WorldWideScience

Sample records for microorganisms yield nitrite

  1. DECREASING OF SODIUM NITRITE CONTENT IN COOKED SAUSAGES USING DENITRIFYING MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Bal-Prylypko L. V.

    2015-08-01

    Full Text Available The purpose of this work was to study reduction of sodium nitrite in cooked sausages by adding of the optimized amount of denitrifying microorganisms to the bacterial preparation maintaining quality characteristics of the product. To develop biotechnology of boiled sausages «Naturel» we selected bacterial preparation based on nitrite-reducing strains of Staphylococcus carnosus and S. carnosus ssp.utilis. It was used generally accepted and special methods. The content of total pigments and nitrozopigments was determined by a method based on the extraction of meat pigments by aqueous acetone; color stability of final products was evaluated as the difference in optical density of nitroso pigment extracts before and after exposure (40 min of the sample under the light source; analytical processing of the experimental data was carried out using modern software; quantitative evaluation of color characteristics was performed in the RGB using a multifunctional device Epson Stylus TX400. Mathematical modeling was carried out on the basis of full factorial experiment such as 22, the optimization was performed by Box–Wilson. According to the study, using of the bacterial preparation based on nitrite-reducing strains of Staphylococcus carnosus and S. carnosus ssp. utilis in biotechnology of boiled sausages «Naturel» has a positive effect on the formation of the complex of required color characteristics of final products (for prototypes of sausages the index redness was 1. 61 times higher compared to the control. Degradation of sodium nitrite and formation of nitroso pigments were intensified that improved the stability of color during the storage (the index of color fastness of experimental cooked sausages was higher by 19%. The results of performed investigations illustrate the possibility of production of cooked sausages with a minimized content of synthetic food additives and ingredients.

  2. Yield of Ozone, Nitrite Nitrogen and Hydrogen Peroxide Versus Discharge Parameter Using APPJ Under Water

    International Nuclear Information System (INIS)

    Chen Bingyan; Wen Wen; Zhu Changping; Wang Yuan; Gao Ying; Fei Juntao; He Xiang; Yin Cheng; Jiang Yongfeng; Chen Longwei

    2016-01-01

    Discharge plasma in and in contact with water can be accompanied with ultraviolet radiation and electron impact, thus can generate hydroxyl radicals, ozone, nitrite nitrogen and hydrogen peroxide. In this paper, a non-equilibrium plasma processing system was established by means of an atmospheric pressure plasma jet immersed in water. The hydroxyl intensities and discharge energy waveforms were tested. The results show that the positive and negative discharge energy peaks were asymmetric, where the positive discharge energy peak was greater than the negative one. Meanwhile, the yield of ozone and nitrite nitrogen was enhanced with the increase of both the treatment time and the discharge energy. Moreover, the pH value of treated water was reduced rapidly and maintained at a lower level. The residual concentration of hydrogen peroxide in APPJ treated water was kept at a low level. Additionally, both the efficiency energy ratio of the yield of ozone and nitrite nitrogen and that of the removal of p-nitrophenol increased as a function of discharge energy and discharge voltage. The experimental results were fully analyzed and the chemical reaction equations and the physical processes of discharges in water were given. (paper)

  3. Excessive nitrite affects zebrafish valvulogenesis through yielding too much NO signaling.

    Directory of Open Access Journals (Sweden)

    Junbo Li

    Full Text Available Sodium nitrite, a common food additive, exists widely not only in the environment but also in our body. Excessive nitrite causes toxicological effects on human health; however, whether it affects vertebrate heart valve development remains unknown. In vertebrates, developmental defects of cardiac valves usually lead to congenital heart disease. To understand the toxic effects of nitrite on valvulogenesis, we exposed zebrafish embryos with different concentrations of sodium nitrite. Our results showed that sodium nitrite caused developmental defects of zebrafish heart dose dependently. It affected zebrafish heart development starting from 36 hpf (hour post fertilization when heart initiates looping process. Comprehensive analysis on the embryos at 24 hpf and 48 hpf showed that excessive nitrite did not affect blood circulation, vascular network, myocardium and endocardium development. But development of endocardial cells in atrioventricular canal (AVC of the embryos at 48 hpf was disrupted by too much nitrite, leading to defective formation of primitive valve leaflets at 76 hpf. Consistently, excessive nitrite diminished expressions of valve progenitor markers including bmp4, has2, vcana and notch1b at 48 hpf. Furthermore, 3', 5'-cyclic guanosine monophosphate (cGMP, downstream of nitric oxide (NO signaling, was increased its level significantly in the embryos exposed with excessive nitrite and microinjection of soluble guanylate cyclase inhibitor ODQ (1H-[1], [2], [4]Oxadiazolo[4,3-a] quinoxalin-1-one, an antagonist of NO signaling, into nitrite-exposed embryos could partly rescue the cardiac valve malformation. Taken together, our results show that excessive nitrite affects early valve leaflet formation by producing too much NO signaling.

  4. Illumina MiSeq sequencing reveals the key microorganisms involved in partial nitritation followed by simultaneous sludge fermentation, denitrification and anammox process.

    Science.gov (United States)

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-05-01

    A combined process including a partial nitritation SBR (PN-SBR) followed by a simultaneous sludge fermentation, denitrification and anammox reactor (SFDA) was established to treat low C/N domestic wastewater in this study. An average nitrite accumulation rate of 97.8% and total nitrogen of 9.4mg/L in the effluent was achieved during 140days' operation. The underlying mechanisms were investigated by using Illumina MiSeq sequencing to analyze the microbial community structures in the PN-SBR and SFDA. Results showed that the predominant bacterial phylum was Proteobacteria in the external waste activated sludge (WAS, added to the SFDA) and SFDA while Bacteroidetes in the PN-SBR. Further study indicated that in the PN-SBR, the dominant nitrobacteria, Nitrosomonas genus, facilitated nitritation and little nitrate was generated in the PN-SBR effluent. In the SFDA, the co-existence of functional microorganisms Thauera, Candidatus Anammoximicrobium and Pseudomonas were found to contribute to simultaneous sludge fermentation, denitrification and anammox. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. PERFORMANCE, CARCASS YIELD AND LITTER QUALITY OF BROILERS RAISED ON LITTERS TREATED WITH MICRO-ORGANISMS

    Directory of Open Access Journals (Sweden)

    Dayane Prado da Cruz

    2013-03-01

    Full Text Available The present paper aimed at evaluating the effect of adding beneficial micro-organisms to the litters on litter quality, performance and carcass yield for broilers. A total of 240 one-day chicks were used, and randomly distributed in blocks with four treatments and four replications. The following treatments were carried out in the housing: Treatment 1 – Control with weekly spraying of water on the litters; Treatment 2 – Litter treated with a mixture of inoculated and fermented meal by micro-organisms and weekly spraying of water; Treatment 3 – Litter treated by weekly spraying of micro-organisms; Treatment 4 – Litter treated with the same mixture of meals from treatment two and weekly spraying of micro-organisms. Performance was evaluated by the feed consumption, weight gain, feed conversion, viability and carcass, breast and leg yield. From litter samples, pH, dry matter, ashes and nitrogen were evaluated. No differences were found among the treatments. In the conditions the animals were raised, it can be concluded that the treatment on the litter does not affect performance, carcass yield and quality of the litter for broilers.

  6. Microorganisms .

    African Journals Online (AJOL)

    ) and heat/pH-shift treatments. This technique resulted in 47% enzyme yield with a purification fac- tor of 12. Technique II which involved two extraction steps by' aqueous two - phase system. (APS) coupled with UF resulted in 62 % enzyme ...

  7. Performance, carcass yield and litter quality of broilers raised on litters treated with micro-organisms

    OpenAIRE

    Cruz,Dayane Prado da; Otutumi,Luciana Kazue; Piau Júnior,Ranulfo; Cervantes,Rodrigo Panucci; Mezalira,Taniara Suelen; Gerônimo,Edson

    2013-01-01

    The present paper aimed at evaluating the effect of adding beneficial micro-organisms to the litters on litter quality, performance and carcass yield for broilers. A total of 240 one-day chicks were used, and randomly distributed in blocks with four treatments and four replications. The following treatments were carried out in the housing: Treatment 1 – Control with weekly spraying of water on the litters; Treatment 2 – Litter treated with a mixture of inoculated and fermented meal by micro-o...

  8. The influence of benefit microorganisms on yield and quality of soybean grains under conditions of reduced nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Suzana Kristek

    2017-01-01

    Full Text Available The aim of this study was to investigate the possibility to reduce the application of mineral nitrogen fertilizers through the application of beneficial microorganisms (genus Bradyrhizobium, Azotobacter, bacteria Pseudomonas fluorescens, Bacillus spp., etc.. Research was conducted during 2013 and 2014 on Eutric brown soil. The experiment was set up in a split-block scheme with 12 different variants in 4 repetitions: two soybean cultivars were used; two different treatments of nitrogen fertilizers and three different treatments of microbiological preparation were applied. Analysed parameters were soybean grain yield (kg/ha based on 13% moisture, protein content (%, oil content (% and hectolitre mass (kg. Given that the climatic conditions in the second year of research were more favourable than in the first year of research, all the elements of research, including control variants, achieved better results in the second year of research. All variants treated with microbiological preparations, either by application in soil or by application in soil combined with foliar treatments, also achieved statistically significant differences compared to the control variants.

  9. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions

    Directory of Open Access Journals (Sweden)

    F.Sh.F. Badawi

    2011-06-01

    Full Text Available The ability of tested rhizomicrobial isolates (Serratia marcescens and Trichoderma harzianum along with a strain of root nodule bacteria (Bradyrhizobium spp. to exhibit some PGP-properties was evaluated in vitro conditions. The main PGP-properties, namely the ability to solubilize-P and production of IAA, as well as production of siderophores and HCN were examined. Additionally, field trials were conducted on sandy loam soil at El-Tahrir Province during two successive summer seasons to study the effect of co-inoculation with Bradyrhizobium either individually or together with S. marcescens and/or T. harzianum on nodulation, some plant growth characters, peanut yield and its yield components. The in vitro experiment revealed that all of the tested microorganisms were apparently able to trigger PGP-properties. Phosphate solubilization was the common feature of the employed microorganisms. However, T. harzianum appeared to be superior to other microorganisms, and Bradyrhizobium displayed the lowest capacity. The ability of the microorganisms to produce indole compounds showed that S. marcescens was more effective in IAA production and followed by Bradyrhizobium. Capacity of S. marcescens and T. harzianum to excrete ferric-specific ligands (siderophores and HCN was detected, while Bradyrhizobium failed to produce such compounds. Results of field trials showed that the uninoculated peanut had the least nodulation status, N2-ase activity and all vegetative growth characters in both studied seasons. Bacterization of peanut seeds with bradyrhizobia exerted considerable improvement in number and mass of root nodules, increased the rate of acetylene reduction and all growth characters in comparison to the uninoculated control. The synergy inoculation between bradyrhizobia and any of the tested microorganisms led to further increases of all mentioned characters and strengthened the stimulating effect of the bacterial inoculation. However, the promotive

  10. Radiation preservation of low nitrite bacon

    International Nuclear Information System (INIS)

    Singh, H.

    1988-01-01

    Sodium nitrite, a key ingredient of the mix used to cure bacon and other meats, promotes and fixes bacon's characteristic pink color, inhibits lipid peroxidation and prevents growth of micro-organisms, particularly Clostridium botulinum spores. Unfortunately, nitrite leads to the formation of carcinogenic nitrosamines in bacon. This has led to a search for alternatives to the use of nitrite. Irradiation with reduced level of nitrite is a promising alternative. Radurization of bacon containing 20 to 40 mg/kg of nitrite in evacuated packages, irradiated and stored at 4 0 C, gives a product with good organoleptic qualities and extended shelf life of > 90 days, as opposed to ∼ 30 days for the conventionally treated bacon. Radappertization of bacon containing 20 mg/kg of nitrite at a dose of about 30 kGy, irradiated at temperature of -20 0 or lower in evacuated packages, results in a product that is shelf stable at room temperature for months to years. It has organoleptic qualities comparable to commercial bacon in terms of color, flavor, odor and texture. Irradiation also reduces the nitrite and preformed nitrosamines present in bacon. Various aspects of preservation of bacon are reviewed in this report with emphasis on radiation processing. (author)

  11. The Effect of Plant Growth Promoting Rhizobacteria (PGPR and Phosphate Solubilizing Microorganism (PSM on Yield and Yield Components of Wheat (cv. N80 under Different Nitrogen and Phosphorous Fertilizers Levels in Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    S. H Bahari saravi

    2013-04-01

    Full Text Available In order to evaluate the effect of plant growth promoting rhizobacteria (PGPR and phosphate solubilizing microorganism (PSM on yield and yield components of wheat a pot experiment was conducted at Sari Agricultural Sciences and Natural Resources University during 2009. Experiment was arranged in factorial based on completely randomized design in three replicates. Treatments were included bio-fertilizer in four levels (non-inoculation control, Phosphate Barvare 2 (Pseudomonas fluorescens+Bacillus subtilis, Supernitroplus (Azotobacter brasilense+Azospirillum lipoferum and Nitroxine (Azospirillum + Pseudomona + Bacillus, three levels of chemical nitrogen fertilizer (0, 75 and 150 kg urea/ha and three levels of phosphorus fertilizer (0, 60 and 120 kg super phosphate triple/ha. Results showed that the studied treatments (biofertilizer, nitrogen and phosphate inorganic fertilizers had significant effect on grain number per spike, 1000 grain weight, grain yield, straw yield, biological yield and harvest index. Interaction effect between biofertilizer and chemical fertilizers was significant in terms of grain yield. The maximum grain yield was resulted from simultaneously applying of Nitroxine and 75 kg ha-1 nitrogen fertilizer. By contrast, the highest straw yield was obtained when 150 kg nitrogen fertilizer was used. Grain yield had the maximum correlation with biological yield (r=0.85**. Grain yield positively and significantly correlated with grain number per spike (r=0.73**, 1000 grain weight (r=0.68**, straw yield (r=0.56** and harvest index (r=0.69**. In conclusion biofertilizer inoculations could reduce application of nitrogen and phosphorus chemical fertilizers and increase plant performance.

  12. The use and control of nitrate and nitrite for the processing of meat products.

    Science.gov (United States)

    Honikel, Karl-Otto

    2008-01-01

    Nitrate and nitrite are used for the purpose of curing meat products. In most countries the use of both substances, usually added as potassium or sodium salts, is limited. Either the ingoing or the residual amounts are regulated by laws. The effective substance is nitrite acting primarily as an inhibitor for some microorganisms. Nitrite added to a batter of meat is partially oxidized to nitrate by sequestering oxygen - thus it acts as an antioxidant - a part of nitrite is bound to myoglobin, forming the heat stable NO-myoglobin, a part is bound to proteins or other substances in meat. Nitrate may be reduced to nitrite in raw meat products by microorganisms. As oxidation and reduction may occur the concentrations of nitrite plus nitrate in a product has to be controlled and measured especially if the residual amounts are regulated. This sum of both compounds is important for the human body. Intake of nitrate with food leads to its absorption over the digestive tract into the blood. In the oral cavity nitrate appears again where it is reduced to nitrite. With the saliva the nitrite is mixed with food, having the same effect as nitrite in a batter (inhibiting growth of some pathogenic microorganisms) and swallowed. In the stomach nitrite can eventually form carcinogenic nitrosamines in the acidic environment.

  13. Microorganism immobilization

    Science.gov (United States)

    Compere, Alicia L.; Griffith, William L.

    1981-01-01

    Live metabolically active microorganisms are immobilized on a solid support by contacting particles of aggregate material with a water dispersible polyelectrolyte such as gelatin, crosslinking the polyelectrolyte by reacting it with a crosslinking agent such as glutaraldehyde to provide a crosslinked coating on the particles of aggregate material, contacting the coated particles with live microorganisms and incubating the microorganisms in contact with the crosslinked coating to provide a coating of metabolically active microorganisms. The immobilized microorganisms have continued growth and reproduction functions.

  14. Effect of the kinetics of ammonium and nitrite oxidation on nitritation success or failure for different biofilm reactor geometries

    DEFF Research Database (Denmark)

    Lackner, Susanne; Smets, Barth F.

    2012-01-01

    was on the influence of key biokinetic parameters (maximum specific growth rates, oxygen and nitrogen affinity constants of AOB (ammonium oxidizing bacteria) and NOB (nitrite oxidizing bacteria)) and their ratios on nitritation efficiency in these geometries. This exhaustive simulation study revealed that nitritation...... strongly depends on the chosen kinetic parameters of AOB and NOB. The maximum specific growth rates (μmax,AOB and μmax,NOB) had the strongest impact on nitritation efficiency (NE). In comparison, the counter-diffusion geometry yielded more parameter combinations (27.5%) that resulted in high NE than the co...

  15. Nitrogen removal and electricity production at a double-chamber microbial fuel cell with cathode nitrite denitrification.

    Science.gov (United States)

    Yu, Yangyang; Zhao, Jianqiang; Wang, Sha; Zhao, Huimin; Ding, Xiaoqian; Gao, Kun

    2017-12-01

    Double-chamber microbial fuel cell was applied to investigate the performance of the electricity production and nitrite denitrification through feeding nitrite into the cathode. Factors influencing denitrification performance and power production, such as external resistance, influent nitrite concentration and Nitrite Oxygen Bacteria inhibitors, were studied. The results show that when the concentration of nitrite nitrogen and external resistance were 100 mg L -1 and 10 Ω, respectively, the nitrite denitrification reached the best state. The NaN 3 can inhibit nitrite oxidation effectively; meanwhile, the nitrite denitrification with N 2 O as the final products was largely improved. The [Formula: see text] was reduced to [Formula: see text], causing the cathode denitrification coulombic efficiency to exceed 100%. In chemoautotrophic bio-nitrification, microorganisms may utilize H 2 O to oxidize nitrite under anaerobic conditions. Proteobacteria might play a major role in the process of denitrification in MFC.

  16. Determination of nitrite, nitrate and total nitrogen in vegetable samples

    Directory of Open Access Journals (Sweden)

    Manas Kanti Deb

    2007-04-01

    Full Text Available Yellow diazonium cation formed by reaction of nitrite with 6-amino-1-naphthol-3-sulphonic acid is coupled with β-naphthol in strong alkaline medium to yield a pink coloured azo dye. The azo-dyes shows absorption maximum at 510 nm with molar absorptivity of 2.5 ×104 M-1 cm-1. The dye product obeys Beer's law (correlation coefficient = 0.997, in terms of nitrite concentration, up to 2.7 μg NO2 mL-1. The above colour reaction system has been applied successfully for the determination of nitrite, nitrate and total nitrogen in vegetable samples. Unreduced samples give direct measure for nitrite whilst reduction of samples by copperized-cadmium column gives total nitrogen content and their difference shows nitrate content in the samples. Variety of vegetables have been tested for their N-content (NO2-/NO3-/total-N with % RSD ranging between 1.5 to 2.5 % for nitrite determination. The effects of foreign ions in the determination of the nitrite, nitrate, and total nitrogen have been studied. Statistical comparison of the results with those of reported method shows good agreement and indicates no significant difference in precision.

  17. A Review of Nitrate and Nitrite Toxicity in Foods

    Directory of Open Access Journals (Sweden)

    Mir-Jamal Hosseini

    2016-03-01

    Full Text Available Agricultural advancement and population growth have prompted increases in food supplies, and higher crop yields have been made possible through the application of fertilizers. Large quantities of livestock and poultry on farms, along with the accumulation of biomass and agricultural residues, can cause contamination of ground water resources and other water sanitation concerns in both developing and developed countries. Nitrate is mainly used as a fertilizer in agriculture, and because of its high solubility in water, it can create biological problems in the environment. High usage of nitrite in the food industry as a preservative, flavor enhancer, antioxidant, and color stabilizing agent can cause human exposure to this toxic compound. Nitrite is 10 times as toxic as nitrate in humans. Nitrate is converted to nitrite and nitrosamine compounds in the human stomach, which can lead to bladder cancer. In this review, sources of nitrate and nitrite exposure were investigated. Furthermore, the review evaluates standard levels of nitrate and nitrite in different foods, and acceptable daily doses of these compounds in various countries. Finally, we discuss valid methods of nitrate and nitrite identification and removal in foods.

  18. Green Alternatives to Nitrates and Nitrites in Meat-based Products-A Review.

    Science.gov (United States)

    Gassara, Fatma; Kouassi, Anne Patricia; Brar, Satinder Kaur; Belkacemi, Khaled

    2016-10-02

    Several food additives are added in food for their preservation to maintain the freshness of food (antioxidants) or to slow down or stop the growth of microorganisms (preservative agents). Nitrites and nitrates are used as preservative agents in meat. Nitrites give a smoked taste, a pinkish color in the meat and protect the consumers against the risk of bacterial deterioration. Their addition is however very limited as, in high dose, it can have risks on human health and the environment. Nitrites may also combine with secondary or tertiary amines to form N-nitroso derivatives. Certain N-nitroso compounds have been shown to produce cancers in a wide range of laboratory animals. Thus, alternatives of nitrates and nitrites are the object of numerous research studies. Alternatives, such as the addition of vitamins, fruits, chemicals products, natural products containing nitrite or spices, which have similar properties of nitrites, are in evaluation. In fact, spices are considered to have several organoleptic and anti-microbial properties which would be interesting to study. Several spices and combinations of spices are being progressively evaluated. This review discusses the sources of nitrites and nitrates, their use as additives in food products, their physicochemical properties, their negatives effects and the use of alternatives of nitrites and nitrates in preserving meat products.

  19. Lignite microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Bulankina, M.A.; Lysak, L.V.; Zvyagintsev, D.G. [Moscow MV Lomonosov State University, Moscow (Russian Federation). Faculty of Soil Science

    2007-03-15

    The first demonstration that samples of lignite at a depth of 10 m are considerably enriched in bacteria is reported. According to direct microscopy, the abundance of bacteria was about 10{sup 7} cells/g. About 70% of cells had intact cell membranes and small size, which points to their anabiotic state. The fungal mycelium length was no more than 1 m. Lignite inoculation onto solid glucose-yeast-peptone medium allowed us to isolate bacteria of the genera Bacillus, Rhodococcus, Arthrobacter, Micrococcus, Spirillum, and Cytophaga. Representatives of the genera Penicillium and Trichoderma were identified on Czapek medium. Moistening of lignite powder increased the microbial respiration rate and microbial and fungal abundance but did not increase their generic diversity. This finding suggests that the studied microorganisms are autochthonous to lignite.

  20. Energetics and kinetics of ferrocyanide and nitrate/nitrite reactions

    International Nuclear Information System (INIS)

    Scheele, R.D.; Burger, L.L.; Sell, R.L.

    1994-01-01

    During the 1950's, radiocesium scavenging at the Hanford site resulted in radioactive waste sludges containing ferrocyanide, nitrate, and nitrite. These waters are a concern since certain mixtures of ferrocyanide and nitrate and/or nitrite are known to explode when heated. The authors have used differential scanning calorimetry, thermogravimetric analysis, isothermal calorimetry and gravimetry, and accelerating rate calorimetry to measure the thermal behavior, the reaction enthalpies, and selected kinetic parameters for reactions between sodium nickel ferrocyanide, the suspected ferrocyanide form in Hanford wastes, and nitrate and/or nitrite. These studies indicate that the oxidation proceeds via multiple steps, the initial reaction begins near 200 degrees C, the initial step has a high activation energy (>200 kJ/mole-K), succeeding reaction steps have activation energies ranging from 90 to 160 kJ/mole-K, and that the oxidation yields about 50% of the theoretical heat of reaction for the most energetic reaction

  1. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation

    NARCIS (Netherlands)

    Pachiadaki, M.G.; Sintes, E.; Bergauer, K.; Brown, J.M.; Record, N.R.; Swan, B.K.; Mathyer, M.E.; Hallam, S.J.; López-Garcìa, P.; Takaki, Y.; Nunoura, T.; Woyke, T.; Herndl, G.J.; Stepanauskas, R.

    2017-01-01

    Carbon fixation by chemoautotrophic microorganisms in the dark ocean has a major impact on global carbon cycling and ecological relationships in the ocean’s interior, but the relevant taxa and energy sources remain enigmatic.We show evidence that nitrite-oxidizing bacteria affiliated with the

  2. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  3. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike

    2015-03-02

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  4. Respiration of Nitrate and Nitrite.

    Science.gov (United States)

    Cole, Jeffrey A; Richardson, David J

    2008-09-01

    Nitrate reduction to ammonia via nitrite occurs widely as an anabolic process through which bacteria, archaea, and plants can assimilate nitrate into cellular biomass. Escherichia coli and related enteric bacteria can couple the eight-electron reduction of nitrate to ammonium to growth by coupling the nitrate and nitrite reductases involved to energy-conserving respiratory electron transport systems. In global terms, the respiratory reduction of nitrate to ammonium dominates nitrate and nitrite reduction in many electron-rich environments such as anoxic marine sediments and sulfide-rich thermal vents, the human gastrointestinal tract, and the bodies of warm-blooded animals. This review reviews the regulation and enzymology of this process in E. coli and, where relevant detail is available, also in Salmonella and draws comparisons with and implications for the process in other bacteria where it is pertinent to do so. Fatty acids may be present in high levels in many of the natural environments of E. coli and Salmonella in which oxygen is limited but nitrate is available to support respiration. In E. coli, nitrate reduction in the periplasm involves the products of two seven-gene operons, napFDAGHBC, encoding the periplasmic nitrate reductase, and nrfABCDEFG, encoding the periplasmic nitrite reductase. No bacterium has yet been shown to couple a periplasmic nitrate reductase solely to the cytoplasmic nitrite reductase NirB. The cytoplasmic pathway for nitrate reduction to ammonia is restricted almost exclusively to a few groups of facultative anaerobic bacteria that encounter high concentrations of environmental nitrate.

  5. Evolution of nitrate and nitrite during the processing of dry-cured ham with partial replacement of NaCl by other chloride salts.

    Science.gov (United States)

    Armenteros, Mónica; Aristoy, María-Concepción; Toldrá, Fidel

    2012-07-01

    Nitrate and nitrite are commonly added to dry-cured ham to provide protection against pathogen microorganisms, especially Clostridium botulinum. Both nitrate and nitrite were monitored with ion chromatography in dry-cured hams salted with different NaCl formulations (NaCl partially replaced by KCl and/or CaCl(2), and MgCl(2)). Nitrate, that is more stable than nitrite, diffuses into the ham and acts as a reservoir for nitrite generation. A correct nitrate and nitrite penetration was detected from the surface to the inner zones of the hams throughout its processing, independently of the salt formulation. Nitrate and nitrite achieved similar concentrations, around 37 and 2.2 ppm, respectively in the inner zones of the ham for the three assayed salt formulations at the end of the process, which are in compliance with European regulations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.; Morandi, Bill; Grubbs, Robert H.

    2013-01-01

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  7. Aldehyde-Selective Wacker-Type Oxidation of Unbiased Alkenes Enabled by a Nitrite Co-Catalyst

    KAUST Repository

    Wickens, Zachary K.

    2013-09-13

    Breaking the rules: Reversal of the high Markovnikov selectivity of Wacker-type oxidations was accomplished using a nitrite co-catalyst. Unbiased aliphatic alkenes can be oxidized with high yield and aldehyde selectivity, and several functional groups are tolerated. 18O-labeling experiments indicate that the aldehydic O atom is derived from the nitrite salt.

  8. Energetic Consequences of nitrite stress in Desulfovibrio vulgarisHildenborough, inferred from global transcriptional analysis

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiang; Huang, Katherine H.; He, Zhili; Alm, Eric J.; Fields,Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2005-11-03

    Many of the proteins that are candidates for bioenergetic pathways involved with sulfate respiration in Desulfovibrio spp. have been studied, but complete pathways and overall cell physiology remain to be resolved for many environmentally relevant conditions. In order to understand the metabolism of these microorganisms under adverse environmental conditions for improved bioremediation efforts, Desulfovibrio vulgaris Hildenborough was used as a model organism to study stress response to nitrite, an important intermediate in the nitrogen cycle. Previous physiological studies demonstrated that growth was inhibited by nitrite and that nitrite reduction was observed to be the primary mechanism of detoxification. Global transcriptional profiling with whole-genome microarrays revealed coordinated cascades of responses to nitrite in pathways of energy metabolism, nitrogen metabolism, oxidative stress response, and iron homeostasis. In agreement with previous observations, nitrite-stressed cells showed a decrease in the expression of genes encoding sulfate reduction functions in addition to respiratory oxidative phosphorylation and ATP synthase activity. Consequently, the stressed cells had decreased expression of the genes encoding ATP-dependent amino acid transporters and proteins involved in translation. Other genes up-regulated in response to nitrite include the genes in the Fur regulon, which is suggested to be involved in iron homeostasis, and genes in the Per regulon, which is predicted to be responsible for oxidative stress response.

  9. Dependence of nitrite oxidation on nitrite and oxygen in low-oxygen seawater

    Science.gov (United States)

    Sun, Xin; Ji, Qixing; Jayakumar, Amal; Ward, Bess B.

    2017-08-01

    Nitrite oxidation is an essential step in transformations of fixed nitrogen. The physiology of nitrite oxidizing bacteria (NOB) implies that the rates of nitrite oxidation should be controlled by concentration of their substrate, nitrite, and the terminal electron acceptor, oxygen. The sensitivities of nitrite oxidation to oxygen and nitrite concentrations were investigated using 15N tracer incubations in the Eastern Tropical North Pacific. Nitrite stimulated nitrite oxidation under low in situ nitrite conditions, following Michaelis-Menten kinetics, indicating that nitrite was the limiting substrate. The nitrite half-saturation constant (Ks = 0.254 ± 0.161 μM) was 1-3 orders of magnitude lower than in cultivated NOB, indicating higher affinity of marine NOB for nitrite. The highest rates of nitrite oxidation were measured in the oxygen depleted zone (ODZ), and were partially inhibited by additions of oxygen. This oxygen sensitivity suggests that ODZ specialist NOB, adapted to low-oxygen conditions, are responsible for apparently anaerobic nitrite oxidation.

  10. Nitrates and nitrites intoxications’ management

    Directory of Open Access Journals (Sweden)

    Alexandra Trif

    2007-12-01

    Full Text Available The study pointed out the major sources for clinical and subclinical intoxications with nitrates/nitrites (drinking water and nitrates containing fertilizers, circumstances that determine fertilizers to became sources of intoxication (excessive fertilization/consecutive high level of nitrates in fodders, free access of animals to the fertilizers, administration into the diet instead of natrium chloride, factors that determine high nitrates accumulation in fodders despite optimal fertilization (factors related to the plants, soil, clime, harvest methods, storage, agrotechnical measures, nitrates/nitrites toxicity (over 45 ppm nitrates in drinking water, over 0.5 g nitrate/100 g D.M fodder/diet, the factors that influence nitrates/nitrites toxicity ( species, age, rate of feeding, diet balance especially energetically, pathological effects and symptoms (irritation and congestions on digestive tract, resulting diarrhoea, transformation of hemoglobin into methemoglobin determining severe respiratory insufficiency, vascular collapse, low blood pressure inthe acute nitrates intoxication; hypotiroidism, hypovitaminosis A, reproductive disturbances(abortion, low rate of fertility, dead born offspring, diarrhoea and/or respiratory insufficiency in new born e.g. calves, immunosuppression, decrease of milk production in chronic intoxication. There were presented some suggestions concerning management practices to limit nitrate intoxication (analyze of nitrates/nitrites in water and fodders, good management of the situation of risk ,e .g. dilution of the diet with low nitrate content fodders, feeding with balanced diet in energy, protein, minerals and vitamins, accommodation to high nitrate level diet, avoid grazing one week after a frost period, avoid feeding chop green fodders stored a couple of days, monitoring of health status of animals fed with fodders containing nitrates at risk level, a.o..

  11. Dietary Nitrite: from menace to marvel

    Directory of Open Access Journals (Sweden)

    Nathan S. Bryan

    2016-11-01

    Full Text Available The health benefits of nitrite are now indisputable when administered in a clinical setting for specific diseases. Currently, most published reports identify the production of nitric oxide (NO as the mechanism of action for nitrite. Basic science, in addition to clinical studies, demonstrate that nitrite and/or nitrate cannot restore NO homeostasis as an endothelium independent source of NO that may be a redundant system for endogenous NO production. Nitrate must first be reduced to nitrite by oral commensal bacteria; nitrite can then be further reduced to NO along the physiological oxygen gradient. But despite decades of rigorous research on sodium nitrate’s safety and efficacy as a curing agent, sodium nitrite is still regarded by many as a toxic undesirable food additive. However, research within the biomedical science community has revealed enormous therapeutic benefits of nitrite which are being developed as novel therapies for conditions associated with nitric oxide insufficiency. Thus, this review will highlight the fundamental biochemistry of nitrite in human physiology and provide evidence that nitrite be considered an essential nutrient. Foods or diets enriched with nitrite can have profound positive health benefits.

  12. Boletus edulis Nitrite Reductase Reduces Nitrite Content of Pickles and Mitigates Intoxication in Nitrite-intoxicated Mice.

    Science.gov (United States)

    Zhang, Weiwei; Tian, Guoting; Feng, Shanshan; Wong, Jack Ho; Zhao, Yongchang; Chen, Xiao; Wang, Hexiang; Ng, Tzi Bun

    2015-10-08

    Pickles are popular in China and exhibits health-promoting effects. However, nitrite produced during fermentation adversely affects health due to formation of methemoglobin and conversion to carcinogenic nitrosamine. Fruiting bodies of the mushroom Boletus edulis were capable of inhibiting nitrite production during pickle fermentation. A 90-kDa nitrite reductase (NiR), demonstrating peptide sequence homology to fungal nitrite reductase, was isolated from B. edulis fruiting bodies. The optimum temperature and pH of the enzyme was 45 °C and 6.8, respectively. B. edulis NiR was capable of prolonging the lifespan of nitrite-intoxicated mice, indicating that it had the action of an antidote. The enzyme could also eliminate nitrite from blood after intragastric administration of sodium nitrite, and after packaging into capsule, this nitrite-eliminating activity could persist for at least 120 minutes thus avoiding immediate gastric degradation. B. edulis NiR represents the first nitrite reductase purified from mushrooms and may facilitate subsequent applications.

  13. Microorganisms in food technology

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A H

    1981-11-01

    Man has been using microorganisms for thousands of years to make bread, cheese, beer, wine, etc. Today, microorganisms can be specially grown or genetically manipulated so as to synthesize high-quality proteins even from low-grade basic materials.

  14. Nitrite reduction mechanism on a Pd surface.

    Science.gov (United States)

    Shin, Hyeyoung; Jung, Sungyoon; Bae, Sungjun; Lee, Woojin; Kim, Hyungjun

    2014-11-04

    Nitrate (NO3-) is one of the most harmful contaminants in the groundwater, and it causes various health problems. Bimetallic catalysts, usually palladium (Pd) coupled with secondary metallic catalyst, are found to properly treat nitrate-containing wastewaters; however, the selectivity toward N2 production over ammonia (NH3) production still requires further improvement. Because the N2 selectivity is determined at the nitrite (NO2-) reduction step on the Pd surface, which occurs after NO3- is decomposed into NO2- on the secondary metallic catalyst, we here performed density functional theory (DFT) calculations and experiments to investigate the NO2- reduction pathway on the Pd surface activated by hydrogen. Based on extensive DFT calculations on the relative energetics among ∼100 possible intermediates, we found that NO2- is easily reduced to NO* on the Pd surface, followed by either sequential hydrogenation steps to yield NH3 or a decomposition step to N* and O* (an adsorbate on Pd is denoted using an asterisk). Based on the calculated high migration barrier of N*, we further discussed that the direct combination of two N* to yield N2 is kinetically less favorable than the combination of a highly mobile H* with N* to yield NH3. Instead, the reduction of NO2- in the vicinity of the N* can yield N2O* that can be preferentially transformed into N2 via diverse reaction pathways. Our DFT results suggest that enhancing the likelihood of N* encountering NO2- in the solution phase before combination with surface H* is important for maximizing the N2 selectivity. This is further supported by our experiments on NO2- reduction by Pd/TiO2, showing that both a decreased H2 flow rate and an increased NO2- concentration increased the N2 selectivity (78.6-93.6% and 57.8-90.9%, respectively).

  15. Determination of five abused drugs in nitrite-adulterated urine by immunoassays and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Tsai, S C; ElSohly, M A; Dubrovsky, T; Twarowska, B; Towt, J; Salamone, S J

    1998-10-01

    when the specimens were spiked with 1.0M of nitrite ion. Although bisulfite treatment decomposed all nitrite ions in the sample to recover the remaining THCCOOH by GC-MS, the net recovery of THCCOOH depended on urinary pH and time and conditions of sample storage. The presence of nitrite concentrations that might arise from all possible natural sources, including microorganisms, pathological conditions, and medications, did not interfere with the GC-MS analysis of THCCOOH.

  16. Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) does not disproportionate hydroxylamine to ammonia and nitrite, despite a strongly favorable driving force.

    Science.gov (United States)

    Youngblut, Matthew; Pauly, Daniel J; Stein, Natalia; Walters, Daniel; Conrad, John A; Moran, Graham R; Bennett, Brian; Pacheco, A Andrew

    2014-04-08

    Cytochrome c nitrite reductase (ccNiR) from Shewanella oneidensis, which catalyzes the six-electron reduction of nitrite to ammonia in vivo, was shown to oxidize hydroxylamine in the presence of large quantities of this substrate, yielding nitrite as the sole free nitrogenous product. UV-visible stopped-flow and rapid-freeze-quench electron paramagnetic resonance data, along with product analysis, showed that the equilibrium between hydroxylamine and nitrite is fairly rapidly established in the presence of high initial concentrations of hydroxylamine, despite said equilibrium lying far to the left. By contrast, reduction of hydroxylamine to ammonia did not occur, even though disproportionation of hydroxylamine to yield both nitrite and ammonia is strongly thermodynamically favored. This suggests a kinetic barrier to the ccNiR-catalyzed reduction of hydroxylamine to ammonia. A mechanism for hydroxylamine reduction is proposed in which the hydroxide group is first protonated and released as water, leaving what is formally an NH2(+) moiety bound at the heme active site. This species could be a metastable intermediate or a transition state but in either case would exist only if it were stabilized by the donation of electrons from the ccNiR heme pool into the empty nitrogen p orbital. In this scenario, ccNiR does not catalyze disproportionation because the electron-donating hydroxylamine does not poise the enzyme at a sufficiently low potential to stabilize the putative dehydrated hydroxylamine; presumably, a stronger reductant is required for this.

  17. Nitrates, Nitrites, and Health. Bulletin 750.

    Science.gov (United States)

    Deeb, Barbara S.; Sloan, Kenneth W.

    This review is intended to assess available literature in order to define the range of nitrate/nitrite effects on animals. Though the literature deals primarily with livestock and experimental animals, much of the contemporary research is concerned with human nitrite intoxication. Thus, the effects on man are discussed where appropriate. Some of…

  18. Nitrite, nitrite alternatives, and the control of Clostridium botulinum in cured meats.

    Science.gov (United States)

    Pierson, M D; Smoot, L A

    1982-01-01

    Historically, nitrite has been a component of meat-curing additives for several centuries. In recent years the safety of nitrite as an additive in cured meats has been questioned mainly because of the possible formation of carcinogenic nitrosamines. Nitrite has many important functions in meat curing including its role in color development, flavor, antioxidant properties, and antimicrobial activity. The inhibition of Clostridium botulinum growth and toxin production is an especially important antimicrobial property of nitrite. This review discusses the effects of processing, curing ingredients (especially nitrite), and storage of cured meats in relation to the control of C. botulinum. If nitrite is eliminated from cured meats or the level of usage decreased, then alternatives for the antibotulinal function of nitrite need to be considered. Several potential alternatives including sorbates, parabens, and biological acidulants are discussed.

  19. Nitrite-dependent vasodilation is facilitated by hypoxia and is independent of known NO-generating nitrite reductase activities

    DEFF Research Database (Denmark)

    Fago, Angela; Dalsgaard, Thomas; Fago, Angela

    2007-01-01

    is largely intrinsic to the vessel and that under hypoxia physiological nitrite concentrations are sufficient to induce NO-mediated vasodilation independently of the nitrite reductase activities investigated here. Possible reaction mechanisms for nitrite vasoactivity, including formation of S...

  20. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    Directory of Open Access Journals (Sweden)

    Melike eBalk

    2015-03-01

    Full Text Available Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests.The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden under the nitrate-limited conditions of most mangrove forest soils.

  1. Polysaccharides from Extremophilic Microorganisms

    Science.gov (United States)

    Nicolaus, B.; Moriello, V. Schiano; Lama, L.; Poli, A.; Gambacorta, A.

    2004-02-01

    Several marine thermophilic strains were analyzed for exopolysaccharide production. The screening process revealed that a significant number of thermophilic microorganisms were able to produce biopolymers, and some of them also revealed interesting chemical compositions. We have identified four new polysaccharides from thermophilic marine bacteria, with complex primary structures and with different repetitive units: a galacto-mannane type from strain number 4004 and mannane type for the other strains. The thermophilic Bacillus thermantarcticus produces two exocellular polysaccharides (EPS 1, EPS 2) that give the colonies a typical mucous character. The exopolysaccharide fraction was produced with all substrates assayed, although a higher yield 400 mg liter-1 was obtained with mannose as carbon and energy source. NMR spectra confirmed that EPS 1 was a heteropolysaccharide of which the repeating unit was constituted by four different α-D-mannoses and three different β-D-glucoses. It seems to be close to some xantan polymers. EPS 2 was a mannan. Four different α-D-mannoses were found as the repeating unit. Production and chemical studies of biopolymers produced by halophilic archaea, Haloarcula species were also reported.

  2. Role of nitrite, urate and pepsin in the gastroprotective effects of saliva

    Science.gov (United States)

    Rocha, Bárbara S.; Lundberg, Jon O; Radi, Rafael; Laranjinha, João

    2016-01-01

    Dietary nitrate is now recognized as an alternative substrate for nitric oxide (•NO) production in the gut. This novel pathway implies the sequential reduction of nitrate to nitrite, •NO and other bioactive nitrogen oxides but the physiological relevance of these oxidants has remained elusive. We have previously shown that dietary nitrite fuels an hitherto unrecognized nitrating pathway at acidic gastric pH, through which pepsinogen is nitrated in the gastric mucosa, yielding a less active form of pepsin in vitro. Here, we demonstrate that pepsin is nitrated in vivo and explore the functional impact of protein nitration by means of peptic ulcer development. Upon administration of pentagastrin and human nitrite-rich saliva or sodium nitrite to rats, nitrated pepsin was detected in the animal's stomach by immunoprecipitation. •NO was measured in the gastric headspace before and after nitrite instillation by chemiluminescence. At the end of each procedure, the stomach's lesions, ranging from gastric erosions to haemorrhagic ulcers, were scored. Nitrite increased gastric •NO by 200-fold (pstomach, preventing the progression of gastric ulcers. PMID:27156250

  3. Fluorometric determination of nitrite with 4-hydroxycoumarin

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, T.; Arai, Y.; Takitani, S.

    1986-12-01

    A simple, sensitive, and reproducible fluorometric method for determination of nitrite has been developed. This method is based on the nitrosation of 4-hydroxycoumarin in acidic medium and subsequent reduction to 3-amino-4-hydroxy-coumarin, which is fluorescent in alkaline medium. The fluorescence intensity is proportional to the nitrite concentration in the range of 3 ng/mL to 1 ..mu..g/mL in the sample solution, with a relative standard deviation of 0.5% (50 ng/mL). The method has been applied to the determination of nitrite in saliva.

  4. Nitrite disrupts multiple physiological functions in aquatic animals

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2003-01-01

    be inhibited, while changes in ammonia and urea levels and excretion rates reflect an influence of nitrite on nitrogen metabolism. Detoxification of nitrite occurs via endogenous oxidation to nitrate, and elimination of nitrite takes place both via gills and urine. The susceptibility to nitrite varies between...... nitrite-induced vasodilation (possibly via nitric oxide generated from nitrite) that is countered by increased cardiac pumping to re-establish blood pressure. Nitrite can form and/or mimic nitric oxide and thereby interfere with processes regulated by this local hormone. Steroid hormone synthesis may...

  5. Dietary nitrates, nitrites, and cardiovascular disease.

    Science.gov (United States)

    Hord, Norman G

    2011-12-01

    Dietary nitrate (NO(3)), nitrite (NO(2)), and arginine can serve as sources for production of NO(x) (a diverse group of metabolites including nitric oxide, nitrosothiols, and nitroalkenes) via ultraviolet light exposure to skin, mammalian nitrate/nitrite reductases in tissues, and nitric oxide synthase enzymes, respectively. NO(x) are responsible for the hypotensive, antiplatelet, and cytoprotective effects of dietary nitrates and nitrites. Current regulatory limits on nitrate intakes, based on concerns regarding potential risk of carcinogenicity and methemoglobinemia, are exceeded by normal daily intakes of single foods, such as soya milk and spinach, as well as by some recommended dietary patterns such as the Dietary Approaches to Stop Hypertension diet. This review includes a call for regulatory bodies to consider all available data on the beneficial physiologic roles of nitrate and nitrite in order to derive rational bases for dietary recommendations.

  6. Experimental Study of Leaching and Penetration of Nitrite ions in Nitrite-type Repair Materials on the Surface of Concrete

    Directory of Open Access Journals (Sweden)

    Masumi Inoue

    2017-01-01

    Full Text Available This study aimed to clarify the leaching properties of nitrite ions in nitrite-type repair materials exposed to rainfall. Repaired concrete specimens were prepared for leaching tests using a lithium nitrite solution, and the amounts of leaching and penetration of nitrite ions were measured under simulated rainfall. The results demonstrated that the amount of leaching could be controlled by using polymer cement paste and mortar surface coatings containing lithium nitrite solution, and by using polymer cement mortar surface coatings following direct lithium nitrite solution coatings. Furthermore, the amount of nitrite ion leaching in all cases was lower than the discharge standard value established by the water pollution control law.

  7. Biosurfactants from marine microorganisms

    Directory of Open Access Journals (Sweden)

    Suppasil Maneerat

    2005-11-01

    Full Text Available Biosurfactants are the surface-active molecules synthesized by microorganisms. With the advantage of environmental compatibility, the demand for biosurfactants has been steadily increasing and may eventually replace their chemically synthesized counterparts. Marine biosurfactants produced by some marine microorganisms have been paid more attention, particularly for the bioremediation of the sea polluted by crude oil. This review describes screening of biosurfactant-producing microorganisms, the determination of biosurfactant activity as well as the recovery of marine surfactant. The uses of marine biosurfactants for bioremediation are also discussed.

  8. Microorganisms involved in MIC

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, K. [Danish Technological Institute (Denmark)

    2011-07-01

    Microbiologically influenced corrosion (MIC) is a widespread problem that is difficult to detect and assess because of its complex mechanism. This paper presents the involvement of microorganisms in MIC. Some of the mechanisms that cause MIC include hydrogen consumption, production of acids, anode-cathode formation and electron shuttling. A classic bio-corrosive microorganism in the oil and gas industry is sulphate-reducing prokaryotes (SRP). Methanogens also increase corrosion rates in metals. Some of the phylogenetic orders detected while studying SRP and methanogens are archaeoglobales, clostridiales, methanosarcinales and methanothermococcus. There were some implications, such as growth of SRP not being correlated with growth of methanogens; methanogens were included in MIC risk assessment. A few examples are used to display how microorganisms are involved in topside corrosion and microbial community in producing wells. From the study, it can be concluded that, MIC risk assessment includes system data and empirical knowledge of the distribution and number of microorganisms in the system.

  9. Micro-Organ Device

    Science.gov (United States)

    Gonda, Steve R. (Inventor); Chang, Robert C. (Inventor); Starly, Binil (Inventor); Culbertson, Christopher (Inventor); Holtorf, Heidi L. (Inventor); Sun, Wei (Inventor); Leslie, Julia (Inventor)

    2013-01-01

    A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.

  10. Application of thermotolerant microorganisms for biofertilizer preparation.

    Science.gov (United States)

    Chen, Kuo-Shu; Lin, Yann-Shying; Yang, Shang-Shyng

    2007-12-01

    Intensive agriculture is practised in Taiwan, and compost application is very popular as a means of improving the soil physical properties and supplying plant nutrition. We tested the potential of inoculation with thermotolerant microorganisms to shorten the maturity and improve the quality of biofertilizer prepared by composting. Thermotolerant microorganisms were isolated from compost and reinoculated for the preparation of biofertilizer. The physical, chemical and biological properties of the biofertilizer were determined during composting. The effects of biofertilizer application on the growth and yield of rape were also studied. Among 3823 colonies of thermotolerant microorganisms, Streptomyces thermonitrificans NTU-88, Streptococcus sp. NTU-130 and Aspergillus fumigatus NTU-132 exhibited high growth rates and cellulolytic and proteolytic activities. When a mixture of rice straw and swine manure were inoculated with these isolates and composted for 61 days, substrate temperature increased initially and then decreased gradually during composting. Substrate pH increased from 7.3 to 8.5. Microbial inoculation enhanced the rate of maturity, and increased the content of ash and total and immobilized nitrogen, improved the germination rate of alfalfa seed, and decreased the content of total organic carbon and the carbon/nitrogen ratio. Biofertilizer application increased the growth and yield of rape. Inoculation of thermotolerant and thermophilic microorganisms to agricultural waste for biofertilizer preparation enhances the rate of maturity and improves the quality of the resulting biofertilizer. Inoculation of appropriate microorganisms in biofertilizer preparation might be usefully applied to agricultural situations.

  11. The Reaction of Oxy Hemoglobin with Nitrite

    DEFF Research Database (Denmark)

    Hathazi, Denisa; Scurtu, Florina; Bischin, Cristina

    2018-01-01

    The autocatalytic reaction between nitrite and the oxy form of globins involves free radicals. For myoglobin (Mb), an initial binding of nitrite to the iron-coordinated oxygen molecule was proposed; the resulting ferrous-peroxynitrate species was not detected, but its decay product, the high...... to a simple kinetic model involving a transient met-aqua form, in contrast to the ferryl detected in the case of Mb in a similar reaction sequence. These data are in line with a previous observation of a transient accumulation of ferryl Hb under auto-catalytic conditions at much lower concentrations......-peroxynitrate. Density functional theory (DFT) calculations support this latter assignment. The reaction allows for differentiating between the reactivities of various chemically modified hemoglobins, including candidates for blood substitutes. Polymerization of hemoglobin slows the nitrite-induced oxidation, in sharp...

  12. Fossil Microorganisms in Archaean

    Science.gov (United States)

    Astafleva, Marina; Hoover, Richard; Rozanov, Alexei; Vrevskiy, A.

    2006-01-01

    Ancient Archean and Proterozoic rocks are the model objects for investigation of rocks comprising astromaterials. The first of Archean fossil microorganisms from Baltic shield have been reported at the last SPIE Conference in 2005. Since this confeence biomorphic structures have been revealed in Archean rocks of Karelia. It was determined that there are 3 types of such bion structures: 1. structures found in situ, in other words microorganisms even-aged with rock matrix, that is real Archean fossils biomorphic structures, that is to say forms inhabited early formed rocks, and 3. younger than Archean-Protherozoic minerali microorganisms, that is later contamination. We made attempt to differentiate these 3 types of findings and tried to understand of burial of microorganisms. The structures belongs (from our point of view) to the first type, or real Archean, forms were under examination. Practical investigation of ancient microorganisms from Green-Stone-Belt of Northern Karelia turns to be very perspective. It shows that even in such ancient time as Archean ancient diverse world existed. Moreover probably such relatively highly organized cyanobacteria and perhaps eukaryotic formes existed in Archean world.

  13. Platelet inhibition by nitrite is dependent on erythrocytes and deoxygenation.

    Directory of Open Access Journals (Sweden)

    Sirada Srihirun

    Full Text Available Nitrite is a nitric oxide (NO metabolite in tissues and blood, which can be converted to NO under hypoxia to facilitate tissue perfusion. Although nitrite is known to cause vasodilation following its reduction to NO, the effect of nitrite on platelet activity remains unclear. In this study, the effect of nitrite and nitrite+erythrocytes, with and without deoxygenation, on platelet activity was investigated.Platelet aggregation was studied in platelet-rich plasma (PRP and PRP+erythrocytes by turbidimetric and impedance aggregometry, respectively. In PRP, DEANONOate inhibited platelet aggregation induced by ADP while nitrite had no effect on platelets. In PRP+erythrocytes, the inhibitory effect of DEANONOate on platelets decreased whereas nitrite at physiologic concentration (0.1 µM inhibited platelet aggregation and ATP release. The effect of nitrite+erythrocytes on platelets was abrogated by C-PTIO (a membrane-impermeable NO scavenger, suggesting an NO-mediated action. Furthermore, deoxygenation enhanced the effect of nitrite as observed from a decrease of P-selectin expression and increase of the cGMP levels in platelets. The ADP-induced platelet aggregation in whole blood showed inverse correlations with the nitrite levels in whole blood and erythrocytes.Nitrite alone at physiological levels has no effect on platelets in plasma. Nitrite in the presence of erythrocytes inhibits platelets through its reduction to NO, which is promoted by deoxygenation. Nitrite may have role in modulating platelet activity in the circulation, especially during hypoxia.

  14. A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water

    Directory of Open Access Journals (Sweden)

    Suzanne Caroline Marianne Haaijer

    2013-03-01

    Full Text Available Marine microorganisms are important for the global nitrogen cycle, but marine nitrifiers, especially aerobic nitrite-oxidizers, remain largely unexplored. To increase the number of cultured representatives of marine nitrite-oxidizing bacteria (NOB, a bioreactor cultivation approach was adopted to first enrich nitrifiers and ultimately nitrite oxidizers from Dutch coastal North Sea water. With solely ammonia as the substrate an active nitrifiying community consisting of novel marine Nitrosomonas aerobic ammonia oxidizers (AOB and Nitrospina and Nitrospira NOB was obtained which converted a maximum of 2 mmoles of ammonia per liter per day. Switching the feed of the culture to nitrite as a sole substrate resulted in a Nitrospira NOB dominated community (approximately 80% of the total microbial community based on FISH and metagenomic data converting a maximum of 3 mmoles of nitrite per liter per day. Phylogenetic analyses based on the 16S rRNA gene indicated that the Nitrospira enriched from the North Sea is a novel Nitrospira species with Nitrospira marina as the next taxonomically described relative (94% 16S rRNA sequence identity. Transmission electron microscopy analysis revealed a cell plan typical for Nitrospira species. The cytoplasm contained electron light particles that might represent glycogen storage. A large periplasmic space was present which was filled with electron dense particles. Nitrospira-targeted PCR analyses demonstrated the presence of the enriched Nitrospira species in a time series of North Sea genomic DNA samples. The availability of this new Nitrospira species enrichment culture facilitates further in-depth studies such as determination of physiological constraints, and comparison to other NOB species.

  15. Bioplastics from microorganisms.

    Science.gov (United States)

    Luengo, José M; García, Belén; Sandoval, Angel; Naharro, Germán; Olivera, Elías R

    2003-06-01

    The term 'biomaterials' includes chemically unrelated products that are synthesised by microorganisms (or part of them) under different environmental conditions. One important family of biomaterials is bioplastics. These are polyesters that are widely distributed in nature and accumulate intracellularly in microorganisms in the form of storage granules, with physico-chemical properties resembling petrochemical plastics. These polymers are usually built from hydroxy-acyl-CoA derivatives via different metabolic pathways. Depending on their microbial origin, bioplastics differ in their monomer composition, macromolecular structure and physical properties. Most of them are biodegradable and biocompatible, which makes them extremely interesting from the biotechnological point of view.

  16. Carbon-Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    Science.gov (United States)

    During nitrification, nitrite is produced as an intermediate when ammonia is oxidized to nitrate. It is well established that nitrifying biofilm are involved in nitrification episodes in chloraminated drinking water distribution systems with nitrite accumulation occurring during ...

  17. Rapid visual and spectrophotometric nitrite detection by cyclometalated ruthenium complex.

    Science.gov (United States)

    Lo, Hoi-Shing; Lo, Ka-Wai; Yeung, Chi-Fung; Wong, Chun-Yuen

    2017-10-16

    Quantitative determination of nitrite ion (NO 2 - ) is of great importance in environmental and clinical investigations. A rapid visual and spectrophotometric assay for NO 2 - detection was developed based on a newly designed ruthenium complex, [Ru(npy)([9]aneS3)(CO)](ClO 4 ) (denoted as RuNPY; npy = 2-(1-naphthyl)pyridine, [9]aneS3 = 1,4,7-trithiacyclononane). This complex traps NO + produced in acidified NO 2 - solution, and yields observable color change within 1 min at room temperature. The assay features excellent dynamic range (1-840 μmol L -1 ) and high selectivity, and its limit of detection (0.39 μmol L -1 ) is also well below the guideline values for drinking water recommended by WHO and U.S. EPA. Practical use of this assay in tap water and human urine was successfully demonstrated. Overall, the rapidity and selectivity of this assay overcome the problems suffered by the commonly used modified Griess assays for nitrite determination. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. 9 CFR 319.2 - Products and nitrates and nitrites.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Products and nitrates and nitrites... and nitrates and nitrites. Any product, such as frankfurters and corned beef, for which there is a standard in this part and to which nitrate or nitrite is permitted or required to be added, may be prepared...

  19. 40 CFR 721.4740 - Alkali metal nitrites.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in the...

  20. Motion of magnetotactic microorganisms

    International Nuclear Information System (INIS)

    Esquivel, D.M.S.; Barros, H.G. de P.L. de.

    1985-01-01

    Magnetic moments for different magnetotactic microorganisms are obtained by electron microscopy analyses and studies of motion by optical microscopy. The results are analysed in terms of a model due to C.Bean. The considerations presented suggest that magnetotaxy is an efficient mechanism for orientation only if the time for reorientation is smaller than the cycles of environmental perturbations. (Author) [pt

  1. SPECTROPHOTOMETRIC DETERMINATION OF NITRITE BY ITS ...

    African Journals Online (AJOL)

    Preferred Customer

    sources of nitrite include intensive use of chemical nitrogenous fertilizers, ... The current paper describes another kinetic spectrophotometric method for determination of ... s at λmax = 570 nm (allowing a lag time of 5 s) against water as reference. ... samples and the total amount of the analyte was estimated by applying the ...

  2. 21 CFR 172.175 - Sodium nitrite.

    Science.gov (United States)

    2010-04-01

    ... preservative and color fixative, with sodium nitrate, in meat-curing preparations for the home curing of meat and meat products (including poultry and wild game), with directions for use which limit the amount of sodium nitrite to not more than 200 parts per million in the finished meat product, and the amount of...

  3. 21 CFR 573.700 - Sodium nitrite.

    Science.gov (United States)

    2010-04-01

    ..., FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive... as a preservative and color fixative in canned pet food containing fish, meat, and fish and meat... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium nitrite. 573.700 Section 573.700 Food and...

  4. Nitrite maxima in the Northern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sankaranarayanan, V.N.; DeSousa, S.N.; Fondekar, S.P.

    There are 2 nitrite maxima in the Northern Arabian Sea, one at the thermocline depth and the other at depths between 300 and 500 m. The 2nd maximum is more prominent in the northeastern part of the Arabian Sea. The 1st maximum is associated...

  5. Neutralization of wastewater from nitrite passivation

    International Nuclear Information System (INIS)

    Pawlowski, L.; Mientki, B.; Wasag, H.

    1982-01-01

    A method for neutralization of wastewater formed in nitrite passivation has been presented. The method consists of introducing urea into wastewater and acidifying it with sulphuric acid. Wastewater is neutralized with lime. After clarification, wastewater can be drained outside the plant

  6. Biodiesel production by various oleaginous microorganisms from organic wastes.

    Science.gov (United States)

    Cho, Hyun Uk; Park, Jong Moon

    2018-05-01

    Biodiesel is a biodegradable and renewable fuel. A large amount of research has considered microbial oil production using oleaginous microorganisms, but the commercialization of microbial lipids produced in this way remains uncertain due to the high cost of feedstock or low lipid yield. Microbial lipids can be typically produced by microalgae, yeasts, and bacteria; the lipid yields of these microorganisms can be improved by using sufficient concentrations of organic carbon sources. Therefore, combining low-cost organic compounds contained in organic wastes with cultivation of oleaginous microorganisms can be a promising approach to obtain commercial viability. However, to achieve effective bioconversion of low-cost substrates to microbial lipids, the characteristics of each microorganism and each substrate should be considered simultaneously. This article discusses recent approaches to developing cost-effective microbial lipid production processes that use various oleaginous microorganisms and organic wastes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Inactivation of Microorganisms

    Science.gov (United States)

    Alzamora, Stella Maris; Guerrero, Sandra N.; Schenk, Marcela; Raffellini, Silvia; López-Malo, Aurelio

    Minimal processing techniques for food preservation allow better retention of product flavor, texture, color, and nutrient content than comparable conventional treatments. A wide range of novel alternative physical factors have been intensely investigated in the last two decades. These physical factors can cause inactivation of microorganisms at ambient or sublethal temperatures (e.g., high hydrostatic pressure, pulsed electric fields, ultrasound, pulsed light, and ultraviolet light). These technologies have been reported to reduce microorganism population in foods while avoiding the deleterious effects of severe heating on quality. Among technologies, high-energy ultrasound (i.e., intensities higher than 1 W/cm2, frequencies between 18 and 100 kHz) has attracted considerable interest for food preservation applications (Mason et al., 1996; Povey and Mason, 1998).

  8. Properties of thermophilic microorganisms

    International Nuclear Information System (INIS)

    Ljungdahl, L.G.

    1984-01-01

    Microorganisms are called thermophilic or extreme thermophilic (caldo-active) if they grow and reproduce over 47 0 C and 70 0 C, respectively. A survey of growth characteristics of thermophiles is presented and it includes those which also live at extreme pH. The prevalent but not completely emcompassing theory of the ability of thermophiles to grow at high temperatures is that they have macromolecules and cell organelles with high thermostability. Work on some proteins and cell organelles from thermophiles is reviewed. The thermostabilities of these components are compared with those of the living cells, and factors which may govern optimum as well as minimum growth temperatures of microorganisms are discussed. Examples are from the literature but also include enzymes involved in tetrahydrofolate metabolism and other proteins of acetogenic therhmophilic bacteria which are presently studied in the author's laboratory

  9. Metal-microorganism interactions

    International Nuclear Information System (INIS)

    Andres, Y.; Thouand, G.; Redercher, S.; Boualam, M.; Texier, A.Cl.; Hoeffer, R.

    1997-01-01

    The physico-chemical procedures of treating the metalliferous effluents are not always adapted to de polluting the slightly concentrated industrial wastes. An alternative idea was advanced, implying the ability of some microorganisms to fix in considerable amounts the metal ions present in aqueous solutions, possibly in a selective way. This approach has been investigated thoroughly during the last 30 years, particularly from a mechanistic point of view. The advantage of the microorganisms lies mainly in the large diversity of bacteria and in their chemical state dependent interaction with metals, as well as, in the possibilities of developing their selective and quantitative separation properties. A biomass from Mycobacterium smegmatis, an acidic alcoholic resistant bacteria, has been used to prepare a bio-sorption support allowing the preferential sorption of thorium as compared to uranium and lanthanum. These studies have been extended to biological polymers such as chitosan and to studies related to bioaccumulation mechanisms and/or to the microbial resistances towards metals

  10. Modification of membrane sulfhydryl groups in bacteriostatic action of nitrite

    International Nuclear Information System (INIS)

    Buchman, G.W. III; Hansen, J.N.

    1987-01-01

    The mechanism by which nitrite inhibits outgrowing spores of bacillus cereus T was examined by using techniques developed earlier for nitrite analogs. The morphological stage of inhibition, cooperativity effects, effect of pH on inhibition, kinetics of protection against tritiated iodoacetate incorporation into membrane sulfhydryl groups, and protection against the bacteriocidal effect of carboxymethylation of iodoacetate indicate that nitrite acts as a membrane-directed sulfhydryl agent. The mechanism by which nitrite modifies the chemical reactivity of the sulfhyrdyl group could be either direct covalent modification or inactivation through communication with another modified membrane component. Profiles of pH effects suggest that the active agent is the protonated form of nitrite. The nitrite concentrations which modify membrane sulfhydryl activity coincide with those which have a bacteriostatic effect. These results are consistent with membrane sulfhydryl modification as a component of the mechanism of nitrite-induced bacteriostasis in this aerobic sporeformer

  11. Mutagenesis breeding research of Lactobacillus brevis of nitrite reduction

    Directory of Open Access Journals (Sweden)

    LI Zeli

    2015-10-01

    Full Text Available The pollution of nitrite in food became one of the focus of food safety issues,the use of biotechnology methods degrading nitrite became hotspot.The primitive strain was Lactobacillus brevis C2,preserved in our laboratory,had the ability to degrade nitrite,through composite mutagenesis of 15 W,254 nm,20 cm ultraviolet mutagenesis (UV for 120 s and 0.8% diethyl sulfate(DES in 37℃ mutation for 40 min,after screening,we successfully obtained high efficient strain of nitrite degradation,named UV6-DS2,relative to the starting strain,under the condition of 400 mg/L nitrite,after 12 h degradation,nitrite degradation rate increased from 92.8% to 97.8%,to explore its application in food was able to effectively reduce concentration of nitrite in food.

  12. Microorganisms of Grape Berries

    Directory of Open Access Journals (Sweden)

    Kántor Attila

    2017-12-01

    Full Text Available Grape surface is an unstable habitat that changes greatly according to the stage of grape ripening. Different bacteria and yeasts can colonise the surface of grape berry and the diversity of microorganisms depends on the stage of ripening, pesticide application and health condition. The aim of this study was to study the microflora of the surface of grape berries. Altogether, 19 grape samples from Slovakia were collected. The spread plate method was applied and a 100 μL inoculum of each dilution (10−2, 10−3 was plated on TSA, MEA, and MRS agar for isolation of microorganisms from grapes. Proteins were extracted from cells by ethanol/formic acid extraction procedure. MALDI-TOF Mass Spectrometry was used for identification of microorganisms. In total, 11 genera of Gram-negative bacteria, 11 of Gram-positive bacteria and nine of yeasts were identified. Among 200 isolates, Gram-negative, Gram-positive bacteria and yeasts represented 11%, 27% and 62% of the total number of isolates studied. The most common genera of isolated yeasts were Hanseniaspora (37%, Metschnikowia (31%, and Rhodotorula (10%. The most frequently isolated among Gram-negative bacteria were Acinetobacter (22%, Pseudomonas (22% and Sphingomonas (13%. The most common genera of Gram-positive bacteria were Bacillus (20%, Lactobacillus (19%, Leuconostoc and Staphylococcus (11%, respectively.

  13. Toxicity detection of sodium nitrite, borax and aluminum potassium sulfate using electrochemical method.

    Science.gov (United States)

    Yu, Dengbin; Yong, Daming; Dong, Shaojun

    2013-04-01

    Based on the inhibition effect on the respiratory chain activity of microorganisms by toxicants, an electrochemical method has been developed to measure the current variation of a mediator in the presence of microorganisms contacted with a toxicant. Microelectrode arrays were adopted in this study, which can accelerate the mass transfer rate of an analyte to the electrode and also increase the total current signal, resulting in an improvement in detection sensitivity. We selected Escherichia coli as the testee and the standard glucose-glutamic acid as an exogenous material. Under oxygen restriction, the experiments in the presence of toxicant were performed at optimum conditions (solution pH 7.0, 37 degrees C and reaction for 3 hr). The resulting solution was then separated from the suspended microorganisms and was measured by an electrochemical method, using ferricyanide as a mediator. The current signal obtained represents the reoxidation of ferrocyanide, which was transformed to inhibiting efficiency, IC50, as a quantitative measure of toxicity. The IC50 values measured were 410, 570 and 830 mg/L for sodium nitrite, borax and aluminum potassium sulfate, respectively. The results show that the toxicity sequence for these three food additives is consistent with the value reported by other methods. Furthermore, the order of damage degree to the microorganism was also observed to be: sodium nitrite > borax > aluminum potassium sulfate > blank, according to the atomic force microscopy images of E. coli after being incubated for 3 hr with the toxic compound in buffer solutions. The electrochemical method is expected to be a sensitive and simple alternative to toxicity screening for chemical food additives.

  14. Nitrate decreases xanthine oxidoreductase-mediated nitrite reductase activity and attenuates vascular and blood pressure responses to nitrite.

    Science.gov (United States)

    Damacena-Angelis, Célio; Oliveira-Paula, Gustavo H; Pinheiro, Lucas C; Crevelin, Eduardo J; Portella, Rafael L; Moraes, Luiz Alberto B; Tanus-Santos, Jose E

    2017-08-01

    Nitrite and nitrate restore deficient endogenous nitric oxide (NO) production as they are converted back to NO, and therefore complement the classic enzymatic NO synthesis. Circulating nitrate and nitrite must cross membrane barriers to produce their effects and increased nitrate concentrations may attenuate the nitrite influx into cells, decreasing NO generation from nitrite. Moreover, xanthine oxidoreductase (XOR) mediates NO formation from nitrite and nitrate. However, no study has examined whether nitrate attenuates XOR-mediated NO generation from nitrite. We hypothesized that nitrate attenuates the vascular and blood pressure responses to nitrite either by interfering with nitrite influx into vascular tissue, or by competing with nitrite for XOR, thus inhibiting XOR-mediated NO generation. We used two independent vascular function assays in rats (aortic ring preparations and isolated mesenteric arterial bed perfusion) to examine the effects of sodium nitrate on the concentration-dependent responses to sodium nitrite. Both assays showed that nitrate attenuated the vascular responses to nitrite. Conversely, the aortic responses to the NO donor DETANONOate were not affected by sodium nitrate. Further confirming these results, we found that nitrate attenuated the acute blood pressure lowering effects of increasing doses of nitrite infused intravenously in freely moving rats. The possibility that nitrate could compete with nitrite and decrease nitrite influx into cells was tested by measuring the accumulation of nitrogen-15-labeled nitrite ( 15 N-nitrite) by aortic rings using ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS). Nitrate exerted no effect on aortic accumulation of 15 N-nitrite. Next, we used chemiluminescence-based NO detection to examine whether nitrate attenuates XOR-mediated nitrite reductase activity. Nitrate significantly shifted the Michaelis Menten saturation curve to the right, with a 3-fold increase in the

  15. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis

    OpenAIRE

    Peng Song; Lei Wu; Wenxian Guan

    2015-01-01

    The potential associations between dietary consumption of nitrates, nitrites, and nitrosamines and gastric cancer risk have been investigated by several studies, but yielded inconclusive results. We conducted a meta-analysis to provide a quantitative assessment of their relationships. Relevant articles were identified by a systematic literature searching of PubMed and Embase databases prior to August 2015. Random-effects models were employed to pool the relative risks. A total of 22 articles ...

  16. Ethyl nitrite is produced in the human stomach from dietary nitrate and ethanol, releasing nitric oxide at physiological pH: potential impact on gastric motility.

    Science.gov (United States)

    Rocha, Bárbara S; Gago, Bruno; Barbosa, Rui M; Cavaleiro, Carlos; Laranjinha, João

    2015-05-01

    Nitric oxide ((∙)NO), a ubiquitous molecule involved in a plethora of signaling pathways, is produced from dietary nitrate in the gut through the so-called nitrate-nitrite-NO pathway. In the stomach, nitrite derived from dietary nitrate triggers a network of chemical reactions targeting endogenous and exogenous biomolecules, thereby producing new compounds with physiological activity. The aim of this study was to ascertain whether compounds with physiological relevance are produced in the stomach upon consumption of nitrate- and ethanol-rich foods. Human volunteers consumed a serving of lettuce (source of nitrate) and alcoholic beverages (source of ethanol). After 15 min, samples of the gastric headspace were collected and ethyl nitrite was identified by GC-MS. Wistar rats were used to study the impact of ethyl nitrite on gastric smooth muscle relaxation at physiological pH. Nitrogen oxides, produced from nitrite in the stomach, induce nitrosation of ethanol from alcoholic beverages in the human stomach yielding ethyl nitrite. Ethyl nitrite, a potent vasodilator, is produced in vivo upon the consumption of lettuce with either red wine or whisky. Moreover, at physiological pH, ethyl nitrite induces gastric smooth muscle relaxation through a cGMP-dependent pathway. Overall, these results suggest that ethyl nitrite is produced in the gastric lumen and releases (∙)NO at physiological pH, which ultimately may have an impact on gastric motility. Systemic effects may also be expected if ethyl nitrite diffuses through the gastric mucosa reaching blood vessels, therefore operating as a (∙)NO carrier throughout the body. These data pinpoint posttranslational modifications as an underappreciated mechanism for the production of novel molecules with physiological impact locally in the gut and highlight the notion that diet may fuel compounds with the potential to modulate gastrointestinal welfare. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The reduction of nitrate, nitrite and hydroxylamine to ammonia by enzymes from Cucurbita pepo L. in the presence of reduced benzyl viologen as electron donor

    Science.gov (United States)

    Cresswell, C. F.; Hageman, R. H.; Hewitt, E. J.; Hucklesby, D. P.

    1965-01-01

    1. Enzyme systems from Cucurbita pepo have been shown to catalyse the reduction of nitrite and hydroxylamine to ammonia in yields about 90–100%. 2. Reduced benzyl viologen serves as an efficient electron donor for both systems. Activity of the nitrite-reductase system is directly related to degree of dye reduction when expressed in terms of the function for oxidation–reduction potentials, but appears to decrease to negligible activity below about 9% dye reduction. 3. NADH and NADPH alone produce negligible nitrite loss, but NADPH can be linked to an endogenous diaphorase system to reduce nitrite to ammonia in the presence of catalytic amounts of benzyl viologen. 4. The NADH– or NADPH–nitrate-reductase system that is also present can accept electrons from reduced benzyl viologen, but shows relationships opposite to that for the nitrite-reductase system with regard to effect of degree of dye reduction on activity. The product of nitrate reduction may be nitrite alone, or nitrite and ammonia, or ammonia alone, according only to the degree of dye reduction. 5. The relative activities of nitrite-reductase and hydroxylamine-reductase systems show different relationships with degree of dye reduction and may become reversed in magnitude when effects of degree of dye reduction are tested over a suitable range. 6. Nitrite severely inhibits the rate of reduction of hydroxylamine without affecting the yield of ammonia as a percentage of total substrate loss, but hydroxylamine has a negligible effect on the activity of the nitrite-reductase system. 7. The apparent Km for nitrite (1 μm) is substantially less than that for hydroxylamine, for which variable values between 0·05 and 0·9mm (mean 0·51 mm) have been observed. 8. The apparent Km values for reduced benzyl viologen differ for the nitrite-reductase and hydroxylamine-reductase systems: 60 and 7·5 μm respectively. 9. It is concluded that free hydroxylamine may not be an intermediate in the reduction of nitrite

  18. Behaviors of nitrite in cured meat

    International Nuclear Information System (INIS)

    Miwa, Misao

    1980-01-01

    The behaviors of nitrite in cured meat were studied by means of 15 N on the basis of the gaseous 15 N volume from the added nitric acid. The myoglobin, 15 N-nitrite and ascorbate model systems showed a 15 N recovery rate of approximately 100%, but actual meat samples, treated similarly, showed a recovery rate ranging from 66 to 90%, with formation of an unidentified 15 N agent. The largest amount of this unidentified agent was obtained by reaction of the 0.05 M NaCl-soluble dialyzable fraction of meat with 15 N-nitrite. When the reaction product was isolated by Sephadex column chromatography, 15 N in the fraction, which was thought to be the agent, contained approximately 26% of the added 15 N, possessed no UV absorption, and was negative for a ninhydrin reagent. Of the NaCl soluble fraction, reaction in the acidic fraction produced the largest quantity of the unidentified 15 N compound (31% of the added 15 N). This compound was strongly acidic and consisted of 30.7% C, 6.6% H and 4.9% N on element analysis. It showed no mutagenicity against Salmonella by Ames Test. (Chiba, N.)

  19. Nitrite in feed: From Animal health to human health

    Energy Technology Data Exchange (ETDEWEB)

    Cockburn, Andrew [Institute for Research on Environment and Sustainability, Devonshire Building, University of Newcastle upon Tyne, Newcastle upon Tyne, NE17RU (United Kingdom); Brambilla, Gianfranco [Istituto Superiore di Sanità, Toxicological chemistry unit, Viale Regina Elena 299, 00161 Rome (Italy); Fernández, Maria-Luisa [Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ministerio de Ciencia e Innovación, Carretera de la Coruña, 28040 Madrid (Spain); Arcella, Davide [Unit on Data Collection and Exposure, European Food Safety Authority, Largo N. Palli 5/A43100 Parma (Italy); Bordajandi, Luisa R. [Unit on Contaminants in the Food chain, European Food Safety Authority, Largo N. Palli 5/A, 43100 Parma (Italy); Cottrill, Bruce [Policy Delivery Group, Animal Health and Welfare, ADAS, Wolverhampton (United Kingdom); Peteghem, Carlos van [University of Gent, Harelbekestraat 72, 9000 Gent (Belgium); Dorne, Jean-Lou, E-mail: jean-lou.dorne@efsa.europa.eu [Unit on Contaminants in the Food chain, European Food Safety Authority, Largo N. Palli 5/A, 43100 Parma (Italy)

    2013-08-01

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3 mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also

  20. Nitrite in feed: From Animal health to human health

    International Nuclear Information System (INIS)

    Cockburn, Andrew; Brambilla, Gianfranco; Fernández, Maria-Luisa; Arcella, Davide; Bordajandi, Luisa R.; Cottrill, Bruce; Peteghem, Carlos van; Dorne, Jean-Lou

    2013-01-01

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3 mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also

  1. Isolation of nitrite-degrading strains from Douchi and their application to degrade high nitrite in Jiangshui.

    Science.gov (United States)

    Guo, Xing; Liu, Bianfang; Gao, Lina; Zhou, Yuan; Shan, Yuanyuan; Lü, Xin

    2018-06-01

    Excessive nitrite in food is potentially harmful to human health because of its carcinogenic effects caused by nitroso-dervivatives. Douchi, which widely distributed throughout the country, is a traditional solid fermented soybean food with low nitrite content. In this study, bacterias which can degrade nitrite were isolated from Douchi and identified according to 16S rDNA sequence. Acinetobacter guillouiae, Acinetobacter bereziniae, Bacillus subtilis, Bacillus tequilensis, Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus aryabhattai and Bacillus methylotrophicus were selected. It was shown that all strains have nitrite degradation capability, in which 99.41 % nitrite can be degraded by Bacillus subtilis NDS1. The enzyme activities of these strains were determined at 24 h and 48 h, which corresponded to their nitrite degradation rates. The strains were firstly tried to inoculate in Jiangshui, which is a kind of traditional fermented vegetable in northwest China and often has high nitrite content. It was found that Bacillus subtilis NDS1, Bacillus tequilensis NDS3, Acinetobacter bereziniae NDS4, Bacillus subtilis NDS6, Bacillus subtilis NDS12 can degrade nitrite in Jiangshui more quickly, among which Acinetobacter bereziniae NDS4 degraded almost all nitrite in 48 h while it took 180 h for control. These results indicated that the selected strains have potential to become nitrite degradition agent in food. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. The role of natural organic matter in nitrite formation by LP-UV/H2O2 treatment of nitrate-rich water.

    Science.gov (United States)

    Semitsoglou-Tsiapou, Sofia; Mous, Astrid; Templeton, Michael R; Graham, Nigel J D; Hernández Leal, Lucía; Kruithof, Joop C

    2016-12-01

    The role of natural organic matter (NOM) on nitrite formation from nitrate photolysis by low pressure ultraviolet lamp (LP-UV) photolysis and LP-UV/H 2 O 2 treatment was investigated. Nitrate levels up to the WHO guideline maximum of 50 mg NO 3 - /L were used in tests. The presence of 4 mg/L Suwannee River natural organic matter (NOM) led to increased nitrite yields compared to NOM-free controls. This was caused partly by NOM scavenging of OH radicals, preserving the produced NO 2 - as well as the ONOO - that leads to NO 2 - formation, but also via the production of radical species ( 1 O 2 , O 2 - and OH) by the photolysis of NOM. In addition, solvated electrons formed by NOM photolysis may reduce nitrate directly to nitrite. For comparison, Nordic Lake NOM, representative of aquatic NOM, as well as Pony Lake NOM, which had a greater nitrogen content (6.51% w/w) than the other two types of NOM, were investigated, yielding similar nitrite levels as Suwannee River NOM. The results suggest that neither the type nor the nitrogen content of the NOM have an effect on the nitrite yields obtained over the range of UV/H 2 O 2 doses applied (UV fluences of 500-2100 mJ/cm 2 and hydrogen peroxide doses of 10, 25, and 50 mg/L). The findings indicate that for UV fluences above 1500 mJ/cm 2 the resulting nitrite concentration can exceed the 0.1 mg/L EU regulatory limit for nitrite, suggesting that nitrite formation by LP-UV advanced oxidation of nitrate-rich waters is important to consider. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Peng Song

    2015-12-01

    Full Text Available The potential associations between dietary consumption of nitrates, nitrites, and nitrosamines and gastric cancer risk have been investigated by several studies, but yielded inconclusive results. We conducted a meta-analysis to provide a quantitative assessment of their relationships. Relevant articles were identified by a systematic literature searching of PubMed and Embase databases prior to August 2015. Random-effects models were employed to pool the relative risks. A total of 22 articles consisting of 49 studies—19 studies for nitrates, 19 studies for nitrites, and 11 studies for N-nitrosodimethylamine (NDMA—were included. The summary relative risk of stomach cancer for the highest categories, compared with the lowest, was 0.80 (95% confidence interval (CI, 0.69–0.93 for dietary nitrates intake, 1.31 (95% CI, 1.13–1.52 for nitrites, and 1.34 (95% CI, 1.02–1.76 for NDMA (p for heterogeneity was 0.015, 0.013 and <0.001, respectively. The study type was found as the main source of heterogeneity for nitrates and nitrites. The heterogeneity for NDMA could not be eliminated completely through stratified analysis. Although significant associations were all observed in case-control studies, the cohort studies still showed a slight trend. The dose-response analysis indicated similar results as well. High nitrates intake was associated with a weak but statistically significant reduced risk of gastric cancer. Whereas increased consumption of nitrites and NDMA seemed to be risk factors for cancer. Due to the lack of uniformity for exposure assessment across studies, further prospective researches are warranted to verify these findings.

  4. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis.

    Science.gov (United States)

    Song, Peng; Wu, Lei; Guan, Wenxian

    2015-12-01

    The potential associations between dietary consumption of nitrates, nitrites, and nitrosamines and gastric cancer risk have been investigated by several studies, but yielded inconclusive results. We conducted a meta-analysis to provide a quantitative assessment of their relationships. Relevant articles were identified by a systematic literature searching of PubMed and Embase databases prior to August 2015. Random-effects models were employed to pool the relative risks. A total of 22 articles consisting of 49 studies-19 studies for nitrates, 19 studies for nitrites, and 11 studies for N-nitrosodimethylamine (NDMA)-were included. The summary relative risk of stomach cancer for the highest categories, compared with the lowest, was 0.80 (95% confidence interval (CI), 0.69-0.93) for dietary nitrates intake, 1.31 (95% CI, 1.13-1.52) for nitrites, and 1.34 (95% CI, 1.02-1.76) for NDMA (p for heterogeneity was 0.015, 0.013 and nitrates and nitrites. The heterogeneity for NDMA could not be eliminated completely through stratified analysis. Although significant associations were all observed in case-control studies, the cohort studies still showed a slight trend. The dose-response analysis indicated similar results as well. High nitrates intake was associated with a weak but statistically significant reduced risk of gastric cancer. Whereas increased consumption of nitrites and NDMA seemed to be risk factors for cancer. Due to the lack of uniformity for exposure assessment across studies, further prospective researches are warranted to verify these findings.

  5. Nitrate and nitrite in biology, nutrition and therapeutics

    Science.gov (United States)

    Lundberg, Jon O.; Gladwin, Mark T.; Ahluwalia, Amrita; Benjamin, Nigel; Bryan, Nathan S.; Butler, Anthony; Cabrales, Pedro; Fago, Angela; Feelisch, Martin; Ford, Peter C.; Freeman, Bruce A.; Frenneau, Michael; Friedman, Joel; Kelm, Malte; Kevil, Christopher G.; Kim-Shapiro, Daniel B.; Kozlov, Andrey V.; Lancaster, Jack R.; Lefer, David J.; McColl, Kenneth; McCurry, Kenneth; Patel, Rakesh; Petersson, Joel; Rassaf, Tienush; Reutov, Valentin P.; Richter-Addo, George B.; Schechter, Alan; Shiva, Sruti; Tsuchiya, Koichiro; van Faassen, Ernst E.; Webb, Andrew J.; Zuckerbraun, Brian S.; Zweier, Jay L.; Weitzberg, Eddie

    2014-01-01

    Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia. The latest advances in our understanding of the biochemistry, physiology and therapeutics of nitrate, nitrite and NO were discussed during a recent two-day meeting at the Nobel Forum, Karolinska Institutet in Stockholm. PMID:19915529

  6. Methaemoglobinaemia due to amyl nitrite inhalation: a case report.

    Science.gov (United States)

    Machabert, R; Testud, F; Descotes, J

    1994-05-01

    Methaemoglobinaemia is a potential toxic effect of aliphatic nitrites which are increasingly abused by male homosexuals and drug addicts because of marked vasodilating properties ('poppers'). In most instances, severe complications were described following the ingestion of large quantities of amyl, butyl or isobutyl nitrites. A deficiency in NADH-dependent haemoglobin reductase in some patients has been noted. This is the first report of symptomatic methaemoglobinaemia following the inhalation of amyl nitrite.

  7. The role of nitrite in nitric oxide homeostasis

    DEFF Research Database (Denmark)

    Jensen, Frank Bo

    2009-01-01

    Nitrite is endogenously produced as an oxidative metabolite of nitric oxide, but it also functions as a NO donor that can be activated by a number of cellular proteins under hypoxic conditions. This article discusses the physiological role of nitrite and nitrite-derived NO in blood flow regulation...... mechanisms. Nitrite reduction to NO provides cytoprotection in tissues during ischemia-reperfusion events by inhibiting mitochondrial respiration and limiting reactive oxygen species. It is argued that the study of hypoxia-tolerant lower vertebrates and diving mammals may help evaluate mechanisms and a full...

  8. Growth and yield response of wheat to EM (effective microorganisms ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-07

    Jun 7, 2010 ... formation (Pulleman et al., 2003), alleviating environ- mental stresses (Macilwain ... municipal / industrial wastes and effluents (Hussain et al.,. 1999, Javaid, 2006, 2009; .... 100 grains over control (Figure 3D). Highest harvest.

  9. New micro-organism

    Energy Technology Data Exchange (ETDEWEB)

    Takakuwa, Masayoshi; Hashimoto, Gotaro

    1987-09-12

    Invention relates with a new organism for the coal liquefying desulfurization. This micro-organism conducts a good sporulation on a culture medium which contains a coal as an only carbon source. It belongs to Penicillium and named Penicillium MT-6001 registered at Fermentation Research Institute No. 8463. Coal powder is thrown into a reaction vessel which accommodated a culture solution of this bacteria, and the surface of the solution is covered with liquid paraffin; coal powder is treated of liquefaction for about 5 hours while maintaining the anaerobic condition and slowly agitating to form a transparent solution layer on the surface of the reactor together with liquid paraffin. Liquefied product shows an analysis pattern similar to naphthenic petroleum containing a lipid with polar radical. (2 figs)

  10. Proteolysis in hyperthermophilic microorganisms

    Directory of Open Access Journals (Sweden)

    Donald E. Ward

    2002-01-01

    Full Text Available Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus, the crenarchaeote Sulfolobus solfataricus, and the bacterium Thermotoga maritima. An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putative proteases that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms.

  11. Thermophilic microorganisms in biomining.

    Science.gov (United States)

    Donati, Edgardo Rubén; Castro, Camila; Urbieta, María Sofía

    2016-11-01

    Biomining is an applied biotechnology for mineral processing and metal extraction from ores and concentrates. This alternative technology for recovering metals involves the hydrometallurgical processes known as bioleaching and biooxidation where the metal is directly solubilized or released from the matrix for further solubilization, respectively. Several commercial applications of biomining can be found around the world to recover mainly copper and gold but also other metals; most of them are operating at temperatures below 40-50 °C using mesophilic and moderate thermophilic microorganisms. Although biomining offers an economically viable and cleaner option, its share of the world´s production of metals has not grown as much as it was expected, mainly considering that due to environmental restrictions in many countries smelting and roasting technologies are being eliminated. The slow rate of biomining processes is for sure the main reason of their poor implementation. In this scenario the use of thermophiles could be advantageous because higher operational temperature would increase the rate of the process and in addition it would eliminate the energy input for cooling the system (bioleaching reactions are exothermic causing a serious temperature increase in bioreactors and inside heaps that adversely affects most of the mesophilic microorganisms) and it would decrease the passivation of mineral surfaces. In the last few years many thermophilic bacteria and archaea have been isolated, characterized, and even used for extracting metals. This paper reviews the current status of biomining using thermophiles, describes the main characteristics of thermophilic biominers and discusses the future for this biotechnology.

  12. Unimolecular Reactions of Nitrites and Nitrates.

    Science.gov (United States)

    1983-04-01

    verified the mechanism as being the one originally proposed by Levy, RONO - RO + NO RO + NO- 1 2*RONO •I kRO + NO-- ROH HHO -Hi k5 :and not by direct...produced by ,’Levy’s mechanism. I1 Emission from CH30, C2H50, and l-C3H70 radicals were observed in the photolysis of these nitrites between...wavelengths of 2000 and 1100 A, by Ohbayashi, Akimoto and Tanaka [78]. Emission was assigned to the (A2A1IX2E) transition of CH30 . Bands of NO were also *i

  13. Radioresistant microorganisms and food irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H [Japan Atomic Energy Research Inst., Takasaki, Gunma. Takasaki Radiation Chemistry Research Establishment

    1976-01-01

    This paper deals with Micrococcus radiodurans, Arthrobacter radiotolerance, etc., which were isolated and discovered as radioresistant microorganisms. As for the explanation of the mechanism of radioresistance of these microorganisms, the consideration that these organisms have marked repair power of the damaged DNA and have many opportunity to repair the damaged DNA because of their long fission term were cited. The relationship between the radioresistance of microorganisms and food irradiation was also mentioned.

  14. Polymeric optical sensors for selective and sensitive nitrite detection using cobalt(III) corrole and rhodium(III) porphyrin as ionophores

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Si; Wo, Yaqi; Meyerhoff, Mark E., E-mail: mmeyerho@umich.edu

    2014-09-16

    Highlights: • We examine cobalt(III) corroles and rhodium(III) porphyrins as ionophores in polymeric films for optical sensors to detect nitrite. • Different types of proton chromoionophores are evaluated to optimize nitrite response. • Selectivity over lipophilic anions such as perchlorate and thiocyanate is observed. • Both ionophores yield optical sensors that are fully reversible. • The cobalt(III) corrole based sensor is employed to determine nitric oxide emission rates from NO donor doped polymers with good accuracy. - Abstract: Cobalt(III) 5,10,15-tris(4-tert-butylphenyl) corrole with a triphenylphosphine axial ligand and rhodium(III) 5,10,15,20-tetra(p-tert-butylphenyl) porphyrin are incorporated into plasticized poly(vinyl chloride) films to fabricate nitrite-selective bulk optodes via absorbance measurements. The resulting films yield sensitive, fast and fully reversible response toward nitrite with significantly enhanced nitrite selectivity over other anions including lipophilic anions such as thiocyanate and perchlorate. The selectivity patterns differ greatly from the Hofmeister series based on anion lipophilicity and are consistent with selectivity obtained with potentiometric sensors based on the same ionophores. The optical nitrite sensors are shown to be useful for detecting rates of emission of nitric oxide (NO) from NO releasing polymers containing S-nitroso-N-acetyl-DL-penicillamine.

  15. Comparison of Oxidation Kinetics of Nitrite-Oxidizing Bacteria: Nitrite Availability as a Key Factor in Niche Differentiation

    Science.gov (United States)

    Nowka, Boris; Daims, Holger

    2014-01-01

    Nitrification has an immense impact on nitrogen cycling in natural ecosystems and in wastewater treatment plants. Mathematical models function as tools to capture the complexity of these biological systems, but kinetic parameters especially of nitrite-oxidizing bacteria (NOB) are lacking because of a limited number of pure cultures until recently. In this study, we compared the nitrite oxidation kinetics of six pure cultures and one enrichment culture representing three genera of NOB (Nitrobacter, Nitrospira, Nitrotoga). With half-saturation constants (Km) between 9 and 27 μM nitrite, Nitrospira bacteria are adapted to live under significant substrate limitation. Nitrobacter showed a wide range of lower substrate affinities, with Km values between 49 and 544 μM nitrite. However, the advantage of Nitrobacter emerged under excess nitrite supply, sustaining high maximum specific activities (Vmax) of 64 to 164 μmol nitrite/mg protein/h, contrary to the lower activities of Nitrospira of 18 to 48 μmol nitrite/mg protein/h. The Vmax (26 μmol nitrite/mg protein/h) and Km (58 μM nitrite) of “Candidatus Nitrotoga arctica” measured at a low temperature of 17°C suggest that Nitrotoga can advantageously compete with other NOB, especially in cold habitats. The kinetic parameters determined represent improved basis values for nitrifying models and will support predictions of community structure and nitrification rates in natural and engineered ecosystems. PMID:25398863

  16. Ammonia from iron(II) reduction of nitrite and the Strecker synthesis: do iron(II) and cyanide interfere with each other?

    Science.gov (United States)

    Summers, D. P.; Lerner, N.

    1998-01-01

    The question of whether the production of ammonia, from the reduction of nitrite by iron(II), is compatible with its use in the Strecker synthesis of amino acids, or whether the iron and the cyanide needed for the Strecker synthesis interfere with each other, is addressed. Results show that the presence of iron(II) appears to have little, or no, effect on the Strecker synthesis. The presence of cyanide does interfere with reduction of nitrite, but the reduction proceeds at cyanide/iron ratios of less than 4:1. At ratios of about 2:1 and less there is only a small effect. The reduction of nitrite and the Strecker can be combined to proceed in each other's presence, to yield glycine from a mixture of nitrite, Fe+2, formaldehyde, and cyanide.

  17. Interactions between ammonia and nitrite oxidizing bacteria in co-cultures: Is there evidence for mutualism, commensalism, or competition?

    Energy Technology Data Exchange (ETDEWEB)

    Sayavedra-Soto, Luis [Oregon State Univ., Corvallis, OR (United States); Arp, Daniel [Oregon State Univ., Corvallis, OR (United States)

    2017-08-01

    Nitrification is a two-step environmental microbial process in the nitrogen cycle in which ammonia is oxidized to nitrate. Ammonia-oxidizing bacteria and archaea oxidize ammonia to nitrite and nitrite is oxidized to nitrate by nitrite-oxidizing bacteria. These microorganisms, which likely act in concert in a microbial community, play critical roles in the movement of inorganic N in soils, sediments and waters and are essential to the balance of the nitrogen cycle. Anthropogenic activity has altered the balance of the nitrogen cycle through agriculture practices and organic waste byproducts. Through their influence on available N for plant growth, nitrifying microorganisms influence plant productivity for food and fiber production and the associated carbon sequestration. N Fertilizer production, primarily as ammonia, requires large inputs of natural gas and hydrogen. In croplands fertilized with ammonia-based fertilizers, nitrifiers contribute to the mobilization of this N by producing nitrate (NO3-), wasting the energy used in the production and application of ammonia-based fertilizer. The resulting nitrate is readily leached from these soils, oxidized to gaseous N oxides (greenhouse gases), and denitrified to N2 (which is no longer available as a plant N source). Still, ammonia oxidizers are beneficial in the treatment of wastewater and they also show potential to contribute to microbial bioremediation strategies for clean up of environments contaminated with chlorinated hydrocarbons. Mitigation of the negative effects and exploitation of the beneficial effects of nitrifiers will be facilitated by a systems-level understanding of the interactions of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria with the environment and with each other.

  18. Reduction of nitrogen oxides by gamma-irradiated hemoproteins. Pt. 1. Nitrite reducing activity of gamma-irradiated hemoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Oku, Tadatake; Kondo, Mitutaka; Sato, Hitoshi; Ichikawa, Yoshinobu; Nishio, Toshiyuki; Ito, Teiichiro [Nihon Univ., Tokyo (Japan). Coll. of Agriculture and Veterinary Medicine

    1994-08-01

    In nature, nitrite reductases located in microorganisms as well as in plants convert nitrite (NO{sub 2}{sup -}) into ammonium ion (NH{sub 4}{sup +}). It is rather difficult to isolate nitrite reductase because of very low content in microorganisms and plants. Bovine blood hemoglobin (Hb), horse cardiac muscle myoglobin (Mb) and horse cardiac muscle cytochrome c (Cyt c) in 50{mu}M aqueous solution were treated by gamma-irradiation at doses of 10-30 kGy in the presence of air. The present study shows that NO{sub 2}{sup -} is connected into NH{sub 4}{sup +} by gamma-irradiated hemoprotein in the presence of sodium hydrosulfite as a reducing agent and methyl viologen as an electron carrier. The concentration of NO{sub 2}{sup -} and NH{sub 4}{sup +} after reaction were determined by using diazo-reaction and ninhydrin reaction, respectively, after separation by HPLC. NO{sub 2}{sup -} remained and NH{sub 4}{sup +} formed by 10 kGy irradiated Cyt c, Hb and Mb at pH4 at 60 min were, 0% and 46%, 17% and 31%, 31% and 24%, respectively. Formation of hydroxylamine by reaction of NO{sub 2}{sup -} was not recognized in this reaction. The process of conversion of NO{sub 2}{sup -} to NH{sub 4}{sup +} is a net 6 electrons, 8-proton reaction. These results suggest that gamma-irradiated Hb, Mb and Cyt c can be used as a substituent of nitrite reductase. (J.P.N.).

  19. Nitrate and nitrite in biology, nutrition and therapeutics

    NARCIS (Netherlands)

    Lundberg, J.O.; van Faassen, E.E.H.; Gladwin, M.T.; Ahluwalia, A.; Benjamin, N.

    2009-01-01

    Inorganic nitrate and nitrite from endogenous or dietary sources are metabolized in vivo to nitric oxide (NO) and other bioactive nitrogen oxides. The nitrate-nitrite-NO pathway is emerging as an important mediator of blood flow regulation, cell signaling, energetics and tissue responses to hypoxia.

  20. Amperometric Carbon Fiber Nitrite Microsensor for In Situ Biofilm Monitoring

    Science.gov (United States)

    A highly selective needle type solid state amperometric nitrite microsensor based on direct nitrite oxidation on carbon fiber was developed using a simplified fabrication method. The microsensor’s tip diameter was approximately 7 µm, providing a high spatial resolution of at lea...

  1. Inactivation of Yersinia enterocolitica by nitrite and nitrate in food.

    Science.gov (United States)

    de Giusti, M; de Vito, E

    1992-01-01

    The antimicrobial effects of sodium nitrite and sodium and potassium nitrate against Yersinia enterocolitica were investigated in solution and in treated pork meat. Potassium nitrate and sodium nitrate showed only feeble antimicrobial activity in cultures; no antimicrobial activity was detected with sodium nitrite. Conversely, all three salts displayed apparent antimicrobial activity in pork meat, possibly due to selective effects on competitive flora.

  2. Nitrite as a stimulus for ammonia-starved Nitrosomonas europaea

    NARCIS (Netherlands)

    Laanbroek, H.J.; Bär-Gilissen, M.J.; Hoogveld, H.L.

    2002-01-01

    Ammonia-starved cells of Nitrosomonas europaea are able to preserve a high level of ammonia-oxidizing activity in the absence of ammonium. However, when the nitrite-oxidizing cells that form part of the natural nitrifying community do not keep pace with the ammonia-oxidizing cells, nitrite

  3. NITRITE AND NITRATE DETERMINATIONS IN PLASMA - A CRITICAL-EVALUATION

    NARCIS (Netherlands)

    MOSHAGE, H; KOK, B; HUIZENGA, [No Value; JANSEN, PLM

    Plasma nitrite and nitrate determinations are increasingly being used in clinical chemistry as markers for the activity of nitric oxide synthase and the production of nitric oxide radicals. However, a systematic evaluation of the determination of nitrite and nitrate in plasma has not been performed.

  4. Nitrite and nitrate determinations in plasma: a critical evaluation

    NARCIS (Netherlands)

    Moshage, H.; Kok, B.; Huizenga, J. R.; Jansen, P. L.

    1995-01-01

    Plasma nitrite and nitrate determinations are increasingly being used in clinical chemistry as markers for the activity of nitric oxide synthase and the production of nitric oxide radicals. However, a systematic evaluation of the determination of nitrite and nitrate in plasma has not been performed.

  5. Nitrite enhances liver graft protection against cold ischemia ...

    African Journals Online (AJOL)

    Amani Cherif-Sayadi

    2017-03-30

    Mar 30, 2017 ... cold ischemia reperfusion injury through a NOS ... oxidation and lipid peroxidation remained at low levels in both nitrite-treated groups when ... liver graft preservation [15]. ... nitrite activity is dependent on NO production but .... LiversT rat (n = 6) were flushed and preserved in IGL-1 solution ..... The nitrate-.

  6. A random-sequential mechanism for nitrite binding and active site reduction in copper-containing nitrite reductase

    NARCIS (Netherlands)

    Wijma, HJ; Jeuken, LJC; Verbeet, MP; Armstrong, FA; Canters, GW

    2006-01-01

    The homotrimeric copper-containing nitrite reductase ( NiR) contains one type-1 and one type-2 copper center per monomer. Electrons enter through the type-1 site and are shuttled to the type-2 site where nitrite is reduced to nitric oxide. To investigate the catalytic mechanism of NiR the effects of

  7. Use of nitrite inhalants ("poppers") among American youth.

    Science.gov (United States)

    Wu, Li-Tzy; Schlenger, William E; Ringwalt, Chris L

    2005-07-01

    We examined the patterns and correlates of nitrite inhalant use among adolescents aged 12 to 17 years. Study data were drawn from the 2000 and 2001 National Household Surveys on Drug Abuse. Logistic regression was used to identify the characteristics associated with nitrite inhalant use. Among adolescents aged 12 to 17 years, 1.5% reported any lifetime use of nitrite inhalants. The prevalence of lifetime nitrite inhalant use increased to 12% and 14% among adolescents who were dependent on alcohol and any drug in the past year, respectively. Many nitrite inhalant users used at least three other types of inhalants (68%) and also met the criteria for alcohol (33%) and drug (35%) abuse or dependence. Increased odds of nitrite inhalant use were associated with residing in nonmetropolitan areas, recent utilization of mental health services, delinquent behaviors, past year alcohol and drug abuse and dependence, and multi-drug use. Adolescents who had used nitrite inhalants at least once in their lifetime tend to engage in delinquent activities and report co-occurring multiple drug abuse and mental health problems in the past year.

  8. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis

    Science.gov (United States)

    Song, Peng; Wu, Lei; Guan, Wenxian

    2015-01-01

    The potential associations between dietary consumption of nitrates, nitrites, and nitrosamines and gastric cancer risk have been investigated by several studies, but yielded inconclusive results. We conducted a meta-analysis to provide a quantitative assessment of their relationships. Relevant articles were identified by a systematic literature searching of PubMed and Embase databases prior to August 2015. Random-effects models were employed to pool the relative risks. A total of 22 articles consisting of 49 studies—19 studies for nitrates, 19 studies for nitrites, and 11 studies for N-nitrosodimethylamine (NDMA)—were included. The summary relative risk of stomach cancer for the highest categories, compared with the lowest, was 0.80 (95% confidence interval (CI), 0.69–0.93) for dietary nitrates intake, 1.31 (95% CI, 1.13–1.52) for nitrites, and 1.34 (95% CI, 1.02–1.76) for NDMA (p for heterogeneity was 0.015, 0.013 and NDMA could not be eliminated completely through stratified analysis. Although significant associations were all observed in case-control studies, the cohort studies still showed a slight trend. The dose-response analysis indicated similar results as well. High nitrates intake was associated with a weak but statistically significant reduced risk of gastric cancer. Whereas increased consumption of nitrites and NDMA seemed to be risk factors for cancer. Due to the lack of uniformity for exposure assessment across studies, further prospective researches are warranted to verify these findings. PMID:26633477

  9. A comparison of organic and inorganic nitrates/nitrites.

    Science.gov (United States)

    Omar, Sami A; Artime, Esther; Webb, Andrew J

    2012-05-15

    Although both organic and inorganic nitrates/nitrites mediate their principal effects via nitric oxide, there are many important differences. Inorganic nitrate and nitrite have simple ionic structures and are produced endogenously and are present in the diet, whereas their organic counterparts are far more complex, and, with the exception of ethyl nitrite, are all medicinally synthesised products. These chemical differences underlie the differences in pharmacokinetic properties allowing for different modalities of administration, particularly of organic nitrates, due to the differences in their bioavailability and metabolic profiles. Whilst the enterosalivary circulation is a key pathway for orally ingested inorganic nitrate, preventing an abrupt effect or toxic levels of nitrite and prolonging the effects, this is not used by organic nitrates. The pharmacodynamic differences are even greater; while organic nitrates have potent acute effects causing vasodilation, inorganic nitrite's effects are more subtle and dependent on certain conditions. However, in chronic use, organic nitrates are considerably limited by the development of tolerance and endothelial dysfunction, whereas inorganic nitrate/nitrite may compensate for diminished endothelial function, and tolerance has not been reported. Also, while inorganic nitrate/nitrite has important cytoprotective effects against ischaemia-reperfusion injury, continuous use of organic nitrates may increase injury. While there are concerns that inorganic nitrate/nitrite may induce carcinogenesis, direct evidence of this in humans is lacking. While organic nitrates may continue to dominate the therapeutic arena, this may well change with the increasing recognition of their limitations, and ongoing discovery of beneficial effects and specific advantages of inorganic nitrate/nitrite. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Nitrates and Nitrites in the Treatment of Ischemic Cardiac Disease

    Science.gov (United States)

    Nossaman, Vaughn E.; Nossaman, Bobby D.; Kadowitz, Philip J.

    2010-01-01

    The organic nitrite, amyl of nitrite, was initially used as a therapeutic agent in the treatment of angina pectoris in 1867, but was replaced over a decade later by the organic nitrate, nitroglycerin (NTG), due to the ease of administration and longer duration of action. The administration of organic nitrate esters, such as NTG, continues to be used in the treatment of angina pectoris and heart failure during the birth of modern pharmacology. The clinical effectiveness is due to vasodilator activity in large veins and arteries through an as yet unidentified method of delivering nitric oxide (NO), or a NO-like compound to vascular smooth muscle cells. The major drawback with NTG administration is the rapid development of tolerance; and with amyl of nitrite, the duration and route of administration. Although amyl of nitrite are no longer used in the treatments of hypertension or ischemic heart disease, the nitrite anion has recently been discovered to possess novel pharmacologic actions such as modulating hypoxic vasodilation and providing cytoprotection in ischemia-reperfusion injury. Although the actions of these two similar chemical classes (nitrites and organic nitrates) have often been considered to be alike, we still do not understand their mechanism of action. However, the recent discovery that the nitrite anion, derived from either sodium nitrite or an intermediate NTG form, may act as a storage form for NO and provides support for investigating the use of these agents in the treatment of ischemic cardiovascular states. We review what is presently known about the use of nitrites and nitrates, the potential uses of these agents, and their mechanisms of action. PMID:20539102

  11. Complete nitrification by a single microorganism

    DEFF Research Database (Denmark)

    van Kessel, Maartje A. H. J.; Speth, Daan R.; Albertsen, Mads

    2015-01-01

    Nitrification is a two-step process where ammonia is first oxidized to nitrite by ammonia-oxidizing bacteria and/or archaea, and subsequently to nitrate by nitrite-oxidizing bacteria. Already described by Winogradsky in 18901, this division of labour between the two functional groups is a general...

  12. Hypoxia tolerance, nitric oxide, and nitrite: Lessons from extreme animals

    DEFF Research Database (Denmark)

    Fago, Angela; B. Jensen, Frank

    2015-01-01

    survival resides in concerted physiological responses, including strong metabolic depression, protection against oxidative damage and – in air breathing animals - redistribution of blood flow. Each of these responses is known to be tightly regulated by nitric oxide (NO) and during hypoxia by its metabolite...... nitrite. The aim of this review is to highlight recent work illustrating the widespread roles of NO and nitrite in the tolerance to extreme oxygen deprivation, in particular in the red-eared slider turtle and crucian carp, but also in diving marine mammals. The emerging picture underscores the importance...... of NO and nitrite signaling in the adaptive response to hypoxia in vertebrate animals....

  13. Electrochemical oxidation of nitrite on nanodiamond powder electrode

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.H.; Zang, J.B.; Wang, Y.H.; Bian, L.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2008-03-10

    Nanodiamond (ND) powder electrodes were fabricated and the electrochemical properties were investigated in the solution containing nitrite in this article. This electrode exhibits substantial catalytic ability toward the oxidation of nitrite anions. The electrochemical oxidation mechanism of nitrite on the ND powder electrode is discussed. The oxidation of NaNO{sub 2} is a two-electron transfer process. The electrode reaction rate constant k is estimated to be 2.013 x 10{sup -4} cm/s and (1 - {alpha})n{sub {alpha}} is 0.1643. The peak current increases linearly with the rising of the concentration of NaNO{sub 2}. (author)

  14. Equity yields

    NARCIS (Netherlands)

    Vrugt, E.; van Binsbergen, J.H.; Koijen, R.S.J.; Hueskes, W.

    2013-01-01

    We study a new data set of dividend futures with maturities up to ten years across three world regions: the US, Europe, and Japan. We use these asset prices to construct equity yields, analogous to bond yields. We decompose the equity yields to obtain a term structure of expected dividend growth

  15. Nitrite ion mitigates the formation of N-nitrosodimethylamine (NDMA) during chloramination of ranitidine.

    Science.gov (United States)

    Seid, Mingizem Gashaw; Cho, Kangwoo; Lee, Changha; Park, Hyun-Mee; Hong, Seok Won

    2018-08-15

    Ranitidine (RNT) has been an important tertiary amine precursor of N-nitrosodimethylamine (NDMA) in chlorine-based water treatment, due to reaction with monochloramine (NH 2 Cl) with exceptionally high molar yields up to 90%. This study examined the effects of nitrite ions (NO 2 - ) on the kinetics of NDMA formation during the chloramination of RNT under variable concentrations of dissolved oxygen (DO, 0.7-7.5mg/L), RNT (5-30μM), NH 2 Cl (5-20mM), NO 2 - or NO 3 - (0-2mM) and pH (5.6-8.6). In the absence of the NO 2 - , the ultimate molar yield of NDMA after 6h of reaction was primarily influenced by [DO] and pH, while marginally affected by initial [RNT] and [NH 2 Cl]. A kinetic model, prepared in accordance with the reaction sequence of NDMA formation, suggested that the rate determining step was accelerated with increasing [NH 2 Cl] 0 , [DO], and pH. A Kinetic study together with ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometer (UPLC-Q-TOF MS) and gas chromatography (GC)/TOF MS analyses in parallel demonstrated that the nitrite ion inhibited the nucleophilic substitution of the terminal amine on NH 2 Cl, and reduced the pseudo-steady state concentration of N-peroxyl radicals, significantly decreasing the ultimate yields of NDMA. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Cloning and characterization of a nitrite reductase gene related to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-01

    Mar 1, 2010 ... Alexander et al., 2005) and heme-type nitrite reductase gene (Smith and ... owing to a genotype-dependent response (Zhang et al.,. 1991; Sakhanokho et al., ..... Improvement of cell culture conditions for rice. Jpn. Agric. Res.

  17. Performance of denitrifying microbial fuel cell with biocathode over nitrite

    Directory of Open Access Journals (Sweden)

    Zhao eHuimin

    2016-03-01

    Full Text Available Microbial fuel cell (MFC with nitrite as an electron acceptor in cathode provided a new technology for nitrogen removal and electricity production simultaneously. The influences of influent nitrite concentration and external resistance on the performance of denitrifying MFC were investigated. The optimal effectiveness were obtained with the maximum total nitrogen (TN removal rate of 54.80±0.01 g m-3 d-1. It would be rather desirable for the TN removal than electricity generation at lower external resistance. Denaturing gradient gel electrophoresis suggested that Proteobacteria was the predominant phylum, accounting for 35.72%. Thiobacillus and Afipia might benefit to nitrite removal. The presence of nitrifying Devosia indicated that nitrite was oxidized to nitrate via a biochemical mechanism in the cathode. Ignavibacterium and Anaerolineaceae was found in the cathode as a heterotrophic bacterium with sodium acetate as substrate, which illustrated that sodium acetate in anode was likely permeated through proton exchange membrane to the cathode .

  18. Differential uptake and metabolism of nitrite in normoxic and hypoxic goldfish

    DEFF Research Database (Denmark)

    Jensen, Frank Bo; Hansen, Marie N.

    2011-01-01

    extracellular and intracellular compartments, revealing nitrosative stress with extensive nitros(yl)ation of thiols, amines and heme groups. The degree of nitrosative stress correlated with nitrite load. Nitrate levels increased in all compartments, reflecting that a significant fraction of the nitrite taken up...... was converted to non-toxic nitrate. The generation of methemoglobin and nitrosylhemoglobin (assessed by spectral deconvolution) was more pronounced during normoxic nitrite exposure than during hypoxic nitrite exposure, in agreement with the higher nitrite load in normoxic fish. However, at any given nitrite......Nitrite is a physiological important nitric oxide donor at low concentrations but becomes toxic at high concentrations, as develops in freshwater fish exposed to environmental nitrite. We hypothesized that nitrite uptake across the gills differs between normoxic and hypoxic fish and that nitrite...

  19. Anoxic sulfide biooxidation using nitrite as electron acceptor

    International Nuclear Information System (INIS)

    Mahmood, Qaisar; Zheng Ping; Cai Jing; Wu Donglei; Hu, Baolan; Li Jinye

    2007-01-01

    Biotechnology can be used to assess the well being of ecosystems, transform pollutants into benign substances, generate biodegradable materials from renewable sources, and develop environmentally safe manufacturing and disposal processes. Simultaneous elimination of sulfide and nitrite from synthetic wastewaters was investigated using a bioreactor. A laboratory scale anoxic sulfide-oxidizing (ASO) reactor was operated for 135 days to evaluate the potential for volumetric loading rates, effect of hydraulic retention time (HRT) and substrate concentration on the process performance. The maximal sulfide and nitrite removal rates were achieved to be 13.82 and 16.311 kg/(m 3 day), respectively, at 0.10 day HRT. The process can endure high sulfide concentrations, as the sulfide removal percentage always remained higher than 88.97% with influent concentration up to 1920 mg/L. Incomplete sulfide oxidation took place due to lower consumed nitrite to sulfide ratios of 0.93. It also tolerated high nitrite concentration up to 2265.25 mg/L. The potential achieved by decreasing HRT at fixed substrate concentration is higher than that by increasing substrate concentration at fixed HRT. The process can bear short HRT of 0.10 day but careful operation is needed. Nitrite conversion was more sensitive to HRT than sulfide conversion when HRT was decreased from 1.50 to 0.08 day. Stoichiometric analyses and results of batch experiments show that major part of sulfide (89-90%) was reduced by nitrite while some autooxidation (10-11%) was resulted from presence of small quantities of dissolved oxygen in the influent wastewater. There was ammonia amassing in considerably high amounts in the bioreactor when the influent nitrite concentration reached above 2265.25 mg/L. High ammonia concentrations (200-550 mg/L) in the bioreactor contributed towards the overall inhibition of the process. Present biotechnology exhibits practical value with a high potential for simultaneous removal of nitrite

  20. Nitrite uptake by nitrogen-depleted wheat seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, W A; Johnson, R E; Volk, R J

    1974-01-01

    Intact, 14-day-old nitrogen-depleted wheat (Triticum vulgare cv. Blueboy) seedlings were exposed to solutions of 0.5 mM KNO/sub 2/, 0.05 mM CaSO/sub 4/ and 1 mM sodium 2-(N-morpholino)-ethanesulfonate, pH 6.1. Nitrite uptake was determined from depletion of the ambient solution or from incorporation of /sup 15/N in the tissue. An initial nitrite uptake shoulder was followed by a relatively slow uptake rate which subsequently increased to a substantially greater rate. This accelerated phase was maintained through 24 h. Nitrite accumulated to a slight extent in the root tissues during the first few hours but declined to low values when the accelerated rate was fully developed, indicating an increase in nitrite reductase activity paralleling the increase in nitrite uptake capacity. About 50% of the nitrogen absorbed as nitrite was translocated to the shoots by 9 to 12 h. Development of the accelerated nitrite uptake rate was restricted in excised roots, in intact plants kept in darkness, by 400 ..mu..g puromycin ml/sup -1/ and by 1 mM L-ethionine. When puromycin and L-ethionine were added after the accelerated phase had been initiated, their effects were not as detrimental as when they were added at first exposure to KNO/sub 2/. The two inhibitors restricted translocation more than uptake. The data indicate an involvement of protein synthesis and a requirement for movement of a substance from shoots to roots for maximal development of the accelerated nitrite uptake phase. A requirement for protein synthesis in the transport of soluble organic nitrogen from roots to shoots is also suggested.

  1. Influence of irradiation on reaction products of nitrite in foodstuffs

    International Nuclear Information System (INIS)

    Mirna, A.; Rau, G.

    1982-01-01

    Nitro alkanes and nitrolic acids are formed in foods by nitrosation reactions with nitrite. Among TEA-responsive compounds nitrolic acid behave to irradiation similar to N-nitrosamines. Some substances, extracted from spices, especially garlic, are also detectable by GC/TEA-chromatogramms of meat products and of reaction products from spices with nitrite show retention times not always clearly differentiated from those of NDMA, NDEA, NPIP and NPYR, respectively. Additional confirmation of such TEA positive compounds, therefore, is necessary. (orig.) [de

  2. Mitochondria recycle nitrite back to the bioregulator nitric monoxide

    International Nuclear Information System (INIS)

    Nohl, H.; Staniek, K.; Sobhian, B.; Bahrami, S.; Redl, H.; Kozlov, A.V.

    2000-01-01

    Nitric monoxide (NO) exerts a great variety of physiological functions. L-Arginine supplies amino groups which are transformed to NO in various NO-synthase-active isoenzyme complexes. NO-synthesis is stimulated under various conditions increasing the tissue of stable NO-metabolites. The major oxidation product found is nitrite. Elevated nitrite levels were reported to exist in a variety of diseases including HIV, reperfusion injury and hypovolemic shock. Denitrifying bacteria such as Paracoccus denitrificans have a membrane bound set of cytochromes (cyt cd 1 , cyt bc) which were shown to be involved in nitrite reduction activities. Mammalian mitochondria have similar cytochromes which form part of the respiratory chain. Like in bacteria quinols are used as reductants of these types of cytochromes. The observation of one-e - divergence from this redox-couple to external dioxygen made us to study whether this site of the respiratory chain may also recycle nitrite back to its bioactive form NO. Thus, the aim of the present study was therefore to confirm the existence of a reductive pathway which reestablishes the existence of the bioregulator NO from its main metabolite NO 2 - . Our results show that respiring mitochondria readily reduce added nitrite to NO which was made visible by nitrosylation of deoxyhemoglobin. The adduct gives characteristic triplet-ESR-signals. Using inhibitors of the respiratory chain for chemical sequestration of respiratory segments we were able to identify the site where nitrite is reduced. The results confirm the ubiquinone/cyt bc 1 couple as the reductant site where nitrite is recycled. The high affinity of NO to the heme-iron of cytochrome oxidase will result in an impairment of mitochondrial energy-production. ''Nitrite tolerance'' of angina pectoris patients using NO-donors may be explained in that way. (author)

  3. [The method to remove nitrite from tap water by tea].

    Science.gov (United States)

    Lu, M; Chen, L; Xian, H

    1997-03-01

    Drinking water (tap water) is polluted in pipelines by bacteria after long distance transportation. The water contains nitrite (NO2-) which is potentially harmful to human health. The nitrite concentrations range from 0.10 to 2.0 mg/L. Our experiment proved that NO2- could not be removed by boiling, but could be removed by tea. As a natural antioxidant, tea contains several antioxidants, such as ascorbic acid and catechins, which removed NO2- from tap water effectively.

  4. THE SPECTROPHOTOMETRIC DETERMINATION OF NITRITES WITH N,N-DIETHYLANILINE

    Directory of Open Access Journals (Sweden)

    O. S. Pogrebnyak

    2015-11-01

    Full Text Available A new spectrophotometric method for nitrite determination was proposed. The method is based on the measurement of absorbance of the N,N-diethylaniline nitrosation product at 475 nm in the hydrochloric acid medium. The optimum concentrations and the influence of various conditions on the determination sensitivity have been determined. The detection limit (blank + 3s for nitrite is 0.98 mg∙L–1 where sis the standard deviation of blank estimation. The linearity range of the calibration graph was over 1.0–100 mg∙L–1 of  nitrite (sr≤ 0.029, n = 8. The metrological characteristics of the procedure were checked by means of method of additives on the control samples and natural waters. The relative error did not exceed 0.06 for nitrite determination on the control samples. The effect of foreign ions in nitrite determination of 1,0∙10−3 mol∙L–1 has been studied. The proposed procedure is simple  and suitable for nitrite determination in various objects.

  5. Mutagenicity of some alkyl nitrites used as recreational drugs

    Energy Technology Data Exchange (ETDEWEB)

    Dunkel, V.C.; Cameron, T.P. (National Institute of Health, Bethesda (USA)); Rogers-Back, A.M.; Lawlor, T.E.; Harbell, J.W. (Microbiological Associates Inc., Rockville, MD (USA))

    1989-01-01

    When the AIDS epidemic was in its earliest stages, and prior to identification of HIV as the etiological factor, the use of volatile nitrites by the male homosexual community to enhance sexual activities appeared to have a significant role in this disease. Preliminary observations indicated that that portion of the male homosexual community which developed Kaposi's sarcoma were also heavy nitrite users. These nitrites had been demonstrated to be mutagenic in bacteria and thus it was postulated that they could be responsible for the appearance of the sarcoma. To evaluate further the genotoxic activity of these chemicals, six nitrites, including those most commonly used by homosexuals for sexual gratification, were selected for testing in the mouse lymphoma TK {plus minus} and Salmonell typhimurium mutagenicity assays. One chemical, n-amyl nitrite, was negative in the mouse lymphoma assay, while the other five chemicals, n-butyl, isobutyl, iso-amyl, sec-butyl, and n-propyl nitrite, were positive. All six compounds were positive in the Salmonella assay. The mutagenic and known toxic effects of these chemicals remain a concern because a large population of teenagers and young adults continue to abuse these substances.

  6. [Nitrates and nitrites in meat products--nitrosamines precursors].

    Science.gov (United States)

    Avasilcăi, Liliana; Cuciureanu, Rodica

    2011-01-01

    To determine the content in nitrates and nitrites and the formation of two nitrosamines (N-nitrosodimethylamine--NDMA, and N-nitrosodiethylaamine--NDEA) in samples of chicken ham, dry Banat salami, dry French salami, traditional Romania sausages, and pork pastrami. Nitrites were determined by spectrophotometry with Peter-Griess reagent, and nitrates by the same method after reduction to nitrites with cadmium powder. High performance liquid chromatography with UV detection was used to determine nitrosamines. The initial concentration of nitrates, nitrites, NDMA and NDEA in the samples ranged as follows: 14.10-60.40 mg NO3/kg, 2.70-26.70 mg NO2/kg, from non-detectable to 0.90 microg NDMA/kg, and from non-detectable to 0.27 microg NDEA/kg, respectively. After 28 days the concentrations were: 3.24-17.1 mg NO3/kg, 0.04 -1.87 mg NO2/kg, 0.8-29 microg NDMA/kg, and 11.6-61.9 microg NDEA/kg, respectively. The decreased nitrate and nitrite and increased NDMA and NDEA concentrations prove that in food products nitrosamines are formed due to residual nitrite during their preservation. The determination of nitrasamines revealed levels much above the admitted maximal concentration for these food products.

  7. Intermediates detected by visible spectroscopy during the reaction of nitrite with deoxyhemoglobin: the effect of nitrite concentration and diphosphoglycerate.

    Science.gov (United States)

    Nagababu, Enika; Ramasamy, Somasundaram; Rifkind, Joseph M

    2007-10-16

    The reaction of nitrite with deoxyhemoglobin (deoxyHb) results in the reduction of nitrite to NO, which binds unreacted deoxyHb forming Fe(II)-nitrosylhemoglobin (Hb(II)NO). The tight binding of NO to deoxyHb is, however, inconsistent with reports implicating this reaction with hypoxic vasodilation. This dilemma is resolved by the demonstration that metastable intermediates are formed in the course of the reaction of nitrite with deoxyHb. The level of intermediates is quantitated by the excess deoxyHb consumed over the concentrations of the final products formed. The dominant intermediate has a spectrum that does not correspond to that of Hb(III)NO formed when NO reacts with methemoglobin (MetHb), but is similar to metHb resulting in the spectroscopic determinations of elevated levels of metHb. It is a delocalized species involving the heme iron, the NO, and perhaps the beta-93 thiol. The putative role for red cell reacted nitrite on vasodilation is associated with reactions involving the intermediate. (1) The intermediate is less stable with a 10-fold excess of nitrite and is not detected with a 100-fold excess of nitrite. This observation is attributed to the reaction of nitrite with the intermediate producing N2O3. (2) The release of NO quantitated by the formation of Hb(II)NO is regulated by changes in the distal heme pocket as shown by the 4.5-fold decrease in the rate constant in the presence of 2,3-diphosphoglycerate. The regulated release of NO or N2O3 as well as the formation of the S-nitroso derivative of hemoglobin, which has also been reported to be formed from the intermediates generated during nitrite reduction, should be associated with any hypoxic vasodilation attributed to the RBC.

  8. Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrite intake estimation

    Science.gov (United States)

    Merino, Leonardo; Darnerud, Per Ola; Toldrá, Fidel; Ilbäck, Nils-Gunnar

    2016-01-01

    ABSTRACT The food additive nitrite (E249, E250) is commonly used in meat curing as a food preservation method. Because of potential negative health effects of nitrite, its use is strictly regulated. In an earlier study we have shown that the calculated intake of nitrite in children can exceed the acceptable daily intake (ADI) when conversion from dietary nitrate to nitrite is included. This study examined time-dependent changes in nitrite levels in four Swedish meat products frequently eaten by children: pork/beef sausage, liver paté and two types of chicken sausage, and how the production process, storage and also boiling (e.g., simmering in salted water) and frying affect the initial added nitrite level. The results showed a steep decrease in nitrite level between the point of addition to the product and the first sampling of the product 24 h later. After this time, residual nitrite levels continued to decrease, but much more slowly, until the recommended use-by date. Interestingly, this continuing decrease in nitrite was much smaller in the chicken products than in the pork/beef products. In a pilot study on pork/beef sausage, we found no effects of boiling on residual nitrite levels, but frying decreased nitrite levels by 50%. In scenarios of time-dependent depletion of nitrite using the data obtained for sausages to represent all cured meat products and including conversion from dietary nitrate, calculated nitrite intake in 4-year-old children generally exceeded the ADI. Moreover, the actual intake of nitrite from cured meat is dependent on the type of meat source, with a higher residual nitrite levels in chicken products compared with pork/beef products. This may result in increased nitrite exposure among consumers shifting their consumption pattern of processed meats from red to white meat products. PMID:26743589

  9. Effect of Dry Red Grape Pomace as a Nitrite Substitute on the Microbiological and Physicochemical Properties and Residual Nitrite of Dry-cured Sausage

    Directory of Open Access Journals (Sweden)

    Fatemeh Riazi

    2016-07-01

    Full Text Available Background and Objectives: Sodium nitrite and potassium nitrite have been traditionally used for inhibition of Clostridium botulinum and also as an agent to stabilize the color of meat products; however, usage of these additives at high levels could lead to toxicity and cancer originating from the formation of nitrosamines. Nowadays, application of natural preservatives in order to reduce the nitrite content in meat products is increasing. Thus, we used dry red grape pomace (DRGP as a natural alternative to sodium nitrite. Materials and Methods: The effect of two levels of DRGP (1 and 2% on the proximate composition, microbial counts, pH values and residual nitrite level of the samples formulated with two levels of sodium nitrite (30 and 60 mg/kg, as well as the comparison of these sausages with the blank (nitrite-free  and control (full nitrite added samples on the 1rst, 10th, 20th and 30th days of storage at 3-5 °C were evaluated. Results: The results showed that all chemical compositions were in the ranges reported by other researchers, and nitrite was very effective in preventing the microbial growth. Also about 50 % of the ingoing nitrite could be analyzed in the samples after processing. Moreover, the residual nitrite level declined both during the storage of sausage and after the addition of DRGP. Conclusions: The use of DRGP in combination with nitrite for sausages was more effective in keeping the quality and safety of the refrigerated consumer products as indicated by the lower nitrite levels, microbial count and similar composition as compared to the samples treated with nitrite and without nitrite. Keywords: Dry red grape pomace (DRGP, Sausage, Nitrite, Microbial count

  10. Biofuel production by recombinant microorganisms

    Science.gov (United States)

    Liao, James C.; Atsumi, Shota; Cann, Anthony F.

    2017-07-04

    Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.

  11. Airborne microorganisms from waste containers.

    Science.gov (United States)

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  12. Sodium nitrite: the "cure" for nitric oxide insufficiency.

    Science.gov (United States)

    Parthasarathy, Deepa K; Bryan, Nathan S

    2012-11-01

    This process of "curing" food is a long practice that dates back thousands of years long before refrigeration or food safety regulations. Today food safety and mass manufacturing are dependent upon safe and effective means to cure and preserve foods including meats. Nitrite remains the most effective curing agent to prevent food spoilage and bacterial contamination. Despite decades of rigorous research on its safety and efficacy as a curing agent, it is still regarded by many as a toxic undesirable food additive. However, research within the biomedical science community has revealed enormous therapeutic benefits of nitrite that is currently being developed as novel therapies for conditions associated with nitric oxide (NO) insufficiency. Much of the same biochemistry that has been understood for decades in the meat industry has been rediscovered in human physiology. This review will highlight the fundamental biochemistry of nitrite in human physiology and highlight the risk benefit evaluation surrounding nitrite in food and meat products. Foods or diets enriched with nitrite can have profound positive health benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Relation between nitrate and nitrite food habits with lung cancer.

    Science.gov (United States)

    Karimzadeh, Laleh; Koohdani, Fariba; Siassi, Fereydoon; Mahmoudi, Mahmoud; Moslemi, Daryoush; Safari, Farid

    2012-01-01

    Nitrites, a probable human carcinogen, generate reactive nitrogen species that may cause damage to the lung. We evaluated the association between nutritional habits related to nitrite and nitrate intake and risk of lung cancer in Mazandaran, Northern Province of Iran. In this case-control study the two groups were matched for gender and age (+/- 5 years). A semi -quantitative food frequency questionnaire (FFQ) was used to collect dietary data about nutritional habits related to nitrate, nitrite, vitamins E and C intake, from 40 lung cancer cases and 40 control subjects admitted at Mazanaran hospitals. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) for the risk of lung cancer using logistic regression. Mean score of nutritional habits in case group was significantly lower than that in control group (P less than or equal 0.001). We observed a positive association between animal sources of nitrate and nitrite intake (OR = 2.7, 95% CI: 0.13-0.96) and risk of lung cancer. Decreased risk of lung cancer was also observed with fruit intake (OR = 0.26, 95% CI: 1.3-11). Our results indicate a probable association between nutritional habits related to animal sources of nitrate and nitrite intake and the risk of lung cancer that requires to be confirmed by other studies.

  14. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions.

    Science.gov (United States)

    Bedale, Wendy; Sindelar, Jeffrey J; Milkowski, Andrew L

    2016-10-01

    Consumers have an illogical relationship with nitrite (and its precursor, nitrate) in food. Despite a long history of use, nitrite was nearly banned from use in foods in the 1970s due to health concerns related to the potential for carcinogenic nitrosamine formation. Changes in meat processing methods reduced those potential risks, and nitrite continued to be used in foods. Since then, two opposing movements continue to shape how consumers view dietary nitrate and nitrite. The discovery of the profound physiological importance of nitric oxide led to the realization that dietary nitrate contributes significantly to the nitrogen reservoir for nitric oxide formation. Numerous clinical studies have also demonstrated beneficial effects from dietary nitrate consumption, especially in vascular and metabolic health. However, the latest wave of consumer sentiment against food additives, the clean-label movement, has renewed consumer fear and avoidance of preservatives, including nitrite. Education is necessary but may not be sufficient to resolve this disconnect in consumer perception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Glocal assessment of integrated wastewater treatment and recovery concepts using partial nitritation/Anammox and microalgae for environmental impacts.

    Science.gov (United States)

    Khiewwijit, Rungnapha; Rijnaarts, Huub; Temmink, Hardy; Keesman, Karel J

    2018-07-01

    This study explored the feasibility and estimated the environmental impacts of two novel wastewater treatment configurations. Both include combined bioflocculation and anaerobic digestion but apply different nutrient removal technologies, i.e. partial nitritation/Anammox or microalgae treatment. The feasibility of such configurations was investigated for 16 locations worldwide with respect to environmental impacts, such as net energy yield, nutrient recovery and effluent quality, CO 2 emission, and area requirements. The results quantitatively support the applicability of partial nitritation/Anammox in tropical regions and some locations in temperate regions, whereas microalgae treatment is only applicable the whole year round in tropical regions that are close to the equator line. Microalgae treatment has an advantage over the configuration with partial nitritation/Anammox with respect to aeration energy and nutrient recovery, but not with area requirements. Differential sensitivity analysis points out the dominant influence of microalgal biomass yield and wastewater nutrient concentrations on area requirements and effluent quality. This study provides initial selection criteria for worldwide feasibility and corresponding environmental impacts of these novel municipal wastewater treatment plant configurations. Copyright © 2018. Published by Elsevier B.V.

  16. Seasonal and Water Column Trends of the Relative Role of Nitrate and Nitrite as ·OH Sources in Surface Waters

    International Nuclear Information System (INIS)

    Vione, D.; Minero, C.; Maurino, V.; Pelizzetti, E.

    2007-01-01

    Based on literature data of sunlight spectrum, photolysis quantum yields, and absorption spectra, the relative role of nitrite and nitrate as ·OH sources in surface waters was assessed, and its dependence on the season and the depth of the water column studied. In the majority of surface water samples (river, lake and seawater) nitrite is expected to play a more important role as ·OH source compared to nitrate, in spite of the usually lower [NO 2 - ] values. Interestingly, under the hypothesis of a constant ratio of the concentrations of nitrate and nitrite (to be corrected later on for the actual concentration ratio in a given sample), the relative role of nitrite compared to nitrate would be minimum in summer, at noon, in the surface layer of natural waters. Any decrease in the sunlight intensity that can be experienced in the natural environment (different season than summer, water column absorption, time of the day other than the solar noon), with its associated influence on the sunlight spectrum, would increase the relative role of nitrite compared to nitrate

  17. Quantifying the sources and sinks of nitrite in the oxygen minimum zone of the Eastern Tropical South Pacific

    Science.gov (United States)

    Ji, Qixing; Widner, Brittany; Jayakumar, Amal; Ward, Bess; Mulholland, Margaret

    2017-04-01

    In coastal upwelling regions, high surface productivity leads to high export and intense remineralization consuming oxygen. This, in combination with slow ventilation, creates oxygen minimum zones (OMZ) in eastern boundary regions of the ocean, such as the one off the Peruvian coast in the Eastern Tropical South Pacific. The OMZ is characterized by a layer of high nitrite concentration coinciding with water column anoxia. Sharp oxygen gradients are located above and below the anoxic layer (upper and lower oxyclines). Thus, the OMZ harbors diverse microbial metabolisms, several of which involve the production and consumption of nitrite. The sources of nitrite are ammonium oxidation and nitrate reduction. The sinks of nitrite include anaerobic ammonium oxidation (anammox), canonical denitrification and nitrite oxidation to nitrate. To quantify the sources and sinks of nitrite in the Peruvian OMZ, incubation experiments with 15N-labeled substrates (ammonium, nitrite and nitrate) were conducted on a research cruise in January 2015. The direct measurements of instantaneous nitrite production and consumption rates were compared with ambient nitrite concentrations to evaluate the turnover rate of nitrite in the OMZ. The distribution of nitrite in the water column showed a two-peak structure. A primary nitrite maximum (up to 0.5 μM) was located in the upper oxycline. A secondary nitrite maximum (up to 10 μM) was found in the anoxic layer. A nitrite concentration minimum occurred at the oxic-anoxic interface just below the upper oxycline. For the sources of nitrite, highest rates of ammonium oxidation and nitrate reduction were detected in the upper oxycline, where both nitrite and oxygen concentrations were low. Lower rates of nitrite production were detected within the layer of secondary nitrite maximum. For the sinks of nitrite, the rates of anammox, denitrification and nitrite oxidation were the highest just below the oxic-anoxic interface. Low nitrite consumption

  18. In-situ nitrite analysis in high level waste tanks

    International Nuclear Information System (INIS)

    O'Rourke, P.E.; Prather, W.S.; Livingston, R.R.

    1992-01-01

    The Savannah River Site produces special nuclear materials used in the defense of the United States. Most of the processes at SRS are primarily chemical separations and purifications. In-situ chemical analyses help improve the safety, efficiency and quality of these operations. One area where in situ fiberoptic spectroscopy can have a great impact is the management of high level radioactive waste. High level radioactive waste at SRS is stored in more than 50 large waste tanks. The waste exists as a slurry of nitrate salts and metal hydroxides at pH's higher than 10. Sodium Nitrite is added to the tanks as a corrosion inhibitor. In-situ fiberoptic probes are being developed to measure the nitrate, nitrite and hydroxide concentrations in both liquid and solid fractions. Nitrite levels can be measured between 0.01M and 1M in a 1mm pathlength optical cell

  19. Reduction of nitrate and nitrite salts under hydrothermal conditions

    International Nuclear Information System (INIS)

    Foy, B.R.; Dell'Orco, P.C.; Wilmanns, E.; McInroy, R.; Ely, J.; Robinson, J.M.; Buelow, S.J.

    1994-01-01

    The feasibility of reducing nitrate/nitrite salts under hydrothermal conditions for the treatment of aqueous mixed wastes stored in the underground tanks at the Department of Energy site at Hanford, Washington was studied. The reduction of nitrate and nitrite salts by reaction with EDTA using a tank waste simulant was examined at temperatures between 623K and 800K and pressures between 0.6 and 1.2 kbar. Continuous flow reactors were used to determine kinetics and products of reactions. All reactions were studied under pressures high enough to produce single phase conditions. The reactions are rapid, go to completion in less than a minute, and produce simple products, such as carbonate, nitrogen, and nitrous oxide gases. The experimental results demonstrate the ability of chemical reactions under hydrothermal conditions to reduce the nitrate and nitrite salts and destroy organic compounds in the waste mixtures

  20. Changes in mutagenicity of protein pyrolyzates by reaction with nitrite.

    Science.gov (United States)

    Yoshida, D; Matsumoto, T

    1978-09-01

    Pyrolyzates of protein and related materials were treated with nitrite under acidic conditions, and the mutagenic activity toward Salmonella tester strains was determined. After treatment with nitrite in acidic solution, casein pyrolyzate, an extract of roasted chicken meat, tobacco-smoke condensate and some aromatic amines showed appreciable decreases in their mutagenic activities toward Salmonella typhimurium TA 98. Aromatic amines in the pyrolyzates may be changed by nitrite treatment to other forms having no or lower mutagenic activity toward Salmonella typhimurium TA 98. The contribution by aromatic amines to the total mutagenic activity of the pyrolyzates was as high as 80% in both casein pyrolyzate and extract of roasted chicken meat and 50% in tobacco-smoke condensate. Pyrolyzates of protein and related materials did not show a decrease in the mutagenic activity toward Salmonella typhimurium TA 100 with the same treatment.

  1. Antimicrobial activity of essential oils and fruits supplement in reduced nitrite salts condition

    Directory of Open Access Journals (Sweden)

    Vujadinović Dragan P.

    2017-01-01

    Full Text Available Because of the growing negative perception of consumers related to the use of meat products produced by conventional curing methods, organic and natural products are increasingly accepted by consumers. Such products contain a large number of natural products derived from plants, spices, as well as their derivatives in form of essential oils, extracts, concentrates, and so on. These derivatives contain large number of active substances which are known to inhibit the metabolic processes of bacteria, yeasts and molds. Therefore, the goal of this paper was to investigate the synergistic antimicrobial activity of the models with a reduced presence of nitrite salt in aqueous solution, emulsions of essential oils in varying concentrations in vivo via antibiogram tests on pathogenic microorganisms. The effect of the six model groups was analyzed. Two groups were fruit powder solutions in concentrations of 0.2% to 1.2% (Acerola powder and fruit powder mix, while the other four groups were models of aqueous emulsion of essential oil in concentrations ranging from 0.05% to 1.2% (tea tree, clove, oregano, and cinnamon essential oils. In all models reduced amount of the sodium salt of 1.80%, 0.0075% nitrite salt and the liquid derivative as a natural source of the nitrate salt of 3% were used. Antibiogram tests were performed on five pathogenic bacteria (C. perfringens, E. coli, S. enterica, L. monocytogenes, and S. aureus. All antibiogram tests were performed according to Kirby-Bauer disk diffusion protocol. Results of antibiograms showed that without the presence of additional antimicrobial agents, in model systems with reduced content of salts, inhibition zones were not detected. Additionally, models with essential oils of tea tree oil and oregano had the widest inhibition zone diameters, ranging from 17.76±0.48mm for E. coli up to 42.50±0.13mm for S. aureus.

  2. Nebulization of the acidified sodium nitrite formulation attenuates acute hypoxic pulmonary vasoconstriction

    Directory of Open Access Journals (Sweden)

    Surber Mark W

    2010-06-01

    Full Text Available Abstract Background Generalized hypoxic pulmonary vasoconstriction (HPV occurring during exposure to hypoxia is a detrimental process resulting in an increase in lung vascular resistance. Nebulization of sodium nitrite has been shown to inhibit HPV. The aim of this project was to investigate and compare the effects of nebulization of nitrite and different formulations of acidified sodium nitrite on acute HPV. Methods Ex vivo isolated rabbit lungs perfused with erythrocytes in Krebs-Henseleit buffer (adjusted to 10% hematocrit and in vivo anesthetized catheterized rabbits were challenged with periods of hypoxic ventilation alternating with periods of normoxic ventilation. After baseline hypoxic challenges, vehicle, sodium nitrite or acidified sodium nitrite was delivered via nebulization. In the ex vivo model, pulmonary arterial pressure and nitric oxide concentrations in exhaled gas were monitored. Nitrite and nitrite/nitrate were measured in samples of perfusion buffer. Pulmonary arterial pressure, systemic arterial pressure, cardiac output and blood gases were monitored in the in vivo model. Results In the ex vivo model, nitrite nebulization attenuated HPV and increased nitric oxide concentrations in exhaled gas and nitrite concentrations in the perfusate. The acidified forms of sodium nitrite induced higher levels of nitric oxide in exhaled gas and had longer vasodilating effects compared to nitrite alone. All nitrite formulations increased concentrations of circulating nitrite to the same degree. In the in vivo model, inhaled nitrite inhibited HPV, while pulmonary arterial pressure, cardiac output and blood gases were not affected. All nitrite formulations had similar potency to inhibit HPV. The tested concentration of appeared tolerable. Conclusion Nitrite alone and in acidified forms effectively and similarly attenuates HPV. However, acidified nitrite formulations induce a more pronounced increase in nitric oxide exhalation.

  3. Safety and sensory aspects of nitrite alternatives in meat curing

    International Nuclear Information System (INIS)

    Shahidi, F.; Pegg, R.B.

    1991-01-01

    The use of nitrite to cure meats (especially bacon) is viewed as undesirable, because it leads to the formation of carcinogenic nitrosamines. The amount of nitrite (10-40 ppm) associated with the cured colour and flavour is fairly harmless, and it is the larger amount, (100-200 ppm) added to preserve the meat, which is potentially harmful. This article reviews various preservatives which can be used in combination with low concentrations of nitrate. The authors consider that the use of lactate, of alternatively radiation sterilization, offers the best safe alternative to nitrate

  4. Microorganism Utilization for Synthetic Milk

    Science.gov (United States)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  5. The useful micro-organism

    International Nuclear Information System (INIS)

    1970-01-01

    Can man survive civilization? Academician Ivan Malek, Director of the Institute of Microbiology in Prague, a member of the Agency's Scientific Advisory Committee and for many years an adviser to the Food and Agriculture Organization, the World Health Organization and UNESCO, believes he can, But he also considers that if man is to survive he must study and use all the resources at his disposal - including the micro-organisms of the planet earth. (author)

  6. Secondary metabolites from marine microorganisms.

    Science.gov (United States)

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  7. Secondary metabolites from marine microorganisms

    Directory of Open Access Journals (Sweden)

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  8. PROBIOTICS BASED ON TRANSGENIC MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    S. А. Starovoitova

    2012-02-01

    Full Text Available Modern tendencies of recombinant microorganisms creation for obtaining on their basis a new effective biopreparations (probiotics with wider spectrum of biological and therapeutic properties were considered. A lot of attention was focused on the main genera of perspective bacteria for creation of recombinant probiotics particularly: Lactococcus, Bifidobac terium,Bacillus, Escherichia. The main created Ukrainian and foreign gene-modified strains, that are widely used today in creation of effective recombinant biopreparations were characterized. Some fundamental directions and methods of gene-modified strains obtaining, which are used in getting effective biopreparations that used for therapy and prophylactic illness were reported, under which this group of pharmaceutical drugs were not used earlier. The safety matters of probiotics using on basis of genemodified strains were examined. Medical and veterinary biopreparations on basis of recombinant microorganisms could be used directly and effectively for therapy and prophylaxis of different illness, beginning from disbacteriosis up to cardiovascular diseases. It is related with some probiotic microorganisms ability for lowering of serum cholesterol at the host organism.

  9. Microorganisms as sources of oils

    Directory of Open Access Journals (Sweden)

    Thevenieau France

    2013-11-01

    Full Text Available A number of microorganism belonging to the genera of yeast, fungi, bacteria and microalgae have ability to accumulate substantial amounts of oil, sometimes up to an even in excess of 70% of their biomass weight under specific cultivation conditions. For nearly 100 years, the commercial opportunities of using microorganisms as sources of oils have been continuously examined. Although it was evident that microbial oils could never compete commercially with the major commodity plant oils, there were commercially opportunities for the production of some of the higher valued oils. Today, with the great progress of metabolic and genetic engineering, the developments are focus on the high value oils containing important polyunsaturated or specific fatty acids. Such oils have the potential to be used in different applications area as food, feed and oleochemistry. This review is covering the related researches about different oleaginous microorganisms for lipids production and microbial oils biosynthesis process. In add, the lipid metabolism, metabolic engineering strategies to increase lipid production and the economics of microbial oils production are introduced.

  10. Transformation of the insecticide teflubenzuron by microorganisms

    NARCIS (Netherlands)

    Finkelstein, Z.I.; Baskunov, B.P.; Rietjens, I.M.C.M.; Boersma, M.G.; Vervoort, J.; Golovleva, L.A.

    2001-01-01

    Transformation of teflubenzuron, the active component in the insecticide commercialized as Nomolt, by soil microorganisms was studied. It was shown that microorganisms, belonging to Bacillus, Alcaligenes, Pseudomonas and Acinetobacter genera are capable to perform the hydrolytic cleavage of the

  11. 40 CFR 725.85 - Microorganism identity.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only to...

  12. Physiology and interaction of nitrate and nitrite reduction in Staphylococcus carnosus.

    OpenAIRE

    Neubauer, H; Götz, F

    1996-01-01

    Staphylococcus carnosus reduces nitrate to ammonia in two steps. (i) Nitrate was taken up and reduced to nitrite, and nitrite was subsequently excreted. (ii) After depletion of nitrate, the accumulated nitrite was imported and reduced to ammonia, which again accumulated in the medium. The localization, energy gain, and induction of the nitrate and nitrite reductases in S. carnosus were characterized. Nitrate reductase seems to be a membrane-bound enzyme involved in respiratory energy conserva...

  13. The redox interplay between nitrite and nitric oxide: From the gut to the brain

    Directory of Open Access Journals (Sweden)

    Cassilda Pereira

    2013-01-01

    We here discuss the implications of the redox conversion of nitrite to ·NO in the gut, how nitrite-derived ·NO may signal from the digestive to the central nervous system, influencing brain function, as well as a putative ascorbate-driven nitrite/NO pathway occurring in the brain.

  14. Neurotoxicity induced by alkyl nitrites: Impairment in learning/memory and motor coordination.

    Science.gov (United States)

    Cha, Hye Jin; Kim, Yun Ji; Jeon, Seo Young; Kim, Young-Hoon; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Park, Hye-Kyung; Kim, Hyung Soo

    2016-04-21

    Although alkyl nitrites are used as recreational drugs, there is only little research data regarding their effects on the central nervous system including their neurotoxicity. This study investigated the neurotoxicity of three representative alkyl nitrites (isobutyl nitrite, isoamyl nitrite, and butyl nitrite), and whether it affected learning/memory function and motor coordination in rodents. Morris water maze test was performed in mice after administrating the mice with varying doses of the substances in two different injection schedules of memory acquisition and memory retention. A rota-rod test was then performed in rats. All tested alkyl nitrites lowered the rodents' capacity for learning and memory, as assessed by both the acquisition and retention tests. The results of the rota-rod test showed that isobutyl nitrite in particular impaired motor coordination in chronically treated rats. The mice chronically injected with isoamyl nitrite also showed impaired function, while butyl nitrite had no significant effect. The results of the water maze test suggest that alkyl nitrites may impair learning and memory. Additionally, isoamyl nitrite affected the rodents' motor coordination ability. Collectively, our findings suggest that alkyl nitrites may induce neurotoxicity, especially on the aspect of learning and memory function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Nitrite toxicity assessment in Danio rerio and Poecilia reticulata

    Directory of Open Access Journals (Sweden)

    Petra Doleželová

    2011-01-01

    Full Text Available Nitrite is a natural component of the nitrogen cycle in the environment. Although it usually occurs in low concentrations, elevated concentrations caused by effluents or affected nitrification process can lead to serious health deterioration of fish. Two aquarium fish zebrafish (Danio rerio and guppy (Poecilia reticulata are recommended to use as model organisms in toxicity tests. However, their sensitivity to nitrite can differ. The aim of this study was to define acute toxicity of nitrite by the semistatic method according to OECD No. 203 (Fish, Acute toxicity test. The series of 4 acute toxicity tests was performed, with 10 fish of both species used for each concentration and for the control. The 96hLC50 NO2- value for D. rerio and P. reticulata was 242.55 ± 15.79 mg·l-1 and 30.2 ± 8.74 mg·l-1, respectively. We have proved significant difference (p D. rerio and P. reticulata. The results showed different sensitivities to nitrites in tested fish species, which could be related to species-specific branchial chloride uptake mechanism. This is the first study on this fish species.

  16. Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Brunori, Maurizio; Cutruzzolà, Francesca

    2009-01-01

    ) as the level of reduction increased in both the WT and the His mutant. Equilibrium standard enthalpy and entropy changes and activation parameters of this ET process were determined. We concluded that negative cooperativity is a common feature among the cd(1) nitrite reductases, and we discuss this control...

  17. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific

    Science.gov (United States)

    Peng, Xuefeng; Fuchsman, Clara A.; Jayakumar, Amal; Oleynik, Sergey; Martens-Habbena, Willm; Devol, Allan H.; Ward, Bess B.

    2015-12-01

    Nitrification plays a key role in the marine nitrogen (N) cycle, including in oceanic oxygen minimum zones (OMZs), which are hot spots for denitrification and anaerobic ammonia oxidation (anammox). Recent evidence suggests that nitrification links the source (remineralized organic matter) and sink (denitrification and anammox) of fixed N directly in the steep oxycline in the OMZs. We performed shipboard incubations with 15N tracers to characterize the depth distribution of nitrification in the Eastern Tropical North Pacific (ETNP). Additional experiments were conducted to investigate photoinhibition. Allylthiourea (ATU) was used to distinguish the contribution of archaeal and bacterial ammonia oxidation. The abundance of archaeal and β-proteobacterial ammonia monooxygenase gene subunit A (amoA) was determined by quantitative polymerase chain reaction. The rates of ammonia and nitrite oxidation showed distinct subsurface maxima, with the latter slightly deeper than the former. The ammonia oxidation maximum coincided with the primary nitrite concentration maximum, archaeal amoA gene maximum, and the subsurface nitrous oxide maximum. Negligible rates of ammonia oxidation were found at anoxic depths, where high rates of nitrite oxidation were measured. Archaeal amoA gene abundance was generally 1 to 2 orders of magnitude higher than bacterial amoA gene abundance, and inhibition of ammonia-oxidizing bacteria with 10 μM ATU did not affect ammonia oxidation rates, indicating the dominance of archaea in ammonia oxidation. These results depict highly dynamic activities of ammonia and nitrite oxidation in the oxycline of the ETNP OMZ.

  18. Poppers: epidemiology and clinical management of inhaled nitrite abuse.

    Science.gov (United States)

    Romanelli, Frank; Smith, Kelly M; Thornton, Alice C; Pomeroy, Claire

    2004-01-01

    Commonly referred to as "poppers," inhaled nitrites have a long history of abuse. Poppers are rapid-onset, short-acting potent vasodilators that produce a rush characterized by warm sensations and feelings of dizziness. Poppers sometimes are used to facilitate anal intercourse because of their actions on the anal sphincter. Epidemiologically, the frequent use of nitrites by men who have sex with men has led some experts to implicate these chemicals in the pathogenesis of Kaposi's sarcoma and acquired immunodeficiency syndrome. Controlled clinical trials to examine this potential correlation have not been conducted, and the use of nitrites simply may be a marker for other high-risk behaviors such as unprotected sex. Although regulated in the United States, many nitrite compounds and isomers are sold at various venues including bars, bookstores, and over the Internet. Adverse effects associated with these products vary from mild allergic reactions to life-threatening methemoglobinemia. The potential for drug-drug interactions and a propensity toward unsafe sex also exist. Clinicians should be familiar with the populations most likely to abuse these agents and with the clinical effects and management guidelines for acute ingestions.

  19. Hydrogen ion (Ph), ammonia, dissolved oxygen and nitrite ...

    African Journals Online (AJOL)

    Hydrogen ion (pH), dissolved oxygen, ammonia and nitrite concentrations were studied monthly in two systems (re-circulatory and semi-intensive of 3 m2 sizes) each for six months. The systems were each stocked with 200 g of Clarias gariepinus fingerlings. Results showed that all parameters were within acceptable limits ...

  20. Nitrate, Nitrite, and Ammonium Variability in Drinking Water Distribution Systems.

    Science.gov (United States)

    Schullehner, Jörg; Stayner, Leslie; Hansen, Birgitte

    2017-03-09

    Accurate assessments of exposure to nitrate in drinking water is a crucial part of epidemiological studies investigating long-term adverse human health effects. However, since drinking water nitrate measurements are usually collected for regulatory purposes, assumptions on (1) the intra-distribution system variability and (2) short-term (seasonal) concentration variability have to be made. We assess concentration variability in the distribution system of nitrate, nitrite, and ammonium, and seasonal variability in all Danish public waterworks from 2007 to 2016. Nitrate concentrations at the exit of the waterworks are highly correlated with nitrate concentrations within the distribution net or at the consumers' taps, while nitrite and ammonium concentrations are generally lower within the net compared with the exit of the waterworks due to nitrification. However, nitrification of nitrite and ammonium in the distribution systems only results in a relatively small increase in nitrate concentrations. No seasonal variation for nitrate, nitrite, or ammonium was observed. We conclude that nitrate measurements taken at the exit of the waterworks are suitable to calculate exposures for all consumers connected to that waterworks and that sampling frequencies in the national monitoring programme are sufficient to describe temporal variations in longitudinal studies.

  1. Nitrite and nitroso compounds can serve as specific catalase inhibitors.

    Science.gov (United States)

    Titov, Vladimir Yu; Osipov, Anatoly N

    2017-03-01

    We present evidence that nitrite and nitrosothiols, nitrosoamines and non-heme dinitrosyl iron complexes can reversibly inhibit catalase with equal effectiveness. Catalase activity was evaluated by the permanganatometric and calorimetric assays. This inhibition is not the result of chemical transformations of these compounds to a single inhibitor, as well as it is not the result of NO release from these substances (as NO traps have no effect on the extent of inhibition). It was found that chloride and bromide in concentration above 80 mM and thiocyanate in concentration above 20 μM enhance catalase inhibition by nitrite and the nitroso compounds more than 100 times. The inhibition degree in this case is comparable with that induced by azide. We propose that the direct catalase inhibitor is a positively charged NO-group. This group acquires a positive charge in the active center of enzyme by interaction of nitrite or nitroso compounds with some enzyme groups. Halides and thiocyanate protect the NO + group from hydration and thus increase its inhibition effect. It is probable that a comparatively low chloride concentration in many cells is the main factor to protect catalase from inhibition by nitrite and nitroso compounds.

  2. Control of the ambident reactivity of the nitrite ion

    DEFF Research Database (Denmark)

    Dong, Hai; Rahm, Martin; Thota, Niranjan

    2013-01-01

    of this difference was addressed. The ambident reactivity of the nitrite ion has been found to be the cause of the complex product formation observed, which can be controlled by a neighbouring equatorial ester group. Both N-attack and O-attack occur in the absence of the ester group, whereas O-attack is favoured...

  3. Urinary Excretion of N-Nitroso Compounds in Rats Fed Sodium Nitrite and/or Hot Dogs

    Science.gov (United States)

    2015-01-01

    Nitrite-treated meat is a reported risk factor for colon cancer. Mice that ingested sodium nitrite (NaNO2) or hot dogs (a nitrite-treated product) showed increased fecal excretion of apparent N-nitroso compounds (ANC). Here, we investigated for the first time whether rats excrete increased amounts of ANC in their urine after they are fed NaNO2 and/or hot dogs. Rats were treated for 7 days with NaNO2 in drinking water or were fed hot dogs. Their 24 h urine samples were analyzed for ANC by thermal energy analysis on days 1–4 after nitrite or hot dog treatment was stopped. For two rats fed 480 mg NaNO2/L drinking water, mean urinary ANC excretion on days 1–4 was 30, 5.2, 2.5, and 0.8 nmol/day, respectively. For two to eight rats/dose given varied NaNO2 doses, mean urinary ANC output on day 1 increased from 0.9 (for no nitrite) to 37 (for 1000 mg NaNO2/L drinking water) nmol ANC/day. Urine samples of four rats fed 40–60% hot dogs contained 12–13 nmol ANC on day 1. Linear regression analysis showed highly significant correlations between urinary ANC excretion on day 1 after stopping treatment and varied (a) NaNO2 level in drinking water for rats fed semipurified or commercials diet and (b) hot dog levels in the diet. Some correlations remained significant up to 4 days after nitrite treatment was stopped. Urinary output of ANC precursors (compounds that yield ANC after mild nitrosation) for rats fed semipurified or commercial diet was 11–17 or 23–48 μmol/day, respectively. Nitrosothiols and iron nitrosyls were not detected in urinary ANC and ANCP. Excretion of urinary ANC was about 60% of fecal ANC excretion for 1 to 2 days after NaNO2 was fed. Administered NaNO2 was not excreted unchanged in rat urine. We conclude that urinary ANC excretion in humans could usefully be surveyed to indicate exposure to N-nitroso compounds. PMID:25183213

  4. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria

    Science.gov (United States)

    Klueglein, Nicole; Zeitvogel, Fabian; Stierhof, York-Dieter; Floetenmeyer, Matthias; Konhauser, Kurt O.; Obst, Martin

    2014-01-01

    Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Here we used cultivation-based methods and electron microscopy to compare two previously described nitrate-reducing Fe(II) oxidizers ( Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002) and two heterotrophic nitrate reducers (Paracoccus denitrificans ATCC 19367 and P. denitrificans Pd 1222). All four strains oxidized ∼8 mM Fe(II) within 5 days in the presence of 5 mM acetate and accumulated nitrite (maximum concentrations of 0.8 to 1.0 mM) in the culture media. Iron(III) minerals, mainly goethite, formed and precipitated extracellularly in close proximity to the cell surface. Interestingly, mineral formation was also observed within the periplasm and cytoplasm; intracellular mineralization is expected to be physiologically disadvantageous, yet acetate consumption continued to be observed even at an advanced stage of Fe(II) oxidation. Extracellular polymeric substances (EPS) were detected by lectin staining with fluorescence microscopy, particularly in the presence of Fe(II), suggesting that EPS production is a response to Fe(II) toxicity or a strategy to decrease encrustation. Based on the data presented here, we propose a nitrite-driven, indirect mechanism of cell encrustation whereby nitrite forms during heterotrophic denitrification and abiotically oxidizes Fe(II). This work adds to the known assemblage of Fe(II)-oxidizing bacteria in nature and complicates our ability to delineate microbial Fe(II) oxidation in ancient microbes preserved as fossils in the geological record. PMID:24271182

  5. Nitrite oxidizing bacteria for water treatment in coastal aquaculture system

    Science.gov (United States)

    Noorak, S.; Rakkhiaw, S.; Limjirakhajornt, K.; Uppabullung, A.; Keawtawee, T.; Sangnoi, Y.

    2018-04-01

    This research aimed to isolate and characterize nitrite oxidizing bacteria and to study their capability for water quality improvement. Fourteen strains of bacteria with nitrite-oxidizing character were isolated after 21 days of enrichment in Pep-Beef-NOB medium contained NaNO2. Two strains, SF-1 and SF-5, showed highest nitrite removal rate for 42.42% and 37.2%, respectively. These strains were determined an efficiency of open-system wastewater treatment for 14 days. The results showed that control, SF-1 and SF-5 had remove ammonia from day 1 to day 6. At the end of the study, ammonia was removed by the control, SF-1 and SF-5 for 81.27%, 70.1% and 69.82%, respectively. Nitrite concentration was lowest at day 8 with removal rate of 98.73%, 98.3% and 97.24% from control, SF-1 and SF-5, respectively. However, nitrite concentration in control experiment was increased again at day 11 whereas in SF-1 and SF-5 were increased at day 13. Chemical Oxygen Demand (COD) was decreased by 77.78%, 73.50% and 78.63% in the control, SF-1 and SF-5, respectively. Biological Oxygen Demand (BOD) in the control, SF-1 and SF-5 were reduced by 85.92%, 79.53% and 82.09%, respectively. Based on 16S rRNA gene, SF-1 and SF-5 were identified as Bacillus vietnamensis and B. firmus, respectively.

  6. Effects of Atrazine on Soil Microorganisms

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2006-01-01

    Full Text Available Effects of the herbicide atrazine on soil microorganisms was investigated. Trials were set up in laboratory, on a clay loam soil. Atrazine was applied at 8.0, 40.0 and 80.0 mg/kg soil rates. The abundance of total microorganisms, fungi, actinomycetes, cellulolytic microorganisms and amino-heterotrophs was recorded. Soil samples were collected 1, 7, 14, 21, 30 and 60 days after atrazine treatment for microbiological analyses.The results showed that the intensity of atrazine effect on soil microorganisms depended on treatment rate, exposure time and group of microorganisms. Atrazine had an inhibiting effect on cellulolytic microorganisms and amino-heterotrophs. Initially, it inhibited fungiand actinomycetes but its effect turned into a stimulating one once a population recovered. Atrazine had a stimulating effect on total abundance of microorganisms.

  7. Effect of Dry Red Grape Pomace as a Nitrite Substitute on the Microbiological and Physicochemical Properties and Residual Nitrite of Dry-cured Sausage

    OpenAIRE

    Fatemeh Riazi; Fariba Zeynali; Ebrahim Hoseini; Homa Behmadi

    2016-01-01

    Background and Objectives: Sodium nitrite and potassium nitrite have been traditionally used for inhibition of Clostridium botulinum and also as an agent to stabilize the color of meat products; however, usage of these additives at high levels could lead to toxicity and cancer originating from the formation of nitrosamines. Nowadays, application of natural preservatives in order to reduce the nitrite content in meat products is increasing. Thus, we used dry red grape pomace (DRGP) as a natura...

  8. Marine microorganisms. Umi no biseibutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, U. (Hiroshima University, Hiroshima (Japan). Faculty of Applied Biological Science)

    1992-11-10

    This paper explains properties, interactions, and activities of marine microorganisms. Marine bacteria include bacteria of vibrio family of arteromonas genus, luminous bacteria, and aerobic photosynthetic bacteria. Majority of marine bacteria is halophilic, and many proliferate at 5[degree]C or lower. Some of them can proliferate at 20[degree]C to 30[degree]C, or as high temperature as 80[degree]C and higher. Spongiaria and tumicata have many symbiotic microorganisms, and genes equivalent to luminous bacteria genes were discovered in DNA of light emitting organs in luminous fishes. It was verified that animal groups in upwelling zones are supported by bacteria that assimilate inorganics supplied from ocean bottoms. Marine bacteria decompose almost all of organics brought in from land to sea, and those produced in sea. Marine bacteria engage in complex interrelations with other organisms for competition, antagonism, parasitism, and symbiosis. The bacteria make antibacterial substances, anti-algae bacteria, enzyme inhibitors, toxins, pharmacologically active substances, and such physiologically active substances as deposition promoting substances to undersea structures including shells and barnacles, and deposition blocking substances. 53 refs., 3 figs.

  9. Mechanism of anodic oxidation of molybdenum and tungsten in nitrate-nitrite melts

    International Nuclear Information System (INIS)

    Yurkinskij, V.P.; Firsova, E.G.; Morachevskij, A.G.

    1987-01-01

    The mechanism of anode oxidation of tungsten and molybdenum in NaNO 3 -KNO 3 (50 mass %) nitrate-nitrite melts with NaNO 2 -KNO 2 (0.5-50 mass %) addition and in NaNO 2 -KNO 2 (35 mole %) nitrite melt in the 516-580 K temperature range is studied. It is supposed that the process of anode dissloving of the mentioned metals in nitrite melt and nitrate-nitrite mixtures is two-electron. Formation of oxide passivating film is possible under electrolysis on the anode surface, the film is then dissolved in nitrate-nitrite melt with formation of molybdates or tungstates

  10. Retention and leaching of nitrite by municipal solid waste incinerator bottom ash under the landfill circumstance.

    Science.gov (United States)

    Yao, Jun; Kong, Qingna; Zhu, Huayue; Long, Yuyang; Shen, Dongsheng

    2015-01-01

    The retention and leaching of nitrite by municipal solid waste incinerator (MSWI) bottom ash could affect its migration in the landfill. In this study, the effect of the dosage of MSWI bottom ash as well as the variation of the landfill environmental parameters including pH, anions and organic matter on the nitrite retention and leaching behavior was investigated by batch experiments. The highest removal percentage (73.0%) of nitrite was observed when the dosage of MSWI bottom ash was 10 g L(-1) in 2 mg L(-1) nitrite solution. Further increase of the dosage would retard the retention, as the nitrite leaching from MSWI bottom ash was enhanced. The optimum retention of nitrite was observed when the pH was 5.0, while the leaching of nitrite showed a consistent reduction with the increase of pH. Besides, the presence of Cl(-), SO4(2)(-) and acetic acid could enhance the leaching of nitrite and mitigate the retention process. However, the retention of nitrite was enhanced by PO4(3)(-), which was probably due to the formation of the apatite, an active material for the adsorption of the nitrite. These results suggested that MSWI bottom ash could affect the migration of nitrite in the landfill, which was related to the variation of the landfill circumstance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process.

    Science.gov (United States)

    Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun

    2006-03-01

    A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.

  12. Growth of hydrocarbon utilizing microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Mavinkurve, S.

    Two isolates from marine mud having broad spectrum hydrocarbon utilizing profile were identified as Arthrobacter simplex and Candida tropicalis.Both the organisms grew exponentially on crude oil. The cell yield of the organisms was influenced...

  13. Stimulation of soil microorganisms in pesticide-contaminated soil using organic materials

    OpenAIRE

    Ima Yudha Perwira; Kiwako S. Araki; Motoki Kubo; Dinesh Adhikari

    2016-01-01

    Agrochemicals such as pesticides have contributed to significant increases in crop yields; however, they can also be linked to adverse effects on human health and soil microorganisms. For efficient bioremediation of pesticides accumulated in agricultural fields, stimulation of microorganisms is necessary. In this study, we investigated the relationships between bacterial biomass and total carbon (TC) and total nitrogen (TN) in 427 agricultural soils. The soil bacterial biomass was generally p...

  14. Study of radioresistance of microorganisms

    International Nuclear Information System (INIS)

    Olbrichova, D.

    1983-01-01

    Strain radiosensitivity was evaluated on the basis of the determination of inactivation curve parameters and the determination of the D 10 value. The course of curves was investigated for two 60 Co sources, RCHM-gamma-20 (USSR) with an activity of 2.54x10 14 Bq and AECL (type J-6000, Canada) with an activity of 4.92x10 16 Bq. The curve parameters were determined for microorganisms in buffer medium and for cultures in dehydrated condition. Coccus germs were irradiated with doses of 1, 2, 3, 4, 5 and 6 kGy and aerobic sporulates with doses of 3, 6, 9, 12 and 15 kGy. For comparing the resistance of isolated strains the t-test was used. The most resistant of the isolated strains were Bacillus cereus, Bacillus subtilis, Bacillus pumilus and Bacillus megatherium. (E.S.)

  15. Functional Basis of Microorganism Classification.

    Science.gov (United States)

    Zhu, Chengsheng; Delmont, Tom O; Vogel, Timothy M; Bromberg, Yana

    2015-08-01

    Correctly identifying nearest "neighbors" of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned with

  16. Functional Basis of Microorganism Classification

    Science.gov (United States)

    Zhu, Chengsheng; Delmont, Tom O.; Vogel, Timothy M.; Bromberg, Yana

    2015-01-01

    Correctly identifying nearest “neighbors” of a given microorganism is important in industrial and clinical applications where close relationships imply similar treatment. Microbial classification based on similarity of physiological and genetic organism traits (polyphasic similarity) is experimentally difficult and, arguably, subjective. Evolutionary relatedness, inferred from phylogenetic markers, facilitates classification but does not guarantee functional identity between members of the same taxon or lack of similarity between different taxa. Using over thirteen hundred sequenced bacterial genomes, we built a novel function-based microorganism classification scheme, functional-repertoire similarity-based organism network (FuSiON; flattened to fusion). Our scheme is phenetic, based on a network of quantitatively defined organism relationships across the known prokaryotic space. It correlates significantly with the current taxonomy, but the observed discrepancies reveal both (1) the inconsistency of functional diversity levels among different taxa and (2) an (unsurprising) bias towards prioritizing, for classification purposes, relatively minor traits of particular interest to humans. Our dynamic network-based organism classification is independent of the arbitrary pairwise organism similarity cut-offs traditionally applied to establish taxonomic identity. Instead, it reveals natural, functionally defined organism groupings and is thus robust in handling organism diversity. Additionally, fusion can use organism meta-data to highlight the specific environmental factors that drive microbial diversification. Our approach provides a complementary view to cladistic assignments and holds important clues for further exploration of microbial lifestyles. Fusion is a more practical fit for biomedical, industrial, and ecological applications, as many of these rely on understanding the functional capabilities of the microbes in their environment and are less concerned

  17. Fatal methemoglobinemia caused by liniment solutions containing sodium nitrite.

    Science.gov (United States)

    Saito, T; Takeichi, S; Yukawa, N; Osawa, M

    1996-01-01

    We describe a case of fatal methemoglobinemia (MetHb-emia) resulting from application of liniment solution containing large quantities of sodium nitrite. As a remedial treatment of atopic dermatitis, the liniment solution was applied all over the boy's body. Autopsy findings showed no significant macroscopic or microscopic findings except blood tinted chocolate brown color and chronic atopic dermatitis over the whole surface of the body. Quantitation of the methemoglobin (MetHb) in the blood was performed using spectrophotometer; MetHb concentration of the blood was 76%. Ion chromatographic determination revealed a nitrite concentration of 1 mg/L in the serum. Such a liniment solution is not authorized by the Ministry of Public Welfare.

  18. [Methemoglobinemia due to ingestion of isobutyl nitrite ('poppers')].

    Science.gov (United States)

    Pruijm, M T C; de Meijer, P H E M

    2002-12-07

    Two male students, aged 20 and 21 years, developed central cyanosis shortly after drinking 5 ml of 'poppers' (isobutyl nitrite). They presented with methaemoglobinaemia and were hospitalised. After treatment with oxygen and intravenous fluids they could be discharged in good health the following day. Poppers are alkyl nitrites with vasdilative and oxidizing properties. They are used as party drugs (i.e. inhaled) because of their short-lived euphoric effect. Overdose can result in methaemoglobinaemia: the presence of oxidized haemoglobin which is unable to transport oxygen. Depending on the serum level of methaemoglobin this may result in central cyanosis, unconsciousness, coma and even death. Patients with high methaemoglobin levels should be treated with i.v. methylene blue.

  19. Sorbate-nitrite interactions: acetonitrile oxide as an alkylating agent.

    Science.gov (United States)

    Pérez-Prior, M Teresa; Gómez-Bombarelli, Rafael; González-Pérez, Marina; Manso, José A; García-Santos, M Pilar; Calle, Emilio; Casado, Julio

    2009-07-01

    Because chemical species with DNA-damaging and mutagenic activity are formed in sorbate-nitrite mixtures and because sorbic acid sometimes coexists with nitrite occurring naturally or incorporated as a food additive, the study of sorbate-nitrite interactions is important. Here, the alkylating potential of the products resulting from such interactions was investigated. Drawn were the following conclusions: (i) Acetonitrile oxide (ACNO) is the compound responsible for the alkylating capacity of sorbate-nitrite mixtures; (ii) ACNO alkylates 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases, forming an adduct (AD; epsilon = 1.4 x 10(4) M(-1) cm(-1); lambda = 519 nm); (iii) the NBP alkylation reaction complies with the rate equation, r = d[AD]/dt = k(alk)(ACNO)[ACNO][NBP]-k(hyd)(AD)[AD], k(alk)(ACNO) being the NBP alkylation rate constant for ACNO and k(hyd)(AD) the rate constant for the adduct hydrolysis reaction; (iv) the small fraction of ACNO forming the adduct with NBP, as well as the small magnitude of the quotient (k(alk) (ACNO)/k(hyd)(ACNO)) as compared with those reported for other alkylating agents, such as some lactones and N-alkyl-N-nitrosoureas, reveals the ACNO effective alkylating capacity to be less significant; (v) the low value of the NBP-ACNO adduct life (defined as the total amount of adduct present along the progression of the NBP alkylation per unit of alkylating agent concentration) points to the high instability of this adduct; and (vi) the obtained results are in accordance with the low carcinogenicity of ACNO.

  20. Intragastric nitrites, nitrosamines, and bacterial overgrowth during cimetidine treatment.

    OpenAIRE

    Stockbrugger, R W; Cotton, P B; Eugenides, N; Bartholomew, B A; Hill, M J; Walters, C L

    1982-01-01

    A six week course of cimetidine (1 g/day) healed peptic ulcers in 20 of 23 patients (14 with duodenal ulcer, nine with gastric ulcer). Reduction of basal acid output by 73% and peak acid output by 36% led to a rise in concentrations of intragastric aerobic bacteria and nitrate-reducing bacteria. While the mean intragastric concentration of nitrate was unchanged by treatment, there were statistically significant rises in nitrite and N-nitrosamine concentrations. The conversion from nitrates to...

  1. Determination of nitrate, nitrite, N- nitrosamines, cyanide and ...

    African Journals Online (AJOL)

    The nitrate, nitrite, N- nitrosamines and ascorbic acid content as well as the levels of cyanide in eight brands of fruit juices and twelve brands of sachet water commonly marketed and consumed in Nigeria were estimated. The mean values of nitrate ranged from 2.29±0.05 to 16.50±1.21 mg/L for the juices and 0.64±0.21 to ...

  2. The negative phonon confinement effect in nanoscopic sodium nitrite

    Czech Academy of Sciences Publication Activity Database

    Koroleva, E.Yu.; Nuzhnyy, Dmitry; Pokorný, Jan; Kamba, Stanislav; Kumzerov, Y. A.; Vakhrushev, S. B.; Petzelt, Jan

    2009-01-01

    Roč. 20, č. 39 (2009), 395706/1-395706/7 ISSN 0957-4484 R&D Projects: GA AV ČR KJB100100704; GA ČR(CZ) GA202/09/0682 Institutional research plan: CEZ:AV0Z10100520 Keywords : nanocomposite * sodium nitrite * infrared * THz * Raman * phonon * effective medium approach Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.137, year: 2009

  3. Nitrogen removal and intentional nitrous oxide production from reject water in a coupled nitritation/nitrous denitritation system under real feed-stream conditions.

    Science.gov (United States)

    Weißbach, Max; Thiel, Paul; Drewes, Jörg E; Koch, Konrad

    2018-05-01

    A Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) was performed over five months to investigate the performance and dynamics of nitrogen elimination and nitrous oxide production from digester reject water under real feed-stream conditions. A 93% conversion of ammonium to nitrite could be maintained for adapted seed sludge in the first stage (nitritation). The second stage (nitrous denitritation), inoculated with conventional activated sludge, achieved a conversion of 70% of nitrite to nitrous oxide after only 12 cycles of operation. The development of an alternative feeding strategy and the addition of a coagulant (FeCl 3 ) facilitated stable operation and process intensification. Under steady-state conditions, nitrite was reliably eliminated and different nitrous oxide harvesting strategies were assessed. Applying continuous removal increased N 2 O yields by 16% compared to the application of a dedicated stripping phase. These results demonstrate the feasible application of the CANDO process for nitrogen removal and energy recovery from ammonia rich wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Evaluation of the influence of proline, hydroxyproline or pyrrolidine in the presence of sodium nitrite on N-nitrosamine formation when heating cured meat.

    Science.gov (United States)

    Drabik-Markiewicz, G; Dejaegher, B; De Mey, E; Impens, S; Kowalska, T; Paelinck, H; Vander Heyden, Y

    2010-01-11

    N-nitrosamines are meant to be probable or possible carcinogenic components, possibly formed out of a reaction between nitrite and N-containing substances such as amino acids and secondary amines. Nitrite is often used for processing meat products because of its colouring and antimicrobial properties. During this experimental setup, the influence of proline, hydroxyproline or pyrrolidine on N-nitrosamine formation in meat samples was evaluated. The N-nitrosamines concentrations were measured with gas chromatography-thermal energy analyzer. Only the concentrations of N-nitrosodimethylamine and N-nitrosopyrrolidine were found above the limit of detection in a number of tested experimental conditions. The concentration of these two N-nitrosamines was modelled as a function of temperature and nitrite concentration for different situations (presence or absence of added natural N-containing meat components). It could be concluded that proline and pyrrolidine promoted the formation of N-nitrosopyrrolidine. It could also be confirmed that the higher the temperature of the meat processing procedure and the higher the sodium nitrite amounts added, the higher were the yields of the respective N-nitrosamines.

  5. Spectrophotometric determination of nitrite in simulated Purex Process solutions

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, I.daC. de; Matsuda, H T; Araujo, B.F. de; Araujo, J.A. de

    1984-01-01

    A spectrophotometric method for nitrite determination in simulated Purex Process solutions is presented, utilizing the Griess reagent for the formation of the coloured azocompound with an absorption maximum at 525 nm. Molar absortivity was 36,262 and the sensitivity of the method 10/sup -6/M for nitrite. The calibration curve is linear in the range of 2 to 30..mu..g NO/sup -//sub 2//25 ml in cells of 1 cm optical path. The method can be used in the presence of uranium up to limits of an U/NO/sup -//sub 2/ ratio of 150. Test solutions were prepared to simulate composition and concentrations as obtained by irradiating standard fuel with a neutro flux of 3.2 x 10/sup 13/ n.s/sup -1/.cm/sup -2/, with a burn-up value of 33,000 Mwd/T and cooling time of two years. Nitrite determinations in these solutions were accurate within limits of 5%.

  6. Influence of turkey meat on residual nitrite in cured meat products.

    Science.gov (United States)

    Kilic, B; Cassens, R G; Borchert, L L

    2001-02-01

    A response surface experimental design was employed to estimate residual nitrite level at various initial nitrite concentrations, percent turkey meat in the formula, and heat quantity (F) values using a typical wiener as the test system. Pork and mechanically separated turkey were used as the meat ingredients. Residual nitrite and pH were measured at day 1, 7 days, 14 days, and 49 days after processing. Protein, fat, salt, moisture, and CIE (L*a*b*) color values were also determined. Results showed that the effect of turkey meat on residual nitrite level was significant (P meat in the formula resulted in lower residual nitrite levels at a fixed pH. The residual nitrite level was initially proportional to initial nitrite concentration, but it became a nonsignificant factor during longer storage time. Differences in heat quantity had a significant effect (P nitrite level initially. Greater heat quantity decreased residual nitrite level in finished cured meat products at a fixed pH. However, this effect became nonsignificant during longer storage. Reduction of residual nitrite in wieners because of turkey meat addition at a fixed pH was due to characteristics of the turkey tissue, but the mechanism of action remains unknown. It was also established that commercial wieners had a higher pH if poultry meat was included in the formulation.

  7. Monitoring nitrite and nitrate residues in frankfurters during processing and storage.

    Science.gov (United States)

    Pérez-Rodríguez, M L; Bosch-Bosch, N; Garciá-Mata, M

    1996-09-01

    Frankfurter-type sausages were prepared in a pilot plant with different concentrations of NaNO(2) (75, 125 or 250 ppm) combined or not with 200 ppm KNO(3). A meat system, free of curing agents, was also used as control. Nitrite and nitrate levels were tested in various processing steps and over 120 days storage at 3 °C of the vacuum-packaged frankfurters. Little influence of the originally added nitrite level on the amount of nitrate formed was observed. Important losses of nitrite and nitrate were due to cooking. Thereafter about 50% of the nitrite added initially remained in this form in all samples (39, 59 and 146 ppm, respectively) and between 10 and 15% as nitrate. When only nitrate was initially added, formation of nitrite after cooking was observed (maximum level 43 ppm NaNO(2)). Formulations prepared with both nitrate and nitrite showed no significant differences (p nitrite or nitrate counterparts. A good correlation among nitrite and nitrate levels and storage time was showed by multiple linear regression analysis. It is concluded that the use of nitrate in combination with nitrite in cooked meat products seems to have little technological significance and adds to the total body burden of nitrite.

  8. Changes in plasma and urinary nitrite after birth in premature infants at risk for necrotizing enterocolitis

    Science.gov (United States)

    Pun, Priti; Jones, Jesica; Wolfe, Craig; Deming, Douglas D.; Power, Gordon G.; Blood, Arlin B.

    2016-01-01

    Background Plasma nitrite serves as a reservoir of nitric oxide (NO) bioactivity. Because nitrite ingestion is markedly lower in newborns than adults, we hypothesized plasma nitrite levels would be lower in newborns than in adults, and that infants diagnosed with necrotizing enterocolitis (NEC), a disease characterized by ischemia and bacterial invasion of intestinal walls, would have lower levels of circulating nitrite in the days prior to diagnosis. Methods Single blood and urine samples were collected from 9 term infants and 12 adults, 72 preterm infants every 5 d for 3 wk, and from 13 lambs before and after cord occlusion. Results Nitrite fell 50% relative to cord levels in the first day after birth; and within 15 min after cord occlusion in lambs. Urinary nitrite was higher in infants than adults. Plasma and urinary nitrite levels in infants who developed NEC were similar to those of preterm control infants on days 1 and 5, but significantly elevated at 15 and 20 d after birth. Conclusion Plasma nitrite falls dramatically at birth while newborn urinary nitrite levels are significantly greater than adults. Acute NEC is associated with elevated plasma and urinary nitrite levels. PMID:26539663

  9. Nitrite and nitrate concentrations and metabolism in breast milk, infant formula, and parenteral nutrition.

    Science.gov (United States)

    Jones, Jesica A; Ninnis, Janet R; Hopper, Andrew O; Ibrahim, Yomna; Merritt, T Allen; Wan, Kim-Wah; Power, Gordon G; Blood, Arlin B

    2014-09-01

    Dietary nitrate and nitrite are sources of gastric NO, which modulates blood flow, mucus production, and microbial flora. However, the intake and importance of these anions in infants is largely unknown. Nitrate and nitrite levels were measured in breast milk of mothers of preterm and term infants, infant formulas, and parenteral nutrition. Nitrite metabolism in breast milk was measured after freeze-thawing, at different temperatures, varying oxygen tensions, and after inhibition of potential nitrite-metabolizing enzymes. Nitrite concentrations averaged 0.07 ± 0.01 μM in milk of mothers of preterm infants, less than that of term infants (0.13 ± 0.02 μM) (P milk. Concentrations in parenteral nutrition were equivalent to or lower than those of breast milk. Freeze-thawing decreased nitrite concentration ~64%, falling with a half-life of 32 minutes at 37°C. The disappearance of nitrite was oxygen-dependent and prevented by ferricyanide and 3 inhibitors of lactoperoxidase. Nitrite concentrations in breast milk decrease with storage and freeze-thawing, a decline likely mediated by lactoperoxidase. Compared to adults, infants ingest relatively little nitrite and nitrate, which may be of importance in the modulation of blood flow and the bacterial flora of the infant GI tract, especially given the protective effects of swallowed nitrite. © 2013 American Society for Parenteral and Enteral Nutrition.

  10. Nitrite reductase activity and inhibition of H₂S biogenesis by human cystathionine ß-synthase.

    Directory of Open Access Journals (Sweden)

    Carmen Gherasim

    Full Text Available Nitrite was recognized as a potent vasodilator >130 years and has more recently emerged as an endogenous signaling molecule and modulator of gene expression. Understanding the molecular mechanisms that regulate nitrite metabolism is essential for its use as a potential diagnostic marker as well as therapeutic agent for cardiovascular diseases. In this study, we have identified human cystathionine ß-synthase (CBS as a new player in nitrite reduction with implications for the nitrite-dependent control of H₂S production. This novel activity of CBS exploits the catalytic property of its unusual heme cofactor to reduce nitrite and generate NO. Evidence for the possible physiological relevance of this reaction is provided by the formation of ferrous-nitrosyl (Fe(II-NO CBS in the presence of NADPH, the human diflavin methionine synthase reductase (MSR and nitrite. Formation of Fe(II-NO CBS via its nitrite reductase activity inhibits CBS, providing an avenue for regulating biogenesis of H₂S and cysteine, the limiting reagent for synthesis of glutathione, a major antioxidant. Our results also suggest a possible role for CBS in intracellular NO biogenesis particularly under hypoxic conditions. The participation of a regulatory heme cofactor in CBS in nitrite reduction is unexpected and expands the repertoire of proteins that can liberate NO from the intracellular nitrite pool. Our results reveal a potential molecular mechanism for cross-talk between nitrite, NO and H₂S biology.

  11. Stable-isotope dilution GC-MS approach for nitrite quantification in human whole blood, erythrocytes, and plasma using pentafluorobenzyl bromide derivatization: nitrite distribution in human blood.

    Science.gov (United States)

    Schwarz, Alexandra; Modun, Darko; Heusser, Karsten; Tank, Jens; Gutzki, Frank-Mathias; Mitschke, Anja; Jordan, Jens; Tsikas, Dimitrios

    2011-05-15

    Previously, we reported on the usefulness of pentafluorobenzyl bromide (PFB-Br) for the simultaneous derivatization and quantitative determination of nitrite and nitrate in various biological fluids by GC-MS using their (15)N-labelled analogues as internal standards. As nitrite may be distributed unevenly in plasma and blood cells, its quantification in whole blood rather than in plasma or serum may be the most appropriate approach to determine nitrite concentration in the circulation. So far, GC-MS methods based on PFB-Br derivatization failed to measure nitrite in whole blood and erythrocytes because of rapid nitrite loss by oxidation and other unknown reactions during derivatization. The present article reports optimized and validated procedures for sample preparation and nitrite derivatization which allow for reliable quantification of nitrite in human whole blood and erythrocytes. Essential measures for stabilizing nitrite in these samples include sample cooling (0-4°C), hemoglobin (Hb) removal by precipitation with acetone and short derivatization of the Hb-free supernatant (5 min, 50°C). Potassium ferricyanide (K(3)Fe(CN)(6)) is useful in preventing Hb-caused nitrite loss, however, this chemical is not absolutely required in the present method. Our results show that accurate GC-MS quantification of nitrite as PFB derivative is feasible virtually in every biological matrix with similar accuracy and precision. In EDTA-anticoagulated venous blood of 10 healthy young volunteers, endogenous nitrite concentration was measured to be 486±280 nM in whole blood, 672±496 nM in plasma (C(P)), and 620±350 nM in erythrocytes (C(E)). The C(E)-to-C(P) ratio was 0.993±0.188 indicating almost even distribution of endogenous nitrite between plasma and erythrocytes. By contrast, the major fraction of nitrite added to whole blood remained in plasma. The present GC-MS method is useful to investigate distribution and metabolism of endogenous and exogenous nitrite in blood

  12. Effective Microorganisms: Myth or reality?

    Directory of Open Access Journals (Sweden)

    Aníbal F. Cóndor_Golec

    2013-04-01

    Full Text Available Th e increase in population has lead to intensifi cation of agricultural systems. Due to the use of pesticides the productivity of agricultural systems has increased but environmental deterioration and unsustainable systems are the consequences of these ways of management. Th e environmentally friendly Eff ective Microorganisms (EM technology claims an enormous amount of benefi ts (claimed by the companies. Th e use of EM as an addictive to manure or as a spray directly in the fi elds may increase the microfauna diversity of the soil and many benefi ts are derived from that increase. It seems that suffi cient information is available about this new technology. Th e aim of this project is to make an analysis of the literature about EM and answer the following questions: 1 how much is known about EM?, 2 how much research is done on EM?, 3 what are the principals of EM?, what are the socio-economic implications of EM?. We want to answer these questions in order to publish the facts about EM and its socio-economic implications.

  13. Systems Biology of Industrial Microorganisms

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  14. [Genome editing of industrial microorganism].

    Science.gov (United States)

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  15. Biofouling of marbles by oxygenic photosynthetic microorganisms.

    Science.gov (United States)

    Karaca, Zeki; Öztürk, Ayten; Çolak, Emel

    2015-08-01

    Phototrophic microorganisms disfigure the surfaces of different types of stone. Stone structure is damaged by the activity of photoautotrophic and other microorganisms. However, to date few, investigations have been undertaken into the relationship between microorganisms and the properties of different types of marble. In this study, biological activity of photoautotrophic microorganisms on three types of marble (Yatagan White, Giallo Anticato and Afyon White) was investigated under laboratory conditions over a short period of time. The three types of marble supported the growth of phototrophic microbial communities on their outer and inner layers, turning their original colour from white to a yellowish green colour. The porosity of the marble types facilitated filamentous microbial growth in the presence of water. Scanning electron microscope analysis revealed the accumulation of aggregates such as small spherical, fibrillar, calcified globular bodies on the inner surfaces of the marbles. This suggests that the microscopic characteristics of particular marble types may stimulate the growth of certain types of microorganisms.

  16. Nitrites and nitrates in the human diet: Carcinogens or beneficial hypotensive agents?

    Science.gov (United States)

    Butler, Anthony

    2015-06-05

    The presence of nitrite in the human diet was thought to constitute a hazard as secondary nitrosamines are known to cause gastric cancers. Recent publications on the physiology of serum nitrite have been consulted. Nitrite is added to some foodstuffs as an antibotulinum agent. The epidemiological evidence that nitrite causes gastric ulcers is weak. On the other hand, evidence that the presence of nitrite in serum lowers blood pressure is strong. This allows us to explain why a Tang dynasty treatment for angina, given in a Dunhuang medical manuscript, can be successful. The presence of nitrite in food is free of danger and a diet high in nitrate is beneficial to the health. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Nitrite and Nitrate Content in Meat Products and Estimated Intake in Denmark From 1998 to 2006

    DEFF Research Database (Denmark)

    Leth, Torben; Fagt, Sisse; Nielsen, S.

    2008-01-01

    The content of nitrite and nitrate in cured meat products has been monitored in Denmark seven times between 1995 and 2006. The maximum permitted added amounts of sodium nitrite in Denmark (60 mg kg(-1) for most products up to 150 mg kg(-1) for special products) have not been exceeded, except...... period with levels varying between 6 and 20 mg sodium nitrite kg(-1) with sausages, meat for open sandwiches and salami-type sausages being the greatest contributors. The mean intake of sodium nitrate was around 1 mg day(-1), which is very low compared with the total intake of 61 mg day(-1). The mean...... group, only very few persons were responsible for the high intake. The conversion of nitrate to nitrite in the saliva and the degradation of nitrite during production and storage must also be considered when evaluating the intake of nitrite....

  18. Nitrite survival and nitrous oxide production of denitrifying phosphorus removal sludges in long-term nitrite/nitrate-fed sequencing batch reactors.

    Science.gov (United States)

    Wang, Yayi; Zhou, Shuai; Ye, Liu; Wang, Hong; Stephenson, Tom; Jiang, Xuxin

    2014-12-15

    Nitrite-based phosphorus (P) removal could be useful for innovative biological P removal systems where energy and carbon savings are a priority. However, using nitrite for denitrification may cause nitrous oxide (N2O) accumulation and emissions. A denitrifying nitrite-fed P removal system [Formula: see text] was successfully set up in a sequencing batch reactor (SBR) and was run for 210 days. The maximum pulse addition of nitrite to [Formula: see text] was 11 mg NO2(-)-N/L in the bulk, and a total of 34 mg NO2(-)-N/L of nitrite was added over three additions. Fluorescent in situ hybridization results indicated that the P-accumulating organisms (PAOs) abundance was 75 ± 1.1% in [Formula: see text] , approximately 13.6% higher than that in a parallel P removal SBR using nitrate [Formula: see text] . Type II Accumulibacter (PAOII) (unable to use nitrate as an electron acceptor) was the main PAOs species in [Formula: see text] , contributing 72% to total PAOs. Compared with [Formula: see text] , [Formula: see text] biomass had enhanced nitrite/free nitrous acid (FNA) endurance, as demonstrated by its higher nitrite denitrification and P uptake rates. N2O accumulated temporarily in [Formula: see text] after each pulse of nitrite. Peak N2O concentrations in the bulk for [Formula: see text] were generally 6-11 times higher than that in [Formula: see text] ; these accumulations were rapidly denitrified to nitrogen gases. N2O concentration increased rapidly in nitrate-cultivated biomass when 5 or 10 mg NO2(-)-N/L per pulse was added. Whereas, N2O accumulation did not occur in nitrite-cultivated biomass until up to 30 mg NO2(-)-N/L per pulse was added. Long-term acclimation to nitrite and pulse addition of nitrite in [Formula: see text] reduced the risk of nitrite accumulation, and mitigated N2O accumulation and emissions from denitrifying P removal by nitrite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The future of starch bioengineering: GM microorganisms or GM plants?

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Sagnelli, Domenico; Blennow, Andreas

    2015-01-01

    , tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel...... concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However, in some situations, GM crops for starch bioengineering without deleterious effects have been achieved....

  20. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions.

    Directory of Open Access Journals (Sweden)

    Mauro Tiso

    Full Text Available The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in

  1. Enhancing nitrite inhibition of Clostridium botulinum with isoascorbate in perishable canned cured meat.

    Science.gov (United States)

    Tompkin, R B; Christiansen, L N; Shaparis, A B

    1978-01-01

    Addition of sodium isoascorbate to the formulation for perishable canned comminuted cured meat markedly enhanced the efficacy of nitrite against Clostridium botulinum. This effect was reproducible through a series of three tests. In one test it was found that the initial addition of 50 microgram of sodium nitrite per g plus isoascorbate was as effective as 156 microgram of sodium nitrite per g alone. PMID:341810

  2. Modelling nitrite dynamics and associated feedback processes in the Benguela oxygen minimum zone

    Science.gov (United States)

    Mashifane, T. B.; Vichi, M.; Waldron, H. N.; Machu, E.; Garçonc, V.

    2016-08-01

    Understanding nitrite dynamics in oxygen minimum zones (OMZs) is a challenge as it represents an intermediary nitrogen species with a short turnover time. Nitrite is also reduced to nitrogen in OMZs, preventing its accumulation. This creates difficulties in detecting nitrite with colorimetric methods as concentrations may occur below detection limits in some regions. Nitrite concentrations are key to understanding intermediate nitrogen processes and their implication for nitrogen loss in OMZs. A coupled physical-biogeochemical model is applied in the Benguela OMZ to study nitrite dynamics and its associated feedback processes. Simulated results show occurrence of primary and secondary nitrite maxima in the Benguela shelf waters. The primary nitrite maxima in the Benguela are attributed to nitrification and nitrate assimilation as they occur in association with the nitracline. Secondary nitrite maxima accumulate in the Angola-Benguela Front (ABF) OMZ and are attributed to denitrification. The secondary nitrite maxima are consumed by anaerobic ammonium oxidation (anammox) off Walvis Bay. Nitrite maxima are restricted to the shelf off Walvis Bay and advected offshore in the ABF region. Interchanges between the poleward South Atlantic Central Water (SACW) and the equatorward, well-aerated Eastern South Atlantic Central Water (ESACW) drive the seasonality of nitrogen processes in the Benguela. Subsequent nitrite reduction in the Benguela OMZ leads to nitrous oxide production, with high concentrations occurring in the ABF region as a result of nitrification and denitrification. Off Walvis Bay, nitrous oxide production is low since nitrite is consumed by anammox. Nitrous oxide production occurs in thermocline, intermediate and deeper water masses in the ABF region. High N fluxes in the Benguela are attributed to nitrification as compared to anammox and denitrification. Results from this study demonstrate the role of intermediate nitrogen species in nitrogen feedback

  3. Residual Nitrite in Some Egyptian Meat Products and the Reduction Effect of Electron Beam Irradiation

    OpenAIRE

    Dalia A. Zahran; Gehan M.A. Kassem

    2011-01-01

    Nitrite, a curing agent of meat products, is a precursor of carcinogenic N-nitrosamines during processing of meat products or under human stomach conditions, as well as having its own toxicity. To investigate the residual nitrite level in meat products marketed in Egyptian markets, 160 samples of cured cooked (luncheon and frankfurter) and cured raw (oriental sausages and pastirma) meat products (40 sample each) were analyzed for residual nitrite by a spectrophotometric method. Samples were s...

  4. Nitrate Reduction to Nitrite, Nitric Oxide and Ammonia by Gut Bacteria under Physiological Conditions

    Science.gov (United States)

    Tiso, Mauro; Schechter, Alan N.

    2015-01-01

    The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied. We measured nitrite, nitric oxide (NO) and ammonia formation in cultures of Escherichia coli, Lactobacillus and Bifidobacterium species grown at different sodium nitrate concentrations and oxygen levels. We found that the presence of 5 mM nitrate provided a growth benefit and induced both nitrite and ammonia generation in E.coli and L.plantarum bacteria grown at oxygen concentrations compatible with the content in the gastrointestinal tract. Nitrite and ammonia accumulated in the growth medium when at least 2.5 mM nitrate was present. Time-course curves suggest that nitrate is first converted to nitrite and subsequently to ammonia. Strains of L.rhamnosus, L.acidophilus and B.longum infantis grown with nitrate produced minor changes in nitrite or ammonia levels in the cultures. However, when supplied with exogenous nitrite, NO gas was readily produced independently of added nitrate. Bacterial production of lactic acid causes medium acidification that in turn generates NO by non-enzymatic nitrite reduction. In contrast, nitrite was converted to NO by E.coli cultures even at neutral pH. We suggest that the bacterial nitrate reduction to ammonia, as well as the related NO formation in the gut, could be an important aspect of the overall mammalian nitrate/nitrite/NO metabolism and is yet another way in which the microbiome

  5. Determination of Nitrite in Whole Blood by High-Performance Liquid Chromatography with Electrochemical Detection and a Case of Nitrite Poisoning.

    Science.gov (United States)

    Yan, Hui; Zhuo, Xiangyi; Shen, Baohua; Xiang, Ping; Shen, Min

    2016-01-01

    Although nitrite is widely used in meat processing, it is a major toxicity hazard to children and is responsible for the blue-baby syndrome. A simple and effective method to determine nitrite in whole blood has been devised using ion chromatography with suppressed conductivity detection. The blood sample was deproteinized by adding acetonitrile and purified with mini-cartridges to remove hydrophobic compounds, chloride ions, and metal ions. An aliquot of the filtrate was injected onto the ion chromatography. The retention time for nitrite was 13.8 min and the detection limit of nitrite in whole blood was 0.4 μmol/L. The calibration curve was linear (r(2) = 0.9999) over the concentration working range. The blood nitrite concentration of a victim who attempted suicide by ingesting sodium nitrite powder was determined using the present method. The basal levels for nitrite in human blood was determined with 7.1 ± 0.9 μmol/L (n = 12). © 2015 American Academy of Forensic Sciences.

  6. Radiation preservation with reduced nitrites of bacon and other cured meats - a review

    International Nuclear Information System (INIS)

    Singh, H.

    1987-01-01

    The main problem caused by nitrite as a preservative is the formation of carcinogenic nitrosamines in bacon and other cured meats. This has led to a search for alternatives to the use of nitrite. Irradiation with reduced level of nitrite is a promising alternative to the use of current levels of nitrite. Radurization (radiation pasteurization) of bacon containing 20 to to 40 mg/kg of nitrite in evacuated packages, irradiated and stored at 4 degrees C, gives a product with good organoleptic qualities and extended shelf life of > 80 days vs. < days 30 days for the conventionally treated bacon. Radappertization (radiation sterilization) of bacon containing 20 mg/kg of nitrite at a dose of about 30 kGy, irradiated at -20 degrees or lower in evacuated packages, results in a product that is shelf stable for months to years at room temperature (∼ 25 degrees C). It has organoleptic properties comparable to commercial bacon in terms of color, flavor, odor and texture. Irradiation also reduces the nitrite and preformed nitrosamines present in bacon. Lower levels of nitrosamines are formed on cooking irradiated bacon containing presently used commercial levels of nitrite (120-150 mg/kg) and the levels of nitrosamines become negligible with 20 mg/kg of nitrite. Various aspects of preservation of bacon and other cured meats are reviewed in this report with emphasis on radiation processing. 357 refs

  7. Total salivary nitrates and nitrites in oral health and periodontal disease.

    Science.gov (United States)

    Sánchez, Gabriel A; Miozza, Valeria A; Delgado, Alejandra; Busch, Lucila

    2014-01-30

    It is well known that nitrites are increased in saliva from patients with periodontal disease. In the oral cavity, nitrites may derive partly from the reduction of nitrates by oral bacteria. Nitrates have been reported as a defence-related mechanism. Thus, the aim of the present study was to determine the salivary levels of total nitrate and nitrite and their relationship, in unstimulated and stimulated saliva from periodontal healthy subjects, and from patients with chronic periodontal disease. Nitrates and nitrites were determined in saliva from thirty healthy subjects and forty-four patients with periodontal disease. A significant increase in salivary nitrates and nitrites was observed. Nitrates and nitrites concentration was related to clinical attachment level (CAL). A positive and significant Pearson's correlation was found between salivary total nitrates and nitrites. Periodontal treatment induced clinical improvement and decreased nitrates and nitrites. It is concluded that salivary nitrates and nitrites increase, in patients with periodontal disease, could be related to defence mechanisms. The possibility that the salivary glands respond to oral infectious diseases by increasing nitrate secretion should be explored further. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Low nitrous oxide production in intermittent-feed high performance nitritating reactors

    DEFF Research Database (Denmark)

    Su, Qingxian; Jensen, Malene M.; Smets, Barth F.

    Nitrous oxide (N2O) production from autotrophic nitrogen removal processes, especially nitritating systems, is of growing concern. N2O dynamics were characterized and N2O production factors were quantified in two lab-scale intermittent-feed nitritating SBRs. 93 ± 14% of the oxidized ammonium...... was converted to nitrite, with the average total net N2O production of 2.1 ± 0.7% of the ammonium oxidized. Operation with intermittent feeding appears an effective optimization approach to mitigate N2O emissions from nitritating systems. Net N2O production rates transiently increased with a rise in pH after...

  9. Color Developing Capacity of Plasma-treated Water as a Source of Nitrite for Meat Curing.

    Science.gov (United States)

    Jung, Samooel; Kim, Hyun Joo; Park, Sanghoo; Yong, Hae In; Choe, Jun Ho; Jeon, Hee-Joon; Choe, Wonho; Jo, Cheorun

    2015-01-01

    The interaction of plasma with liquid generates nitrogen species including nitrite (NO(-) 2). Therefore, the color developing capacity of plasma-treated water (PTW) as a nitrite source for meat curing was investigated in this study. PTW, which is generated by surface dielectric barrier discharge in air, and the increase of plasma treatment time resulted in increase of nitrite concentration in PTW. The PTW used in this study contains 46 ppm nitrite after plasma treatment for 30 min. To evaluate the effect of PTW on the cured meat color, meat batters were prepared under three different conditions (control, non-cured meat batter; PTW, meat batter cured with PTW; Sodium nitrite, meat batter cured with sodium nitrite). The meat batters were vacuum-packaged and cooked in a water-bath at 80℃ for 30 min. The typical color of cured meat developed in cooked meat batter treated with sodium nitrite or PTW. The lightness (L*) and yellowness (b*) values were similar in all conditions, whereas, the redness (a*) values of cooked meat batter with PTW and sodium nitrite (pnitrite source in the curing process of meat without addition of other nitrite sources.

  10. Can urinary nitrite results be used to conduct antimicrobial option for urinary tract infection in children?

    Science.gov (United States)

    Mahyar, Abolfazl; Ayazi, Parviz; Froozesh, Mahta; Daneshi-Kohan, Mohammad-Mahdi; Barikani, Ameneh

    2012-06-01

    This study was performed to determine the relationship between urinary nitrite results and bacterial resistance to antimicrobial drugs in urinary tract infection of children. In a cross-section study 119 children younger than 12 years with urinary tract infection were evaluated in Qazvin children's hospital. Patients were divided into negative and positive nitrite groups depending on urinary nitrite test result. Rates of antibiotic resistance in the two groups were compared. Sixty seven patients were in the negative nitrite group and 52 in the positive nitrite group. Resistance rates to ceftriaxone, trimethoprim sulfamethoxazole, ampicillin, gentamicin, amikacin, nalidixic acid, cephalothin and nitrofurantoin in the nitrite negative group were 7.5%, 31.3%, 50.7%, 11.9%, 9%, 3%, 14.9% and 11.9%, respectively. These values in the nitrite positive group were 21.2%, 28.8%, 63.5%, 7.7%, 5.8%, 1.9%, 9.6%, and 3.8%, respectively (P>0.05). This study showed that there is no correlation between urinary nitrite results and bacterial resistance to antimicrobial drugs. Therefore, it seems that physicians should not adjust antibiotic therapy for UTI based on nitrite results.

  11. Effect of Nitrite Inhibitor on the Macrocell Corrosion Behavior of Reinforcing Steel

    Directory of Open Access Journals (Sweden)

    Zhonglu Cao

    2015-01-01

    Full Text Available The effect of nitrite ions on the macrocell corrosion behavior of reinforcing steel embedded in cement mortar was investigated by comparing and analyzing the macrocell corrosion current, macrocell polarization ratios, and slopes of anodic and cathodic steels. Based on the experimental results, the relationship between macrocell potential difference and macrocell current density was analyzed, and the mechanism of macrocell corrosion affected by nitrite ions was proposed. The results indicated that nitrite ions had significant impact on the macrocell polarization ratios of cathode and anode. The presence of nitrite could reduce the macrocell current by decreasing the macrocell potential difference and increasing the macrocell polarization resistance of the anode.

  12. Interactions of nitrite with catalase: Enzyme activity and reaction kinetics studies.

    Science.gov (United States)

    Krych-Madej, Justyna; Gebicka, Lidia

    2017-06-01

    Catalase, a heme enzyme, which catalyzes decomposition of hydrogen peroxide to water and molecular oxygen, is one of the main enzymes of the antioxidant defense system of the cell. Nitrite, used as a food preservative has long been regarded as a harmful compound due to its ability to form carcinogenic nitrosamines. Recently, much evidence has been presented that nitrite plays a protective role as a nitric oxide donor under hypoxic conditions. In this work the effect of nitrite on the catalytic reactions of catalase was studied. Catalase was inhibited by nitrite, and this process was pH-dependent. IC 50 values varied from about 1μM at pH5.0 to about 150μM of nitrite at pH7.4. The presence of chloride significantly enhanced nitrite-induced catalase inhibition, in agreement with earlier observations. The kinetics of the reactions of nitrite with ferric catalase, its redox intermediate, Compound I, and catalase inactive form, Compound II, was also studied. Possible mechanisms of nitrite-induced catalase inhibition are analyzed and the biological consequences of the reactions of catalase with nitrite are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Growth response of microorganisms to different molecular fractions of lignite

    Energy Technology Data Exchange (ETDEWEB)

    Polman, J.K.; Breckenridge, C.R.; Dugan, P.R.; Quigley, D.R.

    1990-01-01

    Our research is primarily concerned with isolating and characterizing microbes which are able to dissimilate coal and convert it to other useful chemicals. This quarter, general growth responses of microorganisms cultivated in the presence of different molecular weight fractions of lignite coal were examined. Aerobic and anaerobic environmental samples from a variety of ecological niches were used as inocula. Growth of the microorganisms in these samples on the following types of media was tested: COAL medium, containing alkali-solubilized whole coal; THFI medium, containing the alkali-solubilized, tetrahydrofuran-insoluble, macromolecular portion of whole coal; THFS medium, containing the THF-soluble, low molecular weight portion of whole coal; and CON medium, void of any coal constituent. Overall results indicated that the presence of the THF-soluble, low molecular weight coal fraction enhanced the growth yield and the variety of aerobic microorganisms compared to the other coal fractions or the control medium. Conversely, anaerobic microbes grew best on media which contained the macromolecular fraction. 12 refs., 5 tabs.

  14. Microbial competition among anammox bacteria in nitrite-limited bioreactors

    KAUST Repository

    Zhang, Lei; Narita, Yuko; Gao, Lin; Ali, Muhammad; Oshiki, Mamoru; Ishii, Satoshi; Okabe, Satoshi

    2017-01-01

    Phylogenetically diverse anammox bacteria have been detected in most of anoxic natural and engineered ecosystems and thus regarded as key players in the global nitrogen cycle. However, ecological niche differentiation of anammox bacteria remains unresolved despite its ecological and practical importance. In this study, the microbial competitions for a common substrate (nitrite) among three anammox species (i.e. “Candidatus Brocadia sinica”, “Candidatus Jettenia caeni” and “Candidatus Kuenenia stuttgartiensis”) were systematically investigated in nitrite-limited gel-immobilized column reactors (GICR) and membrane bioreactors (MBRs) under different nitrogen loading rates (NLRs). 16 S rRNA gene-based population dynamics revealed that “Ca. J. caeni” could proliferate only at low NLRs, whereas “Ca. B. sinica” outcompeted other two species at higher NLRs in both types of reactors. Furthermore, FISH analysis revealed that “Ca. J. caeni” was mainly present as spherical microclusters at the inner part (low NO2− environment), whereas “Ca. B. sinica” was present throughout the gel beads and granules. This spatial distribution supports the outcomes of the competition experiments. However, the successful competition of “Ca. J. caeni” at low NLR could not be explained with the Monod model probably due to inaccuracy of kinetic parameters such as half saturation constant (Ks) for nitrite and a difference in the maintenance rate (m). In addition, the growth of “Ca. K. stuttgartiensis” could not be observed in any experimental conditions, suggesting possible unknown factor(s) is missing. Taken together, NLR was one of factors determining ecological niche differentiation of “Ca. B. sinica” and “Ca. J. caeni”.

  15. Microbial competition among anammox bacteria in nitrite-limited bioreactors

    KAUST Repository

    Zhang, Lei

    2017-08-26

    Phylogenetically diverse anammox bacteria have been detected in most of anoxic natural and engineered ecosystems and thus regarded as key players in the global nitrogen cycle. However, ecological niche differentiation of anammox bacteria remains unresolved despite its ecological and practical importance. In this study, the microbial competitions for a common substrate (nitrite) among three anammox species (i.e. “Candidatus Brocadia sinica”, “Candidatus Jettenia caeni” and “Candidatus Kuenenia stuttgartiensis”) were systematically investigated in nitrite-limited gel-immobilized column reactors (GICR) and membrane bioreactors (MBRs) under different nitrogen loading rates (NLRs). 16 S rRNA gene-based population dynamics revealed that “Ca. J. caeni” could proliferate only at low NLRs, whereas “Ca. B. sinica” outcompeted other two species at higher NLRs in both types of reactors. Furthermore, FISH analysis revealed that “Ca. J. caeni” was mainly present as spherical microclusters at the inner part (low NO2− environment), whereas “Ca. B. sinica” was present throughout the gel beads and granules. This spatial distribution supports the outcomes of the competition experiments. However, the successful competition of “Ca. J. caeni” at low NLR could not be explained with the Monod model probably due to inaccuracy of kinetic parameters such as half saturation constant (Ks) for nitrite and a difference in the maintenance rate (m). In addition, the growth of “Ca. K. stuttgartiensis” could not be observed in any experimental conditions, suggesting possible unknown factor(s) is missing. Taken together, NLR was one of factors determining ecological niche differentiation of “Ca. B. sinica” and “Ca. J. caeni”.

  16. Simultaneous removal of organic matter and salt ions from coal gasification wastewater RO concentrate and microorganisms succession in a MBR.

    Science.gov (United States)

    Jia, Shengyong; Han, Yuxing; Zhuang, Haifeng; Han, Hongjun; Li, Kun

    2017-10-01

    A lab-scale membrane bioreactor (MBR) with intermittent aeration was operated to treat the reverse osmosis concentrate derived from coal gasification wastewater. Results showed intermittent aeration represented slight effect on organic matter reduction but significant effect on nitrite and nitrate reduction, with 6h aeration and 6h non-aeration, removal efficiencies of organic matter, chloride, sulfate, nitrite and nitrate reached 48.35%, 40.91%, 34.28%, -36.05% and 64.34%, respectively. High-throughput sequencing showed a microorganisms succession from inoculated activated sludge (S1) to activated sludge in MBR (S2) with high salinity. Richness and diversity of microorganisms in S2 was lower than S1 and the community structure of S1 exhibited more even than S2. The most relative abundance of genus in S1 and S2 were unclassified_Desulfarculaceae (9.39%) and Roseibaca (62.1%), respectively. High salinity and intermittent aeration represented different influence on the denitrifying genus, and non-aeration phase provided feasible dissolved oxygen condition for denitrifying genera realizing denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Decomposition of diesel oil by various microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Suess, A; Netzsch-Lehner, A

    1969-01-01

    Previous experiments demonstrated the decomposition of diesel oil in different soils. In this experiment the decomposition of /sup 14/C-n-Hexadecane labelled diesel oil by special microorganisms was studied. The results were as follows: (1) In the experimental soils the microorganisms Mycoccus ruber, Mycobacterium luteum and Trichoderma hamatum are responsible for the diesel oil decomposition. (2) By adding microorganisms to the soil an increase of the decomposition rate was found only in the beginning of the experiments. (3) Maximum decomposition of diesel oil was reached 2-3 weeks after incubation.

  18. Sodium nitrite induces acute central nervous system toxicity in guinea pigs exposed to systemic cell-free hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Buehler, Paul W.; Butt, Omer I. [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); D' Agnillo, Felice, E-mail: felice.dagnillo@fda.hhs.gov [Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2011-06-10

    Highlights: {yields} Toxicological implications associated with the use of NaNO{sub 2} therapy to treat systemic cell-free Hb exposure are not well-defined. {yields} Systemic Hb exposure followed by NaNO{sub 2} infusion induces acute CNS toxicities in guinea pigs. {yields} These CNS effects were not reproduced by the infusion of cell-free Hb or NaNO{sub 2} alone. {yields} NaNO{sub 2}-mediated oxidation of cell-free Hb may play a causative role in the observed CNS changes. -- Abstract: Systemic cell-free hemoglobin (Hb) released via hemolysis disrupts vascular homeostasis, in part, through the scavenging of nitric oxide (NO). Sodium nitrite (NaNO{sub 2}) therapy can attenuate the hypertensive effects of Hb. However, the chemical reactivity of NaNO{sub 2} with Hb may enhance heme- or iron-mediated toxicities. Here, we investigate the effect of NaNO{sub 2} on the central nervous system (CNS) in guinea pigs exposed to systemic cell-free Hb. Intravascular infusion of NaNO{sub 2}, at doses sufficient to alleviate Hb-mediated blood pressure changes, reduced the expression of occludin, but not zona occludens-1 (ZO-1) or claudin-5, in cerebral tight junctions 4 h after Hb infusion. This was accompanied by increased perivascular heme oxygenase-1 expression, neuronal iron deposition, increased astrocyte and microglial activation, and reduced expression of neuron-specific nuclear protein (NeuN). These CNS changes were not observed in animals treated with Hb or NaNO{sub 2} alone. Taken together, these findings suggest that the use of nitrite salts to treat systemic Hb exposure may promote acute CNS toxicity.

  19. Tapping uncultured microorganisms through metagenomics for drug ...

    African Journals Online (AJOL)

    African Journal of Biotechnology ... Microorganisms are major source of bioactive natural products, and several ... This review highlights the recent methodologies, limitations, and applications of metagenomics for the discovery of new drugs.

  20. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    sunny t

    2015-09-18

    Sep 18, 2015 ... microorganisms with all three enzymatic activities, thereby establishing these techniques as ... supplemented at 1% with vegetable oils, including olive (OLI) ..... cepacia lipase for biodiesel fuel production from soybean oil.

  1. Microorganisms' mediated reduction of β-ketoesters

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... Whole cells usually express a multitude of enzymatic activities; therefore an ... Each microorganism was cultivated for the biomass development on specific medium ..... Ketoester reductase for conversion of keto acid esters to ...

  2. Detection of extracellular enzymatic activity in microorganisms ...

    African Journals Online (AJOL)

    Detection of extracellular enzymatic activity in microorganisms isolated from waste vegetable oil contaminated soil using plate methodologies. Eugenia G. Ortiz Lechuga, Isela Quintero Zapata, Katiushka Arévalo Niño ...

  3. Defensive properties of pyrrolizidine alkaloids against microorganisms

    NARCIS (Netherlands)

    Joosten, L.; Van Veen, J.A.

    2011-01-01

    The understanding of the selection factors that drive chemical diversification of secondary metabolites of constitutive defence systems in plants, such as pyrrolizidine alkaloids (PAs), is still incomplete. Historically, plants always have been confronted with microorganisms. Long before herbivores

  4. Genetic fingerprint of microorganisms associated with the ...

    Indian Academy of Sciences (India)

    inviting range of elements which microorganisms use in their ... ization and degradation of organic binders leading to struc- tural damage (Herrera et al. 2004). Microbial solubilization of materials involves the produc- ... architectural cement.

  5. Mechanisms of nickel toxicity in microorganisms

    OpenAIRE

    Macomber, Lee; Hausinger, Robert P.

    2011-01-01

    Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological co...

  6. Pathogenic and opportunistic microorganisms in caves

    Directory of Open Access Journals (Sweden)

    Sanchez-Moral Sergio

    2010-01-01

    Full Text Available With today’s leisure tourism, the frequency of visits to many caves makes it necessary to know about possible potentially pathogenic microorganisms in caves, determine their reservoirs, and inform the public about the consequences of such visits. Our data reveal that caves could be a potential danger to visitors because of the presence of opportunistic microorganisms, whose existence and possible development in humans is currently unknown.

  7. Metabolic fates and effects of nitrite in brown trout under normoxic and hypoxic conditions: blood and tissue nitrite metabolism and interactions with branchial NOS, Na+/K+-ATPase and hsp70 expression

    DEFF Research Database (Denmark)

    Jensen, Frank Bo; Gerber, Lucie; Hansen, Marie Niemann

    2015-01-01

    were higher in hypoxia than normoxia, suggesting increased NOS activity. Nitrite exposure strongly elevated nitrite concentrations in plasma, erythrocytes, heart tissue and white muscle, which was associated with an extensive metabolism of nitrite to nitrate and to iron-nitrosylated and S......Nitrite secures essential nitric oxide (NO) bioavailability in hypoxia at low endogenous concentrations, whereas it becomes toxic at high concentrations. We exposed brown trout to normoxic and hypoxic water in the absence and presence of added ambient nitrite to decipher the cellular metabolism...... and effects of nitrite at basal and elevated concentrations under different oxygen regimes. We also tested hypotheses concerning the influence of nitrite on branchial nitric oxide synthase (NOS), Na+/K+-ATPase (nka) and heat shock protein (hsp70) mRNA expression. Basal plasma and erythrocyte nitrite levels...

  8. Spectrofluorometric and Molecular Modeling Studies on Binding of Nitrite Ion with Bovine Hemoglobin: Effect of Nitrite Ion on Amino Acid Residues

    Science.gov (United States)

    Madrakian, T.; Bagheri, H.; Afkhami, A.

    2015-05-01

    The interaction between nitrite ion and bovine hemoglobin was investigated by a spectrofluorometric technique. The experimental results indicated that the interaction causes a static quenching of the fluorescence of bovine hemoglobin, that the binding reaction is spontaneous, and that H-bonding interactions play a major role in binding of this ion to bovine hemoglobin. The formation constant for this interaction was calculated. Based on Förster's theory of nonradiative energy transfer, the binding distance between this ion and bovine hemoglobin was determined. Furthermore, the interaction of nitrite ion with tyrosine and tryptophan was investigated with synchronous fluorescence. There was no significant shift of the maximum emission wavelength with interactions of the mentioned ion with bovine hemoglobin, which implies that interaction of nitrite ion with bovine hemoglobin does not affect the microenvironment around the tryptophan and tyrosine residues. Furthermore, the effect of nitrite ion on amino acid residues of bovine hemoglobin was studied by a molecular docking technique.

  9. Effect of Electrolytes on the Adsorption of Nitrite and Nitrate from ...

    African Journals Online (AJOL)

    Nitrite and nitrate levels were quantitatively adsorbed to wood-derived activated carbon in aqueous system and the effects of electrolytes investigated in this study using batch sorption process. The data showed that nitrate adsorbed nearly 1.5 times higher than that of nitrite. The adsorption is adequately explained by ...

  10. Effect of sodium nitrite on toxin production by Clostridium botulinum in bacon.

    Science.gov (United States)

    Christiansen, L N; Tompkin, R B; Shaparis, A B; Kueper, T V; Johnston, R W; Kautter, D A; Kolari, O J

    1974-04-01

    Pork bellies were formulated to 0, 30, 60, 120, 170, or 340 mug of nitrite per g of meat and inoculated with Clostridium botulinum via pickle or after processing and slicing. Processed bacon was stored at 7 or 27 C and assayed for nitrite, nitrate, and botulinal toxin at different intervals. Nitrite levels declined during processing and storage. The rate of decrease was more rapid at 27 than at 7 C. Although not added to the system, nitrate was detected in samples during processing and storage at 7 and 27 C. The amount of nitrate found was related to formulated nitrite levels. No toxin was found in samples incubated at 7 C throughout the 84-day test period. At 27 C, via pickle, inoculated samples with low inoculum (210 C. botulinum per g before processing and 52 per g after processing) became toxic if formulated with 120 mug of nitrite per g of meat or less. Toxin was not detected in bacon formulated with 170 or 340 mug of nitrite per g of meat under these same conditions. Toxin was detected at all formulated nitrite levels in bacon inoculated via the pickle with 19,000 C. botulinum per g (4,300 per g after processing) and in samples inoculated after slicing. However, increased levels of formulated nitrite decreased the probability of botulinal toxin formation in bacon inoculated by both methods.

  11. Nitrate and nitrite content in bottled beverages by ion-pair high-performance liquid chromatography.

    Science.gov (United States)

    Song, Yang; Deng, Gui-Fang; Xu, Xiang-Rong; Chen, Yong-Hong; Chen, Feng; Li, Hua-Bin

    2013-01-01

    Nitrate and nitrite levels in six types of beverages--total of 292 individual samples from 73 brands (four bottles each)--from Guangzhou city in China were evaluated by ion-pair high-performance liquid chromatography. All samples contained nitrate. Nitrate and nitrite ranges were 0.43-46.08 and safety of Chinese bottled beverages.

  12. The effect of environmental hypercapnia and size on nitrite toxicity in the striped catfish (Pangasianodon hypophthalmus)

    DEFF Research Database (Denmark)

    Hvas, Malthe; Damsgaard, Christian; Gam, Le Thi Hong

    2016-01-01

    Striped catfish (Pangasianodon hypophthalmus) are farmed intensively at high stocking densities in Vietnam where they are likely to encounter environmental hypercapnia as well as occasional high levels of aquatic nitrite. Nitrite competes with Cl- for uptake at the branchial HCO3-/Cl- exchanger, ...... the ambient concentration, while small fish did not. Small P. hypophthalmus instead had significantly higher plasma [nitrate], and haemoglobin concentrations, revealing greater capacity for detoxifying nitrite by oxidising it to nitrate.......Striped catfish (Pangasianodon hypophthalmus) are farmed intensively at high stocking densities in Vietnam where they are likely to encounter environmental hypercapnia as well as occasional high levels of aquatic nitrite. Nitrite competes with Cl- for uptake at the branchial HCO3-/Cl- exchanger...... to a reduced nitrite uptake. To assess the effect of hypercapnia on nitrite uptake, fish were cannulated in the dorsal aorta, allowing repeated blood sampling for measurements of haemoglobin derivatives, plasma ions and acid-base status during exposure to 0.9 mM nitrite alone and in combination with acute...

  13. Electrochemical Biosensor for Nitrite Based on Polyacrylic-Graphene Composite Film with Covalently Immobilized Hemoglobin

    Directory of Open Access Journals (Sweden)

    Raja Zaidatul Akhmar Raja Jamaluddin

    2018-04-01

    Full Text Available A new biosensor for the analysis of nitrite in food was developed based on hemoglobin (Hb covalently immobilized on the succinimide functionalized poly(n-butyl acrylate-graphene [poly(nBA-rGO] composite film deposited on a carbon-paste screen-printed electrode (SPE. The immobilized Hb on the poly(nBA-rGO conducting matrix exhibited electrocatalytic ability for the reduction of nitrite with significant enhancement in the reduction peak at −0.6 V versus Ag/AgCl reference electrode. Thus, direct determination of nitrite can be achieved by monitoring the cathodic peak current signal of the proposed polyacrylic-graphene hybrid film-based voltammetric nitrite biosensor. The nitrite biosensor exhibited a reproducible dynamic linear response range from 0.05–5 mg L−1 nitrite and a detection limit of 0.03 mg L−1. No significant interference was observed by potential interfering ions such as Ca2+, Na+, K+, NH4+, Mg2+, and NO3− ions. Analysis of nitrite in both raw and processed edible bird’s nest (EBN samples demonstrated recovery of close to 100%. The covalent immobilization of Hb on poly(nBA-rGO composite film has improved the performance of the electrochemical nitrite biosensor in terms of broader detection range, lower detection limit, and prolonged biosensor stability.

  14. Electrochemical detection of nitrite based on the polythionine/carbon nanotube modified electrode

    International Nuclear Information System (INIS)

    Deng, Chunyan; Chen, Jinzhuo; Nie, Zhou; Yang, Minghui; Si, Shihui

    2012-01-01

    In this paper, thionine was electro-polymerized onto the surface of carbon nanotube (CNT)-modified glassy carbon (GC) to fabricate the polythionine (PTH)/CNT/GC electrode. It was found that the electro-reduction current of nitrite was enhanced greatly at the PTH/CNT/GC electrode. It may be demonstrated that PTH was used as a mediator for electrocatalytic reduction of nitrite, and CNTs as an excellent nanomaterial can improve the electron transfer between the electrode and nitrite. Therefore, based on the synergic effect of PTH and CNTs, the PTH/CNT/GC electrode was employed to detect nitrite, and the high sensitivity of 5.81 μA mM −1 , and the detection limit of 1.4 × 10 −6 M were obtained. Besides, the modified electrode showed an inherent stability, fast response time, and good anti-interference ability. These suggested that the PTH/CNT/GC electrode was favorable and reliable for the detection of nitrite. - Highlights: ► Polythionine (PTH) was used as a mediator for electrocatalytic reduction of nitrite. ► Carbon nanotubes (CNTs) improve electron transfer between the electrode and nitrite. ► The PTH/CNT/glassy carbon electrode showed excellent nitrite detection performance.

  15. Bioavailability of sodium nitrite from an aqueous solution in healthy adults.

    NARCIS (Netherlands)

    Hunault, C.C.; van Velzen, A.G.; Sips, A.J.; Schothorst, R.C.; Meulenbelt, J.|info:eu-repo/dai/nl/079479227

    2009-01-01

    Nitrate intake in humans is high through intake of vegetables such as beets, lettuce, and spinach. Nitrate itself is a compound of low toxicity but its metabolite, nitrite, formed by bacteria in the oral cavity and gastrointestinal tract, has been suspected of potential carcinogenic effects. Nitrite

  16. The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsion-type sausage.

    Science.gov (United States)

    Jung, Samooel; Kim, Hyun Joo; Park, Sanghoo; In Yong, Hae; Choe, Jun Ho; Jeon, Hee-Joon; Choe, Wonho; Jo, Cheorun

    2015-10-01

    We investigated the possible use of atmospheric pressure plasma-treated water (PTW) as a nitrite source in curing process. Emulsion-type sausages were manufactured with PTW, celery powder containing nitrite, and synthetic sodium nitrite at a concentration of nitrite ion 70mgkg(-1). In terms of sausage quality, there were no noticeable effects of PTW on the total aerobic bacterial counts, color, and peroxide values of sausages compared with those of celery powder and sodium nitrite throughout 28days of storage at 4°C. Sausage with added PTW had lower concentrations of residual nitrite compared to those of added celery powder and sodium nitrite during the storage period (Pnitrite-treated sausages were not different, whereas the sausage with added celery powder received the lowest scores in taste and acceptability. From the results, it is concluded that PTW can be used as a nitrite source equivalent to a natural curing agent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Electrochemical Single‐Molecule AFM of the Redox Metalloenzyme Copper Nitrite Reductase in Action

    DEFF Research Database (Denmark)

    Hao, Xian; Zhang, Jingdong; Christensen, Hans Erik Mølager

    2012-01-01

    We studied the electrochemical behavior of the redox metalloenzyme copper nitrite reductase (CNiR, Achromobacter xylosoxidans) immobilized on a Au(111)‐electrode surface modified by a self‐assembled cysteamine molecular monolayer (SAM) using a combination of cyclic voltammetry and electrochemically......‐controlled atomic force microscopy (in situ AFM). The enzyme showed no voltammetric signals in the absence of nitrite substrate, whereas a strong reductive electrocatalytic signal appeared in the presence of nitrite. Such a pattern is common in protein film and monolayer voltammetry and points to conformational...... in the presence of nitrite. No change in size was observed in the absence of nitrite over the same potential range. The enzyme size variation is suggested to offer clues to the broadly observed substrate triggering in metalloenzyme monolayer voltammetry....

  18. Evaluation of nitrite contamination in baby foods and infant formulas marketed in Turkey.

    Science.gov (United States)

    Erkekoglu, Pinar; Baydar, Terken

    2009-05-01

    Nitrites are responsible for methemoglobinemia, to which infants younger than 6 months are thought to be the most susceptible population. This study aimed to detect whether there was any nitrite contamination in infant formulas and baby foods marketed in Turkey and to estimate possible toxicological risks in this sensitive physiological period. For this purpose, the samples were randomly collected and divided into four groups: milk-based, cereal-based, vegetable-based, and fruit-based. An easy and reliable spectrophotometric method was used by modifying the Griess method. The average nitrite contamination was found to be 204.07+/-65.80 microg/g in 42 samples, with 1,073 microg/g maximum. According to the results, baby and infant formulas include various nitrite levels; nitrite contamination might come from several sources during manufacturing, and so extreme attention must be given throughout the manufacturing process of food for infants.

  19. An effort for reducing Nitrite in the partition process by using Diphenyl Thio Urea

    International Nuclear Information System (INIS)

    Mashudi; Busron-Masduki; Damunir; Mujianto

    1996-01-01

    The existence of nitrite in the process of U-Pu partition will disturb the partition process. In addition to the reoxidization of Pu 3+ to Pu 4+ , nitrite will also react with reductor. Both reactions are not expected, so that the nitrite ion in the partition process must be eliminated or reduced as much as possible. An experiment on the nitrite elimination in the partition process was done by reacting nitrite with diphenyl thio urea. The experiment result showed that the optimum condition was achieved at a contact time of 6 minutes, at the concentration of 0.004 N (300% stoichiometric), and the elimination result was 90%. This result is competitive enough if compared with hydrazine hydroxide or amido sulphonic acid, where the contact time is 6 minutes, the excess of both reactants are 200% and 300%, and the elimination results are 60% and 50% respectively

  20. Practical Use of Nitrite and Basis for Dosage in the Manufacture of Meat Products

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens; Ekgreen, Maria Helbo; Risum, Jørgen

    . The particularities of the production methods make such a quantification rather uncertain. Furthermore, some dry cured products from South Europe are made with nitrate, which slowly and only partly is converted to nitrite and further to NO during the curing process. The Danish limitations on the use of nitrate......The use of nitrite (NaNO2) in the manufacture of salted (cured) meat products has a long tradition in the industry, dating back to the early twentieth century. Nitrite serves several technological purposes, primarily by the formation of a stable red colour in the meat and the inhibition...... of the growth of Clostridium botulinum. According to an assessment report by the European Food Safety Authority (The EFSA Journal, 14, p. 1-134, 2003) all evidence points to that it is the added amount of nitrite rather than the residual amount of nitrite in the product which exerts the antimicrobial effect...

  1. Controls of nitrite oxidation in ammonia-removing biological air filters

    DEFF Research Database (Denmark)

    Juhler, Susanne; Ottosen, Lars Ditlev Mørck; Nielsen, Lars Peter

    2008-01-01

    in accumulation of nitrate rather than nitrite and a significant decline in pH. As a consequence, ammonia is removed more efficiently, but heterotrophic oxidation of odorous compounds might be inhibited.  To identify the controlling mechanisms of nitrite oxidation, full-scale biological air filters were...... activity resulting in a lowered pH and thus a decreased FA concentration, promoting further growth of NOB. Yet, in some cases a situation with a nitrate-to-nitrite ratio of 1 and moderate pH remained stable even under varying air load and water supply, suggesting that additional mechanisms were involved......In biological air filters ammonia is removed due to the action of Ammonia Oxidizing Bacteria (AOB) resulting in nitrite accumulation exceeding 100 mM. Among filters treating exhaust air from pig facilities successful establishment of Nitrite Oxidizing Bacteria (NOB) sometimes occurs, resulting...

  2. Estimation of nitrite in source-separated nitrified urine with UV spectrophotometry.

    Science.gov (United States)

    Mašić, Alma; Santos, Ana T L; Etter, Bastian; Udert, Kai M; Villez, Kris

    2015-11-15

    Monitoring of nitrite is essential for an immediate response and prevention of irreversible failure of decentralized biological urine nitrification reactors. Although a few sensors are available for nitrite measurement, none of them are suitable for applications in which both nitrite and nitrate are present in very high concentrations. Such is the case in collected source-separated urine, stabilized by nitrification for long-term storage. Ultraviolet (UV) spectrophotometry in combination with chemometrics is a promising option for monitoring of nitrite. In this study, an immersible in situ UV sensor is investigated for the first time so to establish a relationship between UV absorbance spectra and nitrite concentrations in nitrified urine. The study focuses on the effects of suspended particles and saturation on the absorbance spectra and the chemometric model performance. Detailed analysis indicates that suspended particles in nitrified urine have a negligible effect on nitrite estimation, concluding that sample filtration is not necessary as pretreatment. In contrast, saturation due to very high concentrations affects the model performance severely, suggesting dilution as an essential sample preparation step. However, this can also be mitigated by simple removal of the saturated, lower end of the UV absorbance spectra, and extraction of information from the secondary, weaker nitrite absorbance peak. This approach allows for estimation of nitrite with a simple chemometric model and without sample dilution. These results are promising for a practical application of the UV sensor as an in situ nitrite measurement in a urine nitrification reactor given the exceptional quality of the nitrite estimates in comparison to previous studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Food sources of nitrates and nitrites: the physiologic context for potential health benefits.

    Science.gov (United States)

    Hord, Norman G; Tang, Yaoping; Bryan, Nathan S

    2009-07-01

    The presence of nitrates and nitrites in food is associated with an increased risk of gastrointestinal cancer and, in infants, methemoglobinemia. Despite the physiologic roles for nitrate and nitrite in vascular and immune function, consideration of food sources of nitrates and nitrites as healthful dietary components has received little attention. Approximately 80% of dietary nitrates are derived from vegetable consumption; sources of nitrites include vegetables, fruit, and processed meats. Nitrites are produced endogenously through the oxidation of nitric oxide and through a reduction of nitrate by commensal bacteria in the mouth and gastrointestinal tract. As such, the dietary provision of nitrates and nitrites from vegetables and fruit may contribute to the blood pressure-lowering effects of the Dietary Approaches to Stop Hypertension (DASH) diet. We quantified nitrate and nitrite concentrations by HPLC in a convenience sample of foods. Incorporating these values into 2 hypothetical dietary patterns that emphasize high-nitrate or low-nitrate vegetable and fruit choices based on the DASH diet, we found that nitrate concentrations in these 2 patterns vary from 174 to 1222 mg. The hypothetical high-nitrate DASH diet pattern exceeds the World Health Organization's Acceptable Daily Intake for nitrate by 550% for a 60-kg adult. These data call into question the rationale for recommendations to limit nitrate and nitrite consumption from plant foods; a comprehensive reevaluation of the health effects of food sources of nitrates and nitrites is appropriate. The strength of the evidence linking the consumption of nitrate- and nitrite-containing plant foods to beneficial health effects supports the consideration of these compounds as nutrients.

  4. Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia.

    Directory of Open Access Journals (Sweden)

    Matthias Totzeck

    Full Text Available The systemic response to decreasing oxygen levels is hypoxic vasodilation. While this mechanism has been known for more than a century, the underlying cellular events have remained incompletely understood. Nitrite signaling is critically involved in vessel relaxation under hypoxia. This can be attributed to the presence of myoglobin in the vessel wall together with other potential nitrite reductases, which generate nitric oxide, one of the most potent vasodilatory signaling molecules. Questions remain relating to the precise concentration of nitrite and the exact dose-response relations between nitrite and myoglobin under hypoxia. It is furthermore unclear whether regulatory mechanisms exist which balance this interaction. Nitrite tissue levels were similar across all species investigated. We then investigated the exact fractional myoglobin desaturation in an ex vivo approach when gassing with 1% oxygen. Within a short time frame myoglobin desaturated to 58±12%. Given that myoglobin significantly contributes to nitrite reduction under hypoxia, dose-response experiments using physiological to pharmacological nitrite concentrations were conducted. Along all concentrations, abrogation of myoglobin in mice impaired vasodilation. As reactive oxygen species may counteract the vasodilatory response, we used superoxide dismutase and its mimic tempol as well as catalase and ebselen to reduce the levels of reactive oxygen species during hypoxic vasodilation. Incubation of tempol in conjunction with catalase alone and catalase/ebselen increased the vasodilatory response to nitrite. Our study shows that modest hypoxia leads to a significant nitrite-dependent vessel relaxation. This requires the presence of vascular myoglobin for both physiological and pharmacological nitrite levels. Reactive oxygen species, in turn, modulate this vasodilation response.

  5. Intake assessment of the food additives nitrite (E 249 and E 250) and nitrate (E 251 and E 252)

    NARCIS (Netherlands)

    Sprong RC; Niekerk EM; Beukers MH; VVH; V&Z

    2017-01-01

    Nitrate and nitrite are authorised as preservatives in certain food products, such as salami, ham (nitrite) and cheese (nitrate). They prevent food spoilage and protect the consumer against food-borne pathogens. Next to that, nitrate and nitrite play a role in food colour retention and contribute to

  6. Functional microorganisms for functional food quality.

    Science.gov (United States)

    Gobbetti, M; Cagno, R Di; De Angelis, M

    2010-09-01

    Functional microorganisms and health benefits represent a binomial with great potential for fermented functional foods. The health benefits of fermented functional foods are expressed either directly through the interactions of ingested live microorganisms with the host (probiotic effect) or indirectly as the result of the ingestion of microbial metabolites synthesized during fermentation (biogenic effect). Since the importance of high viability for probiotic effect, two major options are currently pursued for improving it--to enhance bacterial stress response and to use alternative products for incorporating probiotics (e.g., ice cream, cheeses, cereals, fruit juices, vegetables, and soy beans). Further, it seems that quorum sensing signal molecules released by probiotics may interact with human epithelial cells from intestine thus modulating several physiological functions. Under optimal processing conditions, functional microorganisms contribute to food functionality through their enzyme portfolio and the release of metabolites. Overproduction of free amino acids and vitamins are two classical examples. Besides, bioactive compounds (e.g., peptides, γ-amino butyric acid, and conjugated linoleic acid) may be released during food processing above the physiological threshold and they may exert various in vivo health benefits. Functional microorganisms are even more used in novel strategies for decreasing phenomenon of food intolerance (e.g., gluten intolerance) and allergy. By a critical approach, this review will aim at showing the potential of functional microorganisms for the quality of functional foods.

  7. Role of xanthine oxidoreductase in the anti-thrombotic effects of nitrite in rats in vivo.

    Science.gov (United States)

    Kramkowski, K; Leszczynska, A; Przyborowski, K; Kaminski, T; Rykaczewska, U; Sitek, B; Zakrzewska, A; Proniewski, B; Smolenski, R T; Chabielska, E; Buczko, W; Chlopicki, S

    2016-01-01

    The mechanisms underlying nitrite-induced effects on thrombosis and hemostasis in vivo are not clear. The goal of the work described here was to investigate the role of xanthine oxidoreductase (XOR) in the anti-platelet and anti-thrombotic activities of nitrite in rats in vivo. Arterial thrombosis was induced electrically in rats with renovascular hypertension by partial ligation of the left renal artery. Sodium nitrite (NaNO2, 0.17 mmol/kg twice daily for 3 days, p.o) was administered with or without one of the XOR-inhibitors: allopurinol (ALLO) and febuxostat (FEB) (100 and 5 mg/kg, p.o., for 3 days). Nitrite treatment (0.17 mmol/kg), which was associated with a significant increase in NOHb, nitrite/nitrate plasma concentration, resulted in a substantial decrease in thrombus weight (TW) (0.48 ± 0.03 mg vs. vehicle [VEH] 0.88 ± 0.08 mg, p < 0.001) without a significant hypotensive effect. The anti-thrombotic effect of nitrite was partially reversed by FEB (TW = 0.63 ± 0.06 mg, p < 0.05 vs. nitrites), but not by ALLO (TW = 0.43 ± 0.02 mg). In turn, profound anti-platelet effect of nitrite measured ex vivo using collagen-induced whole-blood platelet aggregation (70.5 ± 7.1% vs. VEH 100 ± 4.5%, p < 0.05) and dynamic thromboxaneB2 generation was fully reversed by both XOR-inhibitors. In addition, nitrite decreased plasminogen activator inhibitor-1 concentration (0.47 ± 0.13 ng/ml vs. VEH 0.62 ± 0.04 ng/ml, p < 0.05) and FEB/ALLO reversed this effect. In vitro the anti-platelet effect of nitrite (1 mM) was reversed by FEB (0.1 mM) under hypoxia (0.5%O2) and normoxia (20%O2). Nitrite treatment had no effect on coagulation parameters. In conclusion, the nitrite-induced anti-platelet effect in rats in vivo is mediated by XOR, but XOR does not fully account for the anti-thrombotic effects of nitrite.

  8. Addition of nitrite enhances the electrochemical defluorination of 2-fluoroaniline

    International Nuclear Information System (INIS)

    Feng, Huajun; Liang, Yuxiang; Guo, Kun; Long, Yuyang; Cong, Yanqing; Shen, Dongsheng

    2015-01-01

    Highlights: • A method for improving defluorination performance by in situ self-assembly of pollutants was developed. • The mechanisms of 2-FA modification and defluorination are discussed. • Positively-charged diazonium salt is used to weaken the C–F bond. - Abstract: This study introduces a novel approach that uses the interaction of pollutants with added nitrite to produce diazonium salts, which cause in situ self-assembly of the pollutants on carbon electrodes, to improve their 2-fluoroaniline (2-FA) defluorination and removal performance. The 2-FA degradation performance, electrode properties, electrochemical properties and degradation pathway were investigated. The reactor containing NO_2"− achieved a 2-FA removal efficiency of 90.1% and a defluorination efficiency of 38% within 48 h, 1.4 and 2.3 times higher than the corresponding results achieved without NO_2"−, respectively. The residual NO_2"− was less than 0.5 mg/L in the reactor containing added NO_2"−, which would not cause serious secondary pollution. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results proved that the carbon anode surface was successfully modified with benzene polymer, and electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly. The C–F bond was weakened by the effect of the positive charge of the benzenediazonium groups, and the high electrochemical activity of the carbon anode enhanced the electrochemical performance of the system to accelerate defluorination. Thus, the present electrical method involving nitrite nitrogen is very promising for the treatment of wastewater containing fluoroaniline compounds.

  9. Addition of nitrite enhances the electrochemical defluorination of 2-fluoroaniline

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Huajun [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Liang, Yuxiang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Guo, Kun [Laboratory of Microbial Ecology and Technology, Ghent University, Coupure Links 653, B-9000 Ghent (Belgium); Long, Yuyang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China); Cong, Yanqing, E-mail: yqcong@hotmail.com [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Shen, Dongsheng [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012 (China)

    2015-12-30

    Highlights: • A method for improving defluorination performance by in situ self-assembly of pollutants was developed. • The mechanisms of 2-FA modification and defluorination are discussed. • Positively-charged diazonium salt is used to weaken the C–F bond. - Abstract: This study introduces a novel approach that uses the interaction of pollutants with added nitrite to produce diazonium salts, which cause in situ self-assembly of the pollutants on carbon electrodes, to improve their 2-fluoroaniline (2-FA) defluorination and removal performance. The 2-FA degradation performance, electrode properties, electrochemical properties and degradation pathway were investigated. The reactor containing NO{sub 2}{sup −} achieved a 2-FA removal efficiency of 90.1% and a defluorination efficiency of 38% within 48 h, 1.4 and 2.3 times higher than the corresponding results achieved without NO{sub 2}{sup −}, respectively. The residual NO{sub 2}{sup −} was less than 0.5 mg/L in the reactor containing added NO{sub 2}{sup −}, which would not cause serious secondary pollution. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) results proved that the carbon anode surface was successfully modified with benzene polymer, and electrochemical tests confirmed that the electrochemical activity of the modified anode was enhanced significantly. The C–F bond was weakened by the effect of the positive charge of the benzenediazonium groups, and the high electrochemical activity of the carbon anode enhanced the electrochemical performance of the system to accelerate defluorination. Thus, the present electrical method involving nitrite nitrogen is very promising for the treatment of wastewater containing fluoroaniline compounds.

  10. Quantum chemical molecular dynamical investigation of alkyl nitrite photo-dissociated on copper surfaces

    International Nuclear Information System (INIS)

    Wang Xiaojing; Wang Wei; Han Peilin; Kubo, Momoji; Miyamoto, Akira

    2008-01-01

    An accelerated quantum chemical molecular dynamical code 'Colors-Excite' was used to investigate the photolysis of alkyl nitrites series, RONO (R=CH 3 and C(CH 3 ) 3 ) on copper surfaces. Our calculations showed that the photo-dissociated processes are associated with the alkyl substituents of RONO when adsorbed on copper surfaces. For R=CH 3 , a two-step photolysis reaction occurred, yielding diverse intermediate products including RO radical, NO, and HNO, consistent with those reported in gas phase. While for R=C(CH 3 ) 3 , only one-step photolysis reaction occurred and gave intermediate products of RO radical and NO. Consequently, pure RO species were achieved to adsorb on metal surfaces by removing the NO species in photolysis reaction. The detailed photo-dissociated behaviors of RONO on copper surfaces with different alkyl substituents which are uncovered by the present simulation can be extended to explain the diverse dissociative mechanism experimentally observed. The quantum chemical molecular dynamical code 'Colors-Excite' is proved to be highly applicable to the photo-dissociations on metal surfaces

  11. Microorganism identification technique using radioactive and fluorescent agent

    International Nuclear Information System (INIS)

    Silman, R.E.

    1983-01-01

    A method for identifying microorganisms is claimed. An emissive agent is added to a specimen of microorganisms to produce a mix of emissive products. These products are detected and characteristic pattern functioning as an identifier for the microorganisms is derived. The identifier is then compared with identifiers representing known microorganisms

  12. Food fermentations: Microorganisms with technological beneficial use

    DEFF Research Database (Denmark)

    Bourdichon, François; Casaregola, Serge; Farrokh, Choreh

    2012-01-01

    Microbial food cultures have directly or indirectly come under various regulatory frameworks in the course of the last decades. Several of those regulatory frameworks put emphasis on “the history of use”, “traditional food”, or “general recognition of safety”. Authoritative lists of microorganism......, legumes, cereals, beverages, and vinegar). We have also reviewed and updated the taxonomy of the microorganisms used in food fermentations in order to bring the taxonomy in agreement with the current standing in nomenclature....... cultures in practical use. However, as the focus mainly was on commercially available dairy cultures, there was an unmet need for a list with a wider scope. We present an updated inventory of microorganisms used in food fermentations covering a wide range of food matrices (dairy, meat, fish, vegetables...

  13. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    Science.gov (United States)

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  14. Evaluation of the impact on food safety of a Lactobacillus coryniformis strain from pickled vegetables with degradation activity against nitrite and other undesirable compounds.

    Science.gov (United States)

    Fang, Fang; Feng, Tingting; Du, Guocheng; Chen, Jian

    2016-01-01

    Four strains of lactic acid bacteria showing antimicrobial activity against some food-spoilage microorganisms or pathogens, including both Gram-negative and -positive strains, were isolated from naturally fermented pickled vegetables and a traditional cheese product. Among these isolates, Lactobacillus coryniformis strain BBE-H3, characterised previously to be a non-biogenic amine producer, showed a high level of activity in degrading sodium nitrite and exhibited the ability to eliminate ethyl carbamate and one of its precursors, urea. The antimicrobial substance produced by L. coryniformis BBE-H3 was found to be active at an acidic pH range of 4.0-4.5. The antimicrobial activity of this strain decreased differentially after treatment with proteolytic enzymes (pepsin, papain, trypsin and proteinase K), implying this growth inhibitory compound is either a protein or a polypeptide. The results of this study show the suitability of L. coryniformis BBE-H3 as a starter in food manufacturing processes, and demonstrate its potential role in eliminating food origin carcinogens such as sodium nitrite and ethyl carbamate.

  15. [Evolution of pathogenic micro-organisms as a challenge for medicine].

    Science.gov (United States)

    Vaara, Martti

    2009-01-01

    Successful parasitic micro-organisms are able to adapt to the circumstances of the host's organ system, and it is usually not expedient for them to kill their host. Under selection pressure, the evolution of micro-organisms is vastly quicker that that of man. The selection pressure brought about by rapid ecological changes and alterations associated with human action provides for the development of new, dangerous pathogens and transformation of familiar pathogens to become more dangerous. Progress in molecular biology has thus far not yielded as many new tools for the treatment of infectious diseases as the hopes were in the early 2000's.

  16. Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

    International Nuclear Information System (INIS)

    Kim, K. T.; Kim, Y. S.; Chang, H. Y.; Lim, B. T.; Park, H. B.

    2016-01-01

    In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

  17. Effect of Ethanolamines on Corrosion Inhibition of Ductile Cast Iron in Nitrite Containing Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2016-08-15

    In this work, synergistic corrosion inhibition effect of nitrite and 3 kinds of ethanolamines on ductile cast iron using chemical and electrochemical methods was evaluated. This work attempts to clarify the synergistic effect of nitrite and ethanolamines. The effects of single addition of TEA, DEA, and MEA, and mixed addition of nitrite plus TEA, DEA or MEA on the corrosion inhibition of ductile cast iron in a tap water were evaluated. A huge amount of single addition of ethanolamine was needed. However, the synergistic effect by mixed addition was observed regardless of the combination of nitrite and triethanolamines, but their effects increased in a series of MEA + nitrite > DEA + nitrite > TEA + nitrite. This tendency of synergistic effect was attributed to the film properties and polar effect; TEA addition couldn't form the film showing high film resistance and semiconductive properties, but DEA or MEA could build the film having relatively high film resistance and n-type semiconductive properties. Moreover, it can be explained that this behaviour was closely related to electron attractive group within the ethanolamines, and thus corrosion inhibition power depends upon the number of the electron attractive group of MEA, DEA, and TEA.

  18. Ingested nitrate and nitrite and stomach cancer risk: an updated review.

    Science.gov (United States)

    Bryan, Nathan S; Alexander, Dominik D; Coughlin, James R; Milkowski, Andrew L; Boffetta, Paolo

    2012-10-01

    Nitrite and nitrate are naturally occurring molecules in vegetables and also added to cured and processed meats to delay spoilage and pathogenic bacteria growth. Research over the past 15 years has led to a paradigm change in our ideas about health effects of both nitrite and nitrate. Whereas, historically nitrite and nitrate were considered harmful food additives and listed as probable human carcinogens under conditions where endogenous nitrosation could take place, they are now considered by some as indispensible nutrients essential for cardiovascular health by promoting nitric oxide (NO) production. We provide an update to the literature and knowledge base concerning their safety. Most nitrite and nitrate exposure comes from naturally occurring and endogenous sources and part of the cell signaling effects of NO involve nitrosation. Nitrosation must now be considered broadly in terms of both S- and N-nitrosated species, since S-nitrosation is kinetically favored. Protein S-nitrosation is a significant part of the role of NO in cellular signal transduction and is involved in critical aspects of cardiovascular health. A critical review of the animal toxicology literature of nitrite indicates that in the absence of co-administration of a carcinogenic nitrosamine precursor, there is no evidence for carcinogenesis. Newly published prospective epidemiological cohort studies indicate that there is no association between estimated intake of nitrite and nitrate in the diet and stomach cancer. This new and growing body of evidence calls for a reconsideration of nitrite and nitrate safety. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Nitrite reduction and methanogenesis in a single-stage UASB reactor.

    Science.gov (United States)

    Borges, L I; López-Vazquez, C M; García, H; van Lier, J B

    2015-01-01

    In this study, nitrite reduction and methanogenesis in a single-stage upflow anaerobic sludge blanket (UASB) reactor was investigated, using high-strength synthetic domestic wastewater as substrate. To assess long-term effects and evaluate the mechanisms that allow successful nitrite reduction and methanogenesis in a single-stage UASB, sludge was exposed to relatively high nitrite loading rates (315 ± 13 mgNO(2)(-)-N/(l.d)), using a chemical oxygen demand (COD) to nitrogen ratio of 18 gCOD/gNO(2)(-)-N, and an organic loading rate of 5.4 ± 0.2 gCOD/(l.d). In parallel, the effects of sludge morphology on methanogenesis inhibition were studied by performing short-term batch activity tests at different COD/NO(2)(-)-N ratios with anaerobic sludge samples. In long-term tests, denitrification was practically complete and COD removal efficiency did not change significantly after nitrite addition. Furthermore, methane production only decreased by 13%, agreeing with the reducing equivalents requirement for complete NO(2)(-) reduction to N₂. Apparently, the spatial separation of denitrification and methanogenesis zones inside the UASB reactor allowed nitrite reduction and methanogenesis to occur at the same moment. Batch tests showed that granules seem to protect methanogens from nitrite inhibition, probably due to transport limitations. Combined COD and N removal via nitrite in a single-stage UASB reactor could be a feasible technology to treat high-strength domestic wastewater.

  20. Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probes for Sensitive and Selective Detection of Nitrite

    Directory of Open Access Journals (Sweden)

    Zhibiao Feng

    2017-11-01

    Full Text Available Nitrites are the upstream precursors of the carcinogenic nitrosamines, which are widely found in the natural environment and many food products. It is important to develop a simple and sensitive sensor for detecting nitrites. In this work, a fluorescence probe based on nitrogen-doped carbon quantum dots (N-CQDs was developed for the sensitive and selective determination of nitrites. At pH 2, the fluorescence of N-CQDs can be selectively quenched by nitrite due to the fact N-nitroso compounds can be formed in the reaction of amide groups with nitrous acid, which results in fluorescence static quenching. Under optimal conditions, fluorescence intensity quenching upon addition of nitrite gives a satisfactory linear relationship covering the linear range of 0.2–20 μM, and the limit of detection (LOD is 40 nM. Moreover, this method has been successfully applied to the determination of nitrites in tap water, which indicates its great potential for monitoring of nitrites in environmental samples.

  1. Role of nitrite in the photochemical formation of radicals in the snow.

    Science.gov (United States)

    Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf

    2014-01-01

    Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.

  2. Preliminary nitrite, nitrate and colour analysis of Malaysian edible bird’s nest

    Directory of Open Access Journals (Sweden)

    Meei Chien Quek

    2015-05-01

    Full Text Available The high nitrite content in edible bird’s nests is a major concern to the local swiftlet industry. It lowers the price of the edible bird’s nests and it brings severe health hazards to consumers and farmers. This research investigated the nitrite and nitrate contents of eight types of local edible bird’s nests by using ion chromatography system and evaluating its colour using the CIE system in L∗a∗b∗ parameters. The nitrite content obtained ranged from 5.7 μg/g for the house nests to 843.8 μg/g for the cave nests. The nitrate content for the house and cave nests was 98.2 μg/g and 36,999.4 μg/g, respectively. The cave nests with darker and redder colour had higher nitrite and nitrate contents than the brighter and more yellow house nests. This likely suggests that the nitrite and nitrate contents have correlations with edible bird’s nests colour. Correlations studies suggested that the nitrite content had high correlations with colour parameters, L∗a∗b∗ of edible bird’s nests at significant level of P < 0.10. These findings suggest that edible bird’s nests’ colour may be a useful indicator for measuring nitrite and nitrate contaminations.

  3. Music stimuli lead to increased levels of nitrite in unstimulated mixed saliva.

    Science.gov (United States)

    Jin, Luyuan; Zhang, Mengbi; Xu, Junji; Xia, Dengsheng; Zhang, Chunmei; Wang, Jingsong; Wang, Songlin

    2018-06-15

    Concentration of salivary nitrate is approximately 10-fold to that of serum. Many circumstances such as acute stress could promote salivary nitrate secretion and nitrite formation. However, whether other conditions can also be used as regulators of salivary nitrate/nitrite has not yet been explored. The present study was designed to determine the influence of exposure to different music on the salivary flow rate and nitrate secretion and nitrite formation. Twenty-four undergraduate students (12 females and 12 males) were exposed to silence, rock music, classical music or white noise respectively on four consecutive mornings. The unstimulated salivary flow rate and stimulated salivary flow rate were measured. Salivary ionic (Na + , Ca 2+ Cl - , and PO 4 3- ) content and nitrate/nitrite levels were detected. The unstimulated salivary flow rate was significantly increased after classical music exposure compared to that after silence. Salivary nitrite levels were significantly higher upon classical music and white noise stimulation than those under silence in females. However, males were more sensitive only to white noise with regard to the nitrite increase. In conclusion, this study demonstrated that classical music stimulation promotes salivary nitrite formation and an increase in saliva volume was observed. These observations may play an important role in regulating oral function.

  4. Effect of luminal or circulating nitrite on colonic ion movement in the rat

    International Nuclear Information System (INIS)

    Radcliffe, B.C.; Nance, S.H.; Deakin, E.J.; Roediger, W.E.W.

    1987-01-01

    The disposition of intravenously or luminally administered nitrite across the colonic mucosa and its effect on ion movement into or from the colon was assessed in anesthetized Porton rats using the isolated colon instilled either with sodium chloride or sodium chloride with sodium butyrate. Ionic changes in the colon after intravenous injection of 10 μmol NaNO 2 were compared with those occurring after injection of 10 μmol NaCl. After intravenous administration of nitrite, both nitrite and nitrate appeared in the colonic instillate in a ratio of 1:1. Nitrite increased chloride absorption (110%) and bicarbonate production (20%) when 40 mM butyrate was included in the instillate. Net sodium absorption, measured in the whole colon, was unchanged. Intravenous nitrite had no effect on ionic movement in the absence of butyrate. When NaNO 2 was included luminally with the sodium chloride-butyrate instillate, bicarbonate production rate increased, but sodium and chloride absorption were unaffected. Nitrite concentration in the instillate decreased during the 40-min experimental period at a rate of 0.275 nmol·min -1 ·cm -2 and nitrate appeared at a rate of 0.037 nmol·min -1 ·cm -2 . The authors conclude that nitrite stimulates bicarbonate production in the colon, probably by stimulating the oxidation by butyrate, the main source of CO 2 generation by the colonic mucosa

  5. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  6. Risk Assessment of Genetically Modified Microorganisms

    DEFF Research Database (Denmark)

    Jacobsen, B. L.; Wilcks, Andrea

    2001-01-01

    the industry, national administration and research institutions were gathered to discuss which elements should be considered in a risk assessment of genetically modified microorganisms used as food or food ingredients. The existing EU and national regulations were presented, together with the experiences......The rapid development of recombinant DNA techniques for food organisms urges for an ongoing discussion on the risk assessment of both new as traditional use of microorganisms in food production. This report, supported by the Nordic Council of Ministers, is the result of a workshop where people from...... with risk assessment of these organisms in each Nordic country....

  7. Functional Properties of Microorganisms in Fermented Foods

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Tamang

    2016-04-01

    Full Text Available Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers.

  8. Effect of Sodium Nitrite and Sodium Nitrate on Botulinal Toxin Production and Nitrosamine Formation in Wieners

    Science.gov (United States)

    Hustad, Gerald O.; Cerveny, John G.; Trenk, Hugh; Deibel, Robert H.; Kautter, Donald A.; Fazio, Thomas; Johnston, Ralph W.; Kolari, Olaf E.

    1973-01-01

    Wieners were formulated and processed approximating commercial conditions as closely as possible. Twenty-four batches of product were made with the addition of six levels of sodium nitrite (0, 50, 100, 150, 200, and 300 μg/g), four levels of sodium nitrate (0, 50, 150, and 450 μg/g), and two levels of Clostridium botulinum (0 and 620 spores/g). After formulation, processing, and vacuum packaging, portions of each batch were incubated at 27 C or held for 21 days at 7 C followed by incubation at 27 C for 56 days. The latter storage condition approximated distribution of product through commercial channels and potential temperature abuse at the consumer level. Samples were analyzed for botulinal toxin, nitrite, and nitrate levels after 3, 7, 14, 21, 28, and 56 days of incubation. When nitrite was not added, toxic samples were detected after 14 days of incubation at 27 C. At the lowest level of nitrite added (50 μg/g), no toxic samples were observed until 56 days of incubation. Higher levels of nitrite completely inhibited toxin production throughout the incubation period. Nine uninoculated samples, representing various levels and combinations of nitrite and nitrate, were evaluated organoleptically. The flavor quality of wieners made with nitrite was judged significantly higher (P = 0.05) than of wieners made without nitrite. The nine samples were negative for 14 volatile nitrosamines at a sensitivity level of 10 ng/g. The results indicated that nitrite effectively inhibited botulinal toxin formation at commercially employed levels in wieners and that detectable quantities of nitrosamines were not produced during preparation and processing of the product for consumption. PMID:4580194

  9. Role of blood and vascular smooth muscle in the vasoactivity of nitrite

    Science.gov (United States)

    Liu, Taiming; Schroeder, Hobe J.; Barcelo, Lisa; Bragg, Shannon L.; Terry, Michael H.; Wilson, Sean M.; Power, Gordon G.

    2014-01-01

    Recent evidence from humans and rats indicates that nitrite is a vasodilator under hypoxic conditions by reacting with metal-containing proteins to produce nitric oxide (NO). We tested the hypothesis that near-physiological concentrations of nitrite would produce vasodilation in a hypoxia- and concentration-dependent manner in the hind limb of sheep. Anesthetized sheep were instrumented to measure arterial blood pressure and femoral blood flows continuously in both hind limbs. Nitrite was infused into one femoral artery to raise the nitrite concentration in the femoral vein by 10 to 15-fold while the sheep breathed 50%, 14% or 12% oxygen in inspired air. In contrast to reports in humans and rats, the nitrite infusion had no measurable effect on mean femoral blood flows or vascular conductances, regardless of inspired O2 levels. In vitro experiments showed no significant difference in the release of NO from nitrite in sheep and human red blood cells. Further experiments demonstrated nitrite is converted to NO in rat artery homogenates faster than sheep arteries, and that this source of NO production is attenuated in the presence of a heme oxidizer. Finally, western blots indicate that concentrations of the heme-containing protein cytoglobin, but not myoglobin, are markedly lower in sheep arteries compared with rats. Overall, the results demonstrate that nitrite is not a physiological vasodilator in sheep. This is likely due to a lack of conversion of nitrite to NO within the vascular smooth muscle, perhaps due to deficient amounts of the heme-containing protein cytoglobin. PMID:25108012

  10. Iron(II) porphyrins induced conversion of nitrite into nitric oxide: A computational study.

    Science.gov (United States)

    Zhang, Ting Ting; Liu, Yong Dong; Zhong, Ru Gang

    2015-09-01

    Nitrite reduction to nitric oxide by heme proteins was reported as a protective mechanism to hypoxic injury in mammalian physiology. In this study, the pathways of nitrite reduction to nitric oxide mediated by iron(II) porphyrin (P) complexes, which were generally recognized as models for heme proteins, were investigated by using density functional theory (DFT). In view of two type isomers of combination of nitrite and Fe(II)(P), N-nitro- and O-nitrito-Fe(II)-porphyrin complexes, and two binding sites of proton to the different O atoms of nitrite moiety, four main pathways for the conversion of nitrite into nitric oxide mediated by iron(II) porphyrins were proposed. The results indicate that the pathway of N-bound Fe(II)(P)(NO2) isomer into Fe(III)(P)(NO) and water is similar to that of O-bound isomer into nitric oxide and Fe(III)(P)(OH) in both thermodynamical and dynamical aspects. Based on the initial computational studies of five-coordinate nitrite complexes, the conversion of nitrite into NO mediated by Fe(II)(P)(L) complexes with 14 kinds of proximal ligands was also investigated. Generally, the same conclusion that the pathways of N-bound isomers are similar to those of O-bound isomer was obtained for iron(II) porphyrin with ligands. Different effects of ligands on the reduction reactions were also found. It is notable that the negative proximal ligands can improve reactive abilities of N-nitro-iron(II) porphyrins in the conversion of nitrite into nitric oxide compared to neutral ligands. The findings will be helpful to expand our understanding of the mechanism of nitrite reduction to nitric oxide by iron(II) porphyrins. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Color and oxidative stability of nitrite-free cured meat after gamma irradiation

    International Nuclear Information System (INIS)

    Shahidi, F.; Pegg, R.B.; Shamsuzzaman, K.

    1991-01-01

    The effects of 5 and 10 kGy irradiation on the color and oxidative stability of meats treated with nitrite or a nitrite-free curing system were investigated. The nitrite-free curing system consisted of the preformed cooked cured-meat pigment, sodium ascorbate and sodium tripolyphosphate with or without sodium acid pyrophosphate. Irradiation had no detrimental effects on the color or flavor of either cured samples. Polyphosphates had a beneficial effect on oxidative stability but had a slight detrimental effect on color stability of irradiated samples

  12. Solubilities of sodium nitrate, sodium nitrite, and sodium aluminate in simulated nuclear waste

    International Nuclear Information System (INIS)

    Reynolds, D.A.; Herting, D.L.

    1984-09-01

    Solubilities were determined for sodium nitrate, sodium nitrite, and sodium aluminate in synthetic nuclear waste liquor. Solubilities were determined as a function of temperature and solution composition (concentrations of sodium hydroxide, sodium nitrate, sodium nitrite, and sodium aluminate). Temperature had the greatest effect on the solubilities of sodium nitrate and sodium nitrite and a somewhat lesser effect on sodium aluminate solubility. Hydroxide had a great effect on the solubilities of all three salts. Other solution components had minor effects. 2 references, 8 figures, 11 tables

  13. Role of Nitrite in Processed Meat Products and its Degradation during their Storage

    OpenAIRE

    ILIRJANA BOCI; ELDA ZIU; GENTJANA BARDHI

    2014-01-01

    This paper represents the analytical data of nitrite level obtained from the experimental work done on meat processed samples taken from a meat processing plant in Tirana. There has been a long debate and health concern about the nitrite content in meat products. Nitrite is added to e.g. sausages, and hams and other meat products to preserve these products and keep them free from dangerous bacteria. Among the aims are preventing botulism, a dangerous food poison. But also it’s important to us...

  14. Effect of residual ascorbate on determination of nitrite in commercial cured meat products.

    Science.gov (United States)

    Fox, J B; Doerr, R C; Gates, R

    1984-01-01

    Residual ascorbate in cured meat slurries results in different amounts of pigment being produced from different Griess reagent combinations. The phenomenon was used to study residual ascorbate in commercial cured meat products which had a variety of textures, acidities, moisture and meat content, fat, homogeneity, initial nitrite, and processing conditions. Diluting and heating the samples according to the AOAC procedure did not completely eliminate the ascorbate interference, but making the sample alkaline did. Determining nitrite separately in supernate and precipitate from the first dilution showed the effect of heating to be the elimination of interferences and solubilization or extraction of nitrite from the precipitate.

  15. Occurrence of nitrate, nitrite and volatile nitrosamines in certain feedstuffs and animal products.

    Science.gov (United States)

    Ologhobo, A D; Adegede, H I; Maduagiwu, E N

    1996-01-01

    Nitrate, nitrite and nitrosamines were analysed in poultry feeds, meat and eggs. The poultry meat was boiled and roasted while the eggs were raw and boiled, and the effects of these processing treatments on the level of these compounds were investigated. Nitrate levels in the meat samples were significantly (P Nitrite levels were also reduced significantly by processing (P Nitrite levels were generally low in all feed samples. Nitrosamines were not detected in any of the feed samples and in the meat samples except in two samples of boiled meat which contained 0.001 g/kg each.

  16. Preliminary nitrite, nitrate and colour analysis of Malaysian edible bird’s nest

    OpenAIRE

    Quek, Meei Chien; Chin, Nyuk Ling; Yusof, Yus Aniza; Tan, Sheau Wei; Law, Chung Lim

    2015-01-01

    The high nitrite content in edible bird’s nests is a major concern to the local swiftlet industry. It lowers the price of the edible bird’s nests and it brings severe health hazards to consumers and farmers. This research investigated the nitrite and nitrate contents of eight types of local edible bird’s nests by using ion chromatography system and evaluating its colour using the CIE system in L∗a∗b∗ parameters. The nitrite content obtained ranged from 5.7 μg/g for the house nests to 843.8 μg...

  17. Stress Corrosion Cracking of an Austenitic Stainless Steel in Nitrite-Containing Chloride Solutions

    Directory of Open Access Journals (Sweden)

    R. K. Singh Raman

    2014-12-01

    Full Text Available This article describes the susceptibility of 316L stainless steel to stress corrosion cracking (SCC in a nitrite-containing chloride solution. Slow strain rate testing (SSRT in 30 wt. % MgCl2 solution established SCC susceptibility, as evidenced by post-SSRT fractography. Addition of nitrite to the chloride solution, which is reported to have inhibitive influence on corrosion of stainless steels, was found to increase SCC susceptibility. The susceptibility was also found to increase with nitrite concentration. This behaviour is explained on the basis of the passivation and pitting characteristics of 316L steel in chloride solution.

  18. A carbon nanotube/polyvanillin composite film as an electrocatalyst for the electrochemical oxidation of nitrite and its application as a nitrite sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Dongyun [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences (China); Hu Chengguo [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences (China)], E-mail: cghu@whu.edu.cn; Peng Yanfen [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences (China); Hu Shengshui [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences (China)], E-mail: sshu@whu.edu.cn

    2009-08-30

    We report a simple method for the stable dispersion of multi-walled carbon nanotubes (MWNTs) in water by vanillin and controllable surface addition onto carbon fiber microelectrodes (CFE) via electropolymerization. We have characterized these polyvanillin-carbon nanotube (PVN-MWNT) composite films with techniques including scanning electron microscopy (SEM), infrared spectroscopy (IR) and voltammetry. These investigations showed that the films have a uniform porous nanostructure with a large surface area. This PVN-MWNT composite-modified CFE (PVN-MWNT/CFE) exhibited a sensitive response to the electrochemical oxidation of nitrite. Under optimal working conditions, the oxidation peak current of nitrite linearly increased with its concentration in the range of 0.2 {mu}M-3.1 mM, with the system exhibiting a lower detection limit of 50 nM (S/N = 3). We successfully applied the PVN-MWNT/CFE system to the determination of nitrite from lake water. The efficient recovery of nitrite indicated that this electrode was able to detect nitrite in real samples.

  19. Acute, Sub-lethal Cyanide Poisoning in Mice is Ameliorated by Nitrite Alone: Complications Arising from Concomitant Administration of Nitrite and Thiosulfate as an Antidotal Combination

    Science.gov (United States)

    Cambal, Leah K.; Swanson, Megan R.; Yuan, Quan; Weitz, Andrew C.; Li, Hui-Hua; Pitt, Bruce R.; Pearce, Linda L.; Peterson, Jim

    2011-01-01

    Sodium nitrite alone is shown to ameliorate sub-lethal cyanide toxicity in mice when given from ~1 hour before until 20 minutes after the toxic dose as demonstrated by the recovery of righting ability. An optimum dose (12 mg/kg) was determined to significantly relieve cyanide toxicity (5.0 mg/kg) when administered to mice intraperitoneally. Nitrite so administered was shown to rapidly produce NO in the bloodsteam as judged by the dose dependent appearance of EPR signals attributable to nitrosylhemoglobin and methemoglobin. It is argued that antagonism of cyanide inhibition of cytochrome c oxidase by NO is the crucial antidotal activity rather than the methemoglobin-forming action of nitrite. Concomitant addition of sodium thiosulfate to nitrite-treated blood resulted in the detection of sulfidomethemoblobin by EPR spectroscopy. Sulfide is a product of thiosulfate hydrolysis and, like cyanide, is known to be a potent inhibitor of cytochrome c oxidase; the effects of the two inhibitors being essentially additive under standard assay conditions, rather than dominated by either one. The findings afford a plausible explanation for an observed detrimental effect in mice associated with the use of the standard nitrite-thiosulfate combination therapy at sub-lethal levels of cyanide intoxication. PMID:21534623

  20. Combined effects of high hydrostatic pressure and sodium nitrite on color, water holding capacity and texture of frankfurter

    Science.gov (United States)

    Jonas, G.; Csehi, B.; Palotas, P.; Toth, A.; Kenesei, Gy; Pasztor-Huszar, K.; Friedrich, L.

    2017-10-01

    The aim of this study was to investigate the effect of sodium nitrite and high hydrostatic pressure on the color, water holding capacity (WHC) and texture characteristics of frankfurter. Three hundred, 450 and 600 MPa (5 minutes; 20 °C) and 50, 75, 100 and 125 ppm (calculated on weight of meat) sodium nitrite were applied. Parameters were measured right after the pressure treatment. Data were evaluated with two-way analysis of variance (p 0.05) with pressure levels and sodium nitrite amounts as factors. Nitrite reduction significantly increased lightness (L*) and resulted in decreased redness (a*) value. The pressure treatments decreased the lightness at all nitrite concentrations and did not significantly affect the red color of frankfurters. Fifty and 75 ppm nitrite and pressurization at 300 or 450 MPa improved the water holding property of frankfurter. The pressure treatment did not significantly affect the WHC but changing the nitrite amount had significant effect on it. Interactive effect occurred between pressure levels and nitrite concentrations for hardness. The pressure treatment increased and the nitrite reduction decreased hardness. Significant changes were found in cohesiveness at 450 and 600 MPa in frankfurters containing 50 and 75 ppm nitrite: pressure treatment at higher levels and nitrite reduction decreased the value of cohesiveness.

  1. Fossil micro-organisms evidenced by electronic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prashnowsky, A.A.; Oberlies, F.; Burger, K.

    1983-04-01

    Fossil microorganisms in colonies and in the form of isolated cells (iron bacteria, fungi, actinomycetes etc.) were detected by electron microscopy of rocks containing remains of plant roots, carbonaceous substance, and strata of clay iron stone with ooids. These findings suggest an environment favourable to bacterial activity during sedimentation in the Upper Carboniferous and during the later processes of peat and coal formation. They also suggest that bacterial processes are an important factor in coal formation. Accurate data on coal formation can only be obtained by systematic biochemical studies. Analyses of the defined organic substances provide a better understanding of the conversion processes of the original substances. For example, the results of sterine analysis provide information on the mycoplancton, phytoplancton and zooplancton of the Upper Carboniferous. For some types of rock, the ratio of saponifiable to non-saponifiable constituents of the organic compounds yield information on stability under various geochemical conditions. The interactions between the various groups of microorganisms also play a major role in the solution of ecological problems.

  2. The future of starch bioengineering: GM microorganisms or GM plants?

    Directory of Open Access Journals (Sweden)

    Kim Henrik eHebelstrup

    2015-04-01

    Full Text Available Plant starches regularly require extensive modification to permit subsequent applications. Such processing is usually done by the use of chemical and/or physical treatments. The use of recombinant enzymes produced by large-scale fermentation of GM microorganisms is increasingly used in starch processing and modification, sometimes as an alternative to chemical or physical treatments. However, as a means to impart the modifications as early as possible in the starch production chain, similar recombinant enzymes may also be expressed in planta in the developing starch storage organ such as in roots, tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However in some situations, GM crops for starch bioengineering without deleterious effects have been achieved.

  3. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature

    Science.gov (United States)

    Fijan, Sabina

    2014-01-01

    Probiotics are defined as live microorganisms, which when administered in adequate amounts, confer a health benefit on the host. Health benefits have mainly been demonstrated for specific probiotic strains of the following genera: Lactobacillus, Bifidobacterium, Saccharomyces, Enterococcus, Streptococcus, Pediococcus, Leuconostoc, Bacillus, Escherichia coli. The human microbiota is getting a lot of attention today and research has already demonstrated that alteration of this microbiota may have far-reaching consequences. One of the possible routes for correcting dysbiosis is by consuming probiotics. The credibility of specific health claims of probiotics and their safety must be established through science-based clinical studies. This overview summarizes the most commonly used probiotic microorganisms and their demonstrated health claims. As probiotic properties have been shown to be strain specific, accurate identification of particular strains is also very important. On the other hand, it is also demonstrated that the use of various probiotics for immunocompromised patients or patients with a leaky gut has also yielded infections, sepsis, fungemia, bacteraemia. Although the vast majority of probiotics that are used today are generally regarded as safe and beneficial for healthy individuals, caution in selecting and monitoring of probiotics for patients is needed and complete consideration of risk-benefit ratio before prescribing is recommended. PMID:24859749

  4. The effects of elevated environmental CO2 on nitrite uptake in the air-breathing clown knifefish, Chitala ornata

    DEFF Research Database (Denmark)

    Le Thi Hong Gam; Jensen, Frank Bo; Do Thi Thanh Huong

    2018-01-01

    hypercapnia) and nitrite for 96 h. Blood was sampled to measure acid-base status, haemoglobin derivatives and plasma ions. Plasma nitrite increased for 48 h, but levels stayed below the exposure concentration, and subsequently decreased as a result of nitrite detoxification to nitrate. The total uptake......Nitrite and carbon dioxide are common environmental contaminants in the intensive aquaculture ponds used to farm clown knifefish (Chitala ornata) in the Mekong delta, Vietnam. Here we tested the hypothesis that hypercapnia reduces nitrite uptake across the gills, because pH regulation will reduce...... chloride uptake and hence nitrite uptake as the two ions compete for the same transport route via the branchial HCO3-/Cl- exchanger. Fish fitted with arterial catheters were exposed to normocapnic/normoxic water (control), nitrite (1 mM), hypercapnia (21 mmHg CO2), or combined hypercapnia (acclimated...

  5. The Effect of Influent Characteristics and Operational Conditions over the Performance and Microbial Community Structure of Partial Nitritation Reactors

    Directory of Open Access Journals (Sweden)

    Alejandro Rodriguez-Sanchez

    2014-06-01

    Full Text Available Nitrogen is a main contaminant of wastewater worldwide. Novel processes for nitrogen removal have been developed over the last several decades. One of these is the partial nitritation process. This process includes the oxidation of ammonium to nitrite without the generation of nitrate. The partial nitritation process has several advantages over traditional nitrification-denitrification processes for nitrogen removal from wastewaters. In addition, partial nitritation is required for anammox elimination of nitrogen from wastewater. Partial nitritation is affected by operational conditions and substances present in the influent, such as quinolone antibiotics. In this review, the impact that several operational conditions, such as temperature, pH, dissolved oxygen concentration, hydraulic retention time and solids retention time, have over the partial nitritation process is covered. The effect of quinolone antibiotics and other emerging contaminants are discussed. Finally, future perspectives for the partial nitritation process are commented upon.

  6. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120.

    Science.gov (United States)

    Frías, José E; Flores, Enrique

    2015-07-01

    Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria

  7. Pesticides in Soil: Effects on Microorganisms

    Directory of Open Access Journals (Sweden)

    Ljiljana Radivojević

    2007-01-01

    Full Text Available Since their discovery to the present day, pesticides have been an inevitable segment of agricultural production and efforts have been made to synthesize compounds that would share a required efficacy along with selectivity, sufficient persistence on the object of protection and favourable toxicological and ecotoxicological characteristics so as to minimize their effect on the environment.When a pesticide gets into soil after application, it takes part in a number of physical, chemical and biological processes that depend not only on the compound itself, but a number of other factors as well, such as: physical, chemical and biological characteristics of soil; climatic factors, equipment used, method of application, method of storage, handling and disposal of waste, site characteristics (proximity of ground and underground waters, biodiversity and sensitivity of the environment. Microorganisms play an important role in pesticide degradation as they are able to utilize the biogenic elements from those compounds, as well as energy for their physiological processes. On the other hand, pesticides are more or less toxic substances that can have adverse effect on populations of microorganisms and prevent their development, reduce their abundance, deplete their taxonomic complexity and create communities with a lower level of diversity and reduced physiological activity.The article discusses complex interactions between pesticides and microorganisms in soil immediately after application and over the ensuing period. Data on changes in the abundance of some systematic and physiological groups of microorganisms, their microbial biomass and enzymatic activity caused under pesticide activity are discussed as indicators of these processes.

  8. [DIFFERENTIAL SENSITIVITY OF MICROORGANISMS TO POLYHEXAMETHYLENEGUANIDINE].

    Science.gov (United States)

    Lysytsya, A V; Mandygra, Y M; Bojko, O P; Romanishyna, O O; Mandygra, M S

    2015-01-01

    Factors identified that affect the sensitivity of microorganisms to polyhexamethyleneguanidine (PHMG). Salts of PHMG chloride, valerate, maleate, succinate was to use. Test strains of Esherichia coli, Staphylococcus aureus, Bacillus cereus, Leptospira interrogans, Paenibacillus larvae, Mycobacterium bovis, M. avium, M. fortuitum, Aspergillus niger and some strains of viruses are taken as objects of research. We have determined that the cytoplasm membrane phospholipids is main "target" for the polycation molecules of PHMG. A differential sensitivity of the microorganisms to this drug is primarily determined by relative amount of lipids in membrane and their accessibility. Such trends exist: increase the relative contents of anionic lipids and more negative surface electric potential of membrane, and reduction of the sizes fat acid remainder of lipids bring to increase of microorganism sensitivity. Types of anion salt PHMG just have a certain value. Biocide activity of PHMG chloride is more, than its salts with organic acid. Feasibility of combining PHMG with other biocides in the multicomponent disinfectants studied and analyzed. This combination does not lead to a significant increase in the sensitivity of microorganisms tested in most cases. Most species of pathogenic bacteria can be quickly neutralized by aqueous solutions of PHMG in less than 1% concentrations.

  9. Antibiotic Sensitivity Pattern of Microorganisms Isolated from ...

    African Journals Online (AJOL)

    Antibiotic sensitivity pattern of microorganisms isolated from smoked and frozen fishes sold in Benin and Warri metropolis were investigated. Adopting microbiological standard techniques, the results of the bacterial counts and fungal counts ranged from 5.4 x 106 (Ekpan market) to 25.1 x 106 (Ekpan market) and 1.1 x 105 ...

  10. Modelling the morphology of filamentous microorganisms

    DEFF Research Database (Denmark)

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  11. Mechanisms of nickel toxicity in microorganisms

    Science.gov (United States)

    Macomber, Lee

    2014-01-01

    Summary Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological concern. To date, the mechanisms of nickel toxicity in microorganisms and higher eukaryotes are poorly understood. In this review, we summarize nickel homeostasis processes used by microorganisms and highlight in vivo and in vitro effects of exposure to elevated concentrations of nickel. On the basis of this evidence we propose four mechanisms of nickel toxicity: 1) nickel replaces the essential metal of metalloproteins, 2) nickel binds to catalytic residues of non-metalloenzymes; 3) nickel binds outside the catalytic site of an enzyme to inhibit allosterically, and 4) nickel indirectly causes oxidative stress. PMID:21799955

  12. False identification of other microorganisms as Staphylococcus ...

    African Journals Online (AJOL)

    Methods: 507 microorganisms which have been previously identified as S. aureus in 8 States in Southern Nigeria through characteristic morphology on blood agar, Gram staining, growth and fermentation on Mannitol Salt Agar and coagulase formation were collected. All the isolates were identified in this study through ...

  13. Host Defense against Opportunist Microorganisms Following Trauma.

    Science.gov (United States)

    1979-06-01

    Guide for Laboratory Animal, Resources, National Academy of Sciences - National Research Council. I ii t ___ ii A- KNOWLEDMENT The investigators express...and Candida albicans are the microorganisms which are most frequently associated with septic complica- tions in thermally injured patients. Management

  14. Atmospheric Sampling of Microorganisms with UAS

    Science.gov (United States)

    Schmale, D. G., III

    2017-12-01

    Many microorganisms relevant to crops, domestic animals, and humans are transported over long distances through the atmosphere. Some of these atmospheric microbes catalyze the freezing of water at higher temperatures and facilitate the onset of precipitation. A few have crossed continents. New technologies are needed to study the movement of microorganisms in the atmosphere. We have used unmanned aircraft systems (UAS) to study the transport of microorganisms tens to hundreds of meters above the ground. These UAS are equipped with unique devices for collecting microbes in the atmosphere during flight. Autonomous systems enable teams of UAS to perform complex atmospheric sampling tasks, and coordinate flight missions with one another. Data collected with UAS can be used to validate and improve disease forecasting models along highways in the sky, connecting transport scales across farms, states, and continents. Though terrestrial environments are often considered a major contributor to atmospheric microbial aerosols, little is known about aquatic sources of microbial aerosols. Droplets containing microorganisms can aerosolize from the water surface, liberating them into the atmosphere. We are using teams of unmanned surface vehicles (USVs) and UAS to study the aerosolization of microbes from aquatic environments. Controlled flume studies using highspeed video have allowed us to observe unique aerosolization phenomena that can launch microbes out of the water and into the air. Unmanned systems may be used to excite the next generation of biologists and engineers, and raise important ethical considerations about the future of human-robot interactions.

  15. Ecophysiology of microorganisms in microbial elctrolysis cells

    NARCIS (Netherlands)

    Croese, E.

    2012-01-01

    One of the main challenges for improvement of the microbial electrolysis cell (MEC) has been the reduction of the cost of the cathode catalyst. As catalyst at the cathode, microorganisms offer great possibilities. Previous research has shown the principle possibilities for the biocathode for H2

  16. Ecology and metagenomics of soil microorganisms

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Head, I. M.; Prosser, J. I.; Schloter, M.; Smalla, K.; Tebbe, C. C.

    2011-01-01

    Roč. 78, č. 1 (2011), s. 1-2 ISSN 0168-6496 R&D Projects: GA MŠk LC06066; GA MŠk(CZ) LA10001 Institutional research plan: CEZ:AV0Z50200510 Keywords : microorganism * bioremediation * biogenesis of soil Subject RIV: EE - Microbiology, Virology Impact factor: 3.408, year: 2011

  17. Novel genome alteration system for microorganisms

    NARCIS (Netherlands)

    Daran, J.G.; Geertman, J.M.; Bolat, I.

    2015-01-01

    The invention relates to a set of targeting constructs, comprising a first construct comprising a recognition site for an endonuclease, a first region of homology with a target gene of a microorganism, and a first part of a selection marker, and a second construct comprising a second part of the

  18. The influence of selected nanomaterials on microorganisms

    Czech Academy of Sciences Publication Activity Database

    Brandeburová, P.; Birošová, L.; Vojs, M.; Kromka, Alexander; Gál, M.; Tichý, J.; Híveš, J.; Mackul´ak, T.

    2017-01-01

    Roč. 148, č. 3 (2017), s. 525-530 ISSN 0026-9247 R&D Projects: GA ČR GA15-01687S Institutional support: RVO:68378271 Keywords : nanomaterials * nanotechnologies * microorganisms * toxicity Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.282, year: 2016

  19. Artifical Microorganism Infection in Aviation Kerosene

    Directory of Open Access Journals (Sweden)

    Dušan Vallo

    2004-12-01

    Full Text Available The fuel used in the aviation engineering has to be clean and dry, it may not contain mechanical impurities and water. Water inaviation kerosene may occur in soluble and insoluble form. The danger inheres in the insoluble form, which may drop out in the crystallineform and cause various failures, such as those caused by mechanical impurities. The water assists in the biological matter formation createdby various species of microorganisms (bacteria, mould fungi and yeast. The microorganisms, present in water phase occurring on thebottom of tanks or on the interface water phase – kerosene, grow and reproduce and subsequently may pollute (impair the fuel by thebiomass or by the products of their metabolism. There is a possibility to infect the fuel artificially by a selected reference microorganismstrain, which usually occur in contaminated fuel, or by microorganisms which cause a biological contamination of aviation kerosene.Out of the selected reference strains used in the experiments, the reference strains of Proteus vulgaris, Sacharamyces cerevisiae andClostridium perfringens were not cultivated in the sterile aviation kerosene and the propagating nutrient medium. The aviation kerosene actsas a biocide medium for the presented reference microorganism strains.

  20. Novel Industrial Enzymes from Uncultured Arctic Microorganisms

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede

    , and reduce the risk of contaminations. Cold- and alkaline-active enzymes can be found in microorganisms adapted to living in natural environments with these conditions, which are extremely rare but found in the unique ikaite columns from SW Greenland (4-6 °C, pH >10). It is estimated that less than 1...

  1. [Sorption of microorganisms by fiber materials].

    Science.gov (United States)

    Nikovskaia, G N; Gordienko, A S; Globa, L I

    1986-01-01

    Candida guilliermondii and Escherichia coli cells were adsorbed on glass and basalt fibres with a similar specific surface, but with a different charge. The quantity of adsorbed microorganisms did not depend on the type and charge of a fibre surface. However, cells were adsorbed faster and more firmly on positively charged and uncharged fibres than on negatively charged fibres.

  2. Electrokinetic transport of aerobic microorganisms under low-strength electric fields.

    Science.gov (United States)

    Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R

    2011-01-01

    To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.

  3. Recent trends in ionic liquid (IL) tolerant enzymes and microorganisms for biomass conversion.

    Science.gov (United States)

    Portillo, Maria Del Carmen; Saadeddin, Anas

    2015-01-01

    Second generation biofuel production depends on lignocellulosic (LC) biomass transformation into simple sugars and their subsequent fermentation into alcohols. However, the main obstacle in this process is the efficient breakdown of the recalcitrant cellulose to sugar monomers. Hence, efficient feedstock pretreatment and hydrolysis are necessary to produce a cost effective biofuel. Recently, ionic liquids (ILs) have been recognized as a promising solvent able to dissolve different biomass feedstocks, providing higher sugar yields. However, most of the hydrolytic enzymes and microorganisms are inactivated, completely or partially, in the presence of even low concentrations of IL, making necessary the discovery of novel hydrolytic enzymes and fermentative microorganisms that are tolerant to ILs. In this review, the current state and the challenges of using ILs as a pretreatment of LC biomass was evaluated, underlining the advances in the discovery and identification of new IL-tolerant enzymes and microorganisms that could improve the bioprocessing of biomass to fuels and chemicals.

  4. Molecular Methods for Identification of Microorganisms in Traditional Meat Products

    Science.gov (United States)

    Cocolin, Luca; Dolci, Paola; Rantsiou, Kalliopi

    Traditional fermentations are those that have been used for centuries and even pre-date written historical records. Fermentation processes have been developed to upgrade plant and animal materials, to yield a more acceptable food, to add flavor, to prevent the growth of pathogenic and spoilage microorganisms, and to preserve food without refrigeration (Hesseltine & Wang, 1980). Among fermented foods, sausages are the meat products with a longer history and tradition. It is often assumed that sausages were invented by the Sumerians, in what is Iraq today, around 3000 BC. Chinese sausage làcháng, which consisted of goat and lamb meat, was first mentioned in 589 BC. Homer, the poet of The Ancient Greece, mentioned a kind of blood sausage in the Odyssey (book 20, verse 25), and Epicharmus (ca. 550 BC-ca. 460 BC) wrote a comedy entitled “The Sausage”.

  5. Evolutionary engineering of industrial microorganisms-strategies and applications.

    Science.gov (United States)

    Zhu, Zhengming; Zhang, Juan; Ji, Xiaomei; Fang, Zhen; Wu, Zhimeng; Chen, Jian; Du, Guocheng

    2018-06-01

    Microbial cells have been widely used in the industry to obtain various biochemical products, and evolutionary engineering is a common method in biological research to improve their traits, such as high environmental tolerance and improvement of product yield. To obtain better integrate functions of microbial cells, evolutionary engineering combined with other biotechnologies have attracted more attention in recent years. Classical laboratory evolution has been proven effective to letting more beneficial mutations occur in different genes but also has some inherent limitations such as a long evolutionary period and uncontrolled mutation frequencies. However, recent studies showed that some new strategies may gradually overcome these limitations. In this review, we summarize the evolutionary strategies commonly used in industrial microorganisms and discuss the combination of evolutionary engineering with other biotechnologies such as systems biology and inverse metabolic engineering. Finally, we prospect the importance and application prospect of evolutionary engineering as a powerful tool especially in optimization of industrial microbial cell factories.

  6. Doppler speedometer for micro-organisms

    International Nuclear Information System (INIS)

    Penkov, F.; Tuleushev, A.; Lisitsyn, V.; Kim, S.; Tuleushev, Yu.

    1996-01-01

    Objective of Investigations: Development and creation of the Doppler speedometer for micro-organisms which allows to evaluate, in a real temporal scale, variations in the state of water suspension of micro-organisms under the effect of chemical, physical and other external actions. Statement of the Problem The main problem is absence of reliable, accessible for users and simple, in view of application, Doppler speedometers for micro-organisms. Nevertheless, correlation Doppler spectrometry in the regime of heterodyning the supporting and cell-scattered laser radiation is welt known. The main idea is that the correlation function of photo-current pulses bears an information on the averages over the assembly of cell velocities. For solving the biological problems, construction of auto-correlation function in the real-time regime with the delay time values comprising, function in the real-time regime with the delay time values comprising, nearly, 100 me (10 khz) or higher is needed. Computers of high class manage this problem using but the program software. Due to this, one can simplify applications of the proposed techniques provided he creates the Doppler speedometer for micro-organism on a base of the P entium . Expected Result Manufactured operable mock-up of the Doppler speedometer for micro-organisms in a form of the auxiliary computer block which allows to receive an information, in the real time scale, on the results of external effects of various nature on the cell assembly in transparent medium with a small volume of the studied cell suspension

  7. Rapid and simple preparation of rhodamine 6G loaded HY zeolite for highly selective nitrite detection

    Science.gov (United States)

    Viboonratanasri, Duangkamon; Pabchanda, Suwat; Prompinit, Panida

    2018-05-01

    In this study, a simple, rapid and relatively less toxic method for rhodamine 6G dye adsorption on hydrogen-form Y-type zeolite for highly selective nitrite detection was demonstrated. The adsorption behavior was described by Langmuir isotherm and the adsorption process reached the equilibrium promptly within a minute. The developed test papers characterized by fluorescence technique display high sensing performance with wide working range (0.04-20.0 mg L-1) and high selectivity. The test papers show good reproducibility with relative standard deviation (RSD) of 7% for five replicated determinations of 3 mg L-1 of nitrite. The nitrite concentration determined by using the test paper was in the same range as using ion chromatography within a 95% confidence level. The test papers offer advantages in terms of low cost and practical usage enabling them to be a promising candidate for nitrite sensor in environmental samples, food, and fertilizers.

  8. The kinetics for ammonium and nitrite oxidation under the effect of hydroxylamine.

    Science.gov (United States)

    Wan, Xinyu; Xiao, Pengying; Zhang, Daijun; Lu, Peili; Yao, Zongbao; He, Qiang

    2016-01-01

    The kinetics for ammonium (NH4(+)) oxidation and nitrite (NO2(-)) oxidation under the effect of hydroxylamine (NH2OH) were studied by respirometry using the nitrifying sludge from a laboratory-scale sequencing batch reactor. Modified models were used to estimate kinetics parameters of ammonia and nitrite oxidation under the effect of hydroxylamine. An inhibition effect of hydroxylamine on the ammonia oxidation was observed under different hydroxylamine concentration levels. The self-inhibition coefficient of hydroxylamine oxidation and noncompetitive inhibition coefficient of hydroxylamine for nitrite oxidation was estimated by simulating exogenous oxygen-uptake rate profiles, respectively. The inhibitive effect of NH2OH on nitrite-oxidizing bacteria was stronger than on ammonia-oxidizing bacteria. This work could provide fundamental data for the kinetic investigation of the nitrification process.

  9. Evaluation of the Intake of Nitrate, Nitrite, Nitrosodiethylamine and Nitrosodimethylamine by Food Consumption

    Directory of Open Access Journals (Sweden)

    Liliana Avasilcai

    2014-12-01

    Full Text Available The aim of the present study was the evaluation of nitrate, nitrite, nitrosodiethylamine (NDEA and nitrosodimethylamine (NDMA intake by food consumption. We determined concentrations of nitrates, nitrites in 102 food samples (40 meat products, 15 fermented cheese, 25 vegetables, 22 fruits and the concentration NDEA, NDMA in 40 meat products. Nitrates and nitrites were determined using Peter-Griess method; nitrosamines were quantified by HPLC with UV detection.  We designed vegetalian, vegetarian and conventional diets of about 2500 kcal/day.  Based of the values found, we calculated the intake of nitrates, nitrites and nitrosamines. The obtained values fits to WHO’s recommendations, except for vegetalian and conventional diet, in which the nitrate content was 3,46 respectively 1,64 times higher than the acceptable daily intake (157 mg NO3-/day.

  10. Nitrite-induced enhancement of toxicity of phenanthrene in fish and its implications for coastal waters

    Digital Repository Service at National Institute of Oceanography (India)

    Shailaja, M.S.; Rodrigues, A

    Coastal areas are prone to varying degrees of anthropogenic chemical contamination. In many coastal environments experiencing reducing conditions in the water column, nitrite is produced as a result of denitrification. With a view to determining...

  11. Increased formation of carcinogenic PAH metabolites in fish promoted by nitrite

    Digital Repository Service at National Institute of Oceanography (India)

    Shailaja, M.S.; Rajamanickam, R.; Wahidullah, S.

    Nitrite (NO2−), a highly reactive chemical species, accumulates in coastal waters as a result of pollution with nitrogenous waste and/or an imbalance in the bacterial processes of nitrification and denitrification. The present study probed...

  12. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    Nitrate and nitrite contamination of surface waters (e.g. lakes) has become a severe environmental and health problem, especially in developing countries. The recent demonstration of nitrate reduction at the cathode of microbial fuel cell (MFC) provides an opportunity to develop a new technology...... from nitrate- and nitrite-rich synthetic lake waters at initial concentration of 10 mg-N/L. Along with the electricity production a total nitrogen removal of 62% and 77% was accomplished, for nitrate and nitrite, respectively. The nitrogen removal was almost 4 times higher under close-circuit condition...... with biocathode, compared to either the open-circuit operation or with abiotic cathode. The mass balance on nitrogen indicates that most of the removed nitrate and nitrite (84.7±0.1% and 81.8±0.1%, respectively) was reduced to nitrogen gas. The nitrogen removal and power generation was limited by the dissolved...

  13. Nitrite electrochemical sensor based on prussian blue/single-walled carbon nanotubes modified pyrolytic graphite electrode

    CSIR Research Space (South Africa)

    Adekunle, AS

    2011-09-01

    Full Text Available Nitrite, NO2- (in neutral), and NO (in acidic media) were used as analytical probe to investigate the electrocatalytic properties of Prussian blue nanoparticles (PB) modified edge plane pyrolytic graphite (EPPG) electrode. Results indicate...

  14. Dramatic loss of comammox Nitrospira associated with long-term nitrite feeding

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Palomo, Alejandro; Dechesne, Arnaud

    Until recently, nitrification was thought to be a strict two-step process where ammonia was first oxidized to nitrite by ammonia-oxidizing bacteria and/or archaea, and subsequently to nitrate by nitrite oxidizing bacteria (NOB). Recent studies in NOB metabolism, however, have revealed that certain......, with nitrite as the main energy source. Community assembly was monitored on well-established biofilms formed on the grains of rapid sand filter (RSF) for drinking water production. RSF sand was placed in laboratory scale column bioreactors and subjected to continuous feeding of tap water spiked with NO2- (1 mg...... sequences (100% similarity to uncultured Nitrospira sp. clone KC836101 (Pester et al., 2014)). These observations indicate different behavior of Nitrospira in the absence of ammonia and point to a possible competitive advantage of canonical Nitrospira in environments where nitrite is the sole nitrogen...

  15. Irradiation and modified atmosphere packaging effects on residual nitrite, ascorbic acid, nitrosomyoglobin, and color in sausage.

    Science.gov (United States)

    Ahn, Hyun-Joo; Jo, Cheorun; Lee, Ju-Woon; Kim, Jae-Hyun; Kim, Kee-Hyuk; Byun, Myung-Woo

    2003-02-26

    The present study was undertaken to evaluate the irradiation and modified atmosphere packaging effects on emulsion-type cooked pork sausage during storage for 4 weeks. CO(2) (100%), N(2) (100%), or 25% CO(2)/75% N(2) packaged sausage were irradiated at 0, 5, and 10 kGy, and residual nitrite, residual ascorbic acid, nitrosomyoglobin (NO-Mb), color values, and their correlation were observed. Irradiation significantly reduced the residual nitrite content and caused partial reduction of NO-Mb during storage. No difference was observed in ascorbic acid content by irradiation. Irradiation decreased the Hunter color a value of sausage. CO(2) or CO(2)/N(2) packaging were more effective for reducing residual nitrite and inhibiting the loss of the red color of sausage compared to N(2) packaging. Results indicated that the proper combination of irradiation and modified atmosphere packaging could reduce the residual nitrite in sausage with minimization of color change.

  16. Nitrite Biosensing via Selective Enzymes—A Long but Promising Route

    Directory of Open Access Journals (Sweden)

    M. Gabriela Almeida

    2010-12-01

    Full Text Available The last decades have witnessed a steady increase of the social and political awareness for the need of monitoring and controlling environmental and industrial processes. In the case of nitrite ion, due to its potential toxicity for human health, the European Union has recently implemented a number of rules to restrict its level in drinking waters and food products. Although several analytical protocols have been proposed for nitrite quantification, none of them enable a reliable and quick analysis of complex samples. An alternative approach relies on the construction of biosensing devices using stable enzymes, with both high activity and specificity for nitrite. In this paper we review the current state-of-the-art in the field of electrochemical and optical biosensors using nitrite reducing enzymes as biorecognition elements and discuss the opportunities and challenges in this emerging market.

  17. Changes of sodium nitrate, nitrite, and N-nitrosodiethylamine during in vitro human digestion.

    Science.gov (United States)

    Kim, Hyeong Sang; Hur, Sun Jin

    2017-06-15

    This study aimed to determine the changes in sodium nitrate, sodium nitrite, and N-nitrosodiethylamine (NDEA) during in vitro human digestion, and the effect of enterobacteria on the changes in these compounds. The concentrations of nitrate, nitrite, and NDEA were significantly reduced from 150, 150, and 1ppm to 42.8, 63.2, and 0.85ppm, respectively, during in vitro human digestion (pdigestion. This study is the first to report that E. coli can dramatically reduce the amount of nitrite during in vitro human digestion and this may be due to the effect of nitrite reductase present in E. coli. We therefore conclude that the amounts of potentially harmful substances and their toxicity can be decreased during human digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Determination of nitrite ion at schiff's base derivative of chitosan modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Xu Zhongliang; Zhang Jianmei; Liu Shujuan; Peng Daofeng

    2007-01-01

    Chitosan react with salicyclaldehyde by schiff's base reaction in water, a polymer product S-CTS can be prepared. Glassy carbon electrode was modified with S-CTS by drop-coating method. Then, its electrocatalysis effect on the reduction of nitrite by the films of S-CTS was investigated. Experimental results showed that S-CTS modified electrode could reduce the oxidation overpotential of nitrite in pH4.5 B-R buffer solution, the peak current of reduction was proportional to the concentration of nitrite and a good linear relation from 0.20 to 81 mg/kg (r=0.9899) with a detection limit of 2.8 x 10 -7 mol/L was obtained. The methods have been applied to determining nitrite in some samples, satisfactory results were obtained. (authors)

  19. Color compensation in nitrite-reduced meat batters incorporating paprika or tomato paste.

    Science.gov (United States)

    Bázan-Lugo, Eduardo; García-Martínez, Ignacio; Alfaro-Rodríguez, Rosa Hayde; Totosaus, Alfonso

    2012-06-01

    Nitrite is a key ingredient the manufacture of meat products, forming a stable pink color characteristic of cured products, retarding the development of rancidity and off-odors and flavors during storage, and preventing microbial growth. The negative aspects of nitrite and the demands for healthy foods result in the need to reduce nitrite in cured meat products. Paprika or tomato has been employed as natural pigments in meat products. The objective of this work was to determine the effect of incorporating paprika powder or tomato paste on the texture, rancidity and instrumental and sensory color compensation in nitrite-reduced meat batters. Addition of tomato paste improved moisture content, resulting in harder but less cohesive samples as compared to control and paprika-containing meat batters. Color characteristics of reduced nitrite samples obtained higher a* red coloration (8.9 for paprika and 7.7-8.0 for tomato paste), as compared to control samples (5.65). Instrumental color was low in control samples, with high values for tomato paste and paprika samples. Nonetheless, tomato paste used to compensate color in nitrite-reduced meat batters was ranked closer to the control sample in sensory evaluation. Color characteristics-instrumental and sensory-in these kinds of meat products were enhanced by the addition of 2.5-3.0% of tomato paste, presenting results close to the non-reduced nitrite control. Similarly, antioxidant components of tomato paste or paprika reduced lipid oxidation. Nitrite reduction from 150 to 100 ppm could be achieved employing tomato paste as a natural pigment to improve color and texture. Copyright © 2011 Society of Chemical Industry.

  20. Histopathological effects of sodium nitrite on the spleen of male and female rats

    Directory of Open Access Journals (Sweden)

    Fateme Juibar

    2015-01-01

    Full Text Available Background: Nitrite and nitrate are common additives in meat processed products. In spite of all technological advantages of nitrite, creation of nitrosamine carcinogenic substances causes a lot of concerns for use of these additives. In this study, the histopatological effects of sodium nitrite on the splenic tissue in adult male and female rats were evaluated. Material and method: In recent studies, 60 adult male and female rats strain Vistar, divided in 6 groups of 10. They were examined for 60 day, and they (male and female rats separately were divided in 175 mg/kg/day dose recipient group, 350 mg/kg/day dose recipient group and control group which was absorbed nitrite through drinking water. At the end of day 60, using cotton dipped in ether in the jar of anesthesia, were anesthetized. After anesthesia, blood from the left ventricle was taken .the spleen was taking out of body, and then tissue sections were prepared for testing tissue changes. The samples were stained with Hematoxilin- Eozin method. In both sex, factors like morphometric and morphologic from spleen tissue, body weight changes before and after test and blood NOx level was checked. After data collection, all data was analyzed by SPSS statistical software version 17 with using Independent sample t-test and ANOVA. P value of less than 0.05 were reported as statistically significant. Result: The results showed that consume of sodium nitrite, cause background inflammation type of Mononuclear in both sex, especially around the pulp. Also, in both sex NOx levels in the blood of animals in the group receiving 350 mg/ kg and group receiving 175 mg of sodium nitrite per kg compared with the control group, significantly increased (p ≤ 0.05. Conclusion: Considering of this study and other studies, Nitrite can cause damage to blood vessels, liver, spleen and other organs. Also sodium nitrite has to switching to other food preservatives.

  1. Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and ecological niche differentiation.

    Science.gov (United States)

    Ushiki, Norisuke; Jinno, Masaru; Fujitani, Hirotsugu; Suenaga, Toshikazu; Terada, Akihiko; Tsuneda, Satoshi

    2017-05-01

    Nitrite oxidation is an aerobic process of the nitrogen cycle in natural ecosystems, and is performed by nitrite-oxidizing bacteria (NOB). Also, nitrite oxidation is a rate-limiting step of nitrogen removal in wastewater treatment plants (WWTPs). Although Nitrospira is known as dominant NOB in WWTPs, information on their physiological properties and kinetic parameters is limited. Here, we report the kinetic parameters and inhibition of nitrite oxidation by free ammonia in pure cultures of Nitrospira sp. strain ND1 and Nitrospira japonica strain NJ1, which were previously isolated from activated sludge in a WWTP. The maximum nitrite uptake rate ( [Formula: see text] ) and the half-saturation constant for nitrite uptake ( [Formula: see text] ) of strains ND1 and NJ1 were 45 ± 7 and 31 ± 5 (μmol NO 2 - /mg protein/h), and 6 ± 1 and 10 ± 2 (μM NO 2 - ), respectively. The [Formula: see text] and [Formula: see text] of two strains indicated that they adapt to low-nitrite-concentration environments like activated sludge. The half-saturation constants for oxygen uptake ( [Formula: see text] ) of the two strains were 4.0±2.5 and 2.6±1.1 (μM O 2 ), respectively. The [Formula: see text] values of the two strains were lower than those of other NOB, suggesting that Nitrospira in activated sludge could oxidize nitrite in the hypoxic environments often found in the interiors of biofilms and flocs. The inhibition thresholds of the two strains by free ammonia were 0.85 and 4.3 (mg-NH 3 l -1 ), respectively. Comparing the physiological properties of the two strains, we suggest that tolerance for free ammonia determines competition and partitioning into ecological niches among Nitrospira populations. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Some observations concerning the direct titration of nitrite with cerium(IV)

    International Nuclear Information System (INIS)

    Muralikrishna, U.; Subrahmanyam, K.; Suryanarayana, M.V.S.; Krishnamurthy, M.

    1983-01-01

    Direct titration of nitrite with cerium(IV), with ferroin as indicator, is shown to give satisfactory results if the acidity is kept between 0.033 and 0.055 M at the end-point. Loss of nitrous acid owing to volatilization and decomposition is discussed. From 10 to 60 mg of sodium nitrite can be estimated with a standard deviation of 5 μg and an average error of 0.2%. (author)

  3. Protection of Steel Corrosion in Concrete Members by the Combination of Galvanic Anode and Nitrite Penetration

    Directory of Open Access Journals (Sweden)

    Minobu Aoyama

    2014-01-01

    Full Text Available Chloride induced-corrosion of steel bars in concrete can make cracks and exfoliation in near-surface regions in reinforced concrete structures. In this paper, we described the basic concept and practice of steel bars corrosion protection method by the combination of galvanic anode (zinc wire and the penetration of nitrite ions from mortar layers containing a large amount of lithium nitrite.

  4. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms.

    Science.gov (United States)

    Soleimaninanadegani, Mohammadreza; Manshad, Soheila

    2014-01-01

    This study was designed to investigate the microorganisms associated with palm oil mill effluent (POME) in Johor Bahru state, Malaysia. Biodegradation of palm oil mill effluents (POME) was conducted to measure the discarded POME based on physicochemical quality. The bacteria that were isolated are Micrococcus species, Bacillus species, Pseudomonas species, and Staphylococcus aureus, while the fungi that were isolated are Aspergillus niger, Aspergillus fumigatus, Candida species, Fusarium species, Mucor species, and Penicillium species. The autoclaved and unautoclaved raw POME samples were incubated for 7 days and the activities of the microorganisms were observed each 12 hours. The supernatants of the digested POME were investigated for the removal of chemical oxygen demand (COD), color (ADMI), and biochemical oxygen demand (BOD) at the end of each digestion cycle. The results showed that the unautoclaved raw POME sample degraded better than the inoculated POME sample and this suggests that the microorganisms that are indigenous in the POME are more effective than the introduced microorganisms. This result, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biodegradation of POME. Moreover, the effective treatment of POME yields useful products such as reduction of BOD, COD, and color.

  5. Enhancement of Biodegradation of Palm Oil Mill Effluents by Local Isolated Microorganisms

    Science.gov (United States)

    Soleimaninanadegani, Mohammadreza

    2014-01-01

    This study was designed to investigate the microorganisms associated with palm oil mill effluent (POME) in Johor Bahru state, Malaysia. Biodegradation of palm oil mill effluents (POME) was conducted to measure the discarded POME based on physicochemical quality. The bacteria that were isolated are Micrococcus species, Bacillus species, Pseudomonas species, and Staphylococcus aureus, while the fungi that were isolated are Aspergillus niger, Aspergillus fumigatus, Candida species, Fusarium species, Mucor species, and Penicillium species. The autoclaved and unautoclaved raw POME samples were incubated for 7 days and the activities of the microorganisms were observed each 12 hours. The supernatants of the digested POME were investigated for the removal of chemical oxygen demand (COD), color (ADMI), and biochemical oxygen demand (BOD) at the end of each digestion cycle. The results showed that the unautoclaved raw POME sample degraded better than the inoculated POME sample and this suggests that the microorganisms that are indigenous in the POME are more effective than the introduced microorganisms. This result, however, indicates the prospect of isolating indigenous microorganisms in the POME for effective biodegradation of POME. Moreover, the effective treatment of POME yields useful products such as reduction of BOD, COD, and color. PMID:27433516

  6. [Poppers at top: alkyl nitrites use in France].

    Science.gov (United States)

    Beck, François; Guignard, Romain; Richard, Jean-Baptiste

    2014-10-01

    Poppers is the usual name of various forms of alkyl nitrites. They are used as recreational drugs to intensify sexual intercourses and provoke a short euphoria just after their inhalation. In spite of several periods of ban in the 2000s, poppers' use sharply rose between 2000 and 2010. In the adult population as in teenagers, it is the second product consumed after cannabis among illicit drugs, confirming that it concerns circles wider than gays and lesbians who are sometimes depicted as emblematic users. The lifetime use of poppers concerns 5.3% of 18-64 years in 2010, men (7.2%) more than women (3.4%). At the end of the adolescence, its lifetime prevalence is 8.8% for girls and 9.2% for boys. In the general population and especially among young people, poppers is favourably considered. Nevertheless, this product is not without danger, even if the risk of dependence is extremely low. Several avenues of interventions may be outlined, mainly based on information and a regular follow-up of users which can allow to avoid an intensification of the consumption. © 2014 médecine/sciences – Inserm.

  7. ASPECTS CONCERNING NITRATE AND NITRITE POLLUTION OF GROUNDWATERS

    Directory of Open Access Journals (Sweden)

    A. UNGUREANU

    2011-03-01

    Full Text Available Aspects concerning nitrate and nitrite pollution of groundwaters. Water is a basic natural resource for the good functioning of all thebiological processes in nature. It is very important for life and for the developmentof human activities. The quality of the ground water has begun to degrade moreand more, as a result of the physical, chemical and bacteriological changes.Nitrogen compounds pollution of the underground has increased lately. This hasbeen caused by the excessive and irrational use of nitrogen derived fertilizers, bythe wrong storage of the dejections resulted from zootechnical processes and byother chemical substances discharged into water. Samples were collected fromdifferent wells in order to check whether the well water was drinkable. The resultof the test revealed the existence of high concentrations of nitrates as well asvalues exceeding normal microbiological parameters. The value recorded in thetown of Segarcea, the county of Dolj, showed extremely high concentrations ofnitrates of the drinking water in the wells. Thus, Segarcea is the town with thegreatest number of contaminated wells in the country.

  8. Removal of nitrite impurity from nitrate labeled with nitrogen-15

    International Nuclear Information System (INIS)

    Malone, J.P.; Stevens, R.J.

    1998-01-01

    Potassium nitrate labeled with 15 N is often used as a tracer in studies of N dynamics in soil and water systems. Typically, 0.8% NO 2 - impurity has been found in the batches of K 15 NO 3 enriched to 99 atom % excess 15 N that were purchased by our laboratory. Nitrite is an intermediate in several N cycling processes so its addition when adding NO 3 - could produce misleading results. We have developed a safe, simple, and inexpensive method to remove NO 2 - impurity from any NO 3 - solution in a water matrix. The principle is the oxidation of NO2- to NO 3 - by UV light in the presence of a heterogenous TiO 2 catalyst. A NO 2 - concentration of 0.2 mM in 100 mL of 0.2 M NO 3 - solution could be oxidized in 12 min using 0.5 g L -1 TiO 2 in a specially constructed photoreactor with a 75-W UV facial tanning lamp. For the routine removal of NO 2 - , use of the same TiO 2 concentration in a standard beaker worked equally well when the irradiation time was extended to 2.5 h. After irradiation, the TiO2 is easily and totally removed from the solution by membrane filtration. (author)

  9. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng; Choe, Jong Kwon; Shapley, John R.; Werth, Charles J.

    2012-01-01

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  10. A family cluster of nitrite poisoning, Suzhou City, Jiangsu Province, China, 2013

    Directory of Open Access Journals (Sweden)

    Ruiping Wang

    2013-07-01

    Full Text Available Background: In April 2013, a hospital in Suzhou City notified authorities of a patient with nitrite poisoning with two other family members who had similar toxic symptoms five days prior. We investigated the event to identify the cause, source and possible route of contamination. Methods: A case was defined as any person living in the Yang Shan Hua Yuan community who had been diagnosed with cyanoderma and food poisoning symptoms from 15 to 25 April 2013. Active case finding was conducted by interviewing community residents and reviewing medical records from local clinics; information was then retrospectively collected on the patient’s food history, cooking procedures and food sources. Results: We identified three nitrite poisoning cases, one male and two females, from the same family. The time between dinner and onset of illness was less than an a hour. A retrospective survey showed that a substance presumed to be sugar mixed with asparagus on 17 April and with stir-fried asparagus on 21 April wasthe suspected contaminant. The presumed sugar came from a clean-up of a neighbouring rental house. Nitrite was detected in a vomitus sample, the sugar substance and two leftover food samples. Conclusion: This family cluster of nitrite poisoning resulted from the mistaken use of nitrite as sugar to cook dishes. We recommend that sodium nitrite be dyed a bright colour to prevent such a mistake and that health departments strengthen food hygiene education to alert people about the danger of eating unidentified food from an unknown source.

  11. The impairment of learning and memory and synaptic loss in mouse after chronic nitrite exposure.

    Science.gov (United States)

    Chen, Yongfang; Cui, Zhanjun; Wang, Lai; Liu, Hongliang; Fan, Wenjuan; Deng, Jinbo; Deng, Jiexin

    2016-12-01

    The objective of this study is to understand the impairment of learning and memory in mouse after chronic nitrite exposure. The animal model of nitrite exposure in mouse was created with the daily intubation of nitrite in adult healthy male mice for 3 months. Furthermore, the mouse's learning and memory abilities were tested with Morris water maze, and the expression of Synaptophysin and γ-Synuclein was visualized with immunocytochemistry and Western blot. Our results showed that nitrite exposure significantly prolonged the escape latency period (ELP) and decreased the values of the frequency across platform (FAP) as well as the accumulative time in target quadrant (ATITQ) compared to control, in dose-dependent manner. In addition, after nitrite exposure, synaptophysin (SYN) positive buttons in the visual cortex was reduced, in contrast the increase of γ-synuclein positive cells. The results above were supported by Western blot as well. We conclude that nitrite exposure could lead to a decline in mice's learning and memory. The overexpression of γ-synuclein contributed to the synaptic loss, which is most likely the cause of learning and memory impairment. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1720-1730, 2016. © 2015 Wiley Periodicals, Inc.

  12. A Family Clustered Nitrite Intoxication Investigation in Gaoxin District, Suzhou, China, 2013.

    Science.gov (United States)

    Wang, Ruiping; Teng, Chengang; Zhang, Ning; Zhang, Jun; Conway, George

    2013-12-01

    In April, 2013, a Suzhou Hospital reported a nitrite intoxication patient in coma as well as 2 family members with the similar symptom 5 days ahead. We investigated the event to identify the cause, source and possible pollution ways of the contamination. We defined case as any person living in YSHY community who has cyanosis and with at least one of the following symptoms: dizziness, headache, fatigue, tachycardia, drowsiness, nausea, vomiting, abdominal pain or diar-rhea during April 15 to April 25, 2013. We searched for case by interviewing community residents and reviewing clinics' medical records; information was then retrospectively collected on the patient's food history, cooking procedures and food sources. We identified 3 nitrite intoxication cases, 1 male and 2 female from a family. The interval time between dinner and onset was mix asparagus' on April 17 and 'scrambled asparagus' on April 21 were suspected foods. Both suspected dishes had 'sugar' added, sourced from a clean-up of a neighboring rental house. Nitrite was detected in a vomitus sample, the 'sugar' and two leftover food samples. This family clustered nitrite intoxication was induced by using unidentified nitrite as sugar to cook dishes. We recommend sodium nitrite should be dyed with bright colors to avoid mistaking it for plain salt or sugar, health departments strengthen food hygiene propaganda to improve people's recognition of food safety, and to alert them the dangerous of eating unidentified or unknown source food.

  13. Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid

    Science.gov (United States)

    Lin, Haitao; Ding, Liyun; Zhang, Bingyu; Huang, Jun

    2018-05-01

    A fluorescent carbon dots probe for the detection of aqueous nitrite was fabricated by a one-pot hydrothermal method, and the transmission electron microscope, X-ray diffractometer, UV-Vis absorption spectrometer and fluorescence spectrophotometer were used to study the property of carbon dots. The fluorescent property of carbon dots influenced by the concentration of aqueous nitrite was studied. The interaction between the electron-donating functional groups and the electron-accepting nitrous acid could account for the quenching effect on carbon dots by adding aqueous nitrite. The products of the hydrolysis of aqueous nitrite performed a stronger quenching effect at lower pH. The relationship between the relative fluorescence intensity of carbon dots and the concentration of nitrite was described by the Stern-Volmer equation (I0/I - 1 = 0.046[Q]) with a fine linearity (R2 = 0.99). The carbon dots-based probe provides a convenient method for the detection of nitrite concentration.

  14. Electrocatalytic reduction of nitrite using ferricyanide; Application for its simple and selective determination

    International Nuclear Information System (INIS)

    Ojani, Reza; Raoof, Jahan-Bakhsh; Zarei, Ebrahim

    2006-01-01

    The electrocatalytic reduction of nitrite has been studied by ferricyanide at the surface of carbon paste electrode. Cyclic voltammetry and chronoamperometry techniques were used to investigate the suitability of ferricyanide as a mediator for the electrocatalytic nitrite reduction in aqueous solution with various pH. Results showed that pH 0.00 is the most suitable for this purpose. In the optimum pH, the electrocatalytic ability about 700 mV can be seen and the homogeneous second-order rate constant (k s ) for nitrite coupled catalytically to ferricyanide was calculated 2.75 x 10 3 M -1 s -1 by Nicholson-Shain method. Also, electron transfer coefficients (α) for ferricyanide was determined by using various electrochemical approaches such as Tafel plot in the absence and presence of nitrite 0.556 and 0.760, respectively. The catalytic reduction peak current was linearly dependent on the nitrite concentration and the linearity range obtained was 5.00 x 10 -5 to 1.00 x 10 -3 M. Detection limit has been found to be 2.63 x 10 -5 M (2σ). This method has been applied as a selective, simple and precise method for determination of nitrite in real sample

  15. [Evaluation of nitrites and nitrates food intake in the students' group].

    Science.gov (United States)

    Wawrzyniak, Agata; Hamułka, Jadwiga; Pankowska, Iwona

    2010-01-01

    The aim of study was to determine the intake of nitrites and nitrates in daily food rations of the students' group in 2008 using 3-day dietary food records method and literature mean values of nitrates and nitrites in food products. Intakes of these compounds were calculated and compared to acceptable daily intake (ADI). The average intake of nitrites was 1.7 mg NaNO2/per person/day (28.0% of ADI), nitrates 77.3 mg NaNO3/per person/day that means 25.4% of ADI. The largest nitrites food intake was noticed for meat products supplied 56.5% of nitrites and cereals (20%). Whereas vegetables and their products supplied 76.1% of nitrates: potatoes 17.1%, cabbage 15.5%, beetroots 13.7%. Calculated nitrites intake for men was 2.4 higher than for women. There were no significant differences of nitrates intake between men and women groups.

  16. Association between dietary nitrate and nitrite intake and sitespecific cancer risk: evidence from observational studies.

    Science.gov (United States)

    Xie, Li; Mo, Miao; Jia, Hui-Xun; Liang, Fei; Yuan, Jing; Zhu, Ji

    2016-08-30

    Epidemiological studies have reported inconsistent findings on the association between dietary nitrate and nitrite intake and cancer risk. We performed a meta-analysis of epidemiological studies to summarize available evidence on the association between dietary nitrate and nitrite intake and cancer risk from published prospective and case-control studies. PubMed database was searched to identify eligible publications through April 30th, 2016. Study-specific relative risks (RRs) with corresponding 95% confidence interval (CI) from individual studies were pooled by using random- or fixed- model, and heterogeneity and publication bias analyses were conducted. Data from 62 observational studies, 49 studies for nitrates and 51 studies for nitrites, including a total of 60,627 cancer cases were analyzed. Comparing the highest vs. lowest levels, dietary nitrate intake was inversely associated with gastric cancer risk (RR = 0.78; 95%CI = 0.67-0.91) with moderate heterogeneity (I2 = 42.3%). In contrast, dietary nitrite intake was positively associated with adult glioma and thyroid cancer risk with pooled RR of 1.21 (95%CI = 1.03-1.42) and 1.52 (95%CI = 1.12-2.05), respectively. No significant associations were found between dietary nitrate/nitrite and cancers of the breast, bladder, colorectal, esophagus, renal cell, non-Hodgkin lymphoma, ovarian, and pancreas. The present meta-analysis provided modest evidence that positive associations of dietary nitrate and negative associations of dietary nitrite with certain cancers.

  17. Nisin: a possible alternative or adjunct to nitrite in the preservation of meats.

    Science.gov (United States)

    Rayman, M K; Aris, B; Hurst, A

    1981-01-01

    Nisin at 75 ppm (75 microgram/g) was superior to 150 ppm of nitrite in inhibiting outgrowth of Clostridium sporogenes PA3679 spores in meat slurries, which had been heated to simulate the process used for cooked ham. The inhibitory activity of nisin decreased as the spore load or pH of the slurries increased. Unlike nitrite, inhibition by nisin was unaffected by high levels of iron either as a constituent of meats or when added as an iron salt. In slurries treated with 75 ppm of nisin, refrigerated storage for 56 days resulted in depletion of nisin to a level low enough to allow outgrowth within 3 to 10 days if the slurries were subsequently abused at 35 degrees C. In contrast, a combination of 40 ppm of nitrite and either 75 or 100 ppm of nisin almost completely inhibited outgrowth in these slurries. The nisin-nitrite combination appeared to have a synergistic effect, and the low concentration of nitrite was sufficient to preserve the color in meats similar to that of products cured with 150 ppm of nitrite. PMID:7195188

  18. [Detection of nitrite and nitrosocompounds in chemical systems and biological liquids by the calorimetric method].

    Science.gov (United States)

    Titov, V Iu; Petrenko, Iu M; Vanin, A F; Stepuro, I I

    2010-01-01

    The capacity of nitrite, S-nitrosothiols (RS-NO), dinitrosyl iron complexes (DNICs) with thiol-containing ligands, and nitrosoamines to inhibit catalase has been used for the selective determination of these compounds in purely chemical systems and biological liquids: cow milk and colostram. The limiting sensitivity of the method is 50 nM. A comparison of the results of the determinations of RS-NO, DNIC, and nitrite by the catalase method and the Greese method conventionally used for nitrite detection showed that, firstly, Greese reagents decompose DNIC and RS-NO to form nitrite. Therefore, the Greese method cannot be used for nitrite determination in solutions of these substances. Secondly, Greese reagents interact with complexes of mercury ions with RS-NO, inducing the release of nitrosonium ions from the complex followed by the hydrolysis of nitrosonium to nitrite. Thus, the proposition about the spontaneous decay of the complexes of mercury ions with RS-NO is incorrect. Keeping in mind a high sensitivity of the method, the use of catalase as an enzyme detector of nitrosocompounds allows one to detect these compounds in neutral medium without prior purification of the object, thereby preventing artificial effects due to noncontrolled modifications of the compounds under study.

  19. Periodontal Therapy Effects on Nitrite Related to Oral Bacteria: A 6-Month Randomized Clinical Trial.

    Science.gov (United States)

    Cortelli, Sheila C; Costa, Fernando O; Rodrigues, Edson; Cota, Luis O M; Cortelli, Jose R

    2015-08-01

    Nitrite is a biologic factor relevant to oral and systemic homeostasis. Through an oral bacteria reduction process, it was suggested that periodontal therapy and chlorhexidine (CHX) rinse could affect nitrite levels, leading to negative effects, such as an increase in blood pressure. This 6-month randomized clinical trial evaluated the effects of periodontal therapeutic protocols on salivary nitrite and its relation to subgingival bacteria. One hundred patients with periodontitis were allocated randomly to debridement procedures in four weekly sections (quadrant scaling [QS]) or within 24 hours (full-mouth scaling [FMS]) in conjunction with a 60-day CHX (QS + CHX and FMS + CHX), placebo (QS + placebo and FMS + placebo), or no mouthrinse (QS + none and FMS + none) use. Real-time polymerase chain reaction determined total bacterial, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Streptococcus oralis, and Actinomyces naeslundii levels. Salivary nitrite concentration was determined with Griess reagent. Data were analyzed statistically at baseline and 3 and 6 months by analysis of variance, Kruskal-Wallis, Mann-Whitney U, and Spearman correlation tests (P periodontal pockets. The relationship between nitrite and bacterial levels appears weak. Short-term scaling exhibited a greater influence on nitrite concentrations then long-term CHX use.

  20. NITRITE REDUCTASE ACTIVITY OF NON-SYMBIOTIC HEMOGLOBINS FROM ARABIDOPSIS THALIANA†

    Science.gov (United States)

    Tiso, Mauro; Tejero, Jesús; Kenney, Claire; Frizzell, Sheila; Gladwin, Mark T.

    2013-01-01

    Plant non-symbiotic hemoglobins possess hexa-coordinate heme geometry similar to the heme protein neuroglobin. We recently discovered that deoxygenated neuroglobin converts nitrite to nitric oxide (NO), an important signaling molecule involved in many processes in plants. We sought to determine whether Arabidopsis thaliana non-symbiotic hemoglobins class 1 and 2 (AHb1 and AHb2) might function as nitrite reductases. We found that the reaction of nitrite with deoxygenated AHb1 and AHb2 generates NO gas and iron-nitrosyl-hemoglobin species. The bimolecular rate constants for nitrite reduction to NO are 19.8 ± 3.2 and 4.9 ± 0.2 M−1s−1, at pH = 7.4 and 25°C, respectively. We determined the pH dependence of these bimolecular rate constants and found a linear correlation with the concentration of protons, indicating the requirement for one proton in the reaction. Release of free NO gas during reaction in anoxic and hypoxic (2% oxygen) conditions was confirmed by chemiluminescence detection. These results demonstrate that deoxygenated AHb1 and AHb2 reduce nitrite to form NO via a mechanism analogous to that observed for hemoglobin, myoglobin and neuroglobin. Our findings suggest that during severe hypoxia and in the anaerobic plant roots, especially in water submerged species, non-symbiotic hemoglobins provide a viable pathway for NO generation via nitrite reduction. PMID:22620259

  1. Haematological and ion regulatory effects of nitrite in the air-breathing snakehead fish Channa striata

    DEFF Research Database (Denmark)

    Lefevre, Sjannie; Jensen, Frank B.; Huong, Do T.T.

    2012-01-01

    M. Effects of sub-lethal exposures to nitrite (0 mM, 1.4 mM, and 3.0 mM) were determined during a 7-day exposure period. Plasma nitrite increased, but the internal concentration remained well below ambient levels. Extracellular nitrate rose by several mM, indicating that a large proportion of the nitrite...... taken up was converted to nitrate. Nitrite reacted with erythrocyte haemoglobin (Hb) causing methaemoglobin (metHb) to increase to 30% and nitrosylhaemoglobin (HbNO) to increase to 10% of total Hb. Both metHb and HbNO stabilised after 4 days, and functional Hb levels accordingly never fell below 60......The tolerance and effects of nitrite on ion balance and haematology were investigated in the striped snakehead, Channa striata Bloch 1793, which is an air-breathing fish with reduced gills of importance for aquaculture in South East Asia. C. striata was nitrite tolerant with a 96 h LC50 of 4.7 m...

  2. Enhanced Activity and Selectivity of Carbon Nanofiber Supported Pd Catalysts for Nitrite Reduction

    KAUST Repository

    Shuai, Danmeng

    2012-03-06

    Pd-based catalyst treatment represents an emerging technology that shows promise to remove nitrate and nitrite from drinking water. In this work we use vapor-grown carbon nanofiber (CNF) supports in order to explore the effects of Pd nanoparticle size and interior versus exterior loading on nitrite reduction activity and selectivity (i.e., dinitrogen over ammonia production). Results show that nitrite reduction activity increases by 3.1-fold and selectivity decreases by 8.0-fold, with decreasing Pd nanoparticle size from 1.4 to 9.6 nm. Both activity and selectivity are not significantly influenced by Pd interior versus exterior CNF loading. Consequently, turnover frequencies (TOFs) among all CNF catalysts are similar, suggesting nitrite reduction is not sensitive to Pd location on CNFs nor Pd structure. CNF-based catalysts compare favorably to conventional Pd catalysts (i.e., Pd on activated carbon or alumina) with respect to nitrite reduction activity and selectivity, and they maintain activity over multiple reduction cycles. Hence, our results suggest new insights that an optimum Pd nanoparticle size on CNFs balances faster kinetics with lower ammonia production, that catalysts can be tailored at the nanoscale to improve catalytic performance for nitrite, and that CNFs hold promise as highly effective catalyst supports in drinking water treatment. © 2012 American Chemical Society.

  3. Nitrite spray treatment to promote red color stability of vacuum packaged beef.

    Science.gov (United States)

    Song, Xiao; Cornforth, Daren; Whittier, Dick; Luo, Xin

    2015-01-01

    Sodium nitrite solutions were sprayed on select grade boneless rib (M. longissimus thoracis) and bottom round (mainly M. biceps femoris) steaks individually, to form bright red nitric oxide myoglobin (NO-Mb) in vacuum packages. Our objective was to determine the optimum level of nitrite in spray for stable raw steak redness, low or no residual nitrite, and low surface pinking (ham-like cured color) after cooking. Results showed that steaks sprayed with 100-350 ppm nitrite solutions had 3.0-3.6g weight gain and a calculated level of 1.3-5.3mg nitrite added/kg steak, but very low (color during 21 days of storage at 1°C (a*>10; chroma C*>16). Raw steak redness was less stable in round than rib. Visual scores for pinkness after cooking were low, indicating that cooked color at even the highest nitrite treatment (350 ppm) was acceptable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Arabidopsis Root-Type Ferredoxin:NADP(H) Oxidoreductase 2 is Involved in Detoxification of Nitrite in Roots.

    Science.gov (United States)

    Hachiya, Takushi; Ueda, Nanae; Kitagawa, Munenori; Hanke, Guy; Suzuki, Akira; Hase, Toshiharu; Sakakibara, Hitoshi

    2016-11-01

    Ferredoxin:NADP(H) oxidoreductase (FNR) plays a key role in redox metabolism in plastids. Whereas leaf FNR (LFNR) is required for photosynthesis, root FNR (RFNR) is believed to provide electrons to ferredoxin (Fd)-dependent enzymes, including nitrite reductase (NiR) and Fd-glutamine-oxoglutarate aminotransferase (Fd-GOGAT) in non-photosynthetic conditions. In some herbal species, however, most nitrate reductase activity is located in photosynthetic organs, and ammonium in roots is assimilated mainly by Fd-independent NADH-GOGAT. Therefore, RFNR might have a limited impact on N assimilation in roots grown with nitrate or ammonium nitrogen sources. AtRFNR genes are rapidly induced by application of toxic nitrite. Thus, we tested the hypothesis that RFNR could contribute to nitrite reduction in roots by comparing Arabidopsis thaliana seedlings of the wild type with loss-of-function mutants of RFNR2 When these seedlings were grown under nitrate, nitrite or ammonium, only nitrite nutrition caused impaired growth and nitrite accumulation in roots of rfnr2 Supplementation of nitrite with nitrate or ammonium as N sources did not restore the root growth in rfnr2 Also, a scavenger for nitric oxide (NO) could not effectively rescue the growth impairment. Thus, nitrite toxicity, rather than N depletion or nitrite-dependent NO production, probably causes the rfnr2 root growth defect. Our results strongly suggest that RFNR2 has a major role in reduction of toxic nitrite in roots. A specific set of genes related to nitrite reduction and the supply of reducing power responded to nitrite concomitantly, suggesting that the products of these genes act co-operatively with RFNR2 to reduce nitrite in roots. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Identification of Microorganisms by Modern Analytical Techniques.

    Science.gov (United States)

    Buszewski, Bogusław; Rogowska, Agnieszka; Pomastowski, Paweł; Złoch, Michał; Railean-Plugaru, Viorica

    2017-11-01

    Rapid detection and identification of microorganisms is a challenging and important aspect in a wide range of fields, from medical to industrial, affecting human lives. Unfortunately, classical methods of microorganism identification are based on time-consuming and labor-intensive approaches. Screening techniques require the rapid and cheap grouping of bacterial isolates; however, modern bioanalytics demand comprehensive bacterial studies at a molecular level. Modern approaches for the rapid identification of bacteria use molecular techniques, such as 16S ribosomal RNA gene sequencing based on polymerase chain reaction or electromigration, especially capillary zone electrophoresis and capillary isoelectric focusing. However, there are still several challenges with the analysis of microbial complexes using electromigration technology, such as uncontrolled aggregation and/or adhesion to the capillary surface. Thus, an approach using capillary electrophoresis of microbial aggregates with UV and matrix-assisted laser desorption ionization time-of-flight MS detection is presented.

  6. Assessment of microorganisms from Indonesian Oil Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kadarwati, S.; Udiharto, M.; Rahman, M.; Jasjfi, E.; Legowo, E.H. [Research and Development Centre for Oil and Gas Technology LEMIGAS, Jakarta Selatan (Indonesia)

    1995-12-31

    Petroleum resources have been the mainstay of the national development in Indonesia. However, resources are being depleted after over a century of exploitation, while the demand continues to grow with the rapid economic development of the country. In facing the problem, EOR has been applied in Indonesia, such as the steamflooding project in Duri field, but a more energy efficient technology would be preferable. Therefore, MEOR has been recommended as a promising solution. Our study, aimed at finding indigenous microorganisms which can be developed for application in MEOR, has isolated microbes from some oil fields of Indonesia. These microorganisms have been identified, their activities studied, and the effects of their metabolisms examined. This paper describes the research carried out by LEMIGAS in this respect, giving details on the methods of sampling, incubation, identification, and activation of the microbes as well as tests on the effects of their metabolites, with particular attention to those with potential for application in MEOR.

  7. UV inactivation of pathogenic and indicator microorganisms

    International Nuclear Information System (INIS)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-01-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts

  8. UV inactivation of pathogenic and indicator microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.

  9. Influence of near ultraviolet light on microorganisms

    International Nuclear Information System (INIS)

    Fraikin, G.Y.A.; Rubin, L.B.

    1980-01-01

    Our results and the recent literature data on the biological action of near ultraviolet light (300-380 nm) are examined in the review. Factual material is presented on the principles governing the manifestation of the following effects of near ultraviolet light in microorganisms: inactivation, delayed growth, photoreactivation, photoprotection, photoinduced sporulation (in fungi), and carotene synthesis. The mature and possible mechanisms of the effects examined are discussed

  10. Chemosensing in microorganisms to practical biosensors

    OpenAIRE

    Ghosh, Surya K.; Kundu, Tapanendu; Sain, Anirban

    2012-01-01

    Microorganisms like bacteria can sense concentration of chemo-attractants in its medium very accurately. They achieve this through interaction between the receptors on their cell surface and the chemo-attractant molecules (like sugar). But the physical processes like diffusion set some limits on the accuracy of detection which was discussed by Berg and Purcell in the late seventies. We have a re-look at their work in order to assess what insight it may offer towards making efficient, practica...

  11. Recombinant micro-organism for use in method with increased product yield

    NARCIS (Netherlands)

    Van Maris, A.J.A.; Pronk, J.T.; Guadalupe Medina, V.G.; Wisselink, H.W.

    2014-01-01

    The invention relates to a recombinant yeast cell, in particular a transgenic yeast cell, functionally expressing one or more recombinant, in particular heterologous, nucleic acid sequences encoding ribulose-1,5-biphosphate carboxylase oxygenase (Rubisco) and phosphoribulokinase (PRK). The invention

  12. Bioemulsan Production by Iranian Oil Reservoirs Microorganisms

    Directory of Open Access Journals (Sweden)

    A Amiriyan, M Mazaheri Assadi, VA Saggadian, A Noohi

    2004-10-01

    Full Text Available The biosurfactants are believed to be surface active components that are shed into the surrounding medium during the growth of the microorganisms. The oil degrading microorganism Acinetobacter calcoaceticus RAG-1 produces a poly-anionic biosurfactant, hetero-polysaccharide bioemulsifier termed as emulsan which forms and stabilizes oil-water emulsions with a variety of hydrophobic substrates. In the present paper results of the possibility of biosurfactant (Emulsan production by microorganisms isolated from Iranian oil reservoirs is presented. Fourthy three gram negative and gram positive, non fermentative, rod bacilli and coccobacilli shaped baceria were isolated from the oil wells of Bibi Hakimeh, Siri, Maroon, Ilam , East Paydar and West Paydar. Out of the isolated strains, 39 bacterial strains showed beta haemolytic activity, further screening revealed the emulsifying activity and surface tension. 11 out of 43 tested emulsifiers were identified as possible biosurfactant producers and two isolates produced large surface tension reduction, indicating the high probability of biosurfactant production. Further investigation revealed that, two gram negative, oxidase negative, aerobic and coccoid rods isolates were the best producers and hence designated as IL-1, PAY-4. Whole culture broth of isolates reduced surface tension from 68 mN /m to 30 and 29.1mN/m, respectively, and were stable during exposure to high salinity (10%NaCl and elevated temperatures(120C for 15 min .

  13. [Succession of chitinolytic microorganisms in chernozem soil].

    Science.gov (United States)

    Manucharova, N A; Belova, E V; Vorob'ev, A V; Polianskaia, L M; Stepanov, A L

    2005-01-01

    The chitinolytic prokaryotic and eukaryotic microbial complex of chernozem soil has been investigated in the course of a succession initiated by the introduction of chitin and humidification. The dynamics of the cell numbers of chitinolytic microorganisms and of their biomass was assessed by fluorescent microscopy and by inoculation of selective media. Emission of carbon dioxide and nitrous oxide, as well as dinitrogen fixation, was assessed by gas chromatography. It was found that, when the succession was initiated by the introduction of both chitin and humidification, it resulted in greater cell numbers and biomass of chitinolytic microorganisms and higher levels of CO2 and N2O emission and of nitrogen fixation than when the succession was initiated by humidification alone. As compared to the control samples, a significant (twofold) increase in the prokaryote cell number and biomass was found on the fourth day of the succession initiated by humidification and introduction of chitin. One week after the initiation of succession, the fungal biomass and length of mycelium were twice as high as those in the control samples. These results led to the conclusion that chitin utilization in chernozem soil starts during the initial stages of succession and is performed by both prokaryotic and eukaryotic microorganisms.

  14. Monitoring of psychrotrophic microorganisms in raw milk

    Directory of Open Access Journals (Sweden)

    Radka Burdychová

    2008-01-01

    Full Text Available The group of psychrotrophic microorganisms belongs to the microorganisms representing a risk for human health as well as a risk of milk and milk products spoilage. Some genus are considered to be significant producers of proteolytic and lipolytic enzymes. In this work, we analysed raw milk samples (n = 109 originated from 26 different suppliers from the area of North and Middle Moravia. The screening was performed from March 2007 to February 2008. The total bacterial counts (TBC ranged between 3.2 × 103 to 8.3 × 106 CFU/ml. The psychrotrophic bacterial counts (PBC ranged between 1.0 × 103 to 8.2 × 106 CFU/ml. Total of 48.62 % and 48.62 % of samples exceeded the hygienic limit in raw milk for TBC and PBC, respectively. The correlation between TBC and PBC was highly significant (r = 0.87.Significantly higher (P < 0.05 numbers of psychrotrophic microorganisms were detected in summer months. The identification of isolates was carried out and all strains were sreened for ability to produce proteolytic and lipolytic enzymes. The most commonly identified genus in raw milk was of the genus Pseudomonas. The ability to produce proteases or lipases was found at 76 % identified bacterial strains.

  15. Selection of mesophilic microorganisms with biodesulfuration capacity

    International Nuclear Information System (INIS)

    Madero, A; Mogollon, L. I; Mora, A.L; Osorio, L.F

    1998-01-01

    The development of bio desulfurization (BDS) processes for hydrocarbons requires fast and reliable methods for the screening of microorganisms. This work shows the results of the screening process for indigenous Colombian strains with a BDS potential capacity. The main criteria for the screening were the qualitative and quantitative determination of 2-hydroxybiphenyl (2-HBP) as the typical metabolite of the 4S specific pathway. Microorganisms were cultured by two methodologies, A and B, using DBT as the model compound. The quantitative determination of metabolites was made by HPLC. Thirteen strains were evaluated, including the strain Rhodococcus rhodocrous IGTS8, by methods A and B. In method A, the inoculum was exposed to DBT since the beginning of the culture. Method B, employed two stages: (i) Growth period under limiting sulfur conditions, (ii) Transforming period, in which the pre-grown inoculum was exposed to the organic sulfur substrate. The culture of mesophilic microorganisms isolated by method B, served to find a mechanism for the organic sulfur metabolism, and the evaluation of the sulfur removal capability of five indigenous strains. In the cultures of these strains, 2- hydroxybiphenyl (2-HBP) was detected as a byproduct of DBT metabolism, both qualitatively and quantitatively

  16. Magnetotaxy in microorganisms of Rio de Janeiro region: an overview

    International Nuclear Information System (INIS)

    Barros, H.G. de P.L. de; Esquivel, D.M.S.

    1983-01-01

    Some characteristics of several magnetotactic microorganisms found in sediments collected in Rio de Janeiro region are presented. The study of magnetic characteristics of these microorganisms indicate some general properties of the magnetotaxy phenomenons. (L.C.) [pt

  17. Nitrite-Mediated Hypoxic Vasodilation Predicted from Mathematical Modeling and Quantified from in Vivo Studies in Rat Mesentery

    Directory of Open Access Journals (Sweden)

    Donald G. Buerk

    2017-12-01

    Full Text Available Nitric oxide (NO generated from nitrite through nitrite reductase activity in red blood cells has been proposed to play a major role in hypoxic vasodilation. However, we have previously predicted from mathematical modeling that much more NO can be derived from tissue nitrite reductase activity than from red blood cell nitrite reductase activity. Evidence in the literature suggests that tissue nitrite reductase activity is associated with xanthine oxidoreductase (XOR and/or aldehyde oxidoreductase (AOR. We investigated the role of XOR and AOR in nitrite-mediated vasodilation from computer simulations and from in vivo exteriorized rat mesentery experiments. Vasodilation responses to nitrite in the superfusion medium bathing the mesentery equilibrated with 5% O2 (normoxia or zero O2 (hypoxia at either normal or acidic pH were quantified. Experiments were also conducted following intraperitoneal (IP injection of nitrite before and after inhibiting XOR with allopurinol or inhibiting AOR with raloxifene. Computer simulations for NO and O2 transport using reaction parameters reported in the literature were also conducted to predict nitrite-dependent NO production from XOR and AOR activity as a function of nitrite concentration, PO2 and pH. Experimentally, the largest arteriolar responses were found with nitrite >10 mM in the superfusate, but no statistically significant differences were found with hypoxic and acidic conditions in the superfusate. Nitrite-mediated vasodilation with IP nitrite injections was reduced or abolished after inhibiting XOR with allopurinol (p < 0.001. Responses to IP nitrite before and after inhibiting AOR with raloxifene were not as consistent. Our mathematical model predicts that under certain conditions, XOR and AOR nitrite reductase activity in tissue can significantly elevate smooth muscle cell NO and can serve as a compensatory pathway when endothelial NO production is limited by hypoxic conditions. Our theoretical and

  18. 6 Grain Yield

    African Journals Online (AJOL)

    create a favourable environment for rice ... developing lines adaptable to many ... have stable, not too short crop duration with ..... Analysis of variance of the effect of site and season on maturity, grain yield and plant ..... and yield components.

  19. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors

    DEFF Research Database (Denmark)

    Su, Qingxian; Ma, Chun; Domingo-Felez, Carlos

    2017-01-01

    Nitrous oxide (N2O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N2O production were quantified in two lab-scale sequencing batch reactors...... to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N2O production was low (∼2% of the oxidized ammonium). Net N2O production rates transiently increased with a rise in pH after each feeding, suggesting...... operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient...

  20. Reduction of nitrogen oxides by gamma-irradiated hemoproteins. Pt. 2. Reduction of nitrite by immobilized gamma-irradiated hemoprotein

    International Nuclear Information System (INIS)

    Oku, Tadatake; Sato, Hitoshi; Ichikawa, Yoshinobu; Kaneko, Junko; Goto, Mituhiro; Nishio, Toshiyuki; Ito, Teiichiro; Kume, Tamikazu.

    1994-01-01

    Sodium and potassium nitrites are used for coloration and pasteurization of meat products as food additives. Recently, removal of nitrite in water has been one of the research area in environmental science because of the necessity of reducing water pollution. The horse cardiac cytochrome c in 0.1mM aqueous solution was denatured by gamma-irradiation at a dose of 10kGy in the presence of air, and was immobilized by lattice entrapment method in the polyacrylamide gel. The immobilized irradiated cytochrome c was reacted with nitrite in the presence of reducing agent (sodium hydrosulfite) and electron carrier (methyl viologen) at 30degC. The remaining nitrite was determined by diazo-reaction. Immobilized irradiated cytochrome c could be used as a substituent of nitrite reductase, and especially high nitrite reducing activity under nitrogen atmosphere in acidic range, and entrapment in 15% gel made possible to reuse denatured cytochrome c several times. (J.P.N.)

  1. De novo biofilm community assembly from tap water source communities favors Nitrotoga over Nitrospira under elevated nitrite surface loading

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Dechesne, Arnaud; Albrechtsen, Hans-Jørgen

    -through biofilm system to continuous immigration from a tap water metacommunity while applying different nitrite surface loading rates. After 63 days of operation, we extracted biofilms and analyzed the community composition via Illumina MiSeq targeting the 16S rRNA gene. Previous studies have shown...... that Nitrospira is the dominant nitrite oxidizing genus in low nitrite environments. Hence, we postulated that by elevating the nitrite surface loading we would select for NOB with lower nitrite affinity than Nitrospira. We observed different dominant NOB species under different loading rates. While...... in the metacommunity, Nitrotoga and Nitrospira were found at near equal abundances, in the biofilm community, elevated nitrite loading strongly selected for Nitrotoga over Nitrospira. The biofilms were also significantly different in their alpha-diversity (pdiversity, and the evenness and richness...

  2. MONITORING KADAR NITRIT DAN NITRAT PADA AIR SUMUR DI DAERAH CATUR TUNGGAL YOGYAKARTA DENGAN METODE SPEKTROFOTOMETRI UV-VIS (Monitoring of Nitrite and Nitrate Content in Ground Water of Catur Tunggal Region of Yogyakarta by UV-VIS Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Setiowati Setiowati

    2016-07-01

    Full Text Available ABSTRAK Metode analisis nitrit dan nitrat perlu dikembangkan untuk memonitor kualitas air minum. Kualitas air sumur untuk parameter nitrit dan nitrat dipengaruhi oleh kondisi lingkungan dan kedalaman air sumur.Penelitian ini bertujuan menganalisis nitrit dan nitrat menggunakan asam p-aminobenzoat (PABA pada air sumur di daerah perkotaan Yogyakarta. Analisis nitrit didasarkan pada reaksi antara ion nitrit dengan PABA yang membentuk senyawa azo dengan panjang gelombang maksimum 546 nm. Kedalaman air sumur di daerah Catur Tunggal rata-rata > 10 m. Kadar nitrit dan nitrat pada air sumur adalah 0,05-0,09 dan 8,22-36,58 mg/L. Kadar nitrit dan nitrat tersebut memenuhi baku mutu dan aman untuk dikonsumsi. Konsentrasi nitrit dan nitrat pada air RO adalah 0,05 dan 2,72-59,57 mg/L. Kadar nitrit pada air RO tidak memenuhi baku mutu sedangkan kadar nitrat memenuhi baku mutu kecuali RO 5. ABSTRACT The method for analysis nitrite and nitrate had to developed to monitor the drinking water quality. The well water quality, especially for nitrite and nitrate were influenced by environmental conditions and depth of well. This study aims to analyze nitrite and nitrate using p-aminobenzoic acid (PABA in ground water at urban areas of Yogyakarta. The analysis was based on the reaction between nitrite ions with PABA which form azo compounds with a maximum wavelength of 546 nm. The depth of wells at Catur Tunggal were more than 10 m. Concentration of nitrite and nitrate in well water were 0.05 to 0.09 and 8.22 to 36.58 mg / L. The concentrations met the standard for drinking water quality and was safe for consumption. The concentration of nitrite and nitrate in reverse osmosis (RO water were 0.05 and 2.72 to 59.57 mg / L. The concentration of nitrite did not meet the standard for drinking water quality while the concentration of nitrate met the standard for drinking water quality except RO 5.

  3. Thyroid cancer risk and dietary nitrate and nitrite intake in the Shanghai women's health study.

    Science.gov (United States)

    Aschebrook-Kilfoy, Briseis; Shu, Xiao-Ou; Gao, Yu-Tang; Ji, Bu-Tian; Yang, Gong; Li, Hong Lan; Rothman, Nathaniel; Chow, Wong-Ho; Zheng, Wei; Ward, Mary H

    2013-02-15

    Nitrate and nitrite are precursors in the endogenous formation of N-nitroso compounds and nitrate can disrupt thyroid homeostasis by inhibiting iodide uptake. We evaluated nitrate and nitrite intake and risk of thyroid cancer in the Shanghai Women's Health Study that included 73,317 women, aged 40-70 years enrolled in 1996-2000. Dietary intake was assessed at baseline using a food frequency questionnaire. During approximately 11 years of follow-up, 164 incident thyroid cancer cases with complete dietary information were identified. We used Cox proportional hazards regression to estimate relative risks (RRs). We determined the nitrate and nitrite contents of foods using values from the published literature and focusing on regional values for Chinese foods. Nitrate intake was not associated with thyroid cancer risk [RR(Q4) = 0.93; 95% confidence interval (CI): 0.42-2.07; p for trend = 0.40]. Compared to the lowest quartile, women with the highest dietary nitrite intake had about a twofold risk of thyroid cancer (RR(Q4) = 2.05; 95%CI: 1.20-3.51), but there was not a monotonic trend with increasing intake (p for trend = 0.36). The trend with increasing nitrite intake from animal sources was significant (p for trend = 0.02) and was stronger for nitrite from processed meats (RR(Q4) = 1.96; 95%CI: 1.28-2.99; p for trend nitrate as hypothesized, our results suggest that women consuming higher levels of nitrite from animal sources, particularly from processed meat, may have an increased risk of thyroid cancer. Copyright © 2012 UICC.

  4. Histological alterations in gills of Macrobrachium amazonicum juveniles exposed to ammonia and nitrite.

    Science.gov (United States)

    Dutra, Fabrício Martins; Rönnau, Milton; Sponchiado, Dircelei; Forneck, Sandra Carla; Freire, Carolina Arruda; Ballester, Eduardo Luis Cupertino

    2017-06-01

    Aquaculture has shown great growth in the last decades. Due to the restrictions on water use, production systems are becoming increasingly more intensive, raising concerns about the production water quality. Macrobrachium amazonicum is among the freshwater prawn species with favorable characteristics for production and possibility of intensification. Nitrogen compounds such as ammonia and nitrite affect the health of aquatic organisms since they quickly reach toxic concentrations. These compounds can also cause damage to the gill structure, leading to hypoxia in tissues, affecting acid-base balance, osmoregulation (salt absorption) and ammonia excretion, decreasing the immune capacity of the animal and, in extreme cases, cause death. The aim of this study was to assess histological changes in the gills of Macrobrachium amazonicum juveniles subjected to different concentrations of total ammonia and nitrite. The prawns were subjected to different concentrations of those compounds and their gills were removed and preserved for histological analysis. The gills were assessed for changes according to the Organ Index (I org ) and, for each change, an importance factor (w) was attributed according to the degree of reversibility and applied according to the degree of extension or frequency of the damage. The damage to the gills in the treatments with 100% mortality, both for ammonia and nitrite, corresponded to the high occurrence of progressive, regressive, circulatory, and inflammation damages. The other treatments (which caused less mortality) had mainly inflammation and regressive damages, whose occurrence increased according to the increase in ammonia and nitrite concentration. The histological analysis confirmed that the higher the total ammonia and nitrite concentrations, the larger the damages caused to the gill structure and that lower nitrite concentrations caused similar damages to those caused by higher total ammonia concentrations, which reflects the lower

  5. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence

    Science.gov (United States)

    Dunham, A. J.; Barkley, R. M.; Sievers, R. E.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    An improved method of flow injection analysis for aqueous nitrite ion exploits the sensitivity and selectivity of the nitric oxide (NO) chemilluminescence detector. Trace analysis of nitrite ion in a small sample (5-160 microL) is accomplished by conversion of nitrite ion to NO by aqueous iodide in acid. The resulting NO is transported to the gas phase through a semipermeable membrane and subsequently detected by monitoring the photoemission of the reaction between NO and ozone (O3). Chemiluminescence detection is selective for measurement of NO, and, since the detection occurs in the gas-phase, neither sample coloration nor turbidity interfere. The detection limit for a 100-microL sample is 0.04 ppb of nitrite ion. The precision at the 10 ppb level is 2% relative standard deviation, and 60-180 samples can be analyzed per hour. Samples of human saliva and food extracts were analyzed; the results from a standard colorimetric measurement are compared with those from the new chemiluminescence method in order to further validate the latter method. A high degree of selectivity is obtained due to the three discriminating steps in the process: (1) the nitrite ion to NO conversion conditions are virtually specific for nitrite ion, (2) only volatile products of the conversion will be swept to the gas phase (avoiding turbidity or color in spectrophotometric methods), and (3) the NO chemiluminescence detector selectively detects the emission from the NO + O3 reaction. The method is free of interferences, offers detection limits of low parts per billion of nitrite ion, and allows the analysis of up to 180 microL-sized samples per hour, with little sample preparation and no chromatographic separation. Much smaller samples can be analyzed by this method than in previously reported batch analysis methods, which typically require 5 mL or more of sample and often need chromatographic separations as well.

  6. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters.

    Science.gov (United States)

    Bristow, Laura A; Dalsgaard, Tage; Tiano, Laura; Mills, Daniel B; Bertagnolli, Anthony D; Wright, Jody J; Hallam, Steven J; Ulloa, Osvaldo; Canfield, Donald E; Revsbech, Niels Peter; Thamdrup, Bo

    2016-09-20

    A major percentage of fixed nitrogen (N) loss in the oceans occurs within nitrite-rich oxygen minimum zones (OMZs) via denitrification and anammox. It remains unclear to what extent ammonium and nitrite oxidation co-occur, either supplying or competing for substrates involved in nitrogen loss in the OMZ core. Assessment of the oxygen (O2) sensitivity of these processes down to the O2 concentrations present in the OMZ core (Chile at manipulated O2 levels between 5 nmol⋅L(-1) and 20 μmol⋅L(-1) Rates of both processes were detectable in the low nanomolar range (5-33 nmol⋅L(-1) O2), but demonstrated a strong dependence on O2 concentrations with apparent half-saturation constants (Kms) of 333 ± 130 nmol⋅L(-1) O2 for ammonium oxidation and 778 ± 168 nmol⋅L(-1) O2 for nitrite oxidation assuming one-component Michaelis-Menten kinetics. Nitrite oxidation rates, however, were better described with a two-component Michaelis-Menten model, indicating a high-affinity component with a Km of just a few nanomolar. As the communities of ammonium and nitrite oxidizers were similar to other OMZs, these kinetics should apply across OMZ systems. The high O2 affinities imply that ammonium and nitrite oxidation can occur within the OMZ core whenever O2 is supplied, for example, by episodic intrusions. These processes therefore compete with anammox and denitrification for ammonium and nitrite, thereby exerting an important control over nitrogen loss.

  7. Safety and feasibility of long-term intravenous sodium nitrite infusion in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Ryszard M Pluta

    Full Text Available BACKGROUND: Infusion of sodium nitrite could provide sustained therapeutic concentrations of nitric oxide (NO for the treatment of a variety of vascular disorders. The study was developed to determine the safety and feasibility of prolonged sodium nitrite infusion. METHODOLOGY: Healthy volunteers, aged 21 to 60 years old, were candidates for the study performed at the National Institutes of Health (NIH; protocol 05-N-0075 between July 2007 and August 2008. All subjects provided written consent to participate. Twelve subjects (5 males, 7 females; mean age, 38.8±9.2 years (range, 21-56 years were intravenously infused with increasing doses of sodium nitrite for 48 hours (starting dose at 4.2 µg/kg/hr; maximal dose of 533.8 µg/kg/hr. Clinical, physiologic and laboratory data before, during and after infusion were analyzed. FINDINGS: The maximal tolerated dose for intravenous infusion of sodium nitrite was 267 µg/kg/hr. Dose limiting toxicity occurred at 446 µg/kg/hr. Toxicity included a transient asymptomatic decrease of mean arterial blood pressure (more than 15 mmHg and/or an asymptomatic increase of methemoglobin level above 5%. Nitrite, nitrate, S-nitrosothiols concentrations in plasma and whole blood increased in all subjects and returned to preinfusion baseline values within 12 hours after cessation of the infusion. The mean half-life of nitrite estimated at maximal tolerated dose was 45.3 minutes for plasma and 51.4 minutes for whole blood. CONCLUSION: Sodium nitrite can be safely infused intravenously at defined concentrations for prolonged intervals. These results should be valuable for developing studies to investigate new NO treatment paradigms for a variety of clinical disorders, including cerebral vasospasm after subarachnoid hemorrhage, and ischemia of the heart, liver, kidney and brain, as well as organ transplants, blood-brain barrier modulation and pulmonary hypertension. CLINICAL TRIAL REGISTRATION INFORMATION: http

  8. Formation of nitrous oxide in a gradient of oxygenation and nitrogen loading rate during denitrification of nitrite and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Gong, You-Kui; Peng, Yong-Zhen [School of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China); Yang, Qing, E-mail: gykren@163.com [School of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China); Wu, Wei-Min [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 (China); Wang, Shu-Ying [School of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The correlation of DO to N{sub 2}O emission under denitrification via nitrite was confirmed. Black-Right-Pointing-Pointer The higher nitrite ratio in NO{sub x} (nitrite and nitrate) caused the more N{sub 2}O emission. Black-Right-Pointing-Pointer Reactor feed mode and nitrite loading rate had significant impact on N{sub 2}O emission which was related to nitrite level. - Abstract: Nitrous oxide (N{sub 2}O) emission has been observed during denitrification of nitrate via nitrite as intermediate. With a laboratory-scale reactor (2.4 L), the N{sub 2}O emission was characterized under a gradient of DO concentration from 0 to 0.7 mg/L, different ratio of nitrite versus nitrate and different nitrite feed mode. The N{sub 2}O emission was influenced by the level of dissolved oxygen (DO) and nitrite accumulation. The higher DO level and the higher ratio of nitrite versus nitrate resulted in the higher N{sub 2}O emission. Using nitrite as sole electron acceptor at the same loading rate, the sequence of N{sub 2}O emission with three different feed modes was: pulse > step-wise > continuous feed. The N{sub 2}O emitted in pulse feed reactors was 3.1-4.2 and 8.2-11.7 folds of that in the step-wise feed and continuous feed reactors, respectively. With continuous feed mode, the impact of DO concentration on the mass of N{sub 2}O emitted was limited while the higher N{sub 2}O emission occurred at the higher nitrite loading rate.

  9. Suspected nitrite poisoning in pigs caused by Capsella bursa-pastoris (L. Medik. ('herderstassie', shepherd's purse : case report

    Directory of Open Access Journals (Sweden)

    W.J. Wiese

    2001-07-01

    Full Text Available Nitrite poisoning in pigs was suspected when 4 of 18 pigs died in a piggery near Ellisras in the Northern Province. The pigs showed typical brownish discolouration of the blood at autopsy. It was established that they ingested vegetable tops and weeds from the adjacent garden as part of their daily ration. Of the available plants, only Capsella bursa-pastoris contained nitrites. The drinking water and some of the other plants tested positive for nitrates but not for nitrites. This is the first report of suspected nitrite poisoning in pigs caused by Capsella bursa-pastoris.

  10. Dramatic increase of nitrite levels in hearts of anoxia-exposed crucian carp supporting a role in cardioprotection

    DEFF Research Database (Denmark)

    Sandvik, Guro K.; Nilsson, Göran E.; Jensen, Frank Bo

    2012-01-01

    the generation of reactive oxygen species upon reoxygenation. The crucian carp naturally survives extended periods without oxygen in an active state, which has made it a model for studying how evolution has solved the problems of anoxic survival. We investigated the role of nitrite and NO in the anoxia...... increases in nitrite, S-nitrosothiols (SNO) and iron-nitrosyl (FeNO) compounds in anoxic heart tissue. Nitrite levels were maintained in anoxic brain, liver and gill tissues, whereas SNO and FeNO increased in a tissue-specific manner. Reoxygenation reestablished normoxic values. We conclude that nitrite...

  11. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jennifer L.; Zhang, Xiaolin

    2017-12-26

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  12. Extracellular electron transfer mechanisms between microorganisms and minerals

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang; Dong, Hailiang; Reguera, Gemma; Beyenal, Haluk; Lu, Anhuai; Liu, Juan; Yu, Han-Qing; Fredrickson, James K.

    2016-08-30

    Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.

  13. Amperometric detection of nitrite based on Dawson-type vanodotungstophosphate and carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang, Di; Ma, Huiyuan; Chen, Yanyan; Pang, Haijun; Yu, Yan

    2013-01-01

    Graphical abstract: A composite film has been constructed by vanodotungstophosphate α 2 -K 7 P 2 VW 17 O 62 ·18H 2 O (P 2 W 17 V) and carbon nanotubes (CNTs) using the layer-by-layer self-assembly method. The incorporation of CNTs and P 2 W 17 V into the composite film endowed the modified electrode fast electron transfer rate and high electrocatalytic activity of toward nitrite oxidation. This nitrite sensor shows broad linear range, low detection limit, and high sensitivity and stability. Also it did not show any interference with other potential interfering species, and was successfully employed for determination of nitrite in real samples. -- Highlights: •A composite film was constructed by a vanodotungstophosphate and carbon nanotubes. •The composite film showed fast electron transfer rate and high electrocatalytic activity of toward nitrite oxidation. •The proposed sensor can amperometricially detect nitrite with high sensitivity and selectivity. -- Abstract: A nitrite sensor based on Dawson vanodotungstophosphates α 2 -K 7 P 2 VW 17 O 62 ·18H 2 O (P 2 W 17 V) and carbon nanotubes (CNTs) was prepared by electrostatic layer-by-layer self-assembly technique. The sensor {PEI/PSS/[PDDA/P 2 W 17 V-CNTs] n } was characterized by UV–vis spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS). The electron transfer and sensing ability of this sensor were explored using cyclic voltammetry (CV) and electrochemical impedance spectra (EIS) technology. The results show that the incorporation of CNTs and P 2 W 17 V into the composite film endowed the modified electrode with fast transfer rate and high electrocatalytic activity towards oxidation of nitrite. This nitrite sensor with 10 bilayers has a broad linear range of 5 × 10 −8 to 2.13 × 10 −3 M, a low detection limit of 0.0367 μM (S N −1 = 3), a high sensitivity of 0.35 mA mM −1 NO 2 − , an excellent anti-interference property in the

  14. Screening of biosurfactants from cloud microorganisms

    Science.gov (United States)

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  15. Yield stress fluids slowly yield to analysis

    NARCIS (Netherlands)

    Bonn, D.; Denn, M.M.

    2009-01-01

    We are surrounded in everyday life by yield stress fluids: materials that behave as solids under small stresses but flow like liquids beyond a critical stress. For example, paint must flow under the brush, but remain fixed in a vertical film despite the force of gravity. Food products (such as

  16. Reverse polarity capillary zone electrophoresis analysis of nitrate and nitrite in natural water samples

    Energy Technology Data Exchange (ETDEWEB)

    Metcalf, S.G.

    1998-06-11

    This paper describes the application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in natural water samples. Using hexamethonium bromide (HMB) as an electroosmotic flow modifier in a borate buffer at pH 9.2, the resolution of nitrate and nitrite was accomplished in less than 3 minutes. RPCE was compared with ion chromatographic (IC) and cadmium reduction flow injection analysis (Cd-FIA) methods which are the two most commonly used standard methods for the analysis of natural water samples for nitrate and nitrite. When compared with the ion chromatographic method for the determination of nitrate and nitrite, RPCE reduced analysis time, decreased detection limits by a factor of 10, cut laboratory wastes by more than two orders of magnitude, and eliminated interferences commonly associated with IC. When compared with the cadmium reduction method, RPCE had the advantage of simultaneous determination of nitrate and nitrite, could be used in the presence of various metallic ions that normally interfere in cadmium reduction, and decreased detection limits by a factor of 10.

  17. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity.

    Directory of Open Access Journals (Sweden)

    Yong-tao Fei

    Full Text Available Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010 was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (P<0.001. Based on 16S rDNA sequencing and sequence comparison, Lactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively of the L-lactate dehydrogenase 1 (L-ldh1 gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity.

  18. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    Science.gov (United States)

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. © FASEB.

  19. Association of nitrate, nitrite, and total organic carbon (TOC) in drinking water and gastrointestinal disease.

    Science.gov (United States)

    Khademikia, Samaneh; Rafiee, Zahra; Amin, Mohammad Mehdi; Poursafa, Parinaz; Mansourian, Marjan; Modaberi, Amir

    2013-01-01

    We aimed to investigate the amounts of nitrate, nitrite, and total organic carbon (TOC) in two drinking water sources and their relationship with some gastrointestinal diseases. This cross-sectional study was conducted in 2012 in Iran. Two wells located in residential areas were selected for sampling and measuring the TOC, nitrate (NO3(-)), and nitrite (NO2(-)). This water is used for drinking as well as for industrial and agricultural consumption. Nitrate and nitrite concentrations of water samples were analyzed using DR 5000 spectrophotometer. The information of patients was collected from the records of the main referral hospital of the region for gastrointestinal diseases. In both areas under study, the mean water nitrate and nitrite concentrations were higher in July than in other months. The mean TOC concentrations in areas 1 and 2 were 2.29 ± 0.012 and 2.03 ± 0.309, respectively. Pollutant concentration and gastrointestinal disease did not show any significant relationship (P > 0.05). Although we did not document significant association of nitrite, nitrate, and TOC content of water with gastrointestinal diseases, it should be considered that such health hazards may develop over time, and the quality of water content should be controlled to prevent different diseases.

  20. A new system for the spectrophotometric determination of trace amounts of nitrite in environmental samples

    Directory of Open Access Journals (Sweden)

    Cherian Tom

    2006-01-01

    Full Text Available A selective and rapid spectrophotometric method for the determination of nitrite is presented. It is based on the reaction of nitrite with p-nitroaniline in acid medium to form diazonium ion, which is coupled with ethoxyethylenemaleic ester or ethylcyanoacetate in basic medium to form azo dyes, showing absorption maxima at 439 and 465 nm respectively. The method obeys Beer's law in the concentration range of 0.5-16 µg mL-1 of nitrite with ethoxyethylenemaleic ester and 0.2-18 µg mL-1 of nitrite with ethylcyanoacetate. The molar absorptivity and Sandell's sensitivity of p-nitroaniline-ethoxyethylenemaleic ester and p-nitroaniline-ethylcyanoacetate azo dyes are 5.04 X 10(4 L mol-1cm-1, 0.98 X 10-2 µg cm-2 and 1.21 X 10(4 L mol-1 cm-1, 0.98 X 10-2 µg cm-2 respectively. The optimum reaction conditions and other analytical parameters were evaluated. The method was successfully applied to the determination of nitrite in various water samples and soil samples.

  1. Experimental studies of methemoglobinemia due to percutaneous absorption of sodium nitrite.

    Science.gov (United States)

    Saito, T; Takeichi, S; Nakajima, Y; Yukawa, N; Osawa, M

    1997-01-01

    Methemoglobin formation caused by a liniment solution containing sodium nitrite (30 g/L and 140 g/L) was studied in rats with normal or abraded skin, by measuring the methemoglobin concentration before and after application of liniment solutions with differing nitrite concentration. Each liniment solution (120 microL) was applied. Methemoglobin was measured for 180 minutes using a hemoximeter. Simultaneously, arterial blood pressure and cutaneous blood flow was measured by laser Doppler flowmetry and a pressure transducer. After the application of each liniment solution to normal skin, the methemoglobin concentration was not significantly modified depending on the time after application. Application of liniment solution to abraded skin (140 g/L) resulted in a marked increase in methemoglobin concentration. A remarkable decrease in arterial blood pressure and subcutaneous blood flow were observed after application of liniment solution to abraded skin (140 g/L). Each of these findings are characteristic of nitrite and they imply the percutaneous absorption of nitrite. Regardless of the nitrite concentration, the methemoglobin concentration was consistently higher in abraded skin than in normal skin.

  2. Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages.

    Science.gov (United States)

    Berardo, A; De Maere, H; Stavropoulou, D A; Rysman, T; Leroy, F; De Smet, S

    2016-11-01

    The effects of sodium nitrite and ascorbate on lipid and protein oxidation were studied during the ripening process of dry fermented sausages. Samples were taken at day 0, 2, 8, 14, 21 and 28 of ripening to assess lipid (malondialdehyde) and protein (carbonyls and sulfhydryl groups) oxidation. Sodium ascorbate and nitrite were separately able to reduce the formation of malondialdehyde. Their combined addition resulted in higher amounts of carbonyl compounds compared to their separate addition or the treatment without any of both compounds. Moreover, sodium nitrite limited the formation of γ-glutamic semialdehyde whereas sodium ascorbate showed a pro-oxidant effect. A loss of thiol groups was observed during ripening, which was not affected by the use of sodium ascorbate nor sodium nitrite. In conclusion, sodium nitrite and ascorbate affected protein and lipid oxidation in different manners. The possible pro-oxidant effect of their combined addition on carbonyl formation might influence the technological and sensory properties of these products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jacob W.; Lam, Royce K.; Saykally, Richard J., E-mail: saykally@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Shih, Orion [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Rizzuto, Anthony M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Prendergast, David [The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-08-28

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO{sub 3}{sup −} and NO{sub 2}{sup −}. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

  4. A coupled system of half-nitritation and ANAMMOX for mature landfill leachate nitrogen removal.

    Science.gov (United States)

    Li, Yun; Li, Jun; Zhao, Baihang; Wang, Xiujie; Zhang, Yanzhuo; Wei, Jia; Bian, Wei

    2017-09-01

    A coupled system of membrane bioreactor-nitritation (MBR-nitritation) and up-flow anaerobic sludge blanket-anaerobic ammonium oxidation (UASB-ANAMMOX) was employed to treat mature landfill leachate containing high ammonia nitrogen and low C/N. MBR-nitritation was successfully realized for undiluted mature landfill leachate with initial concentrations of 900-1500 mg/L [Formula: see text] and 2000-4000 mg/L chemical oxygen demand. The effluent [Formula: see text] concentration and the [Formula: see text] accumulation efficiency were 889 mg/L and 97% at 125 d, respectively. Half-nitritation was quickly realized by adjustment of hydraulic retention time and dissolved oxygen (DO), and a low DO control strategy could allow long-term stable operation. The UASB-ANAMMOX system showed high effective nitrogen removal at a low concentration of mature landfill leachate. The nitrogen removal efficiency was inhibited at excessive influent substrate concentration and the nitrogen removal efficiency of the system decreased as the concentration of mature landfill leachate increased. The MBR-nitritation and UASB-ANAMMOX processes were coupled for mature landfill leachate treatment and together resulted in high effective nitrogen removal. The effluent average total nitrogen concentration and removal efficiency values were 176 mg/L and 83%, respectively. However, the average nitrogen removal load decreased from 2.16 to 0.77 g/(L d) at higher concentrations of mature landfill leachate.

  5. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity.

    Science.gov (United States)

    Fei, Yong-tao; Liu, Dong-mei; Luo, Tong-hui; Chen, Gu; Wu, Hui; Li, Li; Yu, Yi-gang

    2014-01-01

    Nitrites commonly found in food, especially in fermented vegetables, are potential carcinogens. Therefore, limiting nitrites in food is critically important for food safety. A Lactobacillus strain (Lactobacillus sp. DMDL 9010) was previously isolated from fermented vegetables by our group, and is not yet fully characterized. A number of phenotypical and genotypical approaches were employed to characterize Lactobacillus sp. DMDL 9010. Its nitrite degradation capacity was compared with four other Lactobacillus strains, including Lactobacillus casei subsp. rhamnosus 719, Lactobacillus delbrueckii subsp. bulgaricu 1.83, Streptococcus thermophilus 1.204, and lactobacillus plantarum 8140, on MRS medium. Compared to these four Lactobacillus strains, Lactobacillus sp. DMDL 9010 had a significantly higher nitrite degradation capacity (PLactobacillus sp. DMDL 9010 was identified as either Lactobacillus plantarum or Lactobacillus pentosus. To further identify this strain, the flanking regions (922 bp and 806 bp upstream and downstream, respectively) of the L-lactate dehydrogenase 1 (L-ldh1) gene were amplified and sequenced. Lactobacillus sp. DMDL 9010 had 98.92 and 76.98% sequence identity in the upstream region with L. plantarum WCFS1 and L. pentosus IG1, respectively, suggesting that Lactobacillu sp. DMDL 9010 is an L. plantarum strain. It was therefore named L. plantarum DMDL 9010. Our study provides a platform for genetic engineering of L. plantarum DMDL 9010, in order to further improve its nitrite degradation capacity.

  6. Tumor induction in rats by feeding aminopyrine or oxytetracycline with nitrite

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, H W; Luinsky, W

    1975-01-01

    Sprague-Dawley rats were given combinations of aminopyrine or oxytetracycline and sodium nitrite in drinking water. Of 30 animals receiving 0.1 percent (1,000 ppm) of aminopyrine and sodium nitrite for 30 weeks, 29 died with hemangioendothelial sarcomas of the liver. The same tumor caused death in 26 of 30 animals that received 0.025 percent (250 ppm) of both aminopyrine and sodium nitrite for 50 weeks. No animals in a control group of the same size that received 0.1 percent aminopyrine for 30 weeks developed this tumor, although one-half of them were still alive 2 years after the experiment was begun. After feeding a comparable dose (0.1 percent) of oxytetracycline and sodium nitrite for 60 weeks, liver tumors were present in 4 of 30 rats (3 hepatocellular tumors and 1 cholangioma). Since aminopyrine has been widely used for medicinal purposes in the human population, it is possible that many people have been exposed to a potent carcinogen (dimethylnitrosamine) by its formation in vivo. It is not certain whether the result of feeding oxytetracycline and sodium nitrite indicates significant carcinogenicity of this combination. (auth)

  7. Reverse polarity capillary zone electrophoresis analysis of nitrate and nitrite in natural water samples

    International Nuclear Information System (INIS)

    Metcalf, S.G.

    1998-01-01

    This paper describes the application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in natural water samples. Using hexamethonium bromide (HMB) as an electroosmotic flow modifier in a borate buffer at pH 9.2, the resolution of nitrate and nitrite was accomplished in less than 3 minutes. RPCE was compared with ion chromatographic (IC) and cadmium reduction flow injection analysis (Cd-FIA) methods which are the two most commonly used standard methods for the analysis of natural water samples for nitrate and nitrite. When compared with the ion chromatographic method for the determination of nitrate and nitrite, RPCE reduced analysis time, decreased detection limits by a factor of 10, cut laboratory wastes by more than two orders of magnitude, and eliminated interferences commonly associated with IC. When compared with the cadmium reduction method, RPCE had the advantage of simultaneous determination of nitrate and nitrite, could be used in the presence of various metallic ions that normally interfere in cadmium reduction, and decreased detection limits by a factor of 10

  8. Sensitive paper-based analytical device for fast colorimetric detection of nitrite with smartphone.

    Science.gov (United States)

    Zhang, Xiu-Xiu; Song, Yi-Zhen; Fang, Fang; Wu, Zhi-Yong

    2018-04-01

    On-site rapid monitoring of nitrite as an assessment indicator of the environment, food, and physiological systems has drawn extensive attention. Here, electrokinetic stacking (ES) was combined with colorimetric reaction on a paper-based device (PAD) to achieve colorless nitrite detection with smartphone. In this paper, nitrite was stacked on the paper fluidic channel as a narrow band by electrokinetic stacking. Then, Griess reagent was introduced to visualize the stacking band. Under optimal conditions, the sensitivity of nitrite was 160-fold increased within 5 min. A linear response in the range of 0.075 to 1.0 μg mL -1 (R 2  = 0.99) and a limit of detection (LOD) of 73 ng mL -1 (0.86 μM) were obtained. The LOD was 10 times lower than the reported PAD, and close to that achieved by a desktop spectrophotometer. The applicability was demonstrated by nitrite detection from saliva and water with good selectivity, adding 100 times more concentrated co-ions. High recovery (91.0~108.7%) and reasonable intra-day and inter-day reproducibility (RSD work shows that the sensitivity of colorless analyte detection-based colorimetric reaction can be effectively enhanced by integration of ES on a PAD. Graphical abstract Schematic of the experimental setups (left) and the corresponding images (right) of the actual portable device.

  9. Isolation of Ochrobactrum sp.QZ2 from sulfide and nitrite treatment system

    International Nuclear Information System (INIS)

    Mahmood, Qaisar; Hu Baolan; Cai Jing; Zheng Ping; Azim, Muhammad Rashid; Jilani, Ghulam; Islam, Ejazul

    2009-01-01

    A bacterial strain QZ2 was isolated from sludge of anoxic sulfide-oxidizing (ASO) reactor. Based on 16S rDNA sequence analysis and morphology, the isolate was identified as Ochrobactrum sp. QZ2. The strain was facultative chemolithotroph, able of using sulfide to reduce nitrite anaerobically. It produced either elemental sulfur or sulfate as the product of sulfide oxidation, depending on the initial sulfide and nitrite concentrations. The optimum growth pH and temperature for Ochrobactrum sp. QZ2 were found as 6.5-7.0 and 30 deg. C, respectively. The specific growth rate (μ) was found as 0.06 h -1 with a doubling time of 19.75 h; the growth seemed more sensitive to highly alkaline pH. Ochrobactrum sp. QZ2 catalyzed sulfide oxidation to sulfate was more sensitive to sulfide compared with nitrite as indicated by IC 50 values for sulfide and nitrite utilization implying that isolate was relatively more tolerant to nitrite. The comparison of physiology of Ochrobactrum sp. QZ2 with those of other known sulfide-oxidizing bacteria suggested that the present isolate resembled to Ochrobactrum anthropi in its denitrification ability.

  10. Impact of microorganism on polonium volatilization

    International Nuclear Information System (INIS)

    Momoshima, N.; Ishida, A.; Fukuda, A.; Yoshinaga, C.

    2007-01-01

    Volatilization of polonium by microorganisms, Chromobacterium violaceum, Escherichia coli and Bacillus subtilis was examined for pure cultures in LB medium at 30 deg C, showing relative Po emission intensity 100, 10 and 1, respectively. Chromobacterium violaceum pre-cultured in LB medium without Po and suspended in water with Po showed high Po volatilization in spite of poor nutriment condition. Antibiotics inhibit volatilization of Po and cultivation at low temperature greatly reduced volatilization. The results strongly support the biological effects on Po volatilization. (author)

  11. Microorganisms in human milk: lights and shadows.

    Science.gov (United States)

    Civardi, Elisa; Garofoli, Francesca; Tzialla, Chryssoula; Paolillo, Piermichele; Bollani, Lina; Stronati, Mauro

    2013-10-01

    Human milk has been traditionally considered germ free, however, recent studies have shown that it represents a continuous supply of commensal and potentially probiotic bacteria to the infant gut. Mammary microbioma may exercise anti-infective, anti-inflammatory, immunomodulatory and metabolic properties. Moreover human milk may be a source of pathogenic microorganism during maternal infection, if contaminated during expression or in case of vaccination of the mother. The non-sterility of breast milk can, thus, be seen as a protective factor, or rarely, as a risk factor for the newborn.

  12. Microbial biogeography: putting microorganisms on the map.

    Science.gov (United States)

    Martiny, Jennifer B Hughes; Bohannan, Brendan J M; Brown, James H; Colwell, Robert K; Fuhrman, Jed A; Green, Jessica L; Horner-Devine, M Claire; Kane, Matthew; Krumins, Jennifer Adams; Kuske, Cheryl R; Morin, Peter J; Naeem, Shahid; Ovreås, Lise; Reysenbach, Anna-Louise; Smith, Val H; Staley, James T

    2006-02-01

    We review the biogeography of microorganisms in light of the biogeography of macroorganisms. A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns. Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity. However, recent studies also dispute the idea that 'everything is everywhere'. We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world.

  13. Microorganisms and biomolecules in space hard environment

    Science.gov (United States)

    Horneck, G.

    1981-01-01

    Microorganisms and biomolecules exposed to space vacuum and to different intensities of selected wavelengths of solar ultraviolet radiation is studied. The influence of these factors, applied singly or simultaneously, on the integrity of microbial systems and biomolecules is measured. Specifically, this experiment will study in Bacillus subtilis spores (1) disturbances in subsequent germination, outgrowth, and colony formation; (2) photochemical reactions of the DNA and protein in vivo and in vitro and their role in biological injury; and (3) the efficiency of repair processes in these events.

  14. Engineering photosynthesis in plants and synthetic microorganisms.

    Science.gov (United States)

    Maurino, Veronica G; Weber, Andreas P M

    2013-01-01

    Photosynthetic organisms, such as cyanobacteria, algae, and plants, sustain life on earth by converting light energy, water, and CO(2) into chemical energy. However, due to global change and a growing human population, arable land is becoming scarce and resources, including water and fertilizers, are becoming exhausted. It will therefore be crucial to design innovative strategies for sustainable plant production to maintain the food and energy bases of human civilization. Several different strategies for engineering improved photosynthesis in crop plants and introducing novel photosynthetic capacity into microorganisms have been reviewed.

  15. Microorganisms as Indicators of Soil Health

    DEFF Research Database (Denmark)

    Nielsen, M. N.; Winding, A.; Binnerup, S.

    ecosystem parameters representing policy relevant end points. It is further recommended to identify a specific minimum data set for specific policy relevant end points, to carefully establish baseline values, to improve scientific knowledge on biodiversity and modelling of soil data, and to implement new......Microorganisms are an essential part of living soil and of outmost importance for soil health. As such they can be used as indicators of soil health. This report reviews the current and potential future use of microbial indicators of soil health and recommends specific microbial indicators for soil...... indicators into soil monitoring programmes as they become applicable....

  16. Automatic identification of optimal marker genes for phenotypic and taxonomic groups of microorganisms.

    Directory of Open Access Journals (Sweden)

    Elad Segev

    Full Text Available Finding optimal markers for microorganisms important in the medical, agricultural, environmental or ecological fields is of great importance. Thousands of complete microbial genomes now available allow us, for the first time, to exhaustively identify marker proteins for groups of microbial organisms. In this work, we model the biological task as the well-known mathematical "hitting set" problem, solving it based on both greedy and randomized approximation algorithms. We identify unique markers for 17 phenotypic and taxonomic microbial groups, including proteins related to the nitrite reductase enzyme as markers for the non-anammox nitrifying bacteria group, and two transcription regulation proteins, nusG and yhiF, as markers for the Archaea and Escherichia/Shigella taxonomic groups, respectively. Additionally, we identify marker proteins for three subtypes of pathogenic E. coli, which previously had no known optimal markers. Practically, depending on the completeness of the database this algorithm can be used for identification of marker genes for any microbial group, these marker genes may be prime candidates for the understanding of the genetic basis of the group's phenotype or to help discover novel functions which are uniquely shared among a group of microbes. We show that our method is both theoretically and practically efficient, while establishing an upper bound on its time complexity and approximation ratio; thus, it promises to remain efficient and permit the identification of marker proteins that are specific to phenotypic or taxonomic groups, even as more and more bacterial genomes are being sequenced.

  17. Microorganisms as bioindicators of pollutants in soil

    Directory of Open Access Journals (Sweden)

    Milošević Nada

    2010-01-01

    Full Text Available Microorganisms are the predominant portion of the soil's biological phase and they are indicators of soil health and quality. Soil microorganisms a take part in degradation of organic and inorganic compounds, b their activity, number and diversity may serve as bioindicators of toxic effects on soil biological activity, c some microbial species may be used for soil bioremediation and d some sensitive microbes are used in eco-toxicity tests. The primary microbial population starts to decompose herbicides several days after their arrival into the soil. The secondary population produces induced enzymes and decomposes herbicides after a period of adaptation. Certain microbial groups are indifferent to the applied herbicides. Effect of heavy metals on soil microbial activity depends on the element, their concentration, microbial species, as well as physical and chemical soil properties. Toxic level of individual pollutants depends on their origin and composition. However, combined application of chemicals makes room for the occurrence of synergistic toxic effects detrimental for the ecosystem and human health. .

  18. Identification of periodontopathogen microorganisms by PCR technique

    Directory of Open Access Journals (Sweden)

    Milićević Radovan

    2008-01-01

    Full Text Available INTRODUCTION Periodontitis is an inflammatory disease of the supporting tissues of teeth and is a major cause of tooth loss in adults. The onset and progression of periodontal disease is attributed to the presence of elevated levels of a consortium of pathogenic bacteria. Gram negative bacteria, mainly strict anaerobes, play the major role. OBJECTIVE The present study aimed to assess the presence of the main types of microorganisms involved in the aetiopathogenesis of periodontal disease: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Eikenella corrodens, Treponema denticola, Tanerella forsythia and Prevotella intermedia in different samples collected from the oral cavity of 90 patients diagnosed with periodontitis. METHOD Bacterial DNA detection was performed in diverse biological materials, namely in dental plaque, gingival tissue and saliva, by means of multiplex PCR, a technique that allows simultaneous identification of two different bacterial genomes. RESULTS In the dental plaque of the periodontitis patients, Treponema denticola dominated. In the gingival tissue, Tannerella forsythia and Treponema denticola were the microbiota most frequently detected, whilst in saliva Treponema denticola and Eikenella corrodens were found with the highest percentage. CONCLUSION The identification of microorganisms by multiplex PCR is specific and sensitive. Rapid and precise assessment of different types of periodontopathogens is extremely important for early detection of the infection and consequently for the prevention and treatment of periodontal disease. In everyday clinical practice, for routine bacterial evaluation in patients with periodontal disease, the dental plaque is the most suitable biological material, because it is the richest in periodontal bacteria.

  19. Sterilization of Microorganisms by Ozone and Ultrasound

    Science.gov (United States)

    Krasnyj, V. V.; Klosovskij, A. V.; Panasko, T. A.; Shvets, O. M.; Semenova, O. T.; Taran, V. S.; Tereshin, V. I.

    2008-03-01

    The results of recent experimental methods of sterilization of microorganisms with the use of ozone and ultrasound are presented. The main aim was to optimize the process of sterilization in water solution taking into account the ozone concentration, the power of ultrasonic emitter and the temperature of water. In the present work, the ultrasonic cavitation with simultaneous ozone generation has been used. The high ozone concentration in water solution was achieved by two-barrier glow discharge generated at atmospheric pressure and a cooling thermo-electric module. Such a sterilizer consists of ozone generator in a shape of flat electrodes covered with dielectric material and a high-voltage pulsed power supply of 250 W. The sterilization camera was equipped with ultrasonic source operated at 100 W. The experiments on the inactivation of bacteria of the Bacillus Cereus type were carried out in the distilled water saturated by ozone. The ozone concentration in the aqueous solution was 10 mg/1, whereas the ozone concentration at the output of ozone generator was 30 mg/1. The complete inactivation of spores took 15 min. Selection of the temperature of water, the ozone concentrations and ultrasonic power allowed to determine the time necessary for destroying the row of microorganisms.

  20. Venturing into new realms? Microorganisms in space.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Cockell, Charles; Rettberg, Petra

    2016-09-01

    One of the biggest challenges of science is the determination of whether extraterrestrial life exists. Although potential habitable areas might be available for complex life, it is more likely that microbial life could exist in space. Many extremotolerant and extremophilic microbes have been found to be able to withstand numerous, combined environmental factors, such as high or low temperatures and pressures, high-salt conditions, high doses of radiation, desiccation or nutrient limitations. They may even survive the transit from one planet to another. Terrestrial Mars-analogue sites are one focus of researchers, in order to understand the microbial diversity in preparation for upcoming space missions aimed at the detection of life. However, such missions could also pose a risk with respect to contamination of the extraterrestrial environment by accidentally transferred terrestrial microorganisms. Closer to the Earth, the International Space Station is the most enclosed habitat, where humans work and live-and with them numerous microorganisms. It is still unknown how microbes adapt to this environment, possibly even creating a risk for the crew. Information on the microbiology of the ISS will have an impact on the planning and implementation of long-term human spaceflights in order to ensure a safe, stable and balanced microbiome on board. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Medical Significance of Microorganisms in Spacecraft Environment

    Science.gov (United States)

    Pierson, Duane L.; Ott, C. Mark

    2007-01-01

    Microorganisms can spoil food supplies, contaminate drinking water, release noxious volatile compounds, initiate allergic responses, contaminate the environment, and cause infectious diseases. International acceptability limits have been established for bacterial and fungal contaminants in air and on surfaces, and environmental monitoring is conducted to ensure compliance. Allowable levels of microorganism in water and food have also been established. Environmental monitoring of the space shuttle, the Mir, and the ISS have allowed for some general conclusions. Generally, the bacteria found in air and on interior surfaces are largely of human origin such as Staphylococcus spp., Micrococcus spp. Common environmental genera such as Bacillus spp. are the most commonly isolated bacteria from all spacecraft. Yeast species associated with humans such as Candida spp. are commonly found. Aspergillus spp., Penicillium spp., and Cladosporium spp. are the most commonly isolated filamentous fungi. Microbial levels in the environment differ significantly depending upon humidity levels, condensate accumulation, and availability of carbon sources. However, human "normal flora" of bacteria and fungi can result in serious, life-threatening diseases if human immunity is compromised. Disease incidence is expected to increase as mission duration increases.

  2. Bioremediation of trinitrotolulene by a ruminal microorganism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taejin; Williamson, K.J.; Craig, A.M. [Oregon State Univ., Corvallis, OR (United States)

    1995-10-01

    2,4,6-trinitrotoluene (TNT) has been widely used for the production of explosives because of its low boiling point, high stability, low impact sensitivity, and safe manufacture. More than 1,100 military facilities, each potentially contaminated with munitions waste, are expected to require treatment of more than one million cubic yards of contaminated soils. The cost associated with remediation of these sites has been estimated to be in excess of $1.5 billion. Recently, researchers have studied ruminal microorganisms in relation to their ability to degrade xenobiotic compounds. Many of these organisms are strict anaerobes with optimal redox potentials as low as -420 mV. Ruminal organisms have been shown capable of destroying some pesticides, such as parathion, p-nitrophenol, and biphenyl-type compounds; thiono isomers, and nitrogen-containing heterocyclic plant toxins such as the pyrrolizidine alkaloids. Many of these compounds have structures similar to TNT. A TNT-degrading ruminal microorganism has been isolated from goat rumen fluid with successive enrichments on triaminotoluene (TAT) and TNT. The isolate, designated G.8, utilizes nitrate and lactate as the primary energy source. G.8 was able to tolerate and metabolite levels of TNT up to the saturation point of 125 mg/l.

  3. Bond yield curve construction

    Directory of Open Access Journals (Sweden)

    Kožul Nataša

    2014-01-01

    Full Text Available In the broadest sense, yield curve indicates the market's view of the evolution of interest rates over time. However, given that cost of borrowing it closely linked to creditworthiness (ability to repay, different yield curves will apply to different currencies, market sectors, or even individual issuers. As government borrowing is indicative of interest rate levels available to other market players in a particular country, and considering that bond issuance still remains the dominant form of sovereign debt, this paper describes yield curve construction using bonds. The relationship between zero-coupon yield, par yield and yield to maturity is given and their usage in determining curve discount factors is described. Their usage in deriving forward rates and pricing related derivative instruments is also discussed.

  4. Nitrites and nitrates in exhaled breath condensate in cystic fibrosis: relation to clinical parameters.

    Science.gov (United States)

    Fila, L; Chladek, J; Maly, M; Musil, J

    2013-01-01

    To evaluate correlation of exhaled breath condensate (EBC) nitrite and nitrate concentrations with disease severity in cystic fibrosis (CF) patients. Nitrites and nitrates are products of oxidative metabolism of nitric oxide. Impaired metabolism of nitric oxide plays a role in pathogenesis of CF. EBC was collected from 46 stable CF patients and from 21 healthy controls. EBC concentrations of nitrites and nitrates were correlated with parameters of lung disease and nutritional status and with systemic inflammatory markers. EBC nitrates concentrations in CF patients were lower than in healthy subjects (5.8 vs 14.3 μmol/l, pnitrates concentrations correlate with disease severity in CF patients and are lower than in healthy subjects (Tab. 4, Fig. 1, Ref. 48).

  5. Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor.

    Science.gov (United States)

    Liu, Chunshuang; Li, Wenfei; Li, Xuechen; Zhao, Dongfeng; Ma, Bin; Wang, Yongqiang; Liu, Fang; Lee, Duu-Jong

    2017-11-01

    The nitrite accumulation in handling nitrate and sulfide-laden wastewater in a continuous-flow upflow anaerobic sludge blanket reactor was studied. At sulfide/nitrate-nitrogen ratio of 1:0.76 and loading rates of 1.2kg-Sm -3 d -1 and 0.4kg-Nm -3 d -1 , the elemental sulfur and nitrite accumulation rates peaked at 90% and 70%, respectively, with Acrobacter, Azoarcus and Thauera presenting the functional strains in the studied reactor. The accumulated nitrite was proposed a promising feedstock for anaerobic ammonia oxidation process. An integrated partial autotrophic denitrification-anaerobic ammonia oxidation-aeration process for handling the ammonia and sulfide-laden wastewaters is proposed for further studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Development of a method to manufacture uncured, no-nitrate/nitrite-added whole muscle jerky.

    Science.gov (United States)

    Sindelar, Jeffrey J; Terns, Matthew J; Meyn, Elizabeth; Boles, Jane A

    2010-10-01

    "Natural curing" is accomplished by use of vegetable juice/powder high in naturally occurring nitrates combined with a nitrate reducing starter culture to result in indirectly "cured" products. Since the starter culture used is not water soluble, making "naturally cured" whole muscle jerky with current manufacturing techniques has been found ineffective. The objective was to investigate processes for whole muscle beef jerky that might provide cured meat characteristics similar to those of a nitrite-added control. Treatments where jerky was placed in a barrier bag during incubation were found to be the least similar to the nitrite-added control. Jerky placed in a 40.6 degrees C smokehouse during incubation resulted in significantly more (Pprocessing methods investigated to manufacture "naturally cured" whole muscle jerky in this study were ineffective in resulting in products similar to those cured with sodium nitrite. Published by Elsevier Ltd.

  7. Aggregate size and architecture determine biomass activity for one-stage partial nitritation and anammox

    DEFF Research Database (Denmark)

    Vlaeminck, S.; Terada, Akihiko; Smets, Barth F.

    2010-01-01

    to the inoculation and operation of the reactors. Fluorescent in-situ hybridization (FISH) was applied on aggregate sections to quantify AerAOB and AnAOB, as well as to visualize the aggregate architecture. The activity balance of the aggregates was calculated as the nitrite accumulation rate ratio (NARR), i...... and nitrite sources (NARR, > 1.7). Large A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific EPS. Large B aggregates were...... thin film-like nitrite sinks (NARR,

  8. Reaction mixtures formed by nitrite and selected sulfa-drugs showed mutagenicity in acidic medium

    Directory of Open Access Journals (Sweden)

    Claudia Trossero

    2009-01-01

    Full Text Available Nitrite, which is present in preserved meat and can be produced in the oral cavity by reduction of nitrate taken from vegetables, could react in stomach with nitrosatable drugs, giving genotoxic-carcinogenic N-nitroso compounds (NOC. The mutagenicity of reaction mixtures formed by sodium nitrite and selected sulfa-drugs (sulfathiazole, HST; phtalylsulfathiazole, PhST; complex Co(II-sulfathiazole, Co(II-ST in acidic medium was evaluated using the Salmonella typhimurium reverse mutation assay (Ames test, with TA98 and TA 100 strains. The reactions were carried out at room temperature, with a mole ratio [nitrite]/[sulfa-drug] > 1. The three reaction mixtures showed mutagenic effects in the considered range.

  9. Measurements of fission yields

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    2000-01-01

    After some historical introductory remarks on the discovery of nuclear fission and early fission yield determinations, the present status of knowledge on fission yields is briefly reviewed. Practical and fundamental reasons motivating the pursuit of fission yield measurements in the coming century are pointed out. Recent results and novel techniques are described that promise to provide new interesting insights into the fission process during the next century. (author)

  10. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts.

    Science.gov (United States)

    Yu, Chaowei; Simmons, Blake A; Singer, Steven W; Thelen, Michael P; VanderGheynst, Jean S

    2016-12-01

    Chemical and physical pretreatment of biomass is a critical step in the conversion of lignocellulose to biofuels and bioproducts. Ionic liquid (IL) pretreatment has attracted significant attention due to the unique ability of certain ILs to solubilize some or all components of the plant cell wall. However, these ILs inhibit not only the enzyme activities but also the growth and productivity of microorganisms used in downstream hydrolysis and fermentation processes. While pretreated biomass can be washed to remove residual IL and reduce inhibition, extensive washing is costly and not feasible in large-scale processes. IL-tolerant microorganisms and microbial communities have been discovered from environmental samples and studies begun to elucidate mechanisms of IL tolerance. The discovery of IL tolerance in environmental microbial communities and individual microbes has lead to the proposal of molecular mechanisms of resistance. In this article, we review recent progress on discovering IL-tolerant microorganisms, identifying metabolic pathways and mechanisms of tolerance, and engineering microorganisms for IL tolerance. Research in these areas will yield new approaches to overcome inhibition in lignocellulosic biomass bioconversion processes and increase opportunities for the use of ILs in biomass pretreatment.

  11. SCREENING OF THERMOPHYLIC MICROORGANISM FROM IJEN CRATER BANYUWANGI AS PHYTASE ENZYME PRODUCER

    Directory of Open Access Journals (Sweden)

    Aline Puspita Kusumadjaja

    2010-06-01

    Full Text Available Phytase is enzyme which hydrolysis phytic acid to anorganic phosphate and myo-inositol pentakis-, tetrakis-, tris-, bis-, and monophosphate. The use of phytase in feed industry can overcome environment and nutrition problems which were arisen from unmetabolism phytic acid or its salt by poultry, swine and fish. The feed industry needs a thermostable enzyme due to the need of high temperature in pelleting process, i.e. 81 °C. By using thermostabile phytase, the pelleting process will not affect the enzyme activity. Thermostabile phytase can be isolated from microorganism live in hot spring water or volcano crater. In this study, the screening of thermophylic microorganism having thermostabile phytase activity in Ijen Crater, Banyuwangi, has been done. From this process, it was obtained 33 isolates that produce phytase enzyme. Isolate was code by AP-17 yields highest phytase activity, that is 0.0296 U/mL, so this isolate was choosen for further study. The activity of crude phytase enzyme was measured based on the amount of anorganic phosphate that was produced in enzymatic reaction using UV-VIS spectrophotometer at 392 nm. Based on morphology test to identify the gram type of microorganism, isolate AP-17 has a bacill cell type and identified as positive gram bacteria. This isolate was assumed as Bacillus type.   Keywords: Phytase, thermophilic microorganism, phytase activity

  12. Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers’ tricks

    Directory of Open Access Journals (Sweden)

    Roberto Mazzoli

    2012-10-01

    Full Text Available Cellulose waste biomass is the most abundant and attractive substrate for "biorefinery strategies" that are aimed to produce high-value products (e.g. solvents, fuels, building blocks by economically and environmentally sustainable fermentation processes. However, cellulose is highly recalcitrant to biodegradation and its conversion by biotechnological strategies currently requires economically inefficient multistep industrial processes. The need for dedicated cellulase production continues to be a major constraint to cost-effective processing of cellulosic biomass.Research efforts have been aimed at developing recombinant microorganisms with suitable characteristics for single step biomass fermentation (consolidated bioprocessing, CBP. Two paradigms have been applied for such, so far unsuccessful, attempts: a “native cellulolytic strategies”, aimed at conferring high-value product properties to natural cellulolytic microorganisms; b “recombinant cellulolytic strategies”, aimed to confer cellulolytic ability to microorganisms exhibiting high product yields and titers.By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.

  13. Ice Recrystallization Inhibiting Polymers Enable Glycerol-Free Cryopreservation of Micro-organisms.

    Science.gov (United States)

    Hasan, Muhammad; Fayter, Alice E R; Gibson, Matthew I

    2018-06-22

    All modern molecular biology and microbiology is underpinned not only by the tools to handle and manipulate microorganisms, but also those to store, bank and transport them. Glycerol is the current gold-standard cryoprotectant but it is intrinsically toxic to most micro-organisms: only a fraction of cells survive freezing and the presence of glycerol can impact down-stream applications and assays. Extremophile organisms survive repeated freeze/thaw cycles by producing antifreeze proteins which are potent ice recrystallization inhibitors. Here we introduce a new concept for the storage/transport of micro-organisms by using ice recrystallization inhibiting poly(vinyl alcohol) in tandem with poly(ethylene glycol). This cryopreserving formulation is shown to result in a 4-fold increase in E. coli yield post-thaw, compared to glycerol, utilizing lower concentrations, with successful cryopreservation at just 1.1 weight percent of additive. The mechanism of protection is demonstrated to be linked to inhibiting ice recrystallization (by comparison to a recombinant antifreeze protein) but also to the significantly lower toxicity of the polymers compared to glycerol. Optimized formulations are presented and shown to be broadly applicable to the cryopreservation of a panel of Gram negative, Gram positive and Mycobacteria strains. This represents a step-change in how micro-organisms will be stored by the design of new macromolecular ice growth inhibitors; it should enable a transition from traditional solvent-based to macromolecular microbiology storage methods.

  14. [Anaerobiosis beyond anaerobic bacteria: its role in the recovery of aerobic microorganisms from purulent samples].

    Science.gov (United States)

    Litterio Bürki, M R; Lopardo, H

    2010-01-01

    The main objective of incubation in anaerobiosis is the recovery of obligate anaerobic bacteria, not excluding other microorganisms. In 2003, we conducted a comparative and prospective study from consecutive clinical samples on the recovery of aerobic microorganisms from primary cultures both in anaerobiosis and aerobiosis of the same sample. The aims were to evaluate the methodology used in anaerobiosis in the recovery of aerobic microorganisms not diagnosed in primary aerobic cultures, and to establish a relationship between them and the origin of the sample. From 2003 to 2004, 2776 bacteriological samples were analyzed and 1884 aerobic microorganisms were cultured altogether. The result was that 69.4% of the samples showed growth both in aerobic and anaerobic incubation from primary cultures of the sample, whereas 30.6% only in one of the mentioned incubation atmosphere: 49.2% in aerobiosis and 50.8% in anaerobiosis. According to these results, the methodology used in anaerobiosis (anaerobic incubation, culture media, stereoscopic microscope or hand lens to examine the primary plates), allowed an extra yield of aerobic organisms, especially gram positive facultative and microaerophilic cocci, which was particularly evident in polimicrobial cultures, and especially when gram negative accompanying flora was present, independently of the type of sample.

  15. Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development.

    Science.gov (United States)

    Cuellar, Maria C; Heijnen, Joseph J; van der Wielen, Luuk A M

    2013-06-01

    Industrial biotechnology is playing an important role in the transition to a bio-based economy. Currently, however, industrial implementation is still modest, despite the advances made in microorganism development. Given that the fuels and commodity chemicals sectors are characterized by tight economic margins, we propose to address overall process design and efficiency at the start of bioprocess development. While current microorganism development is targeted at product formation and product yield, addressing process design at the start of bioprocess development means that microorganism selection can also be extended to other critical targets for process technology and process scale implementation, such as enhancing cell separation or increasing cell robustness at operating conditions that favor the overall process. In this paper we follow this approach for the microbial production of diesel-like biofuels. We review current microbial routes with both oleaginous and engineered microorganisms. For the routes leading to extracellular production, we identify the process conditions for large scale operation. The process conditions identified are finally translated to microorganism development targets. We show that microorganism development should be directed at anaerobic production, increasing robustness at extreme process conditions and tailoring cell surface properties. All the same time, novel process configurations integrating fermentation and product recovery, cell reuse and low-cost technologies for product separation are mandatory. This review provides a state-of-the-art summary of the latest challenges in large-scale production of diesel-like biofuels. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fission product yields

    International Nuclear Information System (INIS)

    Valenta, V.; Hep, J.

    1978-01-01

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235 U, 239 Pu, 241 Pu and for fast fission (approximately 1 MeV) of 235 U, 238 U, 239 Pu, 241 Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  17. Electrochemical Determination of Food Preservative Nitrite with Gold Nanoparticles/p-Aminothiophenol-Modified Gold Electrode.

    Science.gov (United States)

    Üzer, Ayşem; Sağlam, Şener; Can, Ziya; Erçağ, Erol; Apak, Reşat

    2016-08-02

    Due to the negative impact of nitrate and nitrite on human health, their presence exceeding acceptable levels is not desired in foodstuffs. Thus, nitrite determination at low concentrations is a major challenge in electroanalytical chemistry, which can be achieved by fast, cheap, and safe electrochemical sensors. In this work, the working electrode (Au) was functionalized with p-aminothiophenol (p-ATP) and modified with gold nanoparticles (Au-NPs) to manufacture the final (Au/p-ATP-Aunano) electrode in a two-step procedure. In the first step, p-ATP was electropolymerized on the electrode surface to obtain a polyaminothiophenol (PATP) coating. In the second step, Au/p-ATP-Aunano working electrode was prepared by coating the surface with the use of HAuCl₄ solution and cyclic voltammetry. Determination of aqueous nitrite samples was performed with the proposed electrode (Au/p-ATP-Aunano) using square wave voltammetry (SWV) in pH 4 buffer medium. Characteristic peak potential of nitrite samples was 0.76 V, and linear calibration curves of current intensity versus concentration was linear in the range of 0.5-50 mg·L(-1) nitrite with a limit of detection (LOD) of 0.12 mg·L(-1). Alternatively, nitrite in sausage samples could be colorimetrically determined with high sensitivity by means of p-ATP‒modified gold nanoparticles (AuNPs) and naphthylethylene diamine as coupling agents for azo-dye formation due to enhanced charge-transfer interactions with the AuNPs surface. The slopes of the calibration lines in pure NO₂(-) solution and in sausage sample solution, to which different concentrations of NO₂(-) standards were added, were not significantly different from each other, confirming the robustness and interference tolerance of the method. The proposed voltammetric sensing method was validated against the colorimetric nanosensing method in sausage samples.

  18. Nitrates and nitrites in selected vegetables purchased at supermarkets in Siedlce, Poland.

    Science.gov (United States)

    Raczuk, Jolanta; Wadas, Wanda; Głozak, Katarzyna

    2014-01-01

    Vegetables constitute a vital part of the human diet, being the main source of minerals, vitamins, dietary fibre and phytochemicals. They however, also contain nitrates and nitrites, which adversely affect human health. To determine nitrate and nitrite content in selected vegetables purchased at supermarket chains in Siedlce and to assess their impact on consumer health. Vegetable samples were purchased from local supermarkets in Siedlce, town situated in the Mazovian province (Voivodeship) of Poland. These consisted of 116 samples of nine vegetables types including butterhead and iceberg lettuce, beetroot, white cabbage, carrot, cucumber, radish, tomato and potato collected between April and September 2011. Concentrations of nitrate and nitrite were determined by standard colorimetric methods used in Poland, with results expressed as mg per kg fresh weight of vegetables. Nitrate concentrations varied between 10 mg x kg(-1) to 4800 mg x kg(-1). The highest mean nitrate concentrations were found in radishes (2132 mgkg(-1)), butterhead lettuce (1725 mg x kg(-1)), beetroots (1306 mg x kg(-1)) and iceberg lettuce (890 mg x kg(-1)), whereas the lowest were found in cucumber (32 mg x kg(-1)) and tomato (35 mg x kg(-1)). Nitrite levels were also variable; the highest concentrations measured were in beetroot (mean 9.19 mg x kg(-1)) whilst much smaller amounts were present in carrot, cucumbers, iceberg lettuce, white cabbage, tomatoes and potatoes. The daily adult consumption of 100 g amounts of the studied vegetables were found not exceed the ADI for both nitrates and nitrites. Findings indicated the need for monitoring nitrate and nitrite content in radishes, butterhead lettuce and beetroot due to consumer health concerns.

  19. Researches concerning nitrates and nitrites accumulation in carrots, along of the vegetation stages

    Directory of Open Access Journals (Sweden)

    Monica NEGREA

    2008-05-01

    Full Text Available The presented paper deals with the determination of nitrates and nitrites content in carrots, in different vegetation stages of the carrot culture. High nitrates and nitrites concentration in vegetables is mainly due to excessive nitrogen content in the soil system, thus deteriorating the nutritional and hygienic values of products and complicating the processing and storage. The determination was tested on carrot samples assayed from an experimental field set up near Timisoara. In experimental field, to the carrot culture was administrated different doses of fertilizers (NPK and the samples for analysis were assayed in different phases of vegetation. The obtained results indicated that the highest level of nitrate in carrots was found to the variant b3 (N150P90K90 in experimental field, who was above maximum limit allowed (LMA. Maximum limit allowed for nitrates in carrots, in accordance with ORDER No. 293/640/2001-1/2002 regarding security and quality conditions for vegetables and fresh fruits for human consumption is 400 ppm. For all other samples of carrots the nitrates level was below of LMA. The nitrite content grows in case of fertilizer administration during the whole vegetation stages of the plant. In variant N150P90K90 the nitrite content was above (LMA in carrot samples in all stages of vegetation. The nitrite content in carrots should not exceed 1-2 ppm. Nitrate and nitrite content in carrots was done with the help of High Performance Liquid Chromatography (HPLC in the Laboratory for the Measurement of Residues of the Department of Agro-techniques of the U.S.A-V.M.B in Timisoara.

  20. Dietary polyphenols generate nitric oxide from nitrite in the stomach and induce smooth muscle relaxation

    International Nuclear Information System (INIS)

    Rocha, Barbara S.; Gago, Bruno; Barbosa, Rui M.; Laranjinha, Joao

    2009-01-01

    Nitrite, considered a biological waste and toxic product, is being regarded as an important physiological molecule in nitric oxide (·NO) biochemistry. Because the interaction of dietary phenolic compounds and nitrite would be kinetically (due to the high concentrations achieved) and thermodynamically (on basis of the redox potentials) feasible in the stomach, we have studied the potential reduction of nitrite by polyphenols present in several dietary sources. By measuring the time courses of ·NO production in simulated gastric juice (pH 2), the efficiency of the compounds studied is as follows: Epicatechin-3-O-gallate > quercetin > procyanidin B8 dimer > oleuropein > procyanidin B2 dimer > chlorogenic acid > epicatechin > catechin > procyanidin B5 dimer. The initial rates of ·NO production fall in a narrow range (ca. 1-5 μM s -1 ) but the distinct kinetics of the decay of ·NO signals suggest that competition reactions for ·NO are operative. The proof of concept that, in the presence of nitrite, phenol-containing dietary products induce a strong increase of ·NO in the stomach was established in an in vivo experiment with healthy volunteers consuming lettuce, onions, apples, wine, tea, berries and cherries. Moreover, selected mixtures of oleuropein and catechin with low nitrite (1 μM) were shown to induce muscle relaxation of stomach strips in a structure-dependent way. Data presented here brings strong support to the concept that polyphenols consumed in a variety of dietary products, under gastric conditions, reduce nitrite to ·NO that, in turn, may exert a biological impact as a local relaxant.

  1. Reactions of nitrite with hemoglobin measured by membrane inlet mass spectrometry

    Science.gov (United States)

    Tu, Chingkuang; Mikulski, Rose; Swenson, Erik R.; Silverman, David N.

    2010-01-01

    Membrane inlet mass spectrometry was used to observe nitric oxide in the well-studied reaction of nitrite with hemoglobin. The membrane inlet was submerged in the reaction solutions and measured NO in solution via its flux across a semipermeable membrane leading to the mass spectrometer detecting the mass-to-charge ratio m/z 30. This method measures NO directly in solution and is an alternate approach compared with methods that purge solutions to measure NO. Addition to deoxy-Hb(FeII) (near 38 µM heme concentration) of nitrite in a range of 80 µM to 16 mM showed no accumulation of either NO or N2O3 on a physiologically relevant time scale with a sensitivity near 1 nM. The addition of nitrite to oxy-Hb(FeII) and met-Hb(FeIII) did not accumulate free NO to appreciable extents. These observations show that for several minutes after mixing nitrite with hemoglogin, free NO does not accumulate to levels exceeding the equilibrium level of NO. The presence of cyanide ions did not alter the appearance of the data; however, the presence of 2 mM mercuric ions at the beginning of the experiment with deoxy-Hb(FeII) shortened the initial phase of NO accumulation and increased the maximal level of free, unbound NO by about twofold. These experiments appear consistent with no role of met-Hb(FeIII) in the generation of NO and an increase in nitrite reductase activity caused by the presumed binding of mercuric to cysteine residues. These results raise questions about the ability of reduction of nitrite mediated by deoxy-Hb(FeII) to play a role in vasodilation. PMID:18848984

  2. Safer and healthier reduced nitrites turkey meat sausages using lyophilized Cystoseira barbata seaweed extract.

    Science.gov (United States)

    Sellimi, Sabrine; Benslima, Abdelkarim; Ksouda, Ghada; Montero, Veronique Barragan; Hajji, Mohamed; Nasri, Moncef

    2017-10-21

    Background Nitrite salts are still common additives in the meat industry. The present study provides a first approach on the employment of the lyophilized aqueous extract (WE) of the Tunisian seaweed Cystoseira barbata for the quality enhancement of turkey meat sausage. Methods WE was supplemented as a natural antioxidant agent to investigate its effectiveness in delaying lipid oxidation turkey meat sausages containing reduced amounts of sodium nitrites. Results On storage day 5, all concentrations of WE (0.01-0.4 %) reduced the meat lipid oxidation by approximately 36 %, as compared to the negative control containing only 80 mg/kg of meat of sodium nitrites as antioxidant. It was noted that within 15 days of refrigerated storage, a meat system containing 80 mg/kg of meat of sodium nitrites and 0.02 % and 0.04 % of WE had similar Thiobarbituric Acid Reactive Substances (TBARS) levels (19±1.32 and 17±1.12 µmol/kg of meat, respectively), which were comparable to the positive control containing sodium nitrites (150 mg/kg of meat) and 0.045 % vitamin C (18.46±1.27 µmol/kg of meat). In-depth, the metabolomic profiling using gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-quadripole-time-of-flight-mass spectrometry (LC-QTOF-MS) analyses of the Tunisian seaweed C. barbata solvent extracts showed that the main active compounds were phenolic compounds, fatty acids and sterols. Conclusions Overall, the cold medium containing C. barbata lyophilized aqueous extrac, with strong antioxidant activity and antihypertensive properties, may open the way to the development of a natural quality enhancement strategy for new functional and ever healthier reduced nitrites meat sausages based on algae.

  3. The stress caused by nitrite with titanium dioxide nanoparticles under UVA irradiation in human keratinocyte cell

    International Nuclear Information System (INIS)

    Tu, Min; Huang, Yi; Li, Hai-Ling; Gao, Zhong-Hong

    2012-01-01

    Highlights: ► Nitrite increased photo-toxicity of nano-TiO 2 on human keratinocyte cells in a dose-dependant manner. ► Morphological study suggested the cell death may be mediated by apoptosis inducing factor. ► Protein nitration was generated in the cells, and the most abundant nitrated protein was identified as cystatin-A. ► Tyr35 was the most likely site to be nitrated in cystatin-A. -- Abstract: Our previous work found that in the presence of nitrite, titanium dioxide nanoparticles can cause protein tyrosine nitration under UVA irradiation in vivo. In this paper, the human keratinocyte cells was used as a skin cell model to further study the photo-toxicity of titanium dioxide nanoparticles when nitrite was present. The results showed that nitrite increased the photo-toxicity of titanium dioxide in a dose-dependant manner, and generated protein tyrosine nitration in keratinocyte cells. Morphological study of keratinocyte cells suggested a specific apoptosis mediated by apoptosis inducing factor. It was also found the main target nitrated in cells was cystatin-A, which expressed abundantly in cytoplasm and functioned as a cysteine protease inhibitor. The stress induced by titanium dioxide with nitrite under UVA irradiation in human keratinocyte cells appeared to trigger the apoptosis inducing factor mediated cell death and lose the inhibition of active caspase by cystatin-A. We conclude that nitrite can bring new damage and stress to human keratinocyte cells with titanium dioxide nanoparticles under UVA irradiation.

  4. Co-treatment with conjugated linoleic acid and nitrite protects against myocardial infarction

    Directory of Open Access Journals (Sweden)

    Natia Qipshidze-Kelm

    2014-01-01

    Full Text Available According to the CDC, the most common type of heart disease is coronary artery disease, which commonly leads to myocardial infarction (MI. Therapeutic approaches to lessen the resulting cardiovascular injury associated with MI are limited. Recently, MicroRNAs (miRNAs have been shown to act as negative regulators of gene expression by inhibiting mRNA translation and/or stimulating mRNA degradation. A single miRNA can modulate physiological or disease phenotypes by regulating whole functional systems. Importantly, miRNAs can regulate cardiac function, thereby modulating heart muscle contraction, heart growth and morphogenesis. MicroRNA-499 (miRNA-499 is a cardiac-specific miRNA that when elevated causes cardiomyocyte hypertrophy, in turn preventing cardiac dysfunction during MI. Previous studies revealed that combination treatment with conjugated linoleic acid (cLA and nitrite preserved cardiovascular function in mice. Therefore, it was hypothesized that cLA and nitrite may regulate miRNA-499, thus providing cardiac protection during MI. To test this hypothesis, 12-week old mice were treated with cLA (10 mg/kg/d-via osmotic mini-pump or cLA and nitrite (50 ppm-drinking water 3 days prior to MI (ligation of the left anterior descending artery. Echocardiography and pressure–volume (PV-loop analysis revealed that cLA and nitrite-treated MI mice had improved heart function (10 days following MI compared to untreated MI mice. Treatment with cLA and nitrite significantly induced levels of miRNA-499 compared to untreated MI mice. In addition, treatment with cLA and nitrite abolished MI-induced protein expression of p53 and dynamin-related protein-1 (DRP-1. Moreover, the antioxidant enzyme expression of heme oxygenase-1 (HO-1 was elevated in MI mice treated with cLA and nitrite compared to untreated MI mice. Confocal imaging on heart tissue confirmed expression the levels of HO-1 and p53. Taken together, these results suggest that therapeutic

  5. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira

    DEFF Research Database (Denmark)

    Koch, Hanna; Lücker, Sebastian; Albertsen, Mads

    2015-01-01

    , we identified ecophysiological traits that contribute to the ecological success of Nitrospira. Unexpectedly, N. moscoviensis possesses genes coding for a urease and cleaves urea to ammonia and CO2. Ureolysis was not observed yet in nitrite oxidizers and enables N. moscoviensis to supply ammonia...... oxidizers lacking urease with ammonia from urea, which is fully nitrified by this consortium through reciprocal feeding. The presence of highly similar urease genes in Nitrospira lenta from activated sludge, in metagenomes from soils and freshwater habitats, and of other ureases in marine nitrite oxidizers...

  6. Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox

    DEFF Research Database (Denmark)

    Vlaeminck, S.E.; Terada, Akihiko; Smets, Barth F.

    2010-01-01

    by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, > 1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic......AOB-rich aggregates (reactors B and C). The hypothesized granulation pathways include granule replication by division and budding and are driven by growth and/or decay based on species-specific physiology and by hydrodynamic shear and mixing....

  7. Chemical perspectives on alkali and earth alkaline nitrate and nitrite salts for concentrated solar power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph G. [Sandia National Labsoratories, Livermore, CA (United States)

    2013-04-01

    Molten salts have been widely considered as the leading candidate heat transfer fluids (HTF) used in high temperature, concentrated solar power plants. Specifically, nitrate and nitrite based salts have been investigated as a HTF and even deployed in pilot plants generating up to 19.9 MW of electricity at operating temperatures above 500 C. New plant designs requiring higher operating temperatures for better efficiencies are pushing the stability limit of HTF. This paper presents an overview of the thermophysical properties of nitrate and nitrite salts and discusses thermodynamic and kinetic stability limitations as they relate to concentrated solar power generation. (orig.)

  8. Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Kroneck, Peter M H; Zumft, Walter G

    2003-01-01

    Cytochrome cd1 nitrite reductase is a bifunctional multiheme enzyme catalyzing the one-electron reduction of nitrite to nitric oxide and the four-electron reduction of dioxygen to water. Kinetics and thermodynamics of the internal electron transfer process in the Pseudomonas stutzeri enzyme have...... been studied and found to be dominated by pronounced interactions between the c and the d1 hemes. The interactions are expressed both in dramatic changes in the internal electron-transfer rates between these sites and in marked cooperativity in their electron affinity. The results constitute a prime...... example of intraprotein control of the electron-transfer rates by allosteric interactions....

  9. Nitrite: A physiological store of nitric oxide and modulator of mitochondrial function

    Directory of Open Access Journals (Sweden)

    Sruti Shiva

    2013-01-01

    Full Text Available Nitrite, long considered a biologically inert metabolite of nitric oxide (NO oxidation, is now accepted as a physiological storage pool of NO that can be reduced to bioactive NO in hypoxic conditions to mediate a spectrum of physiological responses in blood and tissue. This graphical review will provide a broad overview of the role of nitrite in physiology, focusing on its formation and reduction to NO as well as its regulation of the mitochondrion—an emerging subcellular target for its biological actions in tissues.

  10. The steady-state kinetics of the NADH-dependent nitrite reductase from Escherichia coli K 12. Nitrite and hydroxylamine reduction.

    OpenAIRE

    Jackson, R H; Cole, J A; Cornish-Bowden, A

    1981-01-01

    The reduction of both NO2- and hydroxylamine by the NADH-dependent nitrite reductase of Escherichia coli K 12 (EC 1.6.6.4) appears to follow Michaelis-Menten kinetics over a wide range of NADH concentrations. Substrate inhibition can, however, be detected at low concentrations of the product NAD+. In addition, NAD+ displays mixed product inhibition with respect to NADH and mixed or uncompetitive inhibition with respect to hydroxylamine. These inhibition characteristics are consistent with a m...

  11. Pancreatic cancer and exposure to dietary nitrate and nitrite in the NIH-AARP Diet and Health Study.

    Science.gov (United States)

    Aschebrook-Kilfoy, Briseis; Cross, Amanda J; Stolzenberg-Solomon, Rachael Z; Schatzkin, Arthur; Hollenbeck, Albert R; Sinha, Rashmi; Ward, Mary H

    2011-08-01

    Nitrate and nitrite are precursors of N-nitroso compounds, which induce tumors of the pancreas in animals. The authors evaluated the relation of dietary nitrate and nitrite to pancreatic cancer risk in the NIH-AARP Diet and Health Study. Nitrate and nitrite intakes were assessed at baseline using a 124-item food frequency questionnaire. During approximately 10 years of follow-up between 1995 and 2006, 1,728 incident pancreatic cancer cases were identified. There was no association between total nitrate or nitrite intake and pancreatic cancer in men or women. However, men in the highest quintile of summed nitrate/nitrite intake from processed meat had a nonsignificantly elevated risk of pancreatic cancer (hazard ratio = 1.18, 95% confidence interval: 0.95, 1.47; P-trend = 0.11). The authors observed a stronger increase in risk among men for nitrate/nitrite intake from processed meat at ages 12-13 years (highest quintile vs. lowest: hazard ratio = 1.32, 95% confidence interval: 0.99, 1.76; P-trend = 0.11), though the relation did not achieve statistical significance. The authors found no associations between adult or adolescent nitrate or nitrite intake from processed meats and pancreatic cancer among women. These results provide modest evidence that processed meat sources of dietary nitrate and nitrite may be associated with pancreatic cancer among men and provide no support for the hypothesis in women.

  12. The acclimation of Chlorella to high-level nitrite for potential application in biological NOx removal from industrial flue gases.

    Science.gov (United States)

    Li, Tianpei; Xu, Gang; Rong, Junfeng; Chen, Hui; He, Chenliu; Giordano, Mario; Wang, Qiang

    2016-05-20

    Nitrogen oxides (NOx) are the components of fossil flue gas that give rise to the greatest environmental concerns. This study evaluated the ability of the green algae Chlorella to acclimate to high level of NOx and the potential utilization of Chlorella strains in biological NOx removal (DeNOx) from industrial flue gases. Fifteen Chlorella strains were subject to high-level of nitrite (HN, 176.5 mmolL(-1) nitrite) to simulate exposure to high NOx. These strains were subsequently divided into four groups with respect to their ability to tolerate nitrite (excellent, good, fair, and poor). One strain from each group was selected to evaluate their photosynthetic response to HN condition, and the nitrite adaptability of the four Chlorella strains were further identified by using chlorophyll fluorescence. The outcome of our experiments shows that, although high concentrations of nitrite overall negatively affect growth and photosynthesis of Chlorella strains, the degree of nitrite tolerance is a strain-specific feature. Some Chlorella strains have an appreciably higher ability to acclimate to high-level of nitrite. Acclimation is achieved through a three-step process of restrict, acclimate, and thriving. Notably, Chlorella sp. C2 was found to have a high tolerance and to rapidly acclimate to high concentrations of nitrite; it is therefore a promising candidate for microalgae-based biological NOx removal. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. NarK is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli

    NARCIS (Netherlands)

    Rowe, John J.; Ubbink-Kok, Trees; Molenaar, Douwe; Konings, Wilhelmus; Driessen, Arnold J.M.

    Escherichia coli can use nitrate as a terminal electron acceptor for anaerobic respiration. A polytopic membrane protein, termed NarK, has been implicated in nitrate uptake and nitrite excretion and is thought to function as a nitrate/nitrite antiporter. The longest-lived radioactive isotope of

  14. Evaluation of the nitrite and leukocyte esterase activity tests for the diagnosis of acute symptomatic urinary tract infection in men.

    NARCIS (Netherlands)

    Koeijers, J.J.; Kessels, A.G.H.; Nys, S.; Bartelds, A.; Donker, G.; Stobberingh, E.; Verbon, A.

    2007-01-01

    For 422 male patients with symptoms indicative of a urinary tract infection, nitrite and leukocyte esterase activity dipstick test results were compared with results of culture of urine samples. The positive predictive value of a positive nitrite test result was 96%. Addition of results of the

  15. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cui Lin; Meng Xiaomeng; Xu Minrong; Shang Kun [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Liu Yinping [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China)

    2011-11-30

    Highlights: > A nitrite sensor fabricated based on copper calcined layered double hydroxides and gold nanoparticles modified electrode. > This sensor exhibited excellent electrocatalytic oxidation to nitrite. > This nitrite sensor exhibited very good analytical performance with low cost, convenient preparation and rapid detection. - Abstract: In this paper, a novel nitrite sensor was constructed based on electrodeposition of gold nanoparticles (AuNPs) on a copper calcined layered double hydroxide (Cu-CLDH) modified glassy carbon electrode. Electrochemical experiments showed that AuNPs/CLDH composite film exhibited excellent electrocatalytic oxidation activity with nitrite due to the synergistic effect of the Cu-CLDH with AuNPs. The fabricated sensor exhibited excellent performance for nitrite detection within a wide concentration interval of 1-191 {mu}M and with a detection limit of 0.5 {mu}M. The superior electrocatalytic response to nitrite was mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and AuNPs composition film. This platform offers a novel route for nitrite sensing with wide analytical applications and will supply the practical applications for a variety of simple, robust, and easy-to-manufacture analytical approaches in the future.

  16. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Cui Lin; Meng Xiaomeng; Xu Minrong; Shang Kun; Ai Shiyun; Liu Yinping

    2011-01-01

    Highlights: → A nitrite sensor fabricated based on copper calcined layered double hydroxides and gold nanoparticles modified electrode. → This sensor exhibited excellent electrocatalytic oxidation to nitrite. → This nitrite sensor exhibited very good analytical performance with low cost, convenient preparation and rapid detection. - Abstract: In this paper, a novel nitrite sensor was constructed based on electrodeposition of gold nanoparticles (AuNPs) on a copper calcined layered double hydroxide (Cu-CLDH) modified glassy carbon electrode. Electrochemical experiments showed that AuNPs/CLDH composite film exhibited excellent electrocatalytic oxidation activity with nitrite due to the synergistic effect of the Cu-CLDH with AuNPs. The fabricated sensor exhibited excellent performance for nitrite detection within a wide concentration interval of 1-191 μM and with a detection limit of 0.5 μM. The superior electrocatalytic response to nitrite was mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and AuNPs composition film. This platform offers a novel route for nitrite sensing with wide analytical applications and will supply the practical applications for a variety of simple, robust, and easy-to-manufacture analytical approaches in the future.

  17. Thermophilic nitrate-reducing microorganisms prevent sulfate reduction in cold marine sediments incubated at high temperature

    Science.gov (United States)

    Nepomnyashchaya, Yana; Rezende, Julia; Hubert, Casey

    2014-05-01

    Hydrogen sulphide produced during metabolism of sulphate-reducing microorganisms (SRM) is toxic, corrosive and causes detrimental oil reservoir souring. During secondary oil recovery, injecting oil reservoirs with seawater that is rich in sulphate and that also cools high temperature formations provides favourable growth conditions for SRM. Nitrate addition can prevent metabolism of SRM by stimulating nitrate-reducing microorganisms (NRM). The investigations of thermophilic NRM are needed to develop mechanisms to control the metabolism of SRM in high temperature oil field ecosystems. We therefore established a model system consisting of enrichment cultures of cold surface marine sediments from the Baltic Sea (Aarhus Bay) that were incubated at 60°C. Enrichments contained 25 mM nitrate and 40 mM sulphate as potential electron acceptors, and a mixture of the organic substrates acetate, lactate, propionate, butyrate (5 mM each) and yeast extract (0.01%) as potential carbon sources and electron donors. Slurries were incubated at 60°C both with and without initial pasteurization at 80°C for 2 hours. In the enrichments containing both nitrate and sulphate, the concentration of nitrate decreased indicating metabolic activity of NRM. After a four-hour lag phase the rate of nitrate reduction increased and the concentration of nitrate dropped to zero after 10 hours of incubation. The concentration of nitrite increased as the reduction of nitrate progressed and reached 16.3 mM after 12 hours, before being consumed and falling to 4.4 mM after 19-day of incubation. No evidence for sulphate reduction was observed in these cultures during the 19-day incubation period. In contrast, the concentration of sulphate decreased up to 50% after one week incubation in controls containing only sulphate but no nitrate. Similar sulfate reduction rates were seen in the pasteurized controls suggesting the presence of heat resistant SRM, whereas nitrate reduction rates were lower in the

  18. Combining nonthermal technologies to control foodborne microorganisms.

    Science.gov (United States)

    Ross, Alexander I V; Griffiths, Mansel W; Mittal, Gauri S; Deeth, Hilton C

    2003-12-31

    Novel nonthermal processes, such as high hydrostatic pressure (HHP), pulsed electric fields (PEFs), ionizing radiation and ultrasonication, are able to inactivate microorganisms at ambient or sublethal temperatures. Many of these processes require very high treatment intensities, however, to achieve adequate microbial destruction in low-acid foods. Combining nonthermal processes with conventional preservation methods enhances their antimicrobial effect so that lower process intensities can be used. Combining two or more nonthermal processes can also enhance microbial inactivation and allow the use of lower individual treatment intensities. For conventional preservation treatments, optimal microbial control is achieved through the hurdle concept, with synergistic effects resulting from different components of the microbial cell being targeted simultaneously. The mechanisms of inactivation by nonthermal processes are still unclear; thus, the bases of synergistic combinations remain speculative. This paper reviews literature on the antimicrobial efficiencies of nonthermal processes combined with conventional and novel nonthermal technologies. Where possible, the proposed mechanisms of synergy is mentioned.

  19. Heterogeneity in isogenic populations of microorganisms

    DEFF Research Database (Denmark)

    Pedersen, Anne Egholm

    heterogeneity was detected when the culture had been propagated according to the guidelines of the Copenhagen School of Bacterial Growth Physiology. The L. lactis GFP reporter strain was more challenging to analyze. The population profile for this reporter strain was shown to be dependent on the type of medium...... values for quantifiable variables are used. The reproducibility of an experiment could thus be affected by the presence of subpopulations or high levels of phenotypic variations. Ole Maaløe and colleagues did in the late 1950’ties observe that the growth rate, RNA, DNA and protein synthesis and cell...... factor per unit of time. The use of a balanced growing culture is a cornerstone in the Copenhagen School of Bacterial Growth Physiology headed by Ole Maaløe. Due to the size of the microorganism it is challenging to measure a quantifiable variable in a single cell. However, fluorescence, whether being...

  20. Responsive Polydiacetylene Vesicles for Biosensing Microorganisms

    Directory of Open Access Journals (Sweden)

    Estelle Lebègue

    2018-02-01

    Full Text Available Polydiacetylene (PDA inserted in films or in vesicles has received increasing attention due to its property to undergo a blue-to-red colorimetric transition along with a change from non-fluorescent to fluorescent upon application of various stimuli. In this review paper, the principle for the detection of various microorganisms (bacteria, directly detected or detected through the emitted toxins or through their DNA, and viruses and of antibacterial and antiviral peptides based on these responsive PDA vesicles are detailed. The analytical performances obtained, when vesicles are in suspension or immobilized, are given and compared to those of the responsive vesicles mainly based on the vesicle encapsulation method. Many future challenges are then discussed.

  1. Pathogenic microorganisms of medicinal herbal drugs

    Directory of Open Access Journals (Sweden)

    Stević Tatjana

    2012-01-01

    Full Text Available All the parts of plants (root, leaf, flower naturally have a high level of microorganisms, bacteria and fungi, especially molds. Microbial contamination could be a result of inappropriate harvesting, cleaning of the raw plant material, unhygienic processing of the plants, unsuitable transport and storage. After examination of over 40 dried medicinal plant species, the lowest microbial quality was determined for Maydis stigma, Mentha leaf and herb, Equisetum herb, Calendula flower, Urtica leaf, Melissa leaf, Serpylli herb, Chamomilla flower etc. Although mixed infections are recorded with different types of fungus, Fusarium was observed as the most dominant genus in most of the tested drugs, followed by Aspergillus and Alternaria. In addition to these fungi species from the following genera were identified: Phoma, Cephalosporium, Nigrospora, Cladosporium, Epicoccum, Gliocladium, Myrothecium, Cercospora, Phomopsis, Verticillium, Dreschlera (=Bipolaris, Rhizoctonia, Septoria, Trichoderma, Curvularia, Stachybotrys, Trichothecium, Puccinia, Botrytis, Mucor and Rhizopus sp., depending on plant species.

  2. Synthetic biology expands chemical control of microorganisms.

    Science.gov (United States)

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Genetic engineering of microorganisms for biodiesel production

    Science.gov (United States)

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples. PMID:23222170

  4. Biogenic amine formation and nitrite reactions in meat batter as affected by high-pressure processing and chilled storage.

    Science.gov (United States)

    Ruiz-Capillas, C; Aller-Guiote, P; Carballo, J; Colmenero, F Jiménez

    2006-12-27

    Changes in biogenic amine formation and nitrite depletion in meat batters as affected by pressure-temperature combinations (300 MPa/30 min/7, 20, and 40 degrees C), cooking process (70 degrees C/30 min), and storage (54 days/2 degrees C) were studied. Changes in residual nitrite concentration in raw meat batters were conditioned by the temperature and not by the pressure applied. Cooking process decreased (P nitrite concentration in all samples. High-pressure processing and cooking treatment increased (P nitrite concentration decreased with pressure processing, no effect was observed with the heating process of meat batters. High-pressure processing conditions had no effect on the rate of residual nitrite loss throughout the storage. The application of high pressure decreased (P processing conditions, generally, throughout storage biogenic amine levels did not change or increased, although quantitatively this effect was not very important.

  5. Production and mitigation of N2O in sequentially membrane-aerated redox-stratified nitritation/anammox biofilms

    DEFF Research Database (Denmark)

    Smets, Barth F.; Pellicer i Nàcher, Carles; Thamdrup, Bo

    batch incubations with biofilm samples revealed a significant N2O assimilatory activity. Anoxic incubations with N-15 enriched nitrite, nitrate, or ammonium, in presence or absence of acetate revealed the following: a very high conversion of original nitrite or nitrate N to N2O over N2, no stimulatory......Combining partial nitritation with anaerobic ammonium oxidation maybe a cost- and energy-efficient alternative to remove reduced nitrogen from nitrogen rich waste streams. However, increased N2O emissions (upto several % of the incoming N flux) have been observed for reactors performing partial...... nitritation, which is likely due to the stimulatory effect of combined elevated nitrite and ammonium concentrations and reduced oxygen concentrations on nitrous oxide formation by ammonium oxidizing bacteria. Because increased N2O emission may be inherent to partial nitrification systems, we have explored how...

  6. Identification of subsurface microorganisms at Yucca Mountain

    International Nuclear Information System (INIS)

    Stetzenbach, L.D.

    1994-01-01

    Bacteria isolated from ground water samples taken from 31 springs during 1993 were collected and processed according to procedures described in earlier reports. These procedures required aseptic collection of surface water samples in sterile screw-capped containers, transportation to the HRC microbiology laboratory, and culture by spread plating onto R2A medium. The isolates were further processed for identification using a gas chromatographic analysis of fatty acid methyl esters (FAME) extracted from cell membranes. This work generated a presumptive identification of 113 bacterial species distributed among 45 genera using a database obtained from Microbial ID, Inc., Newark, Delaware (MIDI). A preliminary examination of the FAME data was accomplished using cluster analysis and principal component analysis software obtained from MIDI. Typically, bacterial strains that cluster at less than 10 Euclidian distance units have fatty acid patterns consistent among members of the same species. Thus an organism obtained from one source can be recognized if it is isolated again from the same or any other source. This makes it possible to track the distribution of organisms and monitor environmental conditions or fluid transport mechanisms. Microorganisms are seldom found as monocultures in natural environments. They are more likely to be closely associated with other genera with complementary metabolic requirements. An understanding of the indigenous microorganism population is useful in understanding subtle changes in the environment. However, classification of environmental organisms using traditional methods is not ideal because differentiation of species with small variations or genera with very similar taxonomic characteristics is beyond the capabilities of traditional microbiological methods

  7. Interactions of phytoplankton, zooplankton and microorganisms

    Science.gov (United States)

    Pomeroy, L. R.; Paffenhöfer, G.-A.; Yoder, J. A.

    We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >10 6ml -1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.

  8. System for identification of microorganism and detection of infectious disorder

    DEFF Research Database (Denmark)

    2013-01-01

    Methods for the identification of microorganisms or infectious disorders are disclosed, comprising obtaining a suitable sample from sources such as persons, animals, plants, food, water or soil. The methods also comprise providing tailored nucleic acid substrate(s) designed to react with a type 1...... topoisomerase from one or more microorganism(s) or infectious agent(s), and incubating said substrate with said sample, or extracts or preparations from the sample, so that the substrate is processed by said topoisomerase if said microorganism(s) or infectious agent(s) is present in the sample. Finally......, processed substrates are identified and potentially quantified by one or more of a range of standard molecular biology methods and read-out systems. The identification and potential quantification of microorganisms and infectious agents, including but not limited to Plasmodium falciparum and Mycobacterium...

  9. Impact of Clean-Label Antimicrobials and Nitrite Derived from Natural Sources on the Outgrowth of Clostridium perfringens during Cooling of Deli-Style Turkey Breast.

    Science.gov (United States)

    King, Amanda M; Glass, Kathleen A; Milkowski, Andrew L; Sindelar, Jeffrey J

    2015-05-01

    Organic acids and sodium nitrite have long been shown to provide antimicrobial activity during chilling of cured meat products. However, neither purified organic acids nor NaNO2 is permitted in products labeled natural and both are generally avoided in clean-label formulations; efficacy of their replacement is not well understood. Natural and clean-label antimicrobial alternatives were evaluated in both uncured and in alternative cured (a process that uses natural sources of nitrite) deli-style turkey breast to determine inhibition of Clostridium perfringens outgrowth during 15 h of chilling. Ten treatments of ground turkey breast (76% moisture, 1.2% salt) included a control and four antimicrobials: 1.0% tropical fruit extract, 0.7% dried vinegar, 1.0% cultured sugar-vinegar blend, and 2.0% lemon-vinegar blend. Each treatment was formulated without (uncured) and with nitrite (PCN; 50 ppm of NaNO2 from cultured celery juice powder). Treatments were inoculated with C. perfringens spores (three-strain mixture) to yield 2.5 log CFU/g. Individual 50-g portions were vacuum packaged, cooked to 71.1°C, and chilled from 54.4 to 26.7°C in 5 h and from 26.7 to 7.2°C in an additional 10 h. Triplicate samples were assayed for growth of C. perfringens at predetermined intervals by plating on tryptose-sulfite-cycloserine agar. Uncured control and PCN-only treatments allowed for 4.6- and 4.2-log increases at 15 h, respectively, and although all antimicrobial treatments allowed less outgrowth than uncured and PCN, the degree of inhibition varied. The 1.0% fruit extract and 1.0% cultured sugar-vinegar blend were effective at controlling populations at or below initial levels, whether or not PCN was included. Without PCN, 0.7% dried vinegar and 2.0% lemon-vinegar blend allowed for 2.0- and 2.5-log increases, respectively, and ∼1.5-log increases with PCN. Results suggest using clean-label antimicrobials can provide for safe cooling following the study parameters, and greater

  10. Enhancement of uranium-accumulating ability of microorganisms by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sakaguchi, Takashi; Nakajima, Akira; Tsuruta, Takehiko [Miyazaki Medical Coll., Kiyotake (Japan)

    1998-01-01

    Some microorganisms having excellent ability to accumulate uranium were isolated, from soil and water systems in and around the Ningyo-toge Station of Power Reactor and Nuclear Fuel Development Corporation. The enhancement of uranium-accumulating ability of microorganisms by electron-beam irradiation was examined, and the ability of JW-046 was increased 3-5% by the irradiation. The irradiation affect the growth of some of microorganisms tested. (author)

  11. Plasma inactivation of food-related microorganisms in liquids

    International Nuclear Information System (INIS)

    Marsili, Lisa; Espie, Steven; Anderson, J.G.John G.; MacGregor, S.J.Scott J.

    2002-01-01

    This paper reports on a plasma process that inactivates microorganisms in liquids through the application of high-voltage pulses. These pulses result in breakdown of the gas and liquid layers, producing many active species such as UV photons, ozone, free radicals and free electrons. Several test microorganisms representing a range of problematic microorganisms were investigated. Significant reductions in microbial population were achieved, demonstrating the effectiveness of using the plasma discharge process to treat contaminated liquids

  12. Effect of anaerobiosis on indigenous microorganisms in blackwater with fish offal as co-substrate

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur; Heiske, Stefan; Jensen, Pernille Erland

    2014-01-01

    resistant bacteria were reduced in the anaerobic samples in the beginning of the study but increased towards the end of it. The opposite pattern was observed in the aerobic samples, with a growth in the beginning followed by a reduction. During the anaerobic digestion tetracycline resistant bacteria showed......The aim of this study was to compare the effect of mesophilic anaerobic digestion with aerobic storage on the survival of selected indigenous microorganisms and microbial groups in blackwater, including the effect of addition of Greenlandic Halibut and shrimp offal. The methane yield...... of the different substrate mixtures was determined in batch experiments to study possible correlation between methanogenic activity in the anaerobic digesters and reduction of indigenous microorganisms in the blackwater. By the end of the experiments a recovery study was conducted to determine possible injury...

  13. Recent advances and industrial viewpoint for biological treatment of wastewaters by oleaginous microorganisms.

    Science.gov (United States)

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Xiong, Lian; Li, Xiao-Mei; Chen, Xin-De

    2017-05-01

    Recently, technology of using oleaginous microorganisms for biological treatment of wastewaters has become one hot topic in biochemical and environmental engineering for its advantages such as easy for operation in basic bioreactor, having potential to produce valuable bio-products, efficient wastewaters treatment in short period, etc. To promote its industrialization, this article provides some comprehensive analysis of this technology such as its advances, issues, and outlook especially from industrial viewpoint. In detail, the types of wastewaters can be treated and the kinds of oleaginous microorganisms used for biological treatment are introduced, the potential of industrial application and issues (relatively low COD removal, low lipid yield, cost of operation, and lack of scale up application) of this technology are presented, and some critical outlook mainly on co-culture method, combination with other treatments, process controlling and adjusting are discussed systematically. By this article, some important information to develop this technology can be obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Radiation resistance of microorganisms on unsterilized infusion sets

    DEFF Research Database (Denmark)

    Christensen, E. Ahrensburg; Kristensen, H.; Hoborn, J.

    1991-01-01

    Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor in a steriliza......Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor...

  15. Esterase screening using whole cells of Brazilian soil microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Simone M.; Oliveira, Luciana G. de; Marsaioli, Anita J., E-mail: anita@iqm.unicamp.b [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2010-07-01

    A miniaturized enzymatic assay using fluorescent probes to reveal esterase producing microorganisms was optimized and applied to screen 64 soil bacterial strains. The best results were validated using traditional non-fluorogenic assays with acetyl and propanoyl phenylethanol to confirm the miniaturized results. The most active microorganisms belong to the genus Bacillus showing esterase activity and good enantiomeric ratios for the resolution of phenylethanol derivatives (E > 30). Part of the microorganisms are kept in our laboratory in glycerol or freezedried and the best microorganisms will be deposited in the CBMAI/CPQBA/UNICAMP culture collection. (author)

  16. [Characteristics of proteins synthesized by hydrogen-oxidizing microorganisms].

    Science.gov (United States)

    Volova, T G; Barashkov, V A

    2010-01-01

    The study was conducted to determine the biological value of proteins synthesized by hydrogen-oxidizing microorganisms--the hydrogen bacteria Alcaligenes eutrophus Z1 and Ralstonia eutropha B5786 and the CO-resistant strain of carboxydobacterium Seliberia carboxydohydrogena Z1062. Based on a number of significant parameters characterizing the biological value of a product, the proteins of hydrogen-oxidizing microorganisms have been found to occupy an intermediate position between traditional animal and plant proteins. The high total protein in biomass of these microorganisms, their complete amino acid content, and availability to proteolytic enzymes allow for us to consider these microorganisms as potential protein producers.

  17. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    Science.gov (United States)

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  18. FIA-Spectrophotometric Method for Determination of Nitrite in Meat Products: An Experiment Exploring Color Reduction of an Azo-Compound

    Science.gov (United States)

    Penteado, Jose C.; Angnes, Lucio; Masini, Jorge C.; Oliveira, Paulo C. C.

    2005-01-01

    This article describes the reaction between nitrite and safranine O. This sensitive reaction is based on the disappearance of color of the reddish-orange azo dye, allowing the determination of nitrite at the mg mL-1 level. A factorial optimization of parameters was carried out and the method was applied for the quantification of nitrite in…

  19. Impact of temperature on ammonium and nitrite removal rates in RAS moving bed biofilters

    DEFF Research Database (Denmark)

    Kinyage, John Peter Hewa; Pedersen, Lars-Flemming

    2016-01-01

    The impact of temperature on bacterial processes is well known; however temperature related data on nitrification rates in aquaculture systems are fragmented and compiled from different studies. We sought to determine ammonium and nitrite removal kinetics over a temperature range from 6 to 36 °C...

  20. Flow injection determination of metronidazole through spectrophotometric measurement of the nitrite ion produced upon alkaline hydrolysis

    Directory of Open Access Journals (Sweden)

    Simões Simone S.

    2006-01-01

    Full Text Available A new method for metronidazole determination, based on spectrometric monitoring of a diazonium salt produced in-line by alkaline hydrolysis released nitrite ions, was developed and successfully applied to pharmaceutical tablets (r = 0.9993, 2.0-20.0 mg L-1, DL = 0.7 mg L-1 with no interference from common ingredients accompanying the drug.

  1. Simultaneous Voltammetric/Amperometric Determination of Sulfide and Nitrite in Water at BDD Electrode

    Directory of Open Access Journals (Sweden)

    Anamaria Baciu

    2015-06-01

    Full Text Available This work reported new voltammetric/amperometric-based protocols using a commercial boron-doped diamond (BDD electrode for simple and fast simultaneous detection of sulfide and nitrite from water. Square-wave voltammetry operated under the optimized working conditions of 0.01 V step potential, 0.5 V modulation amplitude and 10 Hz frequency allowed achieving the best electroanalytical parameters for the simultaneous detection of nitrite and sulfide. For practical in-field detection applications, the multiple-pulsed amperometry technique was operated under optimized conditions, i.e., −0.5 V/SCE for a duration of 0.3 s as conditioning step, +0.85 V/SCE for a duration of 3 s that assure the sulfide oxidation and +1.25 V/SCE for a duration of 0.3 s, where the nitrite oxidation occurred, which allowed the simultaneously detection of sulfide and nitrite without interference between them. Good accuracy was found for this protocol in comparison with standardized methods for each anion. Also, no interference effect was found for the cation and anion species, which are common in the water matrix.

  2. MUTAGENICITY OF NITRITE-TREATED AQUEOUS EXTRACT OF 'PIPER BETLE'; L

    Science.gov (United States)

    Betel quid is chewed as a masticatory material by people in certain areas of Asia. The quid chewing has been related to oral cancer by epidemiological study. The mutagenic components in the aqueous extracts of betel quid ingredients were studied. Only nitrite-treated aqueous extr...

  3. Exhaled breath condensate nitrates, but not nitrites or FENO, relate to asthma control.

    Science.gov (United States)

    Malinovschi, Andrei; Pizzimenti, Stefano; Sciascia, Savino; Heffler, Enrico; Badiu, Iuliana; Rolla, Giovanni

    2011-07-01

    Asthma is a chronic respiratory disease, characterised by airways inflammation, obstruction and hyperresponsiveness. Asthma control is the goal of asthma treatment, but many patients have sub-optimal control. Exhaled NO and exhaled breath condensate (EBC) NO metabolites (nitrites and nitrates) measurements are non-invasive tools to assess airways inflammation. Our aim was to investigate the relationships between asthma control and the above-named biomarkers of airways inflammation. Thirty-nine non-smoking asthmatic patients (19 women) aged 50 (21-80) years performed measurements of exhaled NO (FENO), EBC nitrates, nitrites and pH, and answered Asthma Control Questionnaire (ACQ) and Asthma Control Test (ACT)-questionnaire. The ACT and ACQ score were strongly interrelated (ρ = -0.84, p 0.05). EBC nitrates were negatively related to ACT score (ρ = -0.34, p = 0.03) and positively related to ACQ score (ρ = 0.41, p = 0.001) while no relation of EBC nitrites to either ACQ or ACT score was found (p>0.05). EBC nitrates were the only biomarker that was significantly related to asthma control. This suggests that nitrates, but not nitrites or FENO, reflect an aspect of airways inflammation that is closer related to asthma symptoms. Therefore there is a potential role for EBC nitrates in objective assessment of asthma control. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Effect of Electrolytes on the Adsorption of Nitrite and Nitrate from ...

    African Journals Online (AJOL)

    Michael Horsfall

    presence of alkaline salts (Na3PO4, CH3COONa; 95.5 per cent) and neutral chloride salts (NaCl, MgCl2; 90.4 per cent) compared to ... The charcoal was freed off its residual nitrite and ..... separation factor, Rl, over the test concentrations have.

  5. Intake of nitrate and nitrite and the risk of gastric cancer: A prospective cohort study

    NARCIS (Netherlands)

    Loon, A.J.M. van; Botterweck, A.A.M.; Goldbohm, R.A.; Brants, H.A.M.; Klaveren, J.D. van; Brandt, P.A. van den

    1998-01-01

    The association between the intake of nitrate or nitrite and gastric cancer risk was investigated in a prospective cohort study started in 1986 in the Netherlands, of 120,852 men and women aged 55-69 years. At baseline, data on dietary intake, smoking habits and other covariates were collected by

  6. Nitrate and nitrite in the diet: how to assess their benefit and risk for human health.

    Science.gov (United States)

    Habermeyer, Michael; Roth, Angelika; Guth, Sabine; Diel, Patrick; Engel, Karl-Heinz; Epe, Bernd; Fürst, Peter; Heinz, Volker; Humpf, Hans-Ulrich; Joost, Hans-Georg; Knorr, Dietrich; de Kok, Theo; Kulling, Sabine; Lampen, Alfonso; Marko, Doris; Rechkemmer, Gerhard; Rietjens, Ivonne; Stadler, Richard H; Vieths, Stefan; Vogel, Rudi; Steinberg, Pablo; Eisenbrand, Gerhard

    2015-01-01

    Nitrate is a natural constituent of the human diet and an approved food additive. It can be partially converted to nitrogen monoxide, which induces vasodilation and thereby decreases blood pressure. This effect is associated with a reduced risk regarding cardiovascular disease, myocardial infarction, and stroke. Moreover, dietary nitrate has been associated with beneficial effects in patients with gastric ulcer, renal failure, or metabolic syndrome. Recent studies indicate that such beneficial health effects due to dietary nitrate may be achievable at intake levels resulting from the daily consumption of nitrate-rich vegetables. N-nitroso compounds are endogenously formed in humans. However, their relevance for human health has not been adequately explored up to now. Nitrate and nitrite are per se not carcinogenic, but under conditions that result in endogenous nitrosation, it cannot be excluded that ingested nitrate and nitrite may lead to an increased cancer risk and may probably be carcinogenic to humans. In this review, the known beneficial and detrimental health effects related to dietary nitrate/nitrite intake are described and the identified gaps in knowledge as well as the research needs required to perform a reliable benefit/risk assessment in terms of long-term human health consequences due to dietary nitrate/nitrite intake are presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nitrite promotes protein carbonylation and Strecker aldehyde formation in experimental fermented sausages: are both events connected?

    Science.gov (United States)

    Villaverde, A; Ventanas, J; Estévez, M

    2014-12-01

    The role played by curing agents (nitrite, ascorbate) on protein oxidation and Strecker aldehyde formation is studied. To fulfill this objective, increasing concentrations of nitrite (0, 75 and 150ppm) and ascorbate (0, 250 and 500ppm) were added to sausages subjected to a 54day drying process. The concurrence of intense proteolysis, protein carbonylation and formation of Strecker aldehydes during processing of sausages suggests that α-aminoadipic semialdehyde (AAS) and γ-glutamic semialdehyde (GGS) may be implicated in the formation of Strecker aldehydes. The fact that nitrite (150ppm, ingoing amount) significantly promoted the formation of protein carbonyls at early stages of processing and the subsequent formation of Strecker aldehydes provides strength to this hypothesis. Ascorbate (125 and 250ppm) controlled the overall extent of protein carbonylation in sausages without declining the formation of Strecker aldehydes. These results may contribute to understanding the chemistry fundamentals of the positive influence of nitrite on the flavor and overall acceptability of cured muscle foods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Determination of Nitrite and Nitrate in Natural Waters Using Flow Injection with Spectrophotometric Detection

    International Nuclear Information System (INIS)

    Yaqoob, M.; Nabi, A.

    2013-01-01

    A simple and sensitive flow injection spectrophotometric method is reported for the room temperature determination of nitrite and nitrate based on the Griess reaction and a copperised cadmium column for reduction of nitrate. Calibration graphs were linear over the range 2 - 1000 micro g N L /sup -1/ (R2 = 0.9997 and 0.9999, n = 9) with a limit of detection (3 s.d.) of 1.0 micro g N L and relative standard deviations (n = 10) of 0.9 and 1.2% for 50 micro g N L nitrite and nitrate respectively. The sample throughput was 50 h. The effect of reagent concentrations, physical parameters (flow rate, sample volume, reaction coil and copperised cadmium column length) and the potential interferences are reported. The effect of salinity on the blank and on the determination of nitrite and nitrate are also presented. The method was applied to natural waters (rainwater, freshwater and estuarine water) and the results for nitrite + nitrate (140 - 7310 micro g N L/sup -1/) were not significantly different (95% confidence interval) from results obtained using a segmented flow analyser reference method with spectrophotometric detection. (author)

  9. Molecular underpinnings of nitrite effect on CymA-dependent respiration in Shewanella oneidensis

    Directory of Open Access Journals (Sweden)

    Miao Jin

    2016-07-01

    Full Text Available Shewanella exhibit a remarkable versatility of respiration, with a diverse array of electron acceptors (EAs. In environments where these bacteria thrive, multiple EAs are usually present. However, we know little about strategies by which these EAs and their interaction affect ecophysiology of Shewanella. In this study, we demonstrate in the model strain, Shewanella oneidensis MR-1, that nitrite, not through nitric oxide to which it may convert, inhibits respiration of fumarate, and probably many other EAs whose reduction depends on quinol dehydrogenase CymA. This is achieved via the repression of cyclic adenosine monophosphate (cAMP production, a second messenger required for activation of cAMP-receptor protein (Crp which plays a primary role in regulation of respiration. If nitrite is not promptly removed, intracellular cAMP levels drop, and this impairs Crp activity. As a result, the production of nitrite reductase NrfA, CymA, and fumarate reductase FccA is substantially reduced. In contrast, nitrite can be simultaneously respired with trimethylamine N-oxide, resulting in enhanced biomass.

  10. [Research on Cultivation and Stability of Nitritation Granular Sludge in Integrated ABR-CSTR Reactor].

    Science.gov (United States)

    Wu, Kai-cheng; Wu, Peng; Shen, Yao-liang; Li, Yue-han; Wang, Han-fang; Xu, Yue-zhong

    2015-11-01

    Abstract: The last two compartments of the Anaerobic Baffled Readtor ( ABR) were altered into aeration tank and sedimentation tank respectively to get an integrated anaerobic-aerobic reactor, using anaerobic granular sludge in anaerobic zone and aerobic granular sludge in aerobic zone as seed sludge. The research explored the condition to cultivate nitritation granular sludge, under the condition of continuous flow. The C/N rate was decreased from 1 to 0.4 and the ammonia nitrogen volumetric loading rate was increased from 0.89 kg x ( m3 x d)(-1) to 2.23 kg x (m3 x d)(-1) while the setting time of 1 h was controlled in the aerobic zone. After the system was operated for 45 days, the mature nitritation granular sludge in aerobic zone showed a compact structure and yellow color while the nitrite accumulation rate was about 80% in the effluent. The associated inhibition of free ammonia (FA) and free nitrous acid (FNA) dominated the nitritation. Part of granules lost stability during the initial period of operation and flocs appeared in the aerobic zone. However, the flocs were transformed into newly generated small particles in the following reactor operation, demonstrating that organic carbon was benefit to granulation and the enrichment of slow-growing nitrifying played an important role in the stability of granules.

  11. Spectrophotometric determination of nitrite by its catalytic effect on the oxidation of congo red with bromate

    Directory of Open Access Journals (Sweden)

    Zenovia Moldovan

    2012-08-01

    Full Text Available A novel simple, sensitive and rapid kinetic-spectrophotometric method for the determination of trace amounts of nitrite is proposed. The method is based on its catalytic effect on the oxidation of congo red (CR by potassium bromate in acidic solution. The oxidation reaction is monitored spectrophotometrically by measuring the decrease in the absorbance of CR at a suitable λmax = 570 nm for the first 10–40 s from the start of the reaction. Under the optimum experimental conditions (sulfuric acid, 0.3 M; CR, 0.75Χ10-4 M; potassium bromate, 5Χ10-4 M and 25 oC, nitrite can be determined in the range of 0.015–0.75 µg mL−1 with the detection limit of 0.006 µg mL−1. The relative standard deviation of five replicate determination of 0.25 µg mL−1 nitrite was 2.5%. The proposed method was applied satisfactorily to the determination of nitrite in spiked drinking water samples.DOI: http://dx.doi.org/10.4314/bcse.v26i2.1

  12. Comparative surface electrochemistry of Co and Co3O4 nanoparticles: nitrite as an analytical probe

    CSIR Research Space (South Africa)

    Adekunle, AS

    2010-12-01

    Full Text Available (CV) and electrochemical impedance spectroscopy (EIS). The EPPGE-Co demonstrated enhanced electron transport and catalytic efficiency towards nitrite oxidation at pH 7.4 compared with the other electrodes studied. The catalytic rate constant (K...

  13. Nitrate, nitrite, and nitrous oxide transformations in sediments along a salinity gradient in the Weser Estuary

    DEFF Research Database (Denmark)

    Nielsen, Michael; Gieseke, Armin; de Beer, Dirk

    2009-01-01

    by activity of nitrite oxidisers in oxic surface layers. In contrast, high rates of NO2- release occurred in marine sediment, where NO2- production was predominantly associated with incomplete nitrification in oxic layers. Similarly, stimulated partial nitrification due to NH4+ addition led to NO2- liberation...

  14. Biosensor for laboratory and lander-based analysis of benthicnitrate plus nitrite distribution in marine environments

    DEFF Research Database (Denmark)

    Revsbech, N. P.; Glud, Ronnie Nøhr

    2009-01-01

    We present a psychotropic bacteria–based biosensor that can be used in low–temperature seawater for the analysis of nitrate + nitrite (NOx –). The sensor can be used to resolve concentrations below 1 µmol L–1 at low temperature (

  15. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1996-01-01

    Potential activities (enzyme contents) of ammonium (NH4+) oxidizing, nitrite (NO2-) oxidizing, nitrate (NO3-) reducing and denitrifying bacteria were measured in bulk and rhizosphere soil obtained from young barley plants in the field. The activities as well as pools of inorganic N (NH4+, NO2...

  16. Effects of Lactic Acid Bacteria on Residual Nitrite in a Summer Style Sausage.

    Science.gov (United States)

    1984-01-01

    Lactobacillus plantarum 4008 Lactobacillus bulgaricus 11842 Lactobacillus fermentum 9338 Lactobacillus casei subsp. rhamnosus 7469 Pediococcus acidilactici...the American Type Culture Collection Culture ATCC Number Lactobacillus acidophilus 4365 0 Lactobacillus casei E393 Lactobacillus leichmannii 4797...sources (e.g., Micrococcus varians, Lactobacillus plantarum) exhibited different nitrite reducing abilities. Lactobacillus leichmannii (

  17. Selective Reduction of Nitrite to Nitrogen with Carbon-Supported Pd-AOT Nanoparticles

    NARCIS (Netherlands)

    Perez-Coronado, A. M.; Calvo, L.; Baeza, J.A.; Palomar, J.; Lefferts, L.; Rodriguez, J-C.; Gilarranz, M.A.

    2017-01-01

    The catalytic reduction of nitrite in water with hydrogen has been studied using a new strategy to control selectivity. The catalysts used are based on size-controlled Pd-AOT nanoparticles, synthesized via sodium bis[2-ethylhexyl] sulfosuccinate (AOT)/isooctane reverse microemulsion, supported on

  18. Colorimetric determination of nitrate plus nitrite in water by enzymatic reduction, automated discrete analyzer methods

    Science.gov (United States)

    Patton, Charles J.; Kryskalla, Jennifer R.

    2011-01-01

    This report documents work at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) to validate enzymatic reduction, colorimetric determinative methods for nitrate + nitrite in filtered water by automated discrete analysis. In these standard- and low-level methods (USGS I-2547-11 and I-2548-11), nitrate is reduced to nitrite with nontoxic, soluble nitrate reductase rather than toxic, granular, copperized cadmium used in the longstanding USGS automated continuous-flow analyzer methods I-2545-90 (NWQL laboratory code 1975) and I-2546-91 (NWQL laboratory code 1979). Colorimetric reagents used to determine resulting nitrite in aforementioned enzymatic- and cadmium-reduction methods are identical. The enzyme used in these discrete analyzer methods, designated AtNaR2 by its manufacturer, is produced by recombinant expression of the nitrate reductase gene from wall cress (Arabidopsis thaliana) in the yeast Pichia pastoris. Unlike other commercially available nitrate reductases we evaluated, AtNaR2 maintains high activity at 37°C and is not inhibited by high-phenolic-content humic acids at reaction temperatures in the range of 20°C to 37°C. These previously unrecognized AtNaR2 characteristics are essential for successful performance of discrete analyzer nitrate + nitrite assays (henceforth, DA-AtNaR2) described here.

  19. Nonthermal effect of microwave irradiation on nitrite uptake in Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Pedrajas, C.; Cotrino, J.

    1989-01-01

    When cells of the unicellular green alga Chlamydomonas reinhardtii were subjected to microwave irradiation at 2.45 GHz, nitrite uptake kinetics still obeyed the Michaelis-Menten equation, the Km of the process remaining constant, whereas V max increased, which indicates an enhanced nonthermal permeability in irradiated cells. (author)

  20. Hopanoid-producing bacteria in the Red Sea include the major marine nitrite-oxidizers

    KAUST Repository

    Kharbush, Jenan J

    2018-04-10

    Hopanoids, including the extended side chain-containing bacteriohopanepolyols (BHPs), are bacterial lipids found abundantly in the geological record and across Earth\\'s surface environments. However, the physiological roles of this biomarker remain uncertain, limiting interpretation of their presence in current and past environments. Recent work investigating the diversity and distribution of hopanoid producers in the marine environment implicated low-oxygen regions as important loci of hopanoid production, and data from marine oxygen minimum zones (OMZs) suggested that the dominant hopanoid producers in these environments are nitrite-utilizing organisms, revealing a potential connection between hopanoid production and the marine nitrogen cycle. Here we use metagenomic data from the Red Sea to investigate the ecology of hopanoid producers in an environmental setting that is biogeochemically distinct from those investigated previously. The distributions of hopanoid production and nitrite oxidation genes in the Red Sea are closely correlated, and the majority of hopanoid producers are taxonomically affiliated with the major marine nitrite oxidizers, Nitrospinae and Nitrospirae. These results suggest that the relationship between hopanoid production and nitrite oxidation is conserved across varying biogeochemical conditions in dark ocean microbial ecosystems.

  1. IRIS Assessment Plan for Nitrate and Nitrite (Scoping and Problem Formulation Materials)

    Science.gov (United States)

    In September 2017, EPA released the draft IRIS Assessment Plan (IAP) for Nitrate and Nitrite for public review and comment. This document was discussed at an EPA Science Advisory Board (SAB) Chemical Assessment Advisory Committee (CAAC) meeting on September 27-28, 2017....

  2. Anaerobic Oxidation of Methane Coupled to Nitrite Reduction by Halophilic Marine NC10 Bacteria.

    Science.gov (United States)

    He, Zhanfei; Geng, Sha; Cai, Chaoyang; Liu, Shuai; Liu, Yan; Pan, Yawei; Lou, Liping; Zheng, Ping; Xu, Xinhua; Hu, Baolan

    2015-08-15

    Anaerobic oxidation of methane (AOM) coupled to nitrite reduction is a novel AOM process that is mediated by denitrifying methanotrophs. To date, enrichments of these denitrifying methanotrophs have been confined to freshwater systems; however, the recent findings of 16S rRNA and pmoA gene sequences in marine sediments suggest a possible occurrence of AOM coupled to nitrite reduction in marine systems. In this research, a marine denitrifying methanotrophic culture was obtained after 20 months of enrichment. Activity testing and quantitative PCR (qPCR) analysis were then conducted and showed that the methane oxidation activity and the number of NC10 bacteria increased correlatively during the enrichment period. 16S rRNA gene sequencing indicated that only bacteria in group A of the NC10 phylum were enriched and responsible for the resulting methane oxidation activity, although a diverse community of NC10 bacteria was harbored in the inoculum. Fluorescence in situ hybridization showed that NC10 bacteria were dominant in the enrichment culture after 20 months. The effect of salinity on the marine denitrifying methanotrophic culture was investigated, and the apparent optimal salinity was 20.5‰, which suggested that halophilic bacterial AOM coupled to nitrite reduction was obtained. Moreover, the apparent substrate affinity coefficients of the halophilic denitrifying methanotrophs were determined to be 9.8 ± 2.2 μM for methane and 8.7 ± 1.5 μM for nitrite. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Bioelectrode-based approach for enhancing nitrate and nitrite removal and electricity generation from eutrophic lakes

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    Nitrate and nitrite contamination of surface waters (e.g. lakes) has become a severe environmental and health problem, especially in developing countries. The recent demonstration of nitrate reduction at the cathode of microbial fuel cell (MFC) provides an opportunity to develop a new technology ...

  4. Hopanoid-producing bacteria in the Red Sea include the major marine nitrite-oxidizers

    KAUST Repository

    Kharbush, Jenan J; Thompson, Luke R; Haroon, Mohamed; Knight, Rob; Aluwihare, Lihini I

    2018-01-01

    Hopanoids, including the extended side chain-containing bacteriohopanepolyols (BHPs), are bacterial lipids found abundantly in the geological record and across Earth's surface environments. However, the physiological roles of this biomarker remain uncertain, limiting interpretation of their presence in current and past environments. Recent work investigating the diversity and distribution of hopanoid producers in the marine environment implicated low-oxygen regions as important loci of hopanoid production, and data from marine oxygen minimum zones (OMZs) suggested that the dominant hopanoid producers in these environments are nitrite-utilizing organisms, revealing a potential connection between hopanoid production and the marine nitrogen cycle. Here we use metagenomic data from the Red Sea to investigate the ecology of hopanoid producers in an environmental setting that is biogeochemically distinct from those investigated previously. The distributions of hopanoid production and nitrite oxidation genes in the Red Sea are closely correlated, and the majority of hopanoid producers are taxonomically affiliated with the major marine nitrite oxidizers, Nitrospinae and Nitrospirae. These results suggest that the relationship between hopanoid production and nitrite oxidation is conserved across varying biogeochemical conditions in dark ocean microbial ecosystems.

  5. Noble metal catalyzed hydrogen generation from formic acid in nitrite-containing simulated nuclear waste media

    International Nuclear Information System (INIS)

    King, R.B.; Bhattacharyya, N.K.; Wiemers, K.D.

    1994-08-01

    Simulants for the Hanford Waste Vitrification Plant (HWVP) feed containing the major non-radioactive components Al, Cd, Fe, Mn, Nd, Ni, Si, Zr, Na, CO 3 2- , NO 3 -, and NO 2 - were used as media to evaluate the stability of formic acid towards hydrogen evolution by the reaction HCO 2 H → H 2 + CO 2 catalyzed by the noble metals Ru, Rh, and/or Pd found in significant quantities in uranium fission products. Small scale experiments using 40-50 mL of feed simulant in closed glass reactors (250-550 mL total volume) at 80-100 degree C were used to study the effect of nitrite and nitrate ion on the catalytic activities of the noble metals for formic acid decomposition. Reactions were monitored using gas chromatography to analyze the CO 2 , H 2 , NO, and N 2 O in the gas phase as a function of time. Rhodium, which was introduced as soluble RhCl 3 ·3H 2 O, was found to be the most active catalyst for hydrogen generation from formic acid above ∼80 degree C in the presence of nitrite ion in accord with earlier observations. The inherent homogeneous nature of the nitrite-promoted Rh-catalyzed formic acid decomposition is suggested by the approximate pseudo first-order dependence of the hydrogen production rate on Rh concentration. Titration of the typical feed simulants containing carbonate and nitrite with formic acid in the presence of rhodium at the reaction temperature (∼90 degree C) indicates that the nitrite-promoted Rh-catalyzed decomposition of formic acid occurs only after formic acid has reacted with all of the carbonate and nitrite present to form CO 2 and NO/N 2 O, respectively. The catalytic activities of Ru and Pd towards hydrogen generation from formic acid are quite different than those of Rh in that they are inhibited rather than promoted by the presence of nitrite ion

  6. Soviet test yields

    Science.gov (United States)

    Vergino, Eileen S.

    Soviet seismologists have published descriptions of 96 nuclear explosions conducted from 1961 through 1972 at the Semipalatinsk test site, in Kazakhstan, central Asia [Bocharov et al., 1989]. With the exception of releasing news about some of their peaceful nuclear explosions (PNEs) the Soviets have never before published such a body of information.To estimate the seismic yield of a nuclear explosion it is necessary to obtain a calibrated magnitude-yield relationship based on events with known yields and with a consistent set of seismic magnitudes. U.S. estimation of Soviet test yields has been done through application of relationships to the Soviet sites based on the U.S. experience at the Nevada Test Site (NTS), making some correction for differences due to attenuation and near-source coupling of seismic waves.

  7. Classification of root canal microorganisms using electronic-nose and discriminant analysis

    Directory of Open Access Journals (Sweden)

    Özbilge Hatice

    2010-11-01

    Full Text Available Abstract Background Root canal treatment is a debridement process which disrupts and removes entire microorganisms from the root canal system. Identification of microorganisms may help clinicians decide on treatment alternatives such as using different irrigants, intracanal medicaments and antibiotics. However, the difficulty in cultivation and the complexity in isolation of predominant anaerobic microorganisms make clinicians resort to empirical medical treatments. For this reason, identification of microorganisms is not a routinely used procedure in root canal treatment. In this study, we aimed at classifying 7 different standard microorganism strains which are frequently seen in root canal infections, using odor data collected using an electronic nose instrument. Method Our microorganism odor data set consisted of 5 repeated samples from 7 different classes at 4 concentration levels. For each concentration, 35 samples were classified using 3 different discriminant analysis methods. In order to determine an optimal setting for using electronic-nose in such an application, we have tried 3 different approaches in evaluating sensor responses. Moreover, we have used 3 different sensor baseline values in normalizing sensor responses. Since the number of sensors is relatively large compared to sample size, we have also investigated the influence of two different dimension reduction methods on classification performance. Results We have found that quadratic type dicriminant analysis outperforms other varieties of this method. We have also observed that classification performance decreases as the concentration decreases. Among different baseline values used for pre-processing the sensor responses, the model where the minimum values of sensor readings in the sample were accepted as the baseline yields better classification performance. Corresponding to this optimal choice of baseline value, we have noted that among different sensor response model and

  8. Physiological ecology of microorganisms in Subglacial Lake Whillans

    Directory of Open Access Journals (Sweden)

    Trista J Vick-Majors

    2016-10-01

    in the SLW water column. Heterotrophic metabolisms utilizing acetate and formate as electron donors yielded less energy than chemolithotrophic metabolisms when calculated in terms of energy density, which supports experimental results that showed chemoautotrophic activity in excess of heterotrophic activity. The microbial communities of subglacial lake ecosystems provide important natural laboratories to study the physiological and biogeochemical behavior of microorganisms inhabiting cold, dark environments.

  9. PENURUNAN KADAR AMONIA, NITRIT, DAN NITRAT LIMBAH CAIR INDUSTRI TAHU MENGGUNAKAN ARANG AKTIF DARI AMPAS KOPI

    Directory of Open Access Journals (Sweden)

    Irmanto

    2009-11-01

    Full Text Available The tofu industry is one of food industry which the product of organic waste to environment pollution. One of alternative methode which used to overcome tofu industrial waste water pollution is adsorption methode using activated carbon from coffee waste. The aim of this researched is to know about the activated carbon from coffee waste quality which observe of rendemen, water content, ash content, and iodium adsorption, to know optimum contact of time and pH of coffee waste to decrease ammonia, nitrite and nitrate contents in tofu industry waste water and to know decrease percentage of ammonia, nitrite and nitrate contents in tofu industrial waste water using activated carbon from coffee waste. The activated carbon made by soaking of coffee waste in HCl 0.1 M solution for 2 days. The activated carbon coaled in muffle furnace at temperature 350°C. The activated carbon analyzed consist of rendemen, water content, ash content, and iodium adsorption. Optimum contact of time and pH of coffee waste determined in order to get optimum adsorption ammonia, nitrite and nitrate in tofu industrial waste water. Contact time variation are 1, 10, 30, 45, 60, 90, 120 minutes and pH variation are 4, 5, 6, 7, 8, 9, 10. The result showed that the activated carbon from coffee waste fulfill the criteria SNI number 06-3730-1995. The activated carbon from coffee waste could be used to decrease the ammonia, nitrite, and nitrate contents in tofu industrial waste water at the optimum contact of time of 30 minutes and pH 7. Decreasing percentage of ammonia, nitrite and nitrate contents in tofu industrial waste water are 64,69% , 52,35% and 86,40% respectively.

  10. Combined exposure to ambient UVB radiation and nitrite negatively affects survival of amphibian early life stages

    International Nuclear Information System (INIS)

    Macias, Guadalupe; Marco, Adolfo; Blaustein, Andrew R.

    2007-01-01

    Many aquatic species are sensitive to ambient levels of ultraviolet-B radiation (UVB) and chemical fertilizers. However, recent studies indicate that the interaction among multiple stressors acting simultaneously could be contributing to the population declines of some animal species. Therefore, we tested the potential synergistic effects between ambient levels of UVB and a contaminant, sodium nitrite in the larvae of two amphibian species, the common European toad Bufo bufo and the Iberian green frog Rana perezi. We studied R. perezi from both mountain and coastal populations to examine if populations of the same species varied in their response to stressors in different habitats. Both species were sensitive to the two stressors acting alone, but the interaction between the two stressors caused a multiplicative impact on tadpole survival. For B. bufo, the combination of UVB and nitrite was up to seven times more lethal than mortality for each stressor alone. In a coastal wetland, the combination of UVB and nitrite was four times more toxic for R. perezi than the sum of the effect on mortality for each stressor alone. One mg/L of nitrite killed half the population of R. perezi at Gredos Mountains at day 10 in the absence of UVB. In the presence of UVB, 50% of the tadpoles from the same experiment died at day 7. Similar toxic response were found for R. perezi in two highly contrasted environments suggesting this synergistic interaction can be a widespread phenomenon. The interaction of excess chemical fertilizers and manure with ambient UVB radiation could be contributing to the global decline of some amphibian species. We suggest that potential exposure to UVB radiation be accounted for when assessing water quality criteria regarding nitrite pollution

  11. Impact of hemoglobin nitrite to nitric oxide reductase on blood transfusion for resuscitation from hemorrhagic shock

    Directory of Open Access Journals (Sweden)

    Chad Brouse

    2015-01-01

    Full Text Available Background: Transfusion of blood remains the gold standard for fluid resuscitation from hemorrhagic shock. Hemoglobin (Hb within the red blood cell transports oxygen and modulates nitric oxide (NO through NO scavenging and nitrite reductase. Aims: This study was designed to examine the effects of incorporating a novel NO modulator, RRx-001, on systemic and microvascular hemodynamic response after blood transfusion for resuscitation from hemorrhagic shock in a hamster window chamber model. In addition, to RRx-001 the role of low dose of nitrite (1 × 10−9 moles per animal supplementation after resuscitation was studied. Materials and Methods: Severe hemorrhage was induced by arterial controlled bleeding of 50% of the blood volume (BV and the hypovolemic state was maintained for 1 h. The animals received volume resuscitation by an infusion of 25% of BV using fresh blood alone or with added nitrite, or fresh blood treated with RRx-001 (140 mg/kg or RRx-001 (140 mg/kg with added nitrite. Systemic and microvascular hemodynamics were followed at baseline and at different time points during the entire study. Tissue apoptosis and necrosis were measured 8 h after resuscitation to correlate hemodynamic changes with tissue viability. Results: Compared to resuscitation with blood alone, blood treated with RRx-001 decreased vascular resistance, increased blood flow and functional capillary density immediately after resuscitation and preserved tissue viability. Furthermore, in RRx-001 treated animals, both mean arterial pressure (MAP and met Hb were maintained within normal levels after resuscitation (MAP >90 mmHg and metHb <2%. The addition of nitrite to RRx-001 did not significantly improve the effects of RRx-001, as it increased methemoglobinemia and lower MAP. Conclusion: RRx-001 alone enhanced perfusion and reduced tissue damage as compared to blood; it may serve as an adjunct therapy to the current gold standard treatment for resuscitation from

  12. Nitrate uptake and nitrite release by tomato roots in response to anoxia.

    Science.gov (United States)

    Morard, Philippe; Silvestre, Jérôme; Lacoste, Ludovic; Caumes, Edith; Lamaze, Thierry

    2004-07-01

    Excised root systems of tomato plants (early fruiting stage, 2nd flush) were subjected to a gradual transition from normoxia to anoxia by seating the hydroponic root medium while aeration was stopped. Oxygen level in the medium and respiration rate decreased and reached very low values after 12 h of treatment, indicating that the tissues were anoxic thereafter. Nitrate loss from the nutrient solution was strongly stimulated by anoxia (after 26 h) concomitantly with a release of nitrite starting only after 16 h of treatment. This effect was not observed in the absence of roots or in the presence of tungstate, but occurred with whole plants or with sterile in vitro cultured root tissues. These results indicate that biochemical processes in the root involve nitrate reductase. NR activity assayed in tomato roots increased during anoxia. This phenomenon appeared in intact plants and in root tissues of detopped plants. The stimulating effect of oxygen deprivation on nitrate uptake was specific; anoxia simultaneously entailed a release of orthophosphate, sulfate, and potassium by the roots. Anoxia enhanced nitrate reduction by root tissues, and nitrite ions were released into xylem sap and into medium culture. In terms of the overall balance, the amount of nitrite recovered represented only half of the amount of nitrate utilized. Nitrite reduction into nitric oxide and perhaps into nitrogen gas could account for this discrepancy. These results appear to be the first report of an increase in nitrate uptake by plant roots under anoxia of tomato at the early fruiting stage, and the rates of nitrite release in nutrient medium by the asphyxiated roots are the fastest yet reported.

  13. Oxidative stress and nitrite dynamics under maximal load in elite athletes: relation to sport type.

    Science.gov (United States)

    Cubrilo, Dejan; Djordjevic, Dusica; Zivkovic, Vladimir; Djuric, Dragan; Blagojevic, Dusko; Spasic, Mihajlo; Jakovljevic, Vladimir

    2011-09-01

    Maximal workload in elite athletes induces increased generation of reactive oxygen/nitrogen species (RONS) and oxidative stress, but the dynamics of RONS production are not fully explored. The aim of our study was to examine the effects of long-term engagement in sports with different energy requirements (aerobic, anaerobic, and aerobic/anaerobic) on oxidative stress parameters during progressive exercise test. Concentrations of lactates, nitric oxide (NO) measured through stabile end product-nitrites (NO(2) (-)), superoxide anion radical (O(2) (•-)), and thiobarbituric reactive substances (TBARS) as index of lipid peroxidation were determined in rest, after maximal workload, and at 4 and 10th min of recovery in blood plasma of top level competitors in rowing, cycling, and taekwondo. Results showed that sportmen had similar concentrations of lactates and O(2) (•-) in rest. Nitrite concentrations in rest were the lowest in taekwondo fighters, while rowers had the highest levels among examined groups. The order of magnitude for TBARS level in the rest was bicycling > taekwondo > rowing. During exercise at maximal intensity, the concentration of lactate significantly elevated to similar levels in all tested sportsmen and they were persistently elevated during recovery period of 4 and 10 min. There were no significant changes in O(2) (•-), nitrite, and TBARS levels neither at the maximum intensity of exercise nor during the recovery period comparing to the rest period in examined individuals. Our results showed that long term different training strategies establish different basal nitrites and lipid peroxidation levels in sportmen. However, progressive exercise does not influence basal nitrite and oxidative stress parameters level neither at maximal load nor during the first 10 min of recovery in sportmen studied.

  14. Combined exposure to ambient UVB radiation and nitrite negatively affects survival of amphibian early life stages

    Energy Technology Data Exchange (ETDEWEB)

    Macias, Guadalupe [Donana Biological Station, CSIC, Spanish Council for Scientific Research. P.O. Box 1056, Sevilla 41013 (Spain); Marco, Adolfo [Donana Biological Station, CSIC, Spanish Council for Scientific Research. P.O. Box 1056, Sevilla 41013 (Spain)], E-mail: amarco@ebd.csic.es; Blaustein, Andrew R. [Department of Zoology, Oregon State University, Corvallis, Oregon, 97331 (United States)

    2007-10-15

    Many aquatic species are sensitive to ambient levels of ultraviolet-B radiation (UVB) and chemical fertilizers. However, recent studies indicate that the interaction among multiple stressors acting simultaneously could be contributing to the population declines of some animal species. Therefore, we tested the potential synergistic effects between ambient levels of UVB and a contaminant, sodium nitrite in the larvae of two amphibian species, the common European toad Bufo bufo and the Iberian green frog Rana perezi. We studied R. perezi from both mountain and coastal populations to examine if populations of the same species varied in their response to stressors in different habitats. Both species were sensitive to the two stressors acting alone, but the interaction between the two stressors caused a multiplicative impact on tadpole survival. For B. bufo, the combination of UVB and nitrite was up to seven times more lethal than mortality for each stressor alone. In a coastal wetland, the combination of UVB and nitrite was four times more toxic for R. perezi than the sum of the effect on mortality for each stressor alone. One mg/L of nitrite killed half the population of R. perezi at Gredos Mountains at day 10 in the absence of UVB. In the presence of UVB, 50% of the tadpoles from the same experiment died at day 7. Similar toxic response were found for R. perezi in two highly contrasted environments suggesting this synergistic interaction can be a widespread phenomenon. The interaction of excess chemical fertilizers and manure with ambient UVB radiation could be contributing to the global decline of some amphibian species. We suggest that potential exposure to UVB radiation be accounted for when assessing water quality criteria regarding nitrite pollution.

  15. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  16. A multi-criteria analysis approach for ranking and selection of microorganisms for the production of oils for biodiesel production.

    Science.gov (United States)

    Ahmad, Farah B; Zhang, Zhanying; Doherty, William O S; O'Hara, Ian M

    2015-08-01

    Oleaginous microorganisms have potential to be used to produce oils as alternative feedstock for biodiesel production. Microalgae (Chlorella protothecoides and Chlorella zofingiensis), yeasts (Cryptococcus albidus and Rhodotorula mucilaginosa), and fungi (Aspergillus oryzae and Mucor plumbeus) were investigated for their ability to produce oil from glucose, xylose and glycerol. Multi-criteria analysis (MCA) using analytic hierarchy process (AHP) and preference ranking organization method for the enrichment of evaluations (PROMETHEE) with graphical analysis for interactive aid (GAIA), was used to rank and select the preferred microorganisms for oil production for biodiesel application. This was based on a number of criteria viz., oil concentration, content, production rate and yield, substrate consumption rate, fatty acids composition, biomass harvesting and nutrient costs. PROMETHEE selected A. oryzae, M. plumbeus and R. mucilaginosa as the most prospective species for oil production. However, further analysis by GAIA Webs identified A. oryzae and M. plumbeus as the best performing microorganisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Increased hydrazine during partial nitritation process in upflow air-lift reactor fed with supernatant of anaerobic digester effluent

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeongdong [University of Alberta, Alberta (Canada); Jung, Sokhee [Samsung SDS, Seoul (Korea, Republic of); Ahn, Young-Ho [Yeungnam University, Gyungsan (Korea, Republic of)

    2013-06-15

    The optimal balance of ammonium and nitrite is essential for successful operation of the subsequent anammox process. We conducted a partial nitritation experiment using an upflow air-lift reactor to provide operational parameters for achieving the optimal ratio of ammonium to nitrite, by feeding supernatant of anaerobic digester effluent, high-nitrogen containing rejection water. Semi-continuous operation results show that HRT should be set between 15 and 17 hours to achieve the optimum ration of 1.3 of NO{sub 2}-N/NH{sub 4}-N. In the UAR, nitritation was the dominant reaction due to high concentration of ammonia and low biodegradable organics. The influent contained low concentrations of hydroxylamine and hydrazine. However, hydrazine increased during partial nitritation by ⁓60-130% although there was no potential anammox activity in the reactor. The partial nitritation process successfully provided the ratio of nitrogen species for the anammox reaction, and relived the nitrite restraint on the anammox activity by increasing hydrazine concentration.

  18. Simultaneous determination of nitrite and nitrate residues in meat products marketed in Shiraz by high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    H Golkari

    2012-08-01

    Full Text Available Nitrite and nitrate are the key ingredients and play a multifunctional role in meat curing technology. Despite all of their desirable effects, the addition of nitrite to meat is the major cause of carcinogenic N-nitrosamines formation. In this study, the amount of residual nitrite and nitrate in meat products containing 61% to 80% meat were assessed. The samples were obtained at the fourth day of their production from Shiraz retails and analyzed using high performance liquid chromatography (HPLC. According to the results, the mean concentrations of residual nitrite and nitrate were estimated at 36.96 ± 7.38 and 85.81 ± 5.5 mg/kg in small-diameter (1.5-2 cm sausages. Meanwhile, in large-diameter (5.5-8 cm sausages the residues were estimated at 20.97 ± 3.28 and 124.85±5.3 mg/kg, respectively. In all analyzed samples, the residual nitrite level was found below the permitted level of 120 mg/kg which indicated the application of allowed concentrations of nitrite in such products. The mean values of residual nitrite and nitrate concentrations were statistically different (p

  19. Nigella sativa oil attenuates chronic nephrotoxicity induced by oral sodium nitrite: Effects on tissue fibrosis and apoptosis.

    Science.gov (United States)

    Al-Gayyar, Mohammed M H; Hassan, Hanan M; Alyoussef, Abdullah; Abbas, Ahmed; Darweish, Mohamed M; El-Hawwary, Amany A

    2016-03-01

    Sodium nitrite, a food preservative, has been reported to increase oxidative stress indicators such as lipid peroxidation, which can affect different organs including the kidney. Here, we investigated the toxic effects of oral sodium nitrite on kidney function in rats and evaluated potential protective effects of Nigella sativa oil (NSO). Seventy adult male Sprague-Dawley rats received 80 mg/kg sodium nitrite orally in the presence or absence of NSO (2.5, 5, and 10 ml/kg) for 12 weeks. Morphological changes were assessed by hematoxylin and eosin, Mallory trichome, and periodic acid-Schiff staining. Renal tissues were used for measurements of oxidative stress markers, C-reactive protein, cytochrome C oxidase, transforming growth factor (TGF)-beta1, monocyte chemotactic protein (MCP)-1, pJNK/JNK, and caspase-3. NSO significantly reduced sodium nitrite-induced elevation in serum urea and creatinine, as well as increasing normal appearance of renal tissue. NSO also prevented reductions in glycogen levels caused by sodium nitrite alone. Moreover, NSO treatment resulted in dose-dependent significant reductions in fibrosis markers after sodium nitrite-induced 3- and 2.7-fold increase in MCP-1 and TGF-beta1, respectively. Finally, NSO partially reduced the elevated caspase-3 and pJNK/JNK. NSO ameliorates sodium nitrite-induced nephrotoxicity through blocking oxidative stress, attenuation of fibrosis/inflammation, restoration of glycogen level, amelioration of cytochrome C oxidase, and inhibition of apoptosis.

  20. In vitro effect of sodium nitrite on platelet aggregation in human platelet rich plasma--preliminary report.

    Science.gov (United States)

    Kadan, M; Doğanci, S; Yildirim, V; Özgür, G; Erol, G; Karabacak, K; Avcu, F

    2015-10-01

    The role of nitrates and nitric oxide on platelet functions has obtained an increasing attention with respect to their potential effects on cardiovascular disorders. In this study we aimed to analyze the effect of sodium nitrite on platelet functions in human platelets. This in vitro study was designed to show the effect of sodium nitrite on platelet functions in seven healthy volunteers. Blood samples were centrifuged to prepare platelet rich plasma and platelet poor plasma. Platelet rich plasma was diluted with the platelet poor plasma to have a final count of 300,000 ± 25,000 platelets. Platelet rich plasma was incubated with six different increasing doses (from 10 μM to 5 mM) of sodium nitrite for 1 hour at 37°C. Then stimulating agents including collagen (3 μg ml-1), adenosine diphosphate (10 μM), and epinephrine (10 μM) were added to the cuvette. Changes in light transmission were observed for 10 minutes. In addition spontaneous aggregation were performed in control group with all aggregating agents separately. Effect of sodium nitrite on agonist-induced platelet aggregation depends on the concentration of sodium nitrite. Compared with control group, agonist-induced platelet aggregations were significantly suppressed by sodium nitrite at the concentration of 5, 1.0 and 0.5 mM. Our results suggested that sodium nitrite has inhibitory effects in vitro on platelet aggregation in a dose-dependent manner.