Bosu, Subrojati; Sakuraba, Yuya; Kubota, Takahide; Juarez-Acosta, Isaac; Sugiyama, Tomoko; Saito, Kesami; Olivares-Robles, Miguel A.; Takahashi, Saburo; Bauer, Gerrit E. W.; Takanashi, Koki
2015-08-01
We study Peltier cooling in current-perpendicular-to-plane multilayer nanopillars with diameters D varying from 60 to 430 nm and made from Au and various ferromagnets (FMs): Heusler compounds Co2MnSi and Co2FeSi (CFS) and conventional FM metals Fe and Co. We report an enhanced effective Peltier coefficient ΠCPP in resistance-current curves at small D (Peltier coefficient Πbulk (˜7 mV) and corresponds to a high cooling power of 43.6 MW/cm2.
Generalized magneto-optical ellipsometry in ferromagnetic metals
Neuber, G.; Rauer, R.; Kunze, J.; Backstrom, J.; Ruebhausen, M
2004-05-01
We present spectral generalized magneto-optical ellipsometry as an optical tool to investigate magnetic and electronic properties of ferromagnetic materials. The advantage of the simultaneous observation of the dielectric and the magnetic responses within one measurement procedure is crucial for materials with coupled degrees of freedom near a phase transition or during annealing procedures to improve the film quality by removing grain boundaries. Moreover, we show the implementation of this technique within an UHV-cryostat for a temperature range between 4.2 and 800 K and fields up to 40 mT. Examplary measurements on iron and Permalloy demonstrate the comfortable application of this technique.
Tuning ferromagnetism at interfaces between insulating perovskite oxides
Ganguli, Nirmal; Kelly, Paul J.
2014-01-01
We use density functional theory calculations to show that the LaAlO3|SrTiO3 interface between insulating perovskite oxides is borderline in satisfying the Stoner criterion for itinerant ferromagnetism and explore other oxide combinations with a view to satisfying it more amply. The larger lattice parameter of an LaScO3|BaTiO3 interface is found to be less favorable than the greater interface distortion of LaAlO3|CaTiO3. Compared to LaAlO3|SrTiO3, the latter is predicted to exhibit robust mag...
Anomalous Hall Effect in a 2D Rashba Ferromagnet.
Ado, I A; Dmitriev, I A; Ostrovsky, P M; Titov, M
2016-07-22
Skew scattering on rare impurity configurations is shown to dominate the anomalous Hall effect in a 2D Rashba ferromagnet. The mechanism originates in scattering on rare impurity pairs separated by distances of the order of the Fermi wavelength. The corresponding theoretical description goes beyond the conventional noncrossing approximation. The mechanism provides the only contribution to the anomalous Hall conductivity in the most relevant metallic regime and strongly modifies previously obtained results for lower energies in the leading order with respect to impurity strength.
Tunable metamaterial bandstop filter based on ferromagnetic resonance
Qingmin Wang
2015-07-01
Full Text Available Tunable wideband microwave bandstop filters have been investigated by experiments and simulations. The negative permeability is realized around the ferromagnetic resonance frequency which can be influenced by the demagnetization factor of the ferrite rods. For the filter composed of two ferrite rods with different size, it exhibits a -3 db stop bandwidth as large as 500 MHz, peak absorption of -40 db and an out-of-stopband insertion loss of -1.5 db. This work provides a new way to fabricate the microwave bandstop filters.
Optical Magnus effect in metamaterials fabricated from ferromagnetic microwires
Ivanov, A. V.; Shalygin, A. N.; Vedyaev, A. V.; Ivanov, V. A.
2007-08-01
In homogeneous negative phase velocity media, the Doppler and Cherenkov-Vavilov effects and the refraction and pressure of light are anomalous: they are inverse with respect to the corresponding effects in conventional media. Using the geometrical optics approximation, it is shown that the optical Magnus effect in inhomogeneous negative phase velocity media is also anomalous. The effect is demonstrated by considering a metamaterial consisting of parallel amorphous ferromagnetic microwires in a magnetic field. The metamaterial proves to be a left-handed one in the realistic region of the electromagnetic spectrum. The optical properties of such a left-handed medium can be controlled by the external magnetic field.
Ferromagnetism in undoped One-dimensional GaN Nanowires
K. Jeganathan
2014-05-01
Full Text Available We report an intrinsic ferromagnetism in vertical aligned GaN nanowires (NW fabricated by molecular beam epitaxy without any external catalyst. The magnetization saturates at ∼0.75 × emu/gm with the applied field of 3000 Oe for the NWs grown under the low-Gallium flux of 2.4 × 10−8 mbar. Despite a drop in saturation magnetization, narrow hysteresis loop remains intact regardless of Gallium flux. Magnetization in vertical standing GaN NWs is consistent with the spectral analysis of low-temperature photoluminescence pertaining to Ga-vacancies associated structural defects at the nanoscale.
Dynamic Feedback in Ferromagnet-Spin Hall Metal Heterostructures
Cheng, Ran; Zhu, Jian-Gang; Xiao, Di
2016-08-01
In ferromagnet-normal-metal heterostructures, spin pumping and spin-transfer torques are two reciprocal processes that occur concomitantly. Their interplay introduces a dynamic feedback effect interconnecting energy dissipation channels of both magnetization and current. By solving the spin diffusion process in the presence of the spin Hall effect in the normal metal, we show that the dynamic feedback gives rise to (i) a nonlinear magnetic damping that is crucial to sustain uniform steady-state oscillations of a spin Hall oscillator at large angles and (ii) a frequency-dependent spin Hall magnetoimpedance that reduces to the spin Hall magnetoresistance in the dc limit.