WorldWideScience

Sample records for microencapsulated fast melt

  1. Hot-melt extrusion microencapsulation of quercetin for taste-masking.

    Khor, Chia Miang; Ng, Wai Kiong; Kanaujia, Parijat; Chan, Kok Ping; Dong, Yuancai

    2017-02-01

    Besides its poor dissolution rate, the bitterness of quercetin also poses a challenge for further development. Using carnauba wax, shellac or zein as the shell-forming excipient, this work aimed to microencapsulate quercetin by hot-melt extrusion for taste-masking. In comparison with non-encapsulated quercetin, the microencapsulated powders exhibited significantly reduced dissolution in the simulated salivary pH 6.8 medium indicative of their potentially good taste-masking efficiency in the order of zein > carnauba wax > shellac. In vitro bitterness analysis by electronic tongue confirmed the good taste-masking efficiency of the microencapsulated powders. In vitro digestion results showed that carnauba wax and shellac-microencapsulated powders presented comparable dissolution rate with the pure quercetin in pH 1.0 (gastric) and 6.8 (intestine) medium; while zein-microencapsulated powders exhibited a remarkably slower dissolution rate. Crystallinity of quercetin was slightly reduced after microencapsulation while its chemical structure remained unchanged. Hot-melt extrusion microencapsulation could thus be an attractive technique to produce taste-masked bioactive powders.

  2. Determination of melting point of mixed-oxide fuel irradiated in a fast breeder reactor

    Tachibana, Toshimichi

    1985-01-01

    The melting point of fuel is important to set its in-reactor maximum temperature in fuel design. The fuel melting point measuring methods are broadly the filament method and the capsule sealing method. The only instance of measuring the melting point of irradiated mixed oxide (U, Pu)O 2 fuel by the filament method is by GE in the United States. The capsule sealing method, while the excellent means, is difficult in weld sealing the irradiated fuel in a capsule within the cell. In the fast reactor development program, the remotely operated melting point measuring apparatus in capsule sealing the mixed (U, Pu)O 2 fuel irradiated in the experimental FBR Joyo was set in the cell and the melting point was measured, for the first time in the world. (Mori, K.)

  3. Melt state behaviour of PEEK and processing window interpretation for fast compression moulding process

    Bessard, Emeline; De Almeida, Olivier; Bernhart, Gerard

    2011-01-01

    Fast mould heating is nowadays possible by using induction technology for example with the Cage System registered developed by RocTool. It allows heating and cooling kinetics of about 100 deg. C per minute and new perspectives are thus possible to optimize the compression moulding process of long fibre reinforced thermoplastic composites. Indeed, a high forming temperature may favour polymer creep and so on composite consolidation. Nevertheless, the processing time of PEEK composite above melt temperature must be reduced to a few minutes due to the fast thermal degradation of the matrix. On the other hand, high cooling rates may have negative effect on matrix crystallinity. The proposed procedure consist in performing a few minutes isotherm around 300 deg. C during the fast cooling. It would favour a high degree of crystallinity of PEEK without extending the cycle time.

  4. A fast running method for predicting the efficiency of core melt spreading for application in ASTEC

    Spengler, C.

    2010-01-01

    The integral Accident Source Term Evaluation Code (ASTEC) is jointly developed by the French Institut de Radioprotection et de Surete Nucleaire (IRSN) and the German Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH to simulate the complete scenario of a hypothetical severe accident in a nuclear light water reactor, from the initial event until the possible radiological release of fission products out of the containment. In the frame of the new series of ASTEC V2 versions appropriate model extensions to the European Pressurised Water Reactor (EPR) are under development. With view to assessing with ASTEC the proper operation of the ex-vessel melt retention and coolability concept of the EPR with regard to melt spreading an approximation of the area finally covered by the corium and of the distance run by the corium front before freezing is required. A necessary capability of ASTEC is in a first step to identify such boundary cases, for which there is a potential that the melt will freeze before the spreading area is completely filled. This paper presents a fast running method for estimating the final extent of the area covered with melt on which a simplified criterion in ASTEC for detecting such boundary cases will be based. If a boundary case is detected the application of a more-detailed method might be necessary to assess further the consequences for the accident sequence. The major objective here is to provide a reliable method for estimating the final result of the spreading and not to provide highly detailed methods to simulate the dynamics of the transient process. (orig.)

  5. Applications of Cell Microencapsulation.

    Opara, Emmanuel C

    2017-01-01

    The goal of this chapter is to provide an overview of the different purposes for which the cell microencapsulation technology can be used. These include immunoisolation of non-autologous cells used for cell therapy; immobilization of cells for localized (targeted) delivery of therapeutic products to ablate, repair, or regenerate tissue; simultaneous delivery of multiple therapeutic agents in cell therapy; spatial compartmentalization of cells in complex tissue engineering; expansion of cells in culture; and production of different probiotics and metabolites for industrial applications. For each of these applications, specific examples are provided to illustrate how the microencapsulation technology can be utilized to achieve the purpose. However, successful use of the cell microencapsulation technology for whatever purpose will ultimately depend upon careful consideration for the choice of the encapsulating polymers, the method of fabrication (cross-linking) of the microbeads, which affects the permselectivity, the biocompatibility and the mechanical strength of the microbeads as well as environmental parameters such as temperature, humidity, osmotic pressure, and storage solutions.The various applications discussed in this chapter are illustrated in the different chapters of this book and where appropriate relevant images of the microencapsulation products are provided. It is hoped that this outline of the different applications of cell microencapsulation would provide a good platform for tissue engineers, scientists, and clinicians to design novel tissue constructs and products for therapeutic and industrial applications.

  6. Evaluation of thermal physical properties for fast reactor fuels. Melting point and thermal conductivities

    Kato, Masato; Morimoto, Kyoichi; Komeno, Akira; Nakamichi, Shinya; Kashimura, Motoaki; Abe, Tomoyuki; Uno, Hiroki; Ogasawara, Masahiro; Tamura, Tetsuya; Sugata, Hirotada; Sunaoshi, Takeo; Shibata, Kazuya

    2006-10-01

    Japan Atomic Energy Agency has developed a fast breeder reactor (FBR), and plutonium and uranium mixed oxide (MOX) having low density and 20-30%Pu content has used as a fuel of the FBR, Monju. In plutonium, Americium has been accumulated during long-term storage, and Am content will be increasing up to 2-3% in the MOX. It is essential to evaluate the influence of Am content on physical properties of MOX on the development of FBR in the future. In this study melting points and thermal conductivities which are important data on the fuel design were measured systematically in wide range of composition, and the effects of Am accumulated were evaluated. The solidus temperatures of MOX were measured as a function of Pu content, oxygen to metal ratio (O/M) and Am content using thermal arrest technique. The sample was sealed in a tungsten capsule in vacuum for measuring solidus temperature. In the measurements of MOX with Pu content of more than 30%, a rhenium inner capsule was used to prevent the reaction between MOX and tungsten. In the results, it was confirmed that the melting points of MOX decrease with as an increase of Pu content and increase slightly with a decrease of O/M ratio. The effect of Am content on the fuel design was negligible small in the range of Am content up to 3%. Thermal conductivities of MOX were evaluated from thermal diffusivity measured by laser flash method and heat capacity calculated by Neumann- Kopp's law. The thermal conductivity of MOX decreased slightly in the temperature of less than 1173K with increasing Am content. The effect of Am accumulated in long-term storage fuel was evaluated from melting points and thermal conductivities measured in this study. It is concluded that the increase of Am in the fuel barely affect the fuel design in the range of less than 3%Am content. (author)

  7. Microencapsulation system and method

    Morrison, Dennis R. (Inventor)

    2009-01-01

    A microencapsulation apparatus is provided which is configured to form co-axial multi-lamellar microcapsules from materials discharged from first and second microsphere dispensers of the apparatus. A method of fabricating and processing microcapsules is also provided which includes forming distinct droplets comprising one or more materials and introducing the droplets directly into a solution bath to form a membrane around the droplets such that a plurality of microcapsules are formed. A microencapsulation system is provided which includes a microcapsule production unit, a fluidized passage for washing and harvesting microcapsules dispensed from the microcapsule production unit and a flow sensor for sizing and counting the microcapsules. In some embodiments, the microencapsulation system may further include a controller configured to simultaneously operate the microcapsule production unit, fluidized passage and flow sensor to process the microcapsules in a continuous manner.

  8. Experiment of forced convection heat transfer using microencapsulated phase-change-material slurries

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira.

    1997-01-01

    The present study describes an experiment on forced convective heat transfer using a water slurry of Microencapsulated Phase-change-material. A normal paraffin hydrocarbon is microencapsulated by melamine resin, melting point of 28.1degC. The heat transfer coefficient and pressure drop in a circular tube were evaluated. The heat transfer coefficient using the slurry in case with and without phase change were compared to in case of using pure water. (author)

  9. A holistic model for the role of the axial melt lens at fast-spreading mid-ocean ridges

    MacLeod, C. J.; Loocke, M. P.; Lissenberg, J. C. J.

    2016-12-01

    Axial melt lenses (AML) are melt or crystal mush1 bodies located at the dyke-gabbro transition beneath intermediate- and fast-spreading mid-ocean ridges (MORs)2,3. Although it is generally thought that AMLs play a major role in the storage and differentiation of mid-ocean ridge basalts (MORB)1, the melt compositions within the AML and its role in the accretion of the lower crust are heavily debated4-6. Here we present the first comprehensive study of the AML horizon at a fast-spreading MOR (Hess Deep, equatorial Pacific Ocean). We show that plagioclase and pyroxene within the AML are much too evolved to be in equilibrium with MORB, with mean An (54.85) and Mg# (65.01) consistent with derivation from basaltic andesite to andesite melts (Mg# 43-26). We propose that, in between decadal eruptions, the AML is predominantly crystal mush and is fed by small volumes of evolved interstitial melts. Short-lived, focused injection of primitive melt leads to mixing of primitive melts with the extant highly fractionated melt, and triggers eruptions. This model reconciles the paradoxical compositional mismatch between the volcanic and plutonic records with the geophysical characteristics of the AML, the short residence times of Pacific MORB phenocrysts, and the incompatible trace element over-enrichments in MORB. 1Marjanović, M. et al., 2015. Distribution of melt along the East Pacific Rise from 9°30' to 10°N from an amplitude variation with angle of incidence (AVA) technique. Geophys. J. Int. 203. 2Detrick, R. S. et al., 1987. Multi-channel seismic imaging of a crustal magma chamber along the EPR. Nature 326. 3Sinton, J. M. & Detrick, R. S., 1992. Mid-ocean ridge magma chambers. J. Geophys. Res. 97. 4Coogan, L. A., Thompson, G. & MacLeod, C. J., 2002. A textural and geochemical investigation of high level gabbros from the Oman ophiolite: implications for the role of the axial magma chamber at fast-spreading ridges. Lithos 63. 5Pan, Y. & Batiza, R., 2002. Mid-ocean ridge magma

  10. Cell Microencapsulation: Dripping Methods.

    Bidoret, A; Martins, E; De Smet, B Poncelet; Poncelet, D

    2017-01-01

    Microencapsulation processes may be divided into three steps, namely: incorporation of the bioactive substance in the matrix, dispersion of the matrix in droplets, and conversion in microcapsules. This contribution is focused on the second step and more specifically using the dripping approach to form droplets by extrusion of liquid through a nozzle. Different technologies of dripping are described, using as an example the production of alginate beads.

  11. Package of programs for calculating accidents involving melting of the materials in a fast-reactor vessel

    Vlasichev, G.N.

    1994-01-01

    Methods for calculating one-dimensional nonstationary temperature distribution in a system of physically coupled materials are described. Six computer programs developed for calculating accident processes for fast reactor core melt are described in the article. The methods and computer programs take into account melting, solidification, and, in some cases, vaporization of materials. The programs perform calculations for heterogeneous systems consisting of materials with arbitrary but constant composition and heat transfer conditions at material boundaries. Additional modules provide calculations of specific conditions of heat transfer between materials, the change in these conditions and configuration of the materials as a result of coolant boiling, melting and movement of the fuel and structural materials, temperature dependences of thermophysical properties of the materials, and heat release in the fuel. 11 refs., 3 figs

  12. High Resolution Melting Analysis for fast and cheap polymorphism screening of marine populations

    sprotocols

    2015-01-01

    Authors: Anne-Leila Meistertzheim, Isabelle Calves, Sébastien Artigaud, Carolyn S. Friedman, Christine Paillard, Jean Laroche & Claude Ferec ### Abstract This protocol permits the mutation scanning of PCR products by high-resolution DNA melting analysis requiring the inclusion of a saturating intercalating dye in the PCR mix without labelled probe. During a scanning process, fluorescent melting curves of PCR amplicons are analyzed. Mutations modifying melting curve shapes, are allowed...

  13. The role of coal pollution in intensification of the fast ice melting in the Sveabukta bay (Van Mijenfjorden, Spitsbergen

    P. V. Bogorodsky

    2014-01-01

    Full Text Available The processes of heat- and mass transfer in Sveabukta Bay sea ice cover during Spring 2010 the particularity of which is conditioned by pollution from open coal storages situated on shore have been studied. Typical features of land fast ice radiation and thermodynamic properties were described and estimates for vertical distribution of coal particles concentration within ice body were obtained. The coal particles were shown to serve as tracers of transfer processes in the sea ice thickness. It was revealed that the integral value of the absorbed solar radiation (shortwave radiation balance is virtually independent of the features of the incoming solar radiation spectrum and the spectral dependence of the reflectivity of the ice cover of various contaminations. For computation of fast ice evolution characteristics the conceptual thermodynamic model which describes melting processes in the obvious form was used. According to calculations the melt pond forming on dirty ice under typical meteorological conditions begins one – three weeks earlier than that of clear ice depending on degree of contamination characterized by reflective ability of underlying surface. With decreasing of albedo the temperature of melt rises despite the fact that due to time difference the melting of clear ice occurs at higher temperatures.

  14. Fast and slow crystal growth kinetics in glass-forming melts

    Orava, J.; Greer, A. L., E-mail: alg13@cam.ac.uk [WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan and Department of Materials Science and Metallurgy, 27 Charles Babbage Road, University of Cambridge, Cambridge CB3 0FS (United Kingdom)

    2014-06-07

    Published values of crystal growth rates are compared for supercooled glass-forming liquids undergoing congruent freezing at a planar crystal-liquid interface. For the purposes of comparison pure metals are considered to be glass-forming systems, using data from molecular-dynamics simulations. For each system, the growth rate has a maximum value U{sub max} at a temperature T{sub max} that lies between the glass-transition temperature T{sub g} and the melting temperature T{sub m}. A classification is suggested, based on the lability (specifically, the propensity for fast crystallization), of the liquid. High-lability systems show “fast” growth characterized by a high U{sub max}, a low T{sub max} / T{sub m}, and a very broad peak in U vs. T / T{sub m}. In contrast, systems showing “slow” growth have a low U{sub max}, a high T{sub max} / T{sub m}, and a sharp peak in U vs. T / T{sub m}. Despite the difference of more than 11 orders of magnitude in U{sub max} seen in pure metals and in silica, the range of glass-forming systems surveyed fit into a common pattern in which the lability increases with lower reduced glass-transition temperature (T{sub g} / T{sub m}) and higher fragility of the liquid. A single parameter, a linear combination of T{sub g} / T{sub m} and fragility, can show a good correlation with U{sub max}. For all the systems, growth at U{sub max} is coupled to the atomic/molecular mobility in the liquid. It is found that, across the diversity of glass-forming systems, T{sub max} / T{sub g} = 1.48 ± 0.15.

  15. Fabrication and performances of microencapsulated paraffin composites with polymethylmethacrylate shell based on ultraviolet irradiation-initiated

    Wang Yi, E-mail: wangyi@lut.cn [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Shi Huan [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Xia Tiandong [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); Zhang Ting; Feng Huixia [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China)

    2012-07-16

    In order to identify the validity of fabricating microencapsulated phase change material by ultraviolet irradiation-initiated method, the paraffin wax/polymethyl methacrylate microcapsules were prepared. The structural characteristics and thermal properties of the microcapsules were also determined by various techniques. The results of differential scanning calorimetry analyses indicate that the melting and freezing temperatures and latent heats of the microcapsules are 55.8 Degree-Sign C, 50.1 Degree-Sign C and 106.9 J g{sup -1}, 112.3 J g{sup -1}, respectively. Morphology and chemical characteristic analysis indicate that the spherical microcapsules were formed with average diameter of 0.21 {mu}m and maximum microencapsulation ratio of 66 wt.% without leakage of core materials. The results of accelerated thermal cyclic test show that the microcapsules have good thermal reliability and chemical stability although they were subjected 3000 melting/freezing cycles. Based on all these results, it can be concluded that the microencapsulated paraffin composites have good potential for thermal energy storage purposes and ultraviolet irradiation-initiated method is a prominent candidate for preparing microencapsulated PCMs. - Highlights: Black-Right-Pointing-Pointer Microencapsulated paraffin with PMMA shell was synthesized via self-assembly. Black-Right-Pointing-Pointer Microcapsules with excellent properties can be prepared by UV initiated method. Black-Right-Pointing-Pointer The microencapsulation ratio is as high as 66 wt.%. Black-Right-Pointing-Pointer Thermal properties are as high as comparable with microcapsules in the literature.

  16. Fabrication and performances of microencapsulated paraffin composites with polymethylmethacrylate shell based on ultraviolet irradiation-initiated

    Wang Yi; Shi Huan; Xia Tiandong; Zhang Ting; Feng Huixia

    2012-01-01

    In order to identify the validity of fabricating microencapsulated phase change material by ultraviolet irradiation-initiated method, the paraffin wax/polymethyl methacrylate microcapsules were prepared. The structural characteristics and thermal properties of the microcapsules were also determined by various techniques. The results of differential scanning calorimetry analyses indicate that the melting and freezing temperatures and latent heats of the microcapsules are 55.8 °C, 50.1 °C and 106.9 J g −1 , 112.3 J g −1 , respectively. Morphology and chemical characteristic analysis indicate that the spherical microcapsules were formed with average diameter of 0.21 μm and maximum microencapsulation ratio of 66 wt.% without leakage of core materials. The results of accelerated thermal cyclic test show that the microcapsules have good thermal reliability and chemical stability although they were subjected 3000 melting/freezing cycles. Based on all these results, it can be concluded that the microencapsulated paraffin composites have good potential for thermal energy storage purposes and ultraviolet irradiation-initiated method is a prominent candidate for preparing microencapsulated PCMs. - Highlights: ► Microencapsulated paraffin with PMMA shell was synthesized via self-assembly. ► Microcapsules with excellent properties can be prepared by UV initiated method. ► The microencapsulation ratio is as high as 66 wt.%. ► Thermal properties are as high as comparable with microcapsules in the literature.

  17. Microfluidic Approach to Cell Microencapsulation.

    Sharma, Varna; Hunckler, Michael; Ramasubramanian, Melur K; Opara, Emmanuel C; Katuri, Kalyan C

    2017-01-01

    Bioartificial pancreas made of insulin-secreting islets cells holds great promise in the treatment of individuals with Type-1 diabetes. Successful islet cell microencapsulation in biopolymers is a key step for providing immunoisolation of transplanted islet cells. Because of the variability in the size and shape of pancreatic islets, one of the main obstacles in their microencapsulation is the inability to consistently control shape, size, and microstructure of the encapsulating biopolymer capsule. In this chapter, we provide a detailed description of a microfluidic approach to islet cell encapsulation in alginate that might address the microencapsulation challenges.

  18. Polymeric Materials for Cell Microencapsulation.

    Aijaz, A; Perera, D; Olabisi, Ronke M

    2017-01-01

    Mammalian cells have been microencapsulated within both natural and synthetic polymers for over half a century. Specifically, in the last 36 years microencapsulated cells have been used therapeutically to deliver a wide range of drugs, cytokines, growth factors, and hormones while enjoying the immunoisolation provided by the encapsulating material. In addition to preventing immune attack, microencapsulation prevents migration of entrapped cells. Cells can be microencapsulated in a variety of geometries, the most common being solid microspheres and hollow microcapsules. The micrometer scale permits delivery by injection and is within diffusion limits that allow the cells to provide the necessary factors that are missing at a target site, while also permitting the exchange of nutrients and waste products. The majority of cell microencapsulation is performed with alginate/poly-L-lysine microspheres. Since alginate itself can be immunogenic, for cell-based therapy applications various groups are investigating synthetic polymers to microencapsulate cells. We describe a protocol for the formation of microspheres and microcapsules using the synthetic polymer poly(ethylene glycol) diacrylate (PEGDA).

  19. Cryopreservation of microencapsulated canine sperm.

    Shah, Shambhu; Otsuki, Tsubasa; Fujimura, Chika; Yamamoto, Naoki; Yamashita, Yasuhisa; Higaki, Shogo; Hishinuma, Mitsugu

    2011-03-01

    The objective was to develop a method for cryopreserving microencapsulated canine sperm. Pooled ejaculates from three beagle dogs were extended in egg yolk tris extender and encapsulated using alginate and poly-L-lysine at room temperature. The microcapsules were cooled at 4 °C, immersed in pre-cooled extender (equivalent in volume to the microcapsules) to reach final concentration of 7% (v/v) glycerol and 0.75% (v/v) Equex STM paste, and equilibrated for 5, 30 and 60 min at 4 °C. Thereafter, microcapsules were loaded into 0.5 mL plastic straws and frozen in liquid nitrogen. In Experiment 1, characteristics of microencapsulated canine sperm were evaluated after glycerol addition at 4 °C. Glycerol exposure for 5, 30 and 60 min did not significantly affect progressive motility, viability, or acrosomal integrity of microencapsulated sperm compared with pre-cooled unencapsulated sperm (control). In Experiment 2, characteristics of frozen-thawed canine microencapsulated sperm were evaluated at 0, 3, 6, and 9 h of culture at 38.5 °C. Pre-freeze glycerol exposure for 5, 30, and 60 min at 4 °C did not influence post-thaw quality in unencapsulated sperm. Post-thaw motility and acrosomal integrity of microencapsulated sperm decreased more than those of unencapsulated sperm (P < 0.05) following glycerol exposure for 5 min. However, motility, viability and acrosomal integrity of microencapsulated sperm after 30 and 60 min glycerol exposure were higher than unencapsulated sperm cultured for 6 or 9 h (P < 0.05). In conclusion, since microencapsulated canine sperm were successfully cryopreserved, this could be a viable alternative to convention sperm cryopreservation in this species. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Anatomy of a frozen axial melt lens from a fast-spreading paleo-ridge (Wadi Gideah, Oman ophiolite)

    Müller, T.; Koepke, J.; Garbe-Schönberg, C.-D.; Dietrich, M.; Bauer, U.; Wolff, P. E.

    2017-02-01

    At fast-spreading mid-ocean ridges, axial melt lenses (AMLs) sandwiched between the sheeted dyke section and the uppermost gabbros are assumed to be the major magma source of crust formation. Here, we present our results from a field study based on a single outcrop of a frozen AML in the Samail ophiolite in the Sultanate of Oman which presents a whole suite of different lithologies and complex cutting relationships: varitextured gabbro with relics of primitive poikilitic clinopyroxene is intruded by massive quartz diorites and tonalites bearing relics of assimilated sheeted dykes, which in turn are cut by trondhjemite dykes. The whole is cut by basaltic dykes with chilled margins. The geochemical evolutionary trend of the varitextured gabbros, including some of the quartz diorites and tonalites, can be best modelled by fractional crystallisation of an experimental MORB parental melt composition containing 0.4 to 0.8 wt.% H2O. Patchy varitextured gabbros containing domains of primitive poikilitic clinopyroxene and evolved granular networks represent the record of in situ crystallisation. Some quartz diorites, often with xenoliths of sheeted dykes and exceptionally high Al2O3 contents, show a bulk trace element pattern more in accord with melts generated by experimental partial melting of dyke material. Highly evolved, crosscutting trondhjemite dykes show characteristic trace element patterns implying a formation by partial melting of sheeted dykes under lower water activity which is indicated by relatively low Al2O3 contents. The late basaltic dykes with chilled margins crosscutting all other lithologies show a relatively depleted geochemical character with pronounced negative Nb-Ta anomalies implying a genetic relationship to the second phase of magmatic Oman paleo-ridge activity (V2). The field relationships in combination with the petrological/geochemical trends reveal multiple sequences of MORB-type magma cooling (resulting in fractional crystallisation) and re

  1. Coordinated Hard Sphere Mixture (CHaSM): A fast approximate model for oxide and silicate melts at extreme conditions

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2015-12-01

    Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, consuming classical MD calculations. This approach also sheds light on the universality

  2. Pulse-Flow Microencapsulation System

    Morrison, Dennis R.

    2006-01-01

    The pulse-flow microencapsulation system (PFMS) is an automated system that continuously produces a stream of liquid-filled microcapsules for delivery of therapeutic agents to target tissues. Prior microencapsulation systems have relied on batch processes that involve transfer of batches between different apparatuses for different stages of production followed by sampling for acquisition of quality-control data, including measurements of size. In contrast, the PFMS is a single, microprocessor-controlled system that performs all processing steps, including acquisition of quality-control data. The quality-control data can be used as real-time feedback to ensure the production of large quantities of uniform microcapsules.

  3. Microencapsulated PCM slurry for heat transfer media. 4. Reduction of undercooling

    Akino, Norio; Nakano, Fumihiko; Kubo, Shinji; Nagashima, Akira; Sagiya, Syojiro; Nakanishi, Masayuki.

    1997-01-01

    New heat transfer media with large heat capacity is under development, using a slurry of microencapsulated-phase-change-material (MCPCM) mixed into carrying liquid. To prepare stable MCPCM slurry, fatty acid is selected as PCM owing to relatively large density, and diameter of MCPCM particles are below 10 μm. The temperature difference between melting and freezing points, the so-called undercooling becomes remarkable. To reduce the undercooling, an additive is mixed into fatty acid to introduce nucleation cites. It is concluded that Hexatriacontane is effective to remove undercooling of microencapsulated Lauric acid, Myristic acid and their mixture, and Sebacic acid is effective for Lauric acid. (author)

  4. Micro-Encapsulation of Probiotics

    Meiners, Jean-Antoine

    Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.

  5. Diurnal thermal analysis of microencapsulated PCM-concrete composite walls

    Thiele, Alexander M.; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Transient heat conduction across microencapsulated PCM-concrete walls was simulated. • Equivalent homogeneous wall with effective thermal properties was rigorously derived. • Adding PCM to the wall increases daily energy savings and delays peak thermal load. • Energy savings is maximum when PCM melting temperature equals indoor temperature. • Energy savings are limited in extreme climates but time delay can be large. - Abstract: This paper examines the benefits of adding microencapsulated phase change material (PCM) to concrete used in building envelopes to reduce energy consumption and costs. First, it establishes that the time-dependent thermal behavior of microencapsulated PCM-concrete composite walls can be accurately predicted by an equivalent homogeneous wall with appropriate effective thermal properties. The results demonstrate that adding microencapsulated PCM to concrete resulted in a reduction and a time-shift in the maximum heat flux through the composite wall subjected to diurnal sinusoidal outdoor temperature and solar radiation heat flux. The effects of the PCM volume fraction, latent heat of fusion, phase change temperature and temperature window, and outdoor temperature were evaluated. Several design rules were established including (i) increasing the PCM volume fraction and/or enthalpy of phase change increased the energy flux reduction and the time delay, (ii) the energy flux reduction was maximized when the PCM phase change temperature was close to the desired indoor temperature, (iii) the optimum phase change temperature to maximize the time delay increased with increasing average outdoor temperature, (iv) in extremely hot or cold climates, the thermal load could be delayed even though the reduction in daily energy flux was small, and (v) the choice of phase change temperature window had little effect on the energy flux reduction and on the time delay. This analysis can serve as a framework to design PCM composite walls

  6. Low-Shear Microencapsulation and Electrostatic Coating

    Morrison, Dennis R.; Mosier, Benjamin

    2005-01-01

    A report presents additional information on the topic of a microencapsulation electrostatic processing system. Information in the report includes micrographs of some microcapsules, a set of diagrams that schematically depict the steps of an encapsulation process, and brief descriptions of (1) alternative versions of the present encapsulation processes, (2) advantages of the present microencapsulation processes over prior microencapsulation processes, and (3) unique and advantageous features of microcapsules produced by the present processes.

  7. Power-to-melt evaluation of fresh mixed-oxide fast reactor fuel. Technical improvements of the post-irradiation-experiment and the evaluation of the results for the power-to-melt test PTM-2 in 'JOYO'

    Yamamoto, Kazuya; Kushida, Naoya; Koizumi, Atsuhiro

    1999-11-01

    The second Power-To-Melt (PTM) test, PTM-2, was performed in the experimental fast reactor 'JOYO'. All of the twenty-four fuel pins of the irradiation vehicle, B5D-2, for the PTM-2 test, were provided for post-irradiation-experiment (PIE) to evaluate the PTM values. In this study, the PIE technique for PTM test was established and the PTM results were evaluated. The findings are as follows: The maximum fuel-melting ratio on the transverse section was 10.7%, and was within the limit of fuel-melting in this PTM test enough. Unexpected fuel-melting amount to a ratio of 11.8% was found at ∼24 mm below the peak power elevation in a test fuel pin. It is possible that this arose from secondary fuel-melting. Combination of metallographical observation with X-ray microanalysis of plutonium distribution was very effective for the identification of once-molten fuel zone. The PTM evaluation suggested that dependence of the PTM on the fuel pellet density was stronger than that of previous foreign PTM tests, while the dependence on the pellet-cladding gap and the oxygen-to-metal ratio was indistinctly. The dependence on the cladding temperature and the fill gas composition was not shown as well. (author)

  8. Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage

    Alva, Guruprasad; Huang, Xiang; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: •Myristic acid–palmitic acid eutectic was microencapsulated with silica shell. •Structure, morphology of microencapsulated phase change material were investigated. •Thermal capacity, stability of microencapsulated phase change material were analyzed. •Silica shell improved thermal stability of microencapsulated phase change material. -- Abstract: In this work microencapsulation of myristic acid–palmitic acid (MA–PA) eutectic mixture with silica shell using sol−gel method has been attempted. The core phase change material (PCM) for thermal energy storage was myristic acid−palmitic acid eutectic mixture and the shell material to prevent the PCM core from leakage was silica prepared from methyl triethoxysilane (MTES). Thermal properties of the microcapsules were measured by differential scanning calorimeter (DSC). The morphology and particle size of the microcapsules were examined by scanning electronic microscope (SEM). Fourier transformation infrared spectrophotometer (FT–IR) and X–ray diffractometer (XRD) were used to investigate the chemical structure and crystalloid phase of the microcapsules respectively. The DSC results indicated that microencapsulated phase change material (MPCM) melts at 46.08 °C with a latent heat of 169.69 kJ kg −1 and solidifies at 44.35 °C with a latent heat of 159.59 kJ kg −1 . The thermal stability of the microcapsules was analyzed by a thermogravimeter (TGA). The results indicated that the MPCM has good thermal stability and is suitable for thermal energy storage application.

  9. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage

    Alkan, Cemil; Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-01-15

    This study is focused on the preparation, characterization, and determination of thermal properties of microencapsulated docosane with polymethylmethacrylate (PMMA) as phase change material for thermal energy storage. Microencapsulation of docosane has been carried out by emulsion polymerization. The microencapsulated phase change material (MEPCM) was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Thermal properties and thermal stability of MEPCM were measured by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC analysis indicated that the docosane in the microcapsules melts at 41.0 C and crystallizes at 40.6 C. It has latent heats of 54.6 and -48.7 J/g for melting and crystallization, respectively. TGA showed that the MEPCM degraded in three distinguishable steps and had good chemical stability. Accelerated thermal cycling tests also indicated that the MEPCM had good thermal reliability. Based on all these results, it can be concluded that the microencapsulated docosane as MEPCMs have good potential for thermal energy storage purposes such as solar space heating applications. (author)

  10. High Resolution Melting Analysis Targeting hsp70 as a Fast and Efficient Method for the Discrimination of Leishmania Species.

    Zampieri, Ricardo Andrade; Laranjeira-Silva, Maria Fernanda; Muxel, Sandra Marcia; Stocco de Lima, Ana Carolina; Shaw, Jeffrey Jon; Floeter-Winter, Lucile Maria

    2016-02-01

    Protozoan parasites of the genus Leishmania cause a large spectrum of clinical manifestations known as Leishmaniases. These diseases are increasingly important public health problems in many countries both within and outside endemic regions. Thus, an accurate differential diagnosis is extremely relevant for understanding epidemiological profiles and for the administration of the best therapeutic protocol. Exploring the High Resolution Melting (HRM) dissociation profiles of two amplicons using real time polymerase chain reaction (real-time PCR) targeting heat-shock protein 70 coding gene (hsp70) revealed differences that allowed the discrimination of genomic DNA samples of eight Leishmania species found in the Americas, including Leishmania (Leishmania) infantum chagasi, L. (L.) amazonensis, L. (L.) mexicana, L. (Viannia) lainsoni, L. (V.) braziliensis, L. (V.) guyanensis, L. (V.) naiffi and L. (V.) shawi, and three species found in Eurasia and Africa, including L. (L.) tropica, L. (L.) donovani and L. (L.) major. In addition, we tested DNA samples obtained from standard promastigote culture, naturally infected phlebotomines, experimentally infected mice and clinical human samples to validate the proposed protocol. HRM analysis of hsp70 amplicons is a fast and robust strategy that allowed for the detection and discrimination of all Leishmania species responsible for the Leishmaniases in Brazil and Eurasia/Africa with high sensitivity and accuracy. This method could detect less than one parasite per reaction, even in the presence of host DNA.

  11. High Resolution Melting Analysis Targeting hsp70 as a Fast and Efficient Method for the Discrimination of Leishmania Species.

    Ricardo Andrade Zampieri

    2016-02-01

    Full Text Available Protozoan parasites of the genus Leishmania cause a large spectrum of clinical manifestations known as Leishmaniases. These diseases are increasingly important public health problems in many countries both within and outside endemic regions. Thus, an accurate differential diagnosis is extremely relevant for understanding epidemiological profiles and for the administration of the best therapeutic protocol.Exploring the High Resolution Melting (HRM dissociation profiles of two amplicons using real time polymerase chain reaction (real-time PCR targeting heat-shock protein 70 coding gene (hsp70 revealed differences that allowed the discrimination of genomic DNA samples of eight Leishmania species found in the Americas, including Leishmania (Leishmania infantum chagasi, L. (L. amazonensis, L. (L. mexicana, L. (Viannia lainsoni, L. (V. braziliensis, L. (V. guyanensis, L. (V. naiffi and L. (V. shawi, and three species found in Eurasia and Africa, including L. (L. tropica, L. (L. donovani and L. (L. major. In addition, we tested DNA samples obtained from standard promastigote culture, naturally infected phlebotomines, experimentally infected mice and clinical human samples to validate the proposed protocol.HRM analysis of hsp70 amplicons is a fast and robust strategy that allowed for the detection and discrimination of all Leishmania species responsible for the Leishmaniases in Brazil and Eurasia/Africa with high sensitivity and accuracy. This method could detect less than one parasite per reaction, even in the presence of host DNA.

  12. Microencapsulation of phase change materials with carbon nanotubes reinforced shell for enhancement of thermal conductivity

    Cui, Weiwei; Xia, Yongpeng; Zhang, Huanzhi; Xu, Fen; Zou, Yongjin; Xiang, Cuili; Chu, Hailiang; Qiu, Shujun; Sun, Lixian

    2017-03-01

    Novel microencapsulated phase change materials (micro-PCMs) were synthesized via in-situ polymerization with modified carbon nanotubes(CNTs) reinforced melamine-formaldehyde resin as shell material and CNTs reinforced n-octadecane as PCMs core. DSC results confirm that the micro-PCMs possess good phase change behavior and excellent thermal cycling stability. Melting enthalpy of the micro-PCMs can achieve 133.1 J/g and has slight changes after 20 times of thermal cyclings. And the incorporation of CNTs supplies the micro-PCMs with fast thermal response rate which increases the crystallization temperature of the micro-PCMs. Moreover, the thermal conductivity of the micro-PCMs has been significantly enhanced by introducing CNTs into their shell and core materials. And the thermal conductivity of micro-PCMs with 1.67 wt.% CNTs can increase by 25%. These results exhibit that the obtained micro-PCMs have a good prospect in thermal energy storage applications.

  13. Alginate-Poly(ethylene glycol Hybrid Microspheres for Primary Cell Microencapsulation

    Redouan Mahou

    2014-01-01

    Full Text Available The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol hybrid microspheres (alg-PEG-M were produced by combining ionotropic gelation of sodium alginate (Na-alg using calcium ions with covalent crosslinking of vinyl sulfone-terminated multi-arm poly(ethylene glycol (PEG-VS. In a one-step microsphere formation process, fast ionotropic gelation yields spherical calcium alginate gel beads, which serve as a matrix for simultaneously but slowly occurring covalent cross-linking of the PEG-VS molecules. The feasibility of cell microencapsulation was studied using primary human foreskin fibroblasts (EDX cells as a model. The use of cell culture media as polymer solvent, gelation bath, and storage medium did not negatively affect the alg-PEG-M properties. Microencapsulated EDX cells maintained their viability and proliferated. This study demonstrates the feasibility of primary cell microencapsulation within the novel microsphere type alg-PEG-M, serves as reference for future therapy development, and confirms the suitability of EDX cells as control model.

  14. Microencapsulated n-octacosane as phase change material for thermal energy storage

    Sari, Ahmet; Alkan, Cemil; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-10-15

    This study deals with preparation and characterization of polymethylmetracrylate (PMMA) microcapsules containing n-octacosane as phase change material for thermal energy storage. The surface morphology, particle size and particle size distribution (PSD) were studied by scanning electron microscopy (SEM). The chemical characterization of PMMA/octacosane microcapsules was made by FT-IR spectroscopy method. Thermal properties and thermal stability of microencapsulated octacosane were determined using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The melting and freezing temperatures and the latent heats of the microencapsulated octacosane as PCM were measured as 50.6 and 53.2 C, 86.4 and -88.5 J/g, respectively, by DSC analysis. TGA analysis indicated that the microencapsulated octacosane degrade in two steps and had good chemical stability. Thermal cycling test shows that the microcapsules have good thermal reliability with respect to the accelerated thermal cycling. Based on the results, it can be considered that the microencapsulated octacosane have good energy storage potential. (author)

  15. Microencapsulation of babassu coconut milk

    Audirene Amorim Santana

    2013-12-01

    Full Text Available The objective of this study was to obtain babassu coconut milk powder microencapsulated by spray drying process using gum Arabic as wall material. Coconut milk was extracted by babassu peeling, grinding (with two parts of water, and vacuum filtration. The milk was pasteurized at 85 ºC for 15 minutes and homogenized to break up the fat globules, rendering the milk a uniform consistency. A central composite rotatable design with a range of independent variables was used: inlet air temperature in the dryer (170-220 ºC and gum Arabic concentration (10-20%, w/w on the responses: moisture content (0.52-2.39%, hygroscopicity (6.98-9.86 g adsorbed water/100g solids, water activity (0.14-0.58, lipid oxidation (0.012-0.064 meq peroxide/kg oil, and process yield (20.33-30.19%. All variables influenced significantly the responses evaluated. Microencapsulation was optimized for maximum process yield and minimal lipid oxidation. The coconut milk powder obtained at optimum conditions was characterized in terms of morphology, particle size distribution, bulk and absolute density, porosity, and wettability.

  16. MICROENCAPSULATION-THE FUTURE OF PROBIOTIC CULTURES

    Tawheed Amin

    2013-08-01

    Full Text Available In the recent past, there has been an explosion of probiotic cultures based health products in Indian markets. The survival of the probiotic bacteria in gastro-intestinal gut is questionable, because of the poor survival of probiotic bacteria in these products. Basically the viability of probiotic cultures is very weak in these food products. Probiotic based products are health potentiators and are associated with many health benefits. Microencapsulation of the probiotic cultures is one of the recent, demanded and highly efficient techniques. Among the different approaches proposed to improve the survival of probiotics during food manufacturing process and passage in the upper part of gastrointestinal tratct (GI tract, microencapsulation has received considerable attention. Encapsulated probiotic cultures have longer shelf life of the products. This microencapsulation technology is used to maintain the viability of probiotic bacteria during food product processing and storage. This article reviews the principles, techniques and need for microencapsulation of probiotic cultures.

  17. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage.

    Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad

    2013-04-29

    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.

  18. Microencapsulation of probiotics by efficient vibration technology.

    Olivares, Araceli; Silva, Paulina; Altamirano, Claudia

    2017-11-01

    The target site of action of probiotics is the intestine. They must be surviving the stomach acidic condition before reaching the target site. Three probiotic bacteria were microencapsulated in sodium alginate beads using a sophisticated microencapsulation technology provided by BÜCHI B-390. This study reports the tolerance of the different microencapsulated Lactobacillus at low pH using simulated gastric juice, comparing it with the tolerance of free bacteria. The three microencapsulated strains displayed time-dependent acid sensitivity at pH values under 3.0. At pH 2.0, a dramatic reduction in bacterial survival occurred after 5 min, with only L. casei surviving after 30 min, with 75% survival. At pH 2.5 microencapsulated L. casei survived for 90 , L. reuteri survived for 60 and L. bulgaricus survived for only 30 min, respectively. The microencapsulation technology used in this study may effectively protect Lactobacillus from gastric conditions and permit comparisons between strains.

  19. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell

    Qiu, Xiaolin; Lu, Lixin; Wang, Ju; Tang, Guoyi; Song, Guolin

    2015-01-01

    Highlights: • Microencapsulation of octadecane and paraffin by crosslinked poly(lauryl methacrylate). • Octadecane microcapsules have a melting enthalpy of about 118 J g −1 . • Weight loss temperatures of the microcapsules were increased by 67 °C and 28 °C. • Phase change enthalpies decreased by around 10 wt% after 500 thermal cycles. • Foams with microcapsules can be applied for passive temperature control. - Abstract: Microencapsulation of n-octadecane or paraffin with poly(lauryl methacrylate) (PLMA) shell was performed by a suspension-like polymerization. The polymer shell was crosslinked by pentaerythritol tetraacrylate (PETRA). The surface morphologies of microcapsules were investigated by scanning electron microscopy (SEM). Phase change properties, thermal reliabilities and thermal stabilities of microcapsules were determined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The n-octadecane microcapsule exhibits higher melting enthalpy (118.0 J g −1 ) and crystallization enthalpy (108.3 J g −1 ) compared with the paraffin microcapsule. The thermal resistant temperatures were enhanced by more than 25 °C when n-alkanes were microencapsulated by PLMA. The PCM contents of microcapsules decreased by less than 4 wt% and 6 wt% after 500 and 1000 thermal cycles, respectively. Heat-up experiments indicated that microcapsule-treated foams exhibited upgraded thermal regulation capacities. Consequently, microencapsulated n-octadecane or paraffin with PLMA as shell possesses good potentials for heat storage and thermal regulation.

  20. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell

    Qiu, Xiaolin, E-mail: shirleyqiu2009@gmail.com [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Lu, Lixin; Wang, Ju [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Tang, Guoyi [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2015-11-20

    Highlights: • Microencapsulation of octadecane and paraffin by crosslinked poly(lauryl methacrylate). • Octadecane microcapsules have a melting enthalpy of about 118 J g{sup −1}. • Weight loss temperatures of the microcapsules were increased by 67 °C and 28 °C. • Phase change enthalpies decreased by around 10 wt% after 500 thermal cycles. • Foams with microcapsules can be applied for passive temperature control. - Abstract: Microencapsulation of n-octadecane or paraffin with poly(lauryl methacrylate) (PLMA) shell was performed by a suspension-like polymerization. The polymer shell was crosslinked by pentaerythritol tetraacrylate (PETRA). The surface morphologies of microcapsules were investigated by scanning electron microscopy (SEM). Phase change properties, thermal reliabilities and thermal stabilities of microcapsules were determined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The n-octadecane microcapsule exhibits higher melting enthalpy (118.0 J g{sup −1}) and crystallization enthalpy (108.3 J g{sup −1}) compared with the paraffin microcapsule. The thermal resistant temperatures were enhanced by more than 25 °C when n-alkanes were microencapsulated by PLMA. The PCM contents of microcapsules decreased by less than 4 wt% and 6 wt% after 500 and 1000 thermal cycles, respectively. Heat-up experiments indicated that microcapsule-treated foams exhibited upgraded thermal regulation capacities. Consequently, microencapsulated n-octadecane or paraffin with PLMA as shell possesses good potentials for heat storage and thermal regulation.

  1. Natural convection heat transfer from a heated horizontal cylinder with Microencapsulated Phase-Change-Material slurries

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira

    1998-01-01

    The present study investigates natural convection heat transfer from a heated cylinder cooled by a water slurry of Microencapsulated Phase Change Material (MCPCM). A normal paraffin hydrocarbon with carbon number of 18 and melting point of 27.9degC, is microencapsulated by Melamine resin into particles of which average diameter is 9.5 μm and specific weight is same as water. The slurry of the MCPCM and water is put into a rectangular enclosure with a heated horizontal cylinder. The heat transfer coefficients of the cylinder were evaluated. Changing the concentrations of PCM and temperature difference between cylinder surface and working fluid. Addition of MCPCM into water, the heat transfer is enhanced significantly comparison with pure water in cases with phase change and is reduced slightly in cases without phase change. (author)

  2. Natural convection heat transfer enhancement using Microencapsulated Phase-Change-Material slurries

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nakano, Fumihiko; Nagashima, Akira.

    1997-01-01

    The present study investigates natural convection heat transfer from a heated cylinder cooled by a water slurry of Microencapsulated Phase Change Material (MCPCM). A normal paraffin hydrocarbon with carbon number of 18 and melting point of 27.9degC, is microencapsulated by Melamine resin into particles of which average diameter is 9.5μm and specific weight is same as water. The slurry of the MCPCM and water is put into a test apparatus, which is a rectangular enclosure with a heated horizontal cylinder. As the concentrations of PCM in the slurry are changed in 1,3 and 5%, the heat transfer coefficients of the cylinder are larger than that of water as working fluid, by 3,20 and 35% enhancements respectively. (author)

  3. Mechanical microencapsulation: The best technique in taste masking for the manufacturing scale - Effect of polymer encapsulation on drug targeting.

    Al-Kasmi, Basheer; Alsirawan, Mhd Bashir; Bashimam, Mais; El-Zein, Hind

    2017-08-28

    Drug taste masking is a crucial process for the preparation of pediatric and geriatric formulations as well as fast dissolving tablets. Taste masking techniques aim to prevent drug release in saliva and at the same time to obtain the desired release profile in gastrointestinal tract. Several taste masking methods are reported, however this review has focused on a group of promising methods; complexation, encapsulation, and hot melting. The effects of each method on the physicochemical properties of the drug are described in details. Furthermore, a scoring system was established to evaluate each process using recent published data of selected factors. These include, input, process, and output factors that are related to each taste masking method. Input factors include the attributes of the materials used for taste masking. Process factors include equipment type and process parameters. Finally, output factors, include taste masking quality and yield. As a result, Mechanical microencapsulation obtained the highest score (5/8) along with complexation with cyclodextrin suggesting that these methods are the most preferable for drug taste masking. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Development of novel microencapsulation processes

    Yin, Weisi

    This thesis is for encapsulating additives into polymer particles using different techniques including emulsification/solvent evaporation, compressed carbon dioxide based microencapsulation, and encapsulation with porous polymer particles. Such microencapsulations can be applied to a vast range of areas, for example bio-labeling, controlled release, drug delivery, and printing. Fluorescent CdSe/ZnS quantum dots (QDs) were incorporated into polyisoprene (PI) particles by emulsification/solvent evaporation. The simple method results in QDs encapsulated into the particle core without requiring chemical modification of the QDs. The fluorescence spectra of mixtures of two different-sized QDs change in PI as compared to their solution spectra, suggesting energy transfer between QDs due to their aggregation during the encapsulation. However, different emission peaks were clearly resolved, indicating that the particles are suitable for multicolor coding. The polyisoprene is easily cross-linked, and the cross-linking was shown to greatly enhance the fluorescence stability of the encapsulated QDs. Ionic dyes were successfully encapsulated in polystyrene (PS) particles by CO2-based microencapsulation. The water-soluble dyes were made hydrophobic by forming ion pairs with alkyl quaternary ammonium cations. The hydrophobic ion pairs were then encapsulated in preexisting size monodisperse PS particles dispersed in water. High-pressure carbon dioxide swelled and plasticized PS and thus facilitated mass transport of the dye into the particles. The results show that the particles maintain their size and morphology after exposure to CO2, and that ion-paired dyes have significantly higher loading in the polymer particles than the original dyes. Addition of water-miscible cosolvents was shown to further enhance the incorporation of the hydrophobic ion pairs into the polymer colloids. To encapsulate water-soluble additives, porous polymer particles were made by freeze-drying droplets

  5. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    Thiele, Alexander

    This study aims to elucidate how phase change material (PCM)-composite materials can be leveraged to reduce the energy consumption of buildings and to provide cost savings to ratepayers. Phase change materials (PCMs) can store thermal energy in the form of latent heat when subjected to temperatures exceeding their melting point by undergoing a phase transition from solid to liquid state. Reversibly, PCMs can release this thermal energy when the system temperature falls below their solidification point. The goal in implementing composite PCM walls is to significantly reduce and time-shift the maximum thermal load on the building in order to reduce and smooth out the electricity demand for heating and cooling. This Ph.D. thesis aims to develop a set of thermal design methods and tools for exploring the use of PCM-composite building envelopes and for providing design rules for their practical implementation. First, detailed numerical simulations were used to show that the effective thermal conductivity of core-shell-matrix composites depended only on the volume fraction and thermal conductivity of the constituent materials. The effective medium approximation reported by Felske (2004) was in very good agreement with numerical predictions of the effective thermal conductivity. Second, a carefully validated transient thermal model was used to simulate microencapsulated PCM-composite walls subjected to diurnal or annual outdoor temperature and solar radiation flux. It was established that adding microencapsulated PCM to concrete walls both substantially reduced and delayed the thermal load on the building. Several design rules were established, most notably, (i) increasing the volume fraction of microencapsulated PCM within the wall increases the energy savings but at the potential expense of mechanical properties [1], (ii) the phase change temperature leading to the maximum energy and cost savings should equal the desired indoor temperature regardless of the climate

  6. Microencapsulation and Electrostatic Processing Device

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)

    2001-01-01

    A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.

  7. Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length.

    Hoy, Robert S; Foteinopoulou, Katerina; Kröger, Martin

    2009-09-01

    Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_{e} which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for N_{e} from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.

  8. Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization

    Wei Li

    2018-02-01

    Full Text Available To enhance the thermal stability and permeability resistance, a comb-like polymer with crystallizable side chains was fabricated as solid-solid phase change materials (PCMs inside the cores of microcapsules and nanocapsules prepared via in-situ polymerization. In this study, the effects on the surface morphology and microstructure of micro/nanocapsules caused by microencapsulating different types of core materials (i.e., n-hexadecane, ethyl hexadecanoate, hexadecyl acrylate and poly(hexadecyl acrylate were systematically studied via field emission scanning electron microscope (FE-SEM and transmission electron microscope (TEM. The confined crystallization behavior of comb-like polymer PCMs cores was investigated via differential scanning calorimeter (DSC. Comparing with low molecular organic PCMs cores, the thermal stability of PCMs microencapsulated comb-like polymer enhanced significantly, and the permeability resistance improved obviously as well. Based on these resultant analysis, the microencapsulated comb-like polymeric PCMs with excellent thermal stability and permeability resistance showed promising foreground in the field of organic solution spun, melt processing and organic coating.

  9. Microencapsulation and microspheres for food applications

    Sagis, L.M.C.

    2015-01-01

    This book provides an update on the latest developments, challenges, and opportunities in the highly expanding field of microencapsulation and microspheres for food applications, examining the various types of microspheres and microcapsules essential to those who need to develop stable and

  10. Microencapsulation of bioactives for food applications.

    Dias, Maria Inês; Ferreira, Isabel C F R; Barreiro, Maria Filomena

    2015-04-01

    Health issues are an emerging concern to the world population, and therefore the food industry is searching for novel food products containing health-promoting bioactive compounds, with little or no synthetic ingredients. However, there are some challenges in the development of functional foods, particularly in which the direct use of some bioactives is involved. They can show problems of instability, react with other food matrix ingredients or present strong odour and/or flavours. In this context, microencapsulation emerges as a potential approach to overcome these problems and, additionally, to provide controlled or targeted delivery or release. This work intends to contribute to the field of functional food development by performing a comprehensive review on the microencapsulation methods and materials, the bioactives used (extracts and isolated compounds) and the final application development. Although several studies dealing with microencapsulation of bioactives exist, they are mainly focused on the process development and the majority lack proof of concept for final applications. These factors, together with the lack of regulation, in Europe and in the United States, delay the development of new functional foods and, consequently, their market entry. In conclusion, the potential of microencapsulation to protect bioactive compounds ensuring their bioavailability is shown, but further studies are required, considering both its applicability and incentives by regulatory agencies.

  11. Microencapsulation as a tool for incorporating bioactive ingredients into food.

    Kuang, S S; Oliveira, J C; Crean, A M

    2010-11-01

    Microencapsulation has been developed by the pharmaceutical industry as a means to control or modify the release of drug substances from drug delivery systems. In drug delivery systems microencapsulation is used to improve the bioavailability of drugs, control drug release kinetics, minimize drug side effects, and mask the bitter taste of drug substances. The application of microencapsulation has been extended to the food industry, typically for controlling the release of flavorings and the production of foods containing functional ingredients (e.g. probiotics and bioactive ingredients). Compared to the pharmaceutical industry, the food industry has lower profit margins and therefore the criteria in selecting a suitable microencapsulation technology are more stringent. The type of microcapsule (reservoir and matrix systems) produced and its resultant release properties are dependent on the microencapsulation technology, in addition to the physicochemical properties of the core and the shell materials. This review discusses the factors that affect the release of bioactive ingredients from microcapsules produced by different microencapsulation technologies. The key criteria in selecting a suitable microencapsulation technology are also discussed. Two of the most common physical microencapsulation technologies used in pharmaceutical processing, fluidized-bed coating, and extrusion-spheronization are explained to highlight how they might be adapted to the microencapsulation of functional bioactive ingredients in the food industry.

  12. FAST

    Zuidmeer-Jongejan, Laurian; Fernandez-Rivas, Montserrat; Poulsen, Lars K.

    2012-01-01

    ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqu...

  13. Microencapsulation Technologies for Corrosion Protective Coating Applications

    Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.

  14. Microencapsulation of probiotics using sodium alginate

    Mariana de Araújo Etchepare

    2015-07-01

    Full Text Available The consumption of probiotics is constantly growing due to the numerous benefits conferred on the health of consumers. In this context, Microencapsulation is a technology that favors the viability of probiotic cultures in food products, mainly by the properties of protection against adverse environmental conditions and controlled release. Currently there are different procedures for microencapsulation using polymers of various types of natural and synthetic origin. The use of sodium alginate polymers is one of the largest potential application in the encapsulation of probiotics because of their versatility, biocompatibility and toxicity exemption. The aim of this review is to present viable encapsulation techniques of probiotics with alginate, emphasizing the internal ionic gelation and external ionic gelation, with the possibility of applying, as well as promising for improving these techniques.

  15. Microencapsulation of Corrosion Indicators for Smart Coatings

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  16. Microencapsulation of Stem Cells for Therapy.

    Leslie, Shirae K; Kinney, Ramsey C; Schwartz, Zvi; Boyan, Barbara D

    2017-01-01

    An increasing demand to regenerate tissues from patient-derived sources has led to the development of cell-based therapies using autologous stem cells, thereby decreasing immune rejection of scaffolds coupled with allogeneic stem cells or allografts. Adult stem cells are multipotent and are readily available in tissues such as fat and bone marrow. They possess the ability to repair and regenerate tissue through the production of therapeutic factors, particularly vasculogenic proteins. A major challenge in cell-based therapies is localizing the delivered stem cells to the target site. Microencapsulation of cells provides a porous polymeric matrix that can provide a protected environment, localize the cells to one area, and maintain their viability by enabling the exchange of nutrients and waste products between the encapsulated cells and the surrounding tissue. In this chapter, we describe a method to produce injectable microbeads containing a tunable number of stem cells using the biopolymer alginate. The microencapsulation process involves extrusion of the alginate suspension containing cells from a microencapsulator, a syringe pump to control its flow rate, an electrostatic potential to overcome capillary forces and a reduced Ca ++ cross-linking solution containing a nutrient osmolyte, to form microbeads. This method allows the encapsulated cells to remain viable up to three weeks in culture and up to three months in vivo and secrete growth factors capable of supporting tissue regeneration.

  17. Effect of different microencapsulation materials on stability of ...

    The aim of this work was to investigate the effect of different microencapsulation materials on the stability of probiotic bacterium (Lactobacillus plantarum DSM 20174). Microencapsulation methods with alginates were carried out using sodium chloride, canola oil, olive oil, and chitosan. The recorded data showed that the ...

  18. Bioactivity of microencapsulated soursop seeds extract on Plutella xylostella

    Ismael Barros Gomes

    2016-05-01

    Full Text Available ABSTRACT: The aim of this study was to evaluate the bioactivity of microencapsulated extract from the soursop seeds, Annona muricata L. ( Annonaceae , on diamondback moth, Plutella xylostela L. (Lepidoptera: Plutellidae . Microencapsulation was performed in a Mini Spray Dryer model B-290 using 50mL of ethanolic and hexanic extracts plus 150mL of ethanol and 150mL of ultrapure water, mixed with aerosil (first polymer or arabic gum (second polymer. It was possible to microencapsulate the ethanolic extract of soursop seeds only by using the polymer arabic gum at 20%. The microencapsulated extract caused significant acute toxicity (LC50=258mg L-1 and chronic effects, especially reduction of larval viability and increased larval stage. We concluded that the microencapsulation of the ethanolic extract of soursop seeds can be a viable alternative for controlling diamondback moth with possible gains for the environment.

  19. Experimental Studies of Phase Change and Microencapsulated Phase Change Materials in a Cold Storage/Transportation System with Solar Driven Cooling Cycle

    Lin Zheng; Wei Zhang; Fei Liang; Shuang Lin; Xiangyu Jin

    2017-01-01

    The paper presents the different properties of phase change material (PCM) and Microencapsulated phase change material (MEPCM) employed to cold storage/transportation system with a solar-driven cooling cycle. Differential Scanning Calorimeter (DSC) tests have been performed to analyze the materials enthalpy, melting temperature range, and temperature range of solidification. KD2 Pro is used to test the thermal conductivities of phase change materials slurry and the results were used to compar...

  20. GLASS MELTING PHENOMENA, THEIR ORDERING AND MELTING SPACE UTILISATION

    Němec L.

    2013-12-01

    Full Text Available Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a consideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity “space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. The definitions of the specific melting performance and specific energy consumption have been used for assessment of the potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined to be between 10 - 15 %.

  1. Microencapsulation of a fatty acid with Poly(melamine–urea–formaldehyde)

    Konuklu, Yeliz; Paksoy, Halime O.; Unal, Murat; Konuklu, Suleyman

    2014-01-01

    Highlights: • Decanoic(capric) acid microcapsules were prepared with different capsule wall materials. • The one-step in situ polymerization technique was used. • Leakage-free, thermally stable microPCMs was prepared with Poly(MUF). • Influence of different surfactants on encapsulation and thermal properties reported. - Abstract: The main purpose of this study is to obtain leakage-free, thermally stable decanoic acid microcapsules (microPCMs) for thermal energy storage applications. Decanoic acid (capric acid) is an environmentally friendly fatty acid since it is obtained from vegetable and animal oils. MicroPCMs were prepared with different capsule wall materials via a one-step in situ polymerization technique. The properties of microencapsulated PCMs have been analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analyzer (TGA), Fourier transform infrared (FTIR) spectra analysis and particle size analyzer. The microPCMs prepared using Poly(urea–formaldehyde) (PUF) exhibit higher heat capacities and the microPCMs prepared using Poly(melamine–formaldehyde) (PMF) exhibit higher thermal stabilities. In order to obtain microPCMs with better properties such as suitable latent heat and better heat resistance at high temperatures, we microencapsulated decanoic acid with Poly (melamine–urea–formaldehyde) (PMUF). Furthermore, the effects of surfactants on microPCMs with PMUF were investigated by SEM, a particle size analyzer, DSC, and TGA. The results show that the binary surfactant system was a suitable emulsifier for this process. We determined that the melting temperature was close to 33 °C, the latent heat storage capacity was about 88 J/g, and the mean particle diameter was 0.28 μm for microPCMs with PMUF. We recommend decanoic acid microencapsulated with PMUF for thermally stable and leakage-free applications above 95 °C

  2. Microencapsulation and fabrication of fuel pellets for inertial confinement fusion

    Nolen, R.L. Jr.; Kool, L.B.

    1981-01-01

    Various microencapsulation techniques were evaluated for fabrication of thermonuclear fuel pellets for use in existing experimental facilities studying inertial confinement fusion and in future fusion-power reactors. Coacervation, spray drying, in situ polymerization, and physical microencapsulation methods were employed. Highly spherical, hollow polymeric shells were fabricated ranging in size from 20 to 7000 micron. In situ polymerization microencapsulation with poly(methyl methacrylate) provided large shells, but problems with local wall defects still must be solved. Extension to other polymeric systems met with limited success. Requirements for inertial confinement fusion targets are described, as are the methods that were used

  3. Microencapsulation of Hepatocytes and Mesenchymal Stem Cells for Therapeutic Applications.

    Meier, Raphael P H; Montanari, Elisa; Morel, Philippe; Pimenta, Joël; Schuurman, Henk-Jan; Wandrey, Christine; Gerber-Lemaire, Sandrine; Mahou, Redouan; Bühler, Leo H

    2017-01-01

    Encapsulated hepatocyte transplantation and encapsulated mesenchymal stem cell transplantation are newly developed potential treatments for acute and chronic liver diseases, respectively. Cells are microencapsulated in biocompatible semipermeable alginate-based hydrogels. Microspheres protect cells against antibodies and immune cells, while allowing nutrients, small/medium size proteins and drugs to diffuse inside and outside the polymer matrix. Microencapsulated cells are assessed in vitro and designed for experimental transplantation and for future clinical applications.Here, we describe the protocol for microencapsulation of hepatocytes and mesenchymal stem cells within hybrid poly(ethylene glycol)-alginate hydrogels.

  4. Green chemistry solutions for sol–gel micro-encapsulation of phase change materials for high-temperature thermal energy storage

    Romero-Sanchez Maria Dolores

    2018-01-01

    Full Text Available NaNO3 has been selected as phase change material (PCM due to its convenient melting and crystallization temperatures for thermal energy storage (TES in solar plants or recovering of waste heat in industrial processes. However, incorporation of PCMs and NaNO3 in particular requires its protection (i.e. encapsulation into containers or support materials to avoid incompatibility or chemical reaction with the media where incorporated (i.e. corrosion in metal storage tanks. As a novelty, in this study, microencapsulation of an inorganic salt has been carried out also using an inorganic compound (SiO2 instead of the conventional polymeric shells used for organic microencapsulations and not suitable for high temperature applications (i.e. 300–500 °C. Thus, NaNO3 has been microencapsulated by sol–gel technology using SiO2 as shell material. Feasibility of the microparticles synthetized has been demonstrated by different experimental techniques in terms of TES capacity and thermal stability as well as durability through thermal cycles. The effectiveness of microencapsulated NaNO3 as TES material depends on the core:shell ratio used for the synthesis and on the maximum temperature supported by NaNO3 during use.

  5. Iron microencapsulation in gum tragacanth using solvent evaporation method.

    Asghari-Varzaneh, Elham; Shahedi, Mohammad; Shekarchizadeh, Hajar

    2017-10-01

    In this study iron salt (FeSO 4 ·7H 2 O) was microencapsulated in gum tragacanth hydrogel using solvent evaporation method. Three significant parameters (ferrous sulfate content, content of gum tragacanth, and alcohol to mixture ratio) were optimized by response surface methodology to obtain maximum encapsulation efficiency. Ferrous sulfate content, 5%, content of gum tragacanth, 22%, and alcohol to mixture ratio, 11:1 was determined to be the optimum condition to reach maximum encapsulation efficiency. Microstructure of iron microcapsules was thoroughly monitored using scanning electron microscopy (SEM). The microphotographs indicated two distinct crystalline and amorphous structures in the microcapsules. This structure was confirmed by X-ray diffraction (XRD) pattern of microcapsules. Fourier transform infrared (FTIR) spectra of iron microcapsules identified the presence of iron in the tragacanth microcapsules. The average size of microcapsules was determined by particle size analyzer. Release assessment of iron in simulated gastric fluid showed its complete release in stomach which is necessary for its absorption in duodenum. However, the use of encapsulated iron in gum tragacanth in watery foods is rather recommended due to the fast release of iron in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Thermal characterization of polymer matrix composites containing microencapsulated paraffin in solid or liquid state

    Sari-Bey, Sana; Fois, Magali; Krupa, Igor; Ibos, Laurent; Benyoucef, Boumédiène

    2014-01-01

    Highlights: • Thermal characterization of PCL/Micronal composites. • Melting enthalpy and heat capacity measured by DSC. • Interest: have measured thermal properties at different temperatures. • Thermophysical properties measurement temperatures chosen outside phase changes. • Characteristics useful to model composites heat transfer for LHTES applications. - Abstract: This work focuses on the study of heat transfer mechanisms in composites materials which may be used for Latent Heat Thermal Energy Storage applications. These composites contain phase change material (PCM) which can absorb and release energy during thermal cycling. PCM’s used here are paraffins microencapsulated in poly(methylmethacrylate); microencapsulation avoids the flow of paraffin when it is in the liquid state. Samples with different paraffin weight fractions and particles shape and distribution were studied in this work. Scanning Electron Microscopy and Differential Scanning Calorimetry were used to determine morphology and perform measurements of phase changes temperatures, enthalpies and heat capacity respectively. Further, a periodic method (DICO) allowed measuring thermal conductivity (λ) and diffusivity (a) of the composites at temperatures below and above of the paraffin phase change from crystalline solid to isotropic liquid

  7. Design of experiments for microencapsulation applications: A review.

    Paulo, Filipa; Santos, Lúcia

    2017-08-01

    Microencapsulation techniques have been intensively explored by many research sectors such as pharmaceutical and food industries. Microencapsulation allows to protect the active ingredient from the external environment, mask undesired flavours, a possible controlled release of compounds among others. The purpose of this review is to provide a background of design of experiments in microencapsulation research context. Optimization processes are required for an accurate research in these fields and therefore, the right implementation of micro-sized techniques at industrial scale. This article critically reviews the use of the response surface methodologies in pharmaceutical and food microencapsulation research areas. A survey of optimization procedures in the literature, in the last few years is also presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. OBSTACLES IN THE APPLICATION OF MICROENCAPSULATION IN ISLET TRANSPLANTATION

    DEVOS, P; WOLTERS, GHJ; FRITSCHY, WM; VANSCHILFGAARDE, R

    Several factors stand in the way of successful clinical transplantation of alginate-polylysine-alginate microencapsulated pancreatic islets. These obstacles can be classified into three categories. The first regards the technical aspects of the production process. Limiting factors are the

  9. Improvement on preparation of PS microshells by microencapsulation

    Du Kai; You Dan; Zhang Lin; Zhou Lan; Lin Bo

    1998-01-01

    Density-matched microencapsulation technique was presented. Concentricity, sphericity of microshells prepared by the technique was typically more than 98%, 99% respectively. Reduction of vacuole in the wall and preparation of large diameter microshells were also discussed

  10. Initiation and elimination of vacuoles in microencapsulated shells

    Du Kai; You Dan

    2000-01-01

    Two mechanisms of vacuole formation in microencapsulated micro-shells wall are introduced. It is verified that phase separation of trace amount of water in the organic solvent is the most possible course of vacuole formation

  11. Melting temperature of graphite

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  12. Probiotics, prebiotics, and microencapsulation: A review.

    Sarao, Loveleen Kaur; Arora, M

    2017-01-22

    The development of a suitable technology for the production of probiotics is a key research for industrial production, which should take into account the viability and the stability of the organisms involved. Microbial criteria, stress tolerance during processing, and storage of the product constitute the basis for the production of probiotics. Generally, the bacteria belonging to the genera Lactobacillus and Bifidobacterium have been used as probiotics. Based on their positive qualities, probiotic bacteria are widely used in the production of food. Interest in the incorporation of the probiotic bacteria into other products apart from dairy products has been increasing and represents a great challenge. The recognition of dose delivery systems for probiotic bacteria has also resulted in research efforts aimed at developing probiotic food outside the dairy sector. Producing probiotic juices has been considered more in the recent years, due to an increased concern in personal health of consumers. This review focuses on probiotics, prebiotics, and the microencapsulation of living cells.

  13. Modeling of microencapsulated polymer shell solidification

    Boone, T.; Cheung, L.; Nelson, D.; Soane, D.; Wilemski, G.; Cook, R.

    1995-01-01

    A finite element transport model has been developed and implemented to complement experimental efforts to improve the quality of ICF target shells produced via controlled-mass microencapsulation. The model provides an efficient means to explore the effect of processing variables on the dynamics of shell dimensions, concentricity, and phase behavior. Comparisons with experiments showed that the model successfully predicts the evolution of wall thinning and core/wall density differences. The model was used to efficiently explore and identify initial wall compositions and processing temperatures which resulted in concentricity improvements from 65 to 99%. The evolution of trace amounts of water entering into the shell wall was also tracked in the simulations. Comparisons with phase envelope estimations from modified UNIFAP calculations suggest that the water content trajectory approaches the two-phase region where vacuole formation via microphase separation may occur

  14. Thermal Performance of the Storage Brick Containing Microencapsulated PCM

    Lee, Dong Gyu

    1998-02-01

    The utilization of microencapsulated phase change materials(PCMs) provides several advantages over conventional PCM application. The heat storage system, as well as heat recovery system, can be built to a smaller size than the normal systems for a given thermal cycling capacity. This microencapsulated PCM technique has not yet been commercialized, however. In this work sodium acetate trihydrate(CH 3 COONa · 3H 2 O) was selected for the PCM and was encapsulated. This microencapsulated PCM was mixed with cement mortar for utilization as a floor heating system. In this experiment performed here the main purpose was to investigate the thermal performance of a storage brick with microencapsulated PCM concentration. The thermal performance of this storage brick is dependent on PCM concentration, flow rate and cooling temperature of the heat transfer fluid, etc. The results showed that cycle time was shortened as the PCM content was increased and as the mass flow rate was increased. The same effect was obtained when the cooling temperature was decreased. For each thermal storage brick the overall heat transfer coefficient(U-value) was constant for a 0% brick, but was increased with time for the bricks containing microencapsulated PCM. For the same mass flow rate, as the cooling temperature decreased, the amount of heat withdrawn increased, and in particular a critical cooling temperature was found for each thermal storage brick. The average effectiveness of each thermal storage brick was found to be approximately 48%, 51% and 58% respectively

  15. Separation of empty microcapsules after microencapsulation of porcine neonatal islets.

    Shin, Soojeong; Yoo, Young Je

    2013-12-01

    Pancreatic islet transplantation is used to treat diabetes mellitus that has minimal complications and avoids hypoglycemic shock. Conformal microencapsulation of pancreatic islets improves their function by blocking immunogenic molecules while protecting fragile islets. However, production of empty alginate capsules during microencapsulation causes enlargement of the transplantation volume of the encapsulated islets and interferes with efficient transfer of nutrients and insulin. In this study, empty alginate capsules were separated after microencapsulation of neonatal porcine islet-like cell clusters (NPCC) using density-gradient centrifugation. Densities of NPCC and alginate capsules were determined using Percoll. Encapsulation products following alginate removal were 97 % of products, with less than 10 % of the capsules remaining empty. The viability of this process compared with manually-selected encapsulated islets indicates the separation process does not harm islets.

  16. Stem Cell Microencapsulation for Phenotypic Control, Bioprocessing, and Transplantation

    Wilson, Jenna L.

    2014-01-01

    Cell microencapsulation has been utilized for decades as a means to shield cells from the external environment while simultaneously permitting transport of oxygen, nutrients, and secretory molecules. In designing cell therapies, donor primary cells are often difficult to obtain and expand to appropriate numbers, rendering stem cells an attractive alternative due to their capacities for self-renewal, differentiation, and trophic factor secretion. Microencapsulation of stem cells offers several benefits, namely the creation of a defined microenvironment which can be designed to modulate stem cell phenotype, protection from hydrodynamic forces and prevention of agglomeration during expansion in suspension bioreactors, and a means to transplant cells behind a semi-permeable barrier, allowing for molecular secretion while avoiding immune reaction. This review will provide an overview of relevant microencapsulation processes and characterization in the context of maintaining stem cell potency, directing differentiation, investigating scalable production methods, and transplanting stem cells for clinically relevant disorders. PMID:23239279

  17. Microencapsulating and Banking Living Cells for Cell-Based Medicine

    Wujie Zhang

    2011-01-01

    Full Text Available A major challenge to the eventual success of the emerging cell-based medicine such as tissue engineering, regenerative medicine, and cell transplantation is the limited availability of the desired cell sources. This challenge can be addressed by cell microencapsulation to overcome the undesired immune response (i.e., to achieve immunoisolation so that non-autologous cells can be used to treat human diseases, and by cell/tissue preservation to bank living cells for wide distribution to end users so that they are readily available when needed in the future. This review summarizes the status quo of research in both cell microencapsulation and banking the microencapsulated cells. It is concluded with a brief outlook of future research directions in this important field.

  18. The recent advances on carrier materials for microencapsulating lipophilic cores

    JIN Minfeng

    2014-12-01

    Full Text Available Lipophilic ingredients,such as polyunsaturated fatty acids,play an important role in industrialized foods to fortify the nutrients.However,these materials are normally sensitive to oxygen,light or heat to be oxidized,and hard to flow and mix within the bulk food due to the hydrophobic nature.Microencapsulation of lipophilic materials could effectively extend their shelf lives,mask unsatisfied flavors,change their physicochemical properties,and enhance the mixing capacities.This work reviewed the different carrier materials applied in microencapsulating the lipophilic ingredients,and discussed their characteristics and effects on encapsulation efficiencies and release profiles of lipophilic cores.

  19. Microencapsulation: concepts, mechanisms, methods and some applications in food technology

    Pablo Teixeira da Silva

    2014-07-01

    Full Text Available Microencapsulation is a process in which active substances are coated by extremely small capsules. It is a new technology that has been used in the cosmetics industry as well as in the pharmaceutical, agrochemical and food industries, being used in flavors, acids, oils, vitamins, microorganisms, among others. The success of this technology is due to the correct choice of the wall material, the core release form and the encapsulation method. Therefore, in this review, some relevant microencapsulation aspects, such as the capsule, wall material, core release forms, encapsulation methods and their use in food technology will be briefly discussed.

  20. Recent Developments on Microencapsulation for Autonomous Corrosion Protection

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Fitzpatrick, Lilliana; Jolley, Scott T.; Surma, Jan M.; Pearman, Benjamin P.; Zhang, Xuejun

    2014-01-01

    This work concerns recent progress in the development of a multifunctional smart coating based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of desired corrosion control functionalities, such as early corrosion detection and inhibition through corrosion controlled release of corrosion indicators and inhibitors, as well as self-healing agent release when mechanical damage occurs.While proof-of-concept results have been reported previously, more recent efforts have been concentrated in technical developments to improve coating compatibility, synthesis procedure scalability, as well as fine tuning the release property of encapsulated active agents.

  1. Silver diffusion through silicon carbide in microencapsulated nuclear fuels TRISO

    Cancino T, F.; Lopez H, E.

    2013-10-01

    The silver diffusion through silicon carbide is a challenge that has persisted in the development of microencapsulated fuels TRISO (Tri structural Isotropic) for more than four decades. The silver is known as a strong emitter of gamma radiation, for what is able to diffuse through the ceramic coatings of pyrolytic coal and silicon carbide and to be deposited in the heat exchangers. In this work we carry out a recount about the art state in the topic of the diffusion of Ag through silicon carbide in microencapsulated fuels and we propose the role that the complexities in the grain limit can have this problem. (Author)

  2. Microencapsulation of Pancreatic Islets for Use in a Bioartificial Pancreas

    Opara, Emmanuel C.; McQuilling, John P.; Farney, Alan C.

    2013-01-01

    Islet transplantation is the most exciting treatment option for individuals afflicted with Type 1 diabetes. However, the severe shortage of human pancreas and the need to use risky immunosuppressive drugs to prevent transplant rejection remain two major obstacles for the routine use of islet transplantation in diabetic patients. Successful development of a bioartificial pancreas using the approach of microencapsulation with perm-selective coating of islets with biopolymers for graft immunoisolation holds tremendous promise for diabetic patients because it has great potential to overcome these two barriers. In this chapter, we provide a detailed description of the microencapsulation process. PMID:23494435

  3. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  4. Microencapsulation of Lactobacillus casei by spray drying.

    Dos Santos, Rebeka Cristiane Silva; Finkler, Leandro; Finkler, Christine Lamenha Luna

    2014-01-01

    This study evaluates the use of spray drying to produce microparticles of Lactobacillus casei. Microorganism was cultivated in shaken flasks and the microencapsulation process was performed using a laboratory-scale spray dryer. A rotational central composite design was employed to optimise the drying conditions. High cell viability (1.1 × 10(10) CFU/g) was achieved using an inlet air temperature of 70 °C and 25% (w/v) of maltodextrin. Microparticles presented values of solubility, wettability, water activity, hygroscopicity and humidity corresponding to 97.03 ± 0.04%, 100% (in 1.16 min), 0.14 ± 0.0, 35.20 g H2O/100 g and 4.80 ± 0.43%, respectively. The microparticles were spherical with a smooth surface and thermally stable. Encapsulation improved the survival of L. casei during storage. After 60 days, the samples stored at -8 °C showed viable cell concentrations of 1.0 × 10(9) CFU/g.

  5. Microencapsulated Electrophoretic Films for Electronic Paper Displays

    Amundson, Karl

    2003-03-01

    Despite the dominance of liquid crystal displays, they do not perform some functions very well. While backlit liquid crystal displays can offer excellent color performance, they wash out in bright lighting and suffer from high power consumption. Reflective liquid crystal displays have limited brightness, making these devices challenging to read for long periods of time. Flexible liquid crystal displays are difficult to manufacture and keep stable. All of these attributes (long battery lifetime, bright reflective appearance, compatibility with flexible substrates) are traits that would be found in an ideal electronic paper display - an updateable substitute for paper that could be employed in electronic books, newspapers, and other applications. I will discuss technologies that are being developed for electronic-paper-like displays, and especially on particle-based technologies. A microencapsulated electrophoretic display technology is being developed at the E Ink corporation. This display film offers offer high brightness and an ink-on-paper appearance, compatibility with flexible substrates, and image stability that can lead to very low power consumption. I will present some of the physical and chemical challenges associated with making display films with high performance.

  6. The Production of Synbiotic Bread by Microencapsulation.

    Seyedain-Ardabili, Mojan; Sharifan, Anousheh; Tarzi, Babak Ghiassi

    2016-03-01

    Bread is a global staple food. Despite attempts to develop functional breads containing viable microorganisms, this has not been done yet because of the high temperature during baking. The aim of this study is to obtain synbiotic bread, hence hamburger bun and white pan bread were selected. Lactobacillus acidophilus LA-5 and L. casei 431 were encapsulated with calcium alginate and Hi-maize resistant starch via emulsion technique and coated with chitosan. The morphology and size of microcapsules were measured by scanning electron microscopy and particle size analyser. Inulin was added at 5% wheat flour mass basis for prebiotic effect. The encapsulated probiotics were inoculated into the bread dough and bread loaves were baked. The survival of encapsulated probiotics was determined after baking; also sensory evaluation was performed. Both types of bread met the standard criteria for probiotic products. The probiotic survival was higher in hamburger bun. L. casei 431 was more resistant to high temperature than L. acidophilus LA-5. A significant increase in probiotic survival was observed when the protective coating of chitosan was used in addition to calcium alginate and Hi-maize resistant starch. Storage for 4 days did not have any effect on the viability of encapsulated bacteria. The addition of encapsulated bacteria did not have any effect on flavour and texture; however, 5% inulin improved the texture of bread significantly. Results show that microencapsulation used in the production of synbiotic bread can enhance the viability and thermal resistance of the probiotic bacteria.

  7. The Production of Synbiotic Bread by Microencapsulation

    Anousheh Sharifan

    2016-01-01

    Full Text Available Bread is a global staple food. Despite attempts to develop functional breads containing viable microorganisms, this has not been done yet because of the high temperature during baking. The aim of this study is to obtain synbiotic bread, hence hamburger bun and white pan bread were selected. Lactobacillus acidophilus LA-5 and L. casei 431 were encapsulated with calcium alginate and Hi-maize resistant starch via emulsion technique and coated with chitosan. The morphology and size of microcapsules were measured by scanning electron microscopy and particle size analyser. Inulin was added at 5 % wheat flour mass basis for prebiotic effect. The encapsulated probiotics were inoculated into the bread dough and bread loaves were baked. The survival of encapsulated probiotics was determined after baking; also sensory evaluation was performed. Both types of bread met the standard criteria for probiotic products. The probiotic survival was higher in hamburger bun. L. casei 431 was more resistant to high temperature than L. acidophilus LA-5. A significant increase in probiotic survival was observed when the protective coating of chitosan was used in addition to calcium alginate and Hi-maize resistant starch. Storage for 4 days did not have any effect on the viability of encapsulated bacteria. The addition of encapsulated bacteria did not have any effect on flavour and texture; however, 5 % inulin improved the texture of bread significantly. Results show that microencapsulation used in the production of synbiotic bread can enhance the viability and thermal resistance of the probiotic bacteria.

  8. Physico-chemical and mechanical properties of microencapsulated phase change material

    Giro-Paloma, Jessica; Oncins, Gerard; Barreneche, Camila; Martínez, Mònica; Fernández, A. Inés; Cabeza, Luisa F.

    2013-01-01

    Highlights: ► Microencapsulated phase change material MPCM (Micronal∗ DS 5001) was evaluated in this study. ► Due to the reported microcapsules breakage, physical and mechanical properties were analysed. ► Mechanical response was evaluated by AFM with indentation mode under different temperatures. ► The main result is that stiffness of MPCM depends on the temperature assay and particle size. - Abstract: Microencapsulated phase change materials (MPCM) are well known in advanced technologies for the utilization in active and passive systems, which have the capacity to absorb and slowly release the latent heat involved in a phase change process. Microcapsules consist of little containers, which are made of polymer on the outside, and paraffin wax as PCM in the inside. The use of microencapsulated PCM has many advantages as microcapsules can handle phase change materials as core allowing the preparation of slurries. However there are some concerns about cycling of MPCM slurries because of the breakage of microcapsules during charging/discharging and the subsequent loss of effectiveness. This phenomenon motivates the study of the mechanical response when a force is applied to the microcapsule. The maximum force that Micronal® DS 5001 can afford before breaking was determined by Atomic Force Microscopy (AFM). To simulate real conditions in service, assays were done at different temperatures: with the PCM in solid state at 25 °C, and with the PCM melted at 45 °C and 80 °C. To better understand the behavior of these materials, Micronal® DS 5001 microcapsules were characterized using different physic-chemical techniques. Microcapsules Fourier Transform Infrared Spectroscopy (FT-IR) results showed the main vibrations corresponding to acrylic groups of the outside polymer. Thermal stability was studied by Thermogravimetrical Analysis (TGA), and X-ray Fluorescence (XRF) was used to characterize the resulting inorganic residue. The thermal properties were

  9. Microencapsulated Starter Culture During Yoghurt Manufacturing, Effect on Technological Features

    Prisco, de Annachiara; Valenberg, van Hein J.F.; Fogliano, Vincenzo; Mauriello, Gianluigi

    2017-01-01

    The potential of living cell microencapsulation in sustaining cells’ viability, functionality and targeted release in gastrointestinal tract is relatively well documented. Differently, the effects exerted by the capsules on cell metabolic activities during fermentation of a food matrix as well as

  10. Development of new microencapsulated beta emitters for internal radiotherapy

    Perdrisot, R.; Monteil, J.; Le Jeune, J.J.; Pouliquen, D.; Jallet, P.; Beau, P.; Lepape, A.

    1993-01-01

    We have developed new microencapsulated beta emitter radiotracers which could be used in nuclear medicine for selective internal radiotherapy. Their efficacy was evaluated on B16 melanoma tumor model in mice, using phosphorus 31 spectroscopy. This kind of tracer would allow a precise targetting of beta irradiation

  11. Islet Microencapsulation: Strategies and Clinical Status in Diabetes.

    Omami, Mustafa; McGarrigle, James J; Reedy, Mick; Isa, Douglas; Ghani, Sofia; Marchese, Enza; Bochenek, Matthew A; Longi, Maha; Xing, Yuan; Joshi, Ira; Wang, Yong; Oberholzer, José

    2017-07-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results from the destruction of insulin-producing pancreatic β cells in the islets of Langerhans. Islet cell transplantation has become a successful therapy for specific patients with T1DM with hypoglycemic unawareness. The reversal of T1DM by islet transplantation is now performed at many major medical facilities throughout the world. However, many challenges must still be overcome in order to achieve continuous, long-term successful transplant outcomes. Two major obstacles to this therapy are a lack of islet cells for transplantation and the need for life-long immunosuppressive treatment. Microencapsulation is seen as a technology that can overcome both these limitations of islet cell transplantation. This review depicts the present state of microencapsulated islet transplantation. Microencapsulation can play a significant role in overcoming the need for immunosuppression and lack of donor islet cells. This review focuses on microencapsulation and the clinical status of the technology in combating T1DM.

  12. Elastic silicone encapsulation of n-hexadecyl bromide by microfluidic approach as novel microencapsulated phase change materials

    Fu, Zhenjin [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Su, Lin; Li, Jing; Yang, Ruizhuang; Zhang, Zhanwen; Liu, Meifang; Li, Jie [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Bo, E-mail: LB6711@126.com [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2014-08-20

    Highlights: • n-Hexadecyl bromide was encapsuled in elastic silicone shell. • The surfaces of microcapsules were smooth and the cross sections were compact. • Latent heat of microcapsules was 76.35 J g{sup −1}. • The microencapsulation ratio was 49 wt.%. • The microcapsules had good thermal stability. - Abstract: The elastic silicone/n-hexadecyl bromide microcapsules were prepared as novel microencapsulated phase change materials by microfluidic approach with the co-flowing channels, where the double oil1-in-oil2-in-water (O1/O2/W) droplets with a core–shell geometry were fabricated. The thermal characterizations of the microcapsules were investigated using differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The DSC results showed that the microcapsules had good energy storage capacity with melting and freezing enthalpies 76.35 J g{sup −1} and 78.67 J g{sup −1}, respectively. The TGA investigation showed that the microcapsules had good thermal stability. The surfaces of microcapsules were smooth and the cross sections were compact from the results of optical microscope and scanning electron microscopy (SEM). Optical microscope showed that the silicone shell can provide expansion place due to its elastic property. Therefore, the silicone/n-hexadecyl bromide microcapsules showed good potential as thermal regulating textile and thermal insulation materials.

  13. Elastic silicone encapsulation of n-hexadecyl bromide by microfluidic approach as novel microencapsulated phase change materials

    Fu, Zhenjin; Su, Lin; Li, Jing; Yang, Ruizhuang; Zhang, Zhanwen; Liu, Meifang; Li, Jie; Li, Bo

    2014-01-01

    Highlights: • n-Hexadecyl bromide was encapsuled in elastic silicone shell. • The surfaces of microcapsules were smooth and the cross sections were compact. • Latent heat of microcapsules was 76.35 J g −1 . • The microencapsulation ratio was 49 wt.%. • The microcapsules had good thermal stability. - Abstract: The elastic silicone/n-hexadecyl bromide microcapsules were prepared as novel microencapsulated phase change materials by microfluidic approach with the co-flowing channels, where the double oil1-in-oil2-in-water (O1/O2/W) droplets with a core–shell geometry were fabricated. The thermal characterizations of the microcapsules were investigated using differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA). The DSC results showed that the microcapsules had good energy storage capacity with melting and freezing enthalpies 76.35 J g −1 and 78.67 J g −1 , respectively. The TGA investigation showed that the microcapsules had good thermal stability. The surfaces of microcapsules were smooth and the cross sections were compact from the results of optical microscope and scanning electron microscopy (SEM). Optical microscope showed that the silicone shell can provide expansion place due to its elastic property. Therefore, the silicone/n-hexadecyl bromide microcapsules showed good potential as thermal regulating textile and thermal insulation materials

  14. Development of Anti-Insect Microencapsulated Polypropylene Films Using a Large Scale Film Coating System.

    Song, Ah Young; Choi, Ha Young; Lee, Eun Song; Han, Jaejoon; Min, Sea C

    2018-04-01

    Films containing microencapsulated cinnamon oil (CO) were developed using a large-scale production system to protect against the Indian meal moth (Plodia interpunctella). CO at concentrations of 0%, 0.8%, or 1.7% (w/w ink mixture) was microencapsulated with polyvinyl alcohol. The microencapsulated CO emulsion was mixed with ink (47% or 59%, w/w) and thinner (20% or 25%, w/w) and coated on polypropylene (PP) films. The PP film was then laminated with a low-density polyethylene (LDPE) film on the coated side. The film with microencapsulated CO at 1.7% repelled P. interpunctella most effectively. Microencapsulation did not negatively affect insect repelling activity. The release rate of cinnamaldehyde, an active repellent, was lower when CO was microencapsulated than that in the absence of microencapsulation. Thermogravimetric analysis exhibited that microencapsulation prevented the volatilization of CO. The tensile strength, percentage elongation at break, elastic modulus, and water vapor permeability of the films indicated that microencapsulation did not affect the tensile and moisture barrier properties (P > 0.05). The results of this study suggest that effective films for the prevention of Indian meal moth invasion can be produced by the microencapsulation of CO using a large-scale film production system. Low-density polyethylene-laminated polypropylene films printed with ink incorporating microencapsulated cinnamon oil using a large-scale film production system effectively repelled Indian meal moth larvae. Without altering the tensile and moisture barrier properties of the film, microencapsulation resulted in the release of an active repellent for extended periods with a high thermal stability of cinnamon oil, enabling commercial film production at high temperatures. This anti-insect film system may have applications to other food-packaging films that use the same ink-printing platform. © 2018 Institute of Food Technologists®.

  15. Microencapsulation of Flavors in Carnauba Wax

    Milanovic, Jelena; Manojlovic, Verica; Levic, Steva; Rajic, Nevenka; Nedovic, Viktor; Bugarski, Branko

    2010-01-01

    The subject of this study is the development of flavor wax formulations aimed for food and feed products. The melt dispersion technique was applied for the encapsulation of ethyl vanillin in wax microcapsules. The surface morphology of microparticles was investigated using scanning electron microscope (SEM), while the loading content was determined by HPLC measurements. This study shows that the decomposition process under heating proceeds in several steps: vanilla evaporation occurs at aroun...

  16. Microencapsulation of xylitol by double emulsion followed by complex coacervation.

    Santos, Milla G; Bozza, Fernanda T; Thomazini, Marcelo; Favaro-Trindade, Carmen S

    2015-03-15

    The objective of this study was to produce and characterise xylitol microcapsules for use in foods, in order to prolong the sweetness and cooling effect provided by this ingredient. Complex coacervation was employed as the microencapsulation method. A preliminary double emulsion step was performed due to the hydrophilicity of xylitol. The microcapsules obtained were characterised in terms of particle size and morphology (optical, confocal and scanning electron microscopy), solubility, sorption isotherms, FTIR, encapsulation efficiency and release study. The microcapsules of xylitol showed desirable characteristics for use in foods, such as a particle size below 109 μm, low solubility and complete encapsulation of the core by the wall material. The encapsulation efficiency ranged from 31% to 71%, being higher in treatments with higher concentrations of polymers. Release of over 70% of the microencapsulated xylitol in artificial saliva occurred within 20 min. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Fast neutron induced flux pinning in Tl-based high-Tc single crystals and thin films, highly textured tapes and melt-textured bulk 123-superconductors

    Brandstaetter, G.; Samadi Hosseinalli, G.; Kern, C.; Sauerzopf, F.M.; Schulz, G.W.; Straif, W.; Yang, X.; Weber, H.W.; Hu, Q.Y.

    1999-01-01

    Various compounds (TI-2223, TI-1223, TI-2212) as well as material forms (single crystals, thin films, ceramics, tapes) of TI-based high temperature superconductors were investigated by magnetic and transport techniques. TI-2223 has a very 'low lying' irreversibility line (H parallel e) and negligible critical current densities J c at 77 K. However, the irreversibility line shifts to higher fields and temperatures and J c is strongly enhanced, even at 77 K, after fast neutron irradiation. In contrast, the related TI-1223 compound has a much steeper irreversibility line (H parallel c) similar to that of Y-123. J c is significant up to 77 K, even in the unirradiated state, and can be largely improved by neutron irradiation. Transport measurements made on TI-1223 tapes still show much lower critical current densities. TI-2212 and Tl-2223 thin films have J c 's at 77 K, which are comparable to those of TI-1223 single crystals. Transport measurements on highly textured Bi-2223 tapes as well as flux profile measurements on Nd-123 bulk superconductors confirm the beneficial effects of neutron induced defects (collision cascades) for flux pinning. (author)

  18. Effect of microencapsulated phase change material in sandwich panels

    Castellon, Cecilia; Medrano, Marc; Roca, Joan; Cabeza, Luisa F. [GREA Innovacio Concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Navarro, Maria E.; Fernandez, Ana I. [Departamento de Ciencias de los Materiales e Ingenieria Metalurgica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Lazaro, Ana; Zalba, Belen [Instituto de Investigacion en Ingenieria de Aragon, I3A, Grupo de Ingenieria Termica y Sistemas Energeticos (GITSE), Dpto. Ingenieria Mecanica, Area de Maquinas y Motores Termicos, Universidad de Zaragoza, Campus Politecnico Rio Ebro, Edificio ' ' Agustin de Betancourt,' ' Maria de Luna s/n, 50018 Zaragoza (Spain)

    2010-10-15

    Sandwich panels are a good option as building materials, as they offer excellent characteristics in a modular system. The goal of this study was to demonstrate the feasibility of using the microencapsulated PCM (Micronal BASF) in sandwich panels to increase their thermal inertia and to reduce the energy demand of the final buildings. In this paper, to manufacture the sandwich panel with microencapsulated PCM three different methods were tested. In case 1, the PCM was added mixing the microencapsulated PCM with one of the components of the polyurethane. In the other two cases, the PCM was added either a step before (case 2) or a step after (case 3) to the addition of the polyurethane to the metal sheets. The results show that in case 1 the effect of PCM was overlapped by a possible increase in thermal conductivity, but an increase of thermal inertia was found in case 3. In case 2, different results were obtained due to the poor distribution of the PCM. Some samples showed the effect of the PCM (higher thermal inertia), and other samples results were similar to the conventional sandwich panel. In both cases (2 and 3), it is required to industrialize the process to improve the results. (author)

  19. Isolation of human foetal myoblasts and its application for microencapsulation

    Li, Anna Aihua; Bourgeois, Jacqueline; Potter, Murray; Chang, Patricia L

    2008-01-01

    Abstract Foetal cells secrete more growth factors, generate less immune response, grow and proliferate better than adult cells. These characteristics make them desirable for recombinant modification and use in microencapsulated cellular gene therapeutics. We have established a system in vitro to obtain a pure population of primary human foetal myoblasts under several rounds of selection with non-collagen coated plates and identified by desmin staining. These primary myoblasts presented good proliferation ability and better differentiation characteristics in monolayer and after microencapsulation compared to murine myoblast C2C12 cells based on creatine phosphokinase (CPK), major histocompatibility complex (MHC) and multi-nucleated myotubule determination. The lifespan of primary myoblasts was 70 population doublings before entering into senescent state, with a population time of 18–24 hrs. Hence, we have developed a protocol for isolating human foetal primary myoblasts with excellent differentiation potential and robust growth and longevity. They should be useful for cell-based therapy in human clinical applications with microencapsulation technology. PMID:18366454

  20. Microencapsulated bitter compounds (from Gentiana lutea) reduce daily energy intakes in humans

    Mennella, Ilario; Fogliano, Vincenzo; Ferracane, Rosalia; Arlorio, Marco; Pattarino, Franco; Vitaglione, Paola

    2016-01-01

    Mounting evidence showed that bitter-tasting compounds modulate eating behaviour through bitter taste receptors in the gastrointestinal tract. This study aimed at evaluating the influence of microencapsulated bitter compounds on human appetite and energy intakes. A microencapsulated bitter

  1. Peptide Microencapsulation by Core-Shell Printing Technology for Edible Film Application

    Blanco-Pascual, N.; Koldeweij, R.B.J.; Stevens, R.S.A.; Montero, M.P.; Gómez-Guillén, M.C.; Cate, A.T.T.

    2014-01-01

    This paper presents a new microencapsulation methodology for incorporation of functional ingredients in edible films. Core-shell microcapsules filled with demineralized water (C) or 1 % (w/v) peptide solution (Cp) were prepared using the microencapsulation printer technology. Shell material,

  2. Stability to oxidation of spray-dried fish oil powder microencapsulated using milk ingredients

    Keogh, M.K.; O'Kennedy, B.T.; Kelly, J.

    2001-01-01

    Microencapsulation of fish oil was achieved by spray-drying homogenized emulsions of fish oil using 3 different types of casein as emulsifier and lactose as filler. As the degree of aggregation of the casein emulsifier increased, the vacuole volume of the microencapsulated powders decreased...

  3. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-01-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  4. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  5. Microencapsulated bait: Does it work with Red Imported Fire Ant, Solenopsis invicta (Hymenoptera: Formicidae)?

    The preference of red imported fire ant, Solenopsis invicta for microencapsulated (MC) pyriproxifen based corn grit baits (P-bait) was conducted in laboratory and field conditions. A positive correlation between the microencapsulation rate and water tolerance ability of P-bait was observed. A 20% in...

  6. Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications.

    Giro-Paloma, Jessica; Al-Shannaq, Refat; Fernández, Ana Inés; Farid, Mohammed M

    2015-12-26

    A method for preparing and characterizing microencapsulated phase change materials (MPCM) was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample) and Micronal ® DS 5008 X (BASF) samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS). Both samples presented a 6 μm average size and a spherical shape. Thermal energy storage (TES) capacities were 111.73 J·g -1 and 99.3 J·g -1 for M-2 and Micronal ® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus ( E ), load at maximum displacement ( P m ), and displacement at maximum load ( h m ), concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC's). This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC's emission after 10 min of heating, however peaks intensity of VOC's generated from M-2 microcapsules showed a lower concentration than Micronal ® DS 5008 X.

  7. Microencapsulation of metal-based phase change material for high-temperature thermal energy storage.

    Nomura, Takahiro; Zhu, Chunyu; Sheng, Nan; Saito, Genki; Akiyama, Tomohiro

    2015-03-13

    Latent heat storage using alloys as phase change materials (PCMs) is an attractive option for high-temperature thermal energy storage. Encapsulation of these PCMs is essential for their successful use. However, so far, technology for producing microencapsulated PCMs (MEPCMs) that can be used above 500°C has not been established. Therefore, in this study, we developed Al-Si alloy microsphere MEPCMs covered by α-Al2O3 shells. The MEPCM was prepared in two steps: (1) the formation of an AlOOH shell on the PCM particles using a boehmite treatment, and (2) heat-oxidation treatment in an O2 atmosphere to form a stable α-Al2O3 shell. The MEPCM presented a melting point of 573°C and latent heat of 247 J g(-1). The cycling performance showed good durability. These results indicated the possibility of using MEPCM at high temperatures. The MEPCM developed in this study has great promise in future energy and chemical processes, such as exergy recuperation and process intensification.

  8. Preparation and Characterization of Microencapsulated Phase Change Materials for Use in Building Applications

    Jessica Giro-Paloma

    2015-12-01

    Full Text Available A method for preparing and characterizing microencapsulated phase change materials (MPCM was developed. A comparison with a commercial MPCM is also presented. Both MPCM contained paraffin wax as PCM with acrylic shell. The melting temperature of the PCM was around 21 °C, suitable for building applications. The M-2 (our laboratory made sample and Micronal® DS 5008 X (BASF samples were characterized using SEM, DSC, nano-indentation technique, and Gas Chromatography/Mass spectrometry (GC-MS. Both samples presented a 6 μm average size and a spherical shape. Thermal energy storage (TES capacities were 111.73 J·g−1 and 99.3 J·g−1 for M-2 and Micronal® DS 5008 X, respectively. Mechanical characterization of the samples was performed by nano-indentation technique in order to determine the elastic modulus (E, load at maximum displacement (Pm, and displacement at maximum load (hm, concluding that M-2 presented slightly better mechanical properties. Finally, an important parameter for considering use in buildings is the release of volatile organic compounds (VOC’s. This characteristic was studied at 65 °C by CG-MS. Both samples showed VOC’s emission after 10 min of heating, however peaks intensity of VOC’s generated from M-2 microcapsules showed a lower concentration than Micronal® DS 5008 X.

  9. Reducing Pumping Power in Hydronic Heating and Cooling Systems with Microencapsulated Phase Change Material Slurries

    Karas, Kristoffer Jason

    Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.

  10. LDRD final report on microencapsulated immunoreagents for development of one-step ELISA

    Henderson, C.C.; Singh, A.K.

    1997-08-01

    Microencapsulation of biological macromolecules was investigated as a method for incorporating the necessary immunoreagents into an improved enzyme-linked immunosorbant assay (ELISA) package that would self-develop. This self-contained ELISA package would eliminate the need for a trained technician to perform multiple additions of immunoreagent to the assay. Microencapsulation by insolution drying was selected from the many available microencapsulation methods, and two satisfactory procedures for microencapsulation of proteins were established. The stability and potential for rapid release of protein from these microencapsulates was then evaluated. The results suggest that the chosen method for protein entrapment produces microcapsules with a considerable amount of protein in the walls making these particular microcapsules unsuitable for their intended use.

  11. Simple and double microencapsulation of Lactobacillus acidophilus with chitosan using spray drying

    Isela A. Flores-Belmont

    2015-10-01

    Full Text Available The aim of this study was to evaluate the survival of Lactobacillus acidophilus that had been simple or double spray dried using chitosan to cause microencapsulation and which had been exposed to model gastrointestinal conditions. In addition, the study also determined the physicochemical properties of the powder containing the microencapsulated probiotic.Chitosan-inulin or chitosan-maltodextrin (1:15 or 1:25 solutions were inoculated with 1012 cfu mL-1 of L. acidophilus, for simple microencapsulation. The different solutions were dried using a spray dryer with an inlet air temperature of 130°C and a solution flux of 4.8 g min-1. A two-step process was used for the double microencapsulation. In the first step, the probiotic was added to a gelatin-maltodextrin (1:25 solution and then spray dried; for the second step, the microencapsulated probiotic was added to a chitosan-inulin or chitosan-maltodextrin (1:25 solution and then it was spray dried again.With the simple microencapsulated probiotic, a microbial reduction of 7 log cycles was obtained. With the double microencapsulated probiotic only 3 log reductions were achieved. The double microencapsulated probiotic thus demonstrated greater resistance to simulated gastrointestinal conditions. The powders produced were shown to have water activity values of 0.176 - 0.261 at 25 °C and moisture content of 0.8 – 1.0%, which are characteristic of spray dried products. The bulk density was significantly (p < 0.05 lower (300 kg m-3 for simple than for double (400 kg m-3 microencapsulated probiotic powders. Solubility and dispersibility of the powder microcapsules were better at lower pH values.Double microencapsulation using a process of spray drying is therefore recommended for probiotics, thus exploiting chitosan’s insolubility in water, which can be applied for the of development food products.

  12. Microencapsulation of Flavors in Carnauba Wax

    Branko Bugarski

    2010-01-01

    Full Text Available The subject of this study is the development of flavor wax formulations aimed for food and feed products. The melt dispersion technique was applied for the encapsulation of ethyl vanillin in wax microcapsules. The surface morphology of microparticles was investigated using scanning electron microscope (SEM, while the loading content was determined by HPLC measurements. This study shows that the decomposition process under heating proceeds in several steps: vanilla evaporation occurs at around 200 °C, while matrix degradation starts at 250 °C and progresses with maxima at around 360, 440 and 520 °C. The results indicate that carnauba wax is an attractive material for use as a matrix for encapsulation of flavours in order to improve their functionality and stability in products.

  13. Microencapsulation of flavors in carnauba wax.

    Milanovic, Jelena; Manojlovic, Verica; Levic, Steva; Rajic, Nevenka; Nedovic, Viktor; Bugarski, Branko

    2010-01-01

    The subject of this study is the development of flavor wax formulations aimed for food and feed products. The melt dispersion technique was applied for the encapsulation of ethyl vanillin in wax microcapsules. The surface morphology of microparticles was investigated using scanning electron microscope (SEM), while the loading content was determined by HPLC measurements. This study shows that the decomposition process under heating proceeds in several steps: vanilla evaporation occurs at around 200 °C, while matrix degradation starts at 250 °C and progresses with maxima at around 360, 440 and 520 °C. The results indicate that carnauba wax is an attractive material for use as a matrix for encapsulation of flavours in order to improve their functionality and stability in products.

  14. Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0

    F. Pattyn

    2017-08-01

    Full Text Available The magnitude of the Antarctic ice sheet's contribution to global sea-level rise is dominated by the potential of its marine sectors to become unstable and collapse as a response to ocean (and atmospheric forcing. This paper presents Antarctic sea-level response to sudden atmospheric and oceanic forcings on multi-centennial timescales with the newly developed fast Elementary Thermomechanical Ice Sheet (f.ETISh model. The f.ETISh model is a vertically integrated hybrid ice sheet–ice shelf model with vertically integrated thermomechanical coupling, making the model two-dimensional. Its marine boundary is represented by two different flux conditions, coherent with power-law basal sliding and Coulomb basal friction. The model has been compared to existing benchmarks. Modelled Antarctic ice sheet response to forcing is dominated by sub-ice shelf melt and the sensitivity is highly dependent on basal conditions at the grounding line. Coulomb friction in the grounding-line transition zone leads to significantly higher mass loss in both West and East Antarctica on centennial timescales, leading to 1.5 m sea-level rise after 500 years for a limited melt scenario of 10 m a−1 under freely floating ice shelves, up to 6 m for a 50 m a−1 scenario. The higher sensitivity is attributed to higher ice fluxes at the grounding line due to vanishing effective pressure. Removing the ice shelves altogether results in a disintegration of the West Antarctic ice sheet and (partially marine basins in East Antarctica. After 500 years, this leads to a 5 m and a 16 m sea-level rise for the power-law basal sliding and Coulomb friction conditions at the grounding line, respectively. The latter value agrees with simulations by DeConto and Pollard (2016 over a similar period (but with different forcing and including processes of hydrofracturing and cliff failure. The chosen parametrizations make model results largely independent of spatial resolution so

  15. Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0)

    Pattyn, Frank

    2017-08-01

    The magnitude of the Antarctic ice sheet's contribution to global sea-level rise is dominated by the potential of its marine sectors to become unstable and collapse as a response to ocean (and atmospheric) forcing. This paper presents Antarctic sea-level response to sudden atmospheric and oceanic forcings on multi-centennial timescales with the newly developed fast Elementary Thermomechanical Ice Sheet (f.ETISh) model. The f.ETISh model is a vertically integrated hybrid ice sheet-ice shelf model with vertically integrated thermomechanical coupling, making the model two-dimensional. Its marine boundary is represented by two different flux conditions, coherent with power-law basal sliding and Coulomb basal friction. The model has been compared to existing benchmarks. Modelled Antarctic ice sheet response to forcing is dominated by sub-ice shelf melt and the sensitivity is highly dependent on basal conditions at the grounding line. Coulomb friction in the grounding-line transition zone leads to significantly higher mass loss in both West and East Antarctica on centennial timescales, leading to 1.5 m sea-level rise after 500 years for a limited melt scenario of 10 m a-1 under freely floating ice shelves, up to 6 m for a 50 m a-1 scenario. The higher sensitivity is attributed to higher ice fluxes at the grounding line due to vanishing effective pressure. Removing the ice shelves altogether results in a disintegration of the West Antarctic ice sheet and (partially) marine basins in East Antarctica. After 500 years, this leads to a 5 m and a 16 m sea-level rise for the power-law basal sliding and Coulomb friction conditions at the grounding line, respectively. The latter value agrees with simulations by DeConto and Pollard (2016) over a similar period (but with different forcing and including processes of hydrofracturing and cliff failure). The chosen parametrizations make model results largely independent of spatial resolution so that f.ETISh can potentially be

  16. Extraction of Plant-based Capsules for Microencapsulation Applications.

    Potroz, Michael G; Mundargi, Raghavendra C; Park, Jae Hyeon; Tan, Ee-Lin; Cho, Nam-Joon

    2016-11-09

    Microcapsules derived from plant-based spores or pollen provide a robust platform for a diverse range of microencapsulation applications. Sporopollenin exine capsules (SECs) are obtained when spores or pollen are processed so as to remove the internal sporoplasmic contents. The resulting hollow microcapsules exhibit a high degree of micromeritic uniformity and retain intricate microstructural features related to the particular plant species. Herein, we demonstrate a streamlined process for the production of SECs from Lycopodium clavatum spores and for the loading of hydrophilic compounds into these SECs. The current SEC isolation procedure has been recently optimized to significantly reduce the processing requirements which are conventionally used in SEC isolation, and to ensure the production of intact microcapsules. Natural L. clavatum spores are defatted with acetone, treated with phosphoric acid, and extensively washed to remove sporoplasmic contents. After acetone defatting, a single processing step using 85% phosphoric acid has been shown to remove all sporoplasmic contents. By limiting the acid processing time to 30 hr, it is possible to isolate clean SECs and avoid SEC fracturing, which has been shown to occur with prolonged processing time. Extensive washing with water, dilute acids, dilute bases, and solvents ensures that all sporoplasmic material and chemical residues are adequately removed. The vacuum loading technique is utilized to load a model protein (Bovine Serum Albumin) as a representative hydrophilic compound. Vacuum loading provides a simple technique to load various compounds without the need for harsh solvents or undesirable chemicals which are often required in other microencapsulation protocols. Based on these isolation and loading protocols, SECs provide a promising material for use in a diverse range of microencapsulation applications, such as, therapeutics, foods, cosmetics, and personal care products.

  17. Improvement of fatigue resistance of epoxy composite with microencapsulated epoxy-SbF5 self-healing system

    X. J. Ye

    2017-11-01

    Full Text Available Rapid retardation and arresting of fatigue crack are successfully realized in the epoxy composite containing microencapsulated epoxy and ethanol solution of antimony pentafluoride-ethanol complex (SbF5·HOC2H5/HOC2H5. The effects of (i microcapsules induced-toughening, (ii hydrodynamic pressure crack tip shielding offered by the released healing agent, and (iii polymeric wedge and adhesive bonding of cured healing agent account for extension of fatigue life of the material. The two components of the healing agent can quickly react with each other soon after rupture of the microcapsules, and reconnect the crack only 20 seconds as of the test. The applied stress intensity range not only affects the healing efficiency, but also can be used to evaluate the healing speed. The present work offers a very fast healing system, and sets up a framework for characterizing speed of self-healing.

  18. Melting of superheated molecular crystals

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-07-01

    Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.

  19. Variables affecting lipid oxidation in dried microencapsulated oils

    Márquez-Ruiz, Gloria

    2003-09-01

    Full Text Available Dried microencapsulated oils are powdery foods or ingredients, prepared by drying natural or formulated emulsions, wherein the oil globules are dispersed in a matrix of saccharides and/or proteins. The study of lipid oxidation in microencapsulated oils is a very difficult task since, in addition to the numerous variables normally involved in lipid oxidation, mainly unsaturation degree, oxygen, light, temperature, prooxidants and antioxidants, other factors exert an important influence in these heterophasic lipid systems. In this paper, the present state of the art on lipid oxidation in dried microencapsulated oils is reviewed, focused on the variables specifically involved in oxidation of these lipid systems. Such variables include those pertaining to the preparation process (type and concentration of the matrix components and drying procedure and those related to the physicochemical properties of microencapsulated oils (particle size, oil globule size, lipid distribution, water activity, pH and interactions between matrix components.Los aceites microencapsulados son alimentos o ingredientes en polvo preparados mediante secado de emulsiones naturales o formuladas, donde los glóbulos de aceite se encuentran dispersos en una matriz de hidratos de carbono y/o proteínas. El estudio de la oxidación lipídica en aceites microencapsulados es muy difícil ya que, además de las numerosas variables implicadas normalmente en la oxidación lipídica, principalmente el grado de insaturación, oxígeno, luz, temperatura, prooxidantes y antioxidantes, en estos sistemas lipídicos heterofásicos existen otros factores que ejercen una importante influencia. En este trabajo, se revisa la situación actual del conocimiento sobre oxidación lipídica en aceites microencapsulados en relación con las variables que intervienen específicamente en la oxidación de estos sistemas lipídicos. Concretamente, dichas variables incluyen las implicadas en el proceso de

  20. Metal Matrix Microencapsulated Fuel Technology for LWR Applications

    Terrani, Kurt A.; Bell, Gary L.; Kiggans, Jim; Snead, Lance Lewis

    2012-01-01

    An overview of the metal matrix microencapsulated (M3) fuel concept for the specific LWR application has been provided. Basic fuel properties and characteristics that aim to improve operational reliability, enlarge performance envelope, and enhance safety margins under design-basis accident scenarios are summarized. Fabrication of M3 rodlets with various coated fuel particles over a temperature range of 800-1300 C is discussed. Results from preliminary irradiation testing of LWR M3 rodlets with surrogate coated fuel particles are also reported.

  1. Evaluation of gum mastic (Pistacia lentiscus as a microencapsulating and matrix forming material for sustained drug release

    Dinesh M. Morkhade

    2017-09-01

    Full Text Available In this study, a natural gum mastic was evaluated as a microencapsulating and matrix-forming material for sustained drug release. Mastic was characterized for its physicochemical properties. Microparticles were prepared by oil-in-oil solvent evaporation method. Matrix tablets were prepared by wet and melt granulation techniques. Diclofenac sodium (DFS and diltiazem hydrochloride (DLTZ were used as model drugs. Mastic produced discrete and spherical microspheres with DLTZ and microcapsules with DFS. Particle size and drug loading of microparticles was in the range of 22–62 µm and 50–87%, respectively. Increase in mastic: drug ratio increased microparticle size, improved drug loading and decreased the drug release rate. Microparticles with gum: drug ratio of 2:1 could sustain DLTZ release up to 12 h and released 57% DFS in 12 h. Mastic produced tablets with acceptable pharmacotechnical properties. A 30% w/w of mastic in tablet could sustain DLTZ release for 5 h from wet granulation, and DFS release for 8 h and 11 h from wet and melt granulation, respectively. Results revealed that a natural gum mastic can be used successfully to formulate matrix tablets and microparticles for sustained drug release.

  2. Metal Hydride Nanoparticles with Ultrahigh Structural Stability and Hydrogen Storage Activity Derived from Microencapsulated Nanoconfinement.

    Zhang, Jiguang; Zhu, Yunfeng; Lin, Huaijun; Liu, Yana; Zhang, Yao; Li, Shenyang; Ma, Zhongliang; Li, Liquan

    2017-06-01

    Metal hydrides (MHs) have recently been designed for hydrogen sensors, switchable mirrors, rechargeable batteries, and other energy-storage and conversion-related applications. The demands of MHs, particular fast hydrogen absorption/desorption kinetics, have brought their sizes to nanoscale. However, the nanostructured MHs generally suffer from surface passivation and low aggregation-resisting structural stability upon absorption/desorption. This study reports a novel strategy named microencapsulated nanoconfinement to realize local synthesis of nano-MHs, which possess ultrahigh structural stability and superior desorption kinetics. Monodispersed Mg 2 NiH 4 single crystal nanoparticles (NPs) are in situ encapsulated on the surface of graphene sheets (GS) through facile gas-solid reactions. This well-defined MgO coating layer with a thickness of ≈3 nm efficiently separates the NPs from each other to prevent aggregation during hydrogen absorption/desorption cycles, leading to excellent thermal and mechanical stability. More interestingly, the MgO layer shows superior gas-selective permeability to prevent further oxidation of Mg 2 NiH 4 meanwhile accessible for hydrogen absorption/desorption. As a result, an extremely low activation energy (31.2 kJ mol -1 ) for the dehydrogenation reaction is achieved. This study provides alternative insights into designing nanosized MHs with both excellent hydrogen storage activity and thermal/mechanical stability exempting surface modification by agents. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effective stabilization of CLA by microencapsulation in pea protein.

    Costa, A M M; Nunes, J C; Lima, B N B; Pedrosa, C; Calado, V; Torres, A G; Pierucci, A P T R

    2015-02-01

    CLA was microencapsulated by spray drying in ten varied wall systems (WS) consisting of pea protein isolate or pea protein concentrate (PPC) alone at varied core:WS ratios (1:2; 1:3 and 1:4), or blended with maltodextrin (M) and carboxymethylcellulose at a pea protein:carbohydrate ratio of 3:1. The physical-chemical properties of the CLA microparticles were characterised by core retention, microencapsulation efficiency (ME), particle size and moisture. CLA:M:PPC (1:1:3) showed the most promising results, thus we evaluated the effect of M addition in the WS on other physical-chemical characteristics and oxidative stability (CLA isomer profile, quantification of CLA and volatile compounds by SPME coupled with CG-MS) during two months of storage at room temperature, CLA:PPC (1:4) was selected for comparisons. CLA:M:PPC (1:1:3) microparticles demonstrated better morphology, solubility, dispersibility and higher glass-transition temperature values. M addition did not influence the oxidative stability of CLA, however its presence improved physical-chemical characteristics necessary for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Nutritional value of micro-encapsulated fish oils in rats

    Rosenquist, Annemette; Hølmer, Gunhild Kofoed

    1996-01-01

    The nutritional value of a micro-encapsulated fish oil product has been investigated. Three groups of 10 male Wistar rats each were fed dietscontaining 20% (w/w) of fat, and only the type and form of the fat added was different. In the test groups 5% (w/w) of fish oil either as such or in amicro......-encapsulated form was incorporated in the diets. The remaining fat was lard supplemented with corn oil to a dietary content of linoleic acid at10% (w/w). The control group received lard and corn oil only. A mixture similar to the dry matter in the micro-encapsulated product was alsoadded to the diets not containing...... this product. The uptake of marine (n-3) polyunsaturated fatty acids (PUFA) from both types of fish oil supplementwas reflected in the fatty acid profiles of liver phosphatidyl cholines (PC), phosphatidyl ethanolamines (PE), triglycerides (TG) and cardiolipin (CL).A suppression of the elongation of linoleic...

  5. Antitumour Activity of the Microencapsulation of Annona vepretorum Essential Oil.

    Bomfim, Larissa M; Menezes, Leociley R A; Rodrigues, Ana Carolina B C; Dias, Rosane B; Rocha, Clarissa A Gurgel; Soares, Milena B P; Neto, Albertino F S; Nascimento, Magaly P; Campos, Adriana F; Silva, Lidércia C R C E; Costa, Emmanoel V; Bezerra, Daniel P

    2016-03-01

    Annona vepretorum Mart. (Annonaceae), popularly known as 'bruteira', has nutritional and medicinal uses. This study investigated the chemical composition and antitumour potential of the essential oil of A. vepretorum leaf alone and complexed with β-cyclodextrin in a microencapsulation. The essential oil was obtained by hydrodistillation using a Clevenger-type apparatus and analysed using GC-MS and GC-FID. In vitro cytotoxicity of the essential oil and some of its major constituents in tumour cell lines from different histotypes was evaluated using the alamar blue assay. Furthermore, the in vivo efficacy of essential oil was demonstrated in mice inoculated with B16-F10 mouse melanoma. The essential oil included bicyclogermacrene (35.71%), spathulenol (18.89%), (E)-β-ocimene (12.46%), α-phellandrene (8.08%), o-cymene (6.24%), germacrene D (3.27%) and α-pinene (2.18%) as major constituents. The essential oil and spathulenol exhibited promising cytotoxicity. In vivo tumour growth was inhibited by the treatment with the essential oil (inhibition of 34.46%). Importantly, microencapsulation of the essential oil increased in vivo tumour growth inhibition (inhibition of 62.66%). © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  6. Release and Degradation of Microencapsulated Spinosad and Emamectin Benzoate.

    Huang, Bin Bin; Zhang, Shao Fei; Chen, Peng Hao; Wu, Gang

    2017-09-07

    The dynamics of release and degradation of the microencapsulation formulation containing spinosad (SP) and emamectin benzoate (EM) were evaluated in the present study. SP and EM were microencapsulated using biodegradable poly-lactic acid (PLA) as the wall material. Their release from and degradation within the prepared SP and EM microspheres (SP-EM-microspheres) were studied. It was found that the encapsulation significantly prolonged the insecticide release. The release could be further extended if the external aqueous phase was pre-saturated with the insecticides and the microspheres were additionally coated with gelatin. On the other hand, increasing the water content of the emulsion or the hydrophilic polycaprolactone (PCL) content in the PLA/PCL mixture accelerated the release. Due to the photolysis and hydrolysis of SP and EM by sunlight, the toxicity of the non-encapsulated insecticides in water declined continuously from 0 through the 9 th day (d), and dissipated in 13 d. In contrast, an aqueous suspension containing 5% SP-EM-microspheres maintained a mostly constant toxicity to Plutella xylostella for 17 d. The biodegradable SP-EM-microspheres showed significantly higher long-term toxicity to P. xylostella due to lower release, reduced photolysis and hydrolysis of the encapsulated insecticides, which were affected by the varied preparation conditions.

  7. Microencapsulation of soybean oil by spray drying using oleosomes

    Maurer, S.; Ghebremedhin, M.; Zielbauer, B. I.; Knorr, D.; Vilgis, T. A.

    2016-02-01

    The food industry has discovered that oleosomes are beneficial as carriers of bioactive ingredients. Oleosomes are subcellular oil droplets typically found in plant seeds. Within seeds, they exist as pre-emulsified oil high in unsaturated fatty acids, stabilised by a monolayer of phospholipids and proteins, called oleosins. Oleosins are anchored into the oil core with a hydrophobic domain, while the hydrophilic domains remain on the oleosome surface. To preserve the nutritional value of the oil and the function of oleosomes, microencapsulation by means of spray drying is a promising technique. For the microencapsulation of oleosomes, maltodextrin was used. To achieve a high oil encapsulation efficiency, optimal process parameters needed to be established. In order to better understand the mechanisms of drying behind powder formation and the associated powder properties, the findings obtained using different microscopic and spectroscopic measurements were correlated with each other. By doing this, it was found that spray drying of pure oleosome emulsions resulted in excessive component segregation and thus in a poor encapsulation efficiency. With the addition of maltodextrin, the oil encapsulation efficiency was significantly improved.

  8. Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions

    Catherine Tomaro-Duchesneau

    2013-01-01

    Full Text Available Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed.

  9. Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions

    Saha, Shyamali; Malhotra, Meenakshi; Kahouli, Imen; Prakash, Satya

    2013-01-01

    Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed. PMID:26555963

  10. Optimization of spray drying conditions to microencapsulate cupuassu (Theobroma grandiflorum) seed by-product extract.

    da Costa, Russany Silva; Teixeira, Camilo Barroso; Gabbay Alves, Taís Vanessa; Ribeiro-Costa, Roseane M; Casazza, Alessandro A; Aliakbarian, Bahar; Converti, Attilio; Silva Júnior, José O C; Perego, Patrizia

    2018-04-16

    Cupuassu (Theobroma grandiflorum Schum.) is a popular Amazonian fruit because of its intense aroma and nutritional value, whose lipid fraction is alternatively used in cosmetics. To preserve active principles and ensure their controlled release, extract was microencapsulated by spray drying. Influence of spray-drying conditions on microencapsulation of cupuassu seed by-product extract was investigated according to a 3 3 -Box Behnken factorial design, selecting inlet temperature, maltodextrin concentration and feed flowrate as independent variables, and total polyphenol and flavonoid contents, antiradical power, yields of drying and microencapsulation as responses. Fitting the results by second-order equations and modelling by Response Surface Methodology allowed predicting optimum conditions. Epicatechin and glycosylated quercetin were the major microencapsulated flavonoids. Microparticles showed satisfactory antiradical power and stability at 5 °C or under simulated gastrointestinal conditions, thus they may be used to formulate new foods or pharmaceuticals.

  11. GLYCOL METHACRYLATE EMBEDDING OF ALGINATE-POLYLYSINE MICROENCAPSULATED PANCREATIC-ISLETS

    FRITSCHY, WM; GERRITS, PO; WOLTERS, GHJ; PASMA, A; VANSCHILFGAARDE, R

    A method for processing and embedding alginate-polylysine microencapsulated pancreatic tissue in glycol methacrylate resin (GMA) is described. Fixation in 4% phosphate buffered formaldehyde, processing in ascending concentrations of glycol methacrylate monomer and embedding in Technovit 7100 results

  12. Applications of Microencapsulated Bifidobacterium Longum with Eleutherine Americana in Fresh Milk Tofu and Pineapple Juice

    Phoem, Atchara N.; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P.

    2015-01-01

    Bifidobacterium longum was microencapsulated by extrusion technique and added in fresh milk tofu and pineapple juice. Microencapsulation of B. longum with Eleutherine americana extract, oligosaccharides extract, and commercial fructo-oligosaccharides was assessed for the bacterial survival after sequential exposure to simulated gastric and intestinal juices, and refrigeration storage. Microencapsulated B. longum with the extract and oligosaccharides extract in the food products showed better survival than free cells under adverse conditions. Sensory analysis demonstrated that the products containing co-encapsulated bacterial cells were more acceptable by consumers than free cells. Pineapple juice prepared with co-encapsulated cells had lower values for over acidification, compared with the juice with free cells added. This work suggested that microencapsulated B. longum with E. americana could enhance functional properties of fresh milk tofu and pineapple juice. PMID:25854832

  13. Applications of Microencapsulated Bifidobacterium Longum with Eleutherine Americana in Fresh Milk Tofu and Pineapple Juice

    Atchara N. Phoem

    2015-04-01

    Full Text Available Bifidobacterium longum was microencapsulated by extrusion technique and added in fresh milk tofu and pineapple juice. Microencapsulation of B. longum with Eleutherine americana extract, oligosaccharides extract, and commercial fructo-oligosaccharides was assessed for the bacterial survival after sequential exposure to simulated gastric and intestinal juices, and refrigeration storage. Microencapsulated B. longum with the extract and oligosaccharides extract in the food products showed better survival than free cells under adverse conditions. Sensory analysis demonstrated that the products containing co-encapsulated bacterial cells were more acceptable by consumers than free cells. Pineapple juice prepared with co-encapsulated cells had lower values for over acidification, compared with the juice with free cells added. This work suggested that microencapsulated B. longum with E. americana could enhance functional properties of fresh milk tofu and pineapple juice.

  14. Microencapsulation of a hydrophilic model molecule through vibration nozzle and emulsion phase inversion technologies.

    Dorati, Rossella; Genta, Ida; Modena, Tiziana; Conti, Bice

    2013-01-01

    The goal of the present work was to evaluate and discuss vibration nozzle microencapsulation (VNM) technology combined to lyophilization, for the microencapsulation of a hydrophilic model molecule into a hydrophilic polymer. Fluorescein-loaded alginate microparticles prepared by VNM and emulsion phase inversion microencapsulation (EPIM) were lyophilized. Morphology, particle size distribution, lyophilized microspheres stability upon rehydration, drug loading and in vitro release were evaluated. Well-formed microspheres were obtained by the VNM technique, with higher yields of production (93.3-100%) and smaller particle size (d50138.10-158.00) than the EPIM microspheres. Rehydration upon lyophilization occurred in 30 min maintaining microsphere physical integrity. Fluorescein release was always faster from the microspheres obtained by VNM (364 h) than from those obtained by EPIM (504 h). The results suggest that VNM is a simple, easy to be scaled-up process suitable for the microencapsulation hydrophilic drugs.

  15. Oil bodies as a potential microencapsulation carrier for astaxanthin stabilisation and safe delivery.

    Acevedo, Francisca; Rubilar, Mónica; Jofré, Ignacio; Villarroel, Mario; Navarrete, Patricia; Esparza, Magdalena; Romero, Fernando; Vilches, Elías Alberto; Acevedo, Valentina; Shene, Carolina

    2014-01-01

    Astaxanthin (AST) is a valued molecule because of its high antioxidant properties. However, AST is extremely sensitive to oxidation, causing the loss of its bioactive properties. The purposes of this study were to define conditions for microencapsulating AST in oil bodies (OB) from Brassica napus to enhance its oxidative stability, and to test the bioactivity of the microencapsulated AST (AST-M) in cells. Conditions for maximising microencapsulation efficiency (ME) were determined using the Response Surface Methodology, obtaining a high ME (>99%). OB loaded with AST showed a strong electrostatic repulsion in a wide range of pH and ionic strengths. It was found that AST-M exposed to air and light was more stable than free AST. In addition, the protective effect of AST against intracellular ROS production was positively influenced by microencapsulation in OB. These results suggest that OB offer a novel option for stabilising and delivering AST.

  16. Methods for Melting Temperature Calculation

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  17. Evaluation of the intestinal colonization by microencapsulated probiotic bacteria in comparison with the same uncoated strains.

    Del Piano, Mario; Carmagnola, Stefania; Andorno, Silvano; Pagliarulo, Michela; Tari, Roberto; Mogna, Luca; Strozzi, Gian Paolo; Sforza, Filomena; Capurso, Lucio

    2010-09-01

    Beneficial findings concerning probiotics are increasing day by day. However, one of the most important parameter which affects the probiotic activity of a microorganism is its survival during the gastroduodenal transit. Some microencapsulation techniques could be applied to bacterial cells to improve this parameter. A comparison between the intestinal colonization by microencapsulated bacteria and the same not microencapsulated strains has been conducted in a double blind, randomized, cross-over study. The study (April to July 2005) involved 44 healthy volunteers. In particular, participants were divided into 2 groups: group A (21 participants) received a mix of probiotic strains Lactobacillus plantarum LP01 (LMG P-21021) and Bifidobacterium breve BR03 (DSM 16604) in an uncoated form, group B (23 participants) was given the same strains microencapsulated with a gastroresistant material. The not microencapsulated strains were administered at 5 x 10(9) colony forming units/strain/d for 21 days, whereas the microencapsulated bacteria were given at 1 x 10(9) colony forming units/strain/d for 21 days. At the end of the first period of treatment with probiotics a 3 weeks washout phase has been included in the study protocol. At the end of the washout period the groups were crossed: in detail, group A had the microencapsulated and group B the uncoated bacteria. The administered amounts of each strain were the same as the first treatment. The quantitative evaluation of intestinal colonization by strains microencapsulated or not microencapsulated was made by fecal samples examination at the beginning of the clinical trial, after 10 and 21 days of each treatment period. In particular, fecal heterofermentative Lactobacilli and Bifidobacteria have been counted. A statistically significant increase in the fecal amounts of Lactobacilli and Bifidobacteria was recorded in both groups at the end of each treatment compared with d0 or d42 (Pstrains to colonize the human gut, either

  18. Indian meal moth (Plodia interpunctella)-resistant food packaging film development using microencapsulated cinnamon oil.

    Kim, In-Hah; Song, Ah Young; Han, Jaejoon; Park, Ki Hwan; Min, Sea C

    2014-10-01

    Insect-resistant laminate films containing microencapsulated cinnamon oil (CO) were developed to protect food products from the Indian meal moth (Plodia interpunctella). CO microencapsulated with polyvinyl alcohol was incorporated with a printing ink and the ink mixture was applied to a low-density polyethylene (LDPE) film as an ink coating. The coated LDPE surface was laminated with a polypropylene film. The laminate film impeded the invasion of moth larvae and repelled the larvae. The periods of time during which cinnamaldehyde level in the film remained above a minimum repelling concentration, predicted from the concentration profile, were 21, 21, and 10 d for cookies, chocolate, and caramel, respectively. Coating with microencapsulated ink did not alter the tensile or barrier properties of the laminate film. Microencapsulation effectively prevented volatilization of CO. The laminate film can be produced by modern film manufacturing lines and applied to protect food from Indian meal moth damage. The LDPE-PP laminate film developed using microencapsulated cinnamon oil was effective to protect the model foods from the invasion of Indian meal moth larvae. The microencapsulated ink coating did not significantly change the tensile and barrier properties of the LDPE-PP laminate film, implying that replacement of the uncoated with coated laminate would not be an issue with current packaging equipment. The films showed the potential to be produced in commercial film production lines that usually involve high temperatures because of the improved thermal stability of cinnamon oil due to microencapsulation. The microencapsulated system may be extended to other food-packaging films for which the same ink-printing platform is used. © 2014 Institute of Food Technologists®

  19. Synthesis and characterization of thermal energy storage microencapsulated n-dodecanol with acrylic polymer shell

    Ma, Yanjie; Zong, Jiwen; Li, Wei; Chen, Long; Tang, Xiaofen; Han, Na; Wang, Jianping; Zhang, Xingxiang

    2015-01-01

    Two kinds of (microencapsulated phase change materials) MicroPCMs with acrylic-based copolymer as shell and n-dodecanol as core were successfully fabricated via suspension-like polymerization and photo-induced microencapsulation, respectively. Morphology and core–shell structure were observed by (field emission scanning electron microscope) FE-SEM. Thermal properties of the microencapsulated n-dodecanol were investigated by (differential scanning calorimeter) DSC and (thermogravimetric analysis) TGA. The results indicate that the mass ratio of core to shell has great influence on the morphology, inner structure, microencapsulated efficiency and durability of the microcapsules. Besides, the effects of various solvents and UV irridiation time on the microcapsule surface were discussed as well. In the experiment carried out, metal-ion complexation was conducted by the reaction between Mn ion and carboxyl groups on copolymer shell to enhance the performance of the microcapsules with n-dodecanol encapsulated. As the results indicate, the physicochemical properties and thermal conductivity of the shell were improved after Mn ion complexation reaction. Supercooling phenomenon of n-dodecanol was depressed to some extent. In the end, the thermo-regulated fiber containing acrylic-based copolymer microcapsules was fabricated, and thermo-regulated performance test of the fiber was also conducted. - Graphical abstract: (a)∼(d) schematic diagram of microencapsulation and (e) microcapsule with core–shell structure. - Highlights: • Microencapsulated n-dodecanol with acrylic polymer shell. • Microencapsulated n-dodecanol was fabricated by photo-induced microencapsulation. • Acrylic-based copolymer microcapsules with manganese-ion complexation

  20. Supercooling suppression of microencapsulated phase change materials by optimizing shell composition and structure

    Cao, Fangyu; Yang, Bao

    2014-01-01

    Highlights: • A new method for supercooling suppression of microPCMs by optimizing the structure of the microcapsule shell. • Large effective latent heat (up to 213 J/g) of the microPCMs, much higher than those using additive as nucleating agents. • Change of shell composition and structure significantly affects the phase transition processes of the encapsulated PCMs. • The latent heat of the shell-induced phase transition is maximized, reaching 83.7% of the latent heat of bulk octadecane. • Hollow spheres with porous rather than solid resin shell are also formed when the SDS concentration is very high. - Abstract: A new method for supercooling suppression of microencapsulated phase change materials (PCMs) has been developed by optimizing the composition and structure of the microcapsule resin shell. The microcapsules comprising paraffin octadecane encapsulated in melamine–formaldehyde resin shell were synthesized with the use the oil-in-water emulsion technique. These PCM microcapsules are 5–15 μm in diameter. The supercooling of these octadecane microcapsules can be as large as 13.6 °C, when the homogeneous nucleation is dominant during the melt crystallization into the thermodynamically stable triclinic phase. It is discovered that the homogeneous nucleation can be mediated by shell-induced nucleation of the triclinic phase and the metastable rotator phase when the shell composition and structure are optimized, without need of any nucleating additives. The effects of synthesis parameters, such as ratio of melamine to formaldehyde, pH of pre-polymer, and pH of emulsion, on the phase transition properties of the octadecane microcapsules have been investigated systemically. The optimum synthesis conditions have been identified in terms of minimizing the supercooling while maintaining heat capacity. Potential applications of this type of phase changeable microcapsules include high heat capacity thermal fluids, thermal management in smart buildings

  1. Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury

    Hao Zhao

    2015-01-01

    Full Text Available Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells (OECs remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L 4-5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L 4-5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.

  2. Anti-inflammatory, and antinociceptive effects of Campomanesia adamantium microencapsulated pulp

    Danieli Z. Viscardi

    Full Text Available ABSTRACT Guavira fruits have antimicrobial, antioxidant, antinociceptive, and anti-inflammatory activities. Spray drying has been widely used in the food industry presenting good retention in bioactive compounds used to transform the pulp/fruit juice into powder form. Therefore, the present study has evaluated the anti-inflammatory and antinociceptive activities of the microencapsulated pulp of Campomanesia adamantium (Cambess. O.Berg, Myrtaceae, by spray drying. Different groups of mice were treated with the doses of 100 and 300 mg/kg of microencapsulated "guavira" pulp and inflammatory parameters were assessed in a carrageenan paw edema-model and leukocyte migration with pleurisy model, while the antinociceptive activity was assessed using the formalin method and CFA-induced hyperalgesia model. A significant reduction in leukocyte migration and in paw edema was observed in rodents in all time after carrageenan injection for both doses of microencapsulated pulp of C. adamantium when compared with control group. Microencapsulated pulp of C. adamantium also reduced licking time at the first (nociceptive and second (inflammatory phases in the formalin model. In CFA-induced cold and mechanical hyperalgesia, depressive behavior, and knee edema, all parameters analyzed were significantly inhibited by microencapsulated pulp of C. adamantium. Microencapsulation by spray drying proved to be a technique that promotes bioavailability and the preservation of bioactive components in guavira pulp.

  3. Survival of free and microencapsulated human-derived oral probiotic Lactobacillus paracasei SD1 in orange and aloe vera juices

    Rawee Teanpaisan

    2015-06-01

    Full Text Available Microencapsulation was evaluated as a means of preserving Lactobacillus paracasei SD1, a human-derived strain with probiotic potential, in orange and aloe vera juices. The microencapsulation parameters included alginate concentration, calcium chloride concentration and hardening-time, and the efficacy of microencapsulation to preserve the survival of microencapsulated bacteria compared to free cells during exposure in fruit juices were determined. The results revealed that the viable count of free-cell form markedly decreased compared to microencapsulated form. The microencapsulation of 2% alginate (w/v and 0.05 M CaCl2 gave the best result to preserve the probiotic. It was found that viability of microencapsulated probiotic bacteria was significantly higher than free-cell in fruit juices during 8 weeks of storage time in the refrigerator. The potential probiotic trait related to inhibitory effect was not affected after microencapsulation process. In summary, the microencapsulation method may be an alternative way of preserving the viability of probiotic L. paracasei SD1.

  4. An experimental study of the latent functionally thermal fluid with micro-encapsulated phase change material particles flowing in microchannels

    Wang, Yan; Chen, Zhenqian; Ling, Xiang

    2016-01-01

    Graphical abstract: Fig. 1. Relationship between Nu and Re for MEPCM slurry with various particle volume fractions. The interrupt of the well dispersed particles would destroy the thermal boundary layer and reduces its thickness, resulting in large Nusselt number for the suspension with 2% volume fraction of MEPCM. Large amount of heat could be absorbed and transferred rapidly during MEPCM melting process, which would result in remarkable increase of Nusselt number. The heat transfer performance of latent thermal fluid would be enhanced as 1.34 times of that of pure water. With smaller particle volume fraction (1% in this context), phase change occurs at lower temperature and more intensive heat flux is required for higher concentration suspension to induce the phase change occurrence, which is useful for application of the thermal management design. - Highlights: • The experiments of latent fluid flowing in parallel microchannels were conducted. • The performance of water with well dispersed micro-encapsulated phase change material particles was examined. • The Nusselt number of MEPCM slurry could achieve 1.36 times as that of pure water. - Abstract: Phase change material holds a good promise as a media of thermal energy storage and intensive heat flux removal. In this context, experiments were conducted to investigate the hydrodynamic and thermodynamic properties of a latent thermal fluid, which consisted of water and well dispersed micro-encapsulated phase change material (MEPCM) particles, flowing in parallel microchannels. It is suggested that MEPCM particles loading induces much higher pressure drop, which is very sensitive to temperature. Compared against water, the heat transfer performance of MEPCM slurry performs much better owing to particles aggregation, collision and micro-convective around the particles. Besides these, latent heat absorbed during phase change process makes the key contribution. It is found that with melting occurrence, Nusselt

  5. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Heo, Hyo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ, Seoul (Korea, Republic of)

    2015-10-15

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  6. Evaluation of Melt Behavior with initial Melt Velocity under SFR Severe Accidents

    Heo, Hyo; Bang, In Cheol; Jerng, Dong Wook

    2015-01-01

    In the current Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metallic fuel within a subchannel is suggested as one of the inherent safety strategies for the initiating phase of hypothetical core disruptive accident (HCDA). The safety strategy provides negative reactivity driven by the melt dispersal, so it could reduce the possibility of the recriticality event under a severe triple or more fault scenario for SFR. Since the behavior of the melt dispersion is unpredictable, it depends on the accident condition, particularly core region. While the voided coolant channel region is usually developed in the inner core, the unvoided coolant channel region is formed in the outer core. It is important to confirm the fuel dispersion with the core region, but there are not sufficient existing studies for them. From the existing studies, the coolant vapor pressure is considered as one of driving force to move the melt towards outside of the core. There is a complexity of the phenomena during intermixing of the melt with the coolant after the horizontal melt injections. It is too difficult to understand the several combined mechanisms related to the melt dispersion and the fragmentation. Thus, it could be worthwhile to study the horizontal melt injections at lower temperature as a preliminary study in order to identify the melt dispersion phenomena. For this reason, it is required to clarify whether the coolant vapor pressure is the driving force of the melt dispersion with the core region. The specific conditions to be well dispersed for the molten metallic fuel were discussed in the experiments with the simulant materials. The each melt behavior was compared to evaluate the melt dispersion under the coolant void condition and the boiling condition. As the results, the following results are remarked: 1. The upward melt dispersion did not occur for a given melt and coolant temperature in the nonboiling range. Over current range of conditions

  7. Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study

    Sabbah, Rami; Farid, Mohammad M.; Al-Hallaj, Said

    2009-01-01

    This study investigates the influence of using micro-encapsulated phase change material (MEPCM) on the thermal and hydraulic performance of micro-channel heat sinks used for heat dissipation of high power electronic devices. A three-dimensional, one-phase, laminar flow model of a rectangular channel using water slurry of MEPCM with temperature dependent physical properties was developed. The results showed a significant increase in the heat transfer coefficient under certain conditions for heat flux rates of 100 W/cm 2 and 500 W/cm 2 that is mainly dependant on the channel inlet and outlet temperatures and the selected MEPCM melting temperature. Lower and more uniform temperatures across the electronic device can be achieved at less pumping power compared to using water only as the cooling fluid

  8. Melting under shock compression

    Bennett, B.I.

    1980-10-01

    A simple model, using experimentally measured shock and particle velocities, is applied to the Lindemann melting formula to predict the density, temperature, and pressure at which a material will melt when shocked from room temperature and zero pressure initial conditions

  9. Fabrication and characterization of fully ceramic microencapsulated fuels

    Terrani, K.A., E-mail: kurt.terrani@gmail.com [Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kiggans, J.O.; Katoh, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Shimoda, K. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Montgomery, F.C.; Armstrong, B.L.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hinoki, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hunn, J.D. [Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, L.L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-15

    The current generation of fully ceramic microencapsulated fuels, consisting of Tristructural Isotropic fuel particles embedded in a silicon carbide matrix, is fabricated by hot pressing. Matrix powder feedstock is comprised of alumina-yttria additives thoroughly mixed with silicon carbide nanopowder using polyethyleneimine as a dispersing agent. Fuel compacts are fabricated by hot pressing the powder-fuel particle mixture at a temperature of 1800-1900 Degree-Sign C using compaction pressures of 10-20 MPa. Detailed microstructural characterization of the final fuel compacts shows that oxide additives are limited in extent and are distributed uniformly at silicon carbide grain boundaries, at triple joints between silicon carbide grains, and at the fuel particle-matrix interface.

  10. [Effect of the microencapsulation process parameters piroxicam by complex coacervation].

    Lamoudi, L; Chaumeil, J-C; Daoud, K

    2015-01-01

    The gelatin-acacia system is used for the microencapsulation of piroxicam by complex coacervation. The effect of some formulation parameters and process, namely the ratio of gelatin/gum acacia, core/wall ratio, concentration of crosslinking agent and crosslinking time are studied. The microcapsules properties are evaluated. The results showed that the microcapsules have a spherical shape, a coacervation efficiency greater than 70%, an average diameter less than 250 microns, a good stability and finally, the better values are obtained for gelatin/acacia ratio (5/3), ratio core/wall (1/4), an amount of 2 mL of crosslinking agent and a crosslinking time of 60 minutes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Selective Osmotic Shock (SOS)-Based Islet Isolation for Microencapsulation.

    Enck, Kevin; McQuilling, John Patrick; Orlando, Giuseppe; Tamburrini, Riccardo; Sivanandane, Sittadjody; Opara, Emmanuel C

    2017-01-01

    Islet transplantation (IT) has recently been shown to be a promising alternative to pancreas transplantation for reversing diabetes. IT requires the isolation of the islets from the pancreas, and these islets can be used to fabricate a bio-artificial pancreas. Enzymatic digestion is the current gold standard procedure for islet isolation but has lingering concerns. One such concern is that it has been shown to damage the islets due to nonselective tissue digestion. This chapter provides a detailed description of a nonenzymatic method that we are exploring in our lab as an alternative to current enzymatic digestion procedures for islet isolation from human and nonhuman pancreatic tissues. This method is based on selective destruction and protection of specific cell types and has been shown to leave the extracellular matrix (ECM) of islets intact, which may thus enhance islet viability and functionality. We also show that these SOS-isolated islets can be microencapsulated for transplantation.

  12. Microencapsulation of self-healing agents containing a fluorescent dye

    J. K. Lee

    2013-01-01

    Full Text Available Two different self-healing agent candidates, endo-dicyclopentadiene (endo-DCPD and 5-ethylidene-2-norbornene (ENB, containing a fluorescent dye surrounded by a melamine–urea–formaldehyde (MUF shell were microencapsulated by in-situ polymerization and the resulting microcapsules were characterized in this work. The microcapsules showed a narrow size distribution with a spherical shape and rough outer and smooth inner surfaces for both healing agent systems. Shell thicknesses of the microcapsules were ~880±80 nm for endo-DCPD and ~620±60 nm for ENB. The incorporation of a fluorescent dye as tracer into self-healing agents did not disturb the formation of microcapsules. The release of self-healing liquid into the induced crack from ruptured microcapsules in an epoxy coating layer was observed using a fluorescence microscopy. The use of a fluorescent dye is very effective in the observation of a damage site.

  13. Investigation of defects on PAMS microspheres fabricated with microencapsulation method

    Chen Sufen; Li Bo; Liu Yiyang; Zhang Zhanwen; Qi Xiaobo

    2012-01-01

    Poly-(α-methylstyrene) (PAMS) microspheres were fabricated with W1/O/W2 double emulsion microencapsulation method, and the effects of polyvinylalcohol (PVA) and CaCl 2 weight concentrations and the O/W2 phase ratio on the percentages of defected PAMS microspheres were studied. The weight concentrations of PVA and CaCl 2 and the O/W2 phase ratio in the fabrication process of PAMS microspheres were optimized. The results show that, for the three parameters being 1.0%, 1.5%, and 0.01, respectively, the percentage of the defect-free PAMS microspheres without vacuoles in the shell wall can be up to 60%. (authors)

  14. Microencapsulation of pequi pulp oil by complex coacervation

    Priscilla Narciso Justi

    2018-04-01

    Full Text Available Abstract Pequi pulp oil, Caryocar brasiliense, is rich in carotenoids, antioxidant compound easily oxidized by the presence of heat, light and oxygen. In order to improve its stability, pequi oil was microencapsulated by complex coacervation using gelatin and Arabic gum as encapsulating agents. Twenty formulations were prepared using a 23 central composite rotational design. The influence of temperature, stirring velocity and core material in the oil coacervation were evaluated, aiming to preserve carotenoids present in the oil. The best yield values and carotenoids content were obtained at the midpoint of the design (7.5g core, 15.000rpm and 50°C. Particles showed asymmetric distribution, with diameter ranging from 15 to 145 µm and the efficiency of the encapsulation process, obtained by the retention of oil in the microcapsule, ranged from 66.58 to 96.50%, thus demonstrating the encapsulation efficiency of this method.

  15. Use of Flow Focusing Technique for Microencapsulation of Myoblasts.

    Ciriza, J; Saenz del Burgo, L; Hernández, R M; Orive, G; Pedraz, J L

    2017-01-01

    Alginate cell microencapsulation implies the immobilization of cells within a polymeric membrane that allows the bidirectional diffusion of nutrients and oxygen inside the microcapsules and the release of waste and therapeutic molecules outside them. This technology has been applied to several cell types and it has been extensively described with pancreatic islets. However, other cells such as myoblasts are being currently studied and showing high interest. Moreover, different systems and approaches have been developed for cell encapsulation such as electrostatic extrusion and Flow focusing technology. When Flow focusing technology is applied for myoblast encapsulation, several factors should be considered, such as the pressure, the flow of the system, or the diameter size of the nebulizer, which will determine the final diameter size and shape of the microcapsules containing the myoblasts. Finally, viability of encapsulated myoblasts needs to be assessed before further studies are performed.

  16. Polymerization of allyl alcohol by radiation to obtain microencapsulated structure

    Usanmaz, A.; Saricilar, S.

    1989-01-01

    Allyl alcohol was polymerized by radiation under various conditions. The limiting conversions were about 30 % in bulk, 35 % when containing 0.03 mole fraction AlCl 3 and 50 % when water was contained at 27 % (v/v). Irradiation was done with Co-60 gamma rays at room temperature and under vacuum. The presence of oxygen did not cause any change in the reaction rate. Molecular weights were determined by viscosity and cryoscopic methods. K and α values were found to be 3.57 x 10 -4 and 0.62 for solutions in methanol at 25degC. The polymers up to about 10 % conversion were viscous liquids having microcapsular structures: at high conversions, they became hard and glassy. The microencapsulated structures were also retained in solutions in methanol, acetone, and isopropyl alcohol. The samples were insoluble in water, benzene, and toluence. (author)

  17. Soluto-capillary convection in micro-encapsulation

    Subramanian, P.; Zebib, A.

    2005-01-01

    Spherical shells used as laser targets in inertial confinement fusion (ICF) experiments are made by micro-encapsulation. In one phase of manufacturing, the spherical shells contain a solvent (fluoro-benzene, FB) and a solute (polystyrene, PAMS) in a water-FB environment. Evaporation of the FB results in the desired hardened plastic hollow spherical shells, 1-2 mm in diameter. Perfect sphericity is demanded for efficient fusion ignition and the observed surface roughness maybe driven by Marangoni instabilities due to surface tension dependence on the FB concentration (buoyant forces are negligible in this micro-scale problem). Here we model this drying process and compute nonlinear, time-dependent, axisymmetric, variable viscosity, infinite Schmidt number soluto-capillary convection in the shells. Comparison with results from linear theory and available experiments are made. (authors)

  18. Combined immunotherapy and antiangiogenic therapy of cancer with microencapsulated cells.

    Cirone, Pasquale; Bourgeois, Jacqueline M; Shen, Feng; Chang, Patricia L

    2004-10-01

    An alternative form of gene therapy involves immunoisolation of a nonautologous cell line engineered to secrete a therapeutic product. Encapsulation of these cells in a biocompatible polymer serves to protect these allogeneic cells from host-versus-graft rejection while recombinant products and nutrients are able to pass by diffusion. This strategy was applied to the treatment of cancer with some success by delivering either interleukin 2 or angiostatin. However, as cancer is a complex, multifactorial disease, a multipronged approach is now being developed to attack tumorigenesis via multiple pathways in order to improve treatment efficacy. A combination of immunotherapy with angiostatic therapy was investigated by treating B16-F0/neu melanoma-bearing mice with intraperitoneally implanted, microencapsulated mouse myoblasts (C2C12) genetically modified to deliver angiostatin and an interleukin 2 fusion protein (sFvIL-2). The combination treatment resulted in improved survival, delayed tumor growth, and increased histological indices of antitumor activity (apoptosis and necrosis). In addition to improved efficacy, the combination treatment also ameliorated some of the undesirable side effects from the individual treatments that have led to the previous failure of the single treatments, for example, inflammatory response to IL-2 or vascular mimicry due to angiostatin. In conclusion, the combination of immuno- and antiangiogenic therapies delivered by immunoisolated cells was superior to individual treatments for antitumorigenesis activity, not only because of their known mechanisms of action but also because of unexpected protection against the adverse side effects of the single treatments. Thus, the concept of a "cocktail" strategy, with microencapsulation delivering multiple antitumor recombinant molecules to improve efficacy, is validated.

  19. Efficacy of microencapsulated lactic acid bacteria in Helicobater pylori eradication therapy

    Maha A Khalil

    2015-01-01

    Full Text Available Background: Probiotic delivery systems are widely used nutraceutical products for the supplementation of natural intestinal flora. These delivery systems vary greatly in the effectiveness to exert health benefits for a patient. This study focuses on providing probiotic living cells with a physical barrier against adverse environmental conditions. Materials and Methods: Microencapsulation of the selected lactic acid bacteria (LAB using chitosan and alginate was performed. Physical examination of the formulated LAB microcapsules was observed using phase contrast inverted microscope and scanning electron microscope (SEM. Finally, the survival of microencapsulated and noncapsulated bacteria was cheeked in the simulated human gastric tract (GT. The potential antimicrobial activity of the most potent microencapsulated LAB strain was in vivo evaluated in rabbit models. Results: Microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 were loaded with 1.03 × 10 10 CFU viable bacteria/g, 1.9 × 10 10 CFU viable bacteria/g, and 5.5 × 10 9 CFU viable bacteria/g, respectively. The survival of microencapsulated cells was significantly higher than that of the free cells after exposure to simulated gastric juice (SGJ at pH 2. Additionally, in simulated small intestine juice (SSJ, larger amounts of the selected LAB cells were found, whereas in simulated colon juice (SCJ, the released LAB reached the maximum counts. In vivo results pointed out that an 8-week supplementation with a triple therapy of a microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 might be able to reduce H. pylori. Conclusion: Microencapsulated probiotics could possibly compete with and downregulate H. pylori infection in humans.

  20. Spent oxide fuel regeneration by crystallization in molybdate melts

    Ustinov, O.A.; Sukhanov, L.P.; Yakunin, S.A.

    2006-01-01

    Paper describes a procedure to regenerate spent oxide fuel by its crystallization in molybdate melts. Paper presents the process procedures to regenerate spent fuel of both fast and thermal neutron reactors. One analyzes the advantages of the elaborated procedure [ru

  1. Melting of Dense Sodium

    Gregoryanz, Eugene; Degtyareva, Olga; Hemley, Russell J.; Mao, Ho-kwang; Somayazulu, Maddury

    2005-01-01

    High-pressure high-temperature synchrotron diffraction measurements reveal a maximum on the melting curve of Na in the bcc phase at ∼31 GPa and 1000 K and a steep decrease in melting temperature in its fcc phase. The results extend the melting curve by an order of magnitude up to 130 GPa. Above 103 GPa, Na crystallizes in a sequence of phases with complex structures with unusually low melting temperatures, reaching 300 K at 118 GPa, and an increased melting temperature is observed with further increases in pressure

  2. Microencapsulation by freeze-drying of potassium norbixinate and curcumin with maltodextrin: stability, solubility, and food application.

    Sousdaleff, Mirian; Baesso, Mauro Luciano; Medina Neto, Antonio; Nogueira, Ana Cláudia; Marcolino, Vanessa Aparecida; Matioli, Graciette

    2013-01-30

    Stability of potassium norbixinate and curcumin by microencapsulation with maltodextrin DE20 and freeze-drying was evaluated as a function of exposition to light, air, different pH, water solubility, and in food applications. The best results were obtained with microencapsulated potassium norbixinate 1:20, which, when vacuum-packed and in the presence of natural light, showed color retention of 78%, while microencapsulated curcumin 1:20 showed color retention of 71%. Differential scanning calorimetry and thermogravimetry provided an indication of interaction between colorants and maltodextrin. Photoacoustic spectroscopy (PAS) showed that free and microencapsulated colorants exhibited high rates of absorption throughout the measured spectral region. This work evidenced that the freeze-drying process is favorable for microencapsulation of curcumin by maltodextrin, providing improved solubility to the microencapsulated colorant. Both microencapsulated colorants showed relevant results for use in a wide range of pH and food applications. The PAS technique was useful for the evaluation of the stability of free and microencapsulated colorants.

  3. Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage

    Wang, Hao; Zhao, Liang; Chen, Lijie; Song, Guolin; Tang, Guoyi

    2017-12-01

    We designed a photocurable pickering emulsion polymerization to create microencapsulated phase change materials (MicroPCM) with polymer-silica hybrid shell. The emulsion was stabilized by modified SiO2 particles without any surfactant or dispersant. The polymerization process can be carried out at ambient temperature only for 5 min ultraviolet radiation, which is a low-energy procedure. The resultant capsules were shown a good core-shell structure and uniform in size. The surface of the microcapsules was covered by SiO2 particles. According to the DSC and TGA examinations, the microcapsules has good thermal energy storage-release performance, enhanced thermal reliability and thermal stability. When ratio of MMA/n-octadecane was 1.5/1.5. The encapsulation efficiency of the microcapsules reached 62.55%, accompanied with 122.31 J/g melting enthalpy. The work is virtually applicable to the construction of a wide variety of organic-inorganic hybrid shell MicroPCM. Furthermore, with the application of this method, exciting opportunities may arise for realizing rapid, continuous and large-scale industrial preparation of MicroPCM.

  4. Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil.

    Bajaj, Poonam R; Bhunia, Kanishka; Kleiner, Leslie; Joyner Melito, Helen S; Smith, Denise; Ganjyal, Girish; Sablani, Shyam S

    2017-03-01

    Unhydrolysed pea protein (UN) forms very viscous emulsions when used at higher concentrations. To overcome this, UN was hydrolysed using enzymes alcalase, flavourzyme, neutrase, alcalase-flavourzyme, and neutrase-flavourzyme at 50 °C for 0 min, 30 min, 60 min, and 120 min to form hydrolysed proteins A, F, N, AF, and NF, respectively. All hydrolysed proteins had lower apparent viscosity and higher solubility than UN. Foaming capacity of A was the highest, followed by NF, N, and AF. Hydrolysed proteins N60, A60, NF60, and AF60 were prepared by hydrolysing UN for 60 min and used further for microencapsulation. At 20% oil loading (on a total solid basis), the encapsulated powder N60 had the highest microencapsulation efficiency (ME = 56.2). A decrease in ME occurred as oil loading increased to 40%. To improve the ME of N60, >90%, UN and maltodextrin were added. Flowability and particle size distribution of microencapsulated powders with >90% microencapsulation efficiency and morphology of all powders were investigated. This study identified a new way to improve pea protein functionality in emulsions, as well as a new application of hydrolysed pea protein as wall material for microencapsulation.

  5. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria.

    Ding, W K; Shah, N P

    2007-11-01

    Eight strains of probiotic bacteria, including Lactobacillus rhamnosus, Bifidobacterium longum, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, B. lactis type Bl-O4, and B. lactis type Bi-07, were studied for their acid, bile, and heat tolerance. Microencapsulation in alginate matrix was used to enhance survival of the bacteria in acid and bile as well as a brief exposure to heat. Free probiotic organisms were used as a control. The acid tolerance of probiotic organisms was tested using HCl in MRS broth over a 2-h incubation period. Bile tolerance was tested using 2 types of bile salts, oxgall and taurocholic acid, over an 8-h incubation period. Heat tolerance was tested by exposing the probiotic organisms to 65 degrees C for up to 1 h. Results indicated microencapsulated probiotic bacteria survived better (P strains. At 30 min of heat treatment, microencapsulated probiotic bacteria survived with an average loss of only 4.17-log CFU/mL, compared to 6.74-log CFU/mL loss with free probiotic bacteria. However, after 1 h of heating both free and microencapsulated probiotic strains showed similar losses in viability. Overall microencapsulation improved the survival of probiotic bacteria when exposed to acidic conditions, bile salts, and mild heat treatment.

  6. Preparation, characterization of microencapsulated ammonium polyphosphate and its flame retardancy in polyurethane composites

    Shen, Ming-Yuan; Chen, Wei-Jen [Department of Aviation Mechanical Engineering, China University of Science and Technology, Hsinchu County, 303, Taiwan (China); Kuan, Chen-Feng; Kuan, Hsu-Chiang [Department of Computer Application Engineering, Far East University, Tainan, 744, Taiwan (China); Yang, Jia-Ming [Green Flame Retardant Material Research Laboratory, Department of Safety, Health and Environmental Engineering, Hung-Kuang University, Taichung, 433, Taiwan (China); Chiang, Chin-Lung, E-mail: dragon@sunrise.hk.edu.tw [Green Flame Retardant Material Research Laboratory, Department of Safety, Health and Environmental Engineering, Hung-Kuang University, Taichung, 433, Taiwan (China)

    2016-04-15

    In this study, a novel microencapsulated flame retardant containing ammonium polyphosphate (APP) and an 4,4′-oxydianiline-formaldehyde (OF) resin as the core and shell material was synthesized using in situ polymerization technology. The structure and performance of OF microencapsulated APP (OFAPP) were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The thermal properties of OFAPP were systematically analyzed through thermogravimetric analysis. Flame retardancy tests, such as limiting oxygen index (LOI) and UL-94, were conducted to evaluate the effect of varying the composition of APP and OFAPP in silanol-terminated polyurethane (Si-PU) composites. The results indicated that the microencapsulation of APP with the OF resin resulted in improved hydrophobicity. The results also revealed that the flame retardancy of the Si-PU/OFAPP composite (LOI = 37%) was higher than that of the Si-PU/APP composite (LOI = 23%) at the same additive loading. - Highlights: • A novel microencapsulated flame retardant was synthesized using in situ polymerization technology. • The microencapsulation of ammonium polyphosphate with the polymer resin resulted in improved hydrophobicity. • Polyurethane composites have excellent thermal stability and flame retardance.

  7. Preparation, characterization of microencapsulated ammonium polyphosphate and its flame retardancy in polyurethane composites

    Shen, Ming-Yuan; Chen, Wei-Jen; Kuan, Chen-Feng; Kuan, Hsu-Chiang; Yang, Jia-Ming; Chiang, Chin-Lung

    2016-01-01

    In this study, a novel microencapsulated flame retardant containing ammonium polyphosphate (APP) and an 4,4′-oxydianiline-formaldehyde (OF) resin as the core and shell material was synthesized using in situ polymerization technology. The structure and performance of OF microencapsulated APP (OFAPP) were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The thermal properties of OFAPP were systematically analyzed through thermogravimetric analysis. Flame retardancy tests, such as limiting oxygen index (LOI) and UL-94, were conducted to evaluate the effect of varying the composition of APP and OFAPP in silanol-terminated polyurethane (Si-PU) composites. The results indicated that the microencapsulation of APP with the OF resin resulted in improved hydrophobicity. The results also revealed that the flame retardancy of the Si-PU/OFAPP composite (LOI = 37%) was higher than that of the Si-PU/APP composite (LOI = 23%) at the same additive loading. - Highlights: • A novel microencapsulated flame retardant was synthesized using in situ polymerization technology. • The microencapsulation of ammonium polyphosphate with the polymer resin resulted in improved hydrophobicity. • Polyurethane composites have excellent thermal stability and flame retardance.

  8. Pterodon pubescens Benth: stability study of microencapsulated extract and isolated compounds monitored by antinociceptive assays

    Servat, Leila; Spindola, Humberto M.; Carvalho, Joao E. de; Foglio, Mary A.; Rodrigues, Rodney A.F.; Sousa, Ilza M.O.; Ruiz, Ana L.T.G.

    2012-01-01

    Pterodon pubescens Benth. (Pp) seeds, commercially available in Brazil, are used in folk medicine in anti-inflammatory, analgesic, and anti-rheumatic preparations. The present study demonstrated the antinociceptive properties of isomers 6a-hydroxy-7β-acetoxy-vouacapan-17β--oate methyl ester and 6a-acetoxy-7β-hydroxy-vouacapan-17β-oate methyl ester (C1), isolated from (Pp), employing different experimental models. A stability study was performed to investigate the relationship of microencapsulation by spray-drying on the maintenance of antinociceptive action. Therefore, C1 and Pp extract samples were monitored in accelerated stability study, evaluating both microencapsulated and non-microencapsulated samples. It was observed that sample C1 possess antinociceptive activity revealed by writhing and formalin tests; C1 showed significantly anti-allodynic, but not ntihyperalgesic effect; the microencapsulation maintained the activity and integrity of both, sample C1 and Pp crude extract; microencapsulation by spray drying is a useful alternative to increase shelf life. (author)

  9. Microencapsulation Technology: A Powerful Tool for Integrating Expansion and Cryopreservation of Human Embryonic Stem Cells

    Malpique, Rita; Brito, Catarina; Jensen, Janne; Bjorquist, Petter; Carrondo, Manuel J. T.; Alves, Paula M.

    2011-01-01

    The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) aggregates and iii) immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors. The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration) and high cell recovery yields (>70%) after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics. Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks. This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications. PMID:21850261

  10. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment may be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.

  11. Microencapsulation of single-cell protein from various microalgae species

    Purnama Sukardi

    2015-10-01

    Full Text Available ABSTRACT The objective of the research was to evaluate nutritional values of microencapsulated diet made from single cell protein of microalgae. Complete randomized design was applied using three different types of microalgae for inclusion trials i.e. (A Nannochloropsis sp., (B Chlorella sp., and (C Spirulina sp. with five replications respectively. Microencapsulated diet was produced by a modification method based on thermal cross-linking with stable temperature. Phytoplankton was cultured in sea water for which fertilized by a modification of Walne and Guillard fertilizer. The results showed that the highest value of nutrition content was Spirulina sp. and the average composition of protein, crude lipid, carbohydrate, ash, nitrogen free extract, and water content was 34.80%, 0.30%, 18.53%, 20.09%, 26.29%, and 13.32%, respectively. Organoleptically, microcapsule showed that the color of capsule was dark green and smell fresh phytoplankton. Keywords: microcapsule, single-cell protein, thermal cross-linking, microalgae, phytoplankton  ABSTRAK Tujuan penelitian adalah mengevaluasi kandungan nutrisi pakan mikrokapsul protein sel tunggal (single cell protein yang berasal dari berbagai jenis mikroalga (fitoplankton. Rancangan percobaan yang digunakan adalah rancangan acak lengkap, dengan perlakuan inklusi mikrokapsul dari jenis fitoplankton (A Nannochloropsis sp., (B Chlorella sp., dan (C Spirulina sp., masing-masing diulang lima kali. Pembuatan mikrokapsul dilakukan dengan menggunakan modifikasi metode dasar thermal cross-linking, serta menerapkan teknik pengeringan suhu konstan. Proses pembuatan mikrokapsul protein diawali dengan kultur fitoplankton jenis Nannochloropsis sp., Chlorella sp., dan Spirulina sp. Kultur dilakukan di dalam laboratorium menggunakan media air laut dan modifikasi pupuk Walne dan Guillard. Hasil penelitian menunjukkan bahwa kandungan nutrisi tertinggi terdapat pada jenis mikrokapsul protein sel tunggal yang berasal dari

  12. Model of interfacial melting

    Mouritsen, Ole G.; Zuckermann, Martin J.

    1987-01-01

    A two-dimensional model is proposed to describe systems with phase transitions which take place in terms of crystalline as well as internal degrees of freedom. Computer simulation of the model shows that the interplay between the two sets of degrees of freedom permits observation of grain-boundar......-boundary formation and interfacial melting, a nonequilibrium process by which the system melts at the boundaries of a polycrystalline domain structure. Lipid membranes are candidates for systems with pronounced interfacial melting behavior....

  13. Development of a technique for psyllium husk mucilage purification with simultaneous microencapsulation of curcumin.

    André Álvares Monge Neto

    Full Text Available This study focused on evaluating a technique for the psyllium husk mucilage (PHM purification with simultaneous microencapsulation of curcumin. PHM was extracted with water and purified with ethanol. For the mucilage purification and simultaneous microencapsulation, an ethanolic solution of curcumin was used. After dehydration, the samples were analysed by instrumental techniques and evaluated for thermal stability. The presence of curcumin in the solution did not impair the yield of precipitated polysaccharide. Interactions of the dye and carbohydrates were confirmed by displacement of peaks in FT-IR and FT-Raman spectroscopy. The onset temperature of degradation of microcapsules was superior to that of curcumin. Thermal stability in solution at 90°C also improved. After 300 minutes of heating, the microcapsules had a remnant curcumin content exceeding 70%, while, in standard sample, the remaining curcumin content was 4.46%. Thus, the developed technique was successful on purification of PHM and microencapsulation of curcumin.

  14. Microencapsulation of Ginger Volatile Oil Based on Gelatin/Sodium Alginate Polyelectrolyte Complex.

    Wang, Lixia; Yang, Shiwei; Cao, Jinli; Zhao, Shaohua; Wang, Wuwei

    2016-01-01

    The coacervation between gelatin and sodium alginate for ginger volatile oil (GVO) microencapsulation as functions of mass ratio, pH and concentration of wall material and core material load was evaluated. The microencapsulation was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and thermal gravimetric analysis (TGA). SEM and FT-IR studies indicated the formation of polyelectrolyte complexation between gelatin and sodium alginate and successful encapsulation of GVO into the microcapsules. Thermal property study showed that the crosslinked microparticles exhibited higher thermal stability than the neat GVO, gelatin, and sodium alginate. The stability of microencapsulation of GVO in a simulated gastric and an intestinal situation in vitro was also studied. The stability results indicated that the release of GVO from microcapsules was much higher in simulated intestinal fluid, compared with that in simulated-gastric fluid.

  15. Investigation of Larger Poly(α-Methylstyrene) Mandrels for High Gain Designs Using Microencapsulation

    Takagi, Masaru; Cook, Robert; McQuillan, Barry; Gibson, Jane; Paguio, Sally

    2004-01-01

    In recent years we have demonstrated that 2-mm-diameter poly(α-methylstyrene) mandrels meeting indirect drive NIF surface symmetry specifications can be produced using microencapsulation methods. Recently higher gain target designs have been introduced that rely on frequency doubled (green) laser energy and require capsules up to 4 mm in diameter, nominally meeting the same surface finish and symmetry requirements as the existing 2-mm-diameter capsule designs. Direct drive on the NIF also requires larger capsules. In order to evaluate whether the current microencapsulation-based mandrel fabrication techniques will adequately scale to these larger capsules, we have explored extending the techniques to 4-mm-diameter capsules. We find that microencapsulated shells meeting NIF symmetry specifications can be produced, the processing changes necessary to accomplish this are presented here

  16. [The cell micro-encapsulation techniques and its advancement in the field of gene therapy].

    Li, Xiaoling; Cai, Shaohui

    2006-12-01

    It is no doubt that the gene therapy using recombinant engineering cells provides a novel approach to many refractory diseases. However, the transplant rejection from the host's immune system against heterogeneous cells has been the main handicap of its clinical application. The modern cell micro-encapsulation technique with good immune isolation makes it possible to overcome this problem and has shown potential application foreground in clinical therapies for a lot of diseases such as Parkinson's disease and Hemophiliac disease. This article reviews mainly the relative materials and techniques in processing micro-encapsulation, the host cells used to construct the recombinant genetic engineering cells and application of cell micro-encapsulation technique in the field of gene therapy.

  17. Experimental Investigation of Thermal Conductivity of Concrete Containing Micro-Encapsulated Phase Change Materials

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    in this article utilizes integration of the concrete and the microencapsulated Phase Change Material (PCM). PCM has the ability to absorb and release significant amounts of heat at a specific temperature range. As a consequence of admixing PCM to the concrete, new thermal properties like thermal conductivity...... and specific heat capacity have to be defined. This paper presents results from the measurements of the thermal conductivity of various microencapsulated PCM-concrete and PCM-cement-paste mixes. It was discovered that increase of the amount of PCM decreases the thermal conductivity of the concrete PCM mixture....... Finally, a theoretical calculation methodology of thermal conductivity for PCM-concrete mixes is developed....

  18. Microencapsulated fuel technology for commercial light water and advanced reactor application

    Terrani, Kurt A.; Snead, Lance L.; Gehin, Jess C.

    2012-01-01

    The potential application of microencapsulated fuels to light water reactors (LWRs) has been explored. The specific fuel manifestation being put forward is for coated fuel particles embedded in silicon carbide or zirconium metal matrices. Detailed descriptions of these concepts are presented, along with a review of attributes, potential benefits, and issues with respect to their application in LWR environments, specifically from the standpoints of materials, neutronics, operations, and economics. Preliminary experiment and modeling results imply that with marginal redesign, significant gains in operational reliability and accident response margins could be potentially achieved by replacing conventional oxide-type LWR fuel with microencapsulated fuel forms.

  19. Some aspects of the hydrodynamics of the microencapsulation route to NIF mandrels

    Gresho, P.M.

    1999-01-01

    Spherical plastic shells for use as mandrels for the fabrication of ICF (Inertial Confinement Fusion) target capsules can be produced by solution-based microencapsulation techniques. The specifications for these mandrels in terms of sphericity are extremely rigorous, and it is clear that various aspects of the solution hydrodynamics associated with their production are important in controlling the quality of the final product. This paper explores what the author knows (and needs to know) about the hydrodynamics of the microencapsulation process in order to lay the foundation for process improvements as well as identify inherent limits

  20. Viability of microencapsulated Lactobacillus casei in synbiotic mayonnaise

    Lieu, M.D.

    2017-07-01

    Full Text Available In this study, whey protein, maltodextrin and GOS (Galacto-oligosaccharides used as microencapsulating agents to protect Lactobacillus casei during spray-drying and mayonnaise storage. The morphology of microcapsules, pH charges, the survival rate during mayonnaise storage as well as survival in simulated gastric fluid (SGF and intestinal fluid (SIF was tested in this study. The results indicated that whey protein showed a protective effect better than maltodextrin during spray-drying. The particles showed spherical shape and typical concavity of all samples and encapsulating agents were not affected by the size and surface structure of particles. The pH charges were not significantly different in all mayonnaise samples in this test. The viability of free cell L. casei after 6 weeks storage was significant decrease about 4 log CFU/g compared to 1.55 to 3.27 log CFU/g in the mayonnaise samples containing microcapsules in which maltodextrin showed the lowest of L. casei survival rate. In SGF and SIF conditions, maltodextrin act as prebiotic sufficiently which do not need adding GOS. The combination of whey protein and maltodextrin in which maltodextrin plays a role as supporting agents for the spray-drying process as well as prebiotic potential, while whey protein with high buffer property which enhancing the survival rate of L. casie in low pH.

  1. Use of yeast spores for microencapsulation of enzymes.

    Shi, Libing; Li, Zijie; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2014-08-01

    Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.

  2. Microencapsulation of tramadol hydrochloride and physicochemical evaluation of formulations

    Murtaza, G.; Ahmad, M.

    2009-01-01

    The present project involves the microencapsulation of tramadol hydrochloride with ethocel using a non-solvent addition coacervation technique. The concentration of ethocel was varied to get a prolonged release profile. Then microparticles were compressed into tablets to study the variation of drug release between the microparticles and tablets. The microparticles were off white, aggregated and irregular in morphology having good percentage entrapment efficiency and percentage production yield. Dissolution study was made using USP XXIV apparatus I and II respectively, in 900 ml double distilled water at 50 rpm maintained at 37 degree C. An Initial burst effect was noted in the drug release behavior. Polyisobutylene concentration affected inversely the rate of drug release from microparticles. Dissolution media and stirring speed affected insignificantly (p>.05) the release pattern. Tramadol hydrochloride tablets showed good stability and reproducibility. UV and FTIR spectroscopy and X-Ray diffractometry proved that tramadol hydrochloride was completely and uniformly distributed in ethocel with out any strong interaction. The mechanism of drug release was anomalous diffusion that was best fit to Higuchi's equation. It can be concluded that multi-unit, slow-release tramadol hydrochloride microparticles can be formulated efficiently with non-solvent addition coacervation technique using ethocel. (author)

  3. Microencapsulation of Bacterial Cells by Emulsion Technique for Probiotic Application.

    Mandal, Surajit; Hati, Subrota

    2017-01-01

    Probiotics are dietary concepts to improve the dynamics of intestinal microbial balance favorably. Careful screening of probiotic strains for their technological suitability can also allow selection of strains with the best manufacturing and food technology characteristics. However, even the most robust probiotic bacteria are currently in the range of food applications to which they can be applied. Additionally, bacteria with exceptional functional heath properties are ruled out due to technological limitations. New process and formulation technologies will enable both expansion of the range of products in to which probiotics can be applied and the use of efficacious stains that currently cannot be manufactured or stored with existing technologies. Viability of probiotics has been both a marketing and technological concern for many industrial produces. Probiotics are difficult to work with, the bacteria often die during processing, and shelf life is unpredictable. Probiotics are extremely susceptible environmental conditions such as oxygen, processing and preservation treatments, acidity, and salt concentration, which collectively affect the overall viability of probiotics. Manufacturers have long been fortifying products with probiotics; they have faced significant processing challenges regarding the stability and survivability of probiotics during processing and preservation treatments, storage as well during their passage through GIT. Application of microencapsulation significantly improves the stability of probiotics during food processing and gastrointestinal transit.

  4. Microencapsulation of Self Healing Agents for Corrosion Control Coatings

    Jolley, S. T.; Li, W.; Buhrow, J. W.; Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, is a very costly problem that has a major impact on the global economy. Results from a 2-year breakthrough study released in 2002 by the U.S. Federal Highway Administration (FHWA) showed that the total annual estimated direct cost associated with metallic corrosion in nearly every U.S. industry sector was a staggering $276 billion, approximately 3.1% of the nation's Gross Domestic Product (GOP). Corrosion protective coatings are widely used to protect metallic structures from the detrimental effects of corrosion but their effectiveness can be seriously compromised by mechanical damage, such as a scratch, that exposes the metallic substrate. The incorporation of a self healing mechanism into a corrosion control coating would have the potential to significantly increase its effectiveness and useful lifetime. This paper describes work performed to incorporate a number of microcapsule-based self healing systems into corrosion control coatings. The work includes the preparation and evaluation of self-healing systems based on curable epoxy, acrylate, and siloxane resins, as well as, microencapsulated systems based on passive, solvent born, healing agent delivery. The synthesis and optimization of microcapsule-based self healing systems for thin coating (less than 100 micron) will be presented.

  5. Microencapsulation of Algal Oil Using Spray Drying Technology

    Xueshan Pan

    2018-01-01

    Full Text Available This work aims at developing a process of microencapsulation of algal oil containing ≥40 % docosahexaenoic acid (DHA using spray drying technology. Purity Gum® 2000 and Capsul®, both obtained from waxy corn starch, were chosen as the encapsulation materials. The effects of emulsification conditions on the droplet size, stability, viscosity and surface tension, and the effects of spraying conditions on the particle size, moisture content and surface oil content were investigated successively. The morphology of emulsion droplets and the microcapsules was observed by optical microscope and scanning electron micro scopy. The results showed that the produced spherical microcapsules were smooth and free of pores, cracks, and surface indentation when shear velocity was 8.63 m/s in the first step of emulsification, homogenization pressure was 1.75·10˄8 Pa and number of passes through homogenization unit was six for fine emulsification, rotational speed of spray disk was 400 s-1, and air inlet temperature was 170 °C. Therefore, it was concluded that the emulsification and encapsulation of algal oil containing DHA with above process was feasible.

  6. Melt inclusions: Chapter 6

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  7. [Study on relationship of dose-effect and time-effect of APA microencapsulated bovine chromaffin cells on pain treatment].

    Hui, Jianfeng; Li, Tao; Du, Zhi; Song, Jichang

    2011-12-01

    This study was to investigate the relationship of dose-effect and time-effect of Alginate-Polylysine-Alginate (APA) microencapsulated bovine chromaffin cells on the treatment of pain model rats. Using a rat model of painful peripheral neuropathy, the antinociceptive effects of APA microencapsulated bovine cells transplanted into the subarachnoid space was evaluated by cold allodynia test and hot hyperalgesia test. Compared with control group, the withdrawal difference with cell number 50 thousands groups, 100 thousands groups and 200 thousands groups was reduced (P APA microencapsulated bovine chromaffin cells which were transplanted to treat pain model rats, and the effective antinociception remained longer than 12 weeks.

  8. Microencapsulation of maqui (Aristotelia chilensis Molina Stuntz leaf extracts to preserve and control antioxidant properties

    Leslie Vidal J

    2013-03-01

    Full Text Available Microencapsulation technology is an alternative to stabilize stress factors and protect food ingredients or additives, which include environmentally sensitive bioactive principles in protective matrices to increase their functionality and life span. The objective of this research was to study conditions to obtain microcapsules with antioxidant capacity from a maqui (Aristotelia chilensis [Molina] Stuntz, Elaeocarpaceae leaf extract by emulsification and subsequent retention after microencapsulation. Microcapsules were produced by water-in-oil emulsion (W/O using a phase of the aqueous maqui leaf extract and gum arabic, and a liquid vaseline phase. Maqui leaf extract antioxidant capacity was 99.66% compared with the aqueous phase of the emulsion at 94.38 and 93.06% for 5% and 15% gum arabic, respectively. The mean yield of maqui leaf extract microencapsulation with 5% gum arabic varied between 38 and 48%, whereas with 15% gum arabic it was 39%. Once the antioxidant microcapsules were formed, mean extract antioxidant capacity ranged between 30 and 35%. Both yields responded similarly to changes in gum arabic concentrations (5% and 15% in the aqueous phase of the emulsion; 5% concentration produced a microcapsule size from 1.0 to 10 urn. Maqui leaf extracts with high phenolic compound levels, which can be stabilized and protected by the microencapsulation process, produce new natural preservative systems as compared with their synthetic counterparts.

  9. Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics

    Ahmed Hassan

    2016-10-01

    Full Text Available Phase change materials (PCMs have been identified as potential candidates for building energy optimization by increasing the thermal mass of buildings. The increased thermal mass results in a drop in the cooling/heating loads, thus decreasing the energy demand in buildings. However, direct incorporation of PCMs into building elements undermines their structural performance, thereby posing a challenge for building integrity. In order to retain/improve building structural performance, as well as improving energy performance, micro-encapsulated PCMs are integrated into building materials. The integration of microencapsulation PCMs into building materials solves the PCM leakage problem and assures a good bond with building materials to achieve better structural performance. The aim of this article is to identify the optimum micro-encapsulation methods and materials for improving the energy, structural and safety performance of buildings. The article reviews the characteristics of micro-encapsulated PCMs relevant to building integration, focusing on safety rating, structural implications, and energy performance. The article uncovers the optimum combinations of the shell (encapsulant and core (PCM materials along with encapsulation methods by evaluating their merits and demerits.

  10. Microencapsulation of Theobroma cacao L. waste extract: optimization using response surface methodology.

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Carréra Silva Júnior, José Otávio; Ribeiro Costa, Roseane Maria; Converti, Attilio

    2017-03-01

    The cocoa extract (Theobroma cacao L.) has a significant amount of polyphenols (TP) with potent antioxidant activity (AA). This study aims to optimise microencapsulation of the extract of cocoa waste using chitosan and maltodextrin. Microencapsulation tests were performed according to a Box-Behnken factorial design, and the results were evaluated by response surface methodology with temperature, maltodextrin concentration (MD) and extract flowrate (EF) as independent variables, and the fraction of encapsulated TP, TP encapsulation yield, AA, yield of drying and solubility index as responses. The optimum conditions were: inlet temperature of 170 °C, MD of 5% and EF of 2.5 mL/min. HPLC analysis identified epicatechin as the major component of both the extract and microparticles. TP release was faster at pH 3.5 than in water. These results as a whole suggest that microencapsulation was successful and the final product can be used as a nutrient source for aquatic animal feed. Highlights Microencapsulation is optimised according to a factorial design of the Box-Behnken type. Epicatechin is the major component of both the extract and microcapsules. The release of polyphenols from microcapsules is faster at pH 3.5 than in water.

  11. Effects of microencapsulation on bioavailability of fish oil omega-3 fatty acids

    Christophersen, Philip Carsten B; Yang, Mingshi; Mu, Huiling

    2016-01-01

    Increased research interest in the health benefits of fish oils and the wide publicity of these studies have led to the marketing and launch of a wide array of new and traditional food and beverage products enriched with omega-3 fatty acids. This chapter focuses on the impact of microencapsulation...

  12. Hypocaloric diet associated with the consumption of jam enriched with microencapsulated fish oil decreases insulin resistance.

    Soares de Oliveira Carvalho, Anna Paula; Kimi Uehara, Sofia; Nogueria Netto, José Firmino; Rosa, Glorimar

    2014-05-01

    The metabolic syndrome is related to the increase in cardiovascular diseases. Polyunsaturated fatty acids from fish oil help in reducing cardiovascular risk factors and are natural bindings of PPAR2. To evaluate the impact of hypocaloric diet associated with microencapsulated fish oil supplementation in women with metabolic syndrome. We conducted a randomized, single-blind and placebo-controlled clinical trial with adult women who presented metabolic syndrome (n = 30) for 90 days. The volunteers were divided into two groups: placebo group (n = 15) and microencapsulated fish oil group (n = 15) (3 g/day of microencapsulated fish oil containing 0.41 g/day of eicosapentaenoic acid and decosahexaneoic acid). Anthropometric, body composition, clinical and laboratory parameters were assessed before and after the intervention. Paired t-test was used for comparisons within groups and Student's t-test for comparison between groups. We considered p hypocaloric diet associated with the consumption of microencapsulated fish oil was effective in reducing blood glucose, insulinemia and insulin resistance in women with MS. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  13. Investigation of Microencapsulated BSH Active Lactobacillus in the Simulated Human GI Tract

    Christopher Martoni

    2007-01-01

    Full Text Available This study investigated the use of microencapsulated bile salt hydrolase (BSH overproducing Lactobacillus plantarum 80 cells for oral delivery applications using a dynamic computer-controlled model simulating the human gastrointestinal (GI tract. Bile salt deconjugation rates for microencapsulated BSH overproducing cells were 4.87 ± 0.28 μmol/g microcapsule/h towards glycoconjugates and 0.79 ± 0.15 μmol/g microcapsule/h towards tauroconjugates in the simulated intestine, a significant (P< .05 increase over microencapsulated wild-type cells. Microcapsules protected the encased cells in the simulated stomach prior to intestinal release, maintaining cell viability above 109 cfu/mL at pH 2.5 and 3.0 and above 106 cfu/mL at pH 2.0 after 2-hour residence times. In the simulated intestine, encased cell viability was maintained above 1010 cfu/mL after 3, 6, and 12-hour residence times in bile concentrations up to 1.0%. Results show that microencapsulation has potential in the oral delivery of live BSH active bacterial cells. However, in vivo testing is required.

  14. The direct incorporation of micro-encapsulated phase change materials in the concrete mixing process

    Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M.; Durmisevic, E.

    2009-01-01

    The present study refers to a set of tests using different amounts of microencapsulated PCM directly mixed into self-compacting concrete. This SCC is investigated regarding its fresh and hardened properties. It will be shown that increasing PCM amounts lead to lower thermal conductivity and

  15. Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review.

    Castro-Rosas, Javier; Ferreira-Grosso, Carlos Raimundo; Gómez-Aldapa, Carlos Alberto; Rangel-Vargas, Esmeralda; Rodríguez-Marín, María Luisa; Guzmán-Ortiz, Fabiola Araceli; Falfan-Cortes, Reyna Nallely

    2017-12-01

    Food safety and microbiological quality are major priorities in the food industry. In recent years, there has been an increasing interest in the use of natural antimicrobials in food products. An ongoing challenge with natural antimicrobials is their degradation during food storage and/or processing, which reduces their antimicrobial activity. This creates the necessity for treatments that maintain their stability and/or activity when applied to food. Microencapsulation of natural antimicrobial compounds is a promising alternative once this technique consists of producing microparticles, which protect the encapsulated active substances. In other words, the material to be protected is embedded inside another material or system known as wall material. There are few reports in the literature about microencapsulation of antimicrobial compounds. These published articles report evidence of increased antimicrobial stability and activity when the antimicrobials are microencapsulated when compared to unprotected ones during storage. This review focuses mainly on natural sources of antimicrobial compounds and the methodological approach for encapsulating these natural compounds. Current data on the microencapsulation of antimicrobial compounds and their incorporation into food suggests that 1) encapsulation increases compound stability during storage and 2) encapsulation of antimicrobial compounds reduces their interaction with food components, preventing their inactivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Plasma Creatine Kinetics After Ingestion of Microencapsulated Creatine Monohydrate with Enhanced Stability in Aqueous Solutions.

    Hone, Michelle; Kent, Robert M; Scotto di Palumbo, Alessandro; Bleiel, Sinead B; De Vito, Giuseppe; Egan, Brendan

    2017-07-04

    Creatine monohydrate represents one of the largest sports supplement markets. Enhancing creatine (CRE) stability in aqueous solutions, such as with microencapsulation, represents innovation potential. Ten physically active male volunteers were randomly assigned in a double-blind design to either placebo (PLA) (3-g maltodextrin; n = 5) or microencapsulated CRE (3-g creatine monohydrate; n = 5) conditions. Experimental conditions involved ingestion of the samples in a 70-mL ready-to-drink format. CRE was delivered in a novel microencapsulation matrix material consisting entirely of hydrolyzed milk protein. Three hours after ingestion, plasma creatine concentrations were unchanged during PLA, and averaged ∼45 μM. During CRE, plasma creatine concentration peaked after 30 min at 101.6 ± 14.9 μM (p creatine concentration gradually trended downwards but remained significantly elevated (∼50% above resting levels) 3 hr after ingestion. These results demonstrate that the microencapsulated form of creatine monohydrate reported herein remains bioavailable when delivered in aqueous conditions, and has potential utility in ready-to-drink formulations for creatine supplementation.

  17. A VERSATILE ALGINATE DROPLET GENERATOR APPLICABLE FOR MICROENCAPSULATION OF PANCREATIC-ISLETS

    WOLTERS, GHJ; FRITSCHY, WM; GERRITS, D; VANSCHILFAGAARDE, R

    1992-01-01

    Alginate beads for immunoisolation of pancreatic islets by microencapsulation should be small, smooth, and spherical in order to ensure that around the islets a strong alginate-polylysine-alginate capsule will be formed with optimal biocompatibility and diffusion of nutrients and hormones. However,

  18. Solubility of drugs in aqueous polymeric solution: effect of ovalbumin on microencapsulation process.

    Aziz, Hesham Abdul; Tan, Yvonne Tze Fung; Peh, Kok Khiang

    2012-03-01

    Microencapsulation of water-soluble drugs using coacervation-phase separation method is very challenging, as these drugs partitioned into the aqueous polymeric solution, resulting in poor drug entrapment. For evaluating the effect of ovalbumin on the microencapsulation of drugs with different solubility, pseudoephedrine HCl, verapamil HCl, propranolol HCl, paracetamol, and curcuminoid were used. In addition, drug mixtures comprising of paracetamol and pseudoephedrine HCl were also studied. The morphology, encapsulation efficiency, particle size, and in vitro release profile were investigated. The results showed that the solubility of the drug determined the ratio of ovalbumin to be used for successful microencapsulation. The optimum ratios of drug, ovalbumin, and gelatin for water-soluble (pseudoephedrine HCl, verapamil HCl, and propranolol HCl), sparingly water-soluble (paracetamol), and water-insoluble (curcuminoid) drugs were found to be 1:1:2, 2:3:5, and 1:3:4. As for the drug mixture, the optimum ratio of drug, ovalbumin, and gelatin was 2:3:5. Encapsulated particles prepared at the optimum ratios showed high yield, drug loading, entrapment efficiency, and sustained release profiles. The solubility of drug affected the particle size of the encapsulated particle. Highly soluble drugs resulted in smaller particle size. In conclusion, addition of ovalbumin circumvented the partitioning effect, leading to the successful microencapsulation of water-soluble drugs.

  19. Microencapsulation of indocyanine green for potential applications in image-guided drug delivery.

    Zhu, Zhiqiang; Si, Ting; Xu, Ronald X

    2015-02-07

    We present a novel process to encapsulate indocyanine green (ICG) in liposomal droplets at high concentration for potential applications in image-guided drug delivery. The microencapsulation process follows two consecutive steps of droplet formation by liquid-driven coaxial flow focusing (LDCFF) and solvent removal by oil phase dewetting. These biocompatible lipid vesicles may have important applications in drug delivery and fluorescence imaging.

  20. Effect of blueberry extract from blueberry pomace on the microencapsulated fish oil

    The effect of the addition of blueberry extract (BE) obtained from blueberry pomace on lipid oxidation of pollock liver oil (PO) during microencapsulation was evaluated. An emulsion containing PO and BE (EBE) was prepared and spray dried in a pilot scale spray dryer. Thiobarbituric acids (TBARS) of ...

  1. Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL 442: enhancement of survivability and thermotolerance.

    Shaharuddin, Shahrulzaman; Muhamad, Ida Idayu

    2015-03-30

    The aim of this research was to enhance the survivability of Lactobacillus rhamnosus NRRL 442 against heat exposure via a combination of immobilization and microencapsulation processes using sugarcane bagasse (SB) and sodium alginate (NaA), respectively. The microcapsules were synthesized using different alginate concentration of 1, 2 and 3% and NaA:SB ratio of 1:0, 1:1 and 1:1.5. This beneficial step of probiotic immobilization before microencapsulation significantly enhanced microencapsulation efficiency and cell survivability after heat exposure of 90°C for 30s. Interestingly, the microcapsule of SB-immobilized probiotic could obtain protection from heat using microencapsulation of NaA concentration as low as 1%. SEM images illustrated the incorporation of immobilized L. rhamnosus within alginate matrices and its changes after heat exposure. FTIR spectra confirmed the change in functional bonding in the presence of sugarcane bagasse, probiotic and alginate. The results demonstrated a great potential in the synthesis of heat resistant microcapsules for probiotic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets

    DeVos, P; DeHaan, BJ; Wolters, GHJ; Strubbe, JH; VanSchilfgaarde, R; van Schilfgaarde, P.

    Graft failure of alginate-polylysine microencapsulated islets is often interpreted as the consequence of a non-specific foreign body reaction against the microcapsules, initiated by impurities present in crude alginate. The aim of the present study was to investigate if purification of the alginate

  3. Development of phase change materials based microencapsulated technology for buildings: A review

    Tyagi, V.V.; Kaushik, S.C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tyagi, S.K. [School of Infrastructure Technology and Resource Management, Shri Mata Vaishno Devi University, Katra 182320, J and K (India); Akiyama, T. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-86283 (Japan)

    2011-02-15

    Thermal energy storage (TES) systems using phase change material (PCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. Now the research is focus on suitable method to incorporate PCMs with building. There are several methods to use phase change materials (PCMs) in thermal energy storage (TES) for different applications. Microencapsulation is one of the well known and advanced technologies for better utilization of PCMs with building parts, such as, wall, roof and floor besides, within the building materials. Phase change materials based microencapsulation for latent heat thermal storage (LHTS) systems for building application offers a challenging option to be employed as effective thermal energy storage and a retrieval device. Since the particular interest in using microencapsulation PCMs for concrete and wall/wallboards, the specific research efforts on both subjects are reviewed separately. This paper presents an overview of the previous research work on microencapsulation technology for thermal energy storage incorporating the phase change materials (PCMs) in the building applications, along with few useful conclusive remarks concluded from the available literature. (author)

  4. Application of acid-catalyzed hydrolysis of dispersed organic solvent in developing new microencapsulation process technology.

    Lee, Honghwa; Lee, Sunhwa; Bhattacharjee, Himanshu; Sah, Hongkee

    2012-01-01

    The aim of this study was to evaluate a new microencapsulation technology employing an acid-catalyzed solvent extraction method in conjunction to an emulsion-based microencapsulation process. Its process consisted of emulsifying a dispersed phase of poly(D,L-lactide-co-glycolide) and isopropyl formate in an aqueous phase. This step was followed by adding hydrochloric acid to the resulting oil-in-water emulsion, in order to initiate the hydrolysis of isopropyl formate dissolved in the aqueous phase. Its hydrolysis caused the liberation of water-soluble species, that is, isopropanol and formic acid. This event triggered continual solvent leaching out of emulsion droplets, thereby initiating microsphere solidification. This new processing worked well for encapsulation of progesterone and ketoprofen that were chosen as a nonionizable model drug and a weakly acidic one, respectively. Furthermore, the structural integrity of poly(D,L-lactide-co-glycolide) was retained during microencapsulation. The new microencapsulation technology, being conceptually different from previous approaches, might be useful in preparing various polymeric particles.

  5. Phenolic extracts of Rubus ulmifolius Schott flowers: characterization, microencapsulation and incorporation into yogurts as nutraceutical sources.

    Martins, Ana; Barros, Lillian; Carvalho, Ana Maria; Santos-Buelga, Celestino; Fernandes, Isabel P; Barreiro, Filomena; Ferreira, Isabel C F R

    2014-06-01

    Rubus ulmifolius Schott (Rosaceae), known as wild blackberry, is a perennial shrub found in wild and cultivated habitats in Europe, Asia and North Africa. Traditionally, it is used for homemade remedies because of its medicinal properties, including antioxidant activity. In the present work, phenolic extracts of R. ulmifolius flower buds obtained by decoction and hydroalcoholic extraction were chemically and biologically characterized. Several phenolic compounds were identified in both decoction and hydroalcoholic extracts of flowers, ellagitannin derivatives being the most abundant ones, namely the sanguiin H-10 isomer and lambertianin. Additionally, comparing with the decoction form, the hydroalcoholic extract presented both higher phenolic content and antioxidant activity. The hydroalcoholic extract was thereafter microencapsulated in an alginate-based matrix and incorporated into a yogurt to achieve antioxidant benefits. In what concerns the performed incorporation tests, the obtained results pointed out that, among the tested samples, the yoghurt containing the microencapsulated extract presented a slightly higher antioxidant activity, and that both forms (free and microencapsulated extracts) gave rise to products with higher activity than the control. In conclusion, this study demonstrated the antioxidant potential of the R. ulmifolius hydroalcoholic extract and the effectiveness of the microencapsulation technique used for its preservation, thus opening new prospects for the exploitation of these natural phenolic extracts in food applications.

  6. Application of fully ceramic microencapsulated fuels in light water reactors

    Gentry, C.; George, N.; Maldonado, I. [Dept. of Nuclear Engineering, Univ. of Tennessee-Knoxville, Knoxville, TN 37996-2300 (United States); Godfrey, A.; Terrani, K.; Gehin, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-01

    This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO{sub 2} rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)

  7. Application of fully ceramic microencapsulated fuels in light water reactors

    Gentry, C.; George, N.; Maldonado, I.; Godfrey, A.; Terrani, K.; Gehin, J.

    2012-01-01

    This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO 2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)

  8. Application of Fully Ceramic Microencapsulated Fuels in Light Water Reactors

    Gentry, Cole A [ORNL; George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Godfrey, Andrew T [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL

    2012-01-01

    This study aims to perform a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in Light Water Reactors (LWRs). In particular pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor. Using uranium-based fuel and transuranic (TRU) based fuel in TRistructural ISOtropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher physical density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design would need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the TRU based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, feasibility of core designs fully loaded with TRU FCM lattices was demonstrated using the NESTLE three-dimensional core simulator.

  9. Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules.

    Campos, Daniela C; Acevedo, Francisca; Morales, Eduardo; Aravena, Javiera; Amiard, Véronique; Jorquera, Milko A; Inostroza, Nitza G; Rubilar, Mónica

    2014-09-01

    Plant growth promoting bacteria and nitrogen-fixing bacteria (NFB) used for crop inoculation have important biotechnological potential as a sustainable fertilization tool. However, the main limitation of this technology is the low inoculum survival rate under field conditions. Microencapsulation of bacterial cells in polymer matrices provides a controlled release and greater protection against environmental conditions. In this context, the aim of this study was to isolate and characterize putative NFB associated with lupin nodules and to evaluate their microencapsulation by spray drying. For this purpose, 21 putative NFB were isolated from lupin nodules and characterized (16S rRNA genes). Microencapsulation of bacterial cells by spray drying was studied using a mixture of sodium alginate:maltodextrin at different ratios (0:15, 1:14, 2:13) and concentrations (15 and 30% solids) as the wall material. The microcapsules were observed under scanning electron microscopy to verify their suitable morphology. Results showed the association between lupin nodules of diverse known NFB and nodule-forming bacteria belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Bacteroidetes. In microencapsulation assays, the 1:14 ratio of sodium alginate:maltodextrin (15% solids) showed the highest cell survival rate (79%), with a microcapsule yield of 27% and spherical microcapsules of 5-50 µm in diameter. In conclusion, diverse putative NFB genera and nodule-forming bacteria are associated with the nodules of lupine plants grown in soils in southern Chile, and their microencapsulation by spray drying using sodium alginate:maltodextrin represents a scalable process to generate a biofertilizer as an alternative to traditional nitrogen fertilization.

  10. An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid as a permeation enhancer

    Mooranian A

    2014-09-01

    Full Text Available Armin Mooranian,1 Rebecca Negrulj,1 Nigel Chen-Tan,2 Gerald F Watts,3 Frank Arfuso,4 Hani Al-Salami11Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, 2Faculty of Science and Engineering, Curtin University, 3School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, 4School of Biomedical Science, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, AustraliaAbstract: The authors have previously designed, developed, and characterized a novel microencapsulated formulation as a platform for the targeted delivery of therapeutics in an animal model of type 2 diabetes, using the drug probucol (PB. The aim of this study was to optimize PB microcapsules by incorporating the bile acid deoxycholic acid (DCA, which has good permeation-enhancing properties, and to examine its effect on microcapsules’ morphology, rheology, structural and surface characteristics, and excipients’ chemical and thermal compatibilities. Microencapsulation was carried out using a BÜCHI-based microencapsulating system established in the authors’ laboratory. Using the polymer sodium alginate (SA, two microencapsulated formulations were prepared: PB-SA (control and PB-DCA-SA (test at a constant ratio (1:30 and 1:3:30, respectively. Complete characterization of the microcapsules was carried out. The incorporation of DCA resulted in better structural and surface characteristics, uniform morphology, and stable chemical and thermal profiles, while size and rheological parameters remained similar to control. In addition, PB-DCA-SA microcapsules showed good excipients’ compatibilities, which were supported by data from differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray studies, suggesting

  11. Evaluation of pilot-scale microencapsulation of probiotics and product effect on broilers.

    Zhang, L; Li, J; Yun, T T; Li, A K; Qi, W T; Liang, X X; Wang, Y W; Liu, S

    2015-10-01

    This study was conducted to evaluate the pilot-scale production of microencapsulated in a 500-L fermenter using emulsion and gelation and to assess the effect of the products on the growth performance, antioxidant activity, immune function, and cecal microbiota in Arbor Acres broilers. A total of seven hundred 1-d-old male Arbor Acres broilers were randomly assigned to 7 dietary treatments with 5 replicate pens per treatment and 20 broilers per pen. The dietary treatments were as follows: 1) basal diet (CON), 2) basal diet containing 0.1% Aureomycin (ANT), 3) basal diet containing unencapsulated at a dose of 1 × 10 cfu/kg of feed (P1), 4) basal diet containing unencapsulated at a dose of 1 × 10 cfu/kg of feed (P2), 5) basal diet containing 0.01% empty microcapsules (CAP), 6) basal diet containing microencapsulated at a dose of 1 × 10 cfu/kg of feed (CAPP1), and 7) basal diet containing microencapsulated at a dose of 1 × 10 cfu/kg of feed (CAPP2). The feeding experiment included 2 phases: the starter phase from d 1 to 21 and the grower phase from d 22 to 42. The results showed that a 500-L fermenter could produce 20.73 ± 4.05 kg of microcapsules with an approximate diameter of 549 μm. The feeding experiment showed that ADG of broilers in CAPP1 was significantly ( microencapsulation of microbial cells can be achieved using emulsion and initial gelation and that the dietary administration of microencapsulated can significantly enhance the growth performance, immune function, cecum microbial community, and overall health of broilers.

  12. Melting point of yttria

    Skaggs, S.R.

    1977-06-01

    Fourteen samples of 99.999 percent Y 2 O 3 were melted near the focus of a 250-W CO 2 laser. The average value of the observed melting point along the solid-liquid interface was 2462 +- 19 0 C. Several of these same samples were then melted in ultrahigh-purity oxygen, nitrogen, helium, or argon and in water vapor. No change in the observed temperature was detected, with the exception of a 20 0 C increase in temperature from air to helium gas. Post test examination of the sample characteristics, clarity, sphericity, and density is presented, along with composition. It is suggested that yttria is superior to alumina as a secondary melting-point standard

  13. Double enzymatic hydrolysis preparation of heme from goose blood and microencapsulation to promote its stability and absorption.

    Wang, Baowei; Cheng, Fansheng; Gao, Shun; Ge, Wenhua; Zhang, Mingai

    2017-02-15

    Iron deficiency anemia (IDA) is the most common nutritional deficiency worldwide. This deficiency could be solved by preparing stable, edible, and absorbable iron food ingredients using environmentally friendly methods. This study investigated enzymatic hydrolysis and microencapsulation process of goose blood. The physicochemical properties, stabilities of the microencapsulated goose blood hydrolysate (MGBH) and a supplement for rats with IDA were also evaluated. The results showed that the synergetic hydrolytic action of neutrase and alkaline protease significantly increased the heme-releasing efficiency. The heme was then microencapsulated using sodium caseinate, maltodextrin and carboxymethyl cellulose (CMC) as the edible wall material, and the encapsulation efficiency of the product reached 98.64%. Meanwhile, favorable thermal, storage and light stabilities were observed for the microencapsulation. It was found that MGBH can significantly improve the body weight and hematological parameters of IDA Wistar rat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Force induced DNA melting

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  15. Viability of the microencapsulation of a casein hydrolysate in lipid microparticles of cupuacu butter and stearic acid

    Samantha Cristina Pinho

    2013-04-01

    Full Text Available Normal 0 21 false false false PT-BR X-NONE X-NONE Solid lipid microparticles produced with a mixture of cupuacu butter and stearic acid were used to microencapsulate a commercial casein hydrolysate (Hyprol 8052. The composition of the lipid matrix used for the production of the lipid microparticles was chosen according to data on the wide angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC of bulk lipid mixtures, which indicated that the presence of 10 % cupuacu butter was sufficient to significantly change the crystalline arrangement of pure stearic acid. Preliminary tests indicated that a minimum proportion of 4 % of surfactant (polysorbate 80 was necessary to produce empty spherical lipid particles with average diameters below 10 mm. The lipid microparticles were produced using 20 % cupuacu butter and 80 % stearic acid and then stabilized with 4 % of polysorbate 80, exhibiting an encapsulation efficiency of approximately 74 % of the casein hydrolysate. The melting temperature of the casein hydrolysate-loaded lipid microparticles was detected at 65.2 °C, demonstrating that the particles were solid at room temperature as expected and indicating that the incorporation of peptides had not affected their thermal behavior. After 25 days of storage, however, there was a release of approximately 30 % of the initial amount of encapsulated casein hydrolysate. This release was not thought to have been caused by the liberation of encapsulated casein hydrolysate. Instead, it was attributed to the possible desorption of the adsorbed peptides present on the surface of the lipid microparticles.

  16. Establishment of a Model of Microencapsulated SGC7901 Human Gastric Carcinoma Cells Cocultured with Tumor-Associated Macrophages

    Jin-Ming Zhu

    2018-01-01

    Full Text Available The important factors of poor survival of gastric cancer (GC are relapse and metastasis. For further elucidation of the mechanism, a culture system mimicking the microenvironment of the tumor in humans was needed. We established a model of microencapsulated SGC7901 human GC cells and evaluated the effects of coculturing spheres with tumor-associated macrophages (TAMs. SGC7901 cells were encapsulated in alginate-polylysine-sodium alginate (APA microcapsules using an electrostatic droplet generator. MTT assays showed that the numbers of microencapsulated cells were the highest after culturing for 14 days. Metabolic curves showed consumption of glucose and production of lactic acid by day 20. Immunocytochemistry confirmed that Proliferating Cell Nuclear Antigen (PCNA and Vascular Endothelial Growth Factor (VEGF were expressed in microencapsulated SGC7901 cells on days 7 and 14. The expression of PCNA was observed outside spheroids; however, VEGF was found in the entire spheroids. PCNA and VEGF were increased after being cocultured with TAMs. Matrix metalloproteinase-2 (MMP-2 and matrix metalloproteinase-9 (MMP-9 expressions were detected in the supernatant of microencapsulated cells cocultured with TAMs but not in microencapsulated cells. Our study confirms the successful establishment of the microencapsulated GC cells. TAMs can promote PCNA, VEGF, MMP-2, and MMP-9 expressions of the GC cells.

  17. Fabrication of fully ceramic microencapsulated fuel by hot pressing

    Lee, H. G.; Kim, D. J; Park, J. Y.; Kim, W. J.; Lee, S. J

    2014-01-01

    Fully ceramic microencapsulated(FCM) nuclear fuel is one of the recently suggested concept to enhance stability nuclear fuel itself. The requirements to increase the accident tolerance of nuclear fuel are mainly two parts: First, the performance has to be maintained compared to the existing UO 2 nuclear fuel and zircaloy cladding system under the normal operation condition. Second, under the severe accident condition, the high temperature structural integrity has to be kept and the generation rate of hydrogen has to be decrease largely. FCM nuclear fuel consists of tristructural isotropic(TRISO) fuel particle and SiC matrix. The relative thermal conductivity of the SiC matrix as compared to UO 2 is quite good, yielding as-irradiated fuel centerline temperature compared to high temperature for the existing fuel leading to reduced stored energy in the core and reduced operational release of fission products from the fuel. Generally SiC ceramics are fabricated via liquid phase sintering due to strong covalent bonding property and low self-diffusivity coefficient. Hot pressing is very effective method to conduct sintering of SiC powder including different second phase. In this study, SiC-matrix composite including TRISO particles were sintered by hot pressing with Al 2 O 3 -Y 2 O 3 additive system. Various sintering condition were investigated to obtain high relative density above 95%. The internal distribution of TRISO particles within SiC-matrix composite was observed by x-ray radiograph. From the analysis of the cross-section of SiC-matrix composite, the fracture of TRISO particles was investigated. In order to uniform distribution of TRISO particle embedded in the SiC matrix, SiC powder overcoating is considered. SiC matrix composite including TRISO was fabricated by hot pressing. FCM pallets with full density were obtained with Al 2 O 3 -Y 2 O 3 additive system. From the microstructure image, the effect of the sintering additive contents and sintering mechanism

  18. Correlations between entropy and volume of melting in halide salts

    Akdeniz, Z.; Tosi, M.P.

    1991-09-01

    Melting parameters and transport coefficients in the melt are collated for halides of monovalent, divalent and trivalent metals. A number of systems show a deficit of entropy of melting relative to the linear relationships between entropy change and relative volume change on melting that are found to be approximately obeyed by a majority of halides. These behaviours are discussed on the basis of structural and transport data. The deviating systems are classified into three main classes, namely (i) fast-ion conductors in the high-temperature crystal phase such as AgI, (ii) strongly structured network-like systems such as ZnCl 2 , and (iii) molecular systems melting into associated molecular liquids such as SbCl 3 . (author). 35 refs, 1 fig., 3 tabs

  19. Melting of gold microclusters

    Garzon, I.L.; Jellinek, J.

    1991-01-01

    The transition from solid-like to liquid-like behavior in Au n , n=6, 7, 13, clusters is studied using molecular dynamics simulations. A Gupta-type potential with all-neighbour interactions is employed to incorporate n-body effects. The melting-like transition is described in terms of short-time averages of the kinetic energy per particle, root-mean-square bond length fluctuations and mean square displacements. A comparison between melting temperatures of Au n and Ni n clusters is presented. (orig.)

  20. Electrophoretic display using microencapsulated suspension; Maikuro kapuseru ka bunsaneki wo mochiita denki eido deisupurei

    Kawai, H. [NOK Corp., Tokyo (Japan)

    1999-11-01

    Electrophoretic display (EPD) is a non-luminous type display using electrophoresis of particles dispersing in a solvent. This kind of display is particularly good at displaying like printing matters. By micro-encapsulating the dispersion medium, a realization of the thin and flexible display device become possible. Further, an EPD (MC-EPD) using a microencapsulated suspension is a forceful candidate for realizing digital paper in the future. In this paper, principle and characteristics of the EPD are explained and application to rewritable sheet (MC-EPS) is introduced. MC-EPS is a rewritable sheet-like display formed by coating a flexible base material such as a polymer film or paper with microcapsules and applying an electric field from external. As an electrostatic latent image formation technique in the electro photography field can be applied as a voltage impression method, the development of the special writing equipment is unnecessary. (NEDO)

  1. Microencapsulation techniques to develop formulations of insulin for oral delivery: a review.

    Cárdenas-Bailón, Fernando; Osorio-Revilla, Guillermo; Gallardo-Velázquez, Tzayhrí

    2013-01-01

    Oral insulin delivery represents one of the most challenging goals for pharmaceutical industry. In general, it is accepted that oral administration of insulin would be more accepted by patients and insulin would be delivered in a more physiological way than the parenteral route. From all strategies to deliverer insulin orally, microencapsulation or nanoencapsulation of insulin are the most promising approaches because these techniques protect insulin from enzymatic degradation in stomach, show a good release profile at intestine pH values, maintain biological activity during formulation and enhance intestinal permeation at certain extent. From different microencapsulation techniques, it seems that complex coacervation, multiple emulsion and internal gelation are the most appropriate techniques to encapsulate insulin due to their relative ease of preparation. Besides that, the use of organic solvents is not required and can be scaled up at low cost; however, relative oral bioavailability still needs to be improved.

  2. Protection of fish oil from oxidation by microencapsulation using freeze-drying techniques

    Heinzelmann, K.; Franke, K.; Jensen, Benny

    2000-01-01

    (N-3)-Polyunsaturated fatty acids (PUFAs) reduce the risk of coronary heart disease. Cold sea water plankton and plankton- consuming fish are known sources of (n-3)-PUFAs. Enriching normal food components with fish oil is a tool for increasing the intake of (n-3)-PUFAs. Due to the high sensitivity...... different freezing techniques and subsequently freeze-dried. Several parameters regarding formulation and process (addition of antioxidants to the fish oil, use of carbohydrates, homogenisation and freezing conditions, initial freeze-drying temperature, grinding) were varied to evaluate their influence...... on the oxidative stability of dried microencapsulated fish oil. The shelf life of the produced samples was determined by measuring the development of volatile oxidation products vs. storage time. It could be shown that the addition of antioxidants to fish oil was necessary to produce dried microencapsulated fish...

  3. Antinociceptive effect of intrathecal microencapsulated human pheochromocytoma cell in a rat model of bone cancer pain.

    Li, Xiao; Li, Guoqi; Wu, Shaoling; Zhang, Baiyu; Wan, Qing; Yu, Ding; Zhou, Ruijun; Ma, Chao

    2014-07-08

    Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l) lysine-alginate (APA) microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.

  4. Antinociceptive Effect of Intrathecal Microencapsulated Human Pheochromocytoma Cell in a Rat Model of Bone Cancer Pain

    Xiao Li

    2014-07-01

    Full Text Available Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l lysine-alginate (APA microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.

  5. Alginate Microencapsulation of Human Islets Does Not Increase Susceptibility to Acute Hypoxia

    Hals, I. K.; Rokstad, A. M.; Strand, B. L.; Oberholzer, J.; Grill, V.

    2013-01-01

    Islet transplantation in diabetes is hampered by the need of life-long immunosuppression. Encapsulation provides partial immunoprotection but could possibly limit oxygen supply, a factor that may enhance hypoxia-induced beta cell death in the early posttransplantation period. Here we tested susceptibility of alginate microencapsulated human islets to experimental hypoxia (0.1–0.3% O2 for 8 h, followed by reoxygenation) on viability and functional parameters. Hypoxia reduced viability as measured by MTT by 33.8 ± 3.5% in encapsulated and 42.9 ± 5.2% in nonencapsulated islets (P microencapsulation of human islets does not increase susceptibility to acute hypoxia. This is a positive finding in relation to potential use of encapsulation for islet transplantation. PMID:24364039

  6. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Chen Liang [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: doseng_1982@hotmail.com; Xu Lingling; Shang Hongbo; Zhang Zhibin [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2009-03-15

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 deg. C, the latent heat of fusion was about 80 J g{sup -1}, the particle diameter was 20-35 {mu}m.

  7. Microencapsulation of silicon nitride particles with yttria and yttria-alumina precursors

    Garg, A.K.; De Jonghe, L.C.

    1990-01-01

    Procedures are described to deposit uniform layers of yttria and yttria-alumina precursors on fine powders and whiskers of silicon nitride. The coatings were produced by aging at elevated temperatures aqueous systems containing the silicon nitride core particles, yttrium and aluminum nitrates, and urea. Optimum concentrations of the core particles, in relation to the reactants, were established to promote surface deposition of the oxide precursors. Polymeric dispersants were used effectively to prevent agglomeration of the solids during the microencapsulation process. The morphology of the powders was characterized using scanning and transmission electron microscopy. The mechanisms for the formation of the coated layers are discussed. A description is provided that allows qualitative assessment of the experimental factors that determine microencapsulation by a slurry method

  8. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Chen Liang; Xu Lingling; Shang Hongbo; Zhang Zhibin

    2009-01-01

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 deg. C, the latent heat of fusion was about 80 J g -1 , the particle diameter was 20-35 μm

  9. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Liang, Chen; Lingling, Xu; Hongbo, Shang; Zhibin, Zhang [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2009-03-15

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 C, the latent heat of fusion was about 80 J g{sup -1}, the particle diameter was 20-35 {mu}m. (author)

  10. Preparation of micro-encapsulated strawberry fragrance and its application in the aromatic wallpaper

    Xiao Zuobing

    2017-03-01

    Full Text Available Micro-encapsulated strawberry fragrance was successfully prepared with wall materials including maltodextrin, sodium octenylsuccinate and gum Arabic. The micro-capsule was added to wallpaper and aromatic wallpaper with strawberry characteristics was obtained. The particle distribution, surface morphology, chemical structure, thermal property and controlled release performance of micro-encapsulated fragrance and aromatic wallpaper were investigated using laser particle size analyzer, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-TR, thermal gravity analysis (TGA and chromatography-mass spectrometer (GC-MS. The results showed that the average diameter of micro-capsule was 2 μm and the particles mainly distributed in the tissues of wallpaper. The result of TGA showed that the micro-capsule had a good stability. Meanwhile, the aromatic wallpaper had strawberry aroma more than 3 months and took on excellent controlled release performance.

  11. Comparative Evaluation of Viability of Encapsulated Lactobacillus casei Using Two Different Methods of Microencapsulation

    Petreska Ivanovska, Tanja; Smilkov, Katarina; Zivikj, Zoran; Petrusevska Tozi, Lidija; Mladenovska, Kristina

    2014-01-01

    Microencapsulation using two different methods, spray- drying and emulsion technique were applied to preserve the viability of the probiotic Lactobacillus casei during manufacture and refrigerated storage. As coating materials to encapsulate the probiotic by spray-drying method, compatible biopolymers alginate and chitosan were utilized, while as a cross-linking agent, CaCl2 was used. In addition to the probiotic, oligofructose enriched inulin (Synergy 1®) as prebiotic was added to the medium...

  12. Microencapsulated acids associated with essential oils and acid salts for piglets in the nursery phase

    Marco Aurelio Callegari

    2016-08-01

    Full Text Available The objective of this study was to evaluate the use of commercial blends of organic and inorganic acids combined with essential oils for piglets in the nursery phase. The formulations were administered as microcapsules or as acid salts. Ninety-six, Pen Ar Lan, barrow and female piglets, weaned at a body weight of 600 kg ± 12 kg and age of 23 days were subjected to four treatments. The animals were distributed in randomized blocks of three animals per pen and 8 replicates per treatment. The treatments consisted of four different diets: control (free of organic acids; acid and essential oil blends (fumaric acid 10,5%, malic acid 8.0%, essential oils; in microencapsulated form; microencapsulated acid blend (phosphoric acid 10%, citric acid 10%, malic acid 10%, fumaric acid 20%; in microencapsulated form; and acid salt blend (formic acid 40.5%, phosphoric acid 13.6%, propionic acid 4.9% and salts (23.2% calcium and 4.4% phosphorus available. The performance parameters, digestive transit time, weights of organs of the digestive tract, bacterial count of feces (Lactobacillus, E coli and Salmonella ssp and Clostridium, pH of the stomach and duodenal content did not differ between treatment groups (P > 005. All treatments containing organic acids exhibited positive effects on diarrhea control (P < 005. The cecal contents of volatile fatty acids (VFA were higher in piglets fed diets containing acids than in animals that received the control diet (P < 005, and blends containing essential oils improved the jejunum villus height compared with the control group. The use of diets containing acids improved diarrhea control and VFA production in the cecum, and specifically the diets containing microencapsulated acid blends required the lowest doses to be effective.

  13. Microencapsulation of natural antioxidants for food application - The specific case of coffee antioxidants - A review

    Joana Aguiar; Berta Nogueiro Estevinho; Lúcia Silveira Santos

    2016-01-01

    Background: Functional foods fortified with antioxidants are gaining more popularity since consumption alone of foods naturally rich in antioxidants is insufficient to reduce oxidative stress associated with various diseases. Despite their beneficial effects, natural antioxidants present in coffee are sensitive to heat, light and oxygen, limiting their application in the food industry. Although microencapsulation is able to protect the antioxidant from degradation, mask its taste and control ...

  14. Microencapsulated bitter compounds (from Gentiana lutea) reduce daily energy intakes in humans.

    Mennella, Ilario; Fogliano, Vincenzo; Ferracane, Rosalia; Arlorio, Marco; Pattarino, Franco; Vitaglione, Paola

    2016-11-10

    Mounting evidence showed that bitter-tasting compounds modulate eating behaviour through bitter taste receptors in the gastrointestinal tract. This study aimed at evaluating the influence of microencapsulated bitter compounds on human appetite and energy intakes. A microencapsulated bitter ingredient (EBI) with a core of bitter Gentiana lutea root extract and a coating of ethylcellulose-stearate was developed and included in a vanilla microencapsulated bitter ingredient-enriched pudding (EBIP). The coating masked bitterness in the mouth, allowing the release of bitter secoiridoids in the gastrointestinal tract. A cross-over randomised study was performed: twenty healthy subjects consumed at breakfast EBIP (providing 100 mg of secoiridoids) or the control pudding (CP) on two different occasions. Blood samples, glycaemia and appetite ratings were collected at baseline and 30, 60, 120 and 180 min after breakfast. Gastrointestinal peptides, endocannabinoids (EC) and N-acylethanolamines (NAE) were measured in plasma samples. Energy intakes were measured at an ad libitum lunch 3 h after breakfast and over the rest of the day (post lunch) through food diaries. No significant difference in postprandial plasma responses of gastrointestinal hormones, glucose, EC and NAE and of appetite between EBIP and CP was found. However, a trend for a higher response of glucagon-like peptide-1 after EBIP than after CP was observed. EBIP determined a significant 30 % lower energy intake over the post-lunch period compared with CP. These findings were consistent with the tailored release of bitter-tasting compounds from EBIP along the gastrointestinal tract. This study demonstrated that microencapsulated bitter secoiridoids were effective in reducing daily energy intake in humans.

  15. MELT-IIIB: an updated version of the melt code

    Tabb, K.K.; Lewis, C.H.; O'Dell, L.D.; Padilla, A. Jr.; Smith, D.E.; Wilburn, N.P.

    1979-04-01

    The MELT series is a reactor modeling code designed to investigate a wide variety of hypothetical accident conditions, particularly the transient overpower sequence. MELT-IIIB is the latest in the series

  16. Fish Oil Microencapsulation as Omega-3 Fatty Acids Fortification Material for Cream of Crab Soup

    Santiara Putri Pramesti

    2015-11-01

    Full Text Available Omega-3 fatty acids have important roles in improvement of intelligent and health of human. Microencapsulation of fish oil as source of omega-3 fatty acids is an effort to maintain flavor, aroma, stability, and also to successfully transfer bioactive component from the fish oil as fortification material for foods or medicines. Improvement of instant crab cream soup enriched with fish oil as source of omega-3 fatty acid has never been conducted before. The purpose of this research was to improve microencapsulation method for fish oil as source of omega-3 fatty acids as fortification material for instant cream of crab soup. Microencapsulation methods in this research are homogenization and spray drying. The results showed that the best microcapsule was obtained from homogenization treatment for 10 minutes with efficiency of 90.41±0.64%. The shape of the obtained microcapsule was spherical with average size of 6.52 μm, with induction time up to 26.09±0.01 hours. The best cream of crab soup formula was at fish oil microcapsule concentration of 3.30%, with 8.19% daily value of omega-3, inclusion 11.32% of EPA and DHA at serving size of 17.56 gram.

  17. Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality.

    Ezhilarasi, Perumal Natarajan; Indrani, Dasappa; Jena, Bhabani Sankar; Anandharamakrishnan, Chinnaswamy

    2014-04-01

    (-)-Hydroxycitric acid (HCA) is the major acid present in the fruit rinds of certain species of Garcinia. HCA has been reported to have several health benefits. As HCA is highly hygroscopic in nature and thermally sensitive, it is difficult to incorporate in foodstuffs. Hence, Garcinia cowa fruit extract was microencapsulated using three different wall materials such as whey protein isolate (WPI), maltodextrin (MD) and a combination of whey protein isolate and maltodextrin (WPI + MD) by spray drying. Further, these microencapsulated powders were evaluated for their impact on bread quality and HCA retention. Maltodextrin (MD) encapsulates had higher free (86%) and net HCA (90%) recovery. Microencapsulates incorporated breads had enhanced qualitative characteristics and higher HCA content than water extract incorporated bread due to efficient encapsulation during bread baking. Comparatively, bread with MD encapsulates showed softer crumb texture, desirable sensory attributes with considerable volume and higher HCA content. The higher HCA contents of encapsulate incorporated breads were sufficient to claim for functionality of HCA in bread. Comparatively, MD had efficiently encapsulated Garcinia fruit extract during spray drying and bread baking. Spray drying proved to be an excellent encapsulation technique for incorporation into the food system. © 2013 Society of Chemical Industry.

  18. Solar-absorbing metamaterial microencapsulation of phase change materials for thermo-regulating textiles

    William Tong

    2015-04-01

    Full Text Available This paper presents a novel concept for designing solar-absorbing metamaterial microcapsules of phase change materials (PCMs integrated with thermo-regulating smart textiles intended for coats or garments, especially for wear in space or cold weather on earth. The metamaterial is a periodically nanostructured metal-dielectric-metal thin film and can acquire surface plasmons to trap or absorb solar energy at subwavelength scales. This kind of metamaterial microencapsulation is not only able to take advantage of latent heat that can be stored or released from the PCMs over a tunable temperature range, but also has other advantages over conventional polymer microencapsulation of PCMs, such as enhanced thermal conductivity, improved flame-retardant capabilities, and usage as an extra solar power resource. The thermal analysis for this kind of microencapsulation has been done and can be used as a guideline for designing integrated thermo-regulating smart textiles in the future. These metamaterial microcapsules may open up new routes to enhancing thermo-regulating textiles with novel properties and added value.

  19. Microencapsulation of Natural Anthocyanin from Purple Rosella Calyces by Freeze Drying

    Nafiunisa, A.; Aryanti, N.; Wardhani, D. H.; Kumoro, A. C.

    2017-11-01

    Anthocyanin extract in powder form will improve its use since the powder is easier to store and more applicable. Microencapsulation method is introduced as an efficient way for protecting pigment such as anthocyanin. This research was aimed to characterise anthocyanin encapsulated products prepared from purple Roselle calyces by freeze drying. The liquid anthocyanin extracts from ultrasound-assisted extraction were freeze-dried with and without the addition of 10% w/w maltodextrins as a carrier and coating agents. The quality attributes of the powders were characterised by their colour intensity, water content, and solubility. Analysis of encapsulated material was performed for the powder added by maltodextrin. The stability of the microencapsulated pigment in solution form was determined for 11 days. Total anthocyanin content was observed through pH differential method. The results of the colour intensity analysis confirm that the product with maltodextrin addition has more intense colour with L* value of 29.69 a* value of 54.29 and b* value of 8.39. The result with the addition of maltodextrin has less moisture content and more soluble in water. It is verified that better results were obtained for powder with maltodextrin addition. Anthocyanin in the powder form with maltodextrin addition exhibits higher stability even after 11 days. In conclusion, the microencapsulation of anthocyanin with maltodextrin as a carrier and coating agent presented a potential method to produce anthocyanin powder from purple Roselle.

  20. The Application of Microencapsulated Phycocyanin as a Blue Natural Colorant to the Quality of Jelly Candy

    Dewi, E. N.; Kurniasih, R. A.; Purnamayati, L.

    2018-02-01

    Phycocyanin is a blue color pigment which can be extracted from Spirulina sp. makes it potential to use as an alternative natural dye in the food product. The aim of this research was to determine the application of microencapsulated phycocyanin processed using spray dried method to the jelly candy. As a natural blue colorant, phycocyanin was expected to be safe for the consumer. The jelly candy was evaluated on the characteristics of its moisture, ash, Aw, pH, color appearance, and phycocyanin spectra with FTIR. The phycocyanin was microencapsulated using maltodextrin and Na-alginate as the coating materials (maltodextrin and Na-alginate in ratio 9:1.0 w/w). The spray drying process was operated with an inlet temperature of 80°C. The various concentrations of microencapsulated phycocyanin were added to the jelly candy such as 0%, 1%, 3%, 5% and jelly candy with brilliant blue used as comparison, each called PC, PS, PT, PL, and PB. The results showed that the various concentrations of phycocyanin added on the jelly product had significantly different on moisture content, Aw, and blue color. The FTIR spectra indicated that phycocyanin still persisted on the jelly candy. PL was the best jelly candy with the bluest color under PB.

  1. Physicochemical Properties and Storage Stability of Microencapsulated DHA-Rich Oil with Different Wall Materials.

    Chen, Wuxi; Wang, Haijun; Zhang, Ke; Gao, Feng; Chen, Shulin; Li, Demao

    2016-08-01

    This study aimed to evaluate the physicochemical properties and storage stability of microencapsulated DHA-rich oil spray dried with different wall materials: model 1 (modified starch, gum arabic, and maltodextrin), model 2 (soy protein isolate, gum arabic, and maltodextrin), and model 3 (casein, glucose, and lactose). The results indicated that model 3 exhibited the highest microencapsulation efficiency (98.66 %) and emulsion stability (>99 %), with a moisture content and mean particle size of 1.663 % and 14.173 μm, respectively. Differential scanning calorimetry analysis indicated that the Tm of DHA-rich oil microcapsules was high, suggesting that the entire structure of the microcapsules remained stable during thermal processing. A thermogravimetric analysis curve showed that the product lost 5 % of its weight at 172 °C and the wall material started to degrade at 236 °C. The peroxide value of microencapsulated DHA-rich oil remained at one ninth after accelerated oxidation at 45 °C for 8 weeks to that of the unencapsulated DHA-rich oil, thus revealing the promising oxidation stability of DHA-rich oil in microcapsules.

  2. Phase diagram studies for microencapsulation of pharmaceuticals using cellulose acetate trimellitate.

    Sanghvi, S P; Nairn, J G

    1991-04-01

    Phase diagrams were prepared to indicate the region of microcapsule formation for the following system: cellulose acetate trimellitate, light mineral oil, and the solvent mixture (acetone:ethanol), using chloroform as the hardening agent. The effect of sorbitan monoleate, sorbitan monolaurate, and sorbitan trioleate on the region of the phase diagram for the formation of microcapsules was investigated. The results indicate that microcapsules are readily formed when the polymer concentration is in the 0.5-1.5% range and the solvent concentration is in the 5-10% range. Aggregation of microcapsules was minimized by using lower solvent concentration. Low concentrations of sorbitan monooleate in mineral oil (less than or equal to 1%) gave products that had smoother coats and more uniform particle size. Surfactants with low hydrophile:lipophile balance produced larger regions on the phase diagram for microencapsulation compared with a surfactant with higher hydrophile:lipophile balance. A mechanism for microencapsulation is described. Tartrazine microcapsules produced using different concentrations of surfactant were tested for dissolution characteristics in both acidic and neutral conditions. Tartrazine-containing microcapsules prepared by using 3% sorbitan monooleate had the lowest release in acidic conditions. The effect of surfactant and formulation concentration on microcapsule size was studied by analyzing the particle size distribution for both blank and tartrazine-containing microcapsules. The smallest microcapsule size was obtained when the sorbitan monooleate concentration was 3%. It appears that there is an upper limit for the surfactant concentration that could be used to achieve successful microencapsulation.

  3. Effects on bread and oil quality after functionalization with microencapsulated chia oil.

    González, Agustín; Martínez, Marcela L; León, Alberto E; Ribotta, Pablo D

    2018-03-23

    Omega-3 and omega-6 fatty acids-rich oils suffer oxidation reactions that alter their chemical and organoleptic quality. Microencapsulation can be a powerful tool for protection against ambient conditions. In the present study, the addition of microencapsulated chia oil as an ingredient in bread preparations and its effect on the technological and chemical quality of breads was investigated. Microencapsulation of chia oil was carried out by freeze-drying with soy proteins as wall material and oil release was determined under in vitro gastric and intestinal conditions. Encapsulated oil-containing bread showed no differences in specific volume, average cell area, firmness and chewiness with respect to control bread. Unencapsulated oil-containing bread showed a marked increase in hydroperoxide values respect to control, whereas encapsulated oil-containing bread values were not affected by baking and bread storage. The fatty acid profiles showed a decrease of 13% and 16%, respectively, in α-linolenic acid in the encapsulated and unencapsulated oils with respect to bulk chia oil. Sensory analysis showed no significant differences between bread samples. The addition of encapsulated chia oil did not alter the technological quality of breads and prevented the formation of hydroperoxide radicals. A ration of encapsulated oil-containing bread contributes 60% of the recommended dietary intake of omega-3 fatty acids. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  4. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6

    Ge, Hua [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Tang, Gang [School of Architecture and Civil Engineering, Anhui University of Technology, 59 Hudong Road, Ma’anshan, Anhui 243002 (China); Hu, Wei-Zhao; Wang, Bi-Bo; Pan, Ying [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Song, Lei, E-mail: leisong@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123 (China)

    2015-08-30

    Highlights: • MCAHP was prepared and applied in polyamide 6. • MCA as the capsule material can improve the fire safety of AHP. • Flame retardant polyamide 6 composites with MCAHP show good flame retardancy. - Abstract: Aluminum hypophosphite (AHP) is an effective phosphorus-containing flame retardant. But AHP also has fire risk that it will decompose and release phosphine which is spontaneously flammable in air and even can form explosive mixtures with air in extreme cases. In this paper, AHP has been microencapsulated by melamine cyanurate (MCA) to prepare microencapsulated aluminum hypophosphite (MCAHP) with the aim of enhancing the fire safety in the procedure of production, storage and use. Meanwhile, MCA was a nitrogen-containing flame retardant that can work with AHP via the nitrogen-phosphorus synergistic effect to show improved flame-retardant property than other capsule materials. After microencapsulation, MCA presented as a protection layer inhibit the degradation of AHP and postpone the generation of phosphine. Furthermore, the phosphine concentration could be effectively diluted by inert decomposition products of MCA. These nonflammable decomposition products of MCA could separate phosphine from air delay the oxidizing reaction with oxygen and decrease the heat release rate, which imply that the fire safety of AHP has been improved. Furthermore, MCAHP was added into polyamide 6 to prepare flame retardant polyamide 6 composites (FR-PA6) which show good flame retardancy.

  5. Optimisation of the microencapsulation of tuna oil in gelatin-sodium hexametaphosphate using complex coacervation.

    Wang, Bo; Adhikari, Benu; Barrow, Colin J

    2014-09-01

    The microencapsulation of tuna oil in gelatin-sodium hexametaphosphate (SHMP) using complex coacervation was optimised for the stabilisation of omega-3 oils, for use as a functional food ingredient. Firstly, oil stability was optimised by comparing the accelerated stability of tuna oil in the presence of various commercial antioxidants, using a Rancimat™. Then zeta-potential (mV), turbidity and coacervate yield (%) were measured and optimised for complex coacervation. The highest yield of complex coacervate was obtained at pH 4.7 and at a gelatin to SHMP ratio of 15:1. Multi-core microcapsules were formed when the mixed microencapsulation system was cooled to 5 °C at a rate of 12 °C/h. Crosslinking with transglutaminase followed by freeze drying resulted in a dried powder with an encapsulation efficiency of 99.82% and a payload of 52.56%. Some 98.56% of the oil was successfully microencapsulated and accelerated stability using a Rancimat™ showed stability more than double that of non-encapsulated oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin.

    Akhavan Mahdavi, Sahar; Jafari, Seid Mahdi; Assadpoor, Elham; Dehnad, Danial

    2016-04-01

    The barberry (Berberis vulgaris) extract which is a rich source of anthocyanins was used for spray drying encapsulation with three different wall materials, i.e., combination of maltodextrin and gum Arabic (MD+GA), maltodextrin and gelatin (MD+GE), and maltodextrin (MD). Response Surface Methodology (RSM) was applied for optimization of microencapsulation efficiency and physical properties of encapsulated powders considering wall material type as well as different ratios of core to wall materials as independent variables. Physical characteristics of spray-dried powders were investigated by further analyses of moisture content, hygroscopicity, degree of caking, solubility, bulk and absolute density, porosity, flowability and microstructural evaluation of encapsulated powders. Our results indicated that samples produced with MD+GA as wall materials represented the highest process efficiency and best powder quality; the optimum conditions of microencapsulation process for barberry anthocyanins were found to be the wall material content and anthocyanin load of 24.54% and 13.82%, respectively. Under such conditions, the microencapsulation efficiency (ME) of anthocyanins could be as high as 92.83%. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6

    Ge, Hua; Tang, Gang; Hu, Wei-Zhao; Wang, Bi-Bo; Pan, Ying; Song, Lei; Hu, Yuan

    2015-01-01

    Highlights: • MCAHP was prepared and applied in polyamide 6. • MCA as the capsule material can improve the fire safety of AHP. • Flame retardant polyamide 6 composites with MCAHP show good flame retardancy. - Abstract: Aluminum hypophosphite (AHP) is an effective phosphorus-containing flame retardant. But AHP also has fire risk that it will decompose and release phosphine which is spontaneously flammable in air and even can form explosive mixtures with air in extreme cases. In this paper, AHP has been microencapsulated by melamine cyanurate (MCA) to prepare microencapsulated aluminum hypophosphite (MCAHP) with the aim of enhancing the fire safety in the procedure of production, storage and use. Meanwhile, MCA was a nitrogen-containing flame retardant that can work with AHP via the nitrogen-phosphorus synergistic effect to show improved flame-retardant property than other capsule materials. After microencapsulation, MCA presented as a protection layer inhibit the degradation of AHP and postpone the generation of phosphine. Furthermore, the phosphine concentration could be effectively diluted by inert decomposition products of MCA. These nonflammable decomposition products of MCA could separate phosphine from air delay the oxidizing reaction with oxygen and decrease the heat release rate, which imply that the fire safety of AHP has been improved. Furthermore, MCAHP was added into polyamide 6 to prepare flame retardant polyamide 6 composites (FR-PA6) which show good flame retardancy

  8. Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol.

    Mooranian, Armin; Negrulj, Rebecca; Chen-Tan, Nigel; Al-Sallami, Hesham S; Fang, Zhongxiang; Mukkur, T K; Mikov, Momir; Golocorbin-Kon, Svetlana; Fakhoury, Marc; Watts, Gerald F; Matthews, Vance; Arfuso, Frank; Al-Salami, Hani

    2014-01-01

    In previous studies, we successfully designed complex multicompartmental microcapsules as a platform for the oral targeted delivery of lipophilic drugs in type 2 diabetes (T2D). Probucol (PB) is an antihyperlipidemic and antioxidant drug with the potential to show benefits in T2D. We aimed to create a novel microencapsulated formulation of PB and to examine the shape, size, and chemical, thermal, and rheological properties of these microcapsules in vitro. Microencapsulation was carried out using the Büchi-based microencapsulating system developed in our laboratory. Using the polymer, sodium alginate (SA), empty (control, SA) and loaded (test, PB-SA) microcapsules were prepared at a constant ratio (1:30). Complete characterizations of microcapsules, in terms of morphology, thermal profiles, dispersity, and spectral studies, were carried out in triplicate. PB-SA microcapsules displayed uniform and homogeneous characteristics with an average diameter of 1 mm. The microcapsules exhibited pseudoplastic-thixotropic characteristics and showed no chemical interactions between the ingredients. These data were further supported by differential scanning calorimetric analysis and Fourier transform infrared spectral studies, suggesting microcapsule stability. The new PB-SA microcapsules have good structural properties and may be suitable for the oral delivery of PB in T2D. Further studies are required to examine the clinical efficacy and safety of PB in T2D.

  9. Process optimization of microencapsulation of curcumin in γ-polyglutamic acid using response surface methodology.

    Ko, Wen-Ching; Chang, Chao-Kai; Wang, Hsiu-Ju; Wang, Shian-Jen; Hsieh, Chang-Wei

    2015-04-01

    The aim of this study was to develop an optimal microencapsulation method for an oil-soluble component (curcumin) using γ-PGA. The results show that Span80 significantly enhances the encapsulation efficiency (EE) of γ-Na(+)-PGA microcapsules. Therefore, the effects of γ-Na(+)-PGA, curcumin and Span80 concentration on EE of γ-Na(+)-PGA microcapsules were studied by means of response surface methodology (RSM). It was found that the optimal microencapsulation process is achieved by using γ-Na(+)-PGA 6.05%, curcumin 15.97% and Span80 0.61% with a high EE% (74.47 ± 0.20%). Furthermore, the models explain 98% of the variability in the responses. γ-Na(+)-PGA seems to be a good carrier for the encapsulation of curcumin. In conclusion, this simple and versatile approach can potentially be applied to the microencapsulation of various oil-soluble components for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Microencapsulated PCM slurries for heat transfer and energy storage in spacecraft systems

    Colvin, David P.; Mulligan, James C.; Bryant, Yvonne G.; Duncan, John L.; Gravely, Benjamin T.

    1992-01-01

    The technical feasibility for providing significantly enhanced heat transport and storage as well as improved thermal control has been investigated during several Small Business Innovative Research (SBIR) programs for NASA, the United States Air Force (USAF), and the Strategic Defense Initiative Organization (SDIO) using microencapsulated phase change materials (PCMs) in both aqueous and nonaqueous two-component slurries. In the program for SDIO, novel two-component coolant fluids were prepared and successfully tested at both low (300 K) and intermediate temperatures (460 to 700 K). The two-component fluid slurries of microencapsulated PCMs included organic particles in aqueous and nonaqueous liquids, as well as microencapsulated metals that potentially could be carried by liquid metals or used as powdered heat sinks. Simulation and experimental studies showed that such active cooling systems could be designed and operated with enhancements of heat capacity that exceeded 10 times or 1000 percent that for the base fluid along with significant enhancement in the fluid's heat capacity. Furthermore, this enhancement provided essentially isothermal conditions throughout the pumped primary coolant fluid loop. The results suggest that together with much higher fluid thermal capacity, greater uniformity of temperature is achievable with such fluids, and that significant reductions in pumping power, system size, and system mass are also possible.

  11. Microencapsulation of Lactobacillus rhamnosus GG by Transglutaminase Cross-Linked Soy Protein Isolate to Improve Survival in Simulated Gastrointestinal Conditions and Yoghurt.

    Li, Chun; Wang, Chun-Ling; Sun, Yu; Li, Ai-Li; Liu, Fei; Meng, Xiang-Chen

    2016-07-01

    Microencapsulation is an effective way to improve the survival of probiotics in simulated gastrointestinal (GI) conditions and yoghurt. In this study, microencapsulation of Lactobacillus rhamnosus GG (LGG) was prepared by first cross-linking of soy protein isolate (SPI) using transglutaminase (TGase), followed by embedding the bacteria in cross-linked SPI, and then freeze-drying. The survival of microencapsulated LGG was evaluated in simulated GI conditions and yoghurt. The results showed that a high microencapsulation yield of 67.4% was obtained. The diameter of the microencapsulated LGG was in the range of 52.83 to 275.16 μm. Water activity did not differ between free and microencapsulated LGG after freeze-drying. The survival of microencapsulated LGG under simulated gastric juice (pH 2.5 and 3.6), intestinal juice (0.3% and 2% bile salt) and storage at 4 °C were significantly higher than that of free cells. The survival of LGG in TGase cross-linked SPI microcapsules was also improved to 14.5 ± 0.5% during storage in yoghurt. The microencapsulation of probiotics by TGase-treated SPI can be a suitable alternative to polysaccharide gelation technologies. © 2016 Institute of Food Technologists®

  12. Experimental Studies of Phase Change and Microencapsulated Phase Change Materials in a Cold Storage/Transportation System with Solar Driven Cooling Cycle

    Lin Zheng

    2017-11-01

    Full Text Available The paper presents the different properties of phase change material (PCM and Microencapsulated phase change material (MEPCM employed to cold storage/transportation system with a solar-driven cooling cycle. Differential Scanning Calorimeter (DSC tests have been performed to analyze the materials enthalpy, melting temperature range, and temperature range of solidification. KD2 Pro is used to test the thermal conductivities of phase change materials slurry and the results were used to compare the materials heat transfer performance. The slurry flow characteristics of MEPCM slurry also have been tested. Furthermore, in order to analyze the improvement effect on stability, the stability of MEPCM slurry with different surfactants have been tested. The researches of the PCM and MEPCM thermal properties revealed a more prospective application for phase change materials in energy storage/transportation systems. The study aims to find the most suitable chilling medium to further optimize the design of the cold storage/transportation systems with solar driven cooling cycles.

  13. MICROENCAPSULATION OF INDIGENOUS POULTRY LACTIC ACID BACTERIA PROBIOTIC ON THE COMPETITIVE EXCLUSION AGAINST Salmonella enteritidis AND Escherichia coli IN VITRO

    Monica Sonia Indri Pradipta

    2017-05-01

    Full Text Available This study was conducted to investigate the effect of microencapsulation of lactic acid bacteria (LAB probiotic isolated from chickens’ gastrointestinal tract on Salmonella enterica serotype enteritidis ATCC 13076 and Escherichia coli EPEC. Probiotic of LAB used were Streptococcus thermophilus strain Kp-2, Lactobacillus murinus strain Ar-3, and Pediococcus acidilactici strain Kd-6. Microencapsulation were conducted by spray drying with inlet/outlet temperatures of 160/80°C using maltodextrin and skim milk powder (20% w/v as coating materials. Competitive exclusion test was conducted in vitro using well diffusion method. Variable measured in this study was the clear zone observed. The data of clear zone among treatments were analyzed using analysis of variance (ANOVA one way followed by Duncan multiple range test (DMRT; except the data of clear zone resulted by probiotic before and after microencapsulation that was analyzed using t-test. The result showed that the ability of each strain against pathogen was decreased after being encapsulated. S. thermophilus before and after microencapsulation had the same antagonistic ability against E. coli and S. enteritidis (P>0.05. Microencapsulation process with spray drying method decreased antagonistic ability of probiotic against pathogenic bacteria both in single and multi strain.

  14. Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries.

    Lam, P L; Gambari, R

    2014-03-28

    This review provides an overall discussion of microencapsulation systems for both oral and transdermal drug deliveries. Clinically, many drugs, especially proteins and peptides, are susceptible to the gastrointestinal tract and the first-pass metabolism after oral administration while some drugs exhibit low skin permeability through transdermal delivery route. Medicated microcapsules as oral and transdermal drug delivery vehicles are believed to offer an extended drug effect at a relatively low dose and provide a better patient compliance. The polymeric microcapsules can be produced by different microencapsulation methods and the drug microencapsulation technology provides the quality preservation for drug stabilization. The release of the entrapped drug is controlled and prolonged for specific usages. Some recent studies have focused on the evaluation of drug containing microcapsules on potential biological and therapeutic applications. For the oral delivery, in vivo animal models were used for evaluating possible treatment effects of drug containing microcapsules. For the transdermal drug delivery, skin delivery models were introduced to investigate the potential skin delivery of medicated microcapsules. Finally, the challenges and limitations of drug microencapsulation in real life are discussed and the commercially available drug formulations using microencapsulation technology for oral and transdermal applications are shown. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Melting of polydisperse hard disks

    Pronk, S.; Frenkel, D.

    2004-01-01

    The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find

  16. Thermodynamics of Oligonucleotide Duplex Melting

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  17. Pavement Snow Melting

    Lund, John W.

    2005-01-01

    The design of pavement snow melting systems is presented based on criteria established by ASHRAE. The heating requirements depends on rate of snow fall, air temperature, relative humidity and wind velocity. Piping materials are either metal or plastic, however, due to corrosion problems, cross-linked polyethylene pipe is now generally used instead of iron. Geothermal energy is supplied to systems through the use of heat pipes, directly from circulating pipes, through a heat exchanger or by allowing water to flow directly over the pavement, by using solar thermal storage. Examples of systems in New Jersey, Wyoming, Virginia, Japan, Argentina, Switzerland and Oregon are presented. Key words: pavement snow melting, geothermal heating, heat pipes, solar storage, Wyoming, Virginia, Japan, Argentina, Klamath Falls.

  18. Transient fuel melting

    Roche, L.; Schmitz, F.

    1982-10-01

    The observation of micrographic documents from fuel after a CABRI test leads to postulate a specific mode of transient fuel melting during a rapid nuclear power excursion. When reaching the melt threshold, the bands which are characteristic for the solid state are broken statistically over a macroscopic region. The time of maintaining the fuel at the critical enthalpy level between solid and liquid is too short to lead to a phase separation. A significant life-time (approximately 1 second) of this intermediate ''unsolide'' state would have consequences on the variation of physical properties linked to the phase transition solid/liquid: viscosity, specific volume and (for the irradiated fuel) fission gas release [fr

  19. Laboratory evaluation of lambda-cyhalothrin a microencapsulated formulation on mosquito nets for control of vector mosquitos.

    Vythilingam, I; Zainal, A R; Hamidah, T

    1999-03-01

    Two formulations of lambda-cyhalothrin (EC-Emulsion concentrate and MC-Microencapsulated) were impregnated into bednets made of polyethylene and polyester. The nets were treated at a dosage of 15 mg/m2. For bioassay of insecticidal efficacy, female Anopheles maculatus and Aedes aegypti were exposed to the nets for two minutes and mortality was scored 24 hours later. The nets were also tested after repeated washings with water and with soap and water. Microencapsulated (2.5CS) formulation was more effective than emulsion concentrate (2.5EC) formulation on both net materials--polyethylene and polyester. Repeated washing with water and soap reduces the efficacy of all bednet treatment combinations. Microencapsulated formulation on polyethylene gave best results; it could sustain up to five washes with water and two with soap and water.

  20. Experiments on melt droplets falling into a water pool

    Okkonen, T.; Sehgal, B.R. [Royal Inst. of Tech., Stockholm (Sweden). Div. of Nuclear Power Safety

    1998-01-01

    This paper presents experimental data and analysis related to melt droplets falling into a water pool. A binary CaO-B{sub 2}O{sub 3} melt mixture is used to study the influence of melt superheat and water subcooling on droplet deformation and fragmentation. For the conditions studied (We {<=} 1000), the surface tension of the melt droplet and the film boiling stability greatly affect the fragmentation behaviour. If the melt temperature is between the liquidus and solidus point (mushy zone) or if the film boiling is stable due to a relatively low subcooling, the droplet deformation and fragmentation are mitigated. This behaviour can be related to the effective Weber number (We) of the melt droplet upon entry into the water pool. Similar phenomena can be expected also for interactions of corium (UO{sub 2}-ZrO{sub 2}) and water, which are characterized by a potentially fast transformation of melt into the mushy zone and by particularly stable film boiling. (author)

  1. Emerging melt quality control solution technologies for aluminium melt

    Arturo Pascual, Jr

    2009-11-01

    Full Text Available The newly developed “MTS 1500” Melt Treatment System is performing the specifi cally required melt treatment operations like degassing, cleaning, modification and/or grain refinement by an automated process in one step and at the same location. This linked process is saving time, energy and metal losses allowing - by automated dosage of the melt treatment agents - the production of a consistent melt quality batch after batch. By linking the MTS Metal Treatment System with sensors operating on-line in the melt, i.e., with a hydrogen sensor “Alspek H”, a fully automated control of parts of the process chain like degassing is possible. This technology does guarantee a pre-specifi ed and documented melt quality in each melt treatment batch. Furthermore, to ensure that castings are consistent and predictable there is a growing realization that critical parameters such as metal cleanliness must be measured prior to casting. There exists accepted methods for measuring the cleanliness of an aluminum melt but these can be both slow and costly. A simple, rapid and meaningful method of measuring and bench marking the cleanliness of an aluminum melt has been developed to offer the foundry a practical method of measuring melt cleanliness. This paper shows the structure and performance of the integrated MTS melt treatment process and documents achieved melt quality standards after degassing, cleaning, modifi cation and grain refi nement operations under real foundry conditions. It also provides an insight on a melt cleanliness measuring device “Alspek MQ” to provide foundry men better tools in meeting the increasing quality and tighter specifi cation demand from the industry.

  2. Effect of microencapsulated fish oil on blood metabolites and rumen fatty acids in Sannan Lactating dairy goat

    Rashid Safari

    2015-01-01

    Full Text Available To estimate the effect of microencapsulated fish oil on blood metabolites, rumen and blood plasma fatty acids concentrations twelve Sannan dairy goats with 30 ± 5 days in milk (DIM were allocated to 3 treatments in a 3×2 change over design with 2 periods of 30 days. Treatments were: 1 the control (without fish oil, 2 microencapsulated fish oil (2% fish oil capsulated in 6% treated whey protein concentrate, 3 fish oil (2% fish oil and 6% whey protein concentrate. Concentration of C18:0 in the rumen for microencapsulated fish oil decreased significantly in comparison with the control. The same manner was observed in goat’s blood plasma for microencapsulated fish oil. Microencapsulated fish oil led to a significant increase in polyunsaturated fatty acids concentration, hence concentration of C18:3, C20:5 EPA, C22:5 DPA and C22:6 DHA as a source of ω3 fatty acids increased 10, 20, 10 and 13 folds in comparison with the control and 10, 20, 2 and 2.5 folds in comparison with the fish oil treatment, respectively. HDL concentration in protected fish oil was significantly higher than that for the control and unprotected fish oil treatments. It seems that fish oil supplementation caused significant changes in blood fatty acids composition of ruminants as well as ω3 fatty acids in their products. Significant increase of ω3 fatty acids in blood plasma of microencapsulated fish oil treatment showed the protective effect of capsulation against rumen microbial biohydrogenation.

  3. Ionic diffusion in superionic-conductor melts

    Tankeshwar, K.; Tosi, M.P.

    1991-03-01

    The self-diffusion coefficients D + and D - of the two ionic species in molten AgI, CuCl, CuBr and CuI are evaluated and contrasted with those calculated for molten NaCl. The evaluation adopts a simple model for liquid state dynamics, earlier proposed by Zwanzig to justify the Stokes-Einstein formula for monatomic fluids, and by suitable approximations relates the self-diffusion coefficients to pair potentials and to the pair structure of the melt. The results offer an interpretation for molecular dynamics data showing that, whereas for a ''normal'' system such as NaCl the ratio D + /D - in the melt is of the order unity, a sizable difference between D + and D - persists in salts melting from a fast-cation conducting solid. This difference is explicitly related to liquid structure through differences in the structural backscattering of cations by cations and of halogens by halogens. The calculated magnitudes of D + /D - are quite satisfactory, while the absolute magnitudes of D + and D - are in good agreement with the data only for those salts (AgI, CuBr and NaCl) in which the masses of the two ionic species are not greatly different. (author). 21 refs, 2 tabs

  4. Microencapsulation of borage oil with blends of milk protein, β-glucan and maltodextrin through spray drying: physicochemical characteristics and stability of the microcapsules.

    Li, Ru-Yi; Shi, Yan

    2018-02-01

    Borage oil is a rich commercial source of γ-linolenic acid (18:3n-6). However, borage oil is rich in omega-6 polyunsaturated fatty acids and vulnerable to oxidation. Thus, selecting appropriate wall materials is critical to the encapsulation of borage oil. The present study investigated the influence of wall materials on the physicochemical characteristics and stability of microencapsulated borage oil by spray drying. Blends of milk protein [sodium caseinate (CAS) or whey protein concentrate], β-glucan (GLU) and maltodextrin (MD) were used as the wall materials for encapsulating borage oil. The microencapsulation of borage oil with different wall materials attained high encapsulation efficiencies. The microencapsulated borage oil prepared with CAS-MD achieved the optimal encapsulation efficiency of 96.62%. The oxidative stabilities of borage oil and microencapsulated borage oil were measured by accelerated storage test at 45 °C and 33% relative humidity for 30 days. The microencapsulated borage oil presented lower peroxide values than those of borage oil, and the microcapsules prepared with CAS-10GLU-MD (consisting of CAS 50 g kg -1 , GLU 100 g kg -1 and MD 475 g kg -1 of microencapsulation) conferred borage oil with high protection against lipid oxidation. The results of the present study demonstrate that the CAS-GLU-MD blend is appropriate for microencapsulating borage oil. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Microencapsulation of rifampicin: A technique to preserve the mechanical properties of bone cement.

    Sanz-Ruiz, Pablo; Carbó-Laso, Esther; Del Real-Romero, Juan Carlos; Arán-Ais, Francisca; Ballesteros-Iglesias, Yolanda; Paz-Jiménez, Eva; Sánchez-Navarro, Magdalena; Pérez-Limiñana, María Ángeles; Vaquero-Martín, Javier

    2018-01-01

    Two-stage exchange with antibiotic-loaded bone cement spacers remains the gold standard for chronic periprosthetic joint infection (PJI). Rifampicin is highly efficient on stationary-phase staphylococci in biofilm; however, its addition to PMMA to manufacture spacers prevents polymerization and reduces mechanical properties. Isolation of rifampicin during polymerization by microencapsulation could allow manufacturing rifampicin-loaded bone cement maintaining elution and mechanical properties. Microcapsules of rifampicin with alginate, polyhydroxybutyratehydroxyvalerate (PHBV), ethylcellulose and stearic acid (SA) were synthesized. Alginate and PHBV microcapsules were added to bone cement and elution, compression, bending, hardness, setting time and microbiological tests were performed. Repeated measures ANOVA and Bonferroni post-hoc test were performed, considering a p cement specimens containing alginate microcapsules eluted more rifampicin than PHBV microcapsules or non-encapsulated rifampicin over time (p Cement with alginate microcapsules showed similar behavior in hardness tests to control cement over the study period (73 ± 1.68H D ). PMMA with alginate microcapsules exhibited the largest zones of inhibition in microbiological tests. Statistically significant differences in mean diameters of zones of inhibition between PMMA loaded with alginate-rifampicin (p = 0.0001) and alginate-PHBV microcapsules (p = 0.0001) were detected. Rifampicin microencapsulation with alginate is the best choice to introduce rifampicin in PMMA preserving mechanical properties, setting time, elution, and antimicrobial properties. The main applicability of this study is the opportunity for obtaining rifampicin-loaded PMMA by microencapsulation of rifampicin in alginate microparticles, achieving high doses of rifampicin in infected tissues, increasing the successful of PJI treatment. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res

  6. Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage

    Tang, Xiaofen; Li, Wei; Zhang, Xingxiang; Shi, Haifeng

    2014-01-01

    Microencapsulated phase change material with a low supercooling degree is one of the increasing important researches as well as industrial application for thermal energy storage. This study develops a novel and low supercooling microencapsulated n-octadecane (MicroC18) with n-octadecyl methacrylate (ODMA)–methacrylic acid (MAA) copolymer as shell using suspension-like polymerization. The fabrication and properties of MicroC18 were characterized by using a field-emission scanning electron microscope (FE-SEM), Fourier transformed infrared spectroscopy (FTIR), particle size distribution analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The MicroC18 with spherical shapes and an average diameter of 1.60–1.68 μm are fabricated. The onset crystallizing temperatures of MicroC18 are only 4 °C below that of n-octadecane. The unique copolymer shell has a significant impact on the low supercooling of MicroC18. The n-octadecane in all of the samples crystalizes by heterogeneous nucleation. The content of n-octadecane in the microcapsules is low; however, the microcapsules still exhibit high enthalpy through the contribution of the shells. At a monomers/n-octadecane mass ratio is 2:1, as used in the recipes, the MicroC18 with highest phase change enthalpy was obtained. The temperature of thermal resistant of MicroC18 is approximately 235.6 °C, which is affected by the thickness of the polymer shell. - Highlights: • Microencapsulated n-octadecane with comb-like copolymer shell has low supercooling. • The unique shell plays a significant role in suppressing supercooling. • The types of cross-linker affect morphologies and heat enthalpies of microcapsules. • Microcapsules exhibit high phase change enthalpies and thermal stabilities

  7. Evaluation of Eudragit® Retard Polymers for the Microencapsulation of Alpha-Lipoic Acid.

    Pecora, Tiziana M G; Musumeci, Teresa; Musumeci, Lucrezia; Fresta, Massimo; Pignatello, Rosario

    2016-01-01

    Microencapsulation of natural antioxidants in polymeric systems represents a possible strategy for improving the oral bioavailability of compounds that are otherwise poorly soluble. α-lipoic acid (ALA) was microencapsulated with polymethacrylate polymers (blends at various ratios of Eudragit® RS100 and RL100 resins). Microspheres were produced by solvent displacement of an ethanol cosolution of ALA and polymers; the microsuspensions were then freeze-dried, using trehalose as a cryoprotector. Microspheres were characterized in the solid state for micromeritic properties and drug loading, as well as by infrared spectroscopy, powder X-ray diffractometry and differential scanning calorimetry. The antioxidant activity of free and encapsulated ALA was assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In vitro release studies, performed in simulated gastric (pH 1.2) and intestinal fluid (pH 6.8), showed that, depending on polymer composition and drug-to-polymer ratio, ALA release can be slowed down, compared to the dissolution pattern of the free drug. Solid-state characterization confirmed the chemical stability of ALA in the microspheres, suggesting that ALA did not develop strong interactions with the polymer and was present in an amorphous or a disordered-crystalline state within the polymer network. As indicated by the DPPH assay, the microencapsulation of ALA in Eudragit® Retard matrices did not alter its antioxidant activity. ALA was effectively encapsulated in Eudragit® Retard matrices, showing a chemical stability up to 6 months at room conditions and at 40°C. Moreover, since the drug maintained its antioxidant activity in vitro, the potential application of these microparticulate systems for oral administration would deserve further studies.

  8. Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum.

    Rosas-Flores, Walfred; Ramos-Ramírez, Emma Gloria; Salazar-Montoya, Juan Alfredo

    2013-10-15

    Sodium alginate (SA) at 2% (w/v) and low acylated gellan gum (LAG) at 0.2% (w/v) were used to microencapsulate Lactobacillus helveticus and Lactobacillus delbrueckii spp lactis by employing the internal ionic gelation technique through water-oil emulsions at three different stirring rates: 480, 800 and 1200 rpm. The flow behavior of the biopolymer dispersions, the activation energy of the emulsion, the microencapsulation efficiency, the size distribution, the microcapsules morphology and the effect of the stirring rate on the culture viability were analyzed. All of the dispersions exhibited a non-Newtonian shear-thinning flow behavior because the apparent viscosity decreased in value when the shear rate was increased. The activation energy was calculated using the Arrhenius-like equation; the value obtained for the emulsion was 32.59 kJ/mol. It was observed that at 400 rpm, the microencapsulation efficiency was 92.83%, whereas at 800 and 1200 rpm, the stirring rates reduced the efficiency to 15.83% and 4.56%, respectively, evidencing the sensitivity of the microorganisms to the shear rate (13.36 and 20.05 s(-1)). Both optical and scanning electron microscopy (SEM) showed spherical microcapsules with irregular topography due to the presence of holes on its surface. The obtained size distribution range was modified when the stirring rate was increased. At 400 rpm, bimodal behavior was observed in the range of 20-420 μm; at 800 and 1200 rpm, the behavior became unimodal and the range was from 20 to 200 μm and 20 to 160 μm, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying.

    Gansau, Jennifer; Kelly, Lara; Buckley, Conor

    2018-06-11

    Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x106 cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be used in a

  10. Pickering emulsion: A novel template for microencapsulated phase change materials with polymer–silica hybrid shell

    Yin, Dezhong; Ma, Li; Liu, Jinjie; Zhang, Qiuyu

    2014-01-01

    MePCMs (microencapsulated phase change materials) with covalently bonded SiO 2 /polymer hybrid as shell were fabricated via Pickering emulsion polymerization stabilized solely by organically-modified SiO 2 particles. Morphology and core–shell structure of these microcapsules were observed by scanning electron microscopy (SEM). Thermal properties of microencapsulated 1-dodecanol were determined using DSC (differential scanning calorimetry) and TGA (thermal gravimetric analysis). The results indicate that mass ratio of St (styrene)/DVB (divinylbenzene)/dodecanol has great effect on the morphology, inner structure, microencapsulation efficiency and durability of resultant MePCMs. When ratio of St/DVB/dodecanol was 5/1/12, dodecanol content of as much as 62.8% is obtained and the utility efficiency of dodecanol reaches 94.2%. The prepared MePCMs present good durability and thermal reliability. 2.2% of core material leached away the microcapsule after suspended in water for 10 days and 5.8% of core material leached after 2000 accelerated thermal cycling. Our study demonstrated that Pickering emulsion polymerization is a simple and robust method for the preparation of MePCMs with polymer–inorganic hybrids as shell. - Highlights: • We fabricated MePCM via surfactant-free Pickering emulsion polymerization. • The shell of MePCM was composed of PS/SiO 2 organic–inorganic hybrids. • The phase change enthalpy of MePCM is 125.0 J g −1 and the utility efficiency of 1-dodecanol reached 94.2%. • Only 2.2% and 5.8% of core material lost after durability test and 2000 accelerated thermal cycling respectively

  11. Microencapsulation of butyl stearate with melamine-formaldehyde resin: Effect of decreasing the pH value on the composition and thermal stability of microcapsules

    M. Krajnc

    2012-10-01

    Full Text Available The object of this study was to investigate how different decreasing of pH regimes during microencapsulation process with melamine-formaldehyde (MF resin affects the composition, morphology and thermal stability of microcapsules containing a phase-change material (PCM. Technical butyl stearate was used as PCM. Microencapsulation was carried out at 70°C. For all experiments the starting pH value was 6.0. After one hour of microencapsulation at the starting pH value, the pH value was lowered to final pH value (5.5; 5.0; 4.5 in a stepwise or linear way. The properties of microcapsules were monitored during and after the microencapsulation process. The results showed that pH value decreasing regime was critical for the morphology and stability of microcapsules. During microencapsulations with a stepwise decrease of pH value we observed faster increase of the amount of MF resin in the microencapsulation product compared to the microencapsulations with a linear pH value decrease. However, faster deposition in the case of microencapsulations with stepwise decrease of pH value did not result in thicker MF shells. The shell thickness increased much faster when the pH value was decreased in a linear way or in several smaller steps. It was shown that for the best thermal stability of microcapsules, the pH value during microencapsulation had to be lowered in a linear way or in smaller steps to 5.0 or lower.

  12. Method of melting solid waste

    Ootsuka, Katsuyuki; Mizuno, Ryokichi; Kuwana, Katsumi; Sawada, Yoshihisa; Komatsu, Fumiaki.

    1982-01-01

    Purpose: To enable the volume reduction treatment of a HEPA filter containing various solid wastes, particularly acid digestion residue, or an asbestos separator at a relatively low temperature range. Method: Solid waste to be heated and molten is high melting point material treated by ''acid digestion treatment'' for treating solid waste, e.g. a HEPA filter or polyvinyl chloride, etc. of an atomic power facility treated with nitric acid or the like. When this material is heated and molten by an electric furnace, microwave melting furnace, etc., boron oxide, sodium boride, sodium carbonate, etc. is added as a melting point lowering agent. When it is molten in this state, its melting point is lowered, and it becomes remarkably fluid, and the melting treatment is facilitated. Solidified material thus obtained through the melting step has excellent denseness and further large volume reduction rate of the solidified material. (Yoshihara, H.)

  13. Enhanced heat transport in environmental systems using microencapsulated phase change materials

    Colvin, D. P.; Mulligan, J. C.; Bryant, Y. G.

    1992-01-01

    A methodology for enhanced heat transport and storage that uses a new two-component fluid mixture consisting of a microencapsulated phase change material (microPCM) for enhanced latent heat transport is outlined. SBIR investigations for NASA, USAF, SDIO, and NSF since 1983 have demonstrated the ability of the two-component microPCM coolants to provide enhancements in heat transport up to 40 times over that of the carrier fluid alone, enhancements of 50 to 100 percent in the heat transfer coefficient, practically isothermal operation when the coolant flow is circulated in an optimal manner, and significant reductions in pump work.

  14. [Mouthwash solutions with microencapsuled natural extracts: Efficiency for dental plaque and gingivitis].

    Vervelle, A; Mouhyi, J; Del Corso, M; Hippolyte, M-P; Sammartino, G; Dohan Ehrenfest, D M

    2010-06-01

    Mouthwash solutions are mainly used for their antiseptic properties. They currently include synthetic agents (chlorhexidine, triclosan, etc.) or essential oils (especially Listerine). Many natural extracts may also be used. These associate both antiseptic effects and direct action on host response, due to their antioxidant, immunoregulatory, analgesic, buffering, or healing properties. The best known are avocado oil, manuka oil, propolis oil, grapefruit seed extract, pycnogenol, aloe vera, Q10 coenzyme, green tea, and megamin. The development of new technologies, such as microencapsulation (GingiNat concept), may allow an in situ slow release of active ingredients during several hours, and open new perspectives for mouthwash solutions. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  15. Micro-Encapsulation of non-aqueous solvents for energy-efficient carbon capture

    Stolaroff, Joshua K; Ye, Congwang; Oakdale, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baker, Sarah; Nugyen, Du; Smith, William; Aines, Roger

    2016-11-14

    Here, we demonstrate micro-encapsulation of several promising designer solvents: an IL, PCIL, and CO2BOL. We develop custom polymers that cure by UV light in the presence of each solvent while maintaining high CO2 permeability. We use several new process strategies to accommodate the viscosity and phase changes. We then measure and compare the CO2 absorption rate and capacity as well as the multi-cycle performance of the encapsulated solvents. These results are compared with previous work on encapsulated sodium carbonate solution. The prospects for designer solvents to reduce the cost of post-combustion capture and the implications for process design with encapsulated solvents are discussed.

  16. Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol

    Mooranian A

    2014-09-01

    Full Text Available Armin Mooranian,1 Rebecca Negrulj,1 Nigel Chen-Tan,2 Hesham S Al-Sallami,3 Zhongxiang Fang,4 TK Mukkur,5 Momir Mikov,6,7 Svetlana Golocorbin-Kon,6,7 Marc Fakhoury,8 Gerald F Watts,9 Vance Matthews,10 Frank Arfuso,5 Hani Al-Salami1 1Biotechnology and Drug Development Research Laboratory School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia; 2Faculty of Science and Engineering, Curtin University, Perth, Western Australia, Australia; 3School of Pharmacy, University of Otago, Dunedin, New Zealand; 4School of Public Health, Curtin University, Perth, Western Australia, Australia; 5Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Science, Curtin University, Perth, Western Australia, Australia; 6Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Serbia; 7Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Serbia; 8Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; 9School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia; 10Laboratory for Metabolic Dysfunction, UWA Centre for Medical Research, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia Introduction: In previous studies, we successfully designed complex multicompartmental microcapsules as a platform for the oral targeted delivery of lipophilic drugs in type 2 diabetes (T2D. Probucol (PB is an antihyperlipidemic and antioxidant drug with the potential to show benefits in T2D. We aimed to create a novel microencapsulated formulation of PB and to examine the shape, size, and chemical, thermal, and rheological properties of these microcapsules in vitro. Method: Microencapsulation was carried out using the Büchi-based microencapsulating system developed in our laboratory. Using the polymer, sodium

  17. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  18. Logistics Reduction: Heat Melt Compactor

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Logistics Reduction (LR) project Heat Melt Compactor (HMC) technology is a waste management technology. Currently, there are...

  19. Melting in trivalent metal chlorides

    Saboungi, M.L.; Price, D.L.; Scamehorn, C.; Tosi, M.P.

    1990-11-01

    We report a neutron diffraction study of the liquid structure of YCl 3 and combine the structural data with macroscopic melting and transport data to contrast the behaviour of this molten salt with those of SrCl 2 , ZnCl 2 and AlCl 3 as prototypes of different melting mechanisms for ionic materials. A novel melting mechanism for trivalent metal chlorides, leading to a loose disordered network of edge-sharing octahedral units in the liquid phase, is thereby established. The various melting behaviours are related to bonding character with the help of Pettifor's phenomenological chemical scale. (author). 25 refs, 4 figs, 3 tabs

  20. Melting of contaminated metallic waste

    Lee, Y.-S.; Cheng, S.-Y.; Kung, H.-T.; Lin, L.-F.

    2004-01-01

    Approximately 100 tons of contaminated metallic wastes were produced each year due to maintenance for each TPC's nuclear power reactor and it was roughly estimated that there will be 10,000 tons of metallic scraps resulted from decommissioning of each reactor in the future. One means of handling the contaminated metal is to melt it. Melting process owns not only volume reduction which saves the high cost of final disposal but also resource conservation and recycling benefits. Melting contaminated copper and aluminum scraps in the laboratory scale have been conducted at INER. A total of 546 kg copper condenser tubes with a specific activity of about 2.7 Bq/g was melted in a vacuum induction melting facility. Three types of products, ingot, slag and dust were derived from the melting process, with average activities of 0.10 Bq/g, 2.33 Bq/g and 84.3 Bq/g respectively. After the laboratory melting stage, a pilot plant with a 500 kg induction furnace is being designed to melt the increasingly produced contaminated metallic scraps from nuclear facilities and to investigate the behavior of different radionuclides during melting. (author)

  1. Fast wall of thermonuclear device

    Kitamura, Kazunori.

    1990-01-01

    A protruding molten metal reservoir is disposed to a sealing vessel embedded in the armour tile of fast walls, and molten metal of low melting point such as tin, lead or alloy thereof is filled in the sealing vessel. The volume of the molten metal reservoir is determined such that the surface level of the molten metal is kept within the molten metal reservoir even when the sealed low melting point metal is solidified at room temperature. When the temperature is lowered during plasma interruption period and the sealed low melting molten metal is solidified to reduce the volume, most of the molten metal reservoir regioin constitutes a vacuum gap. However, the inner wall of the sealing vessel other than the molten metal reservior region can be kept into contact with the sealed metal. Accordingly, the temperature and the sublimation loss of the armour tile can be kept low even upon plasma heat application. (I.N.)

  2. Melting method for miscellaneous radioactive solid waste and melting furnace

    Osaki, Toru; Furukawa, Hirofumi; Uda, Nobuyoshi; Katsurai, Kiyomichi

    1998-01-01

    A vessel containing miscellaneous solid wastes is inserted in a crucible having a releasable material on the inner surface, they are induction-heated from the outside of the crucible by way of low temperature heating coils to melt low melting point materials in the miscellaneous wastes within a temperature range at which the vessel does not melt. Then, they are induction-heated by way of high temperature heating coils to melt the vessel and not yet melted materials, those molten materials are cooled, solidified molten material and the releasable material are taken out, and then the crucible is used again. Then, the crucible can be used again, so that it can be applied to a large scaled melting furnace which treats wastes by a unit of drum. In addition, since the cleaning of the used crucible and the application of the releasable material can be conducted without interrupting the operation of the melting furnace, the operation cycle of the melting furnace can be shortened. (N.H.)

  3. Waste glass melting stages

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  4. Waste glass melting stages

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  5. Heat Storage Performance of the Prefabricated Hollow Core Concrete Deck Element with Integrated Microencapsulated Phase Change Material

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    The paper presents the numerically calculated dynamic heat storage capacity of the prefabricated hollow core concrete deck element with and without microencapsulated phase change material (PCM). The reference deck is the ordinary deck made of standard concrete material and that is broadly used...

  6. Pheromone-based disruption of Eucosma sonomana and Rhyacionia zozana (Lepidoptera: Tortricidae) using aerially applied microencapsulated pheromone

    Nancy E. Gillette; John D. Stein; Donald R. Owen; Jeffrey N. Webster; Sylvia R. Mori

    2006-01-01

    Two aerial applications of microencapsulated pheromone were conducted on five 20.2 ha plots to disrupt western pine shoot borer (Eucosma sonomana Kearfott) and ponderosa pine tip moth (Rhyacionia zowna (Kearfott): Lepidoptera: Tortricidae) orientation to pheromones and oviposition in ponderosa pine plantations in 2002 and 2004...

  7. Effects of micro-encapsulation on morphology and endocrine function of cryopreserved neonatal porcine islet-like cell clusters.

    Murakami, M; Satou, H; Kimura, T; Kobayashi, T; Yamaguchi, A; Nakagawara, G; Iwata, H

    2000-10-27

    For the success of clinical islets transplantation, the development of a long-term storage method is necessary. However, the structure of digested islets is scanty for culture and cryopreservation. In this study, the effect of micro-encapsulation to cryopreserved porcine islet-like cell clusters (ICCs) was investigated. The ICCs prepared from neonatal pigs by collagenase digestion and culture technique were cryopreserved and micro-encapsulated in 5% agarose membranes. After cryopreservation, ICC cultured without encapsulation (group A) and cultured with encapsulation (group B) were assessed by comparison with no cryopreserved ICC (control) both in vitro by static incubation test and in vivo in a xenotransplantation study. Micro-encapsulation was able to maintain the fine morphology and the number of ICCs of group B after 7 days of culture. There were not significant differences in insulin secretion of group B and control on day 1 and 7 of culture (1 day:11+/-0.99, 7 days: 5.30+/-1.08 microU/ICC/hr NS versus control). On day 7 of culture, the retrieval rate of group B (105.2+/-9.8%) is obviously higher compared with group A (63.0+/-6.3%). In the xenotransplatation model, the ICCs of group B showed long survival time (7.9+/-0.4 weeks) and good transplantation effect. Our study suggests that micro-encapsulation is one of the useful method for cryopreserved ICC to maintain the fine morphology and effectively recover the endocrine function.

  8. Microencapsulated conjugated linoleic acid associated with hypocaloric diet reduces body fat in sedentary women with metabolic syndrome.

    Carvalho, Roberta F; Uehara, Sofia K; Rosa, Glorimar

    2012-01-01

    Animal studies have suggested beneficial effects of conjugated linoleic acid (CLA) in reducing body fat mass and improvement in the serum lipid profile and glycemia. However, these effects are controversial in humans. The purpose of this study was to investigate the effects of microencapsulated CLA supplementation on body composition, body mass index, waist circumference, and blood pressure in sedentary women with metabolic syndrome. This study was a placebo-controlled and randomized clinical trial. Fourteen women diagnosed with metabolic syndrome received light strawberry jam enriched or not with microencapsulated CLA (3 g/day) as a mixture of 38.57% cis-9, trans-11, and 39.76% trans-10, cis-12 CLA isomers associated with a hypocaloric diet for 90 days. The subjects were monitored to assess variables associated with the metabolic syndrome, in addition to assessing adherence with the intervention. There were no significant effects of microencapsulated CLA on the lipid profile or blood pressure. Mean plasma insulin concentrations were significantly lower in women supplemented with microencapsulated CLA (Δ T₉₀ - T₀ = -12.87 ± 4.26 μU/mL, P = 0.02). Microencapsulated CLA supplementation did not alter the waist circumference, but there was a reduction in body fat mass detected after 30 days (Δ = -2.68% ± 0.82%, P = 0.02), which was maintained until the 90-day intervention period (Δ = -3.32% ± 1.41%, P = 0.02) in the microencapsulated CLA group. The placebo group showed this effect only after 90 days (Δ = -1.97% ± 0.60%, P = 0.02), but had a reduced waist circumference (Δ T₉₀ - T₀ = -4.25 ± 1.31 cm, P = 0.03). Supplementation with mixed-isomer microencapsulated CLA may have a favorable effect on glycemic control and body fat mass loss at an earlier time in sedentary women with metabolic syndrome, although there were no effects on lipid profile and blood pressure.

  9. Microencapsulated conjugated linoleic acid associated with hypocaloric diet reduces body fat in sedentary women with metabolic syndrome

    Carvalho RF

    2012-12-01

    Full Text Available Roberta F Carvalho,1 Sofia K Uehara,2 Glorimar Rosa1,21Medicine Department, Federal University of Rio de Janeiro, Brazil; 2Nutrition and Dietetic Department, Josué de Castro Institute of Nutrition, Federal University of Rio de Janeiro, BrazilBackground: Animal studies have suggested beneficial effects of conjugated linoleic acid (CLA in reducing body fat mass and improvement in the serum lipid profile and glycemia. However, these effects are controversial in humans. The purpose of this study was to investigate the effects of microencapsulated CLA supplementation on body composition, body mass index, waist circumference, and blood pressure in sedentary women with metabolic syndrome.Methods: This study was a placebo-controlled and randomized clinical trial. Fourteen women diagnosed with metabolic syndrome received light strawberry jam enriched or not with microencapsulated CLA (3 g/day as a mixture of 38.57% cis-9, trans-11, and 39.76% trans-10, cis-12 CLA isomers associated with a hypocaloric diet for 90 days. The subjects were monitored to assess variables associated with the metabolic syndrome, in addition to assessing adherence with the intervention.Results: There were no significant effects of microencapsulated CLA on the lipid profile or blood pressure. Mean plasma insulin concentrations were significantly lower in women supplemented with microencapsulated CLA (Δ T90 – T0 = −12.87 ± 4.26 µU/mL, P = 0.02. Microencapsulated CLA supplementation did not alter the waist circumference, but there was a reduction in body fat mass detected after 30 days (Δ = −2.68% ± 0.82%, P = 0.02, which was maintained until the 90-day intervention period (Δ = −3.32% ± 1.41%, P = 0.02 in the microencapsulated CLA group. The placebo group showed this effect only after 90 days (Δ = −1.97% ± 0.60%, P = 0.02, but had a reduced waist circumference (Δ T90 – T0 = −4.25 ± 1.31 cm, P = 0.03.Conclusion: Supplementation with mixed

  10. Microencapsulated conjugated linoleic acid associated with hypocaloric diet reduces body fat in sedentary women with metabolic syndrome

    Carvalho, Roberta F; Uehara, Sofia K; Rosa, Glorimar

    2012-01-01

    Background Animal studies have suggested beneficial effects of conjugated linoleic acid (CLA) in reducing body fat mass and improvement in the serum lipid profile and glycemia. However, these effects are controversial in humans. The purpose of this study was to investigate the effects of microencapsulated CLA supplementation on body composition, body mass index, waist circumference, and blood pressure in sedentary women with metabolic syndrome. Methods This study was a placebo-controlled and randomized clinical trial. Fourteen women diagnosed with metabolic syndrome received light strawberry jam enriched or not with microencapsulated CLA (3 g/day) as a mixture of 38.57% cis-9, trans-11, and 39.76% trans-10, cis-12 CLA isomers associated with a hypocaloric diet for 90 days. The subjects were monitored to assess variables associated with the metabolic syndrome, in addition to assessing adherence with the intervention. Results There were no significant effects of microencapsulated CLA on the lipid profile or blood pressure. Mean plasma insulin concentrations were significantly lower in women supplemented with microencapsulated CLA (Δ T90 – T0 = −12.87 ± 4.26 μU/mL, P = 0.02). Microencapsulated CLA supplementation did not alter the waist circumference, but there was a reduction in body fat mass detected after 30 days (Δ = −2.68% ± 0.82%, P = 0.02), which was maintained until the 90-day intervention period (Δ = −3.32% ± 1.41%, P = 0.02) in the microencapsulated CLA group. The placebo group showed this effect only after 90 days (Δ = −1.97% ± 0.60%, P = 0.02), but had a reduced waist circumference (Δ T90 – T0 = −4.25 ± 1.31 cm, P = 0.03). Conclusion Supplementation with mixed-isomer microencapsulated CLA may have a favorable effect on glycemic control and body fat mass loss at an earlier time in sedentary women with metabolic syndrome, although there were no effects on lipid profile and blood pressure. PMID:23271912

  11. Microencapsulate Aspergillus niger peptidases from agroindustrial waste wheat bran: spray process evaluation and stability.

    Cabral, T P F; Bellini, N C; Assis, K R; Teixeira, C C C; Lanchote, A D; Cabral, H; Freitas, L A P

    2017-09-01

    The aim of this work was to obtain microencapsulated stable Aspergillus niger peptidases by post fermentation spray drying. The enzymatic extract was evaluated before and after spray drying microencapsulation to verify the effects of five different process parameters on the extract enzymatic activity, i.e. air flow, extract feed rate, drying temperature, homogenising time and weight ratio of extract to encapsulation material. The optimal conditions were determined by desirability functions and experimentally confirmed. Additionally, the stability of the microparticles was assessed during 60 days at 4 °C, 25 °C and 40 °C. The results revealed that the microparticles stored at 4 °C retained approximately 100% of their proteolytic activity at nine days of storage. Considering the industrial adaptation of the bioprocess and the prospect of commercial application of the proteases, the evaluation of different parameters for drying enzymes is required as a valuable alternative to obtain biotechnological products with high added value.

  12. Enhancing stability of essential oils by microencapsulation for preservation of button mushroom during postharvest

    Alikhani-Koupaei, Majid; Mazlumzadeh, Meisam; Sharifani, Mohamadmehdi; Adibian, Mohamad

    2014-01-01

    Fresh button mushrooms (Agaricus bisporus L.) are sensitive to browning, water loss, and microbial attack. The short shelf-life of mushrooms is an impediment to the distribution and marketing of the fresh product. Essential oils outstand as an alternative to chemical preservatives and their use in foods meets the demands of consumers for natural products. To resolve controlled release of oil and increase in antioxidant and antimicrobial activities, the oil was incorporated into microcapsules. Effects of microcapsulated thyme (Thymus vulgaris L.) and rosemary (Rosmarinus officinalis L.) on quality of fresh button mushroom were compared. Physicochemical qualities were evaluated during 15 days of storage at 4 ± 0.5°C. All treatments prevented product weight loss and decrease in polyphenoloxidase and peroxidase activities during storage. Color and firmness, microbiological analysis, and total phenolic content caused the least change. With use of microencapsulated oils, mushrooms were within acceptable limits during 10 days of storage. Microencapsulated rosemary oil produced the highest beneficial effects and has potential to improve quality of button mushrooms and extend shelf-life. PMID:25473510

  13. MICROENCAPSULATION OF TURMERIC OLEORESIN IN BINARY AND TERNARY BLENDS OF GUM ARABIC, MALTODEXTRIN AND MODIFIED STARCH

    Diana Maria Cano-Higuita

    2015-04-01

    Full Text Available Spray-drying is a suitable method to obtain microencapsulated active substances in the powdered form, resulting in powders with improved protection against environmental factors as well as with higher solubility in water, as in the case of turmeric oleoresin. The present study investigated the spray-drying process of turmeric oleoresin microencapsulated with binary and ternary mixtures of different wall materials: gum Arabic, maltodextrin, and modified corn starch. A statistical simplex centroid experimental design was used considering the encapsulation efficiency, curcumin retention, process yield, water content, solubility, and particle morphology as the analyzed responses. Wall matrices containing higher proportions of modified starch and gum Arabic resulted in higher encapsulation efficiency and curcumin retention, whereas the process yield and water content increased with higher proportions of maltodextrin and gum Arabic, respectively. Regression models of the responses were obtained using a surface response method (ANOVA way, showing statistical values of R2 > 0.790. Also, mean analysis was carried out by Tukey's test, permitting to observe some statistical differences between the blends

  14. Microencapsulation of Saccharomyces cerevisiae and its evaluation to protect in simulated gastric conditions.

    Ghorbani-Choboghlo, Hassan; Zahraei-Salehi, Taghi; Ashrafi-Helan, Javad; Yahyaraeyat, Ramak; Pourjafar, Hadi; Nikaein, Donya; Balal, Asad; Khosravi, Ali-Reza

    2015-12-01

    Probiotic yeasts are used in production of functional foods and pharmaceutical products. They play an important role in promoting and maintaining human health. Until now, little work has been published on improving the survival of Saccharomyces in stimulated gastrointestinal condition. In this study the exposure of the yeast in the capsulate and free forms to artificial gastrointestinal conditions was assessed and the number of viable Saccharomyces cerevisiae cells during 0 to 120 mines in these conditions was evaluated by a pour plate method using sabouraud dextrose agar. Results showed the shape of the beads was generally spherical, sometimes elliptical with a mean diameter of about 50-90 μm. Also count of viable probiotic cells obtained for all the microcapsules were above the recommended levels for a probiotic food. Also decrease of approximately 4 logs was noted in the number of free cells after 2 h of incubation at pH 2 and 8, when compared to decreases of about 2 logs in the all microencapsulated S. cerevisiae under similar conditions. It is concluded that microencapsulation process was significantly able to increase the survival rate of Saccharomyces in a simulated gastrointestinal condition (p<0.05)..

  15. Microencapsulation of ethanol extract propolis by maltodextrin and freeze-dried preparation

    Mangiring, Getta Austin; Pratami, Diah Kartika; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin; Sahlan, Muhamad

    2018-02-01

    Propolis has been known to have many benefits for human health, such as anti-cancer, anti-tumor, anti-oxidant, anti-bacterial, and anti-inflammatory. Currently in Indonesia there are quite a lot of propolis-based products, such as soap, toothpaste, skin cream, or health products in liquid form. However, there is still no propolis product in powder form. In this research, microencapsulation of propolis using maltodextrin coating with freeze drying method will be done. Propolis powder has been tested for polyphenols and it was found that crude propolis (175 ml : 75 gr) had the highest polyphenols content in powder form, 434,438 µg /mL. Soft propolis (125 ml : 125 gr) has 4.533% of moisture content, which was the lowest result in these study. And also, the soft propolis (125 ml : 125 gr) has the highest solubility in water with 69% as the result. Propolis powder that has the highest solubility can be seen morphology using Scanning Electron Mocroscope (SEM). The result of the SEM test showed that the propolised powder form did not alter the morphology of maltodextrin. This indicates the success of microencapsulation, because the form of the coating agent maltodextrin was also not uniform.

  16. Phytoextraction of Pb and Cu contaminated soil with maize and microencapsulated EDTA.

    Xie, Zhiyi; Wu, Longhua; Chen, Nengchang; Liu, Chengshuai; Zheng, Yuji; Xu, Shengguang; Li, Fangbai; Xu, Yanling

    2012-09-01

    Chelate-assisted phytoextraction using agricultural crops has been widely investigated as a remediation technique for soils contaminated with low mobility potentially toxic elements. Here, we report the use of a controlled-release microencapsulated EDTA (Cap-EDTA) by emulsion solvent evaporation to phytoremediate soil contaminated with Pb and Cu. Incubation experiments were carried out to assess the effect of Cap- and non-microencapsulated EDTA (Ncap-EDTA) on the mobility of soil metals. Results showed EDTA effectively increased the mobility of Pb and Cu in the soil solution and Cap-EDTA application provided lower and more constant water-soluble concentrations of Pb and Cu in comparison with. Phytotoxicity may be alleviated and plant uptake of Pb and Cu may be increased after the incorporation of Cap-EDTA. In addition phytoextraction efficiencies of maize after Cap- and Ncap-EDTA application were tested in a pot experiment. Maize shoot concentrations of Pb and Cu were lower with Cap-EDTA application than with Ncap-EDTA. However, shoot dry weight was significantly higher with Cap-EDTA application. Consequently, the Pb and Cu phytoextraction potential of maize significantly increased with Cap-EDTA application compared with the control and Ncap-EDTA application.

  17. Spray-drying microencapsulation of synergistic antioxidant mushroom extracts and their use as functional food ingredients.

    Ribeiro, Andreia; Ruphuy, Gabriela; Lopes, José Carlos; Dias, Madalena Maria; Barros, Lillian; Barreiro, Filomena; Ferreira, Isabel C F R

    2015-12-01

    In this work, hydroalcoholic extracts of two mushrooms species, Suillus luteus (L.: Fries) (Sl) and Coprinopsis atramentaria (Bull.) (Ca), were studied for their synergistic antioxidant effect and their viability as functional food ingredients tested by incorporation into a food matrix (cottage cheese). In a first step, the individual extracts and a combination of both, showing synergistic effects (Sl:Ca, 1:1), were microencapsulated by spray-drying using maltodextrin as the encapsulating material. The incorporation of free extracts resulted in products with a higher initial antioxidant activity (t0) but declining after 7 days (t7), which was associated with their degradation. However, the cottage cheese enriched with the microencapsulated extracts, that have revealed a lower activity at the initial time, showed an increase at t7. This improvement can be explained by an effective protection provided by the microspheres together with a sustained release. Analyses performed on the studied cottage cheese samples showed the maintenance of the nutritional properties and no colour modifications were noticed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Insect-resistant food packaging film development using cinnamon oil and microencapsulation technologies.

    Kim, In-Hah; Han, Jaejoon; Na, Ja Hyun; Chang, Pahn-Sik; Chung, Myung Sub; Park, Ki Hwan; Min, Sea C

    2013-02-01

    Insect-resistant films containing a microencapsulated insect-repelling agent were developed to protect food products from the Indian meal moth (Plodia interpunctella). Cinnamon oil (CO), an insect repelling agent, was encapsulated with gum arabic, whey protein isolate (WPI)/maltodextrin (MD), or poly(vinyl alcohol) (PVA). A low-density polyethylene (LDPE) film was coated with an ink or a polypropylene (PP) solution that incorporated the microcapsules. The encapsulation efficiency values obtained with gum arabic, WPI/MD, and PVA were 90.4%, 94.6%, and 80.7%, respectively. The films containing a microcapsule emulsion of PVA and CO or incorporating a microcapsule powder of WPI/MD and CO were the most effective (P packaging for food products. The insect-repelling effect of cinnamon oil incorporated into LDPE films was more effective with microencapsulation. The system developed in this research with LDPE film may also be extended to other food-packaging films where the same coating platform can be used. This platform is interchangeable and easy to use for the delivery of insect-repelling agents. The films can protect a wide variety of food products from invasion by the Indian meal moth. © 2013 Institute of Food Technologists®

  19. Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties

    Regiane Victória de Barros Fernandes

    2013-02-01

    Full Text Available Spray drying is an important method used by the food industry in the production of microencapsulated flavors to improve handling and dispersion properties. The objective of this study was to evaluate the influence of the process conditions on the properties of rosemary essential oil microencapsulated by spray drying using gum Arabic as encapsulant. The effects of the wall material concentration (10-30%, inlet air temperature (135-195 ºC, and feed flow rate (0.5-1.0 L.h-1 on the moisture content, hygroscopicity, wettability, solubility, bulk and tapped densities, particle density, flowability, and cohesiveness were evaluated using a 2³ central composite rotational experimental design. Moisture content, hygroscopicity and wettability were significantly affected by the three factors analyzed. Bulk density was positively influenced by the wall material concentration and negatively by the inlet air temperature. Particle density was influenced by the wall material concentration and the inlet air temperature variables, both in a negative manner. As for the solubility, tapped density, flowability, and cohesiveness, the models did not fit the data well. The results indicated that moderate wall material concentration (24%, low inlet air temperature (135 ºC, and moderate feed flow rate (0.7 L.h-1 are the best spray drying conditions.

  20. Alginate Microencapsulation of Human Islets Does Not Increase Susceptibility to Acute Hypoxia

    I. K. Hals

    2013-01-01

    Full Text Available Islet transplantation in diabetes is hampered by the need of life-long immunosuppression. Encapsulation provides partial immunoprotection but could possibly limit oxygen supply, a factor that may enhance hypoxia-induced beta cell death in the early posttransplantation period. Here we tested susceptibility of alginate microencapsulated human islets to experimental hypoxia (0.1–0.3% O2 for 8 h, followed by reoxygenation on viability and functional parameters. Hypoxia reduced viability as measured by MTT by 33.8±3.5% in encapsulated and 42.9±5.2% in nonencapsulated islets (P<0.2. Nonencapsulated islets released 37.7% (median more HMGB1 compared to encapsulated islets after hypoxic culture conditions (P<0.001. Glucose-induced insulin release was marginally affected by hypoxia. Basal oxygen consumption was equally reduced in encapsulated and nonencapsulated islets, by 22.0±6.1% versus 24.8±5.7%. Among 27 tested cytokines/chemokines, hypoxia increased the secretion of IL-6 and IL-8/CXCL8 in both groups of islets, whereas an increase of MCP-1/CCL2 was seen only with nonencapsulated islets. Conclusion. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. This is a positive finding in relation to potential use of encapsulation for islet transplantation.

  1. Microencapsulation by spray drying of Lannea microcarpa extract: Technological characteristics and antioxidant activity.

    Francesca Sansone

    2014-08-01

    Full Text Available Context: A functional extract from Lannea microcarpa (Lm, possess interesting antioxidant and anti-inflammatory properties. However, the unprocessed dried extract occurs as sticky and low-water-soluble material showing critical properties for industrial applications. The unprocessed dried extract is not always enough stable to preserve its functional properties, also giving practical difficulties for the manufacturing. Aims: This research aimed to produce Lm extract microparticles with enhanced functional stability and technological characteristics by spray-drying. Methods: Lm extract was microencapsulated by spray-drying using a sodium-carboxymethylcellulose (NaCMC based matrix. Physicochemical and technological characteristics (determined by UV, HPLC, LLS, SEM, DSC, and in vitro dissolution tests, as well as antioxidant properties (DPPH-test of the resulting powder (LmC were examined. Results: The produced spray dried microparticles showed satisfying encapsulation efficiency, good functional stability and enhanced technological properties. The selected carrier and process conditions led to a stable and handling microencapsulated powder form with improved water dissolution rate. Moreover, the matrix was also able to preserve the antioxidant activity of the phenolic compounds-rich extract. Conclusions: The made-up powder resulted in a functional component that can be used with great potential in cosmetics, foods or nutraceutical products.

  2. Microencapsulation of porcine thyroid cell organoids within a polymer microcapsule construct.

    Yang, Yipeng; Opara, Emmanuel C; Liu, Yingbin; Atala, Anthony; Zhao, Weixin

    2017-02-01

    Hypothyroidism is a common condition of hormone deficiency, and oral administration of thyroid hormones is currently the only available treatment option. However, there are some disadvantages with this treatment modality including compliance challenges to patients. Therefore, a physiologically based alternative therapy for hypothyroidism with little or no side-effects is needed. In this study, we have developed a method for microencapsulating porcine thyroid cells as a thyroid hormone replacement approach. The hybrid wall of the polymer microcapsules permits thyroid hormone release while preventing immunoglobulin antibodies from entry. This strategy could potentially enable implantation of the microcapsule organoids containing allogeneic or xenogeneic thyroid cells to secret hormones over time without the need for immunosuppression of recipients. Porcine thyroid cells were isolated and encapsulated in alginate-poly-L-ornithine-alginate microcapsules using a microfluidic device. The porcine thyroid cells formed three-dimensional follicular spheres in the microcapsules with decent cell viability and proliferation. Thyroxine release from the encapsulated cells was higher than from unencapsulated cells ( P 28 days). These results suggest that the microencapsulated thyroid cell organoids may have the potential to be used for therapy and/or drug screening.

  3. Experimental design and instability analysis of coaxial electrospray process for microencapsulation of drugs and imaging agents.

    Si, Ting; Zhang, Leilei; Li, Guangbin; Roberts, Cynthia J; Yin, Xiezhen; Xu, Ronald

    2013-07-01

    Recent developments in multimodal imaging and image-guided therapy requires multilayered microparticles that encapsulate several imaging and therapeutic agents in the same carrier. However, commonly used microencapsulation processes have multiple limitations such as low encapsulation efficiency and loss of bioactivity for the encapsulated biological cargos. To overcome these limitations, we have carried out both experimental and theoretical studies on coaxial electrospray of multilayered microparticles. On the experimental side, an improved coaxial electrospray setup has been developed. A customized coaxial needle assembly combined with two ring electrodes has been used to enhance the stability of the cone and widen the process parameter range of the stable cone-jet mode. With this assembly, we have obtained poly(lactide-co-glycolide) microparticles with fine morphology and uniform size distribution. On the theoretical side, an instability analysis of the coaxial electrified jet has been performed based on the experimental parameters. The effects of process parameters on the formation of different unstable modes have been studied. The reported experimental and theoretical research represents a significant step toward quantitative control and optimization of the coaxial electrospray process for microencapsulation of multiple drugs and imaging agents in multimodal imaging and image-guided therapy.

  4. Microencapsulation of plum (Prunus salicina Lindl. phenolics by spray drying technology and storage stability

    Yibin LI

    2017-10-01

    Full Text Available Abstract To improve the stability of the phenolic extracts from plum fruit (Prunus salicina Lindl., the microencapsulation conditions of spray drying were optimized by the response surface method. The Box-Behnken experimental results indicated the optimal conditions involved an inlet air temperature of 142.8 °C, a core material content of 23.7% and a feed solids content of 11.7%. The maximum microencapsulating efficiency was 87.7% at optimal conditions. Further, the physicochemical properties of the microcapsule powders were improved overall due to the addition of the coating agents. There were no statistically significant differences in phenolic content of the obtained microcapsules for the first 40 days of storage at 25 °C in dark condition (p > 0.05, and the retention rate of total phenol remained above 85% after 60 days. Microcapsules can be potentially developed as a source of natural pigment or functional food based on the advantages of rich phenolic compounds and red color.

  5. Remote in vivo stress assessment of aquatic animals with microencapsulated biomarkers for environmental monitoring

    Gurkov, Anton; Shchapova, Ekaterina; Bedulina, Daria; Baduev, Boris; Borvinskaya, Ekaterina; Meglinski, Igor; Timofeyev, Maxim

    2016-11-01

    Remote in vivo scanning of physiological parameters is a major trend in the development of new tools for the fields of medicine and animal physiology. For this purpose, a variety of implantable optical micro- and nanosensors have been designed for potential medical applications. At the same time, the important area of environmental sciences has been neglected in the development of techniques for remote physiological measurements. In the field of environmental monitoring and related research, there is a constant demand for new effective and quick techniques for the stress assessment of aquatic animals, and the development of proper methods for remote physiological measurements in vivo may significantly increase the precision and throughput of analyses in this field. In the present study, we apply pH-sensitive microencapsulated biomarkers to remotely monitor the pH of haemolymph in vivo in endemic amphipods from Lake Baikal, and we compare the suitability of this technique for stress assessment with that of common biochemical methods. For the first time, we demonstrate the possibility of remotely detecting a change in a physiological parameter in an aquatic organism under ecologically relevant stressful conditions and show the applicability of techniques using microencapsulated biomarkers for remote physiological measurements in environmental monitoring.

  6. Double-blind randomized controlled trial of rolls fortified with microencapsulated iron.

    Barbosa, Teresa Negreira Navarro; Taddei, José Augusto de Aguiar Carrazedo; Palma, Domingos; Ancona-Lopez, Fábio; Braga, Josefina Aparecida Pellegrini

    2012-01-01

    To evaluate the impact of the fortification of rolls with microencapsulated iron sulfate with sodium alginate on the hemoglobin levels in preschoolers as compared to controls. Double-blind randomized controlled trial comprised of children aged 2 to 6 years with initial hemoglobin exceeding 9 g/dL from four not-for-profit daycares randomly selected in the city of São Paulo - Brazil. Children of 2 daycares (n = 88) received rolls with fortified wheat flour as the exposed group (EC) and children of 2 daycares (n = 85) received rolls without fortification as the control group (CG) over a 24-week period. Rolls with 4 mg iron each were offered once a day, five days a week. Hemoglobin concentrations were determined in capillary blood by HemoCue® at three moments of trial: baseline (Ml), after 12 and 24 weeks of intervention (M2, M3). Hemoglobin concentration presented significant increase up to M3 in EG (11.7-12.5-12.6 g/dL) and in CG (11.1-12.4-12.3 g/dL) with higher elevations in children initially with anemia. There was significant reduction in the occurrence of anemia from 22% to 9% in EG and from 47% to 8.2% in CG at M3. Rolls fortified with microencapsulated iron sulfate were well tolerated, increased hemoglobin levels and reduced the occurrence of anemia, but with no difference compared to the control group.

  7. Rhenium corrosion in chloride melts

    Stepanov, A.D.; Shkol'nikov, S.N.; Vetyukov, M.M.

    1989-01-01

    The results investigating rhenium corrosion in chloride melts containing sodium, potassium and chromium ions by a gravimetry potentials in argon atmosphere in a sealing quarth cell are described. Rhenium corrosion is shown to be rather considerable in melts containing CrCl 2 . The value of corrosion rate depending on temperature is determined

  8. UNCONSTRAINED MELTING AND SOLIDIFICATION INSIDE ...

    2015-09-01

    Sep 1, 2015 ... There is a large number of experimental and numerical works on melting and solidification of PCM[6-10], and also its usage as thermal management in building [11-14], electronic devices [15-16] and solar energy. [17-20].Most investigated geometries in melting and freezing process are sphere (spherical.

  9. REVISIÓN: MICROENCAPSULACIÓN DE ALIMENTOS FOOD MICROENCAPSULATION: A REVIEW

    Ricardo Adolfo Parra Huertas

    2010-12-01

    Full Text Available La microencapsulación es definida como una tecnología de empaquetamiento de materiales sólidos, líquidos o gaseosos. Las microcápsulas selladas puede liberar sus contenidos a velocidades controladas bajo condiciones específicas, y pueden proteger el producto encapsulado de la luz y el oxígeno. La microencapsulación consiste en micropartículas conformadas por una membrana polimérica porosa contenedora de una sustancia activa. El material o mezclas de materiales a encapsular puede ser cubierto o atrapado dentro de otro material o sistema. Una microcápsula consiste de una membrana semi-permeable, esférica, delgada y fuerte alrededor de un centro solido/líquido. Los materiales que se utilizan para el encapsulamiento pueden ser gelatina, grasas, aceites, goma arábiga, alginato de calcio, ceras, almidón de trigo, maíz, arroz, papa, nylon, ciclodextrina, maltodextrina, caseinato de sodio, proteína de lactosuero o proteína de soya. Las aplicaciones de la microencapsulación se dirigen a la industria, se da a la industria textil, metalúrgica, química, alimenticia, cosméticos, farmacéutica y medicina. Dentro de las técnicas utilizadas para microencapsular se encuentran el secado por aspersión, secado por enfriamiento, secado por congelamiento, coacervación y extrusión. Las sustancias que se microencapsulan pueden ser vitaminas, minerales, colorantes, prebióticos, probióticos, sabores nutraceúticos, antioxidantes, olores, aceites, enzimas, bacterias, perfumes, drogas e incluso fertilizantes.Microencapsulation is defined as a technology of packaging solids, liquids or gases. The microcapsules can release their contents sealed at controlled rates under specific conditions, and can protect the encapsulated product of light and oxygen. Microencapsulation is formed by a micro-porous polymeric membrane of an active substance container. The material or mixture of encapsulating materials can be coated or entrapped within another

  10. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation.

    Patil, Hemlata; Tiwari, Roshan V; Repka, Michael A

    2016-02-01

    Hot-melt extrusion (HME) is a promising technology for the production of new chemical entities in the developmental pipeline and for improving products already on the market. In drug discovery and development, industry estimates that more than 50% of active pharmaceutical ingredients currently used belong to the biopharmaceutical classification system II (BCS class II), which are characterized as poorly water-soluble compounds and result in formulations with low bioavailability. Therefore, there is a critical need for the pharmaceutical industry to develop formulations that will enhance the solubility and ultimately the bioavailability of these compounds. HME technology also offers an opportunity to earn intellectual property, which is evident from an increasing number of patents and publications that have included it as a novel pharmaceutical formulation technology over the past decades. This review had a threefold objective. First, it sought to provide an overview of HME principles and present detailed engineered extrusion equipment designs. Second, it included a number of published reports on the application of HME techniques that covered the fields of solid dispersions, microencapsulation, taste masking, targeted drug delivery systems, sustained release, films, nanotechnology, floating drug delivery systems, implants, and continuous manufacturing using the wet granulation process. Lastly, this review discussed the importance of using the quality by design approach in drug development, evaluated the process analytical technology used in pharmaceutical HME monitoring and control, discussed techniques used in HME, and emphasized the potential for monitoring and controlling hot-melt technology.

  11. Crust behavior and erosion rate prediction of EPR sacrificial material impinged by core melt jet

    Li, Gen; Liu, Ming, E-mail: ming.liu@mail.xjtu.edu.cn; Wang, Jinshi; Chong, Daotong; Yan, Junjie

    2017-04-01

    Highlights: • A numerical code was developed to analyze melt jet-concrete interaction in the frame of MPS method. • Crust and ablated concrete layer at UO{sub 2}-ZrO{sub 2} melt and concrete interface periodically developed and collapsed. • Concrete surface temperature fluctuated around a low temperature and ablation temperature. • Concrete erosion by Fe-Zr melt jet was significantly faster than that by UO{sub 2}-ZrO{sub 2} melt jet. - Abstract: Sacrificial material is a special ferro-siliceous concrete, designed in the ex-vessel core melt stabilization system of European Pressurized water Reactor (EPR). Given a localized break of RPV lower head, the melt directly impinges onto the dry concrete in form of compact jet. The concrete erosion behavior influences the failure of melt plug, and further affects melt spreading. In this study, a numerical code was developed in the frame of Moving Particle Semi-implicit (MPS) method, to analyze the crust behavior and erosion rate of sacrificial concrete, impinged by prototypic melt jet. In validation of numerical modeling, the time-dependent erosion depth and erosion configuration matched well with the experimental data. Sensitivity study of sacrificial concrete erosion indicates that the crust and ablated concrete layer presented at UO{sub 2}-ZrO{sub 2} melt and concrete interface, whereas no crust could be found in the interaction of Fe-Zr melt with concrete. The crust went through stabilization-fracture-reformation periodic process, accompanied with accumulating and collapsing of molten concrete layer. The concrete surface temperature fluctuated around a low temperature and ablation temperature. It increased as the concrete surface layer was heated to melting, and dropped down when the cold concrete was revealed. The erosion progression was fast in the conditions of small jet diameter and large concrete inclination angle, and it was significantly faster in the erosion by metallic melt jet than by oxidic melt jet.

  12. Cold-crucible melting of hulls and structural materials

    Jouan, A.; Jacquet-Francillon, N.; Puyou, M.; Piccinato, R.

    1990-01-01

    The method currently implemented at the La Hague UP3 reprocessing plant for conditioning of PWR zircaloy hulls is cement embedding. Another promising method, mainly for reducing the waste volume and the available exchange surface area, is melting. A cold-crucible melting process has therefore been developed by the CEA at Marcoule (France) over the last decade. Development work first concentrated on cladding hulls from fast breeder reactors, then from pressurized water reactors. The process can be used for both types of cladding wastes. Subassembly head and foot end-caps are sheared off and should be suitable for surface storage after α decontamination by successive rinsing. If necessary because of their α activity, they could be melted in a larger furnace

  13. Simple calculation of ab initio melting curves: Application to aluminum.

    Robert, Grégory; Legrand, Philippe; Arnault, Philippe; Desbiens, Nicolas; Clérouin, Jean

    2015-03-01

    We present a simple, fast, and promising method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of Lin et al [J. Chem. Phys. 119, 11792 (2003)] and its improved version given by Desjarlais [Phys. Rev. E 88, 062145 (2013)]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find the thermodynamic conditions of equal Gibbs free energy between these phases, defining the melting curve. The first benchmark on the face-centered cubic melting curve of aluminum from 0 to 300 GPa demonstrates how to obtain an accuracy of 5%-10%, comparable to the most sophisticated methods, for a much lower computational cost.

  14. Comparative melting and healing of B-DNA and Z-DNA by an infrared laser pulse

    Man, Viet Hoang; Pan, Feng; Sagui, Celeste, E-mail: sagui@ncsu.edu; Roland, Christopher, E-mail: cmroland@ncsu.edu [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States)

    2016-04-14

    We explore the use of a fast laser melting simulation approach combined with atomistic molecular dynamics simulations in order to determine the melting and healing responses of B-DNA and Z-DNA dodecamers with the same d(5′-CGCGCGCGCGCG-3′){sub 2} sequence. The frequency of the laser pulse is specifically tuned to disrupt Watson-Crick hydrogen bonds, thus inducing melting of the DNA duplexes. Subsequently, the structures relax and partially refold, depending on the field strength. In addition to the inherent interest of the nonequilibrium melting process, we propose that fast melting by an infrared laser pulse could be used as a technique for a fast comparison of relative stabilities of same-sequence oligonucleotides with different secondary structures with full atomistic detail of the structures and solvent. This could be particularly useful for nonstandard secondary structures involving non-canonical base pairs, mismatches, etc.

  15. Comparative melting and healing of B-DNA and Z-DNA by an infrared laser pulse

    Man, Viet Hoang; Pan, Feng; Sagui, Celeste; Roland, Christopher

    2016-01-01

    We explore the use of a fast laser melting simulation approach combined with atomistic molecular dynamics simulations in order to determine the melting and healing responses of B-DNA and Z-DNA dodecamers with the same d(5′-CGCGCGCGCGCG-3′) 2 sequence. The frequency of the laser pulse is specifically tuned to disrupt Watson-Crick hydrogen bonds, thus inducing melting of the DNA duplexes. Subsequently, the structures relax and partially refold, depending on the field strength. In addition to the inherent interest of the nonequilibrium melting process, we propose that fast melting by an infrared laser pulse could be used as a technique for a fast comparison of relative stabilities of same-sequence oligonucleotides with different secondary structures with full atomistic detail of the structures and solvent. This could be particularly useful for nonstandard secondary structures involving non-canonical base pairs, mismatches, etc.

  16. DEPENDENCY OF SULFATE SOLUBILITY ON MELT COMPOSITION AND MELT POLYMERIZATION

    JANTZEN, CAROL M.

    2004-01-01

    Sulfate and sulfate salts are not very soluble in borosilicate waste glass. When sulfate is present in excess it can form water soluble secondary phases and/or a molten salt layer (gall) on the melt pool surface which is purported to cause steam explosions in slurry fed melters. Therefore, sulfate can impact glass durability while formation of a molten salt layer on the melt pool can impact processing. Sulfate solubility has been shown to be compositionally dependent in various studies, (e.g. , B2O3, Li2O, CaO, MgO, Na2O, and Fe2O3 were shown to increase sulfate solubility while Al2O3 and SiO2 decreased sulfate solubility). This compositional dependency is shown to be related to the calculated melt viscosity at various temperatures and hence the melt polymerization

  17. Plasma arc melting of zirconium

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-01-01

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  18. Stress relaxation of bi-disperse polystyrene melts

    Hengeller, Ludovica; Huang, Qian; Dorokhin, Andriy

    2016-01-01

    We present start-up of uniaxial extension followed by stress relaxation experiments of a bi-disperse 50 % by weight blend of 95k and 545k molecular weight polystyrene. We also show, for comparison, stress relaxation measurements of the polystyrene melts with molecular weight 95k and 545k, which...... are the components of the bi-disperse melt. The measurements show three separated relaxation regimes: a fast regime, a transition regime, and a slow regime. In the fast regime, the orientation of the long chains is frozen and the stress relaxation is due to stretch relaxation of the short chains primarily....... Conversely in the slow regime, the long chains have retracted and undergo relaxation of orientation in fully relaxed short chains....

  19. Microencapsulated tumor assay: Evaluation of the nude mouse model of pancreatic cancer

    Ma, Ming-Zhe; Cheng, Dong-Feng; Ye, Jin-Hua; Zhou, Yong; Wang, Jia-Xiang; Shi, Min-Min; Han, Bao-San; Peng, Cheng-Hong

    2012-01-01

    AIM: To establish a more stable and accurate nude mouse model of pancreatic cancer using cancer cell microencapsulation. METHODS: The assay is based on microencapsulation technology, wherein human tumor cells are encapsulated in small microcapsules (approximately 420 μm in diameter) constructed of semipermeable membranes. We implemented two kinds of subcutaneous implantation models in nude mice using the injection of single tumor cells and encapsulated pancreatic tumor cells. The size of subcutaneously implanted tumors was observed on a weekly basis using two methods, and growth curves were generated from these data. The growth and metastasis of orthotopically injected single tumor cells and encapsulated pancreatic tumor cells were evaluated at four and eight weeks postimplantation by positron emission tomography-computed tomography scan and necropsy. The pancreatic tumor samples obtained from each method were then sent for pathological examination. We evaluated differences in the rates of tumor incidence and the presence of metastasis and variations in tumor volume and tumor weight in the cancer microcapsules vs single-cell suspensions. RESULTS: Sequential in vitro observations of the microcapsules showed that the cancer cells in microcapsules proliferated well and formed spheroids at days 4 to 6. Further in vitro culture resulted in bursting of the membrane of the microcapsules and cells deviated outward and continued to grow in flasks. The optimum injection time was found to be 5 d after tumor encapsulation. In the subcutaneous implantation model, there were no significant differences in terms of tumor volume between the encapsulated pancreatic tumor cells and cells alone and rate of tumor incidence. There was a significant difference in the rate of successful implantation between the cancer cell microencapsulation group and the single tumor-cell suspension group (100% vs 71.43%, respectively, P = 0.0489) in the orthotropic implantation model. The former method

  20. Transient Cooperative Processes in Dewetting Polymer Melts.

    Chandran, Sivasurender; Reiter, Günter

    2016-02-26

    We compare the high velocity dewetting behavior, at elevated temperatures, of atactic polystyrene (aPS) and isotactic polystyrene (iPS) films, with the zero shear bulk viscosity (η_{bulk}) of aPS being approximately ten times larger than iPS. As expected, for aPS the apparent viscosity of the films (η_{f}) derived from high-shear dewetting is less than η_{bulk}, displaying a shear thinning behavior. Surprisingly, for iPS films, η_{f} is always larger than η_{bulk}, even at about 50 °C above the melting point, with η_{f}/η_{bulk} following an Arrhenius behavior. The corresponding activation energy of ∼160±10  kJ/mol for iPS films suggests a cooperative motion of segments which are aligned and agglomerated by fast dewetting.

  1. Nitrogen Control in VIM Melts

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  2. Theoretical melting curve of caesium

    Simozar, S.; Girifalco, L.A.; Pennsylvania Univ., Philadelphia

    1983-01-01

    A statistical-mechanical model is developed to account for the complex melting curve of caesium. The model assumes the existence of three different species of caesium defined by three different electronic states. On the basis of this model, the free energy of melting and the melting curve are computed up to 60 kbar, using the solid-state data and the initial slope of the fusion curve as input parameters. The calculated phase diagram agrees with experiment to within the experimental error. Other thermodynamic properties including the entropy and volume of melting were also computed, and they agree with experiment. Since the theory requires only one adjustable constant, this is taken as strong evidence that the three-species model is satisfactory for caesium. (author)

  3. Melting curves of gammairradiated DNA

    Hofer, H.; Altmann, H.; Kehrer, M.

    1978-08-01

    Melting curves of gammairradiated DNA and data derived of them, are reported. The diminished stability is explained by basedestruction. DNA denatures completely at room temperature, if at least every fifth basepair is broken or weakened by irradiation. (author)

  4. Pressure melting and ice skating

    Colbeck, S. C.

    1995-10-01

    Pressure melting cannot be responsible for the low friction of ice. The pressure needed to reach the melting temperature is above the compressive failure stress and, if it did occur, high squeeze losses would result in very thin films. Pure liquid water cannot coexist with ice much below -20 °C at any pressure and friction does not increase suddenly in that range. If frictional heating and pressure melting contribute equally, the length of the wetted contact could not exceed 15 μm at a speed of 5 m/s, which seems much too short. If pressure melting is the dominant process, the water films are less than 0.08 μm thick because of the high pressures.

  5. Melting in super-earths.

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  6. Reversal of experimental Laron Syndrome by xenotransplantation of microencapsulated porcine Sertoli cells.

    Luca, Giovanni; Calvitti, Mario; Mancuso, Francesca; Falabella, Giulia; Arato, Iva; Bellucci, Catia; List, Edward O; Bellezza, Enrico; Angeli, Giovanni; Lilli, Cinzia; Bodo, Maria; Becchetti, Ennio; Kopchick, John J; Cameron, Don F; Baroni, Tiziano; Calafiore, Riccardo

    2013-01-10

    Recombinant human IGF-1 currently represents the only available treatment option for the Laron Syndrome, a rare human disorder caused by defects in the gene encoding growth hormone receptor, resulting in irreversibly retarded growth. Unfortunately, this treatment therapy, poorly impacts longitudinal growth (13% in females and 19% in males), while burdening the patients with severe side effects, including hypoglycemia, in association with the unfair chore of taking multiple daily injections that cause local intense pain. In this study, we have demonstrated that a single intraperitoneal graft of microencapsulated pig Sertoli cells, producing pig insulin-like growth factor-1, successfully promoted significant proportional growth in the Laron mouse, a unique animal model of the human Laron Syndrome. These findings indicate a novel, simply, safe and successful method for the cell therapy-based cure of the Laron Syndrome, potentially applicable to humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Microencapsulation of Eugenia uniflora L. juice by spray drying using fructans with different degrees of polymerisation.

    Ortiz-Basurto, R I; Rubio-Ibarra, M E; Ragazzo-Sanchez, J A; Beristain, C I; Jiménez-Fernández, M

    2017-11-01

    The objective of this work was to microencapsulate pitanga (Eugenia uniflora L.) juice by spray drying, using High Performance Agave Fructans (HPAF) and High Degree of Polymerisation Agave Fructans (HDPAF) and maltodextrin (MD), respectively, as the wall materials. The physicochemical and antioxidant properties of the capsules during storage at various temperatures were evaluated. The microparticles developed using fructans HPAF and HDPAF, exhibited similar physicochemical and flow properties to those presented by the microparticles prepared with MD. The highest yield and concentration of anthocyanins after drying and during storage were found for a 1:6 core:wall material ratio. The total color change was a good indicator of the microcapsule stability. This study showed that both fructans fraction possess similar encapsulating properties to MD and that the HDPAF were more efficacious than MD at protecting the antioxidants during drying and storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Microencapsulation of gallium-indium (Ga-In) liquid metal for self-healing applications.

    Blaiszik, B J; Jones, A R; Sottos, N R; White, S R

    2014-01-01

    Microcapsules containing a liquid metal alloy core of gallium-indium (Ga-In) are prepared via in situ urea-formaldehyde (UF) microencapsulation. The capsule size, shape, thermal properties, and shell wall thickness are investigated. We prepare ellipsoidal capsules with major and minor diameter aspect ratios ranging from 1.64 to 1.08 and with major diameters ranging from 245 µm to 3 µm. We observe that as the capsule major diameter decreases, the aspect ratio approaches 1. The thermal properties of the prepared microcapsules are investigated by thermogravimetric (TGA) and differential scanning calorimetry (DSC). Microcapsules are shown to survive incorporation into an epoxy matrix and to trigger via mechanical damage to the cured matrix. Microcapsules containing liquid metal cores may have diverse applications ranging from self-healing to contrast enhancement or the demonstration of mechano-adaptive circuitry.

  9. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    Halúzová, Dušana

    2015-06-01

    For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  10. Study on the effects of microencapsulated Lactobacillus delbrueckii on the mouse intestinal flora.

    Sun, Qingshen; Shi, Yue; Wang, Fuying; Han, Dequan; Lei, Hong; Zhao, Yao; Sun, Quan

    2015-01-01

    To evaluate the protective effects of microencapsulation on Lactobacillus delbrueckii by random, parallel experimental design. Lincomycin hydrochloride-induced intestinal malfunction mouse model was successfully established; then the L. delbrueckii microcapsule was given to the mouse. The clinical behaviour, number of intestinal flora, mucous IgA content in small intestine, IgG and IL-2 level in peripheral blood were monitored. The histological sections were also prepared. The L. delbrueckii microcapsule could have more probiotic effects as indicated by higher bifidobacterium number in cecal contents. The sIgA content in microcapsule treated group was significantly higher than that in non-encapsulated L. delbrueckii treated group (p < 0.05). Intestine pathological damage of the L. delbrueckii microcapsule-treated group showed obvious restoration. The L. delbrueckii microcapsules could relieve the intestinal tissue pathological damage and play an important role in curing antibiotic-induced intestinal flora dysfunction.

  11. The Application of Microencapsulation Techniques in the Treatment of Endodontic and Periodontal Diseases

    José Blanco Méndez

    2011-08-01

    Full Text Available In the treatment of intracanal and periodontal infections, the local application of antibiotics and other therapeutic agents in the root canal or in periodontal pockets may be a promising approach to achieve sustained drug release, high antimicrobial activity and low systemic side effects. Microparticles made from biodegradable polymers have been reported to be an effective means of delivering antibacterial drugs in endodontic and periodontal therapy. The aim of this review article is to assess recent therapeutic strategies in which biocompatible microparticles are used for effective management of periodontal and endodontic diseases. In vitro and in vivo studies that have investigated the biocompatibility or efficacy of certain microparticle formulations and devices are presented. Future directions in the application of microencapsulation techniques in endodontic and periodontal therapies are discussed.

  12. Development of Microencapsulation Delivery System for Long-Term Preservation of Probiotics as Biotherapeutics Agent

    Solanki, Himanshu K.; Pawar, Dipak D.; Shah, Dushyant A.; Prajapati, Vipul D.; Jani, Girish K.; Mulla, Akil M.; Thakar, Prachi M.

    2013-01-01

    The administration of probiotic bacteria for health benefit has rapidly expanded in recent years, with a global market worth $32.6 billion predicted by 2014. The oral administration of most of the probiotics results in the lack of ability to survive in a high proportion of the harsh conditions of acidity and bile concentration commonly encountered in the gastrointestinal tract of humans. Providing probiotic living cells with a physical barrier against adverse environmental conditions is therefore an approach currently receiving considerable interest. Probiotic encapsulation technology has the potential to protect microorganisms and to deliver them into the gut. However, there are still many challenges to overcome with respect to the microencapsulation process and the conditions prevailing in the gut. This review focuses mainly on the methodological approach of probiotic encapsulation including biomaterials selection and choice of appropriate technology in detailed manner. PMID:24027760

  13. Microencapsulation of Clostridium acetobutylicum ATCC 824 spores in gellan gum microspheres for the production of biobutanol.

    Rathore, Sweta; Wan Sia Heng, Paul; Chan, Lai Wah

    2015-01-01

    The purpose of the present study was to provide further insights on the applicability of microencapsulation using emulsification method, to immobilise Clostridium acetobutylicum ATCC 824 spores, for biobutanol production. The encapsulated spores were revived using heat shock treatment and the fermentation efficiency of the resultant encapsulated cells was compared with that of the free (non-encapsulated) cells. The microspheres were easily recovered from the fermentation medium by filtration and reused up to five cycles of fermentation. In contrast, the free (non-encapsulated) cells could be reused for two cycles only. The microspheres remained intact throughout repeated use. Although significant cell leakage was observed during the course of fermentation, the microspheres could be reused with relatively high butanol yield, demonstrating their role as microbial cell nurseries. Both encapsulated and liberated cells contributed to butanol production.

  14. Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form

    Terrani, K.A.; Kiggans, J.O.; Silva, C.M.; Shih, C.; Katoh, Y.; Snead, L.L.

    2015-01-01

    The consolidation mechanism and resulting properties of the silicon carbide (SiC) matrix of fully ceramic microencapsulated (FCM) fuel form are discussed. The matrix is produced via the nano-infiltration transient eutectic-forming (NITE) process. Coefficient of thermal expansion, thermal conductivity, and strength characteristics of this SiC matrix have been characterized in the unirradiated state. An ad hoc methodology for estimation of thermal conductivity of the neutron-irradiated NITE–SiC matrix is also provided to aid fuel performance modeling efforts specific to this concept. Finally, specific processing methods developed for production of an optimal and reliable fuel form using this process are summarized. These various sections collectively report the progress made to date on production of optimal FCM fuel form to enable its application in light water and advanced reactors

  15. Research Advances of Microencapsulation and Its Prospects in the Petroleum Industry

    Miaomiao Hu

    2017-03-01

    Full Text Available Additives in the petroleum industry have helped form an efficient system in the past few decades. Nowadays, the development of oil and gas has been facing more adverse conditions, and smart response microcapsules with the abilities of self-healing, and delayed and targeted release are introduced to eliminate obstacles for further exploration in the petroleum industry. However, limited information is available, only that of field measurement data, and not mechanism theory and structural innovation data. Thus we propose that the basic type, preparation, as well as mechanism of microcapsules partly depend on other mature fields. In this review, we explore the latest advancements in evaluating microcapsules, such as X-ray computed tomography (XCT, simulation, and modeling. Finally, some novel microencapsulated additives with unparalleled advantages, such as flexibility, efficiency, and energy-conservation are described.

  16. Microencapsulation and Fermentation of Lactobacillus acidophilus LA-5 and Bifidobacterium BB-12

    Maryam Yari

    2015-09-01

    Full Text Available Because of poor survival of probiotic bacteria, microencapsulation evolved from the immobilized cell culture technology used in the biotechnological industry. Two probiotic strains, Bifidobacterium (BB-12 and Lactobacillus acidophilus (LA-5 were immobilized in calcium alginate by extrusion method. Encapsulation parameters and efficacy of this method were evaluated. Growth factors of these two bacteria were also measured by culturing in 10-L fermenter. Growth curves were obtained with respect to optical density and dry biomass weight. Encapsulation yield was over than 60% in each experiment. Scanning electron microscopy (SEM of Entrapment of cells in alginate matrix and cross-sections of dried bead were obtained and illustrated. Bifidobacterium have been shown better biotechnological properties.

  17. Impact of Acetic Acid on the Survival of L. plantarum upon Microencapsulation by Coaxial Electrospraying

    Laura G. Gómez-Mascaraque

    2017-01-01

    Full Text Available In this work, coaxial electrospraying was used for the first time to microencapsulate probiotic bacteria, specifically Lactobacillus plantarum, within edible protein particles with the aim of improving their resistance to in vitro digestion. The developed structures, based on an inner core of whey protein concentrate and an outer layer of gelatin, were obtained in the presence of acetic acid in the outer solution as a requirement for the electrospraying of gelatin. Despite the limited contact of the inner suspension and outer solution during electrospraying, the combination of the high voltage used during electrospraying with the presence of acetic acid was found to have a severe impact on the lactobacilli, not only decreasing initial viability but also negatively affecting the survival of the bacteria during storage and their resistance to different stress conditions, including simulated in vitro digestion.

  18. Melting the vacuum

    Rafelski, J.

    1998-01-01

    Results presented at the Quark Matter 97 conference, held in December in Tsukuba, Japan, have provided new insights into the confinement of quarks in matter. The current physics paradigm is that the inertial masses of protons and neutrons, and hence of practically all of the matter around us, originate in the zero-point energy caused by the confinement of quarks inside the small volume of the nucleon. Today, 25 years after Harald Fritzsch, Heinrich Leutwyler and Murray Gell-Mann proposed quantum chromodynamics (QCD) as a means for understanding strongly interacting particles such as nucleons and mesons, our understanding of strong interactions and quark confinement remains incomplete. Quarks and the gluons that bind them together have a ''colour'' charge that may be red, green or blue. But quarks are seen in particles that are white: baryons such as protons and neutrons consist of three quarks with different colour charges, while mesons consist of a quark and an antiquark, and again the colour charge cancels out. To prove that confinement arises from quark-gluon fluctuations in the vacuum that quantum theories dictate exists today, we need to find a way of freeing the colour charge of quarks. Experiments must therefore ''melt'' the vacuum to deconfine quarks and the colour charge. By colliding nuclei at high energies, we hope to produce regions of space filled with free quarks and gluons. This deconfined phase is known as the quark-gluon plasma. At the Tsukuba meeting, Scott Pratt of Michigan State University in the US discussed measurements that show that the hot dense state of matter created in these collisions exists for only 2x10 -23 s. So does the quark gluon plasma exist? No-one doubts that it did at one time, before the vacuum froze into its current state about 20 into the life of the universe, causing the nucleons to form as we know them today. The issue is whether we can recreate this early stage of the universe in laboratory experiments. And if we did

  19. Glacial melting in Himalaya

    Kavita Tariyal

    2013-07-01

    Full Text Available Mountains are amongst the most flimsy environments on Earth. They are prosperous repositories of biodiversity, water and providers of ecosystem goods and services on which downstream communities, both regional and global, rely. The transport of atmospheric pollutants and climate-altering substances can significantly impact high mountain areas, which are generally considered “clean” regions. The snow glaciers of the Himalayas, considered the “third pole”, one of the largest stores of water on the planet and accelerated melting could have far-reaching effects, such as flooding in the short-term and water shortages in the long-term as the glaciers shrink. The data available on temperature in Himalayas indicate that warming during last 3-4 decades has been more than the global average over the last century. Some of the values indicate that the Himalayas are warming 5-6 times more than the global average. Mountain systems are seen globally as the prime sufferers from climate change. There is a severe gap in the knowledge of the short and long-term implications of the impact of climate change on water and hazards in the Himalayas, and their downstream river basins. Most studies have excluded the Himalayan region because of its extreme and complex topography and the lack of adequate rain gauge data. There is an urgent need to close the knowledge gap by establishing monitoring schemes for snow, ice and water; downscaling climate models; applying hydrological models to predict water availability; and developing basin wide scenarios, which also take water demand and socioeconomic development into account. Climate change induced hazards such as floods, landslides and droughts will impose considerable stresses on the livelihoods of mountain people and downstream populations. Enhancing resilience and promoting adaptation in mountain areas have thus become among the most important priorities of this decade. It is important to strengthen local

  20. Photostabilization of the herbicide norflurazon microencapsulated with ethylcellulose in the soil-water system

    Sopena, Fatima, E-mail: fsopenav@irnase.csic.es [Institute of Natural Resources and Agrobiology (CSIC), Reina Mercedes 10, Apdo 1052, 41080 Seville, ES (Spain); Villaverde, Jaime; Maqueda, Celia; Morillo, Esmeralda [Institute of Natural Resources and Agrobiology (CSIC), Reina Mercedes 10, Apdo 1052, 41080 Seville, ES (Spain)

    2011-11-15

    Highlights: {yields} Herbicide photodegradation studies using ethylcellulose-microencapsulated formulations (ECF) in soil and water. {yields} Greater herbicide photo-protection observed from EFC than from its commercial form. {yields} Photo-protective effect due to the gradual herbicide release and the presence of ethylcellulose. {yields} Herbicide photo-stability conditioned by soil colloidal components, especially by goethite and humic acids. {yields} EFC could reduce the field herbicide losses by photolysis. - Abstract: Ethylcellulose-microencapsulated formulations (ECFs) of norflurazon have been shown to reduce leaching, maintaining a threshold concentration in the topsoil than the commercial formulation (CF). Since photodegradation contributes to field dissipation of norflurazon, the objective of the present work was to study if such formulations can also protect from its photodescomposition. For this purpose, aqueous solutions of CF and ECFs, containing the most important soil components (goethite, humic and fulvic acids and montmorillonite) were tested. To get a more realistic approach, studies in soil were also performed. The results were well explained by a simple first order model. DT{sub 50} value was 3 h for CF under irradiation, which was considerably lower than those corresponding to the systems where ECF was used (35 h for ECF; 260 h for ECF-goethite; 53 h for ECF-humic acids; 33 h for ECF-montmorillonite; and 28 h for ECF-fulvic acids). ECF protected against photodegradation in both aqueous solution and soil due to the gradual release of the herbicide, which reduced the herbicide available to be photodegraded. These lab-scale findings proved that ECF could reduce the herbicide dosage, minimizing its photolysis, which would be especially advantageous during the first hours after foliar and soil application.

  1. Heat transfer characteristics of liquid-gas Taylor flows incorporating microencapsulated phase change materials

    Howard, J A; Walsh, P A

    2014-01-01

    This paper presents an investigation on the heat transfer characteristics associated with liquid-gas Taylor flows in mini channels incorporating microencapsulated phase change materials (MPCM). Taylor flows have been shown to result in heat transfer enhancements due to the fluid recirculation experienced within liquid slugs which is attributable to the alternating liquid slug and gas bubble flow structure. Microencapsulated phase change materials (MPCM) also offer significant potential with increased thermal capacity due to the latent heat required to cause phase change. The primary aim of this work was to examine the overall heat transfer potential associated with combining these two novel liquid cooling technologies. By investigating the local heat transfer characteristics, the augmentation/degradation over single phase liquid cooling was quantified while examining the effects of dimensionless variables, including Reynolds number, liquid slug length and gas void fraction. An experimental test facility was developed which had a heated test section and allowed MPCM-air Taylor flows to be subjected to a constant heat flux boundary condition. Infrared thermography was used to record high resolution experimental wall temperature measurements and determine local heat transfer coefficients from the thermal entrance point. 30.2% mass particle concentration of the MPCM suspension fluid was examined as it provided the maximum latent heat for absorption. Results demonstrate a significant reduction in experimental wall temperatures associated with MPCM-air Taylor flows when compared with the Graetz solution for conventional single phase coolants. Total enhancement in the thermally developed region is observed to be a combination of the individual contributions due to recirculation within the liquid slugs and also absorption of latent heat. Overall, the study highlights the potential heat transfer enhancements that are attainable within heat exchange devices employing MPCM

  2. Antibacterial activity of kecombrang flower extract (Nicolaia speciosa) microencapsulation with food additive materials formulation

    Naufalin, R.; Rukmini, H. S.

    2018-01-01

    Kecombrang flower (Nicolaia speciosa) contains bioactive components of alkaloids, flavonoids, polyphenols, steroids, saponins, and essential oils as potential antimicrobials. The use of antibacterials in the form of essential oils has constraints; therefore microencapsulation needs to be done to prevent damage to the bioactive components. Microencapsulation can prevent degradation due to radiation or oxygen, easy-mix with foodstuffs and also slow the occurrence of evaporation. This study aimed to determine the effect of types of kecombrang extract, the concentration of microcapsules in food additives (NaCl and sucrose), and concentration of flower extract in the microcapsules. This study used Randomized Block Design (RBD) with 18 treatment combinations and two replications. Factors studied were types of kecombrang flower extract of (semi polar and polar extract), Food Additive types (sucrose and NaCl), the concentration of microcapsules in food additive (0%; 15%; 30% w /v). The results showed that polar and non-polar extract microcapsules produced antibacterial activity of 7.178 mm and 7.145 respectively of Bacillus cereus bacteria, while Escherichia coli was 7.272 mm and 7.289 mm respectively. A 30 percent microcapsule concentration provides antibacterial activity with inhibiting zone of 7, 818 mm for B. cereus and 8,045 for E.coli. Food Additive of sucrose concentrations showed that microcapsules produced tend to be more effective in inhibiting the growth of E.coli and B. cereus bacteria than that of NaCl, with each inhibition zone of 7.499 mm and 7.357 mm

  3. Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery.

    Li, Xiang; Anton, Nicolas; Ta, Thi Minh Chau; Zhao, Minjie; Messaddeq, Nadia; Vandamme, Thierry F

    2011-01-01

    Nanoemulsions consist of very stable nanodroplets of oil dispersed in an aqueous phase, typically below 300 nm in size. They can be used to obtain a very fine, homogeneous dispersion of lipophilic compounds in water, thus facilitating their handling and use in nanomedicine. However, the drawback is that they are suspended in an aqueous media. This study proposes a novel technique for drying lipid nanoemulsion suspensions to create so-called Trojan particles, ie, polymer microparticles (around 2 μm) which very homogeneously "entrap" the nano-oil droplets (around 150 nm) in their core. Microencapsulation of the nanoemulsions was performed using a spray-drying process and resulted in a dried powder of microparticles. By using a low-energy nanoemulsification method and relatively gentle spray-drying, the process was well suited to sensitive molecules. The model lipophilic molecule tested was vitamin E acetate, encapsulated at around 20% in dried powder. We showed that the presence of nanoemulsions in solution before spray-drying had a significant impact on microparticle size, distribution, and morphology. However, the process itself did not destroy the oil nanodroplets, which could easily be redispersed when the powder was put back in contact with water. High-performance liquid chromatography follow-up of the integrity of the vitamin E acetate showed that the molecules were intact throughout the process, as well as when conserved in their dried form. This study proposes a novel technique using a spray-drying process to microencapsulate nanoemulsions. The multiscale object formed, so-called Trojan microparticles, were shown to successfully encapsulate, protect, and release the lipid nanodroplets.

  4. Characterization of thermal and hydrodynamic properties for microencapsulated phase change slurry (MPCS)

    Chen, Lin; Wang, Ting; Zhao, Yan; Zhang, Xin-Rong

    2014-01-01

    Highlights: • Microencapsulated phase change slurry (MPCS) is reviewed and characterized for heat transfer and storage systems. • Basic formation, materials, properties are categorized and systematically analyzed. • Generalization and modelization of complex MPCS properties are made. • MPCS is identified to be one promising substitute in future energy systems. • Future research topics and applications are also specified. - Abstract: Microencapsulated phase change slurry (MPCS) is a new kind of multi-phase fluid that are proposed and utilized in heat transfer and heat storage systems. Different from traditional organic (paraffin or non-parafin) or inorganic phase change slurries, MPCS is able to maintain both high latent heat capacity and heat transfer rate under controlled volume changes and safe operation conditions. Consequently, in recent decade, MPCS has been widely proposed and tested in textile, building, cooling and heating, solar and thermal storage systems, etc. Based on those recent findings and application developments, characterizations of thermal and hydrodynamic properties for MPCS are made in this study. The basic objective of this paper is to summarize the features of MPCS properties and the establishment of models for MPCS properties and morphologies. The review and analysis are based on recent representative experimental studies, which are categorized into: properties, heat transfer characteristics, stability and applications. Due to the various materials and methods and carry fluids properties, no single model can cover the properties for all MPCS. In this study, each property is reviewed with its specific model and application regions. Basic trends are compared with other kinds of phase change materials. Finally, by investigating those results the future trends of MPCS are presented

  5. In-vitro GIT Tolerance of Microencapsulated Bifidobacterium bifidum ATCC 35914 Using Polysaccharide-Protein Matrix.

    Iqbal, Rabia; Zahoor, Tahir; Huma, Nuzhat; Jamil, Amer; Ünlü, Gülhan

    2018-03-12

    Longevity of probiotic is the main concern for getting maximum benefits when added in food product. Bifidobacterium, a probiotic, tends to lose its viability during gastrointestinal track (GIT) transit and storage of food. Their viability can be enhanced through microencapsulation technology. In this study, Bifidobacterium bifidum (B. bifidum) ATCC 35914 was encapsulated by using two experimental plans. In the first plan, chitosan (CH) at 0.6, 0.8, and 1.0% and sodium alginate (SA) at 4, 5, and 6% were used. Based on encapsulation efficiency, 6% sodium alginate and 0.8% chitosan were selected for single coating of the bacteria, and the resulting micro beads were double coated with different concentrations (5, 7.5, and 10%) of whey protein concentrate (WPC) in the second plan. Encapsulation efficiency and GIT tolerance were determined by incubating the micro beads in simulated gastrointestinal juices (SIJ) at variable pH and exposure times, and their release (liberation of bacterial cells) profile was also observed in SIJ. The microencapsulated bacterial cells showed significantly (P < 0.01) higher viability as compared to the unencapsulated (free) cells during GIT assay. The double-coated micro beads SA 6%-WPC 5% and CH 0.8%-WPC 5% were proven to have the higher survival at pH 3.0 after 90 min of incubation time and at pH 7.0 after 3-h exposure in comparison to free cells in simulated conditions of the stomach and intestine, respectively. Moreover, double coating with whey protein concentrate played a significant role in the targeted (10 6-9  CFU/mL) delivery under simulated intestinal conditions.

  6. Photostabilization of the herbicide norflurazon microencapsulated with ethylcellulose in the soil-water system

    Sopena, Fatima; Villaverde, Jaime; Maqueda, Celia; Morillo, Esmeralda

    2011-01-01

    Highlights: → Herbicide photodegradation studies using ethylcellulose-microencapsulated formulations (ECF) in soil and water. → Greater herbicide photo-protection observed from EFC than from its commercial form. → Photo-protective effect due to the gradual herbicide release and the presence of ethylcellulose. → Herbicide photo-stability conditioned by soil colloidal components, especially by goethite and humic acids. → EFC could reduce the field herbicide losses by photolysis. - Abstract: Ethylcellulose-microencapsulated formulations (ECFs) of norflurazon have been shown to reduce leaching, maintaining a threshold concentration in the topsoil than the commercial formulation (CF). Since photodegradation contributes to field dissipation of norflurazon, the objective of the present work was to study if such formulations can also protect from its photodescomposition. For this purpose, aqueous solutions of CF and ECFs, containing the most important soil components (goethite, humic and fulvic acids and montmorillonite) were tested. To get a more realistic approach, studies in soil were also performed. The results were well explained by a simple first order model. DT 50 value was 3 h for CF under irradiation, which was considerably lower than those corresponding to the systems where ECF was used (35 h for ECF; 260 h for ECF-goethite; 53 h for ECF-humic acids; 33 h for ECF-montmorillonite; and 28 h for ECF-fulvic acids). ECF protected against photodegradation in both aqueous solution and soil due to the gradual release of the herbicide, which reduced the herbicide available to be photodegraded. These lab-scale findings proved that ECF could reduce the herbicide dosage, minimizing its photolysis, which would be especially advantageous during the first hours after foliar and soil application.

  7. Effects of Microencapsulated Phase Change Material (MPCM) on Critical Heat Flux in Pool Boiling

    Park, Sung Dae; Kim, Seong Man; Kang, Sarah; Lee, Seung Won; Seo, Han; Bang, In Cheol

    2011-01-01

    Thermal power is limited by critical heat flux (CHF) in the nuclear power plant. And the in-vessel retention by external reactor vessel cooling (IVR-ERVC) is applied in some nuclear power plants; AP600, AP1000, Loviisa and APR1400. The heat removal capacity of IVR-ERVC is also restricted by CHF. So, it is essential to get CHF margin to improve an economics and a safety of the plant. There are some typical approaches to enhance CHF: vibrating the heater or fluid, coating with porous media on the heater surface, applying an electric field. The recent study related to the CHF is focus on using the nanofluid. In this paper, the new approach was investigated by using the microencapsulated phase change material (MPCM). MPCM is the particles whose diameter is from 0.1μm to 1000μm. The MPCM consists of the core material and the shell material. The core material can be solid, liquid, gas or even the mixture. The solid paraffin is the best candidate as the core material due to its stable chemical and thermal properties. And the shell material is generally synthesized polymer of about several micrometers in thickness. The most interesting feature of the MPCM is that the latent heat associated with the solid-liquid phase change is related to the heat transfer. When the MPCM is dispersed into the carrier fluid, a kind of suspension named as microencapsulated phase change slurry (MPCS) is formed. The study on the MPCS was conducted in field of both the heat transfer fluids and energy storage media. It is inspired by the fact that the latent heat can serve distribution to the additional CHF margin. The purpose of this work is to confirm whether or not the CHF is enhanced

  8. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology

    Pedroso, D.L.; Dogenski, M.; Thomazini, M.; Heinemann, R.J.B.; Favaro-Trindade, C.S.

    2013-01-01

    In the present study, the cells of Bifidobacterium animalis subsp. lactis (BI-01) and Lactobacillus acidophilus (LAC-04) were encapsulated in cocoa butter using spray-chilling technology. Survival assays were conducted to evaluate the resistance of the probiotics to the spray-chilling process, their resistance to the simulated gastric and intestinal fluids (SGF and SIF), and their stability during 90 days of storage. The viability of the cells was not affected by microencapsulation. The free and encapsulated cells of B. animalis subsp. lactis were resistant to both SGF and SIF. The micro-encapsulated cells of L. acidophilus were more resistant to SGF and SIF than the free cells; the viability of the encapsulated cells was enhanced by 67%, while the free cells reached the detection limit of the method (103 CFU/g). The encapsulated probiotics were unstable when they were stored at 20 °C. The population of encapsulated L. acidophilus decreased drastically when they were stored at 7 °C; only 20% of cells were viable after 90 days of storage. The percentage of viable cells of the encapsulated B. animalis subsp.lactis, however, was 72% after the same period of storage. Promising results were obtained when the microparticles were stored at −18 °C; the freeze granted 90 days of shelf life to the encapsulated cells. These results suggest that the spray-chilling process using cocoa butter as carrier protects L. acidophilus from gastrointestinal fluids. However, the viability of the cells during storage must be improved. PMID:24516445

  9. Ofloxacin induces apoptosis in microencapsulated juvenile rabbit chondrocytes by caspase-8-dependent mitochondrial pathway

    Sheng Zhiguo; Cao Xiaojuan; Peng Shuangqing; Wang Changyong; Li Qianqian; Wang Yimei; Liu Mifeng

    2008-01-01

    Quinolones (QNs)-induced arthropathy is an important toxic effect in immature animals leading to restriction of their therapeutic use in pediatrics. However, the exact mechanism still remains unclear. Recently, we have demonstrated that ofloxacin, a typical QN, induces apoptosis of alginate microencapsulated juvenile rabbit joint chondrocytes by disturbing the β 1 integrin functions and inactivating the ERK/MAPK signaling pathway. In this study, we extend our initial observations to further elucidate the mechanism(s) of ofloxacin-induced apoptosis by utilizing specific caspase inhibitors. Pretreatment with both caspase-9-specific inhibitor zLEHD-fmk and caspase-8 inhibitor zIETD-fmk attenuated ofloxacin-induced apoptosis and activation of caspase-3 of chondrocyte in a concentration-dependent manner, as determined by fluorescent dye staining, enzyme activity assay and immunoblotting. Furthermore, the activation of caspase-9, -8 and -3 stimulated by ofloxacin was significantly inhibited in the presence of zIETD-fmk while pretreatment with zLEHD-fmk only blocked the activation of caspase-9 and -3. Ofloxacin also stimulated a concentration-dependent translocation of cytochrome c from mitochondria into the cytosol and a decrease of mitochondrial transmembrane potential, which was completely inhibited by zIETD-fmk. In addition, ofloxacin was found to increase the level of Bax, tBid, p53 in a concentration- and time-dependent manner. Taken together, The current results indicate that the caspase-8-dependent mitochondrial pathway is primarily involved in the ofloxacin-induced apoptosis of microencapsulated juvenile rabbit joint chondrocytes

  10. Microencapsulation of Bifidobacterium animalis subsp. lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology

    D.L. Pedroso

    2013-09-01

    Full Text Available In the present study, the cells of Bifidobacterium animalis subsp. lactis (BI-01 and Lactobacillus acidophilus (LAC-04 were encapsulated in cocoa butter using spray-chilling technology. Survival assays were conducted to evaluate the resistance of the probiotics to the spray-chilling process, their resistance to the simulated gastric and intestinal fluids (SGF and SIF, and their stability during 90 days of storage. The viability of the cells was not affected by microencapsulation. The free and encapsulated cells of B. animalis subsp. lactis were resistant to both SGF and SIF. The micro-encapsulated cells of L. acidophilus were more resistant to SGF and SIF than the free cells; the viability of the encapsulated cells was enhanced by 67%, while the free cells reached the detection limit of the method (10³ CFU/g. The encapsulated probiotics were unstable when they were stored at 20 °C. The population of encapsulated L. acidophilus decreased drastically when they were stored at 7 °C; only 20% of cells were viable after 90 days of storage. The percentage of viable cells of the encapsulated B. animalis subsp.lactis, however, was 72% after the same period of storage. Promising results were obtained when the microparticles were stored at -18 °C; the freeze granted 90 days of shelf life to the encapsulated cells. These results suggest that the spray-chilling process using cocoa butter as carrier protects L. acidophilus from gastrointestinal fluids. However, the viability of the cells during storage must be improved.

  11. Suitability of using monolayered and multilayered emulsions for microencapsulation of ω-3 fatty acids by spray drying

    Jiménez-Martín, Estefanía; Gharsallaoui, Adem; Pérez-Palacios, Trinidad

    2015-01-01

    Microencapsulation of ω-3 fatty acids by spray drying was studied using both monolayered (lecithin) and multilayered (lecithin-chitosan) fish oil emulsions with maltodextrin as wall material. Stability of the multilayered emulsions was higher than the monolayered ones, and increased...... with the highest concentration of chitosan (1 % w/w), being related with lower detection of TBARS at high storage temperatures. Overall, this study shows the suitability of microencapsulating ω-3 fatty acids by spray drying using both monolayered and multilayered fish oil emulsions with maltodextrin as wall...... material. Multilayered microcapsules prepared with lecithin-chitosan emulsions provide a great protective effect against lipid oxidation of fish oil during storage at moderate to high temperatures (30 °C and 60 °C). These multilayered microcapsules could be therefore successfully used as a fish oil...

  12. Microencapsulation structures based on protein-coated liposomes obtained through electrospraying for the stabilization and improved bioaccessibility of curcumin.

    Gómez-Mascaraque, Laura G; Casagrande Sipoli, Caroline; de La Torre, Lucimara Gaziola; López-Rubio, Amparo

    2017-10-15

    Novel food-grade hybrid encapsulation structures based on the entrapment of phosphatidylcholine liposomes, within a WPC matrix through electrospraying, were developed and used as delivery vehicles for curcumin. The loading capacity and encapsulation efficiency of the proposed system was studied, and the suitability of the approach to stabilize curcumin and increase its bioaccessibility was assessed. Results showed that the maximum loading capacity of the liposomes was around 1.5% of curcumin, although the loading capacity of the hybrid microencapsulation structures increased with the curcumin content by incorporation of curcumin microcrystals upon electrospraying. Microencapsulation of curcumin within the proposed hybrid structures significantly increased its bioaccessibility (∼1.7-fold) compared to the free compound, and could successfully stabilize it against degradation in PBS (pH=7.4). The proposed approach thus proved to be a promising alternative to produce powder-like functional ingredients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Parallel in vivo monitoring of pH in gill capillaries and muscles of fishes using microencapsulated biomarkers

    Ekaterina Borvinskaya

    2017-05-01

    Full Text Available Tracking physiological parameters in different organs within the same organism simultaneously and in real time can provide an outstanding representation of the organism's physiological status. The state-of-the-art technique of using encapsulated fluorescent molecular probes (microencapsulated biomarkers is a unique tool that can serve as a platform for the development of new methods to obtain in vivo physiological measurements and is applicable to a broad range of organisms. Here, we describe a novel technique to monitor the pH of blood inside the gill capillaries and interstitial fluid of muscles by using microencapsulated biomarkers in a zebrafish model. The functionality of the proposed technique is shown by the identification of acidification under anesthesia-induced coma and after death. The pH in muscles reacts to hypoxia faster than that in the gill bloodstream, which makes both parameters applicable as markers of either local or bodily reactions.

  14. Formulation and drug-content assay of microencapsulated antisense oligonucleotide to NF-κB using ATR-FTIR

    Siwale, Rodney; Meadows, Fred; Mody, Vicky V; Shah, Samit

    2013-01-01

    Antisense oligonucleotide to NF-κB sequence: 5′-GGA AAC ACA TCC TCC ATG-3′, was microencapsulated in an albumin matrix by the method of spray drying TM . Spectral analysis was performed on varying drug loading formulations of both drugs by mid-IR attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An out of plane O–H bending vibration at 948 cm −1 , unique to both the native and microencapsulated drugs was identified. The calculated peak areas corresponded to the drug loadings in the microsphere formulations. A standard curve could then be used to determine the drug content of an unknown microsphere formulation. Accuracy and precision were determined to be comparable to other analytical techniques such as HPLC. (paper)

  15. Influence of soy protein’s structural modifications on their microencapsulation properties: a-tocopherol microparticles preparation

    Nesterenko, Alla; Alric, Isabelle; Silvestre, Françoise; Durrieu, Vanessa

    2012-01-01

    Enzymatic and chemical modifications of soy protein isolate (SPI) were studied in order to improve SPI properties for their use as wall material for a-tocopherol microencapsulation by spray-drying. The structural modifications of SPI by enzymatic hydrolysis and/or N-acylation were carried out in aqueous media without any use of organic solvent neither surfactant. Emulsions from aqueous solutions of native or modified SPI and hydrophobic a-tocopherol, were prepared and spray-dri...

  16. Microencapsulation of chemotherapeutics into monodisperse and tunable biodegradable polymers via electrified liquid jets: control of size, shape, and drug release.

    Fattahi, Pouria; Borhan, Ali; Abidian, Mohammad Reza

    2013-09-06

    This paper describes microencapsulation of antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, Carmustine) into biodegradable polymer poly(lactic-co-glycolic) acid (PLGA) using an electrojetting technique. The resulting BCNU-loaded PLGA microcapsules have significantly higher drug encapsulation efficiency, more tunable drug loading capacity, and (3) narrower size distribution than those generated using other encapsulation methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microencapsulation of new probiotic formulations for gastrointestinal delivery: in vitro study to assess viability and biological properties.

    D'Orazio, G; Di Gennaro, P; Boccarusso, M; Presti, I; Bizzaro, G; Giardina, S; Michelotti, A; Labra, M; La Ferla, B

    2015-11-01

    The paper describes the preparation of new probiotic formulations based on chitosan-coated alginate microcapsules containing three different probiotic strains, Lactobacillus plantarum PBS067, Lactobacillus rhamnosus PBS070, and Bifidobacterium animalis subsp. lactis PBS075 taken individually and as a mixture of them. The effects of microencapsulation on the viability of the strains in conditions simulating the gastrointestinal tract and under industrial processes conditions were studied. In addition, an evaluation of their probiotic properties was also investigated by in vitro tests on the human intestinal cell line HT-29 to explore the effect of microencapsulation on health beneficial effect of the considered strains. Non-encapsulated cells were completely destroyed when exposed to simulated gastric juice and other stress conditions, while encapsulated cells exhibited a significantly higher resistance to artificial intestinal juice and heat and osmotic treatment. Moreover, in this study, the effect of the various microencapsulated probiotic strain formulations was compared with analogous formulations also containing the β-glucan Pleuran. The microencapsulation effectively protected the selected bacteria, as single strain and as a mixture of the three strains in both the formulations with and without Pleuran, from simulating gastrointestinal tract and industrial process conditions in delivering the viable cells without any significant adverse effect on their functionalities. The comparative study of the immunomodulatory properties of each single strain and the mixture of the three strains revealed a synergistic effect of the probiotic mixture, but no appreciable difference between the two kinds of formulations could be detected, as the effect of Pleuran is covered by the higher potential of the probiotic strains.

  18. The role of gibberellins in improving the resistance of tebuconazole-coated maize seeds to chilling stress by microencapsulation.

    Yang, Lijuan; Yang, Daibin; Yan, Xiaojing; Cui, Li; Wang, Zhenying; Yuan, Huizhu

    2016-11-07

    Chilling stress during germination often causes severe injury. In the present study, maize seed germination and shoot growth under chilling stress were negatively correlated with the dose of tebuconazole in an exponential manner as predicted by the model Y = A + B × e (-x/k) . Microencapsulation was an effective means of eliminating potential phytotoxic risk. The gibberellins (GAs) contents were higher after microencapsulation treatment than after conventional treatment when the dose of tebuconazole was higher than 0.12 g AI (active ingredient) kg -1 seed. Further analysis indicated that microencapsulation can stimulate ent-kaurene oxidase (KO) activity to some extent, whereas GA 3-oxidase (GA3ox) and GA 2-oxidase (GA2ox) activities remained similar to those in the control. Genes encoding GA metabolic enzymes exhibited different expression patterns. Transcript levels of ZmKO1 increased in the microcapsule treatments compared to the control. Even when incorporated into microcapsules, tebuconazole led to the upregulation of ZmGA3ox1 at doses of less than 0.12 g AI kg -1 seed and to the upregulation of ZmGA3ox2 when the dose was higher than 0.12 g AI kg -1 seed. With increasing doses of microencapsulated tebuconazole, the transcript levels of ZmGA2ox4, ZmGA2ox5 and ZmGA2ox6 exhibited upward trends, whereas the transcript levels of ZmGA2ox7 exhibited a downward trend.

  19. Microencapsulated cells of Lactobacillus paracasei subsp. paracasei in biopolymer complex coacervates and their function in a yogurt matrix.

    Bosnea, L A; Moschakis, T; Biliaderis, C G

    2017-02-22

    L. paracasei subsp. paracasei E6 cells were encapsulated by complex coacervation using whey protein isolate (WPI) and gum arabic and introduced in stirred yogurts after fermentation. For comparison purposes, yogurts without addition of L. paracasei and yogurts with free cells of L. paracasei were produced. The survival of free and microencapsulated L. paracasei cells was evaluated during storage of the yogurts for 45 days at 4 °C. In addition, yogurts were exposed to simulated gastric juice and the reduction in viable numbers of L. paracasei cells was assessed. The effect of complex coacervates' addition on the rheological properties of yogurts was also evaluated. Yogurts containing encapsulated L. paracasei cells showed a slightly improved cell survival (≤0.22 log CFU g -1 reduction) during storage when compared to yogurts containing free cells (≤0.64 log CFU g -1 reduction). Moreover, the microencapsulated L. paracasei cells exhibited greater survival compared to free cells upon exposure of the yogurt samples to simulated gastric juice (pH 2.0) for 3 h. Finally, the incorporation of complex coacervates did not significantly affect the rheological properties of yogurts especially when added at concentrations less than 10% w/w. Consequently, the inclusion of microencapsulated bacteria by complex coacervation in yogurts, could become an effective vehicle for successful delivery of probiotics to the gut, and hence contributing to the improvement of the gastrointestinal tract health, without altering the texture of the product.

  20. Influence of oligofructose-enriched inulin on survival of microencapsulated Lactobacillus casei 01 and adhesive properties of synbiotic microparticles

    Tanja Petreska Ivanovska

    2015-04-01

    Full Text Available Lactobacillus casei 01 was co-encapsulated with the prebiotic oligofructose-enriched inulin at different concentrations to investigate the efficiency of the prebiotic for improving the probiotic viability. Prebiotic effect on the probiotic survival under microencapsulation conditions by spray- and freeze-drying and storage stability of encapsulated living cells at 4 °C during period of 8 weeks was evaluated. Adhesiveness of L. casei 01 loaded microparticles to pig mucin was investigated in vitro to estimate the role of microencapsulation for improving the cell adhesion ability. The microparticles produced with 3% w/w oligofructose-enriched inulin showed higher initial count, while oligofructose-enriched inulin applied at 1.5% w/w resulted in better protection of L. casei 01 under storage conditions. Further, it has been observed significantly increased pig mucin binding to microparticles compared to free probiotic cells in buffer solutions simulating GI conditions, during 24 h incubation. Hence, cell microencapsulation beside enhanced viability may allow prolonged residence time of the probiotic cells in the lower intestine through excellent muco-adhesive properties of the encapsulating materials. The results suggest synbiotic chitosan-Ca-alginate microparticles as convenient delivery system capable to ensure effective cell concentration in the lower intestine where probiotic colonization is dominant.

  1. Self-assembly fabrication of microencapsulated n-octadecane with natural silk fibroin shell for thermal-regulating textiles

    Zhao, Liang; Luo, Jie; Wang, Hao; Song, Guolin; Tang, Guoyi

    2016-01-01

    Highlights: • Microencapsulated n-octadecane with silk fibroin shell was fabricated. • The microcapsules show high heat storage capability. • The microcapsules are good candidate for thermal-regulating textiles. - Graphical Abstract: Display Omitted - Abstract: Novel microencapsulated n-octadecane with natural silk fibroin (SF) shell was prepared using a self-assembly method in oil-in-water (o/w) emulsion. The microstructures and chemical compositions of the resultant microcapsules were investigated by scanning electronic microscope (SEM) and Fourier transformation infrared spectroscope (FT-IR). SEM images demonstrated that the microcapsules presented spherical shape with a median size of 4–5 µm. FT-IR results confirmed that SF shell was successfully fabricated upon n-octadecane core. According to the DSC and TGA examinations, the resultant microcapsules exhibited good phase-change performance, high thermal-storage capability and high thermal reliability. The microencapsulated n-octadecane with SF shell synthesized in the present study would be a potential candidate for the application of thermal-regulating textiles or fibers and biological medical materials, etc.

  2. Real-Time Monitoring of Low-Level Mixed-Waste Loading during Polyethylene Microencapsulation using Transient Infrared Spectroscopy

    Jones, Roger W.; Kalb, Paul D.; McClelland, John F.; Ochiai, Shukichi

    1999-01-01

    In polyethylene microencapsulation, low-level mixed waste (LLMW) is homogenized with molten polyethylene and extruded into containers, resulting in a lighter, lower-volume waste form than cementation and grout methods produce. Additionally, the polyethylene-based waste form solidifies by cooling, with no risk of the waste interfering with cure, as may occur with cementation and grout processes. We have demonstrated real-time monitoring of the polyethylene encapsulation process stream using a noncontact device based on transient infrared spectroscopy (TIRS). TIRS can acquire mid-infrared spectra from solid or viscous liquid process streams, such as the molten, waste-loaded polyethylene stream that exits the microencapsulation extruder. The waste loading in the stream was determined from the TIRS spectra using partial least squares techniques. The monitor has been demonstrated during the polyethylene microencapsulation of nitrate-salt LLMW and its surrogate, molten salt oxidation LLMW and its surrogate, and flyash. The monitor typically achieved a standard error of prediction for the waste loading of about 1% by weight with an analysis time under 1 minute

  3. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology.

    Freitas, Sergio; Merkle, Hans P; Gander, Bruno

    2005-02-02

    The therapeutic benefit of microencapsulated drugs and vaccines brought forth the need to prepare such particles in larger quantities and in sufficient quality suitable for clinical trials and commercialisation. Very commonly, microencapsulation processes are based on the principle of so-called "solvent extraction/evaporation". While initial lab-scale experiments are frequently performed in simple beaker/stirrer setups, clinical trials and market introduction require more sophisticated technologies, allowing for economic, robust, well-controllable and aseptic production of microspheres. To this aim, various technologies have been examined for microsphere preparation, among them are static mixing, extrusion through needles, membranes and microfabricated microchannel devices, dripping using electrostatic forces and ultrasonic jet excitation. This article reviews the current state of the art in solvent extraction/evaporation-based microencapsulation technologies. Its focus is on process-related aspects, as described in the scientific and patent literature. Our findings will be outlined according to the four major substeps of microsphere preparation by solvent extraction/evaporation, namely, (i) incorporation of the bioactive compound, (ii) formation of the microdroplets, (iii) solvent removal and (iv) harvesting and drying the particles. Both, well-established and more advanced technologies will be reviewed.

  4. Complex coacervation with whey protein isolate and gum arabic for the microencapsulation of omega-3 rich tuna oil.

    Eratte, Divya; Wang, Bo; Dowling, Kim; Barrow, Colin J; Adhikari, Benu P

    2014-11-01

    Tuna oil rich in omega-3 fatty acids was microencapsulated in whey protein isolate (WPI)-gum arabic (GA) complex coacervates, and subsequently dried using spray and freeze drying to produce solid microcapsules. The oxidative stability, oil microencapsulation efficiency, surface oil and morphology of these solid microcapsules were determined. The complex coacervation process between WPI and GA was optimised in terms of pH, and WPI-to-GA ratio, using zeta potential, turbidity, and morphology of the microcapsules. The optimum pH and WPI-to-GA ratio for complex coacervation was found to be 3.75 and 3 : 1, respectively. The spray dried solid microcapsules had better stability against oxidation, higher oil microencapsulation efficiency and lower surface oil content compared to the freeze dried microcapsules. The surface of the spray dried microcapsules did not show microscopic pores while the surface of the freeze dried microcapsules was more porous. This study suggests that solid microcapsules of omega-3 rich oils can be produced using WPI-GA complex coacervates followed by spray drying and these microcapsules can be quite stable against oxidation. These microcapsules can have many potential applications in the functional food and nutraceuticals industry.

  5. Improved capacitive melting curve measurements

    Sebedash, Alexander; Tuoriniemi, Juha; Pentti, Elias; Salmela, Anssi

    2009-01-01

    Sensitivity of the capacitive method for determining the melting pressure of helium can be enhanced by loading the empty side of the capacitor with helium at a pressure nearly equal to that desired to be measured and by using a relatively thin and flexible membrane in between. This way one can achieve a nanobar resolution at the level of 30 bar, which is two orders of magnitude better than that of the best gauges with vacuum reference. This extends the applicability of melting curve thermometry to lower temperatures and would allow detecting tiny anomalies in the melting pressure, which must be associated with any phenomena contributing to the entropy of the liquid or solid phases. We demonstrated this principle in measurements of the crystallization pressure of isotopic helium mixtures at millikelvin temperatures by using partly solid pure 4 He as the reference substance providing the best possible universal reference pressure. The achieved sensitivity was good enough for melting curve thermometry on mixtures down to 100 μK. Similar system can be used on pure isotopes by virtue of a blocked capillary giving a stable reference condition with liquid slightly below the melting pressure in the reference volume. This was tested with pure 4 He at temperatures 0.08-0.3 K. To avoid spurious heating effects, one must carefully choose and arrange any dielectric materials close to the active capacitor. We observed some 100 pW loading at moderate excitation voltages.

  6. Automatic Control of Silicon Melt Level

    Duncan, C. S.; Stickel, W. B.

    1982-01-01

    A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

  7. Magnetic susceptibility of semiconductor melts

    Kutvitskij, V.A.; Shurygin, P.M.

    1975-01-01

    The temperature dependences chi of various alloys confirm the existence of cluster formations in molten semiconductors, the stability of these formations in melts being considerably affected by the anion nature. The concentrational dependences of the magnetic susceptibility for all the investigated systems exhibit the diamagnetism maxima corresponding to the compound compositions. Heating the melt causes ''smearing'' the maxima, which is related with the cluster structure dissociation. The existence of the maxima concentrational dependence chi corresponding to BiTe and BiSe is found in the isotherms. The non-linear dependence of chi on the composition shows the absence of a single-valued relation between the phase diagram and the chi-diagram for melts

  8. On the rapid melt quenching

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.

    1994-01-01

    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  9. Effect of addition of inulin and fenugreek on the survival of microencapsulated Enterococcus durans 39C in alginate-psyllium polymeric blends in simulated digestive system and yogurt

    Babak Haghshenas

    2015-07-01

    Full Text Available The use of biopolymers for probiotic microencapsulation has been investigated in this paper. The objectives are to enhance its survival rate, colonic release, and stability of these probiotic cultures in digestive condition during storage time. Nine types of biopolymers (alginate-psyllium blend with different concentration of prebiotic; (inulin or fenugreek were used as candidate for microencapsulation matrix. One strain of probiotic candidates, namely; Enterococcus durans 39C was used in this study. The microencapsulation of this strain with the respective polymer blend was performed by using a simple extrusion method. All blend of formulations have recorded high encapsulation efficiency at value >98%. The survival rate of viable probiotic cells under simulated digestive conditions was also high with value above 47% as compared to non-microencapsulated cells. These nine gel formulations also displayed the high survival rate of viable probiotic cells during storage time (28 d. Their release occurred after 2 h in colonic condition and sustained until 12th h of incubation period. An increase of prebiotic effect value added was observed in incorporated inulin and fenugreek formulations. In short, this study revealed that a new herbal-based psyllium and fenugreek polymers have suitable potential as a matrix for probiotic microencapsulation.

  10. In vitro analysis of protection of the enzyme bile salt hydrolase against enteric conditions by whey protein-gum arabic microencapsulation.

    Lambert, J M; Weinbreck, F; Kleerebezem, M

    2008-09-24

    The interest in efficient intestinal delivery of health-promoting substances is increasing. However, the delivery of vulnerable substances such as enzymes requires specific attention. The transit through the stomach, where the pH is very low, can be detrimental to the enzymatic activity of the protein to be delivered. Here, we describe the microencapsulation of the model enzyme bile salt hydrolase (Bsh) using whey protein-gum arabic microencapsulates for food-grade and targeted enzyme delivery in the proximal region of the small intestine. Furthermore, the efficacy of enteric coating microencapsulates for site-specific enzyme delivery was compared in vitro with living Lactobacillus plantarum WCFS1 bacteria that endogenously produce the Bsh enzyme. Microencapsulates allowed highly effective protection of the enzyme under gastric conditions. Moreover, Bsh release under intestinal conditions appeared to be very efficient, although in the presence of pancreatin, the Bsh activity decreased in time due to proteolytic degradation. In comparison, L. plantarum appeared to be capable to withstand gastric conditions as well as pancreatin challenge. Delivery using encapsulates and live bacteria each have different (dis)advantages that are discussed. In conclusion, live bacteria and food-grade microencapsulates provide alternatives for dedicated enteric delivery of specific enzymes, and the choice of enzyme to be delivered may determine which mode of delivery is most suitable.

  11. Fast reactors

    Vasile, A.

    2001-01-01

    Fast reactors have capacities to spare uranium natural resources by their breeding property and to propose solutions to the management of radioactive wastes by limiting the inventory of heavy nuclei. This article highlights the role that fast reactors could play for reducing the radiotoxicity of wastes. The conversion of 238 U into 239 Pu by neutron capture is more efficient in fast reactors than in light water reactors. In fast reactors multi-recycling of U + Pu leads to fissioning up to 95% of the initial fuel ( 238 U + 235 U). 2 strategies have been studied to burn actinides: - the multi-recycling of heavy nuclei is made inside the fuel element (homogeneous option); - the unique recycling is made in special irradiation targets placed inside the core or at its surroundings (heterogeneous option). Simulations have shown that, for the same amount of energy produced (400 TWhe), the mass of transuranium elements (Pu + Np + Am + Cm) sent to waste disposal is 60,9 Kg in the homogeneous option and 204.4 Kg in the heterogeneous option. Experimental programs are carried out in Phenix and BOR60 reactors in order to study the feasibility of such strategies. (A.C.)

  12. Fast ejendom

    Pagh, Peter

    Bogen omfatter en gennemgang af lovgivning, praksis og teori vedrørende køb af fast ejendom og offentligretlig og privatretlig regulering. Bogen belyser bl.a. de privatretlige emner: købers misligholdelsesbeføjelser, servitutter, naboret, hævd og erstatningsansvar for miljøskader samt den...

  13. Acoustic detection of melt particles

    Costley, R.D. Jr.

    1988-01-01

    The Reactor Safety Research Department at Sandia National Laboratories is investigating a type of Loss of Coolant Accident (LOCA). In this particular type of accident, core meltdown occurs while the pressure within the reactor pressure vessel (RPV) is high. If one of the instrument tube penetrations in the lower head fails, melt particles stream through the cavity and into the containment vessel. This experiment, which simulates this type accident, was performed in the Surtsev Direct Heating Test Facility which is approximately a 1:10 linear scaling of a large dry containment volume. A 1:10 linear scale model of the reactor cavity was placed near the bottom of the Surtsey vessel so that the exit of the cavity was at the vertical centerline of the vessel. A pressure vessel used to create the simulated molten core debris was located at the scaled height of the RPV. In order to better understand how the melt leaves the cavity and streams into the containment an array of five acoustic sensors was placed directly in the path of the melt particles about 30 feet from the exit of the sealed cavity. Highly damped, broadband sensors were chosen to minimize ringing so that individual particle hits could be detected. The goal was to count the signals produced by the individual particle hits to get some idea of how the melt particles left the cavity. This document presents some of the results of the experiment. 9 figs

  14. Thermodynamics of freezing and melting

    Pedersen, Ulf Rørbæk; Costigliola, Lorenzo; Bailey, Nicholas

    2016-01-01

    phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio...

  15. Systemic delivery of microencapsulated 3-bromopyruvate for the therapy of pancreatic cancer.

    Chapiro, Julius; Sur, Surojit; Savic, Lynn Jeanette; Ganapathy-Kanniappan, Shanmugasundaram; Reyes, Juvenal; Duran, Rafael; Thiruganasambandam, Sivarajan Chettiar; Moats, Cassandra Rae; Lin, MingDe; Luo, Weibo; Tran, Phuoc T; Herman, Joseph M; Semenza, Gregg L; Ewald, Andrew J; Vogelstein, Bert; Geschwind, Jean-François

    2014-12-15

    This study characterized the therapeutic efficacy of a systemically administered formulation of 3-bromopyruvate (3-BrPA), microencapsulated in a complex with β-cyclodextrin (β-CD), using an orthotopic xenograft mouse model of pancreatic ductal adenocarcinoma (PDAC). The presence of the β-CD-3-BrPA complex was confirmed using nuclear magnetic resonance spectroscopy. Monolayer as well as three-dimensional organotypic cell culture was used to determine the half-maximal inhibitory concentrations (IC50) of β-CD-3-BrPA, free 3-BrPA, β-CD (control), and gemcitabine in MiaPaCa-2 and Suit-2 cell lines, both in normoxia and hypoxia. Phase-contrast microscopy, bioluminescence imaging (BLI), as well as zymography and Matrigel assays were used to characterize the effects of the drug in vitro. An orthotopic lucMiaPaCa-2 xenograft tumor model was used to investigate the in vivo efficacy. β-CD-3-BrPA and free 3-BrPA demonstrated an almost identical IC50 profile in both PDAC cell lines with higher sensitivity in hypoxia. Using the Matrigel invasion assay as well as zymography, 3-BrPA showed anti-invasive effects in sublethal drug concentrations. In vivo, animals treated with β-CD-3-BrPA demonstrated minimal or no tumor progression as evident by the BLI signal as opposed to animals treated with gemcitabine or the β-CD (60-fold and 140-fold signal increase, respectively). In contrast to animals treated with free 3-BrPA, no lethal toxicity was observed for β-CD-3-BrPA. The microencapsulation of 3-BrPA represents a promising step towards achieving the goal of systemically deliverable antiglycolytic tumor therapy. The strong anticancer effects of β-CD-3-BrPA combined with its favorable toxicity profile suggest that clinical trials, particularly in patients with PDAC, should be considered. ©2014 American Association for Cancer Research.

  16. Feeding and oviposition deterrent activities of microencapsulated cardamom oleoresin and eucalyptol against Cydia pomonella

    Orkun Baris Kovanci

    2016-03-01

    Full Text Available Behavioral manipulation of codling moth with spice-based deterrents may provide an alternative control strategy. Microencapsulation technology could lead to more effective use of spice essential oils and oleoresins in the field by extending their residual activity. The feeding and oviposition deterrent potential of the microencapsulated cardamom (Elettaria cardamomum [L.] Maton oleoresin (MEC-C and eucalyptol (MEC-E were evaluated against codling moth, Cydia pomonella Linnaeus, 1758. MEC-C capsules contained both 1,8-cineole and a-terpinyl acetate, whereas MEC-E capsules contained only 1,8-cineole. In larval feeding bioassays, MEC-E exhibited the lowest feeding deterrent activity (33% while MEC-C at 100 mg mL-1 had the highest (91%. The highest oviposition deterrence activity against gravid females was also shown by MEC-C at 100 mg mL-1 with 84% effective repellency. In 2010 and 2011, two apple orchards were divided into four 1 ha blocks and sprayed with the following treatments in ultra-low volume sprays: (a MEC-E at 100 g L-1, (b MEC-C at 50 g L-1, (c MEC-C at 100 g L-1, and (d MEC-pyrethrin at 15 mL L-1. Water-treated abandoned orchards were used as negative controls. Moth catches were monitored weekly using Ajar traps baited with the combination of codlemone, pear ester, and terpinyl acetate. Based on pooled data, mean cumulative moth catch per trap per week was significantly higher in the MEC-E blocks (26.3 male and 13.5 female moths than those in other treatments except the abandoned blocks. At mid-season and pre-harvest damage assessment, the percentage of infested fruits with live larvae in the high dose MEC-C-treated blocks was reduced to 1.9% and 2.3% in 2010 and to 1.1% and 1.8% in 2011, respectively. Since fruit damage exceeded the economic damage threshold of 1%, high-dose MEC-C treatment may only offer supplementary protection against codling moth in integrated pest management programs.

  17. Microencapsulated equine mesenchymal stromal cells promote cutaneous wound healing in vitro.

    Bussche, Leen; Harman, Rebecca M; Syracuse, Bethany A; Plante, Eric L; Lu, Yen-Chun; Curtis, Theresa M; Ma, Minglin; Van de Walle, Gerlinde R

    2015-04-11

    The prevalence of impaired cutaneous wound healing is high and treatment is difficult and often ineffective, leading to negative social and economic impacts for our society. Innovative treatments to improve cutaneous wound healing by promoting complete tissue regeneration are therefore urgently needed. Mesenchymal stromal cells (MSCs) have been reported to provide paracrine signals that promote wound healing, but (i) how they exert their effects on target cells is unclear and (ii) a suitable delivery system to supply these MSC-derived secreted factors in a controlled and safe way is unavailable. The present study was designed to provide answers to these questions by using the horse as a translational model. Specifically, we aimed to (i) evaluate the in vitro effects of equine MSC-derived conditioned medium (CM), containing all factors secreted by MSCs, on equine dermal fibroblasts, a cell type critical for successful wound healing, and (ii) explore the potential of microencapsulated equine MSCs to deliver CM to wounded cells in vitro. MSCs were isolated from the peripheral blood of healthy horses. Equine dermal fibroblasts from the NBL-6 (horse dermal fibroblast cell) line were wounded in vitro, and cell migration and expression levels of genes involved in wound healing were evaluated after treatment with MSC-CM or NBL-6-CM. These assays were repeated by using the CM collected from MSCs encapsulated in core-shell hydrogel microcapsules. Our salient findings were that equine MSC-derived CM stimulated the migration of equine dermal fibroblasts and increased their expression level of genes that positively contribute to wound healing. In addition, we found that equine MSCs packaged in core-shell hydrogel microcapsules had similar effects on equine dermal fibroblast migration and gene expression, indicating that microencapsulation of MSCs does not interfere with the release of bioactive factors. Our results demonstrate that the use of CM from MSCs might be a promising

  18. Solvothermal method as a green chemistry solution for micro-encapsulation of phase change materials for high temperature thermal energy storage

    Tudor, Albert Ioan; Motoc, Adrian Mihail; Ciobota, Cristina Florentina; Ciobota, Dan. Nastase; Piticescu, Radu Robert; Romero-Sanchez, Maria Dolores

    2018-05-01

    Thermal energy storage systems using phase change materials (PCMs) as latent heat storage are one of the main challenges at European level in improving the performances and efficiency of concentrated solar power energy generation due to their high energy density. PCM with high working temperatures in the temperature range 300-500 °C are required for these purposes. However their use is still limited due to the problems raised by the corrosion of the majority of high temperature PCMs and lower thermal transfer properties. Micro-encapsulation was proposed as one method to overcome these problems. Different micro-encapsulation methods proposed in the literature are presented and discussed. An original process for the micro-encapsulation of potassium nitrate as PCM in inorganic zinc oxide shells based on a solvothermal method followed by spray drying to produce microcapsules with controlled phase composition and distribution is proposed and their transformation temperatures and enthalpies measured by differential scanning calorimetry are presented.

  19. DEVELOPMENT AND DEPLOYMENT ASSESSMENT OF A MELT-DOWN PROOF MODULAR MICRO REACTOR (MDP-MMR)

    Hawari, Ayman I.; Venneri, Francesco

    2018-04-02

    The objective of this project is to perform feasibility assessment and technology gap analysis and establish a development roadmap for an innovative and highly compact Micro Modular Reactor (MMR) concept that integrates power production, power conversion and electricity generation in a single unit. The MMR is envisioned to use fully ceramic micro-encapsulated (FCM) fuel, a particularly robust form of TRISO fuel, and to be gas-cooled (e.g., He or CO2) and capable of generating power in the range of 10 to 40 MW-thermal. It is designed to be absolutely melt-down proof (MDP) under all circumstances including complete loss of coolant scenarios with no possible release of radioactive material, to be factory produced, to have a cycle length of greater than 20 years, and to be highly proliferation resistant. In addition, it will be transportable, retrievable and suitable for use in remote areas. As such, the MDP-MMR will represent a versatile reactor concept that is suitable for use in various applications including electricity generation, process heat utilization and propulsion.

  20. Direct contact heat transfer characteristics between melting alloy and water

    Kinoshita, Izumi; Nishi, Yoshihisa; Furuya, Masahiro

    1995-01-01

    As a candidate for an innovative steam generator for fast breeder reactors, a heat exchanger with direct contact heat transfer between melting alloy and water was proposed. The evaluation of heat transfer characteristics of this heat exchanger is one of the research subjects for the design and development of the steam generator. In this study, the effect of the pressure on heat transfer characteristics and the required degree of superheating of melting alloy above water saturation temperature are evaluated during the direct contact heat transfer experiment by injecting water into Wood's alloy. In the experiment, the pressure, the temperature of the Wood's alloy, the flow rate of feed water, and the depth of the feed water injection point are varied as parameters. As a result of the experiment, the product of the degree of Wood's alloy superheating above water saturation temperature and the depth of the feed water injection point is constant for each pressure. This constant increases as the pressure rises. (author)

  1. On high-pressure melting of tantalum

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  2. Silver diffusion through silicon carbide in microencapsulated nuclear fuels TRISO; Difusion de plata a traves de carburo de silicio en combustibles nucleares microencapsulados TRISO

    Cancino T, F.; Lopez H, E., E-mail: Felix.cancino@cinvestav.edu.mx [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Av. Industria Metalurgica No. 1062, Col. Ramos Arizpe, 25900 Saltillo, Coahuila (Mexico)

    2013-10-15

    The silver diffusion through silicon carbide is a challenge that has persisted in the development of microencapsulated fuels TRISO (Tri structural Isotropic) for more than four decades. The silver is known as a strong emitter of gamma radiation, for what is able to diffuse through the ceramic coatings of pyrolytic coal and silicon carbide and to be deposited in the heat exchangers. In this work we carry out a recount about the art state in the topic of the diffusion of Ag through silicon carbide in microencapsulated fuels and we propose the role that the complexities in the grain limit can have this problem. (Author)

  3. On melting of boron phosphide under pressure

    Solozhenko, Vladimir; Mukhanov, V. A.

    2015-01-01

    Melting of cubic boron phosphide, BP, has been studied at pressures to 9 GPa using synchrotron X-ray diffraction and electrical resistivity measurements. It has been found that above 2.6 GPa BP melts congruently, and the melting curve exhibits negative slope (–60 ± 7 K/GPa), which is indicative of a higher density of the melt as compared to the solid phase.

  4. Effect of a new drug releasing system on microencapsulated islet transplantation

    Lu, Binjie; Gao, Qingkun; Liu, Rui; Ren, Ming; Wu, Yan; Jiang, Zaixing; Zhou, Yi

    2015-01-01

    Objective: This study aimed to develop a novel release system for grafted islets. Materials and methods: A graphene oxide-FTY720 release system was constructed to test the drug loading and releasing capacity. The recipient rats were divided into four groups as following: Experiment group A (EG A) and B (EG B); Control group A (CG A) and B (CG B). In each group, (2000±100) IEQ microencapsulated islets were implanted into the abdominal cavity of the recipients with oral FTY720, local graphene oxide-FTY720 injection, without immunosuppressants, and with graphene oxide-saturated solution respectively. We detected the immunological data, the blood glucose level, and pericapsular overgrowth to show the transplantation effect. Results: 31% of adsorptive FTY720 was released within 6 h, and 82% of FTY720 was released within 48 h. From day 5 to 8, the amount of PBL in EG B was significantly less than those in EG A (PGraphene oxide-FTY720 complex showed a drug releasing effect. Local application of graphene-FTY720 releasing system could decrease the amount of peripheral blood lymphocytes (PBL) and the percentage of CD3 and CD8 T lymphocytes in blood for longer time than oral drug application. This releasing system could achieve a better blood glucose control. PMID:26722425

  5. Thermophysical and Mechanical Properties of Hardened Cement Paste with Microencapsulated Phase Change Materials for Energy Storage

    Hongzhi Cui

    2014-12-01

    Full Text Available In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes (TESCPs incorporated with different MPCM contents (5%, 10%, 15%, 20% and 25% by weight of cement were developed, and their thermal and mechanical properties were studied. The results showed that the total energy storage capacity of the hardened cement specimens with MPCM increased by up to 3.9-times compared with that of the control cement paste. The thermal conductivity at different temperature levels (35–36 °C, 55–56 °C and 72–74 °C decreased with the increase of MPCM content, and the decrease was the highest when the temperature level was 55–56 °C. Moreover, the compressive strength, flexural strength and density of hardened cement paste decreased with the increase in MPCM content linearly. Among the evaluated properties, the compressive strength of TESCPs had a larger and faster degradation with the increase of MPCM content.

  6. Influence of experimental parameters on the microencapsulation of a photopolymerizable phase.

    Pernot, J M; Brun, H; Pouyet, B; Sergent, M; Phan-Tan-Luu, R

    1993-01-01

    Conditions of microencapsulation by in situ polycondensation, using melamine-formaldehyde as wall material, are influenced by the chemical nature of the core to encapsulate. In our study concerning the encapsulation of a photopolymerizable phase containing an electrically charged compound, it was necessary to modify the experimental process to obtain capsules of good quality. We used the factorial design method of screening by utilization of an asymmetric matrix, according to the collapsing principle of Addleman. The advantage of this method is that it allows determination of the simultaneous influences of the 11 experimental parameters involved in this preparation. The calculation method can be applied to more than two levels for some of the factors. The continuously varying parameters were altered between two extreme levels, chosen to allow encapsulation. For discontinuous factors, such as the molecular weight of the modifying system or nature of the aminoplast, we used the commercially available compounds, respectively three and four kinds. The results of the obtained capsules were determined by comparing microphotographic pictures. With 16 experiments we found four more factors influencing quality of capsules. We also determined the most favourable levels for the other seven parameters. The results allowed us to find optimal conditions in the experimental field. We obtained capsules of a satisfactory quality for this purpose, using only minimum experimentation.

  7. Dental mesenchymal stem cells encapsulated in alginate hydrogel co-delivery microencapsulation system for cartilage regeneration

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-01-01

    Dental-derived MSCs are promising candidates for cartilage regeneration, with high chondrogenic differentiation capacity. This property contributes to making dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating Periodontal Ligament Stem Cells (PDLSCs) or Gingival Mesenchymal Stem Cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs, GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSC) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by toluidine blue and safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (Palginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. PMID:23891740

  8. Microencapsulation of Lactobacillus Acidophilus by Xanthan-Chitosan and Its Stability in Yoghurt

    Guowei Shu

    2017-12-01

    Full Text Available Microencapsulations of Lactobacillus acidophilus in xanthan-chitosan (XC and xanthan-chitosan-xanthan (XCX polyelectrolyte complex (PEC gels were prepared in this study. The process of encapsulation was optimized with the aid of response surface methodology (RSM. The optimum condition was chitosan of 0.68%, xanthan of 0.76%, xanthan-L. acidophilus mixture (XLM/chitosan of 1:2.56 corresponding to a high viable count (1.31 ± 0.14 × 1010 CFU·g−1, and encapsulation yield 86 ± 0.99%, respectively. Additionally, the application of a new encapsulation system (XC and XCX in yoghurt achieved great success in bacterial survival during the storage of 21 d at 4 °C and 25 °C, respectively. Specially, pH and acidity in yogurt were significantly influenced by the new encapsulation system in comparison to free suspension during 21 d storage. Our study provided a potential encapsulation system for probiotic application in dairy product which paving a new way for functional food development.

  9. Microencapsulation by spray-drying of anthocyanin pigments from Corozo ( Bactris guineensis) fruit.

    Osorio, Coralia; Acevedo, Baudilio; Hillebrand, Silke; Carriazo, José; Winterhalter, Peter; Morales, Alicia Lucía

    2010-06-09

    The anthocyanins of Bactris guineensis fruit were isolated with the aid of high-speed countercurrent chromatography (HSCCC) and preparative HPLC, and their chemical structures were elucidated by using spectroscopic methods. Among the identified pigments, cyanidin-3-rutinoside and cyanidin-3-glucoside were characterized as major constituents (87.9%). Peonidin-3-rutinoside, peonidin-3-glucoside, cyanidin-3-(6-O-malonyl)glucoside, and cyanidin-3-sambubioside were present in minor amounts. Four anthocyanin ethanolic extracts (AEEs) were obtained by osmotic dehydration and Soxhlet extraction and physicochemically characterized. The composition of anthocyanins was monitored by HPLC-PDA. The extracts with the highest anthocyanin content were subjected to the spray-drying process with maltodextrin. The so-obtained spray-dried powders were analyzed by scanning electron microscopy (SEM) and found to consist of spherical particles fruit. The microencapsulated powders were analyzed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), revealing that they are quite stable until 100 degrees C. Storage stability tests of microcapsules showed that the release of anthocyanin pigments follows pseudo-first-order kinetics and that the process rate is increased by temperature and humidity. The most suitable conditions for storage were below 37 degrees C and <76% relative humidity, respectively.

  10. Thermophysical and Mechanical Properties of Hardened Cement Paste with Microencapsulated Phase Change Materials for Energy Storage.

    Cui, Hongzhi; Liao, Wenyu; Memon, Shazim Ali; Dong, Biqin; Tang, Waiching

    2014-12-16

    In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM) manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes (TESCPs) incorporated with different MPCM contents (5%, 10%, 15%, 20% and 25% by weight of cement) were developed, and their thermal and mechanical properties were studied. The results showed that the total energy storage capacity of the hardened cement specimens with MPCM increased by up to 3.9-times compared with that of the control cement paste. The thermal conductivity at different temperature levels (35-36 °C, 55-56 °C and 72-74 °C) decreased with the increase of MPCM content, and the decrease was the highest when the temperature level was 55-56 °C. Moreover, the compressive strength, flexural strength and density of hardened cement paste decreased with the increase in MPCM content linearly. Among the evaluated properties, the compressive strength of TESCPs had a larger and faster degradation with the increase of MPCM content.

  11. Influence of microencapsulation and spray drying on the viability of Lactobacillus and Bifidobacterium strains.

    Goderska, Kamila; Czarnecki, Zbigniew

    2008-01-01

    Improved production methods of starter cultures, which constitute the most important element of probiotic preparations, were investigated. The aim of the presented research was to analyse changes in the viability of Lactobacillus. acidophilus and Bifidobacterium bifidum after stabilization (spray drying, liophilization, fluidization drying) and storage in refrigerated conditions for 4 months. The highest numbers of live cells, up to the fourth month of storage in refrigerated conditions, of the order of 10(7) cfu/g preparation were recorded for the B. bifidum DSM 20239 bacteria in which the N-Tack starch for spray drying was applied. Fluidization drying of encapsulated bacteria allowed obtaining a preparation of the comparable number of live bacterial cells up to the fourth month of storage with those encapsulated bacteria, which were subjected to freeze-drying but the former process was much shorter. The highest survivability of the encapsulated L. acidophilus DSM 20079 and B. bifidum DSM 20239 cells subjected to freeze-drying was obtained using skimmed milk as the cryoprotective substance. Stabilization of bacteria by microencapsulation can give a product easy to store and apply to produce dried food composition.

  12. Microencapsulation of phosphogypsum into a sulfur polymer matrix: Physico-chemical and radiological characterization

    Lopez, Felix A.; Gazquez, Manuel; Alguacil, Francisco Jose; Bolivar, Juan Pedro; Garcia-Diaz, Irene; Lopez-Coto, Israel

    2011-01-01

    Highlights: → Microencapsulation of phosphogypsum residues into a sulfur polymer matrix. → Inertization of a waste material. → Radiological characterization of the as built new material (phosphogypsum plus sulfur polymer matrix). - Abstract: The aim of this work is to prepare a new type of phosphogypsum-sulfur polymer cements (PG-SPC) to be utilised in the manufacture of building materials. Physico-chemical and radiological characterization was performed in phosphogypsum and phosphogypsum-sulfur polymer concretes and modeling of exhalation rates has been also carried out. An optimized mixture of the materials was obtained, the solidified material with optimal mixture (sulfur/phosphogypsum = 1:0.9, phosphogypsum dosage = 10-40 wt.%) results in highest strength (54-62 MPa) and low total porosity (2.8-6.8%). The activity concentration index (I) in the PG-SPC is lower than the reference value in the most international regulations and; therefore, these cements can be used without radiological restrictions in the manufacture of building materials. Under normal conditions of ventilation, the contribution to the expected radon indoor concentration in a standard room is below the international recommendations, so the building materials studied in this work can be applied to houses built up under normal ventilation conditions. Additionally, and taking into account that the PG is enriched in several natural radionuclides as 226 Ra, the leaching experiments have demonstrated that environmental impact of the using of SPCs cements with PG is negligible.

  13. Increasing sodium pantoprazole photostability by microencapsulation: effect of the polymer and the preparation technique.

    Raffin, R P; Colomé, L M; Schapoval, E E S; Pohlmann, A R; Guterres, S S

    2008-08-01

    Pantoprazole sodium is a proton pump inhibitor, used in acid-related disorders, like peptic ulcers and gastroesophageal reflux. This drug is unstable in acid solution and in the presence of salts. The aim of this work was to study the photostability under UVC radiation of pantoprazole and to determine its kinetics. A methanol solution and the solid pantoprazole were evaluated by HPLC within 120 min and 10 days, respectively. The work was also dedicated to evaluate and compare the ability of microencapsulation in stabilizing pantoprazole after UVC radiation. Pantoprazole-loaded microparticles prepared by emulsification/solvent evaporation or spray drying were compared. Pantoprazole was encapsulated using Eudragit S100 or its blend with poly(epsilon-caprolactone) or HPMC. In methanol solution, pantoprazole was completely degraded after 120 min and presented zero-order kinetics with t1/2 of 6.48 min. In the solid form, after 10 days, pantoprazole concentration was reduced to 27% following zero-order kinetic. The microparticles prepared only with Eudragit S100 demonstrated an increase of the drug photostability. After 10 days of irradiation, 56 and 44% of the drug was stable when encapsulated by emulsification/solvent evaporation and spray drying, respectively. The use of polymer blends did not improve the pantoprazole photostability.

  14. Microfluidic-Based Synthesis of Hydrogel Particles for Cell Microencapsulation and Cell-Based Drug Delivery

    Jiandi Wan

    2012-04-01

    Full Text Available Encapsulation of cells in hydrogel particles has been demonstrated as an effective approach to deliver therapeutic agents. The properties of hydrogel particles, such as the chemical composition, size, porosity, and number of cells per particle, affect cellular functions and consequently play important roles for the cell-based drug delivery. Microfluidics has shown unparalleled advantages for the synthesis of polymer particles and been utilized to produce hydrogel particles with a well-defined size, shape and morphology. Most importantly, during the encapsulation process, microfluidics can control the number of cells per particle and the overall encapsulation efficiency. Therefore, microfluidics is becoming the powerful approach for cell microencapsulation and construction of cell-based drug delivery systems. In this article, I summarize and discuss microfluidic approaches that have been developed recently for the synthesis of hydrogel particles and encapsulation of cells. I will start by classifying different types of hydrogel material, including natural biopolymers and synthetic polymers that are used for cell encapsulation, and then focus on the current status and challenges of microfluidic-based approaches. Finally, applications of cell-containing hydrogel particles for cell-based drug delivery, particularly for cancer therapy, are discussed.

  15. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    Hopmann, Ch., E-mail: kerschbaum@ikv.rwth-aachen.de; Kerschbaum, M., E-mail: kerschbaum@ikv.rwth-aachen.de; Küsters, K., E-mail: kerschbaum@ikv.rwth-aachen.de [Institute of Plastics Processing at RWTH Aachen University (IKV), Pontstrasse 49, 52064 Aachen (Germany)

    2014-05-15

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.

  16. Protein-tannic acid multilayer films: A multifunctional material for microencapsulation of food-derived bioactives.

    Lau, Hooi Hong; Murney, Regan; Yakovlev, Nikolai L; Novoselova, Marina V; Lim, Su Hui; Roy, Nicole; Singh, Harjinder; Sukhorukov, Gleb B; Haigh, Brendan; Kiryukhin, Maxim V

    2017-11-01

    The benefits of various functional foods are often negated by stomach digestion and poor targeting to the lower gastrointestinal tract. Layer-by-Layer assembled protein-tannic acid (TA) films are suggested as a prospective material for microencapsulation of food-derived bioactive compounds. Bovine serum albumin (BSA)-TA and pepsin-TA films demonstrate linear growth of 2.8±0.1 and 4.2±0.1nm per bi-layer, correspondingly, as shown by ellipsometry. Both multilayer films are stable in simulated gastric fluid but degrade in simulated intestinal fluid. Their corresponding degradation constants are 0.026±0.006 and 0.347±0.005nm -1 min -1 . Milk proteins possessing enhanced adhesion to human intestinal surface, Immunoglobulin G (IgG) and β-Lactoglobulin (BLG), are explored to tailor targeting function to BSA-TA multilayer film. BLG does not adsorb onto the multilayer while IgG is successfully incorporated. Microcapsules prepared from the multilayer demonstrate 2.7 and 6.3 times higher adhesion to Caco-2 cells when IgG is introduced as an intermediate and the terminal layer, correspondingly. This developed material has a great potential for oral delivery of numerous active food-derived ingredients. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Combined Microencapsulated Islet Transplantation and Revascularization of Aortorenal Bypass in a Diabetic Nephropathy Rat Model

    Yunqiang He

    2016-01-01

    Full Text Available Objective. Revascularization of aortorenal bypass is a preferred technique for renal artery stenosis (RAS in diabetic nephropathy (DN patients. Restenosis of graft vessels also should be considered in patients lacking good control of blood glucose. In this study, we explored a combined strategy to prevent the recurrence of RAS in the DN rat model. Methods. A model of DN was established by intraperitoneal injection of streptozotocin. Rats were divided into 4 groups: SR group, MIT group, Com group, and the untreated group. The levels of blood glucose and urine protein were measured, and changes in renal pathology were observed. The expression of monocyte chemoattractant protein-1 (MCP-1 in graft vessels was assessed by immunohistochemical staining. Histopathological staining was performed to assess the pathological changes of glomeruli and tubules. Results. The levels of urine protein and the expression of MCP-1 in graft vessels were decreased after islet transplantation. The injury of glomerular basement membrane and podocytes was significantly ameliorated. Conclusions. The combined strategy of revascularization and microencapsulated islet transplantation had multiple protective effects on diabetic nephropathy, including preventing atherosclerosis in the graft vessels and alleviating injury to the glomerular filtration barrier. This combined strategy may be helpful for DN patients with RAS.

  18. Acrylonitrile-methyl Methacrylate Copolymer Films Containing Microencapsulated n-Octadecane

    LI Jun; HAN Na; ZHANG Xing-xiang

    2006-01-01

    Acrylonitrile-methyl methacrylate copolymer was synthesized in aqueous solution by Redox. The copolymer was mixed with 10 - 40 wt% of microencapsulated n-octadecane (MicroPCMs) in water. Copolymer films containing MicroPCMs were cast at room temperature in N, N-Dimethylformamide solution. The copolymer of acrylonitrile-methyl methacrylate and the copolymer films containing MicroPCMs were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analyzer (TG), X-ray Diffrac tion (XRD) and Scanning Electron Microscopy (SEM), etc.The microcapsules in the films are evenly distributed in the copolymer matrix. The heat-absorbing temperatures and heat-evolving temperatures of the films are almost the same as that of the MicroPCMs, respectively, and fluctuate in a slight range. In addition, the enthalpy efficiency of MicroPCMs rises with the contents of MicroPCMs increasing.The crystallinity of the film increases with the contents of MicroPCMs increasing.

  19. Effect of N-isopropylacrylamide on the preparation and properties of microencapsulated phase change materials

    Li, Dan; Wang, Jianping; Wang, Yanan; Li, Wei; Wang, Xuechen; Shi, Haifeng; Zhang, Xingxiang

    2016-01-01

    NIPAm (N-isopropylacrylamide), a thermosensitive monomer, was introduced into a system for synthesis of MicroPCMs (microencapsulated phase change materials) through free radical emulsion polymerization with n-oct (n-octadecane) as the core and cross-linked PMMA (poly (methyl methacrylate)) as the shell. The effect of NIPAm on the formation mechanism, surface morphologies, crystallization properties, and thermal stabilities of the MicroPCMs were studied using FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy), DSC (differential scanning calorimetry), and TGA (thermogravimetric analysis), respectively. The results indicate that addition of NIPAm causes a significant increase in the enthalpy of the heterogeneous nucleation (approximately 2–4 times more than without NIPAm). The diameter distribution of microcapsules becomes narrower (the PDI (polydispersity index) has a minimum of 0.073) and the encapsulation ratio and encapsulation efficiency increase. On the contrary, the microcapsules that have some irregular holes were obtained by adding NIPAm prepolymer. - Highlights: • We designed and synthesized a lower supercooling microPCMs with the PNIPAm as nucleating agent. • Optimum dosage of monomer PNIPAm is 1.8 g. • The mass loss of microcapsules is less than 0.6% after repeated thermal cycling. • The formation mechanism of the microcapsules is discussed.

  20. Effect of emulsification and spray-drying microencapsulation on the antilisterial activity of transcinnamaldehyde.

    Trinh, Nga-Thi-Thanh; Lejmi, Raja; Gharsallaoui, Adem; Dumas, Emilie; Degraeve, Pascal; Thanh, Mai Le; Oulahal, Nadia

    2015-01-01

    Spray-dried redispersible transcinnamaldehyde (TC)-in-water emulsions were prepared in order to preserve its antibacterial activity; 5% (w/w) TC emulsions were first obtained with a rotor-stator homogeniser in the presence of either soybean lecithin or sodium caseinate as emulsifiers. These emulsions were mixed with a 30% (w/w) maltodextrin solution before feeding a spray-dryer. The antibacterial activity of TC alone, TC emulsions with and without maltodextrin before and after spray-drying were assayed by monitoring the growth at 30 °C of Listeria innocua in their presence and in their absence (control). Whatever the emulsifier used, antilisterial activity of TC was increased following its emulsification. However, reconstituted spray-dried emulsions stabilised by sodium caseinate had a higher antibacterial activity suggesting that they better resisted to spray-drying. This was consistent with observation that microencapsulation efficiencies were 27.6% and 78.7% for emulsions stabilised by lecithin and sodium caseinate, respectively.

  1. Using complexation for the microencapsulation of nisin in biopolymer matrices by spray-drying.

    Ben Amara, Chedia; Kim, Lanhee; Oulahal, Nadia; Degraeve, Pascal; Gharsallaoui, Adem

    2017-12-01

    The aim of this study is to investigate the potential of complexation to encapsulate nisin (5g/L concentration) using spray-drying technique and to evaluate how complexation with pectin or alginate (2g/L concentration) can preserve nisin structure and antimicrobial activity. Spray-drying of nisin-low methoxyl pectin or nisin-alginate electrostatic complexes has led to the microencapsulation of the peptide in different networks that were highly influenced by the polysaccharide type. Turbidity and particle size measurements indicated that while spray-drying promoted the aggregation of nisin-pectin complexes, it favored the dissociation of nisin-alginate aggregates to form individual complexes. Structural changes of nisin induced by complexation with pectin or alginate and spray-drying were studied by using UV-Vis absorption and fluorescence spectroscopy. The results showed that complexation with pectin or alginate preserved nisin structure as well as its antimicrobial activity during spray-drying. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    Hopmann, Ch.; Kerschbaum, M.; Küsters, K.

    2014-01-01

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization

  3. Processing of microencapsulated dyes for the visual inspection of fibre reinforced plastics

    Hopmann, Ch.; Kerschbaum, M.; Küsters, K.

    2014-05-01

    The evaluation of damages caused during processing, assembly or usage of fibre reinforced plastics is still a challenge. The use of inspection technology like ultrasonic scanning enables a detailed damage analysis but requires high investments and trained staff. Therefore, the visual inspection method is widely used. A drawback of this method is the difficult identification of barely visible damages, which can already be detrimental for the structural integrity. Therefore an approach is undertaken to integrate microencapsulated dyes into the laminates of fibre reinforced plastic parts to highlight damages on the surface. In case of a damage, the microcapsules rupture which leads to a release of the dye and a visible bruise on the part surface. To enable a wide application spectrum for this technology the microcapsules must be processable without rupturing with established manufacturing processes for fibre reinforced plastics. Therefore the incorporation of microcapsules in the filament winding, prepreg autoclave and resin transfer moulding (RTM) process is investigated. The results show that the use of a carrier medium is a feasible way to incorporate the microcapsules into the laminate for all investigated manufacturing processes. Impact testing of these laminates shows a bruise formation on the specimen surface which correlates with the impact energy level. This indicates a microcapsule survival during processing and shows the potential of this technology for damage detection and characterization.

  4. Microencapsulation of aspartame by double emulsion followed by complex coacervation to provide protection and prolong sweetness.

    Rocha-Selmi, Glaucia A; Bozza, Fernanda T; Thomazini, Marcelo; Bolini, Helena M A; Fávaro-Trindade, Carmen S

    2013-08-15

    The objective of this work was to microencapsulate aspartame by double emulsion followed by complex coacervation, aiming to protect it and control its release. Six treatments were prepared using sunflower oil to prepare the primary emulsion and gelatin and gum Arabic as the wall materials. The microcapsules were evaluated structurally with respect to their sorption isotherms and release into water (36°C and 80°C). The microcapsules were multinucleated, not very water-soluble or hygroscopic and showed reduced rates of equilibrium moisture content and release at both temperatures. FTIR confirmed complexation between the wall materials and the intact nature of aspartame. The results indicated it was possible to encapsulate aspartame with the techniques employed and that these protected the sweetener even at 80°C. The reduced solubility and low release rates indicated the enormous potential of the vehicle developed in controlling the release of the aspartame into the food, thus prolonging its sweetness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Microencapsulated foods as a functional delivery vehicle for omega-3 fatty acids: a pilot study

    David Robert M

    2009-05-01

    Full Text Available Abstract It is well established that the ingestion of the omega-3 (N3 fatty acids docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA positively benefit a variety of health indices. Despite these benefits the actual intake of fish derived N3 is relatively small in the United States. The primary aim of our study was to examine a technology capable of delivering omega-3 fatty acids in common foods via microencapsulation (MicroN3 in young, healthy, active participants who are at low risk for cardiovascular disease. Accordingly, we randomized 20 participants (25.4 ± 6.2 y; 73.4 ± 5.1 kg to receive the double blind delivery of a placebo-matched breakfast meal (~2093 kJ containing MicroN3 (450–550 mg EPA/DHA during a 2-week pilot trial. Overall, we observed no differences in overall dietary macronutrient intake other than the N3 delivery during our treatment regimen. Post-test ANOVA analysis showed a significant elevation in mean (SE plasma DHA (91.18 ± 9.3 vs. 125.58 ± 11.3 umol/L; P

  6. Production of stable food-grade microencapsulated astaxanthin by vibrating nozzle technology.

    Vakarelova, Martina; Zanoni, Francesca; Lardo, Piergiovanni; Rossin, Giacomo; Mainente, Federica; Chignola, Roberto; Menin, Alessia; Rizzi, Corrado; Zoccatelli, Gianni

    2017-04-15

    Astaxanthin is a carotenoid known for its strong antioxidant and health-promoting characteristics, but it is also highly degradable and thus unsuited for several applications. We developed a sustainable method for the extraction and the production of stable astaxanthin microencapsulates. Nearly 2% astaxanthin was extracted by high-pressure homogenization of dried Haematococcus pluvialis cells in soybean oil. Astaxanthin-enriched oil was encapsulated in alginate and low-methoxyl pectin by Ca 2+ -mediated vibrating-nozzle extrusion technology. The 3% pectin microbeads resulted the best compromise between sphericity and oil retention upon drying. We monitored the stability of these astaxanthin beads under four different conditions of light, temperature and oxygen exposition. After 52weeks, the microbeads showed a total-astaxanthin retention of 94.1±4.1% (+4°C/-light/+O 2 ), 83.1±3.2% (RT/-light/-O 2 ), 38.3±2.2% (RT/-light/+O2), and 57.0±0.4% (RT/+light/+O 2 ), with different degradation kinetics. Refrigeration, therefore, resulted the optimal storage condition to preserve astaxanthin stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Polymer-surfactant complexes for microencapsulation of vitamin E and its release.

    Sharipova, A A; Aidarova, S B; Grigoriev, D; Mutalieva, B; Madibekova, G; Tleuova, A; Miller, R

    2016-01-01

    Microencapsulation of vitamin E directly from oil-in-water (o/w) emulsions was carried out by means of a novel practically relevant approach. For the first time, a preformed polyelectrolyte-surfactant complex (sodium polystyrene sulfonate/dodecyl trimethyl ammonium bromide) was simultaneously used as an electrosteric emulsion stabilizer and as a charged precursor for the following build up of microcapsules. Subsequently, a layer-by-layer technique was applied to emulsions leading to the formation of core-shell microcapsules with oily cores and polyelectrolyte shells. The effect of the complexes on the process of emulsion formation and on the stability and characteristics of the resulting emulsions was investigated by measurements of dynamic and equilibrium interfacial tension, size distribution (DLS) and interfacial charge (zeta-potential). The resulting microcapsules were characterized by confocal laser scanning microscopy (CLSM), Cryo-SEM, size distribution and zeta-potential measurements on each stage of the shell assembly. The release kinetics of vitamin E was monitored during the consecutive steps of the encapsulation procedure using UV-vis spectroscopy and showed the progressive enhancement of sustainability. The developed approach may be promising for the practical use in the cosmetic and food industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Microencapsulation of Islets for the Treatment of Type 1 Diabetes Mellitus (T1D).

    Calafiore, Riccardo; Basta, Giuseppe; Montanucci, Pia

    2017-01-01

    Microencapsulation technology, based on use of alginic acid biopolymers, has been devised many years ago. However, when intended for enveloping human islets for transplantation purposes, the method needs to be up-scaled and implemented with care being taken to comply with simple but important measures. It is almost indispensable to rely on an ultrapurified alginic polymers: in fact, any, even minimal, alginate contamination with endotoxins, pyrogens, and proteins could provoke the host's inflammatory reaction upon graft, with heavy adverse consequences on the capsules immunoprotective properties, hence on graft survival per se. Care should be taken in ensuring fabrication of reproducible microspheres, in terms not only of shape and size, but also consistency of the peripheral layers around the central alginate gel core, where the islets are immobilized. Once the product is well defined and stable, care should also be taken in accurately selecting patients with T1D that are candidate for encapsulated islet cell transplantation with no general immunosuppression. A series of pre- and post-intraperitoneal transplant metabolic, chemical, and immunological parameters are to be monitored, in conjunction with image analysis of the abdomen, in order to assess efficacy of the intervention according to well defined grading scale.

  9. Microencapsulation of phosphogypsum into a sulfur polymer matrix: Physico-chemical and radiological characterization

    Lopez, Felix A., E-mail: flopez@cenim.csic.es [Centro Nacional de Investigaciones Metalurgicas (CENIM), CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Gazquez, Manuel [Departamento de Fisica Aplicada, Universidad de Huelva, Campus de El Carmen, 21071 Huelva (Spain); Alguacil, Francisco Jose [Centro Nacional de Investigaciones Metalurgicas (CENIM), CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Bolivar, Juan Pedro [Departamento de Fisica Aplicada, Universidad de Huelva, Campus de El Carmen, 21071 Huelva (Spain); Garcia-Diaz, Irene [Centro Nacional de Investigaciones Metalurgicas (CENIM), CSIC, Avda. Gregorio del Amo, 8, 28040 Madrid (Spain); Lopez-Coto, Israel [Departamento de Fisica Aplicada, Universidad de Huelva, Campus de El Carmen, 21071 Huelva (Spain)

    2011-08-15

    Highlights: {yields} Microencapsulation of phosphogypsum residues into a sulfur polymer matrix. {yields} Inertization of a waste material. {yields} Radiological characterization of the as built new material (phosphogypsum plus sulfur polymer matrix). - Abstract: The aim of this work is to prepare a new type of phosphogypsum-sulfur polymer cements (PG-SPC) to be utilised in the manufacture of building materials. Physico-chemical and radiological characterization was performed in phosphogypsum and phosphogypsum-sulfur polymer concretes and modeling of exhalation rates has been also carried out. An optimized mixture of the materials was obtained, the solidified material with optimal mixture (sulfur/phosphogypsum = 1:0.9, phosphogypsum dosage = 10-40 wt.%) results in highest strength (54-62 MPa) and low total porosity (2.8-6.8%). The activity concentration index (I) in the PG-SPC is lower than the reference value in the most international regulations and; therefore, these cements can be used without radiological restrictions in the manufacture of building materials. Under normal conditions of ventilation, the contribution to the expected radon indoor concentration in a standard room is below the international recommendations, so the building materials studied in this work can be applied to houses built up under normal ventilation conditions. Additionally, and taking into account that the PG is enriched in several natural radionuclides as {sup 226}Ra, the leaching experiments have demonstrated that environmental impact of the using of SPCs cements with PG is negligible.

  10. Microencapsulation and storage stability of polyphenols from Vitis vinifera grape wastes.

    Aizpurua-Olaizola, Oier; Navarro, Patricia; Vallejo, Asier; Olivares, Maitane; Etxebarria, Nestor; Usobiaga, Aresatz

    2016-01-01

    Wine production wastes are an interesting source of natural polyphenols. In this work, wine wastes extracts were encapsulated through vibration nozzle microencapsulation using sodium alginate as polymer and calcium chloride as hardening reagent. An experimental design approach was used to obtain calcium-alginate microbeads with high polyphenol content and good morphological features. In this way, the effect of pressure, frequency, voltage and the distance to the gelling bath were optimized for two nozzles of 150 and 300 μm. Long-term stability of the microbeads was studied for 6 months taking into account different storage conditions: temperatures (4 °C and room temperature), in darkness and in presence of light, and the addition of chitosan to the gelling bath. Encapsulated polyphenols were found to be much more stable compared to free polyphenols regardless the encapsulation procedure and storage conditions. Moreover, slightly lower degradation rates were obtained when chitosan was added to the gelling bath. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Microencapsulation of Lefty-secreting engineered cells for pulmonary fibrosis therapy in mice.

    Ma, Hongge; Qiao, Shupei; Wang, Zeli; Geng, Shuai; Zhao, Yufang; Hou, Xiaolu; Tian, Weiming; Chen, Xiongbiao; Yao, Lifen

    2017-05-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease that causes unremitting deposition of extracellular matrix proteins, thus resulting in distortion of the pulmonary architecture and impaired gas exchange. Associated with high morbidity and mortality, IPF is generally refractory to current pharmacological therapies. Lefty A, a potent inhibitor of transforming growth factor-β signaling, has been shown to have promising antifibrotic ability in vitro for the treatment of renal fibrosis and other potential organ fibroses. Here, we determined whether Lefty A can attenuate bleomycin (BLM)-induced pulmonary fibrosis in vivo based on a novel therapeutic strategy where human embryonic kidney 293 (HEK293) cells are genetically engineered with the Lefty A-associated GFP gene. The engineered HEK293 cells were encapsulated in alginate microcapsules and then subcutaneously implanted in ICR mice that had 1 wk earlier been intratracheally administered BLM to induce pulmonary fibrosis. The severity of fibrosis in lung tissue was assessed using pathological morphology and collagen expression to examine the effect of Lefty A released from the microencapsulated cells. The engineered HEK293 cells with Lefty A significantly reduced the expression of connective tissue growth factor and collagen type I mRNA, lessened the morphological fibrotic effects induced by BLM, and increased the expression of matrix metalloproteinase-9. This illustrates that engineered HEK293 cells with Lefty A can attenuate pulmonary fibrosis in vivo, thus providing a novel method to treat human pulmonary fibrotic disease and other organ fibroses. Copyright © 2017 the American Physiological Society.

  12. Biscuits fortified with micro-encapsulated shrimp oil: characteristics and storage stability.

    Takeungwongtrakul, Sirima; Benjakul, Soottawat

    2017-04-01

    Characteristics and storage stability of biscuits fortified with micro-encapsulated shrimp oil (MSO) were determined. The addition of MSO increased spread ratio, whilst decreased the thickness of biscuit. The highest hardness of biscuit was obtained with addition of 9 or 12% MSO. Biscuit surface showed higher redness and yellowness when MSO was incorporated ( p  < 0.05). The addition of MSO up to 6% had no adverse effect on biscuit quality and acceptability. When biscuits added with 6% MSO were stored under different illumination conditions (light and dark), lipid oxidation in all samples increased throughout the storage of 12 days. Light accelerated lipid oxidation of biscuits as evidenced by the increases in both peroxide values and abundance of volatile compounds. No marked change in EPA, DHA and astaxanthin contents were noticeable in biscuit fortified with MSO after 12 days of storage. Therefore, the biscuit could be fortified with MSO up to 6% and must be stored in dark to assure its oxidative stability.

  13. Influence of Microencapsulated Phase Change Material (PCM) Addition on (Micro) Mechanical Properties of Cement Paste

    Schlangen, Erik

    2017-01-01

    Excessive cracking can be a serious durability problem for reinforced concrete structures. In recent years, addition of microencapsulated phase change materials (PCMs) to concrete has been proposed as a possible solution to crack formation related to temperature gradients. However, the addition of PCM microcapsules to cementitious materials can have some drawbacks, mainly related to strength reduction. In this work, a range of experimental techniques has been used to characterize the microcapsules and their effect on properties of composite cement pastes. On the capsule level, it was shown that they are spherical, enabling good distribution in the material during the mixing process. Force needed to break the microcapsules was shown to depend on the capsule diameter and the temperature, i.e., whether it is below or above the phase change temperature. On the cement paste level, a marked drop of compressive strength with increasing PCM inclusion level was observed. The indentation modulus has also shown to decrease, probably due to the capsules themselves, and to a lesser extent due to changes in porosity caused by their inclusion. Finally, a novel micro-cube splitting technique was used to characterize the tensile strength of the material on the micro-meter length scale. It was shown that the strength decreases with increasing PCM inclusion percentage, but this is accompanied by a decrease in measurement variability. This study will contribute to future developments of cementitious composites incorporating phase change materials for a variety of applications. PMID:28773225

  14. Study of the microencapsulation of camu-camu (Myrciaria dubia) juice.

    Dib Taxi, C M A; de Menezes, H C; Santos, A B; Grosso, C R F

    2003-01-01

    The camu-camu, like many other Amazonian fruits, shows an excellent potential for use due to its high vitamin C content, and the use of these natural resources could result in greater development of the Amazonian region. Few studies have been conducted with this fruit, and such studies are necessary in order to develop the required technology to allow for its utilization, thus avoiding or at least decreasing wastage of such a rich raw material. The principle objective of this study was to develop a process for the microencapsulation of camu-camu juice, optimizing the operational conditions. The processing conditions consisted of blanching at a temperature of 95 +/- 2 degrees C for 2 min, followed by cooling in an ice bath and juice extraction using a brush type depulper. The juice was dried with gum arabic or malt dextrin in a mini-spray dryer using an air entry temperature of between 100-160 degrees C and wall material concentration varying between 5-35%, in accordance with a factorial experimental design. Both the air entry temperature and the amount of wall material, plus the interaction between the two, gave significant positive effects at the level of 5% probability on the yield of juice powder. The optimum conditions for juice yield and vitamin C retention were established as 15% wall material and an air entry temperature of 150 degrees C.

  15. Petrological Geodynamics of Mantle Melting I. AlphaMELTS + Multiphase Flow: Dynamic Equilibrium Melting, Method and Results

    Massimiliano Tirone

    2017-10-01

    Full Text Available The complex process of melting in the Earth's interior is studied by combining a multiphase numerical flow model with the program AlphaMELTS which provides a petrological description based on thermodynamic principles. The objective is to address the fundamental question of the effect of the mantle and melt dynamics on the composition and abundance of the melt and the residual solid. The conceptual idea is based on a 1-D description of the melting process that develops along an ideal vertical column where local chemical equilibrium is assumed to apply at some level in space and time. By coupling together the transport model and the chemical thermodynamic model, the evolution of the melting process can be described in terms of melt distribution, temperature, pressure and solid and melt velocities but also variation of melt and residual solid composition and mineralogical abundance at any depth over time. In this first installment of a series of three contributions, a two-phase flow model (melt and solid assemblage is developed under the assumption of complete local equilibrium between melt and a peridotitic mantle (dynamic equilibrium melting, DEM. The solid mantle is also assumed to be completely dry. The present study addresses some but not all the potential factors affecting the melting process. The influence of permeability and viscosity of the solid matrix are considered in some detail. The essential features of the dynamic model and how it is interfaced with AlphaMELTS are clearly outlined. A detailed and explicit description of the numerical procedure should make this type of numerical models less obscure. The general observation that can be made from the outcome of several simulations carried out for this work is that the melt composition varies with depth, however the melt abundance not necessarily always increases moving upwards. When a quasi-steady state condition is achieved, that is when melt abundance does not varies significantly

  16. Partial melting of lower oceanic crust gabbro: Constraints from poikilitic clinopyroxene primocrysts

    Leuthold, Julien; Lissenberg, C. Johan; O'Driscoll, Brian; Karakas, Ozge; Falloon, Trevor; Klimentyeva, Dina N.; Ulmer, Peter

    2018-03-01

    Successive magma batches underplate, ascend, stall and erupt along spreading ridges, building the oceanic crust. It is therefore important to understand the processes and conditions under which magma differentiates at mid ocean ridges. Although fractional crystallization is considered to be the dominant mechanism for magma differentiation, open-system igneous complexes also experience Melting-Assimilation-Storage-Hybridization (MASH, Hildreth and Moorbath, 1988) processes. Here, we examine crystal-scale records of partial melting in lower crustal gabbroic cumulates from the slow-spreading Atlantic oceanic ridge (Kane Megamullion; collected with Jason ROV) and the fast-spreading East Pacific Rise (Hess Deep; IODP expedition 345). Clinopyroxene oikocrysts in these gabbros preserve marked intra-crystal geochemical variations that point to crystallization-dissolution episodes of the gabbro eutectic assemblage. Kane Megamullion and Hess Deep clinopyroxene core1 primocrysts and their plagioclase inclusions indicate crystallization from high temperature basalt (>1160 and >1200°C, respectively), close to clinopyroxene saturation temperature (fundamental mechanisms for generating the wide compositional variation observed in mid-ocean ridge basalts. We furthermore propose that such processes operate at both slow- and fast-spreading ocean ridges. Thermal numerical modelling shows that the degree of lower crustal partial melting at slow-spreading ridges can locally increase up to 50%, but the overall crustal melt volume is low (less than ca. 5% of total mantle-derived and crustal melts; ca. 20% in fast-spreading ridges).

  17. Filament stretching rheometry of polymer melts

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Results...

  18. Supercoil Formation During DNA Melting

    Sayar, Mehmet; Avsaroglu, Baris; Kabakcioglu, Alkan

    2009-03-01

    Supercoil formation plays a key role in determining the structure-function relationship in DNA. Biological and technological processes, such as protein synthesis, polymerase chain reaction, and microarrays relys on separation of the two strands in DNA, which is coupled to the unwinding of the supercoiled structure. This problem has been studied theoretically via Peyrard-Bishop and Poland-Scheraga type models, which include a simple representation of the DNA structural properties. In recent years, computational models, which provide a more realtistic representaion of DNA molecule, have been used to study the melting behavior of short DNA chains. Here, we will present a new coarse-grained model of DNA which is capable of simulating sufficiently long DNA chains for studying the supercoil formation during melting, without sacrificing the local structural properties. Our coarse-grained model successfully reproduces the local geometry of the DNA molecule, such as the 3'-5' directionality, major-minor groove structure, and the helical pitch. We will present our initial results on the dynamics of supercoiling during DNA melting.

  19. Micro-encapsulation of ozonated red pepper seed oil with antimicrobial activity and application to nonwoven fabric.

    Özyildiz, F; Karagönlü, S; Basal, G; Uzel, A; Bayraktar, O

    2013-03-01

    In recent years, functional fabrics possessing antimicrobial activity have drawn significant interest because antibiotic resistance is becoming widespread among pathogenic micro-organisms. The aim of this study was to produce microcapsules incorporating ozonated red pepper seed oil (ORPSO) with antimicrobial properties and apply them to nonwoven fabrics to prepare functional textiles. Red pepper seed oil (RPSO) was ozonated and micro-encapsulated via a complex coacervation method using gelatin (GE) and gum arabic (GA) as wall materials. While micro-encapsulation yield and oil loading decreased with increases in the amount of surfactant, the mean particle size increased. The antimicrobial activity of the oil was tested via the disc diffusion method. The microcapsules were also tested using the agar well method. While RPSO had no effect on the test micro-organisms, the ORPSO and microcapsules containing ORPSO were found to be active against the test micro-organisms. The microcapsules were then applied to nonwoven fabric using the padding method to produce a disposable functional textile. The microcapsule-impregnated functional fabrics provided a 5 log decrease in 1 h. It is therefore possible to functionalize nonwoven fabrics to have antimicrobial activity against antibiotic-resistant micro-organisms, using microcapsules containing ORPSO. This is the first report on the antimicrobial action of RPSO after ozonation process. These findings suggest that ozonated red pepper seed oil (ORPSO) may be a useful and effective antimicrobial agent against the micro-organisms with antibiotic resistance. Therefore, as a natural product, RPSO represents a sustainable alternative to the use of synthetic antimicrobial agents. To our knowledge, this is also the first time that ORPSO has been micro-encapsulated for the preparation of functional textile material with significant antimicrobial activity. © 2012 The Society for Applied Microbiology.

  20. Fast tomosynthesis

    Klotz, E.; Linde, R.; Tiemens, U.; Weiss, H.

    1978-01-01

    A system has been constructed for fast tomosynthesis, whereby X-ray photographs are made of a single layer of an object. Twenty five X-ray tubes illuminate the object simultaneously at different angles. The resulting coded image is decoded by projecting it with a pattern of lenses that have the same form as the pattern of X-ray tubes. The coded image is optically correlated with the pattern of the sources. The scale of this can be adjusted so that the desired layer of the object is portrayed. Experimental results of its use in a hospital are presented. (C.F.)

  1. Routine calculation of ab initio melting curves: application to aluminum

    Robert, Grégory; Legrand, Philippe; Arnault, Philippe; Desbiens, Nicolas; Clérouin, Jean

    2014-01-01

    We present a simple, fast, and reliable method to compute the melting curves of materials with ab initio molecular dynamics. It is based on the two-phase thermodynamic model of [Lin et al., J. Chem. Phys. 119, 11792 (2003)] and its improved version given by [Desjarlais, Phys. Rev. E, 88, 062145 (2013)]. In this model, the velocity autocorrelation function is utilized to calculate the contribution of the nuclei motion to the entropy of the solid and liquid phases. It is then possible to find t...

  2. Effect of microencapsulated phase change materials on the thermo-mechanical properties of poly(methyl-methacrylate) based biomaterials.

    De Santis, Roberto; Ambrogi, Veronica; Carfagna, Cosimo; Ambrosio, Luigi; Nicolais, Luigi

    2006-12-01

    Microencapsulated paraffin based phase change material (PCM) have been incorporated into Poly(methyl-methacrylate) (PMMA) matrix in order to enhance the thermo-mechanical properties. Calorimetric and mechanical analyses are carried out and the thermo regulating potential of PMMA/PCM composites is investigated. Results indicate that the PCM phase has a negligible effect on the glass transition temperature of the PMMA matrix, and the thermal regulating capability spans around body temperature absorbing or releasing a thermal energy up to 30 J/g. One of the effect of the PCM phase into the cement is the reduction of the peak temperature developed during the exothermal reaction.

  3. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness

    Chai, Luxiao; Wang, Xiaodong; Wu, Dezhen

    2015-01-01

    Highlights: • We designed and synthesized a sort of bifunctional PCMs-based microcapsules. • These microcapsules have an n-eicosane core and a crystalline TiO 2 shell. • Such a crystalline TiO 2 shell exhibited a good photocatalytic activity. • The microcapsules showed good performance in energy storage and sterilization. - Abstract: A sort of novel bifunctional microencapsulated phase change material (PCM) was designed by encapsulating n-eicosane into a crystalline titanium dioxide (TiO 2 ) shell and, then, was successfully synthesized through in-situ polycondensation in the sol–gel process using tetrabutyl titanate as a titania precursor. The resultant microcapsule samples were characterized by Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to determine their chemical compositions and structures. Furthermore, the crystallinity of the TiO 2 shell was verified by powder X-ray diffraction patterns. It was confirmed that the fluorinions could induce the phase transition from the amorphous TiO 2 to the brookite-form crystals during the sol–gel process, thus resulting in a crystalline TiO 2 shell for the microencapsulated n-eicosane. The scanning and transmission electron microscopy investigations indicated that all of the resultant microcapsules presented a perfect spherical shape with a uniform particle size of 1.5–2 μm, and they also exhibited a well-defined core–shell structure as well as a smooth and compact shell. The crystalline TiO 2 shell made the resultant microcapsules a photocatalytic activity, and therefore, these microcapsules demonstrated a good photocatalytic effect for the chemical degradation and an antimicrobial function for some of the Gram-negative bacteria. Most of all, all of the microencapsulated n-eicosane samples indicated good phase-change performance and high thermal reliability for latent-heat storage and release, and moreover, they achieved a high

  4. α- and β-Carotene Stability During Storage of Microspheres Obtained from Spray-Dried Microencapsulation Technology

    Przybysz Marzena Anna

    2018-03-01

    Full Text Available This study was aimed at comparing the stability of carotenes (α- and β-carotene in oil solutions with their stability when spray-dried encapsulation is applied. The carotenes were isolated from carrot. A storage test was subsequently performed. The stability of carotenes in oil solutions was determined with the HPLC method. The color of the samples was also analyzed. The oil solutions of carotenes were microencapsulated with the spray-drying method. A mixture of gum Arabic and maltodextrin was used as a matrix.

  5. Corrosion of K-3 glass-contact refractory in sodium-rich aluminosilicate melts

    Lu, X.D.; Gan, H.; Buechele, A.C.; Pegg, I.L.

    1999-01-01

    The corrosion of the glass-contact refractory Monofrax K-3 in two sodium-rich aluminosilicate melts has been studied at 1,208 and 1,283 C using a modified ASTM procedure with constant agitation of the melt by air bubbling. The results for the monolithic refractory indicate a fast initial stage involving phase dissolution and transformation and a later passivated stage in which the surface of the refractory has been substantially modified. The composition of the stable spinel phase in the altered layer on monolithic coupons of K-3 is almost identical to the equilibrium composition bracketed by the dissolution of powdered K-3 into under-saturated melts on the other. The temperature and melt shear viscosity were found to have significant effects on the rates of K-3 dissolution and transformation

  6. Industrial opportunities of controlled melt flow during glass melting, part 1: Melt flow evaluation

    Dyrčíková, Petra; Hrbek, Lukáš; Němec, Lubomír

    2014-01-01

    Roč. 58, č. 2 (2014), s. 111-117 ISSN 0862-5468 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melting * controlled flow * space utilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.435, year: 2014 http://www.ceramics-silikaty.cz/2014/pdf/2014_02_111.pdf

  7. Integration of Fast Predictive Model and SLM Process Development Chamber, Phase I

    National Aeronautics and Space Administration — This STTR project seeks to develop a fast predictive model for selective laser melting (SLM) processes and then integrate that model with an SLM chamber that allows...

  8. Material Performance of Fully-Ceramic Micro-Encapsulated Fuel under Selected LWR Design Basis Scenarios: Final Report

    Boer, B.; Sen, R.S.; Pope, M.A.; Ougouag, A.M.

    2011-01-01

    The extension to LWRs of the use of Deep-Burn coated particle fuel envisaged for HTRs has been investigated. TRISO coated fuel particles are used in Fully-Ceramic Microencapsulated (FCM) fuel within a SiC matrix rather than the graphite of HTRs. TRISO particles are well characterized for uranium-fueled HTRs. However, operating conditions of LWRs are different from those of HTRs (temperature, neutron energy spectrum, fast fluence levels, power density). Furthermore, the time scales of transient core behavior during accidents are usually much shorter and thus more severe in LWRs. The PASTA code was updated for analysis of stresses in coated particle FCM fuel. The code extensions enable the automatic use of neutronic data (burnup, fast fluence as a function of irradiation time) obtained using the DRAGON neutronics code. An input option for automatic evaluation of temperature rise during anticipated transients was also added. A new thermal model for FCM was incorporated into the code; so-were updated correlations (for pyrocarbon coating layers) suitable to estimating dimensional changes at the high fluence levels attained in LWR DB fuel. Analyses of the FCM fuel using the updated PASTA code under nominal and accident conditions show: (1) Stress levels in SiC-coatings are low for low fission gas release (FGR) fractions of several percent, as based on data of fission gas diffusion in UO 2 kernels. However, the high burnup level of LWR-DB fuel implies that the FGR fraction is more likely to be in the range of 50-100%, similar to Inert Matrix Fuels (IMFs). For this range the predicted stresses and failure fractions of the SiC coating are high for the reference particle design (500 (micro)mm kernel diameter, 100 (micro)mm buffer, 35 (micro)mm IPyC, 35 (micro)mm SiC, 40 (micro)mm OPyC). A conservative case, assuming 100% FGR, 900K fuel temperature and 705 MWd/kg (77% FIMA) fuel burnup, results in a 8.0 x 10 -2 failure probability. For a 'best-estimate' FGR fraction of 50

  9. Phase behavior and reactive transport of partial melt in heterogeneous mantle model

    Jordan, J.; Hesse, M. A.

    2013-12-01

    The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation

  10. Comparison of a novel spray congealing procedure with emulsion-based methods for the micro-encapsulation of water-soluble drugs in low melting point triglycerides.

    McCarron, Paul A; Donnelly, Ryan F; Al-Kassas, Rasil

    2008-09-01

    The particle size characteristics and encapsulation efficiency of microparticles prepared using triglyceride materials and loaded with two model water-soluble drugs were evaluated. Two emulsification procedures based on o/w and w/o/w methodologies were compared to a novel spray congealing procedure. After extensive modification of both emulsification methods, encapsulation efficiencies of 13.04% tetracycline HCl and 11.27% lidocaine HCl were achievable in a Witepsol-based microparticle. This compares to much improved encapsulation efficiencies close to 100% for the spray congealing method, which was shown to produce spherical particles of approximately 58 microm. Drug release studies from a Witepsol formulation loaded with lidocaine HCl showed a temperature-dependent release mechanism, which displayed diffusion-controlled kinetics at temperatures approximately 25 degrees C, but exhibited almost immediate release when triggered using temperatures close to that of skin. Therefore, such a system may find application in topical semi-solid formulations, where a temperature-induced burst release is preferred.

  11. In-vitro digestion of probiotic bacteria and omega-3 oil co-microencapsulated in whey protein isolate-gum Arabic complex coacervates.

    Eratte, Divya; Dowling, Kim; Barrow, Colin J; Adhikari, Benu P

    2017-07-15

    Solid co-microcapsules of omega-3 rich tuna oil and probiotic bacteria L. casei were produced using whey protein isolate-gum Arabic complex coacervate as wall material. The in-vitro digestibility of the co-microcapsules and microcapsules was studied in terms of survival of L. casei and release of oil in sequential exposure to simulated salivary, gastric and intestinal fluids. Co-microencapsulation significantly increased the survival and surface hydrophobicity and the ability of L. casei to adhere to the intestinal wall. No significant difference in the assimilative reduction of cholesterol was observed between the microencapsulated and co-microencapsulated L. casei. The pattern of release of oil from the microcapsules and co-microcapsules was similar. However, the content of total chemically intact omega-3 fatty acids was higher in the oil released from co-microcapsules than the oil released from microcapsules. The co-microencapsulation can deliver bacterial cells and omega-3 oil to human intestinal system with less impact on functional properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying method.

    Hundre, Swetank Y; Karthik, P; Anandharamakrishnan, C

    2015-05-01

    Vanillin flavour is highly volatile in nature and due to that application in food incorporation is limited; hence microencapsulation of vanillin is an ideal technique to increase its stability and functionality. In this study, vanillin was microencapsulated for the first time by non-thermal spray-freeze-drying (SFD) technique and its stability was compared with other conventional techniques such as spray drying (SD) and freeze-drying (FD). Different wall materials like β-cyclodextrin (β-cyd), whey protein isolate (WPI) and combinations of these wall materials (β-cyd + WPI) were used to encapsulate vanillin. SFD microencapsulated vanillin with WPI showed spherical shape with numerous fine pores on the surface, which in turn exhibited good rehydration ability. On the other hand, SD powder depicted spherical shape without pores and FD encapsulated powder yielded larger particle sizes with flaky structure. FTIR analysis confirmed that there was no interaction between vanillin and wall materials. Moreover, spray-freeze-dried vanillin + WPI sample exhibited better thermal stability than spray dried and freeze-dried microencapsulated samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Microencapsulation of a putative probiotic Enterobacter species, C6-6, to protect rainbow trout, Oncorhynchus mykiss (Walbaum), against bacterial coldwater disease.

    Ghosh, B; Cain, K D; Nowak, B F; Bridle, A R

    2016-01-01

    Flavobacterium psychrophilum is the causative agent of bacterial coldwater disease (BCWD), which has a major impact on salmonid aquaculture globally. An Enterobacter species, C6-6, isolated from the gut of rainbow trout, Oncorhynchus mykiss (Walbaum), has been identified as a potential probiotic species providing protection against BCWD. This study examined the effects of alginate microencapsulation on the protective efficacy of C6-6 against BCWD in vivo when administered to rainbow trout fry orally or by intraperitoneal (IP) injection. Viable C6-6 bacteria were microencapsulated successfully, and this process (microencapsulation) did not significantly deteriorate its protective properties as compared to the administration of non-microencapsulated C6-6 bacteria. Both oral and IP delivery of C6-6 achieved significantly better protection than control treatments that did not contain C6-6 bacteria. The highest relative percent survival (RPS) resulted from IP delivery (71.4%) and was significantly greater than the highest oral RPS (38.6%). Successful intestinal colonization was not critical to protective effects of C6-6. The study showed that C6-6 administration, with or without encapsulation, was a viable choice for protecting fry from BCWD especially when administered intraperitoneally. © 2014 John Wiley & Sons Ltd.

  14. Carrier-microencapsulation using Si-catechol complex for suppressing pyrite floatability

    Jha, R.K.T.; Satur, J.; Hiroyoshi, N.; Ito, M.; Tsunekawa, M. [Hokkaido University, Hokkaido (Japan). Graduate School of Engineering

    2008-11-15

    Pyrite (FeS{sub 2}) is a common sulfide mineral associated with valuable metal minerals and coal, and it is rejected as a gangue mineral using physical separation techniques such as froth flotation and discharged into tailing pond. In the flotation, pyrite is frequently entrapped in the froth due to its hydrophobic nature. Formation of acid mine drainage due to the air-oxidation of pyrite in the tailing pond is also a serious problem. The authors have proposed carrier-microencapsulation (CME) as a method for suppressing both the floatability and oxidation of pyrite. In this method, pyrite is coated with a thin layer of metal oxide or hydroxide using catechol solution as a carrier combined with metal ions. The layer converts the pyrite surface from hydrophobic to hydrophilic and acts as a protective coating against oxidation. The present study demonstrates the effect of CME using Si-catechol complex to suppress the pyrite floatability: The bubble pick-up experiments showed that attachment of pyrite particles to air bubble is suppressed by the CME treatment at pH 4-10, Si-catechol complex concentration over 0.5 mol m{sup -3} and treatment time within 2 min. The Hallimond tube flotation experiments showed that the pyrite floatability is suppressed by the CME treatment even in the presence of typical flotation collectors such as kerosene and xanthate. SEM-EDX analysis confirmed that Si present on the pyrite surface treated by Si-catechol complex, implying that SiO{sub 2} or SiOH{sub 4} layer formed by the CME treatment convert the pyrite surface hydrophobic to hydrophilic.

  15. Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage

    Han, Pengju; Lu, Lixin; Qiu, Xiaolin; Tang, Yali; Wang, Jun

    2015-01-01

    This paper was aimed to prepare, characterize and determine the comprehensive evaluation of promising composite macrocapsules containing microencapsulated PCMs (phase change materials) with calcium alginate gels as the matrix material. Macrocapsules containing microcapsules were fabricated by piercing-solidifying incuber method. Two kinds of microcapsules with n-tetradecane as core material, UF (urea-formaldehyde) and PMMA (poly(methyl methacrylate)) respectively as shell materials were prepared initially. For application concerns, thermal durability and mechanical property of macrocapsules were investigated by TGA (thermal gravimetric analysis) and Texture Analyser for the first time, respectively. The results showed excellent thermal stability and the compressive resistance of macrocapsules was sufficient for common application. The morphology and chemical structure of the prepared microcapsules and macrocapsules were characterized by SEM (scanning electron microscopy) and FT-IR (fourier transform infrared) spectroscopy method. Phase change behaviors and thermal durability of microcapsules and macrocapsules were investigated by DSC (differential scanning calorimetry). In order to improve latent heat of composite microcapsules, the core-shell weight ratio of tetradecane/UF shell microcapsules was chosen as 5.5:1 which obtained the phase change enthalpy of 194.1 J g −1 determined by DSC. In conclusion, these properties make it a feasible composite in applications of textile, building and cold-chain transportation. - Highlights: • We improved the phase change enthalpy with a higher core-shell ratio. • Urea-formaldehyde was firstly used as a shell material in the composite. • Mechanical and thermal durability property of the macrocapsules was firstly investigated in our work.

  16. Suppression of Tumorigenesis: Modulation of Inflammatory Cytokines by Oral Administration of Microencapsulated Probiotic Yogurt Formulation

    Aleksandra Malgorzata Urbanska

    2010-01-01

    Full Text Available The objective of this study was to examine the ability of a novel microencapsulated probiotic yogurt formulation to suppress the intestinal inflammation. We assessed its anticancer activity by screening interleukin-1, 6, and 12 (IL-1, 6, 12, secretory levels of tumor necrosis factor-alpha (TNF-α, interferon-gamma (IFN-γ, prostaglandin E2  (PGE2, and thromboxane B2 in the digesta obtained from the duodenum, jejunum, proximal, and distal segments of the ileum of C57BL/6J-ApcMin/J mice. Formulation-receiving animals showed consistently lower proinflammatory cytokines' levels when compared to control group animals receiving empty alginate-poly-L-lysine-alginate (APA microcapsules suspended in saline. The concentrations of IL-12 found in serum in control and treatment group animals were significant: 46.58±16.96 pg/mL and 158.58±28.56 pg/mL for control and treatment animals, respectively. We determined a significant change in plasma C-reactive protein: 81.04±23.73 ng/mL in control group and 64.21±16.64 ng/mL in treatment group. Western blots showed a 71% downregulation of cyclooxygenase-2 (COX-2 protein in treatment group animals compared to control. These results point to the possibility of using this yogurt formulation in anticancer therapies, in addition to chronic gut diseases such as Crohn's disease, irritable bowel syndrome (IBS, and inflammatory bowel disease (IBD thanks to its inflammation lowering properties.

  17. Revegetation of Acid Rock Drainage (ARD) Producing Slope Surface Using Phosphate Microencapsulation and Artificial Soil

    Kim, Jae Gon

    2017-04-01

    Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.

  18. Prolonged nerve block by microencapsulated bupivacaine prevents acute postoperative pain in rats.

    Ohri, Rachit; Blaskovich, Phillip; Wang, Jeffrey Chi-Fei; Pham, Lan; Nichols, Gary; Hildebrand, William; Costa, Daniel; Scarborough, Nelson; Herman, Clifford; Strichartz, Gary

    2012-01-01

    To minimize acute postoperative pain, a new formulation of slowly released bupivacaine was developed. Bupivacaine was microencapsulated at 60% (wt/wt) in poly-lactide-co-glycolide polymers and characterized for physicochemical properties and bupivacaine release kinetics. This formulation was injected around the rat sciatic nerve to produce an antinociceptive effect to toe pinch. Mechanical hyperalgesia following lateral plantar paw incision in rats was assessed for 7 to 14 days when the bupivacaine slow-release formulation was placed at the ipsilateral sciatic nerve and compared with the hyperalgesia that developed with various controls. Bupivacaine was released in vitro at a relatively constant rate over a period of ≈ 72 to 96 hours. Complete antinociception, shown as no response to toe pinch, lasted for 23 ± 7 hours, with a half-recovery time of 42 ± 8 hours after sciatic nerve injection of 0.4 mL of the microspheres delivering 34 mg of bupivacaine. Solutions of 0.5% (wt/vol) bupivacaine-HCl (0.1 mL) produced complete antinociception for less than 2 hours and recovery half-times of 2 hours. Postincisional mechanical hyperalgesia, shown by increased withdrawal responses to von Frey filaments, was absent for 24 hours and was lower than control for 96 hours, when the sciatic nerve was blocked by bupivacaine microspheres, whereas the 0.5% bupivacaine solution reduced postincisional pain for only 4 hours. Corresponding to its far greater functional blocking time, the microsphere-bupivacaine formulation was able to significantly reduce postoperative pain below control levels for up to 4 days. These findings of several days of postoperative pain relief, for an injectable formulation containing a single active agent, present an improved and potentially promising therapy to prevent acute pain after surgery.

  19. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions

    Snead, L. L.; Terrani, K. A.; Katoh, Y.; Silva, C.; Leonard, K. J.; Perez-Bergquist, A. G.

    2014-05-01

    This paper addresses certain key feasibility issues facing the application of SiC-matrix microencapsulated fuels for light water reactor application. Issues addressed are the irradiation stability of the SiC-based nano-powder ceramic matrix under LWR-relevant irradiation conditions, the presence or extent of reaction of the SiC matrix with zirconium-based cladding, the stability of the inner and outer pyrolytic graphite layers of the TRISO coating system at this uncharacteristically low irradiation temperature, and the state of the particle-matrix interface following irradiation which could possibly affect thermal transport. In the process of determining these feasibility issues microstructural evolution and change in dimension and thermal conductivity was studied. As a general finding the SiC matrix was found to be quite stable with behavior similar to that of CVD SiC. In magnitude the irradiation-induced swelling of the matrix material was slightly higher and irradiation-degraded thermal conductivity was slightly lower as compared to CVD SiC. No significant reaction of this SiC-based nano-powder ceramic matrix material with Zircaloy was observed. Irradiation of the sample in the 320-360 °C range to a maximum dose of 7.7 × 1025 n/m2 (E > 0.1 MeV) did not have significant negative impact on the constituent layers of the TRISO coating system. At the highest dose studied, layer structure and interface integrity remained essentially unchanged with good apparent thermal transport through the microsphere to the surrounding matrix.

  20. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions

    Snead, L.L.; Terrani, K.A.; Katoh, Y.; Silva, C.; Leonard, K.J.; Perez-Bergquist, A.G.

    2014-01-01

    This paper addresses certain key feasibility issues facing the application of SiC-matrix microencapsulated fuels for light water reactor application. Issues addressed are the irradiation stability of the SiC-based nano-powder ceramic matrix under LWR-relevant irradiation conditions, the presence or extent of reaction of the SiC matrix with zirconium-based cladding, the stability of the inner and outer pyrolytic graphite layers of the TRISO coating system at this uncharacteristically low irradiation temperature, and the state of the particle–matrix interface following irradiation which could possibly affect thermal transport. In the process of determining these feasibility issues microstructural evolution and change in dimension and thermal conductivity was studied. As a general finding the SiC matrix was found to be quite stable with behavior similar to that of CVD SiC. In magnitude the irradiation-induced swelling of the matrix material was slightly higher and irradiation-degraded thermal conductivity was slightly lower as compared to CVD SiC. No significant reaction of this SiC-based nano-powder ceramic matrix material with Zircaloy was observed. Irradiation of the sample in the 320–360 °C range to a maximum dose of 7.7 × 10 25 n/m 2 (E > 0.1 MeV) did not have significant negative impact on the constituent layers of the TRISO coating system. At the highest dose studied, layer structure and interface integrity remained essentially unchanged with good apparent thermal transport through the microsphere to the surrounding matrix

  1. Density match during fabrication process of poly (α-methylstyrene) mandrels by microencapsulation

    Chen Sufen; Su Lin; Liu Yiyang; Li Bo; Qi Xiaobo; Zhang Zhanwen; Liu Meifang

    2012-01-01

    During the curing process of double emulsions for fabricating poly (α-methylstyrene) (PAMS) capsules by microencapsulation technology, the match of density between the water in oil compound droplet and the outer water phase is vital to the sphericity of PAMS capsules. To investigate the effects of density mismatch on the sphericity of the resulting PAMS capsules, the densities of compound droplets with different inner diameters and polymer oil layer thicknesses were calculated theoretically and measured experimentally during the curing process. Also, the polymer concentrations of the oil phase in the compound droplets during the curing process were further studied. The results show that, the density mismatch between the compound droplets and the outer water phase can be quantitatively controlled by adjusting the compositions of the outer water phase. The curing stage with the polymer concentration of the oil phase increasing from 20% to 60% is the key phase of the curing process. When the density mismatch between the compound droplets and the outer water phase lowering from 0.00495 g/cm 3 to 0.00002 g/cm 3 , the number percentage of PAMS capsules with out of round (OOR) value less than 10 μm in batches can be increased from 14.3% to 93.3%. Thus for the compound droplets with different inner diameters and polymer oil layer thicknesses, the sphericity of the resulting PAMS capsules can be significantly improved, through reducing the density mismatch between the compound droplets and the outer water phase in the key phase of the curing process. (authors)

  2. Neutronics Studies Of Uranium-Based Fully Ceramic Micro-Encapsulated Fuel For PWRs

    Maldonado, G. Ivan; Gehin, Jess C.

    2012-01-01

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature

  3. Assessment of Composite Delamination Self-Healing Via Micro-Encapsulation

    O'Brien, T. Kevin; White, Scott R.

    2008-01-01

    Composite skin/stringer flange debond specimens manufactured from composite prepreg containing interleaf layers with a polymer based healing agent encapsulated in thin walled spheres were tested. As a crack develops and grows in the base polymer, the spheres fracture releasing the healing agent. The agent reacts with catalyst and polymerizes healing the crack. In addition, through-thickness reinforcement, in the form of pultruded carbon z-pins were included near the flange tips to improve the resistance to debonding. Specimens were manufactured with 14 plies in the skin and 10 plies in the stiffener flange. Three-point bend tests were performed to measure the skin/stiffener debonding strength and the recovered strength after healing. The first three tests performed indicated no healing following unloading and reloading. Micrographs showed that delaminations could migrate to the top of the interleaf layer due to the asymmetric loading, and hence, bypass most of the embedded capsules. For two subsequent tests, specimens were clamped in reverse bending before reloading. In one case, healing was observed as evidenced by healing agent that leaked to the specimen edge forming a visible "scar". The residual strength measured upon reloading was 96% of the original strength indicating healing had occurred. Hence, self-healing is possible in fiber reinforced composite material under controlled conditions, i.e., given enough time and contact with pressure on the crack surfaces. The micro-encapsulation technique may prove more robust when capsule sizes can be produced that are small enough to be embedded in the matrix resin without the need for using an interleaf layer. However, in either configuration, the amount of healing that can occur may be limited to the volume of healing agent available relative to the crack volume that must be filled.

  4. Electron beam melting of sponge titanium

    Kanayama, Hiroshi; Kusamichi, Tatsuhiko; Muraoka, Tetsuhiro; Onouye, Toshio; Nishimura, Takashi

    1991-01-01

    Fundamental investigations were done on electron beam (EB) melting of sponge titanium by using 80 kW EB melting furnace. Results obtained are as follows: (1) To increase the melting yield of titanium in EB melting of sponge titanium, it is important to recover splashed metal by installation of water-cooled copper wall around the hearth and to decrease evaporation loss of titanium by keeping the surface temperature of molten metal just above the melting temperature of titanium without local heating. (2) Specific power consumption of drip melting of pressed sponge titanium bar and hearth melting of sponge titanium are approximately 0.9 kWh/kg-Ti and 0.5-0.7 kWh/kg-Ti, respectively. (3) Ratios of the heat conducted to water-cooled mould in the drip melting and to water-cooled hearth in the hearth melting to the electron beam input power are 50-65% and 60-65%, respectively. (4) Surface defects of EB-melted ingots include rap which occurs when the EB output is excessively great, and transverse cracks when the EB output is excessively small. To prevent surface defects, the up-down withdrawal method is effective. (author)

  5. Melt cooling by bottom flooding. The COMET core-catcher concept

    Foit, Jerzy Jan; Alsmeyer, Hans; Tromm, Walter; Buerger, Manfred; Journeau, Christophe

    2009-01-01

    The COMET concept has been developed to cool an ex-vessel corium melt in case of a hypothetical severe accident leading to vessel melt-through. After erosion of a sacrificial concrete layer the melt is passively flooded by bottom injection of coolant water. The open porosities and large surface that are generated during melt solidification form a porous permeable structure that is permanently filled with the evaporating water and thus allows an efficient short-term as well as long-term removal of the decay heat. The advantages of this concept are the fast cool-down and complete solidification of the melt within less than one hour typically. This stops further release of fission products from the corium. A drawback may be the fast release of steam during the quenching process. Several experimental series have been performed by FZK (Germany) to test and optimise the functionality of the different variants of the COMET concept. Thermite generated melts of iron and aluminium oxide were used. The large scale COMET-H test series with sustained inductive heating includes nine experiments performed with an array of water injection channels embedded in a sacrificial concrete layer. Variation of the water inlet pressure and melt height showed that melts up to 50 cm height can be safely cooled with an overpressure of the coolant water of 0.2 bar. The CometPC concept is based on cooling by flooding the melt from the bottom through layers of porous, water filled concrete. The third variant of the COMET design, CometPCA, uses a layer of porous, water filled concrete CometPCA from which flow channels protrude into the layer of sacrificial concrete. This modified concept combines the advantages of the original COMET concept with flow channels and the high resistance of a water-filled porous concrete layer against downward melt attack. Four large scale CometPCA experiments (FZK, Germany) have demonstrated an efficient cooling of melts up to 50 cm height using the recommended water

  6. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances.

    Massounga Bora, Awa Fanny; Ma, Shaojie; Li, Xiaodong; Liu, Lu

    2018-03-01

    Green tea has been associated with the prevention and reduction of a wide range of severe health conditions such as cancer, immune, and cardiovascular diseases. The health benefits associated with green tea consumption have been predominantly attributed to green tea polyphenols. The functional properties of green tea polyphenols are mainly anti-oxidative, antimutagenic, anticarcinogenic, anti-microbial, etc. These excellent properties have recently gained considerable attention in the food industry. However, their application is limited by their sensitivity to factors like temperature, light, pH, oxygen, etc. More, studies have reported the occurrence of unpleasant taste and color transfer during food processing. Lastly, the production of functional food requires to maintain the stability, bioactivity, and bioavailability of the active compounds. To tackle these obstacles, technological approaches like microencapsulation have been developed and applied for the formulation of green tea-enriched food products. The present review discusses the novelty in microencapsulation techniques for the safe delivery of green tea polyphenols in food matrices. After a literature on the green tea polyphenols composition, and their health attributes, the encapsulation methods and the coating materials are presented. The application of green tea encapsulates in food matrices as well as their effect on food functional and sensory properties are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modelling the tumour microenvironment in long-term microencapsulated 3D co-cultures recapitulates phenotypic features of disease progression.

    Estrada, Marta F; Rebelo, Sofia P; Davies, Emma J; Pinto, Marta T; Pereira, Hugo; Santo, Vítor E; Smalley, Matthew J; Barry, Simon T; Gualda, Emilio J; Alves, Paula M; Anderson, Elizabeth; Brito, Catarina

    2016-02-01

    3D cell tumour models are generated mainly in non-scalable culture systems, using bioactive scaffolds. Many of these models fail to reflect the complex tumour microenvironment and do not allow long-term monitoring of tumour progression. To overcome these limitations, we have combined alginate microencapsulation with agitation-based culture systems, to recapitulate and monitor key aspects of the tumour microenvironment and disease progression. Aggregates of MCF-7 breast cancer cells were microencapsulated in alginate, either alone or in combination with human fibroblasts, then cultured for 15 days. In co-cultures, the fibroblasts arranged themselves around the tumour aggregates creating distinct epithelial and stromal compartments. The presence of fibroblasts resulted in secretion of pro-inflammatory cytokines and deposition of collagen in the stromal compartment. Tumour cells established cell-cell contacts and polarised around small lumina in the interior of the aggregates. Over the culture period, there was a reduction in oestrogen receptor and membranous E-cadherin alongside loss of cell polarity, increased collective cell migration and enhanced angiogenic potential in co-cultures. These phenotypic alterations, typical of advanced stages of cancer, were not observed in the mono-cultures of MCF-7 cells. The proposed model system constitutes a new tool to study tumour-stroma crosstalk, disease progression and drug resistance mechanisms. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Microencapsulated Phase Change Materials in Solar-Thermal Conversion Systems: Understanding Geometry-Dependent Heating Efficiency and System Reliability.

    Zheng, Zhaoliang; Chang, Zhuo; Xu, Guang-Kui; McBride, Fiona; Ho, Alexandra; Zhuola, Zhuola; Michailidis, Marios; Li, Wei; Raval, Rasmita; Akhtar, Riaz; Shchukin, Dmitry

    2017-01-24

    The performance of solar-thermal conversion systems can be improved by incorporation of nanocarbon-stabilized microencapsulated phase change materials (MPCMs). The geometry of MPCMs in the microcapsules plays an important role for improving their heating efficiency and reliability. Yet few efforts have been made to critically examine the formation mechanism of different geometries and their effect on MPCMs-shell interaction. Herein, through changing the cooling rate of original emulsions, we acquire MPCMs within the nanocarbon microcapsules with a hollow structure of MPCMs (h-MPCMs) or solid PCM core particles (s-MPCMs). X-ray photoelectron spectroscopy and atomic force microscopy reveals that the capsule shell of the h-MPCMs is enriched with nanocarbons and has a greater MPCMs-shell interaction compared to s-MPCMs. This results in the h-MPCMs being more stable and having greater heat diffusivity within and above the phase transition range than the s-MPCMs do. The geometry-dependent heating efficiency and system stability may have important and general implications for the fundamental understanding of microencapsulation and wider breadth of heating generating systems.

  9. Surface characterization of an energetic material, pentaerythritoltetranitrate (PETN), having a thin coating achieved through a starved addition microencapsulation technique

    Worley, C.M.

    1986-05-07

    The objective of this research was to: (1) determine the nature of a thin coating on an explosive material which was applied using a starved addition microencapsulation technique, (2) understand the coating/crystal bond, and (3) investigate the wettability/adhesion of plastic/solvent combinations using the coating process. The coating used in this work was a Firestone Plastic Company copolymer (FPC-461) of vinylchloride/trifluorochloroethylene in a 1.5/1.0 weight ratio. The energetic explosive examined was pentaerythritoltetranitrate (PETN). The coating process used was starved addition followed by a solvent evaporation technique. Surface analytical studies, completed for characterization of the coating process, show (1) evidence that the polymer coating is present, but not continuous, over the surface of PETN; (2) the average thickness of the polymer coating is between 16-32 A and greater than 44 A, respectively, for 0.5 and 20 wt % coated PETN; (3) no changes in surface chemistry of the polymer or the explosive material following microencapsulation; and (4) the presence of explosive material on the surface of 0.5 wt % FPC-461 coated explosives. 5 refs., 15 figs., 6 tabs.

  10. Preparation of sustained-release coated particles by novel microencapsulation method using three-fluid nozzle spray drying technique.

    Kondo, Keita; Niwa, Toshiyuki; Danjo, Kazumi

    2014-01-23

    We prepared sustained-release microcapsules using a three-fluid nozzle (3N) spray drying technique. The 3N has a unique, three-layered concentric structure composed of inner and outer liquid nozzles, and an outermost gas nozzle. Composite particles were prepared by spraying a drug suspension and an ethylcellulose solution via the inner and outer nozzles, respectively, and mixed at the nozzle tip (3N-PostMix). 3N-PostMix particles exhibited a corrugated surface and similar contact angles as ethylcellulose bulk, thus suggesting encapsulation with ethylcellulose, resulting in the achievement of sustained release. To investigate the microencapsulation process via this approach and its usability, methods through which the suspension and solution were sprayed separately via two of the four-fluid nozzle (4N) (4N-PostMix) and a mixture of the suspension and solution was sprayed via 3N (3N-PreMix) were used as references. It was found that 3N can obtain smaller particles than 4N. The results for contact angle and drug release corresponded, thus suggesting that 3N-PostMix particles are more effectively coated by ethylcellulose, and can achieve higher-level controlled release than 4N-PostMix particles, while 3N-PreMix particles are not encapsulated with pure ethylcellulose, leading to rapid release. This study demonstrated that the 3N spray drying technique is useful as a novel microencapsulation method. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Microencapsulation of citronella oil by complex coacervation using chitosan-gelatin (b system: operating design, preparation and characterization

    Abdul Aziz Fitrah Rabani

    2016-01-01

    Full Text Available Citronella oil (CO can be an effective mosquito repellent, but due to its nature which having high volatility, oils rapidly evaporates causing loss of efficacy and shorten the repellent effect. Therefore, microencapsulation technology was implemented to ensure the encapsulated material being protected from immediate contact with environment and offers controlled release. In this study, microencapsulation of CO was done by employing complex coacervation using chitosan-gelatin (B system and utilized proanthocyanidins as the crosslinker. Remarkably, nearly all material involved in this study are from natural sources which are safe to human and environment. In designing operating process condition for CO encapsulation process, we found that wall ratio of 1:35 and pH 5 was the best operating condition based on zeta potential and turbidity analysis. FT-IR analysis found that gelatin-B had coated the CO droplet during emulsification stage, chitosan started to interact with gelatin-B to form a polyelectrolyte complex in adjust pH stage, CO capsules solidified at cooling process and were hardened during crosslinking process. Final product of CO capsules after settling process was identified at the top layer. Surface morphology of CO capsules obtained in this study were described having diameter varies from 81.63 µm to 156.74 µm with almost spherical in shape.

  12. Evaluation of some residual bioactivities of microencapsulated Phaseolus lunatus protein fraction with carboxymethylated flamboyant (Delonix regia gum/sodium alginate

    Mukthar Sandovai-Peraza

    2014-12-01

    Full Text Available Recent studies have shown the beneficial effect of peptides, an unexploited source could be Phaseolus lunatus being an important raw material for those functional products in order to improve their utilization. In addition to improve the beneficial effect of bioactive peptides the microencapsulation could be a way to protect the peptides against the environment to which they are exposed. P. lunatus protein fraction (<10 kDa of weight was encapsulated using a blend of carboxymethylated flamboyant gum (CFG and sodium alginate (SA at different concentrations of CaCl2 and hardening times. After in vitro digestion of microcapsules the residual activity, in the intestinal system, both inhibition of agiotensin-converting enzyme (I-ACE and antioxidant activity obtained were in a range of 0.019-0.136 mg/mL and 570.64-813.54 mM of TEAC respectively. The microencapsulation employed CFG/SA blends could be used controlled delivery of peptide fractions with potential use as a nutraceutical or therapeutic agents.

  13. Alginate Microencapsulation for Oral Immunisation of Finfish: Release Characteristics, Ex Vivo Intestinal Uptake and In Vivo Administration in Atlantic Salmon, Salmo salar L.

    Ghosh, Bikramjit; Nowak, Barbara F; Bridle, Andrew R

    2015-12-01

    This study examined the feasibility of alginate microcapsules manufactured using a low-impact technology and reagents to protect orally delivered immunogens for use as immunoprophylactics for fish. Physical characteristics and protein release kinetics of the microcapsules were examined at different pH and temperature levels using a microencapsulated model protein, bovine serum albumin (BSA). Impact of the microencapsulation process on contents was determined by analysing change in bioactivity of microencapsulated lysozyme. Feasibility of the method for oral immunoprophylaxis of finfish was assessed using FITC-labelled microcapsules. These were applied to distal intestinal explants of Atlantic salmon (Salmo salar) to investigate uptake ex vivo. Systemic distribution of microcapsules was investigated by oral administration of FITC-labelled microcapsules to Atlantic salmon fry by incorporating into feed. The microcapsules produced were structurally robust and retained surface integrity, with a modal size distribution of 250-750 nm and a tendency to aggregate. Entrapment efficiency of microencapsulation was 51.2 % for BSA and 43.2 % in the case of lysozyme. Microcapsules demonstrated controlled release of protein, which increased with increasing pH or temperature, and the process had no significant negative effect on bioactivity of lysozyme. Uptake of fluorescent-labelled microcapsules was clearly demonstrated by intestinal explants over a 24-h period. Evidence of microcapsules was found in the intestine, spleen, kidney and liver of fry following oral administration. Amenability of the microcapsules to intestinal uptake and distribution reinforced the strong potential for use of this microencapsulation method in oral immunoprophylaxis of finfish using sensitive immunogenic substances.

  14. Effect of electron beam irradiation and microencapsulation on the flame retardancy of ethylene-vinyl acetate copolymer materials during hot water ageing test

    Sheng, Haibo; Zhang, Yan; Wang, Bibo; Yu, Bin; Shi, Yongqian; Song, Lei; Kundu, Chanchal Kumar; Tao, Youji; Jie, Ganxin; Feng, Hao; Hu, Yuan

    2017-01-01

    Microencapsulated ammonium polyphosphate (MCAPP) in combination with polyester polyurethane (TPU) was used to flame retardant ethylene-vinyl acetate copolymer (EVA). The EVA composites with different irradiation doses were immersed in hot water (80 °C) to accelerate ageing process. The microencapsulation and irradiation dose ensured positive impacts on the properties of the EVA composites in terms of better dimensional stability and flame retardant performance. The microencapsulation of APP could lower its solubility in water and the higher irradiation dose led to the more MCAPP immobilized in three dimensional crosslinked structure of the EVA matrix which could jointly enhance the flame retardant and electrical insulation properties of the EVA composites. So, the EVA composites with 180 kGy irradiation dose exhibited better dimensional stability than the EVA composites with 120 kGy due to the higher crosslinking degree. Moreover, the higher irradiation dose lead to the more MCAPP immobilizated in crosslinked three-dimensional structure of EVA, enhancing the flame retardancy and electrical insulation properties of the EVA composites. After ageing test in hot water at 80 °C for 2 weeks, the EVA/TPU/MCAPP composite with 180 kGy could still maintain the UL-94 V-0 rating and the limiting oxygen index (LOI) value was as high as 30%. This investigation indicated the flame retardant EVA cable containing MCAPP could achieve stable properties and lower electrical fire hazard risk during long-term hot water ageing test. - Highlights: • Microencapsulated ammonium polyphosphate is prepared by successive sol-gel process. • The higher irradiation dose induces the better dimensional stability for EVA system. • The higher irradiation, the more MCAPP immobilized in EVA crosslinked structure. • The higher irradiation dose enhances the flame retardancy of EVA composites. • The microencapsulated composites demonstrate stable flame retardancy in ageing test.

  15. Double melting in polytetrafluoroethylene γ-irradiated above its melting point

    Serov, S.A.; Khatipov, S.A.; Sadovskaya, N.V.; Tereshenkov, A.V.; Chukov, N.A.

    2012-01-01

    Highlights: ► PTFE irradiation leads to formation of double melting peaks in DSC curves. ► This is connected to dual crystalline morphology typical for PTFE. ► Two crystalline types exist in the PTFE irradiated in the melt. - Abstract: PTFE irradiation above its melting point leads to formation of double melting and crystallization peaks in DSC curves. Splitting of melting peaks is connected to dual crystalline morphology typical for PTFE irradiated in the melt. According to electron microscopy, two crystalline types with different size and packing density exist in the irradiated PTFE.

  16. Tin in granitic melts: The role of melting temperature and protolith composition

    Wolf, Mathias; Romer, Rolf L.; Franz, Leander; López-Moro, Francisco Javier

    2018-06-01

    Granite bound tin mineralization typically is seen as the result of extreme magmatic fractionation and late exsolution of magmatic fluids. Mineralization, however, also could be obtained at considerably less fractionation if initial melts already had enhanced Sn contents. We present chemical data and results from phase diagram modeling that illustrate the dominant roles of protolith composition, melting conditions, and melt extraction/evolution for the distribution of Sn between melt and restite and, thus, the Sn content of melts. We compare the element partitioning between leucosome and restite of low-temperature and high-temperature migmatites. During low-temperature melting, trace elements partition preferentially into the restite with the possible exception of Sr, Cd, Bi, and Pb, that may be enriched in the melt. In high-temperature melts, Ga, Y, Cd, Sn, REE, Pb, Bi, and U partition preferentially into the melt whereas Sc, V, Cr, Co, Ni, Mo, and Ba stay in the restite. This contrasting behavior is attributed to the stability of trace element sequestering minerals during melt generation. In particular muscovite, biotite, titanite, and rutile act as host phases for Sn and, therefore prevent Sn enrichment in the melt as long as they are stable phases in the restite. As protolith composition controls both the mineral assemblage and modal contents of the various minerals, protolith composition eventually also controls the fertility of a rock during anatexis, restite mineralogy, and partitioning behavior of trace metals. If a particular trace element is sequestered in a phase that is stable during partial melting, the resulting melt is depleted in this element whereas the restite becomes enriched. Melt generation at high temperature may release Sn when Sn-hosts become unstable. If melt has not been lost before the breakdown of Sn-hosts, Sn contents in the melt will increase but never will be high. In contrast, if melt has been lost before the decomposition of Sn

  17. Chemical decontamination and melt densification

    Dillon, R.L.; Griggs, B.; Kemper, R.S.; Nelson, R.G.

    1976-01-01

    Preliminary studies on the chemical decontamination and densification of Zircaloy, stainless steel, and Inconel undissolved residues remaining after dissolution of the UO 2 --PuO 2 spent fuel material from sheared fuel bundles are reported. The studies were made on cold or very small samples to demonstrate the feasibility of the processes developed before proceeding to hot cell demonstrations with kg level of the sources. A promising aqueous decontamination method for Zr alloy cladding was developed in which oxidized surfaces are conditioned with HF prior to leaching with ammonium oxalate, ammonium citrate, ammonium fluoride, and hydrogen peroxide. Feasibility of molten salt decontamination of oxidized Zircaloy was demonstrated. A low melting alloy of Zircaloy, stainless steel, and Inconel was obtained in induction heated graphite crucibles. Segregated Zircaloy cladding sections were directly melted by the inductoslag process to yield a metal ingot suitable for storage. Both Zircaloy and Zircaloy--stainless steel--Inconel alloys proved to be highly satisfactory getters and sinks for recovered tritium

  18. Monitoring of polymer melt processing

    Alig, Ingo; Steinhoff, Bernd; Lellinger, Dirk

    2010-01-01

    The paper reviews the state-of-the-art of in-line and on-line monitoring during polymer melt processing by compounding, extrusion and injection moulding. Different spectroscopic and scattering techniques as well as conductivity and viscosity measurements are reviewed and compared concerning their potential for different process applications. In addition to information on chemical composition and state of the process, the in situ detection of morphology, which is of specific interest for multiphase polymer systems such as polymer composites and polymer blends, is described in detail. For these systems, the product properties strongly depend on the phase or filler morphology created during processing. Examples for optical (UV/vis, NIR) and ultrasonic attenuation spectra recorded during extrusion are given, which were found to be sensitive to the chemical composition as well as to size and degree of dispersion of micro or nanofillers in the polymer matrix. By small-angle light scattering experiments, process-induced structures were detected in blends of incompatible polymers during compounding. Using conductivity measurements during extrusion, the influence of processing conditions on the electrical conductivity of polymer melts with conductive fillers (carbon black or carbon nanotubes) was monitored. (topical review)

  19. Crescimento e estruturas do sistema digestório de larvas de pacu alimentadas com dieta microencapsulada produzida experimentalmente Growth and structure of the digestive system of pacu larvae fed microencapsulated diet produced experimentally

    Olívia Cristina Camilo Menossi

    2012-01-01

    diets and an experimental microencapsulated diet produced by internal gelation were evaluated. Four-day old pacu larvae received the following treatments: only artemia nauplii in increasing amount during the experiment (positive control; larvae maintained at fasting (negative control; three types of formulated diets throughout the experiment (experimental microencapsulated diet, commercial diet NRD1.2/2.0, Inve, USA, and diet Poli-Peixe 450F, PoliNutri, Brazil; and three weaning protocols in which artemia nauplii were given from the 1st to 6th days, six days of co-feeding (artemia nauplii + the respective formulated diet, and only respective diets formulated after this period. The experiment was conducted for 23 days in a completely randomized design, with periodical evaluations of growth and digestive system. Survival rate was determined at the end of the experiment.The best performances of growth and survival, as well as the organogenesis of the digestive tract, were verified for the animals which received live feed. The larvae at weaning treatments induced intermediate growth and survival, which did not differ statistically between them. Considering the treatments that received only formulated diets as first feed, the PoliNutri diet was the unique that showed alive larvae at the end of experiment. None of the formulated diets are adequate as initial exogenous food for pacu larvae. During the weaning, the microencapsulated experimental diet provides growth and survival performances similar to those obtained with the commercial diets.

  20. How mechanical behavior of glassy polymers enables us to characterize melt deformation: elastic yielding in glassy state after melt stretching?

    Wang, Shi-Qing; Zhao, Zhichen; Tsige, Mesfin; Zheng, Yexin

    Fast melt deformation well above the glass transition temperature Tg is known to produce elastic stress in an entangled polymer due to the chain entropy loss at the length scale of the network mesh size. Here chains of high molecular weight are assumed to form an entanglement network so that such a polymer behaves transiently like vulcanized rubber capable of affine deformation. We consider quenching a melt-deformed glassy polymer to well below Tg to preserve the elastic stress. Upon heating such a sample to Tg, the sample can return to the shape it took before melt deformation. This is the basic principle behind the design of all polymer-based shape-memory materials. This work presents intriguing evidence based on both experiment and computer simulation that the chain network, deformed well above Tg, can drive the glassy polymer to undergo elastic yielding. Our experimental systems include polystyrene, poly(methyl methacrylate) and polycarbonate; the molecular dynamics simulation is based on Kremer-Grest bead-spring model. National Science Foundation (DMR-1444859 and DMR-1609977).

  1. Features of melting of indium monohalides

    Dmitriev, V S; Smirniv, V A [AN SSSR, Chernogolovka. Inst. Fiziki Tverdogo Tela

    1980-12-01

    The character of InCl, InBr and InI melting is investigated by the methods of DTA, calorimetry, conductometry and chemical analysis. Partial decomposition of monohalogenides during melting according to the reactions of disproportionation is shown. The presence of disproportionation products (In/sup 0/ and In/sup 3 +/) is manifested in the properties of solid monohalogenides, prepared by the crystallization from melt, in their photosensitivity and electroconductivity.

  2. Multiscale Models of Melting Arctic Sea Ice

    2014-09-30

    Sea ice reflectance or albedo , a key parameter in climate modeling, is primarily determined by melt pond and ice floe configurations. Ice - albedo ...determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a...bifurcation points. Ising model for melt ponds on Arctic sea ice Y. Ma, I. Sudakov, and K. M. Golden Abstract: The albedo of melting

  3. Load histories from steam explosions during core melt accidents

    Jacobs, H.; Kolev, N.I.

    1992-01-01

    For the analysis of steam explosions a multicomponent multiphase thermohydraulic code is required which describes at least the motions of melt, water, and steam by separate velocity fields. One example of these very rare codes is the IVA3 code the development of which was brought to an interim close in 1991. As an example of a typical application of this code, precalculations of the FARO LWR Scoping Test 2 performed at Ispra are discussed. Unfortunately, the calculation results cannot be compared directly to the test results because of important differences between planned and achieved test parameters. Above all, only about one third of the planned melt mass actually entered the water. The test was performed in a closed vessel at an initial pressure of 50 bar. The water was saturated at this temperature and its level was at 1 m height. The simulation starts with the release of 50 kg of simulated corium from an intermediate catcher at about 3.2 m height. The calculation predicts a gradual pressure rise without fast transients worth mentioning from 50 to about 76 bar within roughly one second and stabilizes slightly below the maximum. Also described are the material distributions predicted during the process and the 'mixed' masses according to two different criteria. The former indicate that the melt jet penetrates the water without desintegrating while being surrounded by a thick vapor layer. Subsequently the melt collects at the level bottom and much of the liquid water is blown upwards by the steam being produced. The amounts of mass being 'mixed' with liquid water (and thus are thought to potentially participate in a steam explosion) remain below 10% for the known Theofanous criterion and below 30% for a more conservative criterion. It is however more important that the calculation demonstrates that further mixing could be the result of the onset of a steam explosion. This may strongly limit the usefulness of local mixing criteria. (orig./DG)

  4. Calculation of melting points of oxides

    Bobkova, O.S.; Voskobojnikov, V.G.; Kozin, A.I.

    1975-01-01

    The correlation between the melting point and thermodynamic parameters characterizing the strength of oxides and compounds is given. Such thermodynamic paramters include the energy and antropy of atomization

  5. Comparative Study on Two Melting Simulation Methods: Melting Curve of Gold

    Liu Zhong-Li; Li Rui; Sun Jun-Sheng; Zhang Xiu-Lu; Cai Ling-Cang

    2016-01-01

    Melting simulation methods are of crucial importance to determining melting temperature of materials efficiently. A high-efficiency melting simulation method saves much simulation time and computational resources. To compare the efficiency of our newly developed shock melting (SM) method with that of the well-established two-phase (TP) method, we calculate the high-pressure melting curve of Au using the two methods based on the optimally selected interatomic potentials. Although we only use 640 atoms to determine the melting temperature of Au in the SM method, the resulting melting curve accords very well with the results from the TP method using much more atoms. Thus, this shows that a much smaller system size in SM method can still achieve a fully converged melting curve compared with the TP method, implying the robustness and efficiency of the SM method. (paper)

  6. The Use of Thermal Analysis and Photoacoustic Spectroscopy in the Evaluation of Maltodextrin Microencapsulation of Anthocyanins from Juçara Palm Fruit (Euterpe edulis Mart. and Their Application in Food

    Ana Paula da Silva dos Passos

    2015-01-01

    Full Text Available Anthocyanins extracted from the pulp of the fruit of juçara palm (Euterpe edulis Mart. were microencapsulated with maltodextrin in order to stabilise them. Photoacoustic spectroscopy was used to investigate the photostability of the microencapsulated samples. Complementary differential scanning calorimetry and scanning electron microscopy measurements were also performed. Lyophilised extract had 14 340.2 mg/L of total anthocyanins, and the microencapsulation effi ciency of 93.6 %. Temperature analysis showed that maltodextrin conferred protection up to 70 °C for 120 min. Scanning electron microscopy showed that the microencapsulated particles had a flake-like morphology with a smooth surface, characteristic of lyophilisation processes. In addition, when added to yogurt, a red colourant was predominant in the samples at pH from 1.5 up to 5.0. Thermal analysis showed a weak interaction between the sample and the encapsulating agent, and photoacoustic data indicated the photostability of the matrix when exposed to light. Yogurts containing microencapsulated anthocyanins showed a more intense pink colour than yogurts treated with pure dye, and sensory analysis demonstrated that they can have good acceptance on the market. Microencapsulation enabled the innovative application of anthocyanins from juçara palm fruit, and complementary techniques allied to the photoacoustic spectroscopy were effective tools for its evaluation.

  7. Modelling of the controlled melt flow in a glass melting space – Its melting performance and heat losses

    Jebavá, Marcela; Dyrčíková, Petra; Němec, Lubomír

    2015-01-01

    Roč. 430, DEC 15 (2015), s. 52-63 ISSN 0022-3093 Institutional support: RVO:67985891 Keywords : glass melt flow * mathematical modelling * energy distribution * space utilizatios * melting performance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  8. Melting and Sintering of Ashes

    Hansen, Lone Aslaug

    1997-01-01

    -1300°C, and a trend of higher fusion temperatures with increasing contents of Al-silicates and quartz was found.c) Fly ashes, bottom ashes and deposits from coal/straw co-firing were all found to consist mainly of metal-alumina and alumina-silicates. These ashes all melt in the temperature range 1000......The thesis contains an experimental study of the fusion and sintering of ashes collected during straw and coal/straw co-firing.A laboratory technique for quantitative determination of ash fusion has been developed based on Simultaneous Thermal Analysis (STA). By means of this method the fraction......, the biggest deviations being found for salt rich (i.e. straw derived) ashes.A simple model assuming proportionality between fly ash fusion and deposit formation was found to be capable of ranking deposition rates for the different straw derived fly ashes, whereas for the fly ashes from coal/straw co-firing...

  9. Comparison of the kinetics of intestinal colonization by associating 5 probiotic bacteria assumed either in a microencapsulated or in a traditional, uncoated form.

    Piano, Mario D; Carmagnola, Stefania; Ballarè, Marco; Balzarini, Marco; Montino, Franco; Pagliarulo, Michela; Anderloni, Andrea; Orsello, Marco; Tari, Roberto; Sforza, Filomena; Mogna, Luca; Mogna, Giovanni

    2012-10-01

    Beneficial findings concerning probiotics are increasing day by day. However, one of the most important parameters able to significantly affect the probiotic value of a microorganism is its survival during the transit through the stomach and the duodenum. Some techniques may be applied that aim to improve this parameter, but microencapsulation of bacterial cells remains one of the most important. A recent study assessed the kinetics of intestinal colonization by a mixture of 2 probiotic strains, given either in a microencapsulated or in a traditional, uncoated form. A comparison between the intestinal colonization by associating 5 microencapsulated bacteria and the same uncoated strains was performed by a double-blind, randomized, cross-over study. The study (December 2007 to January 2009) involved 53 healthy volunteers. In particular, subjects were divided into 2 groups: group A (27 subjects) was given a mix of probiotic strains Probiotical S.p.A. (Novara, Italy), Lactobacillus acidophilus LA02 (DSM 21717), Lactobacillus rhamnosus LR04 (DSM 16605), L. rhamnosus GG, or LGG (ATCC 53103), L. rhamnosus LR06 (DSM 21981), and Bifidobacterium lactis BS01 (LMG P-21384) in an uncoated form, whereas group B (26 subjects) received the same strains microencapsulated with a gastroprotected material. The uncoated strains were administered at 5×10⁹ cfu/strain/d (a total of 25×10⁹ cfu/d) for 21 days, whereas the microencapsulated bacteria were given at 1×10⁹ cfu/strain/d (a total of 5×10⁹ cfu/d) for 21 days. At the end of the first period of supplementation with probiotics, a 3-week wash-out phase was included in the study setting. At the end of the wash-out period, the groups crossed over their treatment regimen; that is, group A was administered the microencapsulated bacteria and group B the uncoated bacteria. The administered quantities of each strain were the same as the first treatment. A quantitative evaluation of intestinal colonization by probiotics, either

  10. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír

    2015-01-01

    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  11. High-pressure melting curve of KCl: Evidence against lattice-instability theories of melting

    Ross, M.; Wolf, G.

    1986-01-01

    We show that the large curvature in the T-P melting curve of KCl is the result of a reordering of the liquid to a more densely packed arrangement. As a result theories of melting, such as the instability model, which do not take into account the structure of the liquid fail to predict the correct pressure dependence of the melting curve

  12. Fabrication and properties of microencapsulated-paraffin/gypsum-matrix building materials for thermal energy storage

    Su Junfeng; Wang Xinyu; Wang Shengbao; Zhao Yunhui; Huang Zhen

    2012-01-01

    Graphical abstract: DSC curves of microPCMs/gypsum composite samples before and after a thermal cycling treatment. Highlights: ► Microcapsules containing paraffin was fabricated by in-situ polymerization. ► Methanol-modified melamine–formaldehyde (MMF) was used as shell material. ► MicroPCMs/gypsum-matrix building materials were applied for solar energy storage. ► The structure and thermal conductivity of composites had been investigated. - Abstract: Microencapsulated phase change materials (microPCMs) have been widely applied in solid matrix as thermal-storage or temperature-controlling functional composites. The aim of this work was to prepare and investigate the properties of microPCMs/gypsum-matrix building materials for thermal energy storage. MicroPCMs contain paraffin was fabricated by in situ polymerization using methanol-modified melamine–formaldehyde (MMF) as shell material. A series of microPCMs samples were prepared under emulsion stirring rates in range of 1000–3000 r min −1 with core/shell weight ratios of 3/1, 2/1, 1/1, 1/2 and 1/3, respectively. The shell of microPCMs was smooth and compact with global shape, its thickness was not greatly affected by the core/shell ratio and emulsion stirring rate. DSC tests showed that the shell of microPCMs did not influence the phase change behavior of pure paraffin. It was found from TGA analysis that microPCMs samples containing paraffin lost their weight at the temperature of nearly 250 °C, which indicated that the PCM had been protected by shell. More shell material in microPCMs could enhance the thermal stability and provide higher compact condition for core material. After a 100-times thermal cycling treatment, the microPCMs contain paraffin also nearly did not change the phase change behaviors of PCM. With the increasing of weight contents of microPCMs in gypsum board, the thermal conductivity (λ) values of composites had decreased. The simulation of temperature tests proved that the

  13. Microencapsulated Aliivibrio fischeri in Alginate Microspheres for Monitoring Heavy Metal Toxicity in Environmental Waters

    Dedi Futra

    2014-12-01

    Full Text Available In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri encapsulated in alginate microspheres is described. Cu(II, Cd(II, Pb(II, Zn(II, Cr(VI, Co(II, Ni(II, Ag(I and Fe(II were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD range of 2.4–5.7% (n = 8. The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD for Cu(II (6.40 μg/L, Cd(II (1.56 μg/L, Pb(II (47 μg/L, Ag(I (18 μg/L than Zn(II (320 μg/L, Cr(VI (1,000 μg/L, Co(II (1700 μg/L, Ni(II (2800 μg/L, and Fe(III (3100 μg/L. Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.

  14. A Biomimetic Approach to Active Self-Microencapsulation of Proteins in PLGA

    Shah, Ronak B.; Schwendeman, Steven P.

    2014-01-01

    A biomimetic approach to organic solvent-free microencapsulation of proteins based on the self-healing capacity of poly (DL)-lactic-co-glycolic acid (PLGA) microspheres containing glycosaminoglycan-like biopolymers (BPs), was examined. To screen BPs, aqueous solutions of BP [high molecular weight dextran sulfate (HDS), low molecular weight dextran sulfate (LDS), chondroitin sulfate (CS), heparin (HP), hyaluronic acid (HA), chitosan (CH)] and model protein lysozyme (LYZ) were combined in different molar and mass ratios, at 37 °C and pH 7. The BP-PLGA microspheres (20–63 µm) were prepared by a double water-oil-water emulsion method with a range of BP content, and trehalose and MgCO3 to control microclimate pH and to create percolating pores for protein. Biomimetic active self-encapsulation (ASE) of proteins [LYZ, vascular endothelial growth factor165 (VEGF) and fibroblast growth factor (FgF-20)] was accomplished by incubating blank BP-PLGA microspheres in low concentration protein solutions at ~24 °C, for 48 h. Pore closure was induced at 42.5 °C under mild agitation for 42 h. Formulation parameters of BP-PLGA microspheres and loading conditions were studied to optimize protein loading and subsequent release. LDS and HP were found to bind >95% LYZ at BP:LYZ >0.125 w/w, whereas HDS and CS bound > 80% LYZ at BP:LYZ of 0.25–1 and 2% w/w of LYZ). Sulfated BP-PLGA microspheres were capable of loading LYZ (~2–7 % w/w), VEGF (~ 4% w/w), and FgF-20 (~2% w/w) with high efficiency. Protein loading was found to be dependent on the loading solution concentration, with higher protein loading obtained at higher loading solution concentration within the range investigated. Loading also increased with content of sulfated BP in microspheres. Release kinetics of proteins was evaluated in-vitro with complete release media replacement. Rate and extent of release were found to depend upon volume of release (with non-sink conditions observed 90 % of protein being enzymatically

  15. NEUTRONICS STUDIES OF URANIUM-BASED FULLY CERAMIC MICRO-ENCAPSULATED FUEL FOR PWRs

    George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL; Godfrey, Andrew T [ORNL

    2012-01-01

    This study evaluates the core neutronics and fuel cycle characteristics that result from employing uranium-based fully ceramic micro-encapsulated (FCM) fuel in a pressurized water reactor (PWR). Specific PWR bundle designs with FCM fuel have been developed, which by virtue of their TRISO particle based elements, are expected to safely reach higher fuel burnups while also increasing the tolerance to fuel failures. The SCALE 6.1 code package, developed and maintained at ORNL, was the primary software employed to model these designs. Analysis was performed using the SCALE double-heterogeneous (DH) fuel modeling capabilities. For cases evaluated with the NESTLE full-core three-dimensional nodal simulator, because the feature to perform DH lattice physics branches with the SCALE/TRITON sequence is not yet available, the Reactivity-Equivalent Physical Transformation (RPT) method was used as workaround to support the full core analyses. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In addition, a parametric study was performed by varying the various TRISO particle design features; such as kernel diameter, coating layer thicknesses, and packing fractions. Also, other features such as the selection of matrix material (SiC, Zirconium) and fuel rod dimensions were perturbed. After evaluating different uranium-based fuels, the higher physical density of uranium mononitride (UN) proved to be favorable, as the parametric studies showed that the FCM particle fuel design will need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. Neutronically, the FCM fuel designs evaluated maintain acceptable design features in the areas of fuel lifetime, temperature

  16. Fast Convolution Module (Fast Convolution Module)

    Bierens, L

    1997-01-01

    This report describes the design and realisation of a real-time range azimuth compression module, the so-called 'Fast Convolution Module', based on the fast convolution algorithm developed at TNO-FEL...

  17. Permeability and 3-D melt geometry in shear-induced high melt fraction conduits

    Zhu, W.; Cordonnier, B.; Qi, C.; Kohlstedt, D. L.

    2017-12-01

    Observations of dunite channels in ophiolites and uranium-series disequilibria in mid-ocean ridge basalt suggest that melt transport in the upper mantle beneath mid-ocean ridges is strongly channelized. Formation of high melt fraction conduits could result from mechanical shear, pyroxene dissolution, and lithological partitioning. Deformation experiments (e.g. Holtzman et al., 2003) demonstrate that shear stress causes initially homogeneously distributed melt to segregate into an array of melt-rich bands, flanked by melt-depleted regions. At the same average melt fraction, the permeability of high melt fraction conduits could be orders of magnitude higher than that of their homogenous counterparts. However, it is difficult to determine the permeability of melt-rich bands. Using X-ray synchrotron microtomography, we obtained high-resolution images of 3-dimensional (3-D) melt distribution in a partially molten rock containing shear-induced high melt fraction conduits. Sample CQ0705, an olivine-alkali basalt aggregate with a nominal melt fraction of 4%, was deformed in torsion at a temperature of 1473 K and a confining pressure of 300 MPa to a shear strain of 13.3. A sub-volume of CQ0705 encompassing 3-4 melt-rich bands was imaged. Microtomography data were reduced to binary form so that solid olivine is distinguishable from basalt glass. At a spatial resolution of 160 nm, the 3-D images reveal the shape and connectedness of melt pockets in the melt-rich bands. Thin melt channels formed at grain edges are connected at large melt nodes at grain corners. Initial data analysis shows a clear preferred orientation of melt pockets alignment subparallel to the melt-rich band. We use the experimentally determined geometrical parameters of melt topology to create a digital rock with identical 3-D microstructures. Stokes flow simulations are conducted on the digital rock to obtain the permeability tensor. Using this digital rock physics approach, we determine how deformation

  18. Core catcher cooling for a gas-cooled fast breeder

    Dalle Donne, M.; Dorner, S.; Schretzmann, K.

    1976-01-01

    Water, molten salts, and liquid metals are under discussion as coolants for the core catcher of a gas-cooled fast breeder. The authors state that there is still no technically mature method of cooling a core melt. However, the investigations carried out so far suggest that there is a solution to this problem. (RW/AK) [de

  19. Physics in the fast lane: rotors, fast ions and mobile fermions

    Price, D.L.; Saboungi, M.-L.

    1996-09-01

    Dynamic disorder in the high-temperature solid phases of the Zintl compounds CsPb and NaSn is characterized by. fast orientational motions of the polyanions and coupled motions of the cations Melting is characterized by slow translational motions of the centers of mass of the polyanions. The dynamic behavior of the ions is associated with dramatic increases in electrical conductivity characteristic of the behavior expected of a mixed conductor

  20. Recent Changes in the Arctic Melt Season

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff

    2007-01-01

    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  1. Niobium interaction with chloride-carbonate melts

    Kuznetsov, S.A.; Kuznetsova, S.V.

    1996-01-01

    Niobium interaction with chloride-carbonate melt NaCl-KCl-K 2 CO 3 (5 mass %) in the temperature range of 973-1123 K has been studied. The products and niobium corrosion rate have been ascertained, depending on the temperature of melt and time of allowance. Potentials of niobium corrosion have been measured. Refs. 11, figs. 3, tabs. 2

  2. Attenuation in Melting Layer of Precipitation

    Klaassen, W.

    1988-01-01

    A model of the melting layer is employed on radar measurements to simulate the attenuation of radio waves at 12, 20 and 30GHz. The attenuation in the melting layer is simulated to be slightly larger than that of rain with the same path length and precipitation intensity. The result appears to depend

  3. Multiscale approach to equilibrating model polymer melts

    Svaneborg, Carsten; Ali Karimi-Varzaneh, Hossein; Hojdis, Nils

    2016-01-01

    We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale, inside the tube and finally at the monomeric scale. We make use of models designed...

  4. Disordering and Melting of Aluminum Surfaces

    Stoltze, Per; Nørskov, Jens Kehlet; Landman, U.

    1988-01-01

    We report on a molecular-dynamics simulation of an Al(110) surface using the effective-medium theory to describe the interatomic interactions. The surface region is found to start melting ≅200 K below the bulk melting temperature with a gradual increase in the thickness of the disordered layer as...

  5. Solid-solid phase transformation via internal stress-induced virtual melting, significantly below the melting temperature. Application to HMX energetic crystal.

    Levitas, Valery I; Henson, Bryan F; Smilowitz, Laura B; Asay, Blaine W

    2006-05-25

    We theoretically predict a new phenomenon, namely, that a solid-solid phase transformation (PT) with a large transformation strain can occur via internal stress-induced virtual melting along the interface at temperatures significantly (more than 100 K) below the melting temperature. We show that the energy of elastic stresses, induced by transformation strain, increases the driving force for melting and reduces the melting temperature. Immediately after melting, stresses relax and the unstable melt solidifies. Fast solidification in a thin layer leads to nanoscale cracking which does not affect the thermodynamics or kinetics of the solid-solid transformation. Thus, virtual melting represents a new mechanism of solid-solid PT, stress relaxation, and loss of coherence at a moving solid-solid interface. It also removes the athermal interface friction and deletes the thermomechanical memory of preceding cycles of the direct-reverse transformation. It is also found that nonhydrostatic compressive internal stresses promote melting in contrast to hydrostatic pressure. Sixteen theoretical predictions are in qualitative and quantitative agreement with experiments conducted on the PTs in the energetic crystal HMX. In particular, (a) the energy of internal stresses is sufficient to reduce the melting temperature from 551 to 430 K for the delta phase during the beta --> delta PT and from 520 to 400 K for the beta phase during the delta --> beta PT; (b) predicted activation energies for direct and reverse PTs coincide with corresponding melting energies of the beta and delta phases and with the experimental values; (c) the temperature dependence of the rate constant is determined by the heat of fusion, for both direct and reverse PTs; results b and c are obtained both for overall kinetics and for interface propagation; (d) considerable nanocracking, homogeneously distributed in the transformed material, accompanies the PT, as predicted by theory; (e) the nanocracking does not

  6. Shape evolution of a melting nonspherical particle

    Kintea, Daniel M.; Hauk, Tobias; Roisman, Ilia V.; Tropea, Cameron

    2015-09-01

    In this study melting of irregular ice crystals was observed in an acoustic levitator. The evolution of the particle shape is captured using a high-speed video system. Several typical phenomena have been discovered: change of the particle shape, appearance of a capillary flow of the melted liquid on the particle surface leading to liquid collection at the particle midsection (where the interface curvature is smallest), and appearance of sharp cusps at the particle tips. No such phenomena can be observed during melting of spherical particles. An approximate theoretical model is developed which accounts for the main physical phenomena associated with melting of an irregular particle. The agreement between the theoretical predictions for the melting time, for the evolution of the particle shape, and the corresponding experimental data is rather good.

  7. Nanotexturing of surfaces to reduce melting point.

    Garcia, Ernest J.; Zubia, David (University of Texas at El Paso El Paso, TX); Mireles, Jose (Universidad Aut%C3%94onoma de Ciudad Ju%C3%94arez Ciudad Ju%C3%94arez, Mexico); Marquez, Noel (University of Texas at El Paso El Paso, TX); Quinones, Stella (University of Texas at El Paso El Paso, TX)

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understanding and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.

  8. Melting Can Hinder Impact-Induced Adhesion

    Hassani-Gangaraj, Mostafa; Veysset, David; Nelson, Keith A.; Schuh, Christopher A.

    2017-10-01

    Melting has long been used to join metallic materials, from welding to selective laser melting in additive manufacturing. In the same school of thought, localized melting has been generally perceived as an advantage, if not the main mechanism, for the adhesion of metallic microparticles to substrates during a supersonic impact. Here, we conduct the first in situ supersonic impact observations of individual metallic microparticles aimed at the explicit study of melting effects. Counterintuitively, we find that under at least some conditions melting is disadvantageous and hinders impact-induced adhesion. In the parameter space explored, i.e., ˜10 μ m particle size and ˜1 km /s particle velocity, we argue that the solidification time is much longer than the residence time of the particle on the substrate, so that resolidification cannot be a significant factor in adhesion.

  9. Modeling the summertime evolution of sea-ice melt ponds

    Lüthje, Mikael; Feltham, D.L.; Taylor, P.D.

    2006-01-01

    We present a mathematical model describing the summer melting of sea ice. We simulate the evolution of melt ponds and determine area coverage and total surface ablation. The model predictions are tested for sensitivity to the melt rate of unponded ice, enhanced melt rate beneath the melt ponds...

  10. Volatile diffusion in silicate melts and its effects on melt inclusions

    P. Scarlato

    2005-06-01

    Full Text Available A compendium of diffusion measurements and their Arrhenius equations for water, carbon dioxide, sulfur, fluorine, and chlorine in silicate melts similar in composition to natural igneous rocks is presented. Water diffusion in silicic melts is well studied and understood, however little data exists for melts of intermediate to basic compositions. The data demonstrate that both the water concentration and the anhydrous melt composition affect the diffusion coefficient of water. Carbon dioxide diffusion appears only weakly dependent, at most, on the volatilefree melt composition and no effect of carbon dioxide concentration has been observed, although few experiments have been performed. Based upon one study, the addition of water to rhyolitic melts increases carbon dioxide diffusion by orders of magnitude to values similar to that of 6 wt% water. Sulfur diffusion in intermediate to silicic melts depends upon the anhydrous melt composition and the water concentration. In water-bearing silicic melts sulfur diffuses 2 to 3 orders of magnitude slower than water. Chlorine diffusion is affected by both water concentration and anhydrous melt composition; its values are typically between those of water and sulfur. Information on fluorine diffusion is rare, but the volatile-free melt composition exerts a strong control on its diffusion. At the present time the diffusion of water, carbon dioxide, sulfur and chlorine can be estimated in silicic melts at magmatic temperatures. The diffusion of water and carbon dioxide in basic to intermediate melts is only known at a limited set of temperatures and compositions. The diffusion data for rhyolitic melts at 800°C together with a standard model for the enrichment of incompatible elements in front of growing crystals demonstrate that rapid crystal growth, greater than 10-10 ms-1, can significantly increase the volatile concentrations at the crystal-melt interface and that any of that melt trapped

  11. FAST: FAST Analysis of Sequences Toolbox

    Travis J. Lawrence

    2015-05-01

    Full Text Available FAST (FAST Analysis of Sequences Toolbox provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU’s Not Unix Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics makes FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format. Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

  12. Experimental results for TiO2 melting and release using cold crucible melting

    Hong, S. W.; Min, B. T.; Park, I. G.; Kim, H. D.

    2000-01-01

    To simulate the severe accident phenomena using the real reactor material which melting point is about 2,800K, the melting and release method for materials with high melting point should be developed. This paper discusses the test results for TiO 2 materials using the cold crucible melting method to study the melting and release method of actual corium. To melt and release of few kg of TiO2, the experimental facility is manufactured through proper selection of design parameters such as frequency and capacity of R.F generator, crucible size and capacity of coolant. The melting and release of TiO 2 has been successfully performed in the cold crucible of 15cm in inner diameter and 30cm in height with 30kW RF power generator of 370 KHz. In the melt delivery experiment, about 2.6kg of molten TiO2, 60% of initial charged mass, is released. Rest of it is remained in the watercage in form of the rubble crust formed at the top of crucible and melt crust formed at the interface between the water-cage and melt. Especially, in the melt release test, the location of the working coil is important to make the thin crust at the bottom of the crucible

  13. Endmembers of Ice Shelf Melt

    Boghosian, A.; Child, S. F.; Kingslake, J.; Tedesco, M.; Bell, R. E.; Alexandrov, O.; McMichael, S.

    2017-12-01

    Studies of surface melt on ice shelves have defined a spectrum of meltwater behavior. On one end the storage of meltwater in persistent surface ponds can trigger ice shelf collapse as in the 2002 event leading to the disintegration of the Larsen B Ice Shelf. On the other, meltwater export by rivers can stabilize an ice shelf as was recently shown on the Nansen Ice Shelf. We explore this dichotomy by quantifying the partitioning between stored and transported water on two glaciers adjacent to floating ice shelves, Nimrod (Antarctica) and Peterman (Greenland). We analyze optical satellite imagery (LANDSAT, WorldView), airborne imagery (Operation IceBridge, Trimetrogon Aerial Phototography), satellite radar (Sentinel-1), and digital elevation models (DEMs) to categorize surface meltwater fate and map the evolution of ice shelf hydrology and topographic features through time. On the floating Peterman Glacier tongue a sizable river exports water to the ocean. The surface hydrology of Nimrod Glacier, geometrically similar to Peterman but with ten times shallower surface slope, is dominated by storage in surface lakes. In contrast, the Nansen has the same surface slope as Nimrod but transports water through surface rivers. Slope alone is not the sole control on ice shelf hydrology. It is essential to track the storage and transport volumes for each of these systems. To estimate water storage and transport we analyze high resolution (40 cm - 2 m) modern and historical DEMs. We produce historical (1957 onwards) DEMs with structure-from-motion photogrammetry. The DEMs are used to constrain water storage potential estimates of observed basins and water routing/transport potential. We quantify the total volume of water stored seasonally and interannually. We use the normalize difference water index to map meltwater extent, and estimate lake water depth from optical data. We also consider the role of stored water in subsurface aquifers in recharging surface water after

  14. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment.

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  15. Process and Material Design for Micro-Encapsulated Ionic Liquids in Post-Combustion CO2 Capture

    Hong, Bo [Univ. of Notre Dame, IN (United States); Brennecke, Joan F [Univ. of Notre Dame, IN (United States); McCready, Mark [Univ. of Notre Dame, IN (United States); Stadtherr, Mark [Univ. of Notre Dame, IN (United States)

    2016-11-18

    Aprotic Heterocyclic Anion (AHA) Ionic Liquids (ILs) have been identified as promising new solvents for post-combustion carbon capture due to their high CO2 uptake and the high tenability 1,2 of their binding energy with CO2. Some of these compounds change phase (solid to liquid) on absorption of CO2; these Phase Change ILs (PCILs)3 offer the additional advantage that part of the heat needed to desorb the CO2 from the absorbent is provided by the heat of fusion as the PCIL solidifies upon release of CO2. However, the relatively high viscosity of AHA ILs and the occurrence of a phase change in PCILs present challenges for conventional absorption equipment. To overcome these challenges we are pursuing the use of new technology to micro-encapsulate the AHA ILs and PCILs. Our partners at Lawrence Livermore National Laboratory have successfully demonstrated this technology in the application of post-combustion carbon capture with sodium and potassium carbonate solutions,4 and have recently shown the feasibility of micro-encapsulation of an AHA IL for carbon capture.5 The large effective surface area and high CO2 permeability of the micro-capsules is expected to offset the drawback of the high IL viscosity and to provide for a more efficient and cost-effective mass transfer operation involving AHA ILs and PCILs. These opportunities, however, present us with both process and materials design questions. For example, what is the target CO2 absorption strength (enthalpy of chemical absorption) for the tunable AHA IL? What is the target for micro-capsule diameter in order to obtain a high mass transfer rate and good fluidization performance? What are the appropriate temperatures and pressures for the absorber and stripper? In order to address these and other questions, we have developed a rate-based model of a post-combustion CO2 capture process using micro-encapsulated ILs. As a performance baseline

  16. A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2014-01-01

    PCM. This paper describes the development of the new material and the experimental set-up to determine the specific heat capacity of the PCM concrete material. Moreover, various methods are proposed and compared to calculate the specific heat capacity of the PCM concrete. Finally, it is hoped......The study presented in this paper focuses on an experimental investigation of the specific heat capacity as a function of the temperature Cp (T) of concrete mixed with various amounts of phase change material (PCM). The tested specimens are prepared by directly mixing concrete and microencapsulated...... that this work can be used as an inspiration and guidance to perform measurements on the various composite materials containing PCM....

  17. Effectiveness of silica based Sol-gel microencapsulation Method for odorants and flavours leading to sustainable Environment

    Muhammad Aqeel eAshraf

    2015-08-01

    Full Text Available Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol–gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol–gel SiO2 is non-toxic and safe, whereas the sol–gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped actives, thereby broadening the practical utilization of chemically unstable essential oils. Reviewing progress in the fabrication of diverse odorant and flavoured sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits.

  18. Formation of poly(butyl 2-cyanoacrylate) microcapsules and the microencapsulation of aqueous solutions of [125I]-labelled proteins

    Wood, D.A.; Whateley, T.L.; Florence, A.T.

    1981-01-01

    Some featrues of the polymerization reaction of butyl 2-cyanoacrylate at different aqueous/organic solvent interfaces have been investigated. In particular, the effects of pH and the presence of protein on the formation of microcapsules by in situ interfacial polymerization of butyl 2-cyanoacrylate in w/o emulsions have been studied. [ 125 I]-labelled proteins have been used to study the procedure as a method of microencapsulating enzymes or other proteins within potentially biodegradable membranes. Preliminary in vitro degradation studies suggest that degradation of the microcapsules is inhibited by low levels of their breakdown products, thus allowing the storage of the microcapsules as aqueous suspensions for prolonged periods in sealed containers. (Auth.)

  19. Microencapsulation of sulforaphane from broccoli seed extracts by gelatin/gum arabic and gelatin/pectin complexes.

    García-Saldaña, Jesús S; Campas-Baypoli, Olga N; López-Cervantes, Jaime; Sánchez-Machado, Dalia I; Cantú-Soto, Ernesto U; Rodríguez-Ramírez, Roberto

    2016-06-15

    Sulforaphane is a phytochemical that has received attention in recent years due to its chemopreventive properties. However, the uses and applications of this compound are very limited, because is an unstable molecule that is degraded mainly by changes in temperature and pH. In this research, the use of food grade polymers for microencapsulation of sulforaphane was studied by a complex coacervation method using the interaction of oppositely charged polymers as gelatin/gum arabic and gelatin/pectin. The polymers used were previously characterized in moisture content, ash and nitrogen. The encapsulation yield was over 80%. The gelatin/pectin complex had highest encapsulation efficiency with 17.91%. The presence of sulforaphane in the complexes was confirmed by FTIR and UV/visible spectroscopy. The materials used in this work could be a new and attractive option for the protection of sulforaphane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavors leading to sustainable environment

    Ashraf, Muhammad Aqeel; Khan, Aysha Masood; Ahmad, Mushtaq; Sarfraz, Maliha

    2015-01-01

    Microencapsulation has become a hot topic in chemical research. Technology mainly used for control release and protection purposes. The sol-gel micro encapsulation approach for fragrance and aroma in porous silica-based materials leads to sustainable odorant and flavored materials with novel and unique beneficial properties. Sol-gel encapsulation of silica based micro particles considered economically cheap as capital investment in manufacturing is very low and environmentally friendly. Amorphous sol-gel SiO2 is non-toxic and safe, whereas the sol-gel entrapment of delicate chemicals in its inner pores results in pronounced chemical and physical stabilization of the entrapped active agents, thereby broadening the practical utilization of chemically unstable essential oils (EOs). Reviewing progress in the fabrication of diverse odorant and flavored sol-gels, shows us how different synthetic strategies are appropriate for practical application with important health and environmental benefits. PMID:26322304