WorldWideScience

Sample records for microencapsulated electrophoretic inks

  1. Microencapsulated Electrophoretic Films for Electronic Paper Displays

    Science.gov (United States)

    Amundson, Karl

    2003-03-01

    Despite the dominance of liquid crystal displays, they do not perform some functions very well. While backlit liquid crystal displays can offer excellent color performance, they wash out in bright lighting and suffer from high power consumption. Reflective liquid crystal displays have limited brightness, making these devices challenging to read for long periods of time. Flexible liquid crystal displays are difficult to manufacture and keep stable. All of these attributes (long battery lifetime, bright reflective appearance, compatibility with flexible substrates) are traits that would be found in an ideal electronic paper display - an updateable substitute for paper that could be employed in electronic books, newspapers, and other applications. I will discuss technologies that are being developed for electronic-paper-like displays, and especially on particle-based technologies. A microencapsulated electrophoretic display technology is being developed at the E Ink corporation. This display film offers offer high brightness and an ink-on-paper appearance, compatibility with flexible substrates, and image stability that can lead to very low power consumption. I will present some of the physical and chemical challenges associated with making display films with high performance.

  2. Chromatographic and electrophoretic approaches in ink analysis.

    Science.gov (United States)

    Zlotnick, J A; Smith, F P

    1999-10-15

    Inks are manufactured from a wide variety of substances that exhibit very different chemical behaviors. Inks designed for use in different writing instruments or printing methods have quite dissimilar components. Since the 1950s chromatographic and electrophoretic methods have played important roles in the analysis of inks, where compositional information may have bearing on the investigation of counterfeiting, fraud, forgery, and other crimes. Techniques such as paper chromatography and electrophoresis, thin-layer chromatography, high-performance liquid chromatography, gas chromatography, gel electrophoresis, and the relatively new technique of capillary electrophoresis have all been explored as possible avenues for the separation of components of inks. This paper reviews the components of different types of inks and applications of the above separation methods are reviewed.

  3. Electrophoretic display using microencapsulated suspension; Maikuro kapuseru ka bunsaneki wo mochiita denki eido deisupurei

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, H. [NOK Corp., Tokyo (Japan)

    1999-11-01

    Electrophoretic display (EPD) is a non-luminous type display using electrophoresis of particles dispersing in a solvent. This kind of display is particularly good at displaying like printing matters. By micro-encapsulating the dispersion medium, a realization of the thin and flexible display device become possible. Further, an EPD (MC-EPD) using a microencapsulated suspension is a forceful candidate for realizing digital paper in the future. In this paper, principle and characteristics of the EPD are explained and application to rewritable sheet (MC-EPS) is introduced. MC-EPS is a rewritable sheet-like display formed by coating a flexible base material such as a polymer film or paper with microcapsules and applying an electric field from external. As an electrostatic latent image formation technique in the electro photography field can be applied as a voltage impression method, the development of the special writing equipment is unnecessary. (NEDO)

  4. Tridodecylamine, an efficient charge control agent in non-polar media for electrophoretic inks application

    Science.gov (United States)

    Noel, Amélie; Mirbel, Déborah; Cloutet, Eric; Fleury, Guillaume; Schatz, Christophe; Navarro, Christophe; Hadziioannou, Georges; CyrilBrochon

    2018-01-01

    In order to obtain efficient electrophoretic inks, Tridodecylamine (Dod3N), has been studied as charge control agent (CCA) in a non-polar paraffin solvent (Isopar G) for various inorganic pigments (TiO2 and Fe2O3). All hydrophobic mineral oxides, i.e. treated with octyltrimethoxysilane (C8) or dodecyltrimethoxysilane (C12), were found to be negatively charged in presence of Dod3N. The electrophoretic mobilities of inorganic pigments seemed to be strongly dependent of their isoelectric point (IEP) and also of the concentration of dod3N with an optimum range between 10 and 20 mM depending on the pigments. Finally, an electrophoretic ink constituted of hydrophobic mineral oxides in presence of Dod3N was tested in a device. Its efficiency as charge control agent to negatively charge hydrophobic particles was confirmed through good optical properties and fast response time (220 ms at 200 kV m-1).

  5. Electrophoretic Ink Display Prepared by Jelly Fig Pectin/Gelatin Microspheres

    Directory of Open Access Journals (Sweden)

    Wing-Ming Chou

    2015-05-01

    Full Text Available A brand new Bio-Electronic ink (Bio-E ink display device was prepared and characterized in this study. Semiconductor material, copper phthalocyanine (CuPc was modified by cationic surfactants, cetylpyridinium chloride (CPC, as the core material, and the shell of capsule was prepared by jelly fig pectin, gelatin and sodium dodecyl sulphate (SDS. Here, jelly fig pectin was provided as the shell material for the first time. Chemical structure of the modified CuPc was characterized by Fourier Transform Infrared Spectrometer (FTIR. The core-shell microcapsules were achieved by coacervation method in an oil/water (O/W emulsion system. The particle size and morphology of microcapsules were affected by the concentrations of SDS and pH values of the O/W emulsion system. A new microcapsule-based electrophoretic display device was presented. Its image display ability of the microcapsules electrophoretic device was presented as appropriated electric power was applied, and the response time was 0.06 sec under 0.1 V/mm of electric field. Moreover, we found that its image contrast ratio of display device was influenced by the particle sizes of the microcapsules.

  6. A novel method for the preparation of electrophoretic display microcapsules

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao-Meng; He, Jing; Liu, Sheng-Yun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Chen, Jian-Feng [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Le, Yuan, E-mail: leyuan@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-07-01

    Highlights: • The electrophoretic display microcapsules were prepared by coaxial jet method aided by gas spray. • The positions of inner tube, liquid and gas flow rate of the process were investigated. • The size and shell thickness of the prepared microcapsules were controllable. • The prepared microcapsules had high coating ratio and exhibit reversible response to DC field. - Abstract: The narrow distributed electrophoretic display microcapsules containing electrophoretic ink were prepared using coaxial jet method aided by gas spray. Experimental results showed the size and shell thickness of the microcapsules could be controlled by adjusting flow rates of core and shell fluids as well as gas. The as-prepared white and red microcapsules, with average size of 100 and 200 μm respectively, had high coating ratio (above 90%) and exhibited reversible response to DC electric field. Compared with the approach of other microencapsulation methods, the new technique not only has a simple procedure but also provides a more effective way of size control. This novel method is expected to prepare microcapsules with potential application in the fields of electronic paper and other material science.

  7. Development of Anti-Insect Microencapsulated Polypropylene Films Using a Large Scale Film Coating System.

    Science.gov (United States)

    Song, Ah Young; Choi, Ha Young; Lee, Eun Song; Han, Jaejoon; Min, Sea C

    2018-04-01

    Films containing microencapsulated cinnamon oil (CO) were developed using a large-scale production system to protect against the Indian meal moth (Plodia interpunctella). CO at concentrations of 0%, 0.8%, or 1.7% (w/w ink mixture) was microencapsulated with polyvinyl alcohol. The microencapsulated CO emulsion was mixed with ink (47% or 59%, w/w) and thinner (20% or 25%, w/w) and coated on polypropylene (PP) films. The PP film was then laminated with a low-density polyethylene (LDPE) film on the coated side. The film with microencapsulated CO at 1.7% repelled P. interpunctella most effectively. Microencapsulation did not negatively affect insect repelling activity. The release rate of cinnamaldehyde, an active repellent, was lower when CO was microencapsulated than that in the absence of microencapsulation. Thermogravimetric analysis exhibited that microencapsulation prevented the volatilization of CO. The tensile strength, percentage elongation at break, elastic modulus, and water vapor permeability of the films indicated that microencapsulation did not affect the tensile and moisture barrier properties (P > 0.05). The results of this study suggest that effective films for the prevention of Indian meal moth invasion can be produced by the microencapsulation of CO using a large-scale film production system. Low-density polyethylene-laminated polypropylene films printed with ink incorporating microencapsulated cinnamon oil using a large-scale film production system effectively repelled Indian meal moth larvae. Without altering the tensile and moisture barrier properties of the film, microencapsulation resulted in the release of an active repellent for extended periods with a high thermal stability of cinnamon oil, enabling commercial film production at high temperatures. This anti-insect film system may have applications to other food-packaging films that use the same ink-printing platform. © 2018 Institute of Food Technologists®.

  8. Indian meal moth (Plodia interpunctella)-resistant food packaging film development using microencapsulated cinnamon oil.

    Science.gov (United States)

    Kim, In-Hah; Song, Ah Young; Han, Jaejoon; Park, Ki Hwan; Min, Sea C

    2014-10-01

    Insect-resistant laminate films containing microencapsulated cinnamon oil (CO) were developed to protect food products from the Indian meal moth (Plodia interpunctella). CO microencapsulated with polyvinyl alcohol was incorporated with a printing ink and the ink mixture was applied to a low-density polyethylene (LDPE) film as an ink coating. The coated LDPE surface was laminated with a polypropylene film. The laminate film impeded the invasion of moth larvae and repelled the larvae. The periods of time during which cinnamaldehyde level in the film remained above a minimum repelling concentration, predicted from the concentration profile, were 21, 21, and 10 d for cookies, chocolate, and caramel, respectively. Coating with microencapsulated ink did not alter the tensile or barrier properties of the laminate film. Microencapsulation effectively prevented volatilization of CO. The laminate film can be produced by modern film manufacturing lines and applied to protect food from Indian meal moth damage. The LDPE-PP laminate film developed using microencapsulated cinnamon oil was effective to protect the model foods from the invasion of Indian meal moth larvae. The microencapsulated ink coating did not significantly change the tensile and barrier properties of the LDPE-PP laminate film, implying that replacement of the uncoated with coated laminate would not be an issue with current packaging equipment. The films showed the potential to be produced in commercial film production lines that usually involve high temperatures because of the improved thermal stability of cinnamon oil due to microencapsulation. The microencapsulated system may be extended to other food-packaging films for which the same ink-printing platform is used. © 2014 Institute of Food Technologists®

  9. Microencapsulation and Electrostatic Processing Device

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor); Cassanto, John M. (Inventor)

    2001-01-01

    A microencapsulation and electrostatic processing (MEP) device is provided for forming microcapsules. In one embodiment, the device comprises a chamber having a filter which separates a first region in the chamber from a second region in the chamber. An aqueous solution is introduced into the first region through an inlet port, and a hydrocarbon/ polymer solution is introduced into the second region through another inlet port. The filter acts to stabilize the interface and suppress mixing between the two immiscible solutions as they are being introduced into their respective regions. After the solutions have been introduced and have become quiescent, the interface is gently separated from the filter. At this point, spontaneous formation of microcapsules at the interface may begin to occur, or some fluid motion may be provided to induce microcapsule formation. In any case, the fluid shear force at the interface is limited to less than 100 dynes/sq cm. This low-shear approach to microcapsule formation yields microcapsules with good sphericity and desirable size distribution. The MEP device is also capable of downstream processing of microcapsules, including rinsing, re-suspension in tertiary fluids, electrostatic deposition of ancillary coatings, and free-fluid electrophoretic separation of charged microcapsules.

  10. Applications of Cell Microencapsulation.

    Science.gov (United States)

    Opara, Emmanuel C

    2017-01-01

    The goal of this chapter is to provide an overview of the different purposes for which the cell microencapsulation technology can be used. These include immunoisolation of non-autologous cells used for cell therapy; immobilization of cells for localized (targeted) delivery of therapeutic products to ablate, repair, or regenerate tissue; simultaneous delivery of multiple therapeutic agents in cell therapy; spatial compartmentalization of cells in complex tissue engineering; expansion of cells in culture; and production of different probiotics and metabolites for industrial applications. For each of these applications, specific examples are provided to illustrate how the microencapsulation technology can be utilized to achieve the purpose. However, successful use of the cell microencapsulation technology for whatever purpose will ultimately depend upon careful consideration for the choice of the encapsulating polymers, the method of fabrication (cross-linking) of the microbeads, which affects the permselectivity, the biocompatibility and the mechanical strength of the microbeads as well as environmental parameters such as temperature, humidity, osmotic pressure, and storage solutions.The various applications discussed in this chapter are illustrated in the different chapters of this book and where appropriate relevant images of the microencapsulation products are provided. It is hoped that this outline of the different applications of cell microencapsulation would provide a good platform for tissue engineers, scientists, and clinicians to design novel tissue constructs and products for therapeutic and industrial applications.

  11. Microencapsulation system and method

    Science.gov (United States)

    Morrison, Dennis R. (Inventor)

    2009-01-01

    A microencapsulation apparatus is provided which is configured to form co-axial multi-lamellar microcapsules from materials discharged from first and second microsphere dispensers of the apparatus. A method of fabricating and processing microcapsules is also provided which includes forming distinct droplets comprising one or more materials and introducing the droplets directly into a solution bath to form a membrane around the droplets such that a plurality of microcapsules are formed. A microencapsulation system is provided which includes a microcapsule production unit, a fluidized passage for washing and harvesting microcapsules dispensed from the microcapsule production unit and a flow sensor for sizing and counting the microcapsules. In some embodiments, the microencapsulation system may further include a controller configured to simultaneously operate the microcapsule production unit, fluidized passage and flow sensor to process the microcapsules in a continuous manner.

  12. Cell Microencapsulation: Dripping Methods.

    Science.gov (United States)

    Bidoret, A; Martins, E; De Smet, B Poncelet; Poncelet, D

    2017-01-01

    Microencapsulation processes may be divided into three steps, namely: incorporation of the bioactive substance in the matrix, dispersion of the matrix in droplets, and conversion in microcapsules. This contribution is focused on the second step and more specifically using the dripping approach to form droplets by extrusion of liquid through a nozzle. Different technologies of dripping are described, using as an example the production of alginate beads.

  13. Microfluidic Approach to Cell Microencapsulation.

    Science.gov (United States)

    Sharma, Varna; Hunckler, Michael; Ramasubramanian, Melur K; Opara, Emmanuel C; Katuri, Kalyan C

    2017-01-01

    Bioartificial pancreas made of insulin-secreting islets cells holds great promise in the treatment of individuals with Type-1 diabetes. Successful islet cell microencapsulation in biopolymers is a key step for providing immunoisolation of transplanted islet cells. Because of the variability in the size and shape of pancreatic islets, one of the main obstacles in their microencapsulation is the inability to consistently control shape, size, and microstructure of the encapsulating biopolymer capsule. In this chapter, we provide a detailed description of a microfluidic approach to islet cell encapsulation in alginate that might address the microencapsulation challenges.

  14. Polymeric Materials for Cell Microencapsulation.

    Science.gov (United States)

    Aijaz, A; Perera, D; Olabisi, Ronke M

    2017-01-01

    Mammalian cells have been microencapsulated within both natural and synthetic polymers for over half a century. Specifically, in the last 36 years microencapsulated cells have been used therapeutically to deliver a wide range of drugs, cytokines, growth factors, and hormones while enjoying the immunoisolation provided by the encapsulating material. In addition to preventing immune attack, microencapsulation prevents migration of entrapped cells. Cells can be microencapsulated in a variety of geometries, the most common being solid microspheres and hollow microcapsules. The micrometer scale permits delivery by injection and is within diffusion limits that allow the cells to provide the necessary factors that are missing at a target site, while also permitting the exchange of nutrients and waste products. The majority of cell microencapsulation is performed with alginate/poly-L-lysine microspheres. Since alginate itself can be immunogenic, for cell-based therapy applications various groups are investigating synthetic polymers to microencapsulate cells. We describe a protocol for the formation of microspheres and microcapsules using the synthetic polymer poly(ethylene glycol) diacrylate (PEGDA).

  15. Radiation curable inks

    International Nuclear Information System (INIS)

    Bolon, D.A.; Lucas, G.M.

    1976-01-01

    A radiation curable ink is provided which is convertible to a conductive coating when cured on the surface of a substrate. When used as a printing ink, improved results are achieved if a minor amount of a blend of paraffin waxes is employed to control solvent evaporation

  16. Cryopreservation of microencapsulated canine sperm.

    Science.gov (United States)

    Shah, Shambhu; Otsuki, Tsubasa; Fujimura, Chika; Yamamoto, Naoki; Yamashita, Yasuhisa; Higaki, Shogo; Hishinuma, Mitsugu

    2011-03-01

    The objective was to develop a method for cryopreserving microencapsulated canine sperm. Pooled ejaculates from three beagle dogs were extended in egg yolk tris extender and encapsulated using alginate and poly-L-lysine at room temperature. The microcapsules were cooled at 4 °C, immersed in pre-cooled extender (equivalent in volume to the microcapsules) to reach final concentration of 7% (v/v) glycerol and 0.75% (v/v) Equex STM paste, and equilibrated for 5, 30 and 60 min at 4 °C. Thereafter, microcapsules were loaded into 0.5 mL plastic straws and frozen in liquid nitrogen. In Experiment 1, characteristics of microencapsulated canine sperm were evaluated after glycerol addition at 4 °C. Glycerol exposure for 5, 30 and 60 min did not significantly affect progressive motility, viability, or acrosomal integrity of microencapsulated sperm compared with pre-cooled unencapsulated sperm (control). In Experiment 2, characteristics of frozen-thawed canine microencapsulated sperm were evaluated at 0, 3, 6, and 9 h of culture at 38.5 °C. Pre-freeze glycerol exposure for 5, 30, and 60 min at 4 °C did not influence post-thaw quality in unencapsulated sperm. Post-thaw motility and acrosomal integrity of microencapsulated sperm decreased more than those of unencapsulated sperm (P < 0.05) following glycerol exposure for 5 min. However, motility, viability and acrosomal integrity of microencapsulated sperm after 30 and 60 min glycerol exposure were higher than unencapsulated sperm cultured for 6 or 9 h (P < 0.05). In conclusion, since microencapsulated canine sperm were successfully cryopreserved, this could be a viable alternative to convention sperm cryopreservation in this species. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Electrophoretic transfer protein zymography.

    Science.gov (United States)

    Pan, Daniel; Hill, Adam P; Kashou, Anthony; Wilson, Karl A; Tan-Wilson, Anna

    2011-04-15

    Zymography detects and characterizes proteolytic enzymes by electrophoresis of protease-containing samples into a nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel containing a copolymerized protein substrate. The usefulness of zymography for molecular weight determination and proteomic analysis is hampered by the fact that some proteases exhibit slower migration through a gel that contains substrate protein. This article introduces electrophoretic transfer protein zymography as one solution to this problem. In this technique, samples containing proteolytic enzymes are first resolved in nonreducing SDS-PAGE on a gel without protein substrate. The proteins in the resolving gel are then electrophoretically transferred to a receiving gel previously prepared with a copolymerized protein substrate. The receiving gel is then developed as a zymogram to visualize clear or lightly stained bands in a dark background. Band intensities are linearly related to the amount of protease, extending the usefulness of the technique so long as conditions for transfer and development of the zymogram are kept constant. Conditions of transfer, such as the pore sizes of resolving and receiving gels and the transfer time relative to the molecular weight of the protease, are explored. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. µE: Electrophoretic mobility

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. µE: Electrophoretic mobility. µE: Electrophoretic mobility. E: Intensity of electric field. H: Total height. h: Distance from the top surface of bottom chamber (slug height). N: Cell concentration × Volume of the chamber.

  19. Raman spectroscopy and capillary electrophoresis applied to forensic colour inkjet printer inks analysis.

    Science.gov (United States)

    Król, Małgorzata; Karoly, Agnes; Kościelniak, Paweł

    2014-09-01

    Forensic laboratories are increasingly engaged in the examination of fraudulent documents, and what is important, in many cases these are inkjet-printed documents. That is why systematic approaches to inkjet printer inks comparison and identification have been carried out by both non-destructive and destructive methods. In this study, micro-Raman spectroscopy and capillary electrophoresis (CE) were applied to the analysis of colour inkjet printer inks. Micro-Raman spectroscopy was used to study the chemical composition of colour inks in situ on a paper surface. It helps to characterize and differentiate inkjet inks, and can be used to create a spectra database of inks taken from different cartridge brands and cartridge numbers. Capillary electrophoresis in micellar electrophoretic capillary chromatography mode was applied to separate colour and colourless components of inks, enabling group identification of those components which occur in a sufficient concentration (giving intensive peaks). Finally, on the basis of the obtained results, differentiation of the analysed inks was performed. Twenty-three samples of inkjet printer inks were examined and the discriminating power (DP) values for both presented methods were established in the routine work of experts during the result interpretation step. DP was found to be 94.0% (Raman) and 95.6% (CE) when all the analysed ink samples were taken into account, and it was 96.7% (Raman) and 98.4% (CE), when only cartridges with different index numbers were considered. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Pulse-Flow Microencapsulation System

    Science.gov (United States)

    Morrison, Dennis R.

    2006-01-01

    The pulse-flow microencapsulation system (PFMS) is an automated system that continuously produces a stream of liquid-filled microcapsules for delivery of therapeutic agents to target tissues. Prior microencapsulation systems have relied on batch processes that involve transfer of batches between different apparatuses for different stages of production followed by sampling for acquisition of quality-control data, including measurements of size. In contrast, the PFMS is a single, microprocessor-controlled system that performs all processing steps, including acquisition of quality-control data. The quality-control data can be used as real-time feedback to ensure the production of large quantities of uniform microcapsules.

  1. Micro-Encapsulation of Probiotics

    Science.gov (United States)

    Meiners, Jean-Antoine

    Micro-encapsulation is defined as the technology for packaging with the help of protective membranes particles of finely ground solids, droplets of liquids or gaseous materials in small capsules that release their contents at controlled rates over prolonged periods of time under the influences of specific conditions (Boh, 2007). The material encapsulating the core is referred to as coating or shell.

  2. Low-Shear Microencapsulation and Electrostatic Coating

    Science.gov (United States)

    Morrison, Dennis R.; Mosier, Benjamin

    2005-01-01

    A report presents additional information on the topic of a microencapsulation electrostatic processing system. Information in the report includes micrographs of some microcapsules, a set of diagrams that schematically depict the steps of an encapsulation process, and brief descriptions of (1) alternative versions of the present encapsulation processes, (2) advantages of the present microencapsulation processes over prior microencapsulation processes, and (3) unique and advantageous features of microcapsules produced by the present processes.

  3. Electrophoretic deposition of biomaterials

    Science.gov (United States)

    Boccaccini, A. R.; Keim, S.; Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-01-01

    Electrophoretic deposition (EPD) is attracting increasing attention as an effective technique for the processing of biomaterials, specifically bioactive coatings and biomedical nanostructures. The well-known advantages of EPD for the production of a wide range of microstructures and nanostructures as well as unique and complex material combinations are being exploited, starting from well-dispersed suspensions of biomaterials in particulate form (microsized and nanoscale particles, nanotubes, nanoplatelets). EPD of biological entities such as enzymes, bacteria and cells is also being investigated. The review presents a comprehensive summary and discussion of relevant recent work on EPD describing the specific application of the technique in the processing of several biomaterials, focusing on (i) conventional bioactive (inorganic) coatings, e.g. hydroxyapatite or bioactive glass coatings on orthopaedic implants, and (ii) biomedical nanostructures, including biopolymer–ceramic nanocomposites, carbon nanotube coatings, tissue engineering scaffolds, deposition of proteins and other biological entities for sensors and advanced functional coatings. It is the intention to inform the reader on how EPD has become an important tool in advanced biomaterials processing, as a convenient alternative to conventional methods, and to present the potential of the technique to manipulate and control the deposition of a range of nanomaterials of interest in the biomedical and biotechnology fields. PMID:20504802

  4. Electrophoretic Retardation of Colloidal Particles in Nonpolar Liquids

    Directory of Open Access Journals (Sweden)

    Filip Strubbe

    2013-04-01

    Full Text Available We have measured the electrophoretic mobility of single, optically trapped colloidal particles, while gradually depleting the co-ions and counterions in the liquid around the particle by applying a dc voltage. This is achieved in a nonpolar liquid, where charged reverse micelles act as co-ions and counterions. By increasing the dc voltage, the mobility first increases when the concentrations of co-ions and counterions near the particle start to decrease. At sufficiently high dc voltage (around 2 V, the mobility reaches a saturation value when the co-ions and counterions are fully separated. The increase in mobility is larger when the equilibrium ionic strength is higher. The dependence of the experimental data on the equilibrium ionic strength and on the applied voltage is in good agreement with the standard theory of electrophoretic retardation, assuming that the bare particle charge remains constant. This method is useful for studying the electrophoretic retardation effect and charging mechanisms for nonpolar colloids, and it sheds light on previously unexplained particle acceleration in electronic ink devices.

  5. The Ink of Citizenship

    Science.gov (United States)

    Patel, Leigh

    2017-01-01

    Nations actively write themselves onto human bodies. They etch and scratch their borders onto human flesh with figurative, often contradictory, ink that delivers stark material impact. The impacts hold their greatest force in metering the hinged consequences of contingent citizenship for some and unfettered citizenship for a few others. In this…

  6. Durability of ink jet prints

    International Nuclear Information System (INIS)

    Dobric, E; Mirkovic, I Bolanca; Bolanca, Z

    2010-01-01

    The aim of this paper is the result presentation of some optical properties research for ink jet prints after: exposing the prints to the mixed daylight and artificial light, exposing of prints to the sun-light through the glass window, and exposing of prints to outdoor conditions during the summer months. The prints obtained by piezoelectric and thermal ink jet technologies were used in the researches. The dye-based inks and the pigmented inks based on water and the low solvent inks were used. The results of these researches, except the scientific contribution in the domain of understanding and explaining the environmental conditions on the gamut size, i.e. the range of color tonality, colorimetric stability and print quality, can be used by the ink and paper manufacturers in new formulations, offer data for the printer producers for further production and evaluation of the position of their products.

  7. Microencapsulation of babassu coconut milk

    Directory of Open Access Journals (Sweden)

    Audirene Amorim Santana

    2013-12-01

    Full Text Available The objective of this study was to obtain babassu coconut milk powder microencapsulated by spray drying process using gum Arabic as wall material. Coconut milk was extracted by babassu peeling, grinding (with two parts of water, and vacuum filtration. The milk was pasteurized at 85 ºC for 15 minutes and homogenized to break up the fat globules, rendering the milk a uniform consistency. A central composite rotatable design with a range of independent variables was used: inlet air temperature in the dryer (170-220 ºC and gum Arabic concentration (10-20%, w/w on the responses: moisture content (0.52-2.39%, hygroscopicity (6.98-9.86 g adsorbed water/100g solids, water activity (0.14-0.58, lipid oxidation (0.012-0.064 meq peroxide/kg oil, and process yield (20.33-30.19%. All variables influenced significantly the responses evaluated. Microencapsulation was optimized for maximum process yield and minimal lipid oxidation. The coconut milk powder obtained at optimum conditions was characterized in terms of morphology, particle size distribution, bulk and absolute density, porosity, and wettability.

  8. MICROENCAPSULATION-THE FUTURE OF PROBIOTIC CULTURES

    Directory of Open Access Journals (Sweden)

    Tawheed Amin

    2013-08-01

    Full Text Available In the recent past, there has been an explosion of probiotic cultures based health products in Indian markets. The survival of the probiotic bacteria in gastro-intestinal gut is questionable, because of the poor survival of probiotic bacteria in these products. Basically the viability of probiotic cultures is very weak in these food products. Probiotic based products are health potentiators and are associated with many health benefits. Microencapsulation of the probiotic cultures is one of the recent, demanded and highly efficient techniques. Among the different approaches proposed to improve the survival of probiotics during food manufacturing process and passage in the upper part of gastrointestinal tratct (GI tract, microencapsulation has received considerable attention. Encapsulated probiotic cultures have longer shelf life of the products. This microencapsulation technology is used to maintain the viability of probiotic bacteria during food product processing and storage. This article reviews the principles, techniques and need for microencapsulation of probiotic cultures.

  9. Preliminary researches regarding edible jet printing inks

    International Nuclear Information System (INIS)

    Nemtanu, M. R.; Brasoveanu, M.

    2002-01-01

    The automatic reproduction of images with edible materials is a new method used lately to decorate cakes. An important component of this technology is the ink. The paper presents the results obtained by using different physical methods for analysis of some jet printing inks types. The analysed inks were the Canon inks and edible inks from Thailand. The main considered methods were the spectrocolourymetrical, rheological, electrochemical. Choosing as a chromatic standard the Canon inks and for the physicochemical properties the edible inks from Thailand, it was prepared a yellow edible printing ink which was characterized by same methods

  10. Sepia ink as a surrogate for colloid transport tests in porous media

    Science.gov (United States)

    Soto-Gómez, Diego; Pérez-Rodríguez, Paula; López-Periago, J. Eugenio; Paradelo, Marcos

    2016-08-01

    We examined the suitability of the ink of Sepia officinalis as a surrogate for transport studies of microorganisms and microparticles in porous media. Sepia ink is an organic pigment consisted on a suspension of eumelanin, and that has several advantages for its use as a promising material for introducing the frugal-innovation in the fields of public health and environmental research: very low cost, non-toxic, spherical shape, moderate polydispersivity, size near large viruses, non-anomalous electrokinetic behavior, low retention in the soil, and high stability. Electrokinetic determinations and transport experiments in quartz sand columns and soil columns were done with purified suspensions of sepia ink. Influence of ionic strength on the electrophoretic mobility of ink particles showed the typical behavior of polystyrene latex spheres. Breakthrough curve (BTC) and retention profile (RP) in quartz sand columns showed a depth dependent and blocking adsorption model with an increase in adsorption rates with the ionic strength. Partially saturated transport through undisturbed soil showed less retention than in quartz sand, and matrix exclusion was also observed. Quantification of ink in leachate fractions by light absorbance is direct, but quantification in the soil profile with moderate to high organic matter content was rather cumbersome. We concluded that sepia ink is a suitable cheap surrogate for exploring transport of pathogenic viruses, bacteria and particulate contaminants in groundwater, and could be used for developing frugal-innovation related with the assessment of soil and aquifer filtration function, and monitoring of water filtration systems in low-income regions.

  11. Microencapsulation of probiotics by efficient vibration technology.

    Science.gov (United States)

    Olivares, Araceli; Silva, Paulina; Altamirano, Claudia

    2017-11-01

    The target site of action of probiotics is the intestine. They must be surviving the stomach acidic condition before reaching the target site. Three probiotic bacteria were microencapsulated in sodium alginate beads using a sophisticated microencapsulation technology provided by BÜCHI B-390. This study reports the tolerance of the different microencapsulated Lactobacillus at low pH using simulated gastric juice, comparing it with the tolerance of free bacteria. The three microencapsulated strains displayed time-dependent acid sensitivity at pH values under 3.0. At pH 2.0, a dramatic reduction in bacterial survival occurred after 5 min, with only L. casei surviving after 30 min, with 75% survival. At pH 2.5 microencapsulated L. casei survived for 90 , L. reuteri survived for 60 and L. bulgaricus survived for only 30 min, respectively. The microencapsulation technology used in this study may effectively protect Lactobacillus from gastric conditions and permit comparisons between strains.

  12. Development of novel microencapsulation processes

    Science.gov (United States)

    Yin, Weisi

    This thesis is for encapsulating additives into polymer particles using different techniques including emulsification/solvent evaporation, compressed carbon dioxide based microencapsulation, and encapsulation with porous polymer particles. Such microencapsulations can be applied to a vast range of areas, for example bio-labeling, controlled release, drug delivery, and printing. Fluorescent CdSe/ZnS quantum dots (QDs) were incorporated into polyisoprene (PI) particles by emulsification/solvent evaporation. The simple method results in QDs encapsulated into the particle core without requiring chemical modification of the QDs. The fluorescence spectra of mixtures of two different-sized QDs change in PI as compared to their solution spectra, suggesting energy transfer between QDs due to their aggregation during the encapsulation. However, different emission peaks were clearly resolved, indicating that the particles are suitable for multicolor coding. The polyisoprene is easily cross-linked, and the cross-linking was shown to greatly enhance the fluorescence stability of the encapsulated QDs. Ionic dyes were successfully encapsulated in polystyrene (PS) particles by CO2-based microencapsulation. The water-soluble dyes were made hydrophobic by forming ion pairs with alkyl quaternary ammonium cations. The hydrophobic ion pairs were then encapsulated in preexisting size monodisperse PS particles dispersed in water. High-pressure carbon dioxide swelled and plasticized PS and thus facilitated mass transport of the dye into the particles. The results show that the particles maintain their size and morphology after exposure to CO2, and that ion-paired dyes have significantly higher loading in the polymer particles than the original dyes. Addition of water-miscible cosolvents was shown to further enhance the incorporation of the hydrophobic ion pairs into the polymer colloids. To encapsulate water-soluble additives, porous polymer particles were made by freeze-drying droplets

  13. Insect-resistant food packaging film development using cinnamon oil and microencapsulation technologies.

    Science.gov (United States)

    Kim, In-Hah; Han, Jaejoon; Na, Ja Hyun; Chang, Pahn-Sik; Chung, Myung Sub; Park, Ki Hwan; Min, Sea C

    2013-02-01

    Insect-resistant films containing a microencapsulated insect-repelling agent were developed to protect food products from the Indian meal moth (Plodia interpunctella). Cinnamon oil (CO), an insect repelling agent, was encapsulated with gum arabic, whey protein isolate (WPI)/maltodextrin (MD), or poly(vinyl alcohol) (PVA). A low-density polyethylene (LDPE) film was coated with an ink or a polypropylene (PP) solution that incorporated the microcapsules. The encapsulation efficiency values obtained with gum arabic, WPI/MD, and PVA were 90.4%, 94.6%, and 80.7%, respectively. The films containing a microcapsule emulsion of PVA and CO or incorporating a microcapsule powder of WPI/MD and CO were the most effective (P packaging for food products. The insect-repelling effect of cinnamon oil incorporated into LDPE films was more effective with microencapsulation. The system developed in this research with LDPE film may also be extended to other food-packaging films where the same coating platform can be used. This platform is interchangeable and easy to use for the delivery of insect-repelling agents. The films can protect a wide variety of food products from invasion by the Indian meal moth. © 2013 Institute of Food Technologists®

  14. Reductive photocatalysis and smart inks.

    Science.gov (United States)

    Mills, Andrew; Wells, Nathan

    2015-05-21

    Semiconductor-sensitised photocatalysis is a well-established and growing area of research, innovation and commercialisation; the latter being mostly limited to the use of TiO2 as the semiconductor. Most of the work on semiconductor photocatalytic systems uses oxygen as the electron acceptor and explores a wide range of electron donors; such systems can be considered to be examples of oxidative photocatalysis, OP. OP underpins most current examples of commercial self-cleaning materials, such as: glass, tiles, concrete, paint and fabrics. OP, and its myriad of applications, have been reviewed extensively over the years both in this journal and elsewhere. However, the ability of TiO2, and other semiconductor sensitisers, to promote reductive photocatalysis, RP, especially of dyes, is significant and, although less well-known, is of growing importance. In such systems, the source of the electrons is some easily oxidised species, such as glycerol. One recent, significant example of a RP process is with respect to photocatalyst activity indicator inks. paiis, which provide a measure of the activity of a photocatalytic film under test via the rate of change of colour of the dye in the ink coating due to irreversible RP. In contrast, by incorporating the semiconductor sensitiser in the ink, rather than outside it, it is possible to create an effective UV dosimeter, based on RP, which can be used as a sun-burn warning indicator. In the above examples the dye is reduced irreversibly, but when the photocatalyst in an ink is used to reversibly photoreduce a dye, a novel, colourimetric oxygen-sensitive indicator ink can be created, which has commercial potential in the food packaging industry. Finally, if no dye is present in the ink, and the semiconductor photocatalyst-loaded ink film coats an easily reduced substrate, such as a metal oxide film, then it can be used to reduce the latter and so, for example, clean up tarnished steel. The above are examples of smart inks, i

  15. Microencapsulation and microspheres for food applications

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2015-01-01

    This book provides an update on the latest developments, challenges, and opportunities in the highly expanding field of microencapsulation and microspheres for food applications, examining the various types of microspheres and microcapsules essential to those who need to develop stable and

  16. Microencapsulation of bioactives for food applications.

    Science.gov (United States)

    Dias, Maria Inês; Ferreira, Isabel C F R; Barreiro, Maria Filomena

    2015-04-01

    Health issues are an emerging concern to the world population, and therefore the food industry is searching for novel food products containing health-promoting bioactive compounds, with little or no synthetic ingredients. However, there are some challenges in the development of functional foods, particularly in which the direct use of some bioactives is involved. They can show problems of instability, react with other food matrix ingredients or present strong odour and/or flavours. In this context, microencapsulation emerges as a potential approach to overcome these problems and, additionally, to provide controlled or targeted delivery or release. This work intends to contribute to the field of functional food development by performing a comprehensive review on the microencapsulation methods and materials, the bioactives used (extracts and isolated compounds) and the final application development. Although several studies dealing with microencapsulation of bioactives exist, they are mainly focused on the process development and the majority lack proof of concept for final applications. These factors, together with the lack of regulation, in Europe and in the United States, delay the development of new functional foods and, consequently, their market entry. In conclusion, the potential of microencapsulation to protect bioactive compounds ensuring their bioavailability is shown, but further studies are required, considering both its applicability and incentives by regulatory agencies.

  17. Think Before You Ink: Are Tattoos Safe?

    Science.gov (United States)

    ... Consumers Consumer Updates Think Before You Ink: Are Tattoos Safe? Share Tweet Linkedin Pin it More sharing ... I be concerned about unsafe practices, or the tattoo ink itself? Both. While you can get serious ...

  18. Microencapsulation as a tool for incorporating bioactive ingredients into food.

    Science.gov (United States)

    Kuang, S S; Oliveira, J C; Crean, A M

    2010-11-01

    Microencapsulation has been developed by the pharmaceutical industry as a means to control or modify the release of drug substances from drug delivery systems. In drug delivery systems microencapsulation is used to improve the bioavailability of drugs, control drug release kinetics, minimize drug side effects, and mask the bitter taste of drug substances. The application of microencapsulation has been extended to the food industry, typically for controlling the release of flavorings and the production of foods containing functional ingredients (e.g. probiotics and bioactive ingredients). Compared to the pharmaceutical industry, the food industry has lower profit margins and therefore the criteria in selecting a suitable microencapsulation technology are more stringent. The type of microcapsule (reservoir and matrix systems) produced and its resultant release properties are dependent on the microencapsulation technology, in addition to the physicochemical properties of the core and the shell materials. This review discusses the factors that affect the release of bioactive ingredients from microcapsules produced by different microencapsulation technologies. The key criteria in selecting a suitable microencapsulation technology are also discussed. Two of the most common physical microencapsulation technologies used in pharmaceutical processing, fluidized-bed coating, and extrusion-spheronization are explained to highlight how they might be adapted to the microencapsulation of functional bioactive ingredients in the food industry.

  19. Particle separations by electrophoretic techniques

    International Nuclear Information System (INIS)

    Ballou, N.E.; Petersen, S.L.; Ducatte, G.R.; Remcho, V.T.

    1996-03-01

    A new method for particle separations based on capillary electrophoresis has been developed and characterized. It uniquely separates particles according to their chemical nature. Separations have been demonstrated with chemically modified latex particles and with inorganic oxide and silicate particles. Separations have been shown both experimentally and theoretically to be essentially independent of particle size in the range of about 0.2 μm to 10 μm. The method has been applied to separations of U0 2 particles from environmental particulate material. For this, an integrated method was developed for capillary electrophoretic separation, collection of separated fractions, and determinations of U0 2 and environmental particles in each fraction. Experimental runs with the integrated method on mixtures of UO 2 particles and environmental particulate material demonstrated enrichment factors of 20 for UO 2 particles in respect to environmental particles in the U0 2 containing fractions. This enrichment factor reduces the costs and time for processing particulate samples by the lexan process by a factor of about 20

  20. Automated Parallel Capillary Electrophoretic System

    Science.gov (United States)

    Li, Qingbo; Kane, Thomas E.; Liu, Changsheng; Sonnenschein, Bernard; Sharer, Michael V.; Kernan, John R.

    2000-02-22

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  1. Catalytic microcontact printing without ink

    NARCIS (Netherlands)

    Li, X.; Péter, M.; Huskens, Jurriaan; Reinhoudt, David

    2003-01-01

    A novel microcontact printing technique is described that does not require ink. Patterns were created by direct contact of oxidized PDMS stamps with silyl ether-derivatized, acid-labile SAMs on gold. The surface of the stamps was oxidized by oxygen plasma to give a layer of silicon oxide. These

  2. Synthesis and Electrophoretic Properties of Novel Nanoparticles for Colored Electronic Ink and e-Paper Applications.

    Science.gov (United States)

    Jablonski, Christelle; Grundler, Gerhard; Pieles, Uwe; Stebler, Simon; Oehrlein, Reinhold; Szamel, Zbigniew

    2016-01-01

    A new approach based on non-pigmented, stable colored nanoparticles able to migrate upon application of an electrical field (10-60 V) has been developed for the improvement of the color brightness of e-displays. The scientific challenges comprised the development of efficient syntheses of tri- and bifunctional dendrimers including branching points for further extension and individual decoration with dye (yellow, magenta, cyan). The covalent attachment of these scaffolds to silica nanoparticles was performed via hydrosilylation and final in situ charging generated attractive silica shells for the substractive CMY color space model.

  3. UV curable palm oil based ink

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Mohd Hilmi Mahmood; Khairul Zaman Mohd Dahlan; Rosley Che Ismail

    2002-01-01

    UV curable inks are useful for their instant drying, energy saving and high productivity properties. The basic materials for formulating UV curable inks consist of prepolymer, monomers, photoinitiators, pigments and other additives. The percentage composition and ingredients depend very much on the types of inks to be produced. Palm oil is one of the main raw materials available in the country. Hence, the diversification of palm oil derivatives into new products has been given priority. The current focus of the present work is to evaluate the use of palm oil urethane acrylate (POBUA) as a prepolymer in the UV ink system. A study was conducted on the use of POBUA with other materials in ink formulation. These include the types and concentration of photoinitiators, monomers and commercial urethane acrylates. The evaluation of the ink properties such as curing, adhesion, color density have been carried out. It was found that POBUA could be introduced in the UV ink system. (Author)

  4. UV curable palm oil based inks

    International Nuclear Information System (INIS)

    Mek Zah Salleh; Hilmi Mahmood

    2002-01-01

    UV curable inks are useful for their instant drying, energy saving and high productivity properties. The basic materials for formulating UV curable inks consist of prepolymer, monomers, photoinitiators, pigments and other additives. The percentage composition and ingredients depend very much on the types of inks to be produced. Palm oil is one of the main raw materials available in the country. Hence, the diversification of palm oil derivatives into new products has been given priority. The current focus of the present work is to evaluate the use of palm oil based urethane acrylate (POBUA) as a prepolymer in the UV inks system. A study was conducted on the use of POBUA with other materials in ink formulation. These include the types and concentration of photoinitiators, monomers and commercial urethane acrylates. The evaluation of the ink properties such as curing, adhesion, color density have been carried out. It was found that POBUA could be introduced in the UV ink system. (Author)

  5. Microencapsulation Technologies for Corrosion Protective Coating Applications

    Science.gov (United States)

    Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun

    2015-01-01

    Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.

  6. Microencapsulation of probiotics using sodium alginate

    Directory of Open Access Journals (Sweden)

    Mariana de Araújo Etchepare

    2015-07-01

    Full Text Available The consumption of probiotics is constantly growing due to the numerous benefits conferred on the health of consumers. In this context, Microencapsulation is a technology that favors the viability of probiotic cultures in food products, mainly by the properties of protection against adverse environmental conditions and controlled release. Currently there are different procedures for microencapsulation using polymers of various types of natural and synthetic origin. The use of sodium alginate polymers is one of the largest potential application in the encapsulation of probiotics because of their versatility, biocompatibility and toxicity exemption. The aim of this review is to present viable encapsulation techniques of probiotics with alginate, emphasizing the internal ionic gelation and external ionic gelation, with the possibility of applying, as well as promising for improving these techniques.

  7. Microencapsulation of Corrosion Indicators for Smart Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  8. Microencapsulation of Stem Cells for Therapy.

    Science.gov (United States)

    Leslie, Shirae K; Kinney, Ramsey C; Schwartz, Zvi; Boyan, Barbara D

    2017-01-01

    An increasing demand to regenerate tissues from patient-derived sources has led to the development of cell-based therapies using autologous stem cells, thereby decreasing immune rejection of scaffolds coupled with allogeneic stem cells or allografts. Adult stem cells are multipotent and are readily available in tissues such as fat and bone marrow. They possess the ability to repair and regenerate tissue through the production of therapeutic factors, particularly vasculogenic proteins. A major challenge in cell-based therapies is localizing the delivered stem cells to the target site. Microencapsulation of cells provides a porous polymeric matrix that can provide a protected environment, localize the cells to one area, and maintain their viability by enabling the exchange of nutrients and waste products between the encapsulated cells and the surrounding tissue. In this chapter, we describe a method to produce injectable microbeads containing a tunable number of stem cells using the biopolymer alginate. The microencapsulation process involves extrusion of the alginate suspension containing cells from a microencapsulator, a syringe pump to control its flow rate, an electrostatic potential to overcome capillary forces and a reduced Ca ++ cross-linking solution containing a nutrient osmolyte, to form microbeads. This method allows the encapsulated cells to remain viable up to three weeks in culture and up to three months in vivo and secrete growth factors capable of supporting tissue regeneration.

  9. Effect of different microencapsulation materials on stability of ...

    African Journals Online (AJOL)

    The aim of this work was to investigate the effect of different microencapsulation materials on the stability of probiotic bacterium (Lactobacillus plantarum DSM 20174). Microencapsulation methods with alginates were carried out using sodium chloride, canola oil, olive oil, and chitosan. The recorded data showed that the ...

  10. Hydrodynamics of writing with ink.

    Science.gov (United States)

    Kim, Jungchul; Moon, Myoung-Woon; Lee, Kwang-Ryeol; Mahadevan, L; Kim, Ho-Young

    2011-12-23

    Writing with ink involves the supply of liquid from a pen onto a porous hydrophilic solid surface, paper. The resulting linewidth depends on the pen speed and the physicochemical properties of the ink and paper. Here we quantify the dynamics of this process using a combination of experiment and theory. Our experiments are carried out using a minimal pen, a long narrow tube that serves as a reservoir of liquid, which can write on a model of paper, a hydrophilic micropillar array. A minimal theory for the rate of wicking or spreading of the liquid is given by balancing the capillary force that drives the liquid flow and the resistance associated with flow through the porous substrate. This allows us to predict the shape of the front and the width of the line laid out by the pen, with results that are corroborated by our experiments.

  11. Bioactivity of microencapsulated soursop seeds extract on Plutella xylostella

    Directory of Open Access Journals (Sweden)

    Ismael Barros Gomes

    2016-05-01

    Full Text Available ABSTRACT: The aim of this study was to evaluate the bioactivity of microencapsulated extract from the soursop seeds, Annona muricata L. ( Annonaceae , on diamondback moth, Plutella xylostela L. (Lepidoptera: Plutellidae . Microencapsulation was performed in a Mini Spray Dryer model B-290 using 50mL of ethanolic and hexanic extracts plus 150mL of ethanol and 150mL of ultrapure water, mixed with aerosil (first polymer or arabic gum (second polymer. It was possible to microencapsulate the ethanolic extract of soursop seeds only by using the polymer arabic gum at 20%. The microencapsulated extract caused significant acute toxicity (LC50=258mg L-1 and chronic effects, especially reduction of larval viability and increased larval stage. We concluded that the microencapsulation of the ethanolic extract of soursop seeds can be a viable alternative for controlling diamondback moth with possible gains for the environment.

  12. Trace element ink spiking for signature authentication

    International Nuclear Information System (INIS)

    Hatzistavros, V.S.; Kallithrakas-Kontos, N.G.

    2008-01-01

    Signature authentication is a critical question in forensic document examination. Last years the evolution of personal computers made signature copying a quite easy task, so the development of new ways for signature authentication is crucial. In the present work a commercial ink was spiked with many trace elements in various concentrations. Inorganic and organometallic ink soluble compounds were used as spiking agents, whilst ink retained its initial properties. The spiked inks were used for paper writing and the documents were analyzed by a non destructive method, the energy dispersive X-ray fluorescence. The thin target model was proved right for quantitative analysis and a very good linear relationship of the intensity (X-ray signal) against concentration was estimated for all used elements. Intensity ratios between different elements in the same ink gave very stable results, independent on the writing alterations. The impact of time both to written document and prepared inks was also investigated. (author)

  13. Properties of conductive thick-film inks

    Science.gov (United States)

    Holtze, R. F.

    1972-01-01

    Ten different conductive inks used in the fabrication of thick-film circuits were evaluated for their physical and handling properties. Viscosity, solid contents, and spectrographic analysis of the unfired inks were determined. Inks were screened on ceramic substrates and fired for varying times at specified temperatures. Selected substrates were given additional firings to simulate the heat exposure received if thick-film resistors were to be added to the same substrate. Data are presented covering the (1) printing characteristics, (2) solderability using Sn-63 and also a 4 percent silver solder, (3) leach resistance, (4) solder adhesion, and (5) wire bonding properties. Results obtained using different firing schedules were compared. A comparison was made between the various inks showing general results obtained for each ink. The changes in firing time or the application of a simulated resistor firing had little effect on the properties of most inks.

  14. ELECTROPHORETIC MOBILITY OF MYCOBACTERIUM AVIUM COMPLEX ORGANISMS

    Science.gov (United States)

    The electrophoretic mobilities (EPMs) of thirty Mycobacterium avium Complex (MAC) organisms were measured. The EPMs of fifteen clinical isolates ranged from -1.9 to -5.0 µm cm V-1s-1, and the EPMs of fifteen environmental isolates ranged from -1...

  15. Microencapsulation and fabrication of fuel pellets for inertial confinement fusion

    International Nuclear Information System (INIS)

    Nolen, R.L. Jr.; Kool, L.B.

    1981-01-01

    Various microencapsulation techniques were evaluated for fabrication of thermonuclear fuel pellets for use in existing experimental facilities studying inertial confinement fusion and in future fusion-power reactors. Coacervation, spray drying, in situ polymerization, and physical microencapsulation methods were employed. Highly spherical, hollow polymeric shells were fabricated ranging in size from 20 to 7000 micron. In situ polymerization microencapsulation with poly(methyl methacrylate) provided large shells, but problems with local wall defects still must be solved. Extension to other polymeric systems met with limited success. Requirements for inertial confinement fusion targets are described, as are the methods that were used

  16. Microencapsulation of Hepatocytes and Mesenchymal Stem Cells for Therapeutic Applications.

    Science.gov (United States)

    Meier, Raphael P H; Montanari, Elisa; Morel, Philippe; Pimenta, Joël; Schuurman, Henk-Jan; Wandrey, Christine; Gerber-Lemaire, Sandrine; Mahou, Redouan; Bühler, Leo H

    2017-01-01

    Encapsulated hepatocyte transplantation and encapsulated mesenchymal stem cell transplantation are newly developed potential treatments for acute and chronic liver diseases, respectively. Cells are microencapsulated in biocompatible semipermeable alginate-based hydrogels. Microspheres protect cells against antibodies and immune cells, while allowing nutrients, small/medium size proteins and drugs to diffuse inside and outside the polymer matrix. Microencapsulated cells are assessed in vitro and designed for experimental transplantation and for future clinical applications.Here, we describe the protocol for microencapsulation of hepatocytes and mesenchymal stem cells within hybrid poly(ethylene glycol)-alginate hydrogels.

  17. Nanoclays for polymer nanocomposites, paints, inks, greases

    Indian Academy of Sciences (India)

    ... rheological modifier for paints, inks and greases, drug delivery vehicle for controlled release of therapeutic agents, and nanoclays for industrial waste water as well as potable water treatment to make further step into green environment. A little amount of nanoclay can alter the entire properties of polymers, paints, inks and ...

  18. Non-aqueous pigmented inkjet inks

    NARCIS (Netherlands)

    DEROOVER, GEERT; Bernaerts, Katrien; HOOGMARTENS, IVAN

    2009-01-01

    A non-aqueous inkjet ink comprises a benzimidazolone pigment and a polymeric dispersant according to Formula (I): wherein, T represents hydrogen or a polymerization terminating group; Z represents theA non-aqueous inkjet ink comprises a benzimidazolone pigment and a polymeric dispersant according to

  19. N -Ink Printer Characterization With Barycentric Subdivision.

    Science.gov (United States)

    Babaei, Vahid; Hersch, Roger D

    2016-07-01

    Printing with a large number of inks, also called N -ink printing, is a challenging task. The challenges comprise spectral modeling of the printer, color separation, halftoning, and limitations of the amount of inks. Juxtaposed halftoning, a perfectly dot-off-dot halftoning method, has proved to be useful to address some of these challenges. However, for juxtaposed halftones, prediction of colors as a function of ink area coverages has not yet been fully investigated. The goal of this paper is to introduce a spectral prediction model for N -ink juxtaposed-halftone prints. As the area-coverage domain of juxtaposed inks forms a simplex, we propose a cellular subdivision of the area-coverage domain using the barycentric subdivision of simplexes. The barycentric subdivision provides algorithmically straightforward means to design and implement an N -ink color prediction model. Within the subdomain cells, the Yule-Nielsen spectral Neugebauer model is used for the spectral prediction. Our proposed model is highly accurate for prints with a large number of inks while requiring a relatively low number of calibration samples.

  20. Design of experiments for microencapsulation applications: A review.

    Science.gov (United States)

    Paulo, Filipa; Santos, Lúcia

    2017-08-01

    Microencapsulation techniques have been intensively explored by many research sectors such as pharmaceutical and food industries. Microencapsulation allows to protect the active ingredient from the external environment, mask undesired flavours, a possible controlled release of compounds among others. The purpose of this review is to provide a background of design of experiments in microencapsulation research context. Optimization processes are required for an accurate research in these fields and therefore, the right implementation of micro-sized techniques at industrial scale. This article critically reviews the use of the response surface methodologies in pharmaceutical and food microencapsulation research areas. A survey of optimization procedures in the literature, in the last few years is also presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. OBSTACLES IN THE APPLICATION OF MICROENCAPSULATION IN ISLET TRANSPLANTATION

    NARCIS (Netherlands)

    DEVOS, P; WOLTERS, GHJ; FRITSCHY, WM; VANSCHILFGAARDE, R

    Several factors stand in the way of successful clinical transplantation of alginate-polylysine-alginate microencapsulated pancreatic islets. These obstacles can be classified into three categories. The first regards the technical aspects of the production process. Limiting factors are the

  2. Improvement on preparation of PS microshells by microencapsulation

    International Nuclear Information System (INIS)

    Du Kai; You Dan; Zhang Lin; Zhou Lan; Lin Bo

    1998-01-01

    Density-matched microencapsulation technique was presented. Concentricity, sphericity of microshells prepared by the technique was typically more than 98%, 99% respectively. Reduction of vacuole in the wall and preparation of large diameter microshells were also discussed

  3. Initiation and elimination of vacuoles in microencapsulated shells

    International Nuclear Information System (INIS)

    Du Kai; You Dan

    2000-01-01

    Two mechanisms of vacuole formation in microencapsulated micro-shells wall are introduced. It is verified that phase separation of trace amount of water in the organic solvent is the most possible course of vacuole formation

  4. Diamond electrophoretic microchips-Joule heating effects

    International Nuclear Information System (INIS)

    Karczemska, Anna T.; Witkowski, Dariusz; Ralchenko, Victor; Bolshakov, Andrey; Sovyk, Dmitry; Lysko, Jan M.; Fijalkowski, Mateusz; Bodzenta, Jerzy; Hassard, John

    2011-01-01

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare TM was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  5. Diamond electrophoretic microchips-Joule heating effects

    Energy Technology Data Exchange (ETDEWEB)

    Karczemska, Anna T., E-mail: anna.karczemska@p.lodz.pl [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Witkowski, Dariusz [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Ralchenko, Victor, E-mail: ralchenko@nsc.gpi.ru [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Bolshakov, Andrey; Sovyk, Dmitry [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Lysko, Jan M., E-mail: jmlysko@ite.waw.pl [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Fijalkowski, Mateusz, E-mail: petr.louda@vslib.cz [Technical University of Liberec, Faculty of Mechanical Engineering (Czech Republic); Bodzenta, Jerzy, E-mail: jerzy.bodzenta@polsl.pl [Silesian University of Technology, Institute of Physics, 2 Krzywoustego str., 44-100 Gliwice (Poland); Hassard, John, E-mail: j.hassard@imperial.ac.uk [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    2011-03-15

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare{sup TM} was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  6. Studies of Ink Trapping III Direct Detection of Small Air Bubbles in Ink Layer

    Directory of Open Access Journals (Sweden)

    Ikuo Naito

    2006-12-01

    Full Text Available Ink trappings were studied by using polyethylene terephthalate (PET film with black inks for offset proofing and synthetic paper. By observing printed matter from reverse side through the PET film, we detected many air bubbles in the ink layer and between the ink layer and the PET film. They are classified roughly to two groups, small number of large ones (φ = 2 - 5 μm and many small ones (φ = 0.5 - 1.0 μm. The former ones were fixed air bubbles during the trapping. The latter ones decreased according to increase the amount of ink trapped (y. Because number of the air bubbles (Nair bubble increased with increasing the ink distribution time, they seemed to be yielded by suspension of air into the ink layer during ink distribution. By observing printed surface, we also detected many ink peaks (immediately after the trapping and pinholes (at 24 h. The numbers of the ink peaks and pinholes (Nink peak and Npinhole, respectively decreased also with increasing the y value and increased with increasing the ink distribution time. We studied effects of nip width on these values (distribution time = 2 min.; nip width = 2, 3 and 4 mm. The Nair bubble value decreased with increasing nip width contrary to increase the Nink peak and Npinhole values. The effects can be represented by differences in the values of 2 and 4 mm nip widths. At y = 2 gm-2, the difference in the Nair bubble value is about one third (synthetic paper ink or a half (offset proofing ink of the difference in the Nink peak values.

  7. The electrophoretic mobility shift assay (EMSA)

    OpenAIRE

    sprotocols

    2015-01-01

    The electrophoretic mobility shift assay (EMSA), also known as “gel shift assay”, is used to examine the binding parameters and relative affinities of protein and DNA interactions. We produced recombinant CCA1 protein and tested its binding affinity for the promoter fragments that contain CBS (AAAAATCT) or evening element (EE, AAAATATCT) (1) using a modified procedure adopted from published protocols (2,3).

  8. Validation for chromatographic and electrophoretic methods

    OpenAIRE

    Ribani, Marcelo; Bottoli, Carla Beatriz Grespan; Collins, Carol H.; Jardim, Isabel Cristina Sales Fontes; Melo, Lúcio Flávio Costa

    2004-01-01

    The validation of an analytical method is fundamental to implementing a quality control system in any analytical laboratory. As the separation techniques, GC, HPLC and CE, are often the principal tools used in such determinations, procedure validation is a necessity. The objective of this review is to describe the main aspects of validation in chromatographic and electrophoretic analysis, showing, in a general way, the similarities and differences between the guidelines established by the dif...

  9. Terahertz pulse generation from metal nanoparticle ink

    Science.gov (United States)

    Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Phan, Thanh Nhat Khoa; Nakajima, Makoto

    2016-11-01

    Terahertz pulse generation from metallic nanostructures irradiated by femtosecond laser pulses is of interest because the conversion efficiency from laser pulses to terahertz waves is increased by the local field enhancement resulting from the plasmon oscillation. In this talk we present our recent study on terahertz generation from metal nanoparticle ink. We baked a silver nanoparticle ink spin-coated onto a glass coverslip in various temperatures. On the surface of the baked ink, bumpy nanostructures are spontaneously formed, and the average size of bumps depends on the baking temperature. These structures are expected to lead to local field enhancement and then large nonlinear polarizations on the surface. The baked ink was irradiated by the output of regeneratively amplified Ti:sapphire femtosecond laser at an incidence angle of 45°. Waveforms of generated terahertz pulses are detected by electro-optical sampling. The generation efficiency was high when the average diameter of bumps was around 100 nm, which is realized when the ink is baked in 205 to 235°C in our setup. One of our next research targets is terahertz wave generation from micro-patterned metallic nanoparticle ink. It is an advantage of the metal nanoparticle ink that by using inkjet printers one can fabricate various patterns with micrometer scales, in which terahertz waves have a resonance. Combination of microstructures made by a printer and nanostructure spontaneously formed in the baking process will provide us terahertz emitters with unique frequency characteristics.

  10. Probiotics, prebiotics, and microencapsulation: A review.

    Science.gov (United States)

    Sarao, Loveleen Kaur; Arora, M

    2017-01-22

    The development of a suitable technology for the production of probiotics is a key research for industrial production, which should take into account the viability and the stability of the organisms involved. Microbial criteria, stress tolerance during processing, and storage of the product constitute the basis for the production of probiotics. Generally, the bacteria belonging to the genera Lactobacillus and Bifidobacterium have been used as probiotics. Based on their positive qualities, probiotic bacteria are widely used in the production of food. Interest in the incorporation of the probiotic bacteria into other products apart from dairy products has been increasing and represents a great challenge. The recognition of dose delivery systems for probiotic bacteria has also resulted in research efforts aimed at developing probiotic food outside the dairy sector. Producing probiotic juices has been considered more in the recent years, due to an increased concern in personal health of consumers. This review focuses on probiotics, prebiotics, and the microencapsulation of living cells.

  11. Modeling of microencapsulated polymer shell solidification

    International Nuclear Information System (INIS)

    Boone, T.; Cheung, L.; Nelson, D.; Soane, D.; Wilemski, G.; Cook, R.

    1995-01-01

    A finite element transport model has been developed and implemented to complement experimental efforts to improve the quality of ICF target shells produced via controlled-mass microencapsulation. The model provides an efficient means to explore the effect of processing variables on the dynamics of shell dimensions, concentricity, and phase behavior. Comparisons with experiments showed that the model successfully predicts the evolution of wall thinning and core/wall density differences. The model was used to efficiently explore and identify initial wall compositions and processing temperatures which resulted in concentricity improvements from 65 to 99%. The evolution of trace amounts of water entering into the shell wall was also tracked in the simulations. Comparisons with phase envelope estimations from modified UNIFAP calculations suggest that the water content trajectory approaches the two-phase region where vacuole formation via microphase separation may occur

  12. An intelligence ink for photocatalytic films.

    Science.gov (United States)

    Mills, Andrew; Wang, Jishun; Lee, Soo-Keun; Simonsen, Morten

    2005-06-07

    An ink is described which, when printed or coated onto a photocatalyst film, changes colour irreversibly and rapidly upon UV activation of the photocatalyst film and at a rate commensurate with its activity.

  13. Tattoo inks in general usage contain nanoparticles

    DEFF Research Database (Denmark)

    Høgsberg, T; Löschner, Katrin; Löf, D

    2011-01-01

    the particle sizes in tattoo inks in general usage. Methods The particle size was measured by laser diffraction, electron microscopy and X-ray diffraction. Results The size of the pigments could be divided into three main classes. The black pigments were the smallest, the white pigments the largest...... in general usage is new and may contribute to the understanding of tattoo ink kinetics. How the body responds to NP tattoo pigments should be examined further....

  14. Electric treatment for hydrophilic ink deinking.

    Science.gov (United States)

    Du, Xiaotang; Hsieh, Jeffery S

    2017-09-01

    Hydrophilic inks have been widely used due to higher printing speed, competitive cost and being healthy non-organic solvents. However, they cause problems in both product quality and process runnability due to their hydrophilic surface wettability, strong negative surface charge and sub-micron size. Electric treatment was shown to be able to increase the ink sizes from 60 nm to 700 nm through electrocoagulation and electrophoresis. In addition, electric treatment assisted flotation could reduce effective residual ink concentration (ERIC) by 90 ppm, compared with only 20 ppm by traditional flotation. Furthermore, the effect of electric treatment alone on ink separation was investigated by two anode materials, graphite and stainless steel. Both of them could remove hydrophilic inks with less than 1% yield loss via electroflotation and electrophoresis. But graphite is a better material as the anode because graphite reduced ERIC by an additional 100 ppm. The yield loss of flotation following electric treatment was also lower by 17% if graphite was the anode material. The difference between the two electrode materials resulted from electrocoagulation and ink redeposition during electric treatment. An electric pretreatment-flotation-hyperwashing process was conducted to understand the deinking performance in conditions similar to a paper mill, and the ERIC was reduced from 950 ppm to less than 400 ppm.

  15. Thermal Performance of the Storage Brick Containing Microencapsulated PCM

    International Nuclear Information System (INIS)

    Lee, Dong Gyu

    1998-02-01

    The utilization of microencapsulated phase change materials(PCMs) provides several advantages over conventional PCM application. The heat storage system, as well as heat recovery system, can be built to a smaller size than the normal systems for a given thermal cycling capacity. This microencapsulated PCM technique has not yet been commercialized, however. In this work sodium acetate trihydrate(CH 3 COONa · 3H 2 O) was selected for the PCM and was encapsulated. This microencapsulated PCM was mixed with cement mortar for utilization as a floor heating system. In this experiment performed here the main purpose was to investigate the thermal performance of a storage brick with microencapsulated PCM concentration. The thermal performance of this storage brick is dependent on PCM concentration, flow rate and cooling temperature of the heat transfer fluid, etc. The results showed that cycle time was shortened as the PCM content was increased and as the mass flow rate was increased. The same effect was obtained when the cooling temperature was decreased. For each thermal storage brick the overall heat transfer coefficient(U-value) was constant for a 0% brick, but was increased with time for the bricks containing microencapsulated PCM. For the same mass flow rate, as the cooling temperature decreased, the amount of heat withdrawn increased, and in particular a critical cooling temperature was found for each thermal storage brick. The average effectiveness of each thermal storage brick was found to be approximately 48%, 51% and 58% respectively

  16. Electrophoretic mobilities of dissolved polyelectrolyte charging agent and suspended non-colloidal titanium during electrophoretic deposition

    International Nuclear Information System (INIS)

    Lau, Kok-Tee; Sorrell, C.C.

    2011-01-01

    Coarse (≤20 μm) titanium particles were deposited on low-carbon steel substrates by cathodic electrophoretic deposition (EPD) with ethanol as suspension medium and poly(diallyldimethylammonium chloride) (PDADMAC) as polymeric charging agent. Preliminary data on the electrophoretic mobilities and electrical conductivities on the suspensions of these soft particles as well as the solutions themselves as a function of PDADMAC level were used as the basis for the investigation of the EPD parameters in terms of the deposition yield as a function of five experimental parameters: (a) PDADMAC addition level, (b) solids loading, (c) deposition time, (d) applied voltage, and (e) electrode separation. These data were supported by particle sizing by laser diffraction and deposit surface morphology by scanning electron microscopy (SEM). The preceding data demonstrated that Ti particles of ∼1-12 μm size, electrosterically modified by the PDADMAC charging agent, acted effectively as colloidal particles during EPD. Owing to the non-colloidal nature of the particles and the stabilization of the Ti particles by electrosteric forces, the relevance of the zeta potential is questionable, so the more fundamental parameter of electrophoretic mobility was used. A key finding from the present work is the importance of assessing the electrophoretic mobilities of both the suspensions and solutions since the latter, which normally is overlooked, plays a critical role in the ability to interpret the results meaningfully. Further, algebraic uncoupling of these data plus determination of the deposit yield as a function of charging agent addition allow discrimination between the three main mechanistic stages of the electrokinetics of the process, which are: (1) surface saturation; (2) compression of the diffuse layer, growth of polymer-rich layer, and/or competition between the mobility of Ti and PDADMAC; and (3) little or no decrease in electrophoretic mobility of Ti, establishment of

  17. Electrophoretic mobilities of dissolved polyelectrolyte charging agent and suspended non-colloidal titanium during electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Kok-Tee [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, 76109 Durian Tunggal, Melaka (Malaysia); Sorrell, C.C., E-mail: C.Sorrell@unsw.edu.au [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2011-03-25

    Coarse ({<=}20 {mu}m) titanium particles were deposited on low-carbon steel substrates by cathodic electrophoretic deposition (EPD) with ethanol as suspension medium and poly(diallyldimethylammonium chloride) (PDADMAC) as polymeric charging agent. Preliminary data on the electrophoretic mobilities and electrical conductivities on the suspensions of these soft particles as well as the solutions themselves as a function of PDADMAC level were used as the basis for the investigation of the EPD parameters in terms of the deposition yield as a function of five experimental parameters: (a) PDADMAC addition level, (b) solids loading, (c) deposition time, (d) applied voltage, and (e) electrode separation. These data were supported by particle sizing by laser diffraction and deposit surface morphology by scanning electron microscopy (SEM). The preceding data demonstrated that Ti particles of {approx}1-12 {mu}m size, electrosterically modified by the PDADMAC charging agent, acted effectively as colloidal particles during EPD. Owing to the non-colloidal nature of the particles and the stabilization of the Ti particles by electrosteric forces, the relevance of the zeta potential is questionable, so the more fundamental parameter of electrophoretic mobility was used. A key finding from the present work is the importance of assessing the electrophoretic mobilities of both the suspensions and solutions since the latter, which normally is overlooked, plays a critical role in the ability to interpret the results meaningfully. Further, algebraic uncoupling of these data plus determination of the deposit yield as a function of charging agent addition allow discrimination between the three main mechanistic stages of the electrokinetics of the process, which are: (1) surface saturation; (2) compression of the diffuse layer, growth of polymer-rich layer, and/or competition between the mobility of Ti and PDADMAC; and (3) little or no decrease in electrophoretic mobility of Ti

  18. Electrophoretic Porosimetry of Sol-Gels

    Science.gov (United States)

    Snow, L. A.; Smith, D. D.; Sibille, L.; Hunt, A. J.; Ng, J.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    It has been hypothesized that gravity has an effect on the formation and resulting microstructure of sol-gels. In order to more clearly resolve the effect of gravity, pores may be non-destructively analyzed in the wet gel, circumventing the shrinkage and coarsening associated with the drying procedure. We discuss the development of an electrophoretic technique, analogous to affinity chromatography, for the determination of pore size distribution and its application to silica gels. Specifically a monodisperse charged dye is monitored by an optical densitometer as it moves through the wet gel under the influence of an electric field. The transmittance data (output) represents the convolution of the dye concentration profile at the beginning of the run (input) with the pore size distribution (transfer function), i.e. linear systems theory applies. Because of the practical difficulty in producing a delta function input dye profile we prefer instead to use a step function. Average pore size is then related to the velocity of this dye front, while the pore size distribution is related to the spreading of the front. Preliminary results of this electrophoretic porosimetry and its application to ground and space-grown samples will be discussed.

  19. Separation of empty microcapsules after microencapsulation of porcine neonatal islets.

    Science.gov (United States)

    Shin, Soojeong; Yoo, Young Je

    2013-12-01

    Pancreatic islet transplantation is used to treat diabetes mellitus that has minimal complications and avoids hypoglycemic shock. Conformal microencapsulation of pancreatic islets improves their function by blocking immunogenic molecules while protecting fragile islets. However, production of empty alginate capsules during microencapsulation causes enlargement of the transplantation volume of the encapsulated islets and interferes with efficient transfer of nutrients and insulin. In this study, empty alginate capsules were separated after microencapsulation of neonatal porcine islet-like cell clusters (NPCC) using density-gradient centrifugation. Densities of NPCC and alginate capsules were determined using Percoll. Encapsulation products following alginate removal were 97 % of products, with less than 10 % of the capsules remaining empty. The viability of this process compared with manually-selected encapsulated islets indicates the separation process does not harm islets.

  20. Stem Cell Microencapsulation for Phenotypic Control, Bioprocessing, and Transplantation

    Science.gov (United States)

    Wilson, Jenna L.

    2014-01-01

    Cell microencapsulation has been utilized for decades as a means to shield cells from the external environment while simultaneously permitting transport of oxygen, nutrients, and secretory molecules. In designing cell therapies, donor primary cells are often difficult to obtain and expand to appropriate numbers, rendering stem cells an attractive alternative due to their capacities for self-renewal, differentiation, and trophic factor secretion. Microencapsulation of stem cells offers several benefits, namely the creation of a defined microenvironment which can be designed to modulate stem cell phenotype, protection from hydrodynamic forces and prevention of agglomeration during expansion in suspension bioreactors, and a means to transplant cells behind a semi-permeable barrier, allowing for molecular secretion while avoiding immune reaction. This review will provide an overview of relevant microencapsulation processes and characterization in the context of maintaining stem cell potency, directing differentiation, investigating scalable production methods, and transplanting stem cells for clinically relevant disorders. PMID:23239279

  1. Microencapsulating and Banking Living Cells for Cell-Based Medicine

    Directory of Open Access Journals (Sweden)

    Wujie Zhang

    2011-01-01

    Full Text Available A major challenge to the eventual success of the emerging cell-based medicine such as tissue engineering, regenerative medicine, and cell transplantation is the limited availability of the desired cell sources. This challenge can be addressed by cell microencapsulation to overcome the undesired immune response (i.e., to achieve immunoisolation so that non-autologous cells can be used to treat human diseases, and by cell/tissue preservation to bank living cells for wide distribution to end users so that they are readily available when needed in the future. This review summarizes the status quo of research in both cell microencapsulation and banking the microencapsulated cells. It is concluded with a brief outlook of future research directions in this important field.

  2. The recent advances on carrier materials for microencapsulating lipophilic cores

    Directory of Open Access Journals (Sweden)

    JIN Minfeng

    2014-12-01

    Full Text Available Lipophilic ingredients,such as polyunsaturated fatty acids,play an important role in industrialized foods to fortify the nutrients.However,these materials are normally sensitive to oxygen,light or heat to be oxidized,and hard to flow and mix within the bulk food due to the hydrophobic nature.Microencapsulation of lipophilic materials could effectively extend their shelf lives,mask unsatisfied flavors,change their physicochemical properties,and enhance the mixing capacities.This work reviewed the different carrier materials applied in microencapsulating the lipophilic ingredients,and discussed their characteristics and effects on encapsulation efficiencies and release profiles of lipophilic cores.

  3. Microencapsulation: concepts, mechanisms, methods and some applications in food technology

    Directory of Open Access Journals (Sweden)

    Pablo Teixeira da Silva

    2014-07-01

    Full Text Available Microencapsulation is a process in which active substances are coated by extremely small capsules. It is a new technology that has been used in the cosmetics industry as well as in the pharmaceutical, agrochemical and food industries, being used in flavors, acids, oils, vitamins, microorganisms, among others. The success of this technology is due to the correct choice of the wall material, the core release form and the encapsulation method. Therefore, in this review, some relevant microencapsulation aspects, such as the capsule, wall material, core release forms, encapsulation methods and their use in food technology will be briefly discussed.

  4. Recent Developments on Microencapsulation for Autonomous Corrosion Protection

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Fitzpatrick, Lilliana; Jolley, Scott T.; Surma, Jan M.; Pearman, Benjamin P.; Zhang, Xuejun

    2014-01-01

    This work concerns recent progress in the development of a multifunctional smart coating based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of desired corrosion control functionalities, such as early corrosion detection and inhibition through corrosion controlled release of corrosion indicators and inhibitors, as well as self-healing agent release when mechanical damage occurs.While proof-of-concept results have been reported previously, more recent efforts have been concentrated in technical developments to improve coating compatibility, synthesis procedure scalability, as well as fine tuning the release property of encapsulated active agents.

  5. Silver diffusion through silicon carbide in microencapsulated nuclear fuels TRISO

    International Nuclear Information System (INIS)

    Cancino T, F.; Lopez H, E.

    2013-10-01

    The silver diffusion through silicon carbide is a challenge that has persisted in the development of microencapsulated fuels TRISO (Tri structural Isotropic) for more than four decades. The silver is known as a strong emitter of gamma radiation, for what is able to diffuse through the ceramic coatings of pyrolytic coal and silicon carbide and to be deposited in the heat exchangers. In this work we carry out a recount about the art state in the topic of the diffusion of Ag through silicon carbide in microencapsulated fuels and we propose the role that the complexities in the grain limit can have this problem. (Author)

  6. Microencapsulation of Pancreatic Islets for Use in a Bioartificial Pancreas

    Science.gov (United States)

    Opara, Emmanuel C.; McQuilling, John P.; Farney, Alan C.

    2013-01-01

    Islet transplantation is the most exciting treatment option for individuals afflicted with Type 1 diabetes. However, the severe shortage of human pancreas and the need to use risky immunosuppressive drugs to prevent transplant rejection remain two major obstacles for the routine use of islet transplantation in diabetic patients. Successful development of a bioartificial pancreas using the approach of microencapsulation with perm-selective coating of islets with biopolymers for graft immunoisolation holds tremendous promise for diabetic patients because it has great potential to overcome these two barriers. In this chapter, we provide a detailed description of the microencapsulation process. PMID:23494435

  7. Microencapsulation Technology for Corrosion Mitigation by Smart Coatings

    Science.gov (United States)

    Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.

    2011-01-01

    A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain

  8. Microencapsulation of Lactobacillus casei by spray drying.

    Science.gov (United States)

    Dos Santos, Rebeka Cristiane Silva; Finkler, Leandro; Finkler, Christine Lamenha Luna

    2014-01-01

    This study evaluates the use of spray drying to produce microparticles of Lactobacillus casei. Microorganism was cultivated in shaken flasks and the microencapsulation process was performed using a laboratory-scale spray dryer. A rotational central composite design was employed to optimise the drying conditions. High cell viability (1.1 × 10(10) CFU/g) was achieved using an inlet air temperature of 70 °C and 25% (w/v) of maltodextrin. Microparticles presented values of solubility, wettability, water activity, hygroscopicity and humidity corresponding to 97.03 ± 0.04%, 100% (in 1.16 min), 0.14 ± 0.0, 35.20 g H2O/100 g and 4.80 ± 0.43%, respectively. The microparticles were spherical with a smooth surface and thermally stable. Encapsulation improved the survival of L. casei during storage. After 60 days, the samples stored at -8 °C showed viable cell concentrations of 1.0 × 10(9) CFU/g.

  9. The Production of Synbiotic Bread by Microencapsulation.

    Science.gov (United States)

    Seyedain-Ardabili, Mojan; Sharifan, Anousheh; Tarzi, Babak Ghiassi

    2016-03-01

    Bread is a global staple food. Despite attempts to develop functional breads containing viable microorganisms, this has not been done yet because of the high temperature during baking. The aim of this study is to obtain synbiotic bread, hence hamburger bun and white pan bread were selected. Lactobacillus acidophilus LA-5 and L. casei 431 were encapsulated with calcium alginate and Hi-maize resistant starch via emulsion technique and coated with chitosan. The morphology and size of microcapsules were measured by scanning electron microscopy and particle size analyser. Inulin was added at 5% wheat flour mass basis for prebiotic effect. The encapsulated probiotics were inoculated into the bread dough and bread loaves were baked. The survival of encapsulated probiotics was determined after baking; also sensory evaluation was performed. Both types of bread met the standard criteria for probiotic products. The probiotic survival was higher in hamburger bun. L. casei 431 was more resistant to high temperature than L. acidophilus LA-5. A significant increase in probiotic survival was observed when the protective coating of chitosan was used in addition to calcium alginate and Hi-maize resistant starch. Storage for 4 days did not have any effect on the viability of encapsulated bacteria. The addition of encapsulated bacteria did not have any effect on flavour and texture; however, 5% inulin improved the texture of bread significantly. Results show that microencapsulation used in the production of synbiotic bread can enhance the viability and thermal resistance of the probiotic bacteria.

  10. The Production of Synbiotic Bread by Microencapsulation

    Directory of Open Access Journals (Sweden)

    Anousheh Sharifan

    2016-01-01

    Full Text Available Bread is a global staple food. Despite attempts to develop functional breads containing viable microorganisms, this has not been done yet because of the high temperature during baking. The aim of this study is to obtain synbiotic bread, hence hamburger bun and white pan bread were selected. Lactobacillus acidophilus LA-5 and L. casei 431 were encapsulated with calcium alginate and Hi-maize resistant starch via emulsion technique and coated with chitosan. The morphology and size of microcapsules were measured by scanning electron microscopy and particle size analyser. Inulin was added at 5 % wheat flour mass basis for prebiotic effect. The encapsulated probiotics were inoculated into the bread dough and bread loaves were baked. The survival of encapsulated probiotics was determined after baking; also sensory evaluation was performed. Both types of bread met the standard criteria for probiotic products. The probiotic survival was higher in hamburger bun. L. casei 431 was more resistant to high temperature than L. acidophilus LA-5. A significant increase in probiotic survival was observed when the protective coating of chitosan was used in addition to calcium alginate and Hi-maize resistant starch. Storage for 4 days did not have any effect on the viability of encapsulated bacteria. The addition of encapsulated bacteria did not have any effect on flavour and texture; however, 5 % inulin improved the texture of bread significantly. Results show that microencapsulation used in the production of synbiotic bread can enhance the viability and thermal resistance of the probiotic bacteria.

  11. Ink-Jet Printer Forms Solar-Cell Contacts

    Science.gov (United States)

    Alexander, Paul, Jr.; Vest, R. W.; Binford, Don A.; Tweedell, Eric P.

    1988-01-01

    Contacts formed in controllable patterns with metal-based inks. System forms upper metal contact patterns on silicon photovoltaic cells. Uses metallo-organic ink, decomposes when heated, leaving behind metallic, electrically conductive residue in printed area.

  12. Optimization of the southern electrophoretic transfer method

    International Nuclear Information System (INIS)

    Allison, M.A.; Fujimura, R.K.

    1987-01-01

    The technique of separating DNA fragments using agarose gel electrophoresis is essential in the analysis of nucleic acids. Further, after the method of transferring specific DNA fragments from those agarose gels to cellulose nitrate membranes was developed in 1975, a method was developed to transfer DNA, RNA, protein and ribonucleoprotein particles from various gels onto diazobenzyloxymethyl (DBM) paper using electrophoresis as well. This paper describes the optimum conditions for quantitative electrophoretic transfer of DNA onto nylon membranes. This method exemplifies the ability to hybridize the membrane more than once with specific RNA probes by providing sufficient retention of the DNA. Furthermore, the intrinsic properties of the nylon membrane allow for an increase in the efficiency and resolution of transfer while using somewhat harsh alkaline conditions. The use of alkaline conditions is of critical importance since we can now denature the DNA during transfer and thus only a short pre-treatment in acid is required for depurination. 9 refs., 7 figs

  13. Improved verification methods for OVI security ink

    Science.gov (United States)

    Coombs, Paul G.; Markantes, Tom

    2000-04-01

    Together, OVP Security Pigment in OVI Security Ink, provide an excellent method of overt banknote protection. The effective use of overt security feature requires an educated public. The rapid rise in computer-generated counterfeits indicates that consumers are not as educate das to banknote security features as they should be. To counter the education issue, new methodologies have been developed to improve the validation of banknotes using the OVI ink feature itself. One of the new methods takes advantage of the overt nature of the product's optically variable effect. Another method utilizes the unique optical interference characteristics provided by the OVP platelets.

  14. Dynamic Colour Possibilities and Functional Properties of Thermochromic Printing Inks

    OpenAIRE

    Rahela Kulcar; Marta Klanjsek Gunde; Nina Knesaurek

    2012-01-01

    Thermochromic printing inks change their colour regarding the change in temperature and they are one of the major groups of colour-changing inks. One of the most frequently used thermochromic material in printing inks are leuco dyes. The colour of thermochromic prints is dynamic, it is not just temperature-dependent, but it also depends on thermal history. The effect is described by colour hysteresis. This paper aims at discussing general aspects of thermochromic inks, dynamic colorimetric pr...

  15. Optimization of Graphene Conductive Ink with 73 wt% Graphene Contents.

    Science.gov (United States)

    Xu, Chang-Yan; Shi, Xiao-Mei; Guo, Lu; Wang, Xi; Wang, Xin-Yi; Li, Jian-Yu

    2018-06-01

    With the pace of development accelerating in printed electronics, the fabrication and application of conductive ink have been brought into sharp focus in recent years. The discovery of graphene also unfolded a vigorous research campaign. In this paper, we prepared graphene conductive ink and explored the feasibility of applying the ink to flexible paper-based circuit. Since experimental study concentrating upon ink formulation was insufficient, orthogonal test design was used in the optimization of preparation formula of conductive ink for the first time. The purpose of this study was to determine the effect of constituent dosage on conductivity of graphene conductive ink, so as to obtain the optimized formula and prepare graphene conductive ink with good conductivity. Characterization of optimized graphene conductive ink we fabricated showed good adhesion to substrate and good resistance to acid and water. The graphene concentration of the optimized ink reached 73.17 wt% solid content. Particle size distribution of graphene conductive ink was uniform, which was about 1940 nm. Static surface tension was 28.9 mN/m and equilibrium contact angle was 23°, demonstrating that conductive ink had good wettability. Scanning Electron Microscope (SEM) analysis was also investigated, moreover, the feasibility of lightening a light-emitting diode (LED) light was verified. The graphene conductive ink with optimized formula can be stored for almost eight months, which had potential applications in flexible paper-based circuit in the future.

  16. Dynamic Colour Possibilities and Functional Properties of Thermochromic Printing Inks

    Directory of Open Access Journals (Sweden)

    Rahela Kulcar

    2012-07-01

    Full Text Available Thermochromic printing inks change their colour regarding the change in temperature and they are one of the major groups of colour-changing inks. One of the most frequently used thermochromic material in printing inks are leuco dyes. The colour of thermochromic prints is dynamic, it is not just temperature-dependent, but it also depends on thermal history. The effect is described by colour hysteresis. This paper aims at discussing general aspects of thermochromic inks, dynamic colorimetric properties of leuco dye-based thermochromic inks, their stability and principle of variable-temperature colour measurement. Thermochromic material is protected in round-shaped capsules. They are much larger than pigments in conventional inks. The polymer envelopes of pigment capsules are more stable against oxidation than the binder. If these envelopes are damaged, the dynamic colour is irreversibly lost. Our aim is to analyse the colorimetric properties of several reversible screen-printed UV-curing leuco dye thermochromic inks with different activation temperatures printed on paper. A small analysis of irreversible thermochromic inks will be presented for comparison with reversible thermochromic inks. Moreover, so as to show interesting possibilities, a combination of different inks was made, an irreversible thermochromic ink was printed on top of the red and blue reversible thermochromic inks. Special attention was given to the characterization of colour hysteresis and the meaning of activation temperature.

  17. Microencapsulated Starter Culture During Yoghurt Manufacturing, Effect on Technological Features

    NARCIS (Netherlands)

    Prisco, de Annachiara; Valenberg, van Hein J.F.; Fogliano, Vincenzo; Mauriello, Gianluigi

    2017-01-01

    The potential of living cell microencapsulation in sustaining cells’ viability, functionality and targeted release in gastrointestinal tract is relatively well documented. Differently, the effects exerted by the capsules on cell metabolic activities during fermentation of a food matrix as well as

  18. Development of new microencapsulated beta emitters for internal radiotherapy

    International Nuclear Information System (INIS)

    Perdrisot, R.; Monteil, J.; Le Jeune, J.J.; Pouliquen, D.; Jallet, P.; Beau, P.; Lepape, A.

    1993-01-01

    We have developed new microencapsulated beta emitter radiotracers which could be used in nuclear medicine for selective internal radiotherapy. Their efficacy was evaluated on B16 melanoma tumor model in mice, using phosphorus 31 spectroscopy. This kind of tracer would allow a precise targetting of beta irradiation

  19. Islet Microencapsulation: Strategies and Clinical Status in Diabetes.

    Science.gov (United States)

    Omami, Mustafa; McGarrigle, James J; Reedy, Mick; Isa, Douglas; Ghani, Sofia; Marchese, Enza; Bochenek, Matthew A; Longi, Maha; Xing, Yuan; Joshi, Ira; Wang, Yong; Oberholzer, José

    2017-07-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results from the destruction of insulin-producing pancreatic β cells in the islets of Langerhans. Islet cell transplantation has become a successful therapy for specific patients with T1DM with hypoglycemic unawareness. The reversal of T1DM by islet transplantation is now performed at many major medical facilities throughout the world. However, many challenges must still be overcome in order to achieve continuous, long-term successful transplant outcomes. Two major obstacles to this therapy are a lack of islet cells for transplantation and the need for life-long immunosuppressive treatment. Microencapsulation is seen as a technology that can overcome both these limitations of islet cell transplantation. This review depicts the present state of microencapsulated islet transplantation. Microencapsulation can play a significant role in overcoming the need for immunosuppression and lack of donor islet cells. This review focuses on microencapsulation and the clinical status of the technology in combating T1DM.

  20. Towards conducting inks: polypyrrole-silver colloids

    Czech Academy of Sciences Publication Activity Database

    Omastová, M.; Bober, Patrycja; Morávková, Zuzana; Peřinka, N.; Kaplanová, M.; Syrový, T.; Hromádková, Jiřina; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Roč. 122, 10 March (2014), s. 296-302 ISSN 0013-4686 R&D Projects: GA TA ČR TE01020022; GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : conducting inks * polypyrrole * colloids Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 4.504, year: 2014

  1. Electron Beam curing of intaglio inks

    International Nuclear Information System (INIS)

    O'Brien, T.

    1984-01-01

    Press trials conducted by the US Bureau of Engraving and Printing at the National Bank of Denmark in September 8-21, 1982, clearly indicated the feasibility of Electron Beam (EB) curing for web intaglio printing. These trials, some at continuous press runs of up to six hours, gave positive results for virtually all our requirements including: print quality, press speeds, ability to print both sides of the web on one pass through a press, acceptable ink curing at one megarad or less, and minimum substrate deterioration or loss of moisture. In addition, these trials demonstrated many advantages over thermal curing which is the only other alternative to two sided printing in one pass through the press. These advantages can be found in product quality, a cleaner environment, and in economics. This development program is still in progress with efforts now directed towards adapting EB ink technology to the latest developments in intaglio printing, i.e. aqueous cylinder wiping which requires EB inks to be water dispersable. Also the stability of materials in contact with EB inks is being investigated

  2. Electron beam curing of intaglio inks

    International Nuclear Information System (INIS)

    O'Brien, T.

    1985-01-01

    Press trials conducted by the U.S. Bureau of Engraving and Printing at the National Bank of Denmark clearly indicated the feasibility of Electron Beam (E.B.) curing for web intaglio printing . These trials, some at continuous press runs of up to six hours, gave positive results for virtually all our requirements including: print quality, press speeds, ability to print both sides of the web on one pass through a press, acceptable ink curing at one megarad or less, and minimum substrate deterioration or loss of moisture. In addition, these trials demonstrated many advantages over thermal curing which is the only other alternative to two sided printing in one pass through the press. These advantages can be found in product quality, a cleaner environment, and in economics. This development program is still in progress with efforts now directed towards adapting E.B. ink technology to the latest developments in intaglio printing, i.e. aqueous cylinder wiping which requires E.B. inks to be water dispersable. Also the stability of materials in contact with E.B. inks is being investigated. (author)

  3. Soft and probe lithography without ink transfer

    NARCIS (Netherlands)

    Huskens, Jurriaan; Li, X.; Péter, M.; Reinhoudt, David

    2004-01-01

    Microcontact printing (mCP) and dip-pen nanolithography (DPN) are versatile techniques for the creation of patterned surfaces. They commonly employ the transfer of an ink (e.g. a thiol) onto a surface (e.g. a gold-coated substrate) thus forming a self-assembled monolayer (SAM). Resolution of these

  4. Analysis of iron gall inks by PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Budnar, Milos [Jozef Stefan Institute, Jamova 39, p.p. 3000, SI-1001 Ljubljana (Slovenia)]. E-mail: milos.budnar@ijs.si; Ursic, Mitja [Jozef Stefan Institute, Jamova 39, p.p. 3000, SI-1001 Ljubljana (Slovenia); Simcic, Jure [Jozef Stefan Institute, Jamova 39, p.p. 3000, SI-1001 Ljubljana (Slovenia); Pelicon, Primoz [Jozef Stefan Institute, Jamova 39, p.p. 3000, SI-1001 Ljubljana (Slovenia); Kolar, Jana [National University Library, Turjaska 1, SI-1000 Ljubljana (Slovenia); Selih, Vid Simon [University of Ljubljana, Faculty of Chemistry and Chemical Technology, Askerceva 5, SI-1000 Ljubljana (Slovenia); Strlic, Matija [University of Ljubljana, Faculty of Chemistry and Chemical Technology, Askerceva 5, SI-1000 Ljubljana (Slovenia)

    2006-02-15

    Micro- or non-destructive analytical approach is an imperative when analysing historical artefacts. Due to its practically non-destructive character, proton induced X-ray spectrometry (PIXE) has become a method of choice for the study of historical documents. In the present paper, use of in-air PIXE method for analysis of iron gall inks applied at handwriting of documents is evaluated. The errors arising from the non-uniform ink deposit, proton penetration depth and size of the proton beam versus width of ink lines, effects of surface roughness, as well as the importance of the PIXE set-up geometry on the accuracy of the results are discussed. It follows that the main problems can be attributed to the fact that PIXE is a surface technique and that the analysis is limited to a small amount of material, while ink deposit on the paper is usually non-uniform in depth as well as on the paper surface. Despite possible systematic uncertainties when applying the PIXE method, good correlation between determinations obtained by PIXE and atomic absorption spectroscopy (AAS) on model samples clearly demonstrate that the errors are well within a reasonable limit of a few percents.

  5. Analysis of iron gall inks by PIXE

    International Nuclear Information System (INIS)

    Budnar, Milos; Ursic, Mitja; Simcic, Jure; Pelicon, Primoz; Kolar, Jana; Selih, Vid Simon; Strlic, Matija

    2006-01-01

    Micro- or non-destructive analytical approach is an imperative when analysing historical artefacts. Due to its practically non-destructive character, proton induced X-ray spectrometry (PIXE) has become a method of choice for the study of historical documents. In the present paper, use of in-air PIXE method for analysis of iron gall inks applied at handwriting of documents is evaluated. The errors arising from the non-uniform ink deposit, proton penetration depth and size of the proton beam versus width of ink lines, effects of surface roughness, as well as the importance of the PIXE set-up geometry on the accuracy of the results are discussed. It follows that the main problems can be attributed to the fact that PIXE is a surface technique and that the analysis is limited to a small amount of material, while ink deposit on the paper is usually non-uniform in depth as well as on the paper surface. Despite possible systematic uncertainties when applying the PIXE method, good correlation between determinations obtained by PIXE and atomic absorption spectroscopy (AAS) on model samples clearly demonstrate that the errors are well within a reasonable limit of a few percents

  6. NON-AQUEOUS PIGMENTED INKJET INKS

    NARCIS (Netherlands)

    DEROOVER, GEERT; Bernaerts, Katrien; HOOGMARTENS, IVAN

    2010-01-01

    A non-aqueous inkjet ink includes a benzimidazolone pigment and a polymeric dispersant according to Formula (I): wherein, T represents hydrogen or a polymerization terminating group; Z represents the residue of polyethyleneimine having a number-average molecular weight of at least 100; A represents

  7. Non-aqueous pigmented inkjet inks

    NARCIS (Netherlands)

    HOOGMARTENS, IVAN; Bernaerts, Katrien; DEROOVER, GEERT

    2008-01-01

    A non-aqueous inkjet ink comprising C.I. Pigment Yellow 150 and a polymeric dispersant according to Formula (I): wherein, T represents hydrogen or a polymerization terminating group; Z represents the residue of polyethyleneimine having a number-average molecular weight of at least 100; A represents

  8. Direct laser printing using viscous printer's ink

    International Nuclear Information System (INIS)

    Nasibov, A S; Bagramov, V G; Berezhnoi, K V

    2006-01-01

    The results of experiments on direct laser printing using viscous printer's ink with the help of a copper vapour laser (CVL)-based device are presented. The highly reflecting CVL cavity mirror was replaced by a spatial mirror modulator (SMM). Viscous printer's ink was used for printing. A pressure pulse produced at the boundary (on which an intensified and diminished image of the SMM was projected) between the ink and a transparency was used for transferring the ink to the plastic card. It was shown that the use of a CVL allowed a maximum printing speed of ∼80 cm 2 s -1 , a resolution of 625 dpi and up to 15 gradations. The dependence of the emission intensity of the element being projected (pixel) on its diameter is studied. It is shown that an increase in the brightness of this element with decreasing its size is caused by the summation of the laser and amplified radiation. (laser applications and other topics in quantum electronics)

  9. A randomized control trial evaluating fluorescent ink versus dark ink tattoos for breast radiotherapy.

    Science.gov (United States)

    Landeg, Steven J; Kirby, Anna M; Lee, Steven F; Bartlett, Freddie; Titmarsh, Kumud; Donovan, Ellen; Griffin, Clare L; Gothard, Lone; Locke, Imogen; McNair, Helen A

    2016-12-01

    The purpose of this UK study was to evaluate interfraction reproducibility and body image score when using ultraviolet (UV) tattoos (not visible in ambient lighting) for external references during breast/chest wall radiotherapy and compare with conventional dark ink. In this non-blinded, single-centre, parallel group, randomized control trial, patients were allocated to receive either conventional dark ink or UV ink tattoos using computer-generated random blocks. Participant assignment was not masked. Systematic (∑) and random (σ) setup errors were determined using electronic portal images. Body image questionnaires were completed at pre-treatment, 1 month and 6 months to determine the impact of tattoo type on body image. The primary end point was to determine that UV tattoo random error (σ setup ) was no less accurate than with conventional dark ink tattoos, i.e. tattoos. 45 patients completed treatment (UV: n = 23, dark: n = 22). σ setup for the UV tattoo group was tattoo group compared with the dark ink group at 1 month [56% (13/23) vs 14% (3/22), respectively] and 6 months [52% (11/21) vs 38% (8/21), respectively]. UV tattoos were associated with interfraction setup reproducibility comparable with conventional dark ink. Patients reported a more favourable change in body image score up to 6 months following treatment. Advances in knowledge: This study is the first to evaluate UV tattoo external references in a randomized control trial.

  10. Positively charged TiO2 particles in non-polar system for electrophoretic display

    International Nuclear Information System (INIS)

    Chang, Young Seon

    2005-02-01

    Electrophoretic display uses a technique called electrophoresis to represent images and letters electronically with electronic ink. Although it has good characteristics such as wide viewing angle, high contrast ratio and extremely low power consumption, there are still several issues to be resolved to improve its performances. Higher mobility and stability of the ink particles are the most important issues among them. In this study, TiO 2 particles coated with acrylamide were found to be effective ink particles that satisfy higher mobility and stability. The TiO 2 particles coated with 5∼40% acrylamide were prepared by dispersion polymerization using monomers of methyl methacrylate (MMA) and acrylamide. The TiO 2 particles coated with acrylamide were dispersed in isopar-G with sorbitan esters such as span 20, span 80 and span 85. The size of the TiO 2 particles were changed from 200±150 nm to 350∼500 nm by the coating process. The morphology of coated particles was observed using a transmission electron microscope (TEM) and thermogravimetric analysis (TGA). From the TGA results, the weight fraction of TiO 2 and polymer in coated particle were calculated. From the zeta potential measurement, it was shown that as acrylamide concentration was increased from 5% to 30%, zeta potential of the coated TiO 2 particles was increased from 50mV to about 230mV. The zeta potential of the coated TiO 2 particles with 40% acrylamide was decreased to 50mV. As a stabilizer, span 85 was the most effective surfactant to improve stability of the TiO 2 particles coated with acrylamide among used surfactants in this study. Span 85 showed best stability in the storage test with TiO 2 particles coated with 10% acrylamide. The mobility of TiO 2 particles coated with acrylamide with span 85 in dye solution (Oil Blue-N dissolved in isopar-G) were measured by ITO cell test. The mobility of TiO 2 particles coated with 10∼30% acrylamide was over 600μm 2 /Vs while the mobility of TiO 2

  11. Tattoo ink nanoparticles in skin tissue and fibroblasts.

    Science.gov (United States)

    Grant, Colin A; Twigg, Peter C; Baker, Richard; Tobin, Desmond J

    2015-01-01

    Tattooing has long been practised in various societies all around the world and is becoming increasingly common and widespread in the West. Tattoo ink suspensions unquestionably contain pigments composed of nanoparticles, i.e., particles of sub-100 nm dimensions. It is widely acknowledged that nanoparticles have higher levels of chemical activity than their larger particle equivalents. However, assessment of the toxicity of tattoo inks has been the subject of little research and ink manufacturers are not obliged to disclose the exact composition of their products. This study examines tattoo ink particles in two fundamental skin components at the nanometre level. We use atomic force microscopy and light microscopy to examine cryosections of tattooed skin, exploring the collagen fibril networks in the dermis that contain ink nanoparticles. Further, we culture fibroblasts in diluted tattoo ink to explore both the immediate impact of ink pigment on cell viability and also to observe the interaction between particles and the cells.

  12. PIXE analysis of Italian ink drawings of the XVI century

    International Nuclear Information System (INIS)

    Zucchiatti, A.; Climent-Font, A.; Enguita, O.; Fernandez-Jimenez, M.T.; Finaldi, G.; Garrido, C.; Matillas, J.M.

    2005-01-01

    The composition of inks in a group of 24 drawings of ten XVI century Italian painters, has been determined by PIXE at the external micro-beam line of the Centro de Micro Analisis de Materiales of the Universidad Autonoma de Madrid. Ink elemental thicknesses have been determined by comparison with a set of certified thin standards. A comprehensive comparison of inks has also been performed by renormalisation of spectra and definition of an ink-to-ink distance. The elemental compositions and the ink-to-ink distances give consistent results that are generally in line with the appearance of the drawings and add relevant instrumental information to the stylistic observation, revealing for example the presence of retouches and additions in different parts of a drawing. Cluster analysis performed on a subgroup of 13 artefacts from the Genoese painter Luca Cambiaso and his school has revealed a partition that separates neatly the work of the master from that of his followers

  13. Tattoo ink nanoparticles in skin tissue and fibroblasts

    Directory of Open Access Journals (Sweden)

    Colin A. Grant

    2015-05-01

    Full Text Available Tattooing has long been practised in various societies all around the world and is becoming increasingly common and widespread in the West. Tattoo ink suspensions unquestionably contain pigments composed of nanoparticles, i.e., particles of sub-100 nm dimensions. It is widely acknowledged that nanoparticles have higher levels of chemical activity than their larger particle equivalents. However, assessment of the toxicity of tattoo inks has been the subject of little research and ink manufacturers are not obliged to disclose the exact composition of their products. This study examines tattoo ink particles in two fundamental skin components at the nanometre level. We use atomic force microscopy and light microscopy to examine cryosections of tattooed skin, exploring the collagen fibril networks in the dermis that contain ink nanoparticles. Further, we culture fibroblasts in diluted tattoo ink to explore both the immediate impact of ink pigment on cell viability and also to observe the interaction between particles and the cells.

  14. Application of design of experiment on electrophoretic deposition of ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Coating; electrophoretic deposition; glass-ceramic; design of experiment. 1. Introduction ... other chemicals used were of laboratory reagent grade. ... changes from 7⋅0 to 9⋅5 that adversely affects the deposi- tion efficiency and ...

  15. Predicting tensorial electrophoretic effects in asymmetric colloids

    Science.gov (United States)

    Mowitz, Aaron J.; Witten, T. A.

    2017-12-01

    We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).

  16. Fluid Delivery System For Capillary Electrophoretic Applications.

    Science.gov (United States)

    Li, Qingbo; Liu, Changsheng; Kane, Thomas E.; Kernan, John R.; Sonnenschein, Bernard; Sharer, Michael V.

    2002-04-23

    An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carrousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.

  17. Effects of cooking methods on electrophoretic patterns of rainbow trout

    Directory of Open Access Journals (Sweden)

    Yasemen Yanar

    2011-07-01

    Full Text Available The aim of this study was to determine the effects of different cooking methods on the electrophoretic patterns of rainbow trout (Oncorhynchus mykiss fillets using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Raw rainbow trout were deep-fried, microwaved, grilled, and baked and then monitored for changes in the electrophoretic pattern. All cooking methods resulted in significant moisture loss when compared to the raw sample (P

  18. Preparation and encapsulation of white/yellow dual colored suspensions for electrophoretic displays

    Science.gov (United States)

    Han, Jingjing; Li, Xiaoxu; Feng, Yaqing; Zhang, Bao

    2014-11-01

    C.I. Pigment Yellow 181 (PY181) composite particles encapsulated by polyethylene (PE) were prepared by dispersion polymerization method, and C.I. Pigment Yellow 110 (PY110) composite particles encapsulated by polystyrene (PS) with mini-emulsion polymerization method were achieved, respectively. The modified pigments were characterized by fourier transform infrared spectroscopy, scanning electron microscope and transmission electron microscope. Compared with the PE-coated PY 181 pigments, the PS-coated PY-110 particles had a narrow particle size distribution, regular spherical and average particle size of 450 nm. Suspension 1 and suspension 3 were prepared by the two composite particles dispersed in isopar M. A chromatic electrophoretic display cell consisting of yellow particles was successfully fabricated using dispersions of yellow ink particles in a mixed dielectric solvent with white particles as contrast. The response behavior and the contrast ratio to the electric voltage were also examined. The contrast ratio of pigments modified by polystyrene was 1.48, as well as the response time was 2 s, which were better than those of pigments modified by polyethylene.

  19. Non-Newtonian ink transfer in gravure-offset printing

    International Nuclear Information System (INIS)

    Ghadiri, Fatemeh; Ahmed, Dewan Hasan; Sung, Hyung Jin; Shirani, Ebrahim

    2011-01-01

    The inks used in gravure-offset printing are non-Newtonian fluids with higher viscosities and lower surface tensions than Newtonian fluids. This paper examines the transfer of a non-Newtonian ink between a flat plate and a groove when the plate is moved upward with a constant velocity while the groove is held fixed. Numerical simulations were carried out with the Carreau model to explore the behavior of this non-Newtonian ink in gravure-offset printing. The volume of fluid (VOF) method was implemented to capture the interface during the ink transfer process. The effects of varying the contact angle of the ink on the flat plate and groove walls and geometrical parameters such as the groove angle and the groove depth on the breakup time of the liquid filament that forms between the plate and the groove and the ink transfer ratio were determined. Our results indicate that increasing the groove contact angle and decreasing the flat plate contact angle enhance the ink transfer ratio and the breakup time. However, increasing the groove depth and the groove angle decreases the transfer ratio and the breakup time. By optimizing these parameters, it is possible to achieve an ink transfer from the groove to the flat plate of approximately 92%. Moreover, the initial width and the vertical velocity of the neck of the ink filament have significant influences on the ink transfer ratio and the breakup time.

  20. One-Bath Pretreatment for Enhanced Color Yield of Ink-Jet Prints Using Reactive Inks

    Directory of Open Access Journals (Sweden)

    Wei Ma

    2017-11-01

    Full Text Available In order to facilely increase the color yield of ink-jet prints using reactive inks, one-bath pretreatment of cotton fabrics with pretreatment formulation containing sodium alginate, glycidyltrimethylammonium chloride (GTA, sodium hydroxide, and urea is designed for realizing sizing and cationization at the same time. The pretreatment conditions, including the concentrations of GTA and alkali, baking temperature, and time are optimized based on the result of thecolor yield on cationic cotton for magenta ink. The mechanism for color yield enhancement on GTA-modified fabrics is discussed and the stability of GTA in the print paste is investigated. Scanning electron microscopey, tear strength, and thermogravimetric analysis of the modified and unmodified cotton are studied and compared. Using the optimal pretreatment conditions, color yield on the cationic cotton for magenta, cyan, yellow, and black reactive inks are increased by 128.7%, 142.5%, 71.0%, and 38.1%, respectively, compared with the corresponding color yield on the uncationized cotton. Much less wastewater is produced using this one-bath pretreatment method. Colorfastness of the reactive dyes on the modified and unmodified cotton is compared and boundary clarity between different colors is evaluated by ink-jet printing of colorful patterns.

  1. Inkjet printed electronics using copper nanoparticle ink

    OpenAIRE

    Kang, Jin Sung; Kim, Hak Sung; Ryu, Jongeun; Thomas Hahn, H.; Jang, Seonhee; Joung, Jae Woo

    2010-01-01

    Inkjet printing of electrode using copper nanoparticle ink is presented. Electrode was printed on a flexible glass epoxy composite substrate using drop on demand piezoelectric dispenser and was sintered at 200 °C of low temperature in N2 gas condition. The printed electrodes were made with various widths and thickness. In order to control the thickness of the printed electrode, number of printing was varied. Resistivity of printed electrode was calculated from the cross-sectional area measure...

  2. Microencapsulation of xylitol by double emulsion followed by complex coacervation.

    Science.gov (United States)

    Santos, Milla G; Bozza, Fernanda T; Thomazini, Marcelo; Favaro-Trindade, Carmen S

    2015-03-15

    The objective of this study was to produce and characterise xylitol microcapsules for use in foods, in order to prolong the sweetness and cooling effect provided by this ingredient. Complex coacervation was employed as the microencapsulation method. A preliminary double emulsion step was performed due to the hydrophilicity of xylitol. The microcapsules obtained were characterised in terms of particle size and morphology (optical, confocal and scanning electron microscopy), solubility, sorption isotherms, FTIR, encapsulation efficiency and release study. The microcapsules of xylitol showed desirable characteristics for use in foods, such as a particle size below 109 μm, low solubility and complete encapsulation of the core by the wall material. The encapsulation efficiency ranged from 31% to 71%, being higher in treatments with higher concentrations of polymers. Release of over 70% of the microencapsulated xylitol in artificial saliva occurred within 20 min. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Advanced verification methods for OVI security ink

    Science.gov (United States)

    Coombs, Paul G.; McCaffery, Shaun F.; Markantes, Tom

    2006-02-01

    OVI security ink +, incorporating OVP security pigment* microflakes, enjoys a history of effective document protection. This security feature provides not only first-line recognition by the person on the street, but also facilitates machine-readability. This paper explores the evolution of OVI reader technology from proof-of-concept to miniaturization. Three different instruments have been built to advance the technology of OVI machine verification. A bench-top unit has been constructed which allows users to automatically verify a multitude of different banknotes and OVI images. In addition, high speed modules were fabricated and tested in a state of the art banknote sorting machine. Both units demonstrate the ability of modern optical components to illuminate and collect light reflected from the interference platelets within OVI ink. Electronic hardware and software convert and process the optical information in milliseconds to accurately determine the authenticity of the security feature. Most recently, OVI ink verification hardware has been miniaturized and simplified providing yet another platform for counterfeit protection. These latest devices provide a tool for store clerks and bank tellers to unambiguously determine the validity of banknotes in the time period it takes the cash drawer to be opened.

  4. Diurnal thermal analysis of microencapsulated PCM-concrete composite walls

    International Nuclear Information System (INIS)

    Thiele, Alexander M.; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Transient heat conduction across microencapsulated PCM-concrete walls was simulated. • Equivalent homogeneous wall with effective thermal properties was rigorously derived. • Adding PCM to the wall increases daily energy savings and delays peak thermal load. • Energy savings is maximum when PCM melting temperature equals indoor temperature. • Energy savings are limited in extreme climates but time delay can be large. - Abstract: This paper examines the benefits of adding microencapsulated phase change material (PCM) to concrete used in building envelopes to reduce energy consumption and costs. First, it establishes that the time-dependent thermal behavior of microencapsulated PCM-concrete composite walls can be accurately predicted by an equivalent homogeneous wall with appropriate effective thermal properties. The results demonstrate that adding microencapsulated PCM to concrete resulted in a reduction and a time-shift in the maximum heat flux through the composite wall subjected to diurnal sinusoidal outdoor temperature and solar radiation heat flux. The effects of the PCM volume fraction, latent heat of fusion, phase change temperature and temperature window, and outdoor temperature were evaluated. Several design rules were established including (i) increasing the PCM volume fraction and/or enthalpy of phase change increased the energy flux reduction and the time delay, (ii) the energy flux reduction was maximized when the PCM phase change temperature was close to the desired indoor temperature, (iii) the optimum phase change temperature to maximize the time delay increased with increasing average outdoor temperature, (iv) in extremely hot or cold climates, the thermal load could be delayed even though the reduction in daily energy flux was small, and (v) the choice of phase change temperature window had little effect on the energy flux reduction and on the time delay. This analysis can serve as a framework to design PCM composite walls

  5. Effect of microencapsulated phase change material in sandwich panels

    Energy Technology Data Exchange (ETDEWEB)

    Castellon, Cecilia; Medrano, Marc; Roca, Joan; Cabeza, Luisa F. [GREA Innovacio Concurrent, Edifici CREA, Universitat de Lleida, Pere de Cabrera s/n, 25001 Lleida (Spain); Navarro, Maria E.; Fernandez, Ana I. [Departamento de Ciencias de los Materiales e Ingenieria Metalurgica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Lazaro, Ana; Zalba, Belen [Instituto de Investigacion en Ingenieria de Aragon, I3A, Grupo de Ingenieria Termica y Sistemas Energeticos (GITSE), Dpto. Ingenieria Mecanica, Area de Maquinas y Motores Termicos, Universidad de Zaragoza, Campus Politecnico Rio Ebro, Edificio ' ' Agustin de Betancourt,' ' Maria de Luna s/n, 50018 Zaragoza (Spain)

    2010-10-15

    Sandwich panels are a good option as building materials, as they offer excellent characteristics in a modular system. The goal of this study was to demonstrate the feasibility of using the microencapsulated PCM (Micronal BASF) in sandwich panels to increase their thermal inertia and to reduce the energy demand of the final buildings. In this paper, to manufacture the sandwich panel with microencapsulated PCM three different methods were tested. In case 1, the PCM was added mixing the microencapsulated PCM with one of the components of the polyurethane. In the other two cases, the PCM was added either a step before (case 2) or a step after (case 3) to the addition of the polyurethane to the metal sheets. The results show that in case 1 the effect of PCM was overlapped by a possible increase in thermal conductivity, but an increase of thermal inertia was found in case 3. In case 2, different results were obtained due to the poor distribution of the PCM. Some samples showed the effect of the PCM (higher thermal inertia), and other samples results were similar to the conventional sandwich panel. In both cases (2 and 3), it is required to industrialize the process to improve the results. (author)

  6. Isolation of human foetal myoblasts and its application for microencapsulation

    Science.gov (United States)

    Li, Anna Aihua; Bourgeois, Jacqueline; Potter, Murray; Chang, Patricia L

    2008-01-01

    Abstract Foetal cells secrete more growth factors, generate less immune response, grow and proliferate better than adult cells. These characteristics make them desirable for recombinant modification and use in microencapsulated cellular gene therapeutics. We have established a system in vitro to obtain a pure population of primary human foetal myoblasts under several rounds of selection with non-collagen coated plates and identified by desmin staining. These primary myoblasts presented good proliferation ability and better differentiation characteristics in monolayer and after microencapsulation compared to murine myoblast C2C12 cells based on creatine phosphokinase (CPK), major histocompatibility complex (MHC) and multi-nucleated myotubule determination. The lifespan of primary myoblasts was 70 population doublings before entering into senescent state, with a population time of 18–24 hrs. Hence, we have developed a protocol for isolating human foetal primary myoblasts with excellent differentiation potential and robust growth and longevity. They should be useful for cell-based therapy in human clinical applications with microencapsulation technology. PMID:18366454

  7. Non-destructive study of iron gall inks in manuscripts

    Science.gov (United States)

    Duh, Jelena; Krstić, Dragica; Desnica, Vladan; Fazinić, Stjepko

    2018-02-01

    The aim of this research is to establish an effective procedure of iron gall ink characterization using complementary non-destructive methods. By this, it is possible to better understand correlation of chemical composition of the inks and the state of preservation of iron gall ink manuscripts, as well as the effects of conservation treatment performed upon them. This study was undertaken on a bound 16th century manuscript comprised of different types of paper and ink from the National and University Library in Zagreb. Analytical methods used included Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF). Paper fibers were identified by optical microscopy and the degradation state, as well as ink differentiation, transit metal migrations and detection of stains, with ultraviolet (UV) and infrared (IR) photography. The techniques applied on original writing materials gave important information about paper and ink composition, its preservation state and efficiency of conservation treatment performed upon them.

  8. Graphene Ink Film Based Electrochemical Detector for Paracetamol Analysis

    Directory of Open Access Journals (Sweden)

    Li Fu

    2018-01-01

    Full Text Available Graphene ink is a commercialized product in the graphene industry with promising potential application in electronic device design. However, the limitation of the graphene ink is its low electronic performance due to the ink preparation protocol. In this work, we proposed a simple post-treatment of graphene ink coating via electrochemical oxidation. The electronic conductivity of the graphene ink coating was enhanced as expected after the treatment. The proposed electrochemical oxidation treatment also exposes the defects of graphene and triggered an electrocatalytic reaction during the sensing of paracetamol (PA. The overpotential of redox is much lower than conventional PA redox potential, which is favorable for avoiding the interference species. Under optimum conditions, the graphene ink-based electrochemical sensor could linearly detect PA from 10 to 500 micro molar (μM, with a limit of detection of 2.7 μM.

  9. Microencapsulated bitter compounds (from Gentiana lutea) reduce daily energy intakes in humans

    NARCIS (Netherlands)

    Mennella, Ilario; Fogliano, Vincenzo; Ferracane, Rosalia; Arlorio, Marco; Pattarino, Franco; Vitaglione, Paola

    2016-01-01

    Mounting evidence showed that bitter-tasting compounds modulate eating behaviour through bitter taste receptors in the gastrointestinal tract. This study aimed at evaluating the influence of microencapsulated bitter compounds on human appetite and energy intakes. A microencapsulated bitter

  10. Peptide Microencapsulation by Core-Shell Printing Technology for Edible Film Application

    NARCIS (Netherlands)

    Blanco-Pascual, N.; Koldeweij, R.B.J.; Stevens, R.S.A.; Montero, M.P.; Gómez-Guillén, M.C.; Cate, A.T.T.

    2014-01-01

    This paper presents a new microencapsulation methodology for incorporation of functional ingredients in edible films. Core-shell microcapsules filled with demineralized water (C) or 1 % (w/v) peptide solution (Cp) were prepared using the microencapsulation printer technology. Shell material,

  11. Stability to oxidation of spray-dried fish oil powder microencapsulated using milk ingredients

    DEFF Research Database (Denmark)

    Keogh, M.K.; O'Kennedy, B.T.; Kelly, J.

    2001-01-01

    Microencapsulation of fish oil was achieved by spray-drying homogenized emulsions of fish oil using 3 different types of casein as emulsifier and lactose as filler. As the degree of aggregation of the casein emulsifier increased, the vacuole volume of the microencapsulated powders decreased...

  12. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    International Nuclear Information System (INIS)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-01-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  13. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  14. Microencapsulated bait: Does it work with Red Imported Fire Ant, Solenopsis invicta (Hymenoptera: Formicidae)?

    Science.gov (United States)

    The preference of red imported fire ant, Solenopsis invicta for microencapsulated (MC) pyriproxifen based corn grit baits (P-bait) was conducted in laboratory and field conditions. A positive correlation between the microencapsulation rate and water tolerance ability of P-bait was observed. A 20% in...

  15. Antibacterial Activity of Melanin from Cuttlefish and Squid Ink

    OpenAIRE

    Yuspihana Fitrial; Iin Khusnul Khotimah

    2017-01-01

    Marine environment comprises of many organism which are known to posses bioactive compound as a common means of self-defense or for the protection of eggs and embryos. Class Cephalopods (such as squidand cuttlefish) are notable for their defences, such as jetting escape movements, changes in colouration, toxic venom and inking.This study aims to compare the antibacterial activity of melanin from cuttlefish ink (Sepia sp.) with squid ink (Loligo sp.) against E. coli. Extraction and purificatio...

  16. Tintas Ink-Jet para Decoracion 3D

    Directory of Open Access Journals (Sweden)

    Spain S.A., Ferro

    2011-04-01

    Full Text Available A new set of different ink-jet inks to be apply as a 3D object and extrafine layers to protect the decoration made by ink-jet technology. These new inks are obtained through the development of new frits based on monophasic crystal vitro structures that allows ceramic effects obtained via digital decoration. The new inks improve the ability of application by ink-jet heads in order to achieve aesthetics and decorative effects than those obtained with conventional decoration.

    Se han desarrollado un conjunto de diferentes tintas ink-jet, para aplicar como objeto 3D y capas extrafinas con el fin de proteger la decoración realizada mediante tecnología ink-jet. Estas nuevas tintas se obtienen a través del desarrollo de nuevas fritas basadas en estructuras vitro cristalinas monofásicas que permiten obtener efectos cerámicos mediante decoración digital. Las nuevas tintas mejoran la capacidad de aplicación mediante cabezales ink-jet con el fin de conseguir efectos estéticos y decorativos superiores a los obtenidos con la decoración convencional.

  17. Problems with ink skin markings for radiation field setups

    International Nuclear Information System (INIS)

    Endoh, Masaru; Saeki, Mituaki; Ishida, Yusei

    1982-01-01

    Ink skin markings are used in radiation therapy to aid in reproduction of treatment field setups or to indelibly outline field markings or tumors. We reported two cases of indelible ink skin for radiation field septa with minimal discomfort and dermatitis have been experienced for 6 months and above since end of radiotherapy. These indelible ink skin markings look like tattoo that will be big problems in the case of young female. We improved these problems by using of 10 percent silver nitrate instead of habitual skin ink. (author)

  18. New Yellow Synergist for Stable Pigment Dispersion of Inkjet Ink.

    Science.gov (United States)

    Song, Gihyun; Lee, Hayoon; Jung, Hyocheol; Kang, Seokwoo; Park, Jongwook

    2018-02-01

    Minimizing ink droplet and self-dispersed pigment mixture are becoming hot issues for high resolution of inkjet printing. New synergist including sulfonic acid group of PY-74 was suggested and synthesized. Pigment itself did not show water solubility but new synergist, SY-11 exhibited good solubility in water and organic solvents such as DMSO and DMF. When aqueous pigment ink was prepared with SY-11, storage stability of the ink has been remained for 7 days under periodically repeated heating and cooling conditions. Particle size of formulated ink was around 150 nm.

  19. Rapid laser sintering of metal nano-particles inks.

    Science.gov (United States)

    Ermak, Oleg; Zenou, Michael; Toker, Gil Bernstein; Ankri, Jonathan; Shacham-Diamand, Yosi; Kotler, Zvi

    2016-09-23

    Fast sintering is of importance in additive metallization processes and especially on sensitive substrates. This work explores the mechanisms which set limits to the laser sintering rate of metal nano-particle inks. A comparison of sintering behavior of three different ink compositions with laser exposure times from micro-seconds to seconds reveals the dominant factor to be the organic content (OC) in the ink. With a low OC silver ink, of 2% only, sintering time falls below 100 μs with resistivity <×4 bulk silver. Still shorter exposure times result in line delamination and deformation with a similar outcome when the OC is increased.

  20. LDRD final report on microencapsulated immunoreagents for development of one-step ELISA

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C.C.; Singh, A.K.

    1997-08-01

    Microencapsulation of biological macromolecules was investigated as a method for incorporating the necessary immunoreagents into an improved enzyme-linked immunosorbant assay (ELISA) package that would self-develop. This self-contained ELISA package would eliminate the need for a trained technician to perform multiple additions of immunoreagent to the assay. Microencapsulation by insolution drying was selected from the many available microencapsulation methods, and two satisfactory procedures for microencapsulation of proteins were established. The stability and potential for rapid release of protein from these microencapsulates was then evaluated. The results suggest that the chosen method for protein entrapment produces microcapsules with a considerable amount of protein in the walls making these particular microcapsules unsuitable for their intended use.

  1. Simple and double microencapsulation of Lactobacillus acidophilus with chitosan using spray drying

    Directory of Open Access Journals (Sweden)

    Isela A. Flores-Belmont

    2015-10-01

    Full Text Available The aim of this study was to evaluate the survival of Lactobacillus acidophilus that had been simple or double spray dried using chitosan to cause microencapsulation and which had been exposed to model gastrointestinal conditions. In addition, the study also determined the physicochemical properties of the powder containing the microencapsulated probiotic.Chitosan-inulin or chitosan-maltodextrin (1:15 or 1:25 solutions were inoculated with 1012 cfu mL-1 of L. acidophilus, for simple microencapsulation. The different solutions were dried using a spray dryer with an inlet air temperature of 130°C and a solution flux of 4.8 g min-1. A two-step process was used for the double microencapsulation. In the first step, the probiotic was added to a gelatin-maltodextrin (1:25 solution and then spray dried; for the second step, the microencapsulated probiotic was added to a chitosan-inulin or chitosan-maltodextrin (1:25 solution and then it was spray dried again.With the simple microencapsulated probiotic, a microbial reduction of 7 log cycles was obtained. With the double microencapsulated probiotic only 3 log reductions were achieved. The double microencapsulated probiotic thus demonstrated greater resistance to simulated gastrointestinal conditions. The powders produced were shown to have water activity values of 0.176 - 0.261 at 25 °C and moisture content of 0.8 – 1.0%, which are characteristic of spray dried products. The bulk density was significantly (p < 0.05 lower (300 kg m-3 for simple than for double (400 kg m-3 microencapsulated probiotic powders. Solubility and dispersibility of the powder microcapsules were better at lower pH values.Double microencapsulation using a process of spray drying is therefore recommended for probiotics, thus exploiting chitosan’s insolubility in water, which can be applied for the of development food products.

  2. Development of the resolution theory for electrophoretic exclusion.

    Science.gov (United States)

    Kenyon, Stacy M; Keebaugh, Michael W; Hayes, Mark A

    2014-09-01

    Electrophoretic exclusion, a technique that differentiates species in bulk solution near a channel entrance, has been demonstrated on benchtop and microdevice designs. In these systems, separation occurs when the electrophoretic velocity of one species is greater than the opposing hydrodynamic flow, while the velocity of the other species is less than that flow. Although exclusion has been demonstrated in multiple systems for a range of analytes, a theoretical assessment of resolution has not been addressed. To compare the results of these calculations to traditional techniques, the performance is expressed in terms of smallest difference in electrophoretic mobilities that can be completely separated (R = 1.5). The calculations indicate that closest resolvable species (Δμmin ) differ by approximately 10(-13) m(2) /Vs and peak capacity (nc ) is 1000. Published experimental data were compared to these calculated results. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrophoretic deposition of sol-gel-derived ceramic coatings

    International Nuclear Information System (INIS)

    Zhang, Y.; Crooks, R.M.

    1992-01-01

    In this paper the physical, optical, and chemical characteristics of electrophoretically and dip-coated sol-gel ceramic films are compared. The results indicate that electrophoresis may allow a higher level of control over the chemistry and structure of ceramic coatings than dip-coating techniques. For example, controlled-thickness sol-gel coatings can be prepared by adjusting the deposition time or voltage. Additionally, electrophoretic coatings can be prepared in a four-component alumino-borosilicate sol display interesting optical characteristics. For example, the ellipsometrically-measured refractive indices of electrophoretic coatings are higher than the refractive indices of dip-coated films cast from identical sols, and they are also higher than any of the individual sol components. This result suggests that there are physical and/or chemical differences between films prepared by dip-coating and electrophoresis

  4. Digital decoration by continuous ink jet system for ceramic products based in water inks

    International Nuclear Information System (INIS)

    Colores Ceramicos, S. A.; Talleres Foro, S. L.

    2010-01-01

    A new continuous ink jet system for digital ceramic decoration using water based dispersed ceramic pigment has been developed, that increases drastically the sustainability of the process. During the development of this work, different equipment for any application and the consumables and design tools have been also developed. (Author)

  5. A magnetic nano-particle ink for tunable microwave applications

    KAUST Repository

    Ghaffar, Farhan A.; Vaseem, Mohammad; Shamim, Atif

    2016-01-01

    fully printed multilayer fabrication process is demonstrated where the substrate is also realized through printing. A novel Fe2O3 based magnetic ink is used as a substrate while an in-house silver organo complex (SOC) ink is developed for metallic layers

  6. Surface Patterning Using Diazonium Ink Filled Nanopipette.

    Science.gov (United States)

    Zhou, Min; Yu, Yun; Blanchard, Pierre-Yves; Mirkin, Michael V

    2015-11-03

    Molecular grafting of diazonium is a widely employed surface modification technique. Local electrografting of this species is a promising approach to surface doping and related properties tailoring. The instability of diazonium cation complicates this process, so that this species was generated in situ in many reported studies. In this Article, we report the egress transfer of aryl diazonium cation across the liquid/liquid interface supported at the nanopipette tip that can be used for controlled delivery this species to the external aqueous phase for local substrate patterning. An aryl diazonium salt was prepared with weakly coordinating and lipophilic tetrakis(pentafluorophenyl)borate anion stable as a solid and soluble in low polarity media. The chemically stable solution of this salt in 1,2-dichloroethane can be used as "diazonium ink". The ink-filled nanopipette was employed as a tip in the scanning electrochemical microscope (SECM) for surface patterning with the spatial resolution controlled by the pipette orifice radius and a few nanometers film thickness. The submicrometer-size grafted spots produced on the HOPG surface were located and imaged with the atomic force microscope (AFM).

  7. A magnetic nano-particle ink for tunable microwave applications

    KAUST Repository

    Ghaffar, Farhan A.

    2016-12-19

    Inkjet printing or printing for realization of inexpensive and large area electronics has unearthed as an attractive fabrication technique. Though at present, mostly the metallic inks are printed on regular microwave substrates. In this paper, a fully printed multilayer fabrication process is demonstrated where the substrate is also realized through printing. A novel Fe2O3 based magnetic ink is used as a substrate while an in-house silver organo complex (SOC) ink is developed for metallic layers. Complete magnetostatic and microwave characterization of the ink is presented. At the end, a tunable patch antenna is shown as an application using the magnetic ink as the substrate. The antenna shows a tuning range of 12.5 % for a magnetic field strength of 3 kOe.

  8. Hot-melt extrusion microencapsulation of quercetin for taste-masking.

    Science.gov (United States)

    Khor, Chia Miang; Ng, Wai Kiong; Kanaujia, Parijat; Chan, Kok Ping; Dong, Yuancai

    2017-02-01

    Besides its poor dissolution rate, the bitterness of quercetin also poses a challenge for further development. Using carnauba wax, shellac or zein as the shell-forming excipient, this work aimed to microencapsulate quercetin by hot-melt extrusion for taste-masking. In comparison with non-encapsulated quercetin, the microencapsulated powders exhibited significantly reduced dissolution in the simulated salivary pH 6.8 medium indicative of their potentially good taste-masking efficiency in the order of zein > carnauba wax > shellac. In vitro bitterness analysis by electronic tongue confirmed the good taste-masking efficiency of the microencapsulated powders. In vitro digestion results showed that carnauba wax and shellac-microencapsulated powders presented comparable dissolution rate with the pure quercetin in pH 1.0 (gastric) and 6.8 (intestine) medium; while zein-microencapsulated powders exhibited a remarkably slower dissolution rate. Crystallinity of quercetin was slightly reduced after microencapsulation while its chemical structure remained unchanged. Hot-melt extrusion microencapsulation could thus be an attractive technique to produce taste-masked bioactive powders.

  9. 21 CFR 864.7440 - Electrophoretic hemoglobin analysis system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrophoretic hemoglobin analysis system. 864.7440 Section 864.7440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864...

  10. An electrophoretical and immunological study of Pycnogonida, with phylogenetic considerations

    NARCIS (Netherlands)

    Munilla, Tomás; Haro, de Andrés

    1981-01-01

    An electrophoretical and immunological study is made of nine species of pycnogonids, representing seven families, from the Catalan coast. An electrophoretogram of each species is given and the antigenic properties of its protein bands are determined. Taking as comparative basis the serological

  11. Extraction of Plant-based Capsules for Microencapsulation Applications.

    Science.gov (United States)

    Potroz, Michael G; Mundargi, Raghavendra C; Park, Jae Hyeon; Tan, Ee-Lin; Cho, Nam-Joon

    2016-11-09

    Microcapsules derived from plant-based spores or pollen provide a robust platform for a diverse range of microencapsulation applications. Sporopollenin exine capsules (SECs) are obtained when spores or pollen are processed so as to remove the internal sporoplasmic contents. The resulting hollow microcapsules exhibit a high degree of micromeritic uniformity and retain intricate microstructural features related to the particular plant species. Herein, we demonstrate a streamlined process for the production of SECs from Lycopodium clavatum spores and for the loading of hydrophilic compounds into these SECs. The current SEC isolation procedure has been recently optimized to significantly reduce the processing requirements which are conventionally used in SEC isolation, and to ensure the production of intact microcapsules. Natural L. clavatum spores are defatted with acetone, treated with phosphoric acid, and extensively washed to remove sporoplasmic contents. After acetone defatting, a single processing step using 85% phosphoric acid has been shown to remove all sporoplasmic contents. By limiting the acid processing time to 30 hr, it is possible to isolate clean SECs and avoid SEC fracturing, which has been shown to occur with prolonged processing time. Extensive washing with water, dilute acids, dilute bases, and solvents ensures that all sporoplasmic material and chemical residues are adequately removed. The vacuum loading technique is utilized to load a model protein (Bovine Serum Albumin) as a representative hydrophilic compound. Vacuum loading provides a simple technique to load various compounds without the need for harsh solvents or undesirable chemicals which are often required in other microencapsulation protocols. Based on these isolation and loading protocols, SECs provide a promising material for use in a diverse range of microencapsulation applications, such as, therapeutics, foods, cosmetics, and personal care products.

  12. Variables affecting lipid oxidation in dried microencapsulated oils

    Directory of Open Access Journals (Sweden)

    Márquez-Ruiz, Gloria

    2003-09-01

    Full Text Available Dried microencapsulated oils are powdery foods or ingredients, prepared by drying natural or formulated emulsions, wherein the oil globules are dispersed in a matrix of saccharides and/or proteins. The study of lipid oxidation in microencapsulated oils is a very difficult task since, in addition to the numerous variables normally involved in lipid oxidation, mainly unsaturation degree, oxygen, light, temperature, prooxidants and antioxidants, other factors exert an important influence in these heterophasic lipid systems. In this paper, the present state of the art on lipid oxidation in dried microencapsulated oils is reviewed, focused on the variables specifically involved in oxidation of these lipid systems. Such variables include those pertaining to the preparation process (type and concentration of the matrix components and drying procedure and those related to the physicochemical properties of microencapsulated oils (particle size, oil globule size, lipid distribution, water activity, pH and interactions between matrix components.Los aceites microencapsulados son alimentos o ingredientes en polvo preparados mediante secado de emulsiones naturales o formuladas, donde los glóbulos de aceite se encuentran dispersos en una matriz de hidratos de carbono y/o proteínas. El estudio de la oxidación lipídica en aceites microencapsulados es muy difícil ya que, además de las numerosas variables implicadas normalmente en la oxidación lipídica, principalmente el grado de insaturación, oxígeno, luz, temperatura, prooxidantes y antioxidantes, en estos sistemas lipídicos heterofásicos existen otros factores que ejercen una importante influencia. En este trabajo, se revisa la situación actual del conocimiento sobre oxidación lipídica en aceites microencapsulados en relación con las variables que intervienen específicamente en la oxidación de estos sistemas lipídicos. Concretamente, dichas variables incluyen las implicadas en el proceso de

  13. Metal Matrix Microencapsulated Fuel Technology for LWR Applications

    International Nuclear Information System (INIS)

    Terrani, Kurt A.; Bell, Gary L.; Kiggans, Jim; Snead, Lance Lewis

    2012-01-01

    An overview of the metal matrix microencapsulated (M3) fuel concept for the specific LWR application has been provided. Basic fuel properties and characteristics that aim to improve operational reliability, enlarge performance envelope, and enhance safety margins under design-basis accident scenarios are summarized. Fabrication of M3 rodlets with various coated fuel particles over a temperature range of 800-1300 C is discussed. Results from preliminary irradiation testing of LWR M3 rodlets with surrogate coated fuel particles are also reported.

  14. Forensic examination of ink by high-performance thin layer chromatography--the United States Secret Service Digital Ink Library.

    Science.gov (United States)

    Neumann, Cedric; Ramotowski, Robert; Genessay, Thibault

    2011-05-13

    Forensic examinations of ink have been performed since the beginning of the 20th century. Since the 1960s, the International Ink Library, maintained by the United States Secret Service, has supported those analyses. Until 2009, the search and identification of inks were essentially performed manually. This paper describes the results of a project designed to improve ink samples' analytical and search processes. The project focused on the development of improved standardization procedures to ensure the best possible reproducibility between analyses run on different HPTLC plates. The successful implementation of this new calibration method enabled the development of mathematical algorithms and of a software package to complement the existing ink library. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Development of biometric DNA ink for authentication security.

    Science.gov (United States)

    Hashiyada, Masaki

    2004-10-01

    Among the various types of biometric personal identification systems, DNA provides the most reliable personal identification. It is intrinsically digital and unchangeable while the person is alive, and even after his/her death. Increasing the number of DNA loci examined can enhance the power of discrimination. This report describes the development of DNA ink, which contains synthetic DNA mixed with printing inks. Single-stranded DNA fragments encoding a personalized set of short tandem repeats (STR) were synthesized. The sequence was defined as follows. First, a decimal DNA personal identification (DNA-ID) was established based on the number of STRs in the locus. Next, this DNA-ID was encrypted using a binary, 160-bit algorithm, using a hashing function to protect privacy. Since this function is irreversible, no one can recover the original information from the encrypted code. Finally, the bit series generated above is transformed into base sequences, and double-stranded DNA fragments are amplified by the polymerase chain reaction (PCR) to protect against physical attacks. Synthesized DNA was detected successfully after samples printed in DNA ink were subjected to several resistance tests used to assess the stability of printing inks. Endurance test results showed that this DNA ink would be suitable for practical use as a printing ink and was resistant to 40 hours of ultraviolet exposure, performance commensurate with that of photogravure ink. Copyright 2004 Tohoku University Medical Press

  16. Electron beam hardening type copper plate printing ink

    International Nuclear Information System (INIS)

    Kawamura, Eiji; Inoue, Mitsuo; Kusaki, Satoichiro

    1989-01-01

    Copper plate printing is the printing method of filling ink in the parts of concave printing elements on a type area, and transferring the ink to a base, and it is the feature that the ink in the printing element parts of a print rises. Copper plate prints show profound feeling, in addition, its effect of preventing forgery is high. This method is generally called engraving printing, and is used frequently for printing various bills and artistic prints. The electron beam irradiation apparatus installed in the laboratory of the Printing Bureau, Ministry of Finance, is an experimental machine of area beam type, and is so constructed as to do batch conveyance and web conveyance. As the ink in printing element parts rises, the offset at the delivery part of a printing machine becomes a problem. Electron beam is superior in its transparency, and can dry instantaneously to the inside of opaque ink. At 200 kV of acceleration voltage, the ink of copper plate prints can be hardened by electron beam irradiation. The dilution monomers as the vehicle for ink were tested for their dilution capability and the effect of electron beam hardening. The problem in the utilization of electron beam is the deterioration of papers, and the counter-measures were tested. (K.I.)

  17. PIXE analysis of Italian ink drawings of the XVI century

    Science.gov (United States)

    Zucchiatti, A.; Climent-Font, A.; Enguita, O.; Fernandez-Jimenez, M. T.; Finaldi, G.; Garrido, C.; Matillas, J. M.

    2005-10-01

    The composition of inks in a group of 24 drawings of ten XVI century Italian painters, has been determined by PIXE at the external micro-beam line of the Centro de Micro Análisis de Materiales of the Universidad Autónoma de Madrid. Ink elemental thicknesses have been determined by comparison with a set of certified thin standards. A comprehensive comparison of inks has also been performed by renormalisation of spectra and definition of an ink-to-ink distance. The elemental compositions and the ink-to-ink distances give consistent results that are generally in line with the appearance of the drawings and add relevant instrumental information to the stylistic observation, revealing for example the presence of retouches and additions in different parts of a drawing. Cluster analysis performed on a subgroup of 13 artefacts from the Genoese painter Luca Cambiaso and his school has revealed a partition that separates neatly the work of the master from that of his followers.

  18. Positively charged TiO{sub 2} particles in non-polar system for electrophoretic display

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Young Seon

    2005-02-15

    Electrophoretic display uses a technique called electrophoresis to represent images and letters electronically with electronic ink. Although it has good characteristics such as wide viewing angle, high contrast ratio and extremely low power consumption, there are still several issues to be resolved to improve its performances. Higher mobility and stability of the ink particles are the most important issues among them. In this study, TiO{sub 2} particles coated with acrylamide were found to be effective ink particles that satisfy higher mobility and stability. The TiO{sub 2} particles coated with 5∼40% acrylamide were prepared by dispersion polymerization using monomers of methyl methacrylate (MMA) and acrylamide. The TiO{sub 2} particles coated with acrylamide were dispersed in isopar-G with sorbitan esters such as span 20, span 80 and span 85. The size of the TiO{sub 2} particles were changed from 200±150 nm to 350∼500 nm by the coating process. The morphology of coated particles was observed using a transmission electron microscope (TEM) and thermogravimetric analysis (TGA). From the TGA results, the weight fraction of TiO{sub 2} and polymer in coated particle were calculated. From the zeta potential measurement, it was shown that as acrylamide concentration was increased from 5% to 30%, zeta potential of the coated TiO{sub 2} particles was increased from 50mV to about 230mV. The zeta potential of the coated TiO{sub 2} particles with 40% acrylamide was decreased to 50mV. As a stabilizer, span 85 was the most effective surfactant to improve stability of the TiO{sub 2} particles coated with acrylamide among used surfactants in this study. Span 85 showed best stability in the storage test with TiO{sub 2} particles coated with 10% acrylamide. The mobility of TiO{sub 2} particles coated with acrylamide with span 85 in dye solution (Oil Blue-N dissolved in isopar-G) were measured by ITO cell test. The mobility of TiO{sub 2} particles coated with 10∼30

  19. Effective stabilization of CLA by microencapsulation in pea protein.

    Science.gov (United States)

    Costa, A M M; Nunes, J C; Lima, B N B; Pedrosa, C; Calado, V; Torres, A G; Pierucci, A P T R

    2015-02-01

    CLA was microencapsulated by spray drying in ten varied wall systems (WS) consisting of pea protein isolate or pea protein concentrate (PPC) alone at varied core:WS ratios (1:2; 1:3 and 1:4), or blended with maltodextrin (M) and carboxymethylcellulose at a pea protein:carbohydrate ratio of 3:1. The physical-chemical properties of the CLA microparticles were characterised by core retention, microencapsulation efficiency (ME), particle size and moisture. CLA:M:PPC (1:1:3) showed the most promising results, thus we evaluated the effect of M addition in the WS on other physical-chemical characteristics and oxidative stability (CLA isomer profile, quantification of CLA and volatile compounds by SPME coupled with CG-MS) during two months of storage at room temperature, CLA:PPC (1:4) was selected for comparisons. CLA:M:PPC (1:1:3) microparticles demonstrated better morphology, solubility, dispersibility and higher glass-transition temperature values. M addition did not influence the oxidative stability of CLA, however its presence improved physical-chemical characteristics necessary for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Nutritional value of micro-encapsulated fish oils in rats

    DEFF Research Database (Denmark)

    Rosenquist, Annemette; Hølmer, Gunhild Kofoed

    1996-01-01

    The nutritional value of a micro-encapsulated fish oil product has been investigated. Three groups of 10 male Wistar rats each were fed dietscontaining 20% (w/w) of fat, and only the type and form of the fat added was different. In the test groups 5% (w/w) of fish oil either as such or in amicro......-encapsulated form was incorporated in the diets. The remaining fat was lard supplemented with corn oil to a dietary content of linoleic acid at10% (w/w). The control group received lard and corn oil only. A mixture similar to the dry matter in the micro-encapsulated product was alsoadded to the diets not containing...... this product. The uptake of marine (n-3) polyunsaturated fatty acids (PUFA) from both types of fish oil supplementwas reflected in the fatty acid profiles of liver phosphatidyl cholines (PC), phosphatidyl ethanolamines (PE), triglycerides (TG) and cardiolipin (CL).A suppression of the elongation of linoleic...

  1. Antitumour Activity of the Microencapsulation of Annona vepretorum Essential Oil.

    Science.gov (United States)

    Bomfim, Larissa M; Menezes, Leociley R A; Rodrigues, Ana Carolina B C; Dias, Rosane B; Rocha, Clarissa A Gurgel; Soares, Milena B P; Neto, Albertino F S; Nascimento, Magaly P; Campos, Adriana F; Silva, Lidércia C R C E; Costa, Emmanoel V; Bezerra, Daniel P

    2016-03-01

    Annona vepretorum Mart. (Annonaceae), popularly known as 'bruteira', has nutritional and medicinal uses. This study investigated the chemical composition and antitumour potential of the essential oil of A. vepretorum leaf alone and complexed with β-cyclodextrin in a microencapsulation. The essential oil was obtained by hydrodistillation using a Clevenger-type apparatus and analysed using GC-MS and GC-FID. In vitro cytotoxicity of the essential oil and some of its major constituents in tumour cell lines from different histotypes was evaluated using the alamar blue assay. Furthermore, the in vivo efficacy of essential oil was demonstrated in mice inoculated with B16-F10 mouse melanoma. The essential oil included bicyclogermacrene (35.71%), spathulenol (18.89%), (E)-β-ocimene (12.46%), α-phellandrene (8.08%), o-cymene (6.24%), germacrene D (3.27%) and α-pinene (2.18%) as major constituents. The essential oil and spathulenol exhibited promising cytotoxicity. In vivo tumour growth was inhibited by the treatment with the essential oil (inhibition of 34.46%). Importantly, microencapsulation of the essential oil increased in vivo tumour growth inhibition (inhibition of 62.66%). © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  2. Release and Degradation of Microencapsulated Spinosad and Emamectin Benzoate.

    Science.gov (United States)

    Huang, Bin Bin; Zhang, Shao Fei; Chen, Peng Hao; Wu, Gang

    2017-09-07

    The dynamics of release and degradation of the microencapsulation formulation containing spinosad (SP) and emamectin benzoate (EM) were evaluated in the present study. SP and EM were microencapsulated using biodegradable poly-lactic acid (PLA) as the wall material. Their release from and degradation within the prepared SP and EM microspheres (SP-EM-microspheres) were studied. It was found that the encapsulation significantly prolonged the insecticide release. The release could be further extended if the external aqueous phase was pre-saturated with the insecticides and the microspheres were additionally coated with gelatin. On the other hand, increasing the water content of the emulsion or the hydrophilic polycaprolactone (PCL) content in the PLA/PCL mixture accelerated the release. Due to the photolysis and hydrolysis of SP and EM by sunlight, the toxicity of the non-encapsulated insecticides in water declined continuously from 0 through the 9 th day (d), and dissipated in 13 d. In contrast, an aqueous suspension containing 5% SP-EM-microspheres maintained a mostly constant toxicity to Plutella xylostella for 17 d. The biodegradable SP-EM-microspheres showed significantly higher long-term toxicity to P. xylostella due to lower release, reduced photolysis and hydrolysis of the encapsulated insecticides, which were affected by the varied preparation conditions.

  3. Microencapsulation of soybean oil by spray drying using oleosomes

    Science.gov (United States)

    Maurer, S.; Ghebremedhin, M.; Zielbauer, B. I.; Knorr, D.; Vilgis, T. A.

    2016-02-01

    The food industry has discovered that oleosomes are beneficial as carriers of bioactive ingredients. Oleosomes are subcellular oil droplets typically found in plant seeds. Within seeds, they exist as pre-emulsified oil high in unsaturated fatty acids, stabilised by a monolayer of phospholipids and proteins, called oleosins. Oleosins are anchored into the oil core with a hydrophobic domain, while the hydrophilic domains remain on the oleosome surface. To preserve the nutritional value of the oil and the function of oleosomes, microencapsulation by means of spray drying is a promising technique. For the microencapsulation of oleosomes, maltodextrin was used. To achieve a high oil encapsulation efficiency, optimal process parameters needed to be established. In order to better understand the mechanisms of drying behind powder formation and the associated powder properties, the findings obtained using different microscopic and spectroscopic measurements were correlated with each other. By doing this, it was found that spray drying of pure oleosome emulsions resulted in excessive component segregation and thus in a poor encapsulation efficiency. With the addition of maltodextrin, the oil encapsulation efficiency was significantly improved.

  4. Microbial status and product labelling of 58 original tattoo inks.

    Science.gov (United States)

    Høgsberg, T; Saunte, D M; Frimodt-Møller, N; Serup, J

    2013-01-01

    European Council resolutions on tattoo ink introduce sterility and preservation of inks to protect customers. Inks used in Denmark are typically purchased over the internet from international suppliers and manufacturers from the US and the UK. In Denmark tattoo inks are regulated and labelled according to REACH as if they were plain chemicals. The objective of this study was to check the microbial product safety of unopened and opened tattoo ink stock bottles. Packaging, labelling, preservation, sterility and contamination with micro-organisms were studied. Physical inspection and culture of bacteria and fungi. Six of 58 unopened stock bottles (10%) were contaminated with bacteria and one of six samples (17%) of previously used stock bottles was contaminated. The bacterial species represented bacteria considered pathogenic in humans as well as non-pathogenic environmental bacteria. Yeast or moulds were detected in none of the samples. A total of 31% of the manufacturers informed only about the brand name. No information about content, sterility, risks or expiry date was indicated on the label. A total of 42% claimed sterility of their inks. A total of 54% labelled a maximum period of durability of typically 2-3 years. The physical sealing was leaking in 28% of the products. The European Council resolutions regarding safety of tattoo inks are not effective. Stock bottles of tattoo ink may contain bacteria pathogenic to humans and environmental bacteria, and packaging, labelling and preservation of inks are of inadequate quality. Claim of sterility can be erroneous. © 2011 The Authors. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.

  5. 40 CFR 447.10 - Applicability; description of the oil-base solvent wash ink subcategory.

    Science.gov (United States)

    2010-07-01

    ...-base solvent wash ink subcategory. 447.10 Section 447.10 Protection of Environment ENVIRONMENTAL...-Base Solvent Wash Ink Subcategory § 447.10 Applicability; description of the oil-base solvent wash ink...-base ink where the tank washing system uses solvents. When a plant is subject to effluent limitations...

  6. Microencapsulated Phase Change Composite Materials for Energy Efficient Buildings

    Science.gov (United States)

    Thiele, Alexander

    This study aims to elucidate how phase change material (PCM)-composite materials can be leveraged to reduce the energy consumption of buildings and to provide cost savings to ratepayers. Phase change materials (PCMs) can store thermal energy in the form of latent heat when subjected to temperatures exceeding their melting point by undergoing a phase transition from solid to liquid state. Reversibly, PCMs can release this thermal energy when the system temperature falls below their solidification point. The goal in implementing composite PCM walls is to significantly reduce and time-shift the maximum thermal load on the building in order to reduce and smooth out the electricity demand for heating and cooling. This Ph.D. thesis aims to develop a set of thermal design methods and tools for exploring the use of PCM-composite building envelopes and for providing design rules for their practical implementation. First, detailed numerical simulations were used to show that the effective thermal conductivity of core-shell-matrix composites depended only on the volume fraction and thermal conductivity of the constituent materials. The effective medium approximation reported by Felske (2004) was in very good agreement with numerical predictions of the effective thermal conductivity. Second, a carefully validated transient thermal model was used to simulate microencapsulated PCM-composite walls subjected to diurnal or annual outdoor temperature and solar radiation flux. It was established that adding microencapsulated PCM to concrete walls both substantially reduced and delayed the thermal load on the building. Several design rules were established, most notably, (i) increasing the volume fraction of microencapsulated PCM within the wall increases the energy savings but at the potential expense of mechanical properties [1], (ii) the phase change temperature leading to the maximum energy and cost savings should equal the desired indoor temperature regardless of the climate

  7. Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions

    Directory of Open Access Journals (Sweden)

    Catherine Tomaro-Duchesneau

    2013-01-01

    Full Text Available Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed.

  8. Microencapsulation for the Therapeutic Delivery of Drugs, Live Mammalian and Bacterial Cells, and Other Biopharmaceutics: Current Status and Future Directions

    Science.gov (United States)

    Saha, Shyamali; Malhotra, Meenakshi; Kahouli, Imen; Prakash, Satya

    2013-01-01

    Microencapsulation is a technology that has shown significant promise in biotherapeutics, and other applications. It has been proven useful in the immobilization of drugs, live mammalian and bacterial cells and other cells, and other biopharmaceutics molecules, as it can provide material structuration, protection of the enclosed product, and controlled release of the encapsulated contents, all of which can ensure efficient and safe therapeutic effects. This paper is a comprehensive review of microencapsulation and its latest developments in the field. It provides a comprehensive overview of the technology and primary goals of microencapsulation and discusses various processes and techniques involved in microencapsulation including physical, chemical, physicochemical, and other methods involved. It also summarizes the state-of-the-art successes of microencapsulation, specifically with regard to the encapsulation of microorganisms, mammalian cells, drugs, and other biopharmaceutics in various diseases. The limitations and future directions of microencapsulation technologies are also discussed. PMID:26555963

  9. Antioxidant and antimicrobial activities of squid ink powder

    OpenAIRE

    Fatimah Zaharah, M.Y.; Rabeta, M.S.

    2017-01-01

    Economic development in Malaysia has led to increasing quantity and complexity of generated waste or by-product. The main objective of this study is to investigate the antioxidant and antimicrobial activities of squid ink powder. The squid ink was collected from fresh squid and dried using freeze dryer before it was ground into powder. The yield of squid ink was 22.82% after freeze-drying which was 69.37g in amount. Proximate composition analysis as well as two total antioxidant activity assa...

  10. Optimization of spray drying conditions to microencapsulate cupuassu (Theobroma grandiflorum) seed by-product extract.

    Science.gov (United States)

    da Costa, Russany Silva; Teixeira, Camilo Barroso; Gabbay Alves, Taís Vanessa; Ribeiro-Costa, Roseane M; Casazza, Alessandro A; Aliakbarian, Bahar; Converti, Attilio; Silva Júnior, José O C; Perego, Patrizia

    2018-04-16

    Cupuassu (Theobroma grandiflorum Schum.) is a popular Amazonian fruit because of its intense aroma and nutritional value, whose lipid fraction is alternatively used in cosmetics. To preserve active principles and ensure their controlled release, extract was microencapsulated by spray drying. Influence of spray-drying conditions on microencapsulation of cupuassu seed by-product extract was investigated according to a 3 3 -Box Behnken factorial design, selecting inlet temperature, maltodextrin concentration and feed flowrate as independent variables, and total polyphenol and flavonoid contents, antiradical power, yields of drying and microencapsulation as responses. Fitting the results by second-order equations and modelling by Response Surface Methodology allowed predicting optimum conditions. Epicatechin and glycosylated quercetin were the major microencapsulated flavonoids. Microparticles showed satisfactory antiradical power and stability at 5 °C or under simulated gastrointestinal conditions, thus they may be used to formulate new foods or pharmaceuticals.

  11. GLYCOL METHACRYLATE EMBEDDING OF ALGINATE-POLYLYSINE MICROENCAPSULATED PANCREATIC-ISLETS

    NARCIS (Netherlands)

    FRITSCHY, WM; GERRITS, PO; WOLTERS, GHJ; PASMA, A; VANSCHILFGAARDE, R

    A method for processing and embedding alginate-polylysine microencapsulated pancreatic tissue in glycol methacrylate resin (GMA) is described. Fixation in 4% phosphate buffered formaldehyde, processing in ascending concentrations of glycol methacrylate monomer and embedding in Technovit 7100 results

  12. Applications of Microencapsulated Bifidobacterium Longum with Eleutherine Americana in Fresh Milk Tofu and Pineapple Juice

    Science.gov (United States)

    Phoem, Atchara N.; Chanthachum, Suphitchaya; Voravuthikunchai, Supayang P.

    2015-01-01

    Bifidobacterium longum was microencapsulated by extrusion technique and added in fresh milk tofu and pineapple juice. Microencapsulation of B. longum with Eleutherine americana extract, oligosaccharides extract, and commercial fructo-oligosaccharides was assessed for the bacterial survival after sequential exposure to simulated gastric and intestinal juices, and refrigeration storage. Microencapsulated B. longum with the extract and oligosaccharides extract in the food products showed better survival than free cells under adverse conditions. Sensory analysis demonstrated that the products containing co-encapsulated bacterial cells were more acceptable by consumers than free cells. Pineapple juice prepared with co-encapsulated cells had lower values for over acidification, compared with the juice with free cells added. This work suggested that microencapsulated B. longum with E. americana could enhance functional properties of fresh milk tofu and pineapple juice. PMID:25854832

  13. Applications of Microencapsulated Bifidobacterium Longum with Eleutherine Americana in Fresh Milk Tofu and Pineapple Juice

    Directory of Open Access Journals (Sweden)

    Atchara N. Phoem

    2015-04-01

    Full Text Available Bifidobacterium longum was microencapsulated by extrusion technique and added in fresh milk tofu and pineapple juice. Microencapsulation of B. longum with Eleutherine americana extract, oligosaccharides extract, and commercial fructo-oligosaccharides was assessed for the bacterial survival after sequential exposure to simulated gastric and intestinal juices, and refrigeration storage. Microencapsulated B. longum with the extract and oligosaccharides extract in the food products showed better survival than free cells under adverse conditions. Sensory analysis demonstrated that the products containing co-encapsulated bacterial cells were more acceptable by consumers than free cells. Pineapple juice prepared with co-encapsulated cells had lower values for over acidification, compared with the juice with free cells added. This work suggested that microencapsulated B. longum with E. americana could enhance functional properties of fresh milk tofu and pineapple juice.

  14. Microencapsulation of a hydrophilic model molecule through vibration nozzle and emulsion phase inversion technologies.

    Science.gov (United States)

    Dorati, Rossella; Genta, Ida; Modena, Tiziana; Conti, Bice

    2013-01-01

    The goal of the present work was to evaluate and discuss vibration nozzle microencapsulation (VNM) technology combined to lyophilization, for the microencapsulation of a hydrophilic model molecule into a hydrophilic polymer. Fluorescein-loaded alginate microparticles prepared by VNM and emulsion phase inversion microencapsulation (EPIM) were lyophilized. Morphology, particle size distribution, lyophilized microspheres stability upon rehydration, drug loading and in vitro release were evaluated. Well-formed microspheres were obtained by the VNM technique, with higher yields of production (93.3-100%) and smaller particle size (d50138.10-158.00) than the EPIM microspheres. Rehydration upon lyophilization occurred in 30 min maintaining microsphere physical integrity. Fluorescein release was always faster from the microspheres obtained by VNM (364 h) than from those obtained by EPIM (504 h). The results suggest that VNM is a simple, easy to be scaled-up process suitable for the microencapsulation hydrophilic drugs.

  15. Oil bodies as a potential microencapsulation carrier for astaxanthin stabilisation and safe delivery.

    Science.gov (United States)

    Acevedo, Francisca; Rubilar, Mónica; Jofré, Ignacio; Villarroel, Mario; Navarrete, Patricia; Esparza, Magdalena; Romero, Fernando; Vilches, Elías Alberto; Acevedo, Valentina; Shene, Carolina

    2014-01-01

    Astaxanthin (AST) is a valued molecule because of its high antioxidant properties. However, AST is extremely sensitive to oxidation, causing the loss of its bioactive properties. The purposes of this study were to define conditions for microencapsulating AST in oil bodies (OB) from Brassica napus to enhance its oxidative stability, and to test the bioactivity of the microencapsulated AST (AST-M) in cells. Conditions for maximising microencapsulation efficiency (ME) were determined using the Response Surface Methodology, obtaining a high ME (>99%). OB loaded with AST showed a strong electrostatic repulsion in a wide range of pH and ionic strengths. It was found that AST-M exposed to air and light was more stable than free AST. In addition, the protective effect of AST against intracellular ROS production was positively influenced by microencapsulation in OB. These results suggest that OB offer a novel option for stabilising and delivering AST.

  16. Evaluation of the intestinal colonization by microencapsulated probiotic bacteria in comparison with the same uncoated strains.

    Science.gov (United States)

    Del Piano, Mario; Carmagnola, Stefania; Andorno, Silvano; Pagliarulo, Michela; Tari, Roberto; Mogna, Luca; Strozzi, Gian Paolo; Sforza, Filomena; Capurso, Lucio

    2010-09-01

    Beneficial findings concerning probiotics are increasing day by day. However, one of the most important parameter which affects the probiotic activity of a microorganism is its survival during the gastroduodenal transit. Some microencapsulation techniques could be applied to bacterial cells to improve this parameter. A comparison between the intestinal colonization by microencapsulated bacteria and the same not microencapsulated strains has been conducted in a double blind, randomized, cross-over study. The study (April to July 2005) involved 44 healthy volunteers. In particular, participants were divided into 2 groups: group A (21 participants) received a mix of probiotic strains Lactobacillus plantarum LP01 (LMG P-21021) and Bifidobacterium breve BR03 (DSM 16604) in an uncoated form, group B (23 participants) was given the same strains microencapsulated with a gastroresistant material. The not microencapsulated strains were administered at 5 x 10(9) colony forming units/strain/d for 21 days, whereas the microencapsulated bacteria were given at 1 x 10(9) colony forming units/strain/d for 21 days. At the end of the first period of treatment with probiotics a 3 weeks washout phase has been included in the study protocol. At the end of the washout period the groups were crossed: in detail, group A had the microencapsulated and group B the uncoated bacteria. The administered amounts of each strain were the same as the first treatment. The quantitative evaluation of intestinal colonization by strains microencapsulated or not microencapsulated was made by fecal samples examination at the beginning of the clinical trial, after 10 and 21 days of each treatment period. In particular, fecal heterofermentative Lactobacilli and Bifidobacteria have been counted. A statistically significant increase in the fecal amounts of Lactobacilli and Bifidobacteria was recorded in both groups at the end of each treatment compared with d0 or d42 (Pstrains to colonize the human gut, either

  17. Analysis of Printing Substrate, Ink Age and Number of IR Drying Influence on Electrical Resistance of Conductive Inks

    Directory of Open Access Journals (Sweden)

    Josip Jerić

    2015-05-01

    Full Text Available As a result of availability of new technologies, functional printing as a segment has become one of the most interesting directions of research and development in graphic technology. Conductive inks are not a novelty and they already have broad possibilities in production of everyday products. There is still a big market for the broadening of their use, as well as a possibility of further enhancing their properties. This paper analyzes the influence of printing substrate, age of ink and the number of IR drying on the electrical resistance of the conductive inks. In the paper, subject of analysis was the change of electrical resistance in the line that was 9 cm long and 10 typographic points wide. The semi-automated screen-printing machine was used for printing. Three types of printing substrates were used; uncoated, coated and recycled paper. Two types of inks were used; newly opened ink and ink that was out of date for half year. After the printing, prints were dried using the IR dryer. Prints were dried once, and then additional three times. After the first and last drying, multimeter was used to measure electrical resistance of the lines. Analysis of the data shows that the older ink produces prints with higher electrical resistance. There are also notable differences in the electrical resistance based on the printing substrate.

  18. Synthesis of IGZO ink and study of ink-jet printed IGZO thin films with different Ga concentrations

    Science.gov (United States)

    Shen, Y. K.; Liu, Z.; Wang, X. L.; Ma, W. K.; Chen, Z. H.; Chen, T. P.; Zhang, H. Y.

    2017-12-01

    By dissolving gallium chloride (GaCl3), indium chloride (InCl3), zinc acetate dihydrate [Zn(OAc)2·2H2O] and monoethanolamine (MEA) into a solvent of 2-methoxyethanol, the IGZO ink was synthesized. Five types of IGZO ink were prepared with different molar ratios of In:Ga:Zn, which can be used for ink-jet printing process. The thermal behaviors of IGZO ink with different formulas were investigated and the ideal annealing temperature for film formation was found to be ∼450 °C. Based on the prepared ink, amorphous IGZO thin films were directly printed on the glass substrate with a FujiFilm Dimatix ink-jet printer, followed by a thermal annealing at 450 °C for 1 h. The surface morphology, crystal structure, optical transmittance, electron mobility and carrier concentration were characterized and investigated. The ink-jet printed amorphous IGZO thin films fabricated in this work can be used as switching medium in flexible resistive random access memory devices.

  19. Synthesis and characterization of thermal energy storage microencapsulated n-dodecanol with acrylic polymer shell

    International Nuclear Information System (INIS)

    Ma, Yanjie; Zong, Jiwen; Li, Wei; Chen, Long; Tang, Xiaofen; Han, Na; Wang, Jianping; Zhang, Xingxiang

    2015-01-01

    Two kinds of (microencapsulated phase change materials) MicroPCMs with acrylic-based copolymer as shell and n-dodecanol as core were successfully fabricated via suspension-like polymerization and photo-induced microencapsulation, respectively. Morphology and core–shell structure were observed by (field emission scanning electron microscope) FE-SEM. Thermal properties of the microencapsulated n-dodecanol were investigated by (differential scanning calorimeter) DSC and (thermogravimetric analysis) TGA. The results indicate that the mass ratio of core to shell has great influence on the morphology, inner structure, microencapsulated efficiency and durability of the microcapsules. Besides, the effects of various solvents and UV irridiation time on the microcapsule surface were discussed as well. In the experiment carried out, metal-ion complexation was conducted by the reaction between Mn ion and carboxyl groups on copolymer shell to enhance the performance of the microcapsules with n-dodecanol encapsulated. As the results indicate, the physicochemical properties and thermal conductivity of the shell were improved after Mn ion complexation reaction. Supercooling phenomenon of n-dodecanol was depressed to some extent. In the end, the thermo-regulated fiber containing acrylic-based copolymer microcapsules was fabricated, and thermo-regulated performance test of the fiber was also conducted. - Graphical abstract: (a)∼(d) schematic diagram of microencapsulation and (e) microcapsule with core–shell structure. - Highlights: • Microencapsulated n-dodecanol with acrylic polymer shell. • Microencapsulated n-dodecanol was fabricated by photo-induced microencapsulation. • Acrylic-based copolymer microcapsules with manganese-ion complexation

  20. Experiment of forced convection heat transfer using microencapsulated phase-change-material slurries

    International Nuclear Information System (INIS)

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira.

    1997-01-01

    The present study describes an experiment on forced convective heat transfer using a water slurry of Microencapsulated Phase-change-material. A normal paraffin hydrocarbon is microencapsulated by melamine resin, melting point of 28.1degC. The heat transfer coefficient and pressure drop in a circular tube were evaluated. The heat transfer coefficient using the slurry in case with and without phase change were compared to in case of using pure water. (author)

  1. Chiral ionic liquids in chromatographic and electrophoretic separations.

    Science.gov (United States)

    Kapnissi-Christodoulou, Constantina P; Stavrou, Ioannis J; Mavroudi, Maria C

    2014-10-10

    This report provides an overview of the application of chiral ionic liquids (CILs) in separation technology, and particularly in capillary electrophoresis and both gas and liquid chromatography. There is a large number of CILs that have been synthesized and designed as chiral agents. However, only a few have successfully been applied in separation technology. Even though this application of CILs is still in its early stages, the scientific interest is increasing dramatically. This article is focused on the use of CILs as chiral selectors, background electrolyte additives, chiral ligands and chiral stationary phases in electrophoretic and chromatographic techniques. Different examples of CILs, which contain either a chiral cation, a chiral anion or both, are presented in this review article, and their major advantages along with their potential applications in chiral electrophoretic and chromatographic recognition are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Electrophoretic properties of BSA-coated quantum dots.

    Science.gov (United States)

    Bücking, Wendelin; Massadeh, Salam; Merkulov, Alexei; Xu, Shu; Nann, Thomas

    2010-02-01

    Low toxic InP/ZnS quantum dots (QDs), ZnS:Mn(2+)/ZnS nanocrystals and CdSe/ZnS nanoparticles were rendered water-dispersible by different ligand-exchange methods. Eventually, they were coated with bovine serum albumin (BSA) as a model protein. All particles were characterised by isotachophoresis (ITP), laser Doppler velocimetry (LDV) and agarose gel electrophoresis. It was found that the electrophoretic mobility and colloidal stability of ZnS:Mn(2+)/ZnS and CdSe/ZnS nanoparticles, which bore short-chain surface ligands, was primarily governed by charges on the nanoparticles, whereas InP/ZnS nanocrystals were not charged per se. BSA-coated nanoparticles showed lower electrophoretic mobility, which was attributed to their larger size and smaller overall charge. However, these particles were colloidally stable. This stability was probably caused by steric stabilisation of the BSA coating.

  3. Electrophoretic transport of biomolecules across liquid-liquid interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Thomas; Hardt, Steffen [Center of Smart Interfaces, TU Darmstadt, Petersenstrasse 32, D-64287 Darmstadt (Germany); Muenchow, Goetz, E-mail: hardt@csi.tu-darmstadt.de [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, D-55129 Mainz (Germany)

    2011-05-11

    The mass transfer resistance of a liquid-liquid interface in an aqueous two-phase system composed of poly(ethylene glycol) and dextran is investigated. Different types of proteins and DNA stained with fluorescent dyes serve as probes to study the transport processes close to the interface. A microfluidic device is employed to enable the electrophoretic transport of biomolecules from one phase to another. The results obtained for proteins can be explained solely via the different electrophoretic mobilities and different affinities of the molecules to the two phases, without any indications of a significant mass transfer resistance of the liquid-liquid interface. By contrast, DNA molecules adsorb to the interface and only desorb under an increased electric field strength. The desorption process carries the signature of a thermally activated escape from a metastable state, as reflected in the exponential decay of the fluorescence intensity at the interface as a function of time.

  4. Ink dating part II: Interpretation of results in a legal perspective

    OpenAIRE

    Koenig, Agnès; Weyermann, Céline

    2018-01-01

    The development of an ink dating method requires an important investment of resources in order to step from the monitoring of ink ageing on paper to the determination of the actual age of a questioned ink entry. This article aimed at developing and evaluating the potential of three interpretation models to date ink entries in a legal perspective: (1) the threshold model comparing analytical results to tabulated values in order to determine the maximal possible age of an ink entry, (2) the tre...

  5. Microencapsulation improves inhibitory effects of transplanted olfactory ensheathing cells on pain after sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Hao Zhao

    2015-01-01

    Full Text Available Olfactory bulb tissue transplantation inhibits P2X2/3 receptor-mediated neuropathic pain. However, the olfactory bulb has a complex cellular composition, and the mechanism underlying the action of purified transplanted olfactory ensheathing cells (OECs remains unclear. In the present study, we microencapsulated OECs in alginic acid, and transplanted free and microencapsulated OECs into the region surrounding the injured sciatic nerve in rat models of chronic constriction injury. We assessed mechanical nociception in the rat models 7 and 14 days after surgery by measuring paw withdrawal threshold, and examined P2X2/3 receptor expression in L 4-5 dorsal root ganglia using immunohistochemistry. Rats that received free and microencapsulated OEC transplants showed greater withdrawal thresholds than untreated model rats, and weaker P2X2/3 receptor immunoreactivity in dorsal root ganglia. At 14 days, paw withdrawal threshold was much higher in the microencapsulated OEC-treated animals. Our results confirm that microencapsulated OEC transplantation suppresses P2X2/3 receptor expression in L 4-5 dorsal root ganglia in rat models of neuropathic pain and reduces allodynia, and also suggest that transplantation of microencapsulated OECs is more effective than transplantation of free OECs for the treatment of neuropathic pain.

  6. Fabrication and performances of microencapsulated paraffin composites with polymethylmethacrylate shell based on ultraviolet irradiation-initiated

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yi, E-mail: wangyi@lut.cn [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Shi Huan [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China); Xia Tiandong [State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050 (China); Zhang Ting; Feng Huixia [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050 (China)

    2012-07-16

    In order to identify the validity of fabricating microencapsulated phase change material by ultraviolet irradiation-initiated method, the paraffin wax/polymethyl methacrylate microcapsules were prepared. The structural characteristics and thermal properties of the microcapsules were also determined by various techniques. The results of differential scanning calorimetry analyses indicate that the melting and freezing temperatures and latent heats of the microcapsules are 55.8 Degree-Sign C, 50.1 Degree-Sign C and 106.9 J g{sup -1}, 112.3 J g{sup -1}, respectively. Morphology and chemical characteristic analysis indicate that the spherical microcapsules were formed with average diameter of 0.21 {mu}m and maximum microencapsulation ratio of 66 wt.% without leakage of core materials. The results of accelerated thermal cyclic test show that the microcapsules have good thermal reliability and chemical stability although they were subjected 3000 melting/freezing cycles. Based on all these results, it can be concluded that the microencapsulated paraffin composites have good potential for thermal energy storage purposes and ultraviolet irradiation-initiated method is a prominent candidate for preparing microencapsulated PCMs. - Highlights: Black-Right-Pointing-Pointer Microencapsulated paraffin with PMMA shell was synthesized via self-assembly. Black-Right-Pointing-Pointer Microcapsules with excellent properties can be prepared by UV initiated method. Black-Right-Pointing-Pointer The microencapsulation ratio is as high as 66 wt.%. Black-Right-Pointing-Pointer Thermal properties are as high as comparable with microcapsules in the literature.

  7. Fabrication and performances of microencapsulated paraffin composites with polymethylmethacrylate shell based on ultraviolet irradiation-initiated

    International Nuclear Information System (INIS)

    Wang Yi; Shi Huan; Xia Tiandong; Zhang Ting; Feng Huixia

    2012-01-01

    In order to identify the validity of fabricating microencapsulated phase change material by ultraviolet irradiation-initiated method, the paraffin wax/polymethyl methacrylate microcapsules were prepared. The structural characteristics and thermal properties of the microcapsules were also determined by various techniques. The results of differential scanning calorimetry analyses indicate that the melting and freezing temperatures and latent heats of the microcapsules are 55.8 °C, 50.1 °C and 106.9 J g −1 , 112.3 J g −1 , respectively. Morphology and chemical characteristic analysis indicate that the spherical microcapsules were formed with average diameter of 0.21 μm and maximum microencapsulation ratio of 66 wt.% without leakage of core materials. The results of accelerated thermal cyclic test show that the microcapsules have good thermal reliability and chemical stability although they were subjected 3000 melting/freezing cycles. Based on all these results, it can be concluded that the microencapsulated paraffin composites have good potential for thermal energy storage purposes and ultraviolet irradiation-initiated method is a prominent candidate for preparing microencapsulated PCMs. - Highlights: ► Microencapsulated paraffin with PMMA shell was synthesized via self-assembly. ► Microcapsules with excellent properties can be prepared by UV initiated method. ► The microencapsulation ratio is as high as 66 wt.%. ► Thermal properties are as high as comparable with microcapsules in the literature.

  8. Anti-inflammatory, and antinociceptive effects of Campomanesia adamantium microencapsulated pulp

    Directory of Open Access Journals (Sweden)

    Danieli Z. Viscardi

    Full Text Available ABSTRACT Guavira fruits have antimicrobial, antioxidant, antinociceptive, and anti-inflammatory activities. Spray drying has been widely used in the food industry presenting good retention in bioactive compounds used to transform the pulp/fruit juice into powder form. Therefore, the present study has evaluated the anti-inflammatory and antinociceptive activities of the microencapsulated pulp of Campomanesia adamantium (Cambess. O.Berg, Myrtaceae, by spray drying. Different groups of mice were treated with the doses of 100 and 300 mg/kg of microencapsulated "guavira" pulp and inflammatory parameters were assessed in a carrageenan paw edema-model and leukocyte migration with pleurisy model, while the antinociceptive activity was assessed using the formalin method and CFA-induced hyperalgesia model. A significant reduction in leukocyte migration and in paw edema was observed in rodents in all time after carrageenan injection for both doses of microencapsulated pulp of C. adamantium when compared with control group. Microencapsulated pulp of C. adamantium also reduced licking time at the first (nociceptive and second (inflammatory phases in the formalin model. In CFA-induced cold and mechanical hyperalgesia, depressive behavior, and knee edema, all parameters analyzed were significantly inhibited by microencapsulated pulp of C. adamantium. Microencapsulation by spray drying proved to be a technique that promotes bioavailability and the preservation of bioactive components in guavira pulp.

  9. Survival rate of eukaryotic cells following electrophoretic nanoinjection

    OpenAIRE

    Simonis, Matthias; H?bner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-01

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for...

  10. Layered ceramic composites via control of electrophoretic deposition kinetics

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Drdlík, D.; Chlup, Zdeněk; Maca, K.; Dlouhý, Ivo; Cihlář, J.

    2013-01-01

    Roč. 33, č. 12 (2013), s. 2305-2312 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GAP108/11/1644; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Alumina * Zirconia * Laminates * Electrophoretic deposition Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.307, year: 2013

  11. Effect of acids and bases on electrophoretic deposition of

    Czech Academy of Sciences Publication Activity Database

    Cihlář, J.; Drdlík, D.; Cihlářová, Z.; Hadraba, Hynek

    2013-01-01

    Roč. 33, č. 10 (2013), s. 1885-1892 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GD106/09/H035 Institutional support: RVO:68081723 Keywords : Electrophoretic deposition * Zirconia * Alumina * 2-Propanol * Electrosteric stabilization Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.307, year: 2013

  12. Lanthanides separation by counter - current electrophoretic using α - hydroxyisobutyric acid

    International Nuclear Information System (INIS)

    Alleluia, I.B.

    1975-01-01

    Studies about counter-current electrophoretic separation of rare earth metal ions using α-hydroxyisobutyric acid as complexing electrolyte are discussed. La, Pr, Nd, Sm and Eu were separated and fractions with purities better than 99,9% were obtained, using neutron activation analysis. A relation between the first stability constant of the α-hydroxyisobutyrate/lanthanide complexes and their migration velocities were observed. (M.J.C.) [pt

  13. NMR studies of electrophoretic mobility in surfactant systems

    International Nuclear Information System (INIS)

    Conveney, F.M.; Strange, J.H.; Smith, A.L.; Smith, E.G.

    1989-01-01

    An experimental technique is described in which the flow of electrically charged micelles is measured in the presence of an applied electric field using an NMR technique. The method is used to determine the electrophoretic mobility at ambient temperature of a 5% aqueous solution of sodium dodecyl sulphate and is shown to provide a new technique for the study of electrophoresis in surfactant solutions. (author). 8 refs.; 4 figs

  14. Survival of free and microencapsulated human-derived oral probiotic Lactobacillus paracasei SD1 in orange and aloe vera juices

    Directory of Open Access Journals (Sweden)

    Rawee Teanpaisan

    2015-06-01

    Full Text Available Microencapsulation was evaluated as a means of preserving Lactobacillus paracasei SD1, a human-derived strain with probiotic potential, in orange and aloe vera juices. The microencapsulation parameters included alginate concentration, calcium chloride concentration and hardening-time, and the efficacy of microencapsulation to preserve the survival of microencapsulated bacteria compared to free cells during exposure in fruit juices were determined. The results revealed that the viable count of free-cell form markedly decreased compared to microencapsulated form. The microencapsulation of 2% alginate (w/v and 0.05 M CaCl2 gave the best result to preserve the probiotic. It was found that viability of microencapsulated probiotic bacteria was significantly higher than free-cell in fruit juices during 8 weeks of storage time in the refrigerator. The potential probiotic trait related to inhibitory effect was not affected after microencapsulation process. In summary, the microencapsulation method may be an alternative way of preserving the viability of probiotic L. paracasei SD1.

  15. Properties of electrophoretically deposited single wall carbon nanotube films

    International Nuclear Information System (INIS)

    Lim, Junyoung; Jalali, Maryam; Campbell, Stephen A.

    2015-01-01

    This paper describes techniques for rapidly producing a carbon nanotube thin film by electrophoretic deposition at room temperature and determines the film mass density and electrical/mechanical properties of such films. The mechanism of electrophoretic deposition of thin layers is explained with experimental data. Also, film thickness is measured as a function of time, electrical field and suspension concentration. We use Rutherford backscattering spectroscopy to determine the film mass density. Films created in this manner have a resistivity of 2.14 × 10 −3 Ω·cm, a mass density that varies with thickness from 0.12 to 0.54 g/cm 3 , and a Young's modulus between 4.72 and 5.67 GPa. The latter was found to be independent of thickness from 77 to 134 nm. We also report on fabricating free-standing films by removing the metal seed layer under the CNT film, and selectively etching a sacrificial layer. This method could be extended to flexible photovoltaic devices or high frequency RF MEMS devices. - Highlights: • We explain the electrophoretic deposition process and mechanism of thin SWCNT film deposition. • Characterization of the SWCNT film properties including density, resistivity, transmittance, and Young's modulus. • The film density and resistivity are found to be a function of the film thickness. • Techniques developed to create free standing layers of SW-CNTs for flexible electronics and mechanical actuators

  16. Electrophoretic detection of protein p53 in human leukocytes

    International Nuclear Information System (INIS)

    Paponov, V.D.; Kupsik, E.G.; Shcheglova, E.G.; Yarullin, N.N.

    1986-01-01

    The authors have found an acid-soluble protein with mol. wt. of about 53 kD in peripheral blood leukocytes of persons with Down's syndrome. It was present in different quantities in all 20 patients tested, but was virtually not discovered in 12 healthy blood donors. This paper determines the possible identity of this protein with protein p53 from mouse ascites carcinoma by comparing their electrophoretic mobilities, because the accuracy of electrophoretic determination of the molecular weight of proteins is not sufficient to identify them. The paper also describes experiments to detect a protein with electrophoretic mobility identical with that of a protein in the leukocytes of patients with Down's syndrome in leukocytes of patients with leukemia. To discover if protein p53 is involved in cell proliferation, the protein composition of leukocytes from healthy blood donors, cultured in the presence and absence of phytohemagglutinin (PHA), was compared. Increased incorporation of H 3-thymidine by leukocytes of patients with Down's syndrome is explained by the presence of a population of immature leukocytes actively synthesizing DNA in the peripheral blood of these patients, and this can also explain the presence of protein p53 in the leukocytes of these patients

  17. InkTag: Secure Applications on an Untrusted Operating System.

    Science.gov (United States)

    Hofmann, Owen S; Kim, Sangman; Dunn, Alan M; Lee, Michael Z; Witchel, Emmett

    2013-01-01

    InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance processes even in the presence of a malicious operating system. InkTag advances the state of the art in untrusted operating systems in both the design of its hypervisor and in the ability to run useful applications without trusting the operating system. We introduce paraverification , a technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to participate in its own verification. Attribute-based access control allows trusted applications to create decentralized access control policies. InkTag is also the first system of its kind to ensure consistency between secure data and metadata, ensuring recoverability in the face of system crashes.

  18. Versatile Molecular Silver Ink Platform for Printed Flexible Electronics.

    Science.gov (United States)

    Kell, Arnold J; Paquet, Chantal; Mozenson, Olga; Djavani-Tabrizi, Iden; Deore, Bhavana; Liu, Xiangyang; Lopinski, Gregory P; James, Robert; Hettak, Khelifa; Shaker, Jafar; Momciu, Adrian; Ferrigno, Julie; Ferrand, Olivier; Hu, Jian Xiong; Lafrenière, Sylvie; Malenfant, Patrick R L

    2017-05-24

    A silver molecular ink platform formulated for screen, inkjet, and aerosol jet printing is presented. A simple formulation comprising silver neodecanoate, ethyl cellulose, and solvent provides improved performance versus that of established inks, yet with improved economics. Thin, screen-printed traces with exceptional electrical (molecular ink platform enables an aerosol jet-compatible ink that yields conductive features on glass with 2× bulk resistivity and strong adhesion to various plastic substrates. An inkjet formulation is also used to print top source/drain contacts and demonstrate printed high-mobility thin film transistors (TFTs) based on semiconducting single-walled carbon nanotubes. TFTs with mobility values of ∼25 cm 2 V -1 s -1 and current on/off ratios >10 4 were obtained, performance similar to that of evaporated metal contacts in analogous devices.

  19. Fire-retardant decorative inks for aircraft interiors

    Science.gov (United States)

    Kourtides, D. A.; Nir, Z.; Mikroyannidis, J. A.

    1985-01-01

    Commercial and experimental fire retardants were screened as potential fire retardants for acrylic printing inks used on aircraft interior sandwich panels. The fire retardants are selected according to their physical properties and their thermostabilities. A criterion for selecting a more stable fire retardant is established. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are used to determine thermostabilities. Results show that the fire retardant formulations are more thermally stable than the acrylic ink control. It is determined that an ink formulation containing a brominated phenol and carboxy-terminated butadiene acrylonitrile which has been modified with a brominated polymeric additive (BPA), yields the highest limiting oxygen index (LOI) of all the compounds tested. All of the fire-retardant formulations have a higher oxygen index than the baseline acrylic ink.

  20. Study of inks on paper engravings using portable EDXRF spectrometry

    International Nuclear Information System (INIS)

    Ferrero, J.L.; Roldan, C.; Juanes, D.; Carballo, J.; Pereira, J.; Ardid, M.; Lluch, J.L.; Vives, R.

    2004-01-01

    The prints are fragile and delicate art objects that need for its examination a suitable technique for 'in situ', non-destructive and rapid analyses. The energy dispersive X-ray Fluorescence (EDXRF) spectrometry with portable instrumentation offers these analytical properties. In this work we present the EDXRF analyses of eight engravings elaborated with different techniques (etching and heliogravure) from the 17th to 20th centuries. The characterization of the paper is directly done from its EDXRF spectra, whereas the inks are characterized by the ink plus paper analysis after subtracting the background from the paper spectrum. Inorganic components of the paper engravings and inks have been identified from the EDXRF spectra and the results are discussed. Also, we present EDXRF analyses for the identification of inorganic components from six samples of modern inks

  1. InkTag: Secure Applications on an Untrusted Operating System

    Science.gov (United States)

    Hofmann, Owen S.; Kim, Sangman; Dunn, Alan M.; Lee, Michael Z.; Witchel, Emmett

    2014-01-01

    InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance processes even in the presence of a malicious operating system. InkTag advances the state of the art in untrusted operating systems in both the design of its hypervisor and in the ability to run useful applications without trusting the operating system. We introduce paraverification, a technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to participate in its own verification. Attribute-based access control allows trusted applications to create decentralized access control policies. InkTag is also the first system of its kind to ensure consistency between secure data and metadata, ensuring recoverability in the face of system crashes. PMID:24429939

  2. Intramantle Inking: A Stress Behavior in Octopus bimaculoides (Mollusca: Cephalopoda)

    Science.gov (United States)

    Toll, Ronald B

    2011-01-01

    Several Pacific 2-spot octopuses (Octopus bimaculoides) shipped from California and held in a recirculating seawater system at Illinois College exhibited an unusual postshipping stress behavior not previously documented in the literature. Ink, normally ejected into the surrounding seawater, was uncharacteristically retained in the mantle cavity. We describe the resulting behaviors, discuss successful resuscitation efforts, and briefly consider the possible role(s) that ink may have played in the death of one octopus. PMID:22330791

  3. Antioxidant and antimicrobial activities of squid ink powder

    Directory of Open Access Journals (Sweden)

    Fatimah Zaharah, M.Y.

    2017-10-01

    Full Text Available Economic development in Malaysia has led to increasing quantity and complexity of generated waste or by-product. The main objective of this study is to investigate the antioxidant and antimicrobial activities of squid ink powder. The squid ink was collected from fresh squid and dried using freeze dryer before it was ground into powder. The yield of squid ink was 22.82% after freeze-drying which was 69.37g in amount. Proximate composition analysis as well as two total antioxidant activity assays named 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and Ferric Reducing Antioxidant Power (FRAP assay, and antimicrobial analysis were done on the powdered squid ink. The proximate results of squid ink powder were 4.43 ± 0.29% moisture, 62.46 ± 0.62% protein, 3.96 ± 0.08% fat, and 9.29 ± 0.05% ash. Results of DPPH assay showed that water extraction of squid ink powder has the highest 94.87 ± 4.87%, followed by ethanol 67.57 ± 7.55%, and hexane extract 2.10 ± 1.18%. FRAP assay result presented the same trend with water extraction had the highest value of 929.67 ± 2.31 μmol Fe (II / g of sample extract, followed by ethanol extract 201.00 ± 26.29 μmol Fe (II per gram sample and hexane 79.67 ± 12.66 μmol Fe (II / g of sample extract. Both water and ethanol extract showed antimicrobial properties with inhibition range of 7 to 15 mm, respectively. Fresh squid ink had 1.254 × 103 colony forming unit per gram of sample of microbial content. Squid ink powder had protein as major compound and microbial content was below from standard value of fisheries products as stated in Food Act 1983 and Regulation 1985.

  4. Optically Variable Inks (OVI): versatility in formulation and usage

    Science.gov (United States)

    Degott, Pierre

    2000-04-01

    Optically Variable Inks (OVI) are printing inks containing high precision, multi-layer interference filters as their constituent pigment. They display a strong and unique color change form a normal to an angled viewing position. During the last 10 years OVI has gained wide acceptance as an overt protection for numerous value documents including banknotes and ID cards. Meanwhile, continuous improvement has taken place over the last two years in a variety of areas.

  5. Degradation of inkjet ink by greensand and ultrasonic sonification

    OpenAIRE

    Mirela Rožić; Marina Vukoje; Kristinka Vinković; Nives Galić; Mirela Jukić

    2017-01-01

    The study describes the degradation of inkjet ink at low frequency ultrasound (US) and greensand to compare their reactivity. Environmental sonochemistry is a rapidly growing area and an example of the advanced oxidation process (AOP) that deals with the destruction of organic species in aqueous solutions. Greensand is a granular material coated with a thin layer of manganese dioxide (MnO2) which is among the strongest natural oxidants. In our study magenta inkjet water-based printing ink was...

  6. Antibacterial Activity of Melanin from Cuttlefish and Squid Ink

    Directory of Open Access Journals (Sweden)

    Yuspihana Fitrial

    2017-08-01

    Full Text Available Marine environment comprises of many organism which are known to posses bioactive compound as a common means of self-defense or for the protection of eggs and embryos. Class Cephalopods (such as squidand cuttlefish are notable for their defences, such as jetting escape movements, changes in colouration, toxic venom and inking.This study aims to compare the antibacterial activity of melanin from cuttlefish ink (Sepia sp. with squid ink (Loligo sp. against E. coli. Extraction and purification studies were carried out on Sepia and Loligo melanin using a hydrochloric acid 0,5M treatment under mechanical.The melanins were obtained and further evaluated their activity by direct contact methods between melanin and E. coli in nutrient broth.Total microbes was counted by total plate count.Both inks also was tested their activity against E. coli. The results showed that melanin from cuttlefish and squid inks had inhibitory activity at concentrations of 10 mg / ml and 20 mg / mL, respectively reaching 99.99% against E. coli.The inks of both Cephalopods at the same concentration as melanin, did not show any inhibitory activity against E. coli.  The melanin of Sepia sp. have a higher antibacterial activity than the melanin of Loligo sp.

  7. Ink for Ink-Jet Printing of Electrically Conductive Structures on Flexible Substrates with Low Thermal Resistance

    Science.gov (United States)

    Mościcki, A.; Smolarek-Nowak, A.; Felba, J.; Kinart, A.

    2017-07-01

    The development of new technologies in electronics related to flexible polymeric substrates forces the industry to introduce suitable tools (special type of dispensers) and modern conductive materials for printing electronic circuits. Moreover, due to the wide use of inexpensive polymeric foils (polyethene, PE, or poly(ethylene terephthalate), PET), there is a need to develop materials with the lowest possible processing temperatures. The present paper presents the selection criteria of suitable components and their preparation for obtaining electrically conductive ink with a special nanosilver base. In the case of the discussed solution, all components allow to make circuits in relatively low sintering temperature (even below 130°C). Additionally, the authors show the most significant ink parameters that should be taken into consideration during Research and Development (R&D) works with electrically conductive inks. Moreover, ink stability parameters are discussed and some examples of printed circuits are presented.

  8. Ballpoint pen inks: characterization by positive and negative ion-electrospray ionization mass spectrometry for the forensic examination of writing inks.

    Science.gov (United States)

    Ng, Lay-Keow; Lafontaine, Pierre; Brazeau, Luc

    2002-11-01

    A method based on profiling of dye components by electrospray ionization mass spectrometry (ESI/MS) is described for the characterization of ballpoint pen inks. The method involves benzyl alcohol (30 microL) extraction of ink from paper. The extracts of ink lines 1 and 5 mm in length are used for direct ESI/MS analysis in positive and negative modes, respectively. The instrumental analysis takes 3 min. Basic and acid dyes in the inks are detected in the positive and negative modes, respectively, with each dye yielding one or two characteristic ion peaks. The mass spectrum, which is mainly a compositional signature of the dyes in the ink, was not affected by the type of paper from which the ink was extracted, or by natural ageing of the ink on document in the absence of light. However, exposure to fluorescent illumination caused dealkylation of polyalkylated basic dyes and resulted in changes in the homologous distribution of the dyes. In this study, a total of 44 blue inks, 23 black inks, and 10 red inks have been analyzed, and the mass spectra were used to establish a searchable library. ESI/MS analysis provides a simple and fast way to compare ink specimens and in combination with on-line library search permits rapid screening of inks for forensic document investigations.

  9. Fabrication and characterization of fully ceramic microencapsulated fuels

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, K.A., E-mail: kurt.terrani@gmail.com [Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kiggans, J.O.; Katoh, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Shimoda, K. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Montgomery, F.C.; Armstrong, B.L.; Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hinoki, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hunn, J.D. [Fuel Cycle and Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Snead, L.L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-15

    The current generation of fully ceramic microencapsulated fuels, consisting of Tristructural Isotropic fuel particles embedded in a silicon carbide matrix, is fabricated by hot pressing. Matrix powder feedstock is comprised of alumina-yttria additives thoroughly mixed with silicon carbide nanopowder using polyethyleneimine as a dispersing agent. Fuel compacts are fabricated by hot pressing the powder-fuel particle mixture at a temperature of 1800-1900 Degree-Sign C using compaction pressures of 10-20 MPa. Detailed microstructural characterization of the final fuel compacts shows that oxide additives are limited in extent and are distributed uniformly at silicon carbide grain boundaries, at triple joints between silicon carbide grains, and at the fuel particle-matrix interface.

  10. [Effect of the microencapsulation process parameters piroxicam by complex coacervation].

    Science.gov (United States)

    Lamoudi, L; Chaumeil, J-C; Daoud, K

    2015-01-01

    The gelatin-acacia system is used for the microencapsulation of piroxicam by complex coacervation. The effect of some formulation parameters and process, namely the ratio of gelatin/gum acacia, core/wall ratio, concentration of crosslinking agent and crosslinking time are studied. The microcapsules properties are evaluated. The results showed that the microcapsules have a spherical shape, a coacervation efficiency greater than 70%, an average diameter less than 250 microns, a good stability and finally, the better values are obtained for gelatin/acacia ratio (5/3), ratio core/wall (1/4), an amount of 2 mL of crosslinking agent and a crosslinking time of 60 minutes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Selective Osmotic Shock (SOS)-Based Islet Isolation for Microencapsulation.

    Science.gov (United States)

    Enck, Kevin; McQuilling, John Patrick; Orlando, Giuseppe; Tamburrini, Riccardo; Sivanandane, Sittadjody; Opara, Emmanuel C

    2017-01-01

    Islet transplantation (IT) has recently been shown to be a promising alternative to pancreas transplantation for reversing diabetes. IT requires the isolation of the islets from the pancreas, and these islets can be used to fabricate a bio-artificial pancreas. Enzymatic digestion is the current gold standard procedure for islet isolation but has lingering concerns. One such concern is that it has been shown to damage the islets due to nonselective tissue digestion. This chapter provides a detailed description of a nonenzymatic method that we are exploring in our lab as an alternative to current enzymatic digestion procedures for islet isolation from human and nonhuman pancreatic tissues. This method is based on selective destruction and protection of specific cell types and has been shown to leave the extracellular matrix (ECM) of islets intact, which may thus enhance islet viability and functionality. We also show that these SOS-isolated islets can be microencapsulated for transplantation.

  12. Microencapsulation of self-healing agents containing a fluorescent dye

    Directory of Open Access Journals (Sweden)

    J. K. Lee

    2013-01-01

    Full Text Available Two different self-healing agent candidates, endo-dicyclopentadiene (endo-DCPD and 5-ethylidene-2-norbornene (ENB, containing a fluorescent dye surrounded by a melamine–urea–formaldehyde (MUF shell were microencapsulated by in-situ polymerization and the resulting microcapsules were characterized in this work. The microcapsules showed a narrow size distribution with a spherical shape and rough outer and smooth inner surfaces for both healing agent systems. Shell thicknesses of the microcapsules were ~880±80 nm for endo-DCPD and ~620±60 nm for ENB. The incorporation of a fluorescent dye as tracer into self-healing agents did not disturb the formation of microcapsules. The release of self-healing liquid into the induced crack from ruptured microcapsules in an epoxy coating layer was observed using a fluorescence microscopy. The use of a fluorescent dye is very effective in the observation of a damage site.

  13. Investigation of defects on PAMS microspheres fabricated with microencapsulation method

    International Nuclear Information System (INIS)

    Chen Sufen; Li Bo; Liu Yiyang; Zhang Zhanwen; Qi Xiaobo

    2012-01-01

    Poly-(α-methylstyrene) (PAMS) microspheres were fabricated with W1/O/W2 double emulsion microencapsulation method, and the effects of polyvinylalcohol (PVA) and CaCl 2 weight concentrations and the O/W2 phase ratio on the percentages of defected PAMS microspheres were studied. The weight concentrations of PVA and CaCl 2 and the O/W2 phase ratio in the fabrication process of PAMS microspheres were optimized. The results show that, for the three parameters being 1.0%, 1.5%, and 0.01, respectively, the percentage of the defect-free PAMS microspheres without vacuoles in the shell wall can be up to 60%. (authors)

  14. Microencapsulation of pequi pulp oil by complex coacervation

    Directory of Open Access Journals (Sweden)

    Priscilla Narciso Justi

    2018-04-01

    Full Text Available Abstract Pequi pulp oil, Caryocar brasiliense, is rich in carotenoids, antioxidant compound easily oxidized by the presence of heat, light and oxygen. In order to improve its stability, pequi oil was microencapsulated by complex coacervation using gelatin and Arabic gum as encapsulating agents. Twenty formulations were prepared using a 23 central composite rotational design. The influence of temperature, stirring velocity and core material in the oil coacervation were evaluated, aiming to preserve carotenoids present in the oil. The best yield values and carotenoids content were obtained at the midpoint of the design (7.5g core, 15.000rpm and 50°C. Particles showed asymmetric distribution, with diameter ranging from 15 to 145 µm and the efficiency of the encapsulation process, obtained by the retention of oil in the microcapsule, ranged from 66.58 to 96.50%, thus demonstrating the encapsulation efficiency of this method.

  15. Use of Flow Focusing Technique for Microencapsulation of Myoblasts.

    Science.gov (United States)

    Ciriza, J; Saenz del Burgo, L; Hernández, R M; Orive, G; Pedraz, J L

    2017-01-01

    Alginate cell microencapsulation implies the immobilization of cells within a polymeric membrane that allows the bidirectional diffusion of nutrients and oxygen inside the microcapsules and the release of waste and therapeutic molecules outside them. This technology has been applied to several cell types and it has been extensively described with pancreatic islets. However, other cells such as myoblasts are being currently studied and showing high interest. Moreover, different systems and approaches have been developed for cell encapsulation such as electrostatic extrusion and Flow focusing technology. When Flow focusing technology is applied for myoblast encapsulation, several factors should be considered, such as the pressure, the flow of the system, or the diameter size of the nebulizer, which will determine the final diameter size and shape of the microcapsules containing the myoblasts. Finally, viability of encapsulated myoblasts needs to be assessed before further studies are performed.

  16. Polymerization of allyl alcohol by radiation to obtain microencapsulated structure

    International Nuclear Information System (INIS)

    Usanmaz, A.; Saricilar, S.

    1989-01-01

    Allyl alcohol was polymerized by radiation under various conditions. The limiting conversions were about 30 % in bulk, 35 % when containing 0.03 mole fraction AlCl 3 and 50 % when water was contained at 27 % (v/v). Irradiation was done with Co-60 gamma rays at room temperature and under vacuum. The presence of oxygen did not cause any change in the reaction rate. Molecular weights were determined by viscosity and cryoscopic methods. K and α values were found to be 3.57 x 10 -4 and 0.62 for solutions in methanol at 25degC. The polymers up to about 10 % conversion were viscous liquids having microcapsular structures: at high conversions, they became hard and glassy. The microencapsulated structures were also retained in solutions in methanol, acetone, and isopropyl alcohol. The samples were insoluble in water, benzene, and toluence. (author)

  17. Soluto-capillary convection in micro-encapsulation

    International Nuclear Information System (INIS)

    Subramanian, P.; Zebib, A.

    2005-01-01

    Spherical shells used as laser targets in inertial confinement fusion (ICF) experiments are made by micro-encapsulation. In one phase of manufacturing, the spherical shells contain a solvent (fluoro-benzene, FB) and a solute (polystyrene, PAMS) in a water-FB environment. Evaporation of the FB results in the desired hardened plastic hollow spherical shells, 1-2 mm in diameter. Perfect sphericity is demanded for efficient fusion ignition and the observed surface roughness maybe driven by Marangoni instabilities due to surface tension dependence on the FB concentration (buoyant forces are negligible in this micro-scale problem). Here we model this drying process and compute nonlinear, time-dependent, axisymmetric, variable viscosity, infinite Schmidt number soluto-capillary convection in the shells. Comparison with results from linear theory and available experiments are made. (authors)

  18. Combined immunotherapy and antiangiogenic therapy of cancer with microencapsulated cells.

    Science.gov (United States)

    Cirone, Pasquale; Bourgeois, Jacqueline M; Shen, Feng; Chang, Patricia L

    2004-10-01

    An alternative form of gene therapy involves immunoisolation of a nonautologous cell line engineered to secrete a therapeutic product. Encapsulation of these cells in a biocompatible polymer serves to protect these allogeneic cells from host-versus-graft rejection while recombinant products and nutrients are able to pass by diffusion. This strategy was applied to the treatment of cancer with some success by delivering either interleukin 2 or angiostatin. However, as cancer is a complex, multifactorial disease, a multipronged approach is now being developed to attack tumorigenesis via multiple pathways in order to improve treatment efficacy. A combination of immunotherapy with angiostatic therapy was investigated by treating B16-F0/neu melanoma-bearing mice with intraperitoneally implanted, microencapsulated mouse myoblasts (C2C12) genetically modified to deliver angiostatin and an interleukin 2 fusion protein (sFvIL-2). The combination treatment resulted in improved survival, delayed tumor growth, and increased histological indices of antitumor activity (apoptosis and necrosis). In addition to improved efficacy, the combination treatment also ameliorated some of the undesirable side effects from the individual treatments that have led to the previous failure of the single treatments, for example, inflammatory response to IL-2 or vascular mimicry due to angiostatin. In conclusion, the combination of immuno- and antiangiogenic therapies delivered by immunoisolated cells was superior to individual treatments for antitumorigenesis activity, not only because of their known mechanisms of action but also because of unexpected protection against the adverse side effects of the single treatments. Thus, the concept of a "cocktail" strategy, with microencapsulation delivering multiple antitumor recombinant molecules to improve efficacy, is validated.

  19. Development of a New Stretchable and Screen Printable Conductive Ink

    Science.gov (United States)

    Mohammed, Anwar A.

    Stretchable conductive ink is a key enabler for stretchable electronics. This thesis research focuses on the development of a new stretchable and screen printable conductive ink. After print and cure, this ink would be capable of being stretched by at least 500 cycles at 20% strain without increasing its resistance by more than 30 times the original resistance, while maintaining electrical and mechanical integrity. For a stretchable and screen-printable conductive ink, the correct morphology of the metal powder selected and the ability of the binder to be stretched after the sintering process, are both indispensable. This research has shown that a bi-modal mixture of fine and large-diameter silver flakes will improve stretchability. While the smaller flakes increase the conductivity and lower the sintering temperature, the larger flake particles promote ohmic connectivity during stretching. The bi-modal flake distribution increases connection points while enhancing packing density and lowering the thermal activation barrier. The polymer binder phase plays a crucial role in offering stretchability to the stretchable conductive inks. The silver flakes by themselves are not stretchable but they are contained within a stretchable binder system. The research demonstrates that commonly used printable ink binder when combined with large-chain polymers through a process known as 'elastomeric chain polymerization' will enable the conductive ink to become more stretchable. This research has shown that the new stretchable and screen printable silver conductive ink developed based upon the two insights mentioned above; (1) bi modal flakes to improve ohmic connectivity during stretching and (2) elastomeric chain polymerized binder system which could stretch even after the ink is sintered to the substrate, can exhibit an ink stretchability of at least 500 cycles at 20% strain while increasing the resistance by less than 30 times the original resistance. Wavy print patterns can

  20. Dopant ink composition and method of fabricating a solar cell there from

    Energy Technology Data Exchange (ETDEWEB)

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2017-10-25

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  1. Dopant ink composition and method of fabricating a solar cell there from

    Science.gov (United States)

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2015-03-31

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  2. Efficacy of microencapsulated lactic acid bacteria in Helicobater pylori eradication therapy

    Directory of Open Access Journals (Sweden)

    Maha A Khalil

    2015-01-01

    Full Text Available Background: Probiotic delivery systems are widely used nutraceutical products for the supplementation of natural intestinal flora. These delivery systems vary greatly in the effectiveness to exert health benefits for a patient. This study focuses on providing probiotic living cells with a physical barrier against adverse environmental conditions. Materials and Methods: Microencapsulation of the selected lactic acid bacteria (LAB using chitosan and alginate was performed. Physical examination of the formulated LAB microcapsules was observed using phase contrast inverted microscope and scanning electron microscope (SEM. Finally, the survival of microencapsulated and noncapsulated bacteria was cheeked in the simulated human gastric tract (GT. The potential antimicrobial activity of the most potent microencapsulated LAB strain was in vivo evaluated in rabbit models. Results: Microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 were loaded with 1.03 × 10 10 CFU viable bacteria/g, 1.9 × 10 10 CFU viable bacteria/g, and 5.5 × 10 9 CFU viable bacteria/g, respectively. The survival of microencapsulated cells was significantly higher than that of the free cells after exposure to simulated gastric juice (SGJ at pH 2. Additionally, in simulated small intestine juice (SSJ, larger amounts of the selected LAB cells were found, whereas in simulated colon juice (SCJ, the released LAB reached the maximum counts. In vivo results pointed out that an 8-week supplementation with a triple therapy of a microencapsulated L. plantarum, L. acidophilus, and L. bulgaricus DSMZ 20080 might be able to reduce H. pylori. Conclusion: Microencapsulated probiotics could possibly compete with and downregulate H. pylori infection in humans.

  3. Microbiological evaluation of open and sealed tattoo inks

    Directory of Open Access Journals (Sweden)

    Lucia Bonadonna

    2014-12-01

    Full Text Available Background. Introduction of tattoo inks in the skin has been associated with a potential entry of a great number of microorganisms including bacteria, virus and fungi. Contaminated pigments, diluents and instruments represent primary infection risk factors as well as inadequacy of hygienic measures during this practice. However, the evaluation of the infectious risk for public health due to tattoo ink use is actually not feasible cause of the low efficiency of health surveillance and the lack of specific regulation in this area.Materials and Methods. A survey was carried out to test the microbial product safety of some tattoo inks available in Italian tattoo parlours. Physical packaging and labelling of the collected inks were also examined. Newly acquired sealed stock bottles, open ink bottles and tattoo-correlated instruments (needles, spikes and grips were collected and tested for different microbiological parameters. Results. Both from opened and sealed inks a variety of potentially pathogenic organisms were isolated and identified including Gram positive rods and cocci, Gram negative bacteria and fungi. Different species of Bacillus and Staphylococcus genera were identified, among which S. haemolyticus; Cronobacter sakazaki, Enterobacter intermedius and Sphingomonas paucimobilis were also identified while no atypical mycobacteria were isolated. Needles, spikes and grips tested for sterility were aseptic.Conclusions. Microbial contamination of opened samples suggest inefficacy of preservatives and additives in maintaining inks hygienic quality, and inadequacy of hygienic procedures during the tattooing operations, while the occurrence of microorganisms in unopened samples put in doubt the effectiveness of the sterilization technology applied to this type of product.

  4. Microencapsulation by freeze-drying of potassium norbixinate and curcumin with maltodextrin: stability, solubility, and food application.

    Science.gov (United States)

    Sousdaleff, Mirian; Baesso, Mauro Luciano; Medina Neto, Antonio; Nogueira, Ana Cláudia; Marcolino, Vanessa Aparecida; Matioli, Graciette

    2013-01-30

    Stability of potassium norbixinate and curcumin by microencapsulation with maltodextrin DE20 and freeze-drying was evaluated as a function of exposition to light, air, different pH, water solubility, and in food applications. The best results were obtained with microencapsulated potassium norbixinate 1:20, which, when vacuum-packed and in the presence of natural light, showed color retention of 78%, while microencapsulated curcumin 1:20 showed color retention of 71%. Differential scanning calorimetry and thermogravimetry provided an indication of interaction between colorants and maltodextrin. Photoacoustic spectroscopy (PAS) showed that free and microencapsulated colorants exhibited high rates of absorption throughout the measured spectral region. This work evidenced that the freeze-drying process is favorable for microencapsulation of curcumin by maltodextrin, providing improved solubility to the microencapsulated colorant. Both microencapsulated colorants showed relevant results for use in a wide range of pH and food applications. The PAS technique was useful for the evaluation of the stability of free and microencapsulated colorants.

  5. Protein electrophoretic migration data from custom and commercial gradient gels

    Directory of Open Access Journals (Sweden)

    Andrew J. Miller

    2016-12-01

    Full Text Available This paper presents data related to the article “A method for easily customizable gradient gel electrophoresis” (A.J. Miller, B. Roman, E.M. Norstrom, 2016 [1]. Data is presented on the rate of electrophoretic migration of proteins in both hand-poured and commercially acquired acrylamide gradient gels. For each gel, migration of 9 polypeptides of various masses was measured upon completion of gel electrophoresis. Data are presented on the migration of proteins within separate lanes of the same gel as well as migration rates from multiple gels.

  6. Variations in virulence between different electrophoretic types of Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nørrung, Birgit; Andersen, Jens Kirk

    2000-01-01

    A total of 245 strains of Listeria monocytogenes, representing 33 different electrophoretic types (ETs), were examined quantitatively for haemolytic activity. No significant difference was observed in the mean haemolytic activity between different ETs. Eighty four out of 91 strains examined were...... compared with 3.64 among food isolates). The explanation for this may be that more virulent strains are more prone to cause human infection. It is, however, also possible that strains oft. monocytogenes may become more virulent while multiplying in a living organism compared with multiplying in foods....

  7. Transparent Conductive Ink for Additive Manufacturing

    Science.gov (United States)

    Patlan, X. J.; Rolin, T. D.

    2017-01-01

    NASA analyzes, tests, packages, and fabricates electrical, electronic, and electromechanical (EEE) parts. Nanotechnology is listed in NASA's Technology Roadmap as a key area to invest for further development.1 This research project focused on using nanotechnology to improve electroluminescent lighting in terms of additive manufacturing and to increase energy efficiency. Specifically, this project's goal was to produce a conductive but transparent printable ink that can be sprayed on any surface for use as one of the electrodes in electroluminescent device design. This innovative work is known as thick film dielectric electroluminescent (TDEL) technology. TDEL devices are used for "backlighting, illumination, and identification due to their tunable color output, scalability, and efficiency" (I.K. Small, T.D. Rolin, and A.D. Shields, "3D Printed Electroluminescent Light Panels," NASA Fiscal Year 2017 Center Innovation Fund Proposal, unpublished data, 2017). These devices use a 'front-to-back' printing method, where the substrate is the transparent layer, and the dielectric and phosphor are layered on top. This project is a first step in the process of creating a 3D printable 'back-to-front' electroluminescent device. Back-to-front 3D-printed devices are beneficial because they can be printed onto different substrates and embedded in different surfaces, and the substrate is not required to be transparent, all because the light is emitted from the top surface through the transparent conductor. Advances in this area will help further development of printing TDEL devices on an array of different surfaces. Figure 1 demonstrates the layering of the two electrodes that are aligned in a parallel plate capacitor structure (I.K. Small, T.D. Rolin, and A.D. Shields, "3D Printed Electroluminescent Light Panels," NASA Fiscal Year 2017 Center Innovation Fund Proposal, unpublished data, 2017). Voltage is applied across the device, and the subsequent electron excitation results in

  8. The Use of Conductive Ink in Antenna Education and Design

    Science.gov (United States)

    Addison, David W.

    Conductive ink from a printer allows for the fabrication of conductive material with tight tolerances without the cost and time of chemical etching. This paper explores the use of AGIC printable conductive ink on a paper substrate as design tool for antennas as well as classroom use in antenna education. The antenna designs satisfy the requirements of a compact Global Navigation Satellite System (GNSS) antenna while showing a competitive performance within the current market. One best design is shown along with three other structures. These antennas consist of a bowtie cross-dipole over a reflective disc with conductive-ink grounded structures. In addition to the GNSS antennas, a linear elliptical dipole over a reflective disc with conductive grounded structures is presented. This elliptical antenna design attempts to find the maximum impedance bandwidth beyond the GNSS band. The inexpensive nature of conductive ink allows for its use in a classroom to demonstrate antenna behavior as part of antenna education. An inexpensive approach to the patch antenna using conductive ink is described and paired with a system made of off-the-shelf parts. The system is capable of measuring the power of the received signal. The received signal measurement is not as accurate as using a anechoic chamber but pattern details are visible. This is used to demonstrate aspects of the Friis transmission equation such as distance, polarization, radiation pattern shape, and loss.

  9. Enhancing Electrophoretic Display Lifetime: Thiol-Polybutadiene Evaporation Barrier Property Response to Network Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Caitlyn Christian [California State Polytechnic State Univ., San Luis Obispo, CA (United States)

    2017-02-27

    An evaporation barrier is required to enhance the lifetime of electrophoretic deposition (EPD) displays. As EPD functions on the basis of reversible deposition and resuspension of colloids suspended in a solvent, evaporation of the solvent ultimately leads to device failure. Incorporation of a thiol-polybutadiene elastomer into EPD displays enabled display lifetime surpassing six months in counting and catalyzed rigid display transition into a flexible package. Final flexible display transition to mass production compels an electronic-ink approach to encapsulate display suspension within an elastomer shell. Final thiol-polybutadiene photosensitive resin network microstructure was idealized to be dense, homogeneous, and expose an elastic response to deformation. Research at hand details an approach to understanding microstructural change within display elastomers. Polybutadiene-based resin properties are modified via polymer chain structure, with and without added aromatic urethane methacrylate difunctionality, and in measuring network response to variation in thiol and initiator concentration. Dynamic mechanical analysis results signify that cross-linked segments within a difunctionalized polybutadiene network were on average eight times more elastically active than that of linked segments within a non-functionalized polybutadiene network. Difunctionalized polybutadiene samples also showed a 2.5 times greater maximum elastic modulus than non-functionalized samples. Hybrid polymer composed of both polybutadiene chains encompassed TE-2000 stiffness and B-1000 elasticity for use in encapsulating display suspension. Later experiments measured kinetic and rheological response due to alteration in dithiol cross-linker chain length via real time Fourier transform infrared spectroscopy and real-time dynamic rheology. Distinct differences were discovered between dithiol resin systems, as maximum thiol conversion achieved in short and long chain length dithiols was 86% and

  10. Alginate-Poly(ethylene glycol Hybrid Microspheres for Primary Cell Microencapsulation

    Directory of Open Access Journals (Sweden)

    Redouan Mahou

    2014-01-01

    Full Text Available The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol hybrid microspheres (alg-PEG-M were produced by combining ionotropic gelation of sodium alginate (Na-alg using calcium ions with covalent crosslinking of vinyl sulfone-terminated multi-arm poly(ethylene glycol (PEG-VS. In a one-step microsphere formation process, fast ionotropic gelation yields spherical calcium alginate gel beads, which serve as a matrix for simultaneously but slowly occurring covalent cross-linking of the PEG-VS molecules. The feasibility of cell microencapsulation was studied using primary human foreskin fibroblasts (EDX cells as a model. The use of cell culture media as polymer solvent, gelation bath, and storage medium did not negatively affect the alg-PEG-M properties. Microencapsulated EDX cells maintained their viability and proliferated. This study demonstrates the feasibility of primary cell microencapsulation within the novel microsphere type alg-PEG-M, serves as reference for future therapy development, and confirms the suitability of EDX cells as control model.

  11. Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil.

    Science.gov (United States)

    Bajaj, Poonam R; Bhunia, Kanishka; Kleiner, Leslie; Joyner Melito, Helen S; Smith, Denise; Ganjyal, Girish; Sablani, Shyam S

    2017-03-01

    Unhydrolysed pea protein (UN) forms very viscous emulsions when used at higher concentrations. To overcome this, UN was hydrolysed using enzymes alcalase, flavourzyme, neutrase, alcalase-flavourzyme, and neutrase-flavourzyme at 50 °C for 0 min, 30 min, 60 min, and 120 min to form hydrolysed proteins A, F, N, AF, and NF, respectively. All hydrolysed proteins had lower apparent viscosity and higher solubility than UN. Foaming capacity of A was the highest, followed by NF, N, and AF. Hydrolysed proteins N60, A60, NF60, and AF60 were prepared by hydrolysing UN for 60 min and used further for microencapsulation. At 20% oil loading (on a total solid basis), the encapsulated powder N60 had the highest microencapsulation efficiency (ME = 56.2). A decrease in ME occurred as oil loading increased to 40%. To improve the ME of N60, >90%, UN and maltodextrin were added. Flowability and particle size distribution of microencapsulated powders with >90% microencapsulation efficiency and morphology of all powders were investigated. This study identified a new way to improve pea protein functionality in emulsions, as well as a new application of hydrolysed pea protein as wall material for microencapsulation.

  12. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria.

    Science.gov (United States)

    Ding, W K; Shah, N P

    2007-11-01

    Eight strains of probiotic bacteria, including Lactobacillus rhamnosus, Bifidobacterium longum, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, B. lactis type Bl-O4, and B. lactis type Bi-07, were studied for their acid, bile, and heat tolerance. Microencapsulation in alginate matrix was used to enhance survival of the bacteria in acid and bile as well as a brief exposure to heat. Free probiotic organisms were used as a control. The acid tolerance of probiotic organisms was tested using HCl in MRS broth over a 2-h incubation period. Bile tolerance was tested using 2 types of bile salts, oxgall and taurocholic acid, over an 8-h incubation period. Heat tolerance was tested by exposing the probiotic organisms to 65 degrees C for up to 1 h. Results indicated microencapsulated probiotic bacteria survived better (P strains. At 30 min of heat treatment, microencapsulated probiotic bacteria survived with an average loss of only 4.17-log CFU/mL, compared to 6.74-log CFU/mL loss with free probiotic bacteria. However, after 1 h of heating both free and microencapsulated probiotic strains showed similar losses in viability. Overall microencapsulation improved the survival of probiotic bacteria when exposed to acidic conditions, bile salts, and mild heat treatment.

  13. Preparation, characterization of microencapsulated ammonium polyphosphate and its flame retardancy in polyurethane composites

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ming-Yuan; Chen, Wei-Jen [Department of Aviation Mechanical Engineering, China University of Science and Technology, Hsinchu County, 303, Taiwan (China); Kuan, Chen-Feng; Kuan, Hsu-Chiang [Department of Computer Application Engineering, Far East University, Tainan, 744, Taiwan (China); Yang, Jia-Ming [Green Flame Retardant Material Research Laboratory, Department of Safety, Health and Environmental Engineering, Hung-Kuang University, Taichung, 433, Taiwan (China); Chiang, Chin-Lung, E-mail: dragon@sunrise.hk.edu.tw [Green Flame Retardant Material Research Laboratory, Department of Safety, Health and Environmental Engineering, Hung-Kuang University, Taichung, 433, Taiwan (China)

    2016-04-15

    In this study, a novel microencapsulated flame retardant containing ammonium polyphosphate (APP) and an 4,4′-oxydianiline-formaldehyde (OF) resin as the core and shell material was synthesized using in situ polymerization technology. The structure and performance of OF microencapsulated APP (OFAPP) were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The thermal properties of OFAPP were systematically analyzed through thermogravimetric analysis. Flame retardancy tests, such as limiting oxygen index (LOI) and UL-94, were conducted to evaluate the effect of varying the composition of APP and OFAPP in silanol-terminated polyurethane (Si-PU) composites. The results indicated that the microencapsulation of APP with the OF resin resulted in improved hydrophobicity. The results also revealed that the flame retardancy of the Si-PU/OFAPP composite (LOI = 37%) was higher than that of the Si-PU/APP composite (LOI = 23%) at the same additive loading. - Highlights: • A novel microencapsulated flame retardant was synthesized using in situ polymerization technology. • The microencapsulation of ammonium polyphosphate with the polymer resin resulted in improved hydrophobicity. • Polyurethane composites have excellent thermal stability and flame retardance.

  14. Preparation, characterization of microencapsulated ammonium polyphosphate and its flame retardancy in polyurethane composites

    International Nuclear Information System (INIS)

    Shen, Ming-Yuan; Chen, Wei-Jen; Kuan, Chen-Feng; Kuan, Hsu-Chiang; Yang, Jia-Ming; Chiang, Chin-Lung

    2016-01-01

    In this study, a novel microencapsulated flame retardant containing ammonium polyphosphate (APP) and an 4,4′-oxydianiline-formaldehyde (OF) resin as the core and shell material was synthesized using in situ polymerization technology. The structure and performance of OF microencapsulated APP (OFAPP) were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The thermal properties of OFAPP were systematically analyzed through thermogravimetric analysis. Flame retardancy tests, such as limiting oxygen index (LOI) and UL-94, were conducted to evaluate the effect of varying the composition of APP and OFAPP in silanol-terminated polyurethane (Si-PU) composites. The results indicated that the microencapsulation of APP with the OF resin resulted in improved hydrophobicity. The results also revealed that the flame retardancy of the Si-PU/OFAPP composite (LOI = 37%) was higher than that of the Si-PU/APP composite (LOI = 23%) at the same additive loading. - Highlights: • A novel microencapsulated flame retardant was synthesized using in situ polymerization technology. • The microencapsulation of ammonium polyphosphate with the polymer resin resulted in improved hydrophobicity. • Polyurethane composites have excellent thermal stability and flame retardance.

  15. Pterodon pubescens Benth: stability study of microencapsulated extract and isolated compounds monitored by antinociceptive assays

    International Nuclear Information System (INIS)

    Servat, Leila; Spindola, Humberto M.; Carvalho, Joao E. de; Foglio, Mary A.; Rodrigues, Rodney A.F.; Sousa, Ilza M.O.; Ruiz, Ana L.T.G.

    2012-01-01

    Pterodon pubescens Benth. (Pp) seeds, commercially available in Brazil, are used in folk medicine in anti-inflammatory, analgesic, and anti-rheumatic preparations. The present study demonstrated the antinociceptive properties of isomers 6a-hydroxy-7β-acetoxy-vouacapan-17β--oate methyl ester and 6a-acetoxy-7β-hydroxy-vouacapan-17β-oate methyl ester (C1), isolated from (Pp), employing different experimental models. A stability study was performed to investigate the relationship of microencapsulation by spray-drying on the maintenance of antinociceptive action. Therefore, C1 and Pp extract samples were monitored in accelerated stability study, evaluating both microencapsulated and non-microencapsulated samples. It was observed that sample C1 possess antinociceptive activity revealed by writhing and formalin tests; C1 showed significantly anti-allodynic, but not ntihyperalgesic effect; the microencapsulation maintained the activity and integrity of both, sample C1 and Pp crude extract; microencapsulation by spray drying is a useful alternative to increase shelf life. (author)

  16. Microencapsulation Technology: A Powerful Tool for Integrating Expansion and Cryopreservation of Human Embryonic Stem Cells

    Science.gov (United States)

    Malpique, Rita; Brito, Catarina; Jensen, Janne; Bjorquist, Petter; Carrondo, Manuel J. T.; Alves, Paula M.

    2011-01-01

    The successful implementation of human embryonic stem cells (hESCs)-based technologies requires the production of relevant numbers of well-characterized cells and their efficient long-term storage. In this study, cells were microencapsulated in alginate to develop an integrated bioprocess for expansion and cryopreservation of pluripotent hESCs. Different three-dimensional (3D) culture strategies were evaluated and compared, specifically, microencapsulation of hESCs as: i) single cells, ii) aggregates and iii) immobilized on microcarriers. In order to establish a scalable bioprocess, hESC-microcapsules were cultured in stirred tank bioreactors. The combination of microencapsulation and microcarrier technology resulted in a highly efficient protocol for the production and storage of pluripotent hESCs. This strategy ensured high expansion ratios (an approximately twenty-fold increase in cell concentration) and high cell recovery yields (>70%) after cryopreservation. When compared with non-encapsulated cells, cell survival post-thawing demonstrated a three-fold improvement without compromising hESC characteristics. Microencapsulation also improved the culture of hESC aggregates by protecting cells from hydrodynamic shear stress, controlling aggregate size and maintaining cell pluripotency for two weeks. This work establishes that microencapsulation technology may prove a powerful tool for integrating the expansion and cryopreservation of pluripotent hESCs. The 3D culture strategy developed herein represents a significant breakthrough towards the implementation of hESCs in clinical and industrial applications. PMID:21850261

  17. Photocytotoxicity in human dermal fibroblasts elicited by permanent makeup inks containing titanium dioxide.

    Science.gov (United States)

    Wamer, Wayne G; Yin, Jun-Jie

    2011-01-01

    Titanium dioxide (TiO2) is a pigment widely used in decorative tattoo and permanent makeup inks. However, little is known about the risks associated with its presence in these products. We have developed an in vitro assay to identify inks containing TiO2 that are cytotoxic and/or photocytotoxic. The presence of TiO2 in ten permanent makeup inks was established by X-ray fluorescence. Using X-ray diffraction, we found that seven inks contained predominately TiO2 (anatase), the more photocatalytically active crystalline form of TiO2. The remaining inks contained predominately TiO2 (rutile). To identify cytotoxic and/or photocytotoxic inks, human dermal fibroblasts were incubated for 18 h in media containing inks or pigments isolated from inks. Fibroblasts were then irradiated with 10 J/cm2 UVA radiation combined with 45 J/cm2 visible light for determining photocytotoxicity, or kept in the dark for determining cytotoxicity. Toxicity was assessed as inhibition of colony formation. No inks were cytotoxic. However eight inks, and the pigments isolated from these inks, were photocytotoxic. Using ESR, we found that most pigments from photocytotoxic inks generated hydroxyl radicals when photoexcited with UV radiation. Therefore, the possibility of photocytotoxicity should be considered when evaluating the safety of permanent makeup inks containing TiO2.

  18. Survival rate of eukaryotic cells following electrophoretic nanoinjection.

    Science.gov (United States)

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-25

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells.

  19. Electrophoretic deposition of composite hydroxyapatite-chitosan coatings

    International Nuclear Information System (INIS)

    Pang Xin; Zhitomirsky, Igor

    2007-01-01

    Cathodic electrophoretic deposition has been utilized for the fabrication of composite hydroxyapatite-chitosan coatings on 316L stainless steel substrates. The addition of chitosan to the hydroxyapatite suspensions promoted the electrophoretic deposition of the hydroxyapatite nanoparticles and resulted in the formation of composite coatings. The obtained coatings were investigated by X-ray diffraction, thermogravimetric and differential thermal analysis, scanning and transmission electron microscopy, potentiodynamic polarization measurements, and electrochemical impedance spectroscopy. It was shown that the deposit composition can be changed by a variation of the chitosan or hydroxyapatite concentration in the solutions. Experimental conditions were developed for the fabrication of hydroxyapatite-chitosan nanocomposites containing 40.9-89.8 wt.% hydroxyapatite. The method enabled the formation of adherent and uniform coatings of thicknesses up to 60 μm. X-ray studies revealed that the preferred orientation of the hydroxyapatite nanoparticles in the chitosan matrix increases with decreasing hydroxyapatite content in the composite coatings. The obtained coatings provided the corrosion protection for the 316L stainless steel substrates

  20. Survival rate of eukaryotic cells following electrophoretic nanoinjection

    Science.gov (United States)

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-01

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells. PMID:28120926

  1. Electrophoretic deposition of zinc-substituted hydroxyapatite coatings.

    Science.gov (United States)

    Sun, Guangfei; Ma, Jun; Zhang, Shengmin

    2014-06-01

    Zinc-substituted hydroxyapatite nanoparticles synthesized by the co-precipitation method were used to coat stainless steel plates by electrophoretic deposition in n-butanol with triethanolamine as a dispersant. The effect of zinc concentration in the synthesis on the morphology and microstructure of coatings was investigated. It is found that the deposition current densities significantly increase with the increasing zinc concentration. The zinc-substituted hydroxyapatite coatings were analyzed by X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. It is inferred that hydroxyapatite and triethanolamine predominate in the chemical composition of coatings. With the increasing Zn/Ca ratios, the contents of triethanolamine decrease in the final products. The triethanolamine can be burnt out by heat treatment. The tests of adhesive strength have confirmed good adhesion between the coatings and substrates. The formation of new apatite layer on the coatings has been observed after 7days of immersion in a simulated body fluid. In summary, the results show that dense, uniform zinc-substituted hydroxyapatite coatings are obtained by electrophoretic deposition when the Zn/Ca ratio reaches 5%. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Electrophoretic preparation and characterization of porous electrodes from diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Riveros, Lyda La Torre; Soto, Keyla; Tryk, Donald A; Cabrera, Carlos R [Department of Chemistry and Center of Nanoscale Materials, University of Puerto Rico, Rio Piedras, PO Box 23346 San Juan, PR 00931-3346 (Puerto Rico)

    2007-04-15

    We carried out chemical purification of commercially available diamond nanoparticles by refluxing in aqueous HNO{sub 3} and characterized the samples by spectroscopic and surface techniques before and after purification. As a first step in the preparation of electrodes for electrochemistry, we have electrophoretically deposited thin, highly uniform films of controlled thickness (1-8 {mu}m) on silicon substrates using the purified diamond nanoparticles. These have been characterized by scanning electron microscopy (SEM). All films obtained were homogeneous in thickness and without macroscopic holes or cracks. Such structures could also be used in many other applications such as fuel cells or lithium batteries. We have performed cyclic voltammetry experiments with these electrodes. The voltammograms of diamond nanoparticles electrophoretically deposited on silicon indicate hydrogen evolution. This demonstrates that the material is useful as electrocatalitic support. This conclusion is supported by the cyclic voltammograms obtained using ferrycyanide (III) chloride and hexaamineruthenium (III) chloride complexes as redox probes. However, these redox probes showed very small peak currents. This behavior could be improved by doping the diamond nanoparticles with an impurity such as boron.

  3. Electrophoretic preparation and characterization of porous electrodes from diamond nanoparticles

    International Nuclear Information System (INIS)

    Riveros, Lyda La Torre; Soto, Keyla; Tryk, Donald A; Cabrera, Carlos R

    2007-01-01

    We carried out chemical purification of commercially available diamond nanoparticles by refluxing in aqueous HNO 3 and characterized the samples by spectroscopic and surface techniques before and after purification. As a first step in the preparation of electrodes for electrochemistry, we have electrophoretically deposited thin, highly uniform films of controlled thickness (1-8 μm) on silicon substrates using the purified diamond nanoparticles. These have been characterized by scanning electron microscopy (SEM). All films obtained were homogeneous in thickness and without macroscopic holes or cracks. Such structures could also be used in many other applications such as fuel cells or lithium batteries. We have performed cyclic voltammetry experiments with these electrodes. The voltammograms of diamond nanoparticles electrophoretically deposited on silicon indicate hydrogen evolution. This demonstrates that the material is useful as electrocatalitic support. This conclusion is supported by the cyclic voltammograms obtained using ferrycyanide (III) chloride and hexaamineruthenium (III) chloride complexes as redox probes. However, these redox probes showed very small peak currents. This behavior could be improved by doping the diamond nanoparticles with an impurity such as boron

  4. Template-based electrophoretic deposition of perovskite PZT nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nourmohammadi, A. [Solid Surfaces Analysis and Electron Microscopy Group, Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz (Germany); Semiconductors Department, Materials and Energy Research Center (MERC), 31779-83634 Karaj (Iran, Islamic Republic of); Bahrevar, M.A. [Semiconductors Department, Materials and Energy Research Center (MERC), 31779-83634 Karaj (Iran, Islamic Republic of)], E-mail: ma.bahrevar@yahoo.com; Hietschold, M. [Solid Surfaces Analysis and Electron Microscopy Group, Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz (Germany)

    2009-04-03

    Template-based electrophoretic deposition of perovskite lead zirconate titanate (PZT) nanotubes was achieved using anodic alumina (AA) membranes and sols, containing lead, zirconium and titanium precursors. The effect of various anodizing voltages on the size of the channels in the anodic alumina template was investigated. The prepared sol was driven into the channels under the influence of various electric fields and subsequently sintered at about 700 deg. C. The effects of the initial heating rates and the burn-out temperature on the phase evolution of the samples were studied and a modified firing process was employed. The effects of the electrophoretic voltage and the deposition time on the average wall thickness of the tubes were investigated. Scanning and transmission electron microscopy (SEM and TEM) revealed the efficiency of electrophoresis in the growth of lead zirconate titanate nanotubes in a close-packed array. The X-ray diffraction analyses indicated the presence of perovskite as the principal phase after a modified firing schedule.

  5. Ink composition for making a conductive silver structure

    Science.gov (United States)

    Walker, Steven B.; Lewis, Jennifer A.

    2016-10-18

    An ink composition for making a conductive silver structure comprises a silver salt and a complex of (a) a complexing agent and a short chain carboxylic acid or (b) a complexing agent and a salt of a short chain carboxylic acid, according to one embodiment. A method for making a silver structure entails combining a silver salt and a complexing agent, and then adding a short chain carboxylic acid or a salt of the short chain carboxylic acid to the combined silver salt and a complexing agent to form an ink composition. A concentration of the complexing agent in the ink composition is reduced to form a concentrated formulation, and the silver salt is reduced to form a conductive silver structure, where the concentrated formulation and the conductive silver structure are formed at a temperature of about 120.degree. C. or less.

  6. Print Quality of Ink Jet Printed PVC Foils

    Directory of Open Access Journals (Sweden)

    Nemanja Kašiković

    2015-09-01

    Full Text Available Digital printing technique is used for a wide variety of substrates, one of which are PVC foils. Samples used in this research were printed by digital ink jet printing technique using Mimaki JV22 printing machine and J-Eco Subly Nano inks. As printing substrates, two different types of materials were used (ORACAL 640 - Print Vinyl and LG Hausys LP2712. A test card consisting of fields of CMYK colours was created and printed, varying the number of ink layers applied. Samples were exposed to light after the printing process. Spectrophotometric measurements were conducted before and after the light treatment. Based on spectrophotometricaly obtained data, colour differences ΔE2000 were calculated. Results showed that increasing number of layers, as well as the right choice of substrates, can improve the behaviour of printed product during exploitation.

  7. Silver nanoparticle ink technology: state of the art

    Directory of Open Access Journals (Sweden)

    Rajan K

    2016-01-01

    Full Text Available Krishna Rajan, Ignazio Roppolo, Annalisa Chiappone, Sergio Bocchini, Denis Perrone, Alessandro Chiolerio Center for Space Human Robotics, Italian Institute of Technology, Turin, Italy Abstract: Printed electronics will bring to the consumer level great breakthroughs and unique products in the near future, shifting the usual paradigm of electronic devices and circuit boards from hard boxes and rigid sheets into flexible thin layers and bringing disposable electronics, smart tags, and so on. The most promising tool to achieve the target depends upon the availability of nanotechnology-based functional inks. A certain delay in the innovation-transfer process to the market is now being observed. Nevertheless, the most widely diffused product, settled technology, and the highest sales volumes are related to the silver nanoparticle-based ink market, representing the best example of commercial nanotechnology today. This is a compact review on synthesis routes, main properties, and practical applications. Keywords: silver nanoparticles, surface plasmon resonance, nanocomposites, inks, printed electronics

  8. A Potential Adjuvant Agent of Chemotherapy: Sepia Ink Polysaccharides

    Directory of Open Access Journals (Sweden)

    Fangping Li

    2018-03-01

    Full Text Available Sepia ink polysaccharide (SIP isolated from squid and cuttlefish ink is a kind of acid mucopolysaccharide that has been identified in three types of primary structures from squid (Illex argentinus and Ommastrephes bartrami, cuttlefish Sepiella maindroni, and cuttlefish Sepia esculenta ink. Although SIP has been proved to be multifaceted, most of the reported evidence has illuminated its chemopreventive and antineoplastic activities. As a natural product playing a role in cancer treatment, SIP may be used as chemotherapeutic ancillary agent or functional food. Based on the current findings on SIP, we have summarized four topics in this review, including: chemopreventive, antineoplastic, chemosensitive, and procoagulant and anticoagulant activities, which are correlative closely with the actions of anticancer agents on cancer patients, such as anticancer, toxicity and thrombogenesis, with the latter two actions being common causes of death in cancer cases exposed to chemotherapeutic agents.

  9. Ink Penetration of Uncoated Inkjet Paper and Impact on Printing Quality

    Directory of Open Access Journals (Sweden)

    Ren'ai Li

    2015-10-01

    Full Text Available This study investigated ink penetration through imaging technology, first by gray and contour mapping and then calculating the ink penetration depth by programing. Next, a series of further analyses were carried out, including average ink permeability, ink distributions, and printability of different uncoated inkjet paper with different parameters. The impact on ink penetration of the microstructure and hydrophilicity of the uncoated paper was also studied. The experimental results indicated that paper specimens with sizing agent were resistant to the ink, resulting in a slow and shallow ink penetration. Paper containing filler had a more hydrophilic surface and porous structure, leading to a faster and deeper ink penetration. However, the calendering operation could make the paper structure more compact and reduce the porosity and penetration depth. When an appropriate combination of sizing agent, filler content, and the calendering process was utilized, a more stable hue could be produced with improvements in optical density, saturation, and color.

  10. Microencapsulation of single-cell protein from various microalgae species

    Directory of Open Access Journals (Sweden)

    Purnama Sukardi

    2015-10-01

    Full Text Available ABSTRACT The objective of the research was to evaluate nutritional values of microencapsulated diet made from single cell protein of microalgae. Complete randomized design was applied using three different types of microalgae for inclusion trials i.e. (A Nannochloropsis sp., (B Chlorella sp., and (C Spirulina sp. with five replications respectively. Microencapsulated diet was produced by a modification method based on thermal cross-linking with stable temperature. Phytoplankton was cultured in sea water for which fertilized by a modification of Walne and Guillard fertilizer. The results showed that the highest value of nutrition content was Spirulina sp. and the average composition of protein, crude lipid, carbohydrate, ash, nitrogen free extract, and water content was 34.80%, 0.30%, 18.53%, 20.09%, 26.29%, and 13.32%, respectively. Organoleptically, microcapsule showed that the color of capsule was dark green and smell fresh phytoplankton. Keywords: microcapsule, single-cell protein, thermal cross-linking, microalgae, phytoplankton  ABSTRAK Tujuan penelitian adalah mengevaluasi kandungan nutrisi pakan mikrokapsul protein sel tunggal (single cell protein yang berasal dari berbagai jenis mikroalga (fitoplankton. Rancangan percobaan yang digunakan adalah rancangan acak lengkap, dengan perlakuan inklusi mikrokapsul dari jenis fitoplankton (A Nannochloropsis sp., (B Chlorella sp., dan (C Spirulina sp., masing-masing diulang lima kali. Pembuatan mikrokapsul dilakukan dengan menggunakan modifikasi metode dasar thermal cross-linking, serta menerapkan teknik pengeringan suhu konstan. Proses pembuatan mikrokapsul protein diawali dengan kultur fitoplankton jenis Nannochloropsis sp., Chlorella sp., dan Spirulina sp. Kultur dilakukan di dalam laboratorium menggunakan media air laut dan modifikasi pupuk Walne dan Guillard. Hasil penelitian menunjukkan bahwa kandungan nutrisi tertinggi terdapat pada jenis mikrokapsul protein sel tunggal yang berasal dari

  11. Development of a technique for psyllium husk mucilage purification with simultaneous microencapsulation of curcumin.

    Directory of Open Access Journals (Sweden)

    André Álvares Monge Neto

    Full Text Available This study focused on evaluating a technique for the psyllium husk mucilage (PHM purification with simultaneous microencapsulation of curcumin. PHM was extracted with water and purified with ethanol. For the mucilage purification and simultaneous microencapsulation, an ethanolic solution of curcumin was used. After dehydration, the samples were analysed by instrumental techniques and evaluated for thermal stability. The presence of curcumin in the solution did not impair the yield of precipitated polysaccharide. Interactions of the dye and carbohydrates were confirmed by displacement of peaks in FT-IR and FT-Raman spectroscopy. The onset temperature of degradation of microcapsules was superior to that of curcumin. Thermal stability in solution at 90°C also improved. After 300 minutes of heating, the microcapsules had a remnant curcumin content exceeding 70%, while, in standard sample, the remaining curcumin content was 4.46%. Thus, the developed technique was successful on purification of PHM and microencapsulation of curcumin.

  12. Microencapsulation of Ginger Volatile Oil Based on Gelatin/Sodium Alginate Polyelectrolyte Complex.

    Science.gov (United States)

    Wang, Lixia; Yang, Shiwei; Cao, Jinli; Zhao, Shaohua; Wang, Wuwei

    2016-01-01

    The coacervation between gelatin and sodium alginate for ginger volatile oil (GVO) microencapsulation as functions of mass ratio, pH and concentration of wall material and core material load was evaluated. The microencapsulation was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and thermal gravimetric analysis (TGA). SEM and FT-IR studies indicated the formation of polyelectrolyte complexation between gelatin and sodium alginate and successful encapsulation of GVO into the microcapsules. Thermal property study showed that the crosslinked microparticles exhibited higher thermal stability than the neat GVO, gelatin, and sodium alginate. The stability of microencapsulation of GVO in a simulated gastric and an intestinal situation in vitro was also studied. The stability results indicated that the release of GVO from microcapsules was much higher in simulated intestinal fluid, compared with that in simulated-gastric fluid.

  13. Investigation of Larger Poly(α-Methylstyrene) Mandrels for High Gain Designs Using Microencapsulation

    International Nuclear Information System (INIS)

    Takagi, Masaru; Cook, Robert; McQuillan, Barry; Gibson, Jane; Paguio, Sally

    2004-01-01

    In recent years we have demonstrated that 2-mm-diameter poly(α-methylstyrene) mandrels meeting indirect drive NIF surface symmetry specifications can be produced using microencapsulation methods. Recently higher gain target designs have been introduced that rely on frequency doubled (green) laser energy and require capsules up to 4 mm in diameter, nominally meeting the same surface finish and symmetry requirements as the existing 2-mm-diameter capsule designs. Direct drive on the NIF also requires larger capsules. In order to evaluate whether the current microencapsulation-based mandrel fabrication techniques will adequately scale to these larger capsules, we have explored extending the techniques to 4-mm-diameter capsules. We find that microencapsulated shells meeting NIF symmetry specifications can be produced, the processing changes necessary to accomplish this are presented here

  14. [The cell micro-encapsulation techniques and its advancement in the field of gene therapy].

    Science.gov (United States)

    Li, Xiaoling; Cai, Shaohui

    2006-12-01

    It is no doubt that the gene therapy using recombinant engineering cells provides a novel approach to many refractory diseases. However, the transplant rejection from the host's immune system against heterogeneous cells has been the main handicap of its clinical application. The modern cell micro-encapsulation technique with good immune isolation makes it possible to overcome this problem and has shown potential application foreground in clinical therapies for a lot of diseases such as Parkinson's disease and Hemophiliac disease. This article reviews mainly the relative materials and techniques in processing micro-encapsulation, the host cells used to construct the recombinant genetic engineering cells and application of cell micro-encapsulation technique in the field of gene therapy.

  15. External PIXE analysis of old inks and papers

    International Nuclear Information System (INIS)

    Hassanzadeh, A.; Lamehi-Rachti, M.; Oliaiy, P.; Rahighi, J.; Shokouhi, F.

    1999-01-01

    Proton Induced X-ray Emission, PIXE is a very well established analytical method. This technique of analysis can equally be applied both in vacuum, internal PIXE, and in atmosphere, external PIXE. External PIXE has been applied to material analysis in Van de Graaff laboratory at AEOI using filters and funny filters. Advantages of using these filters have been studied when analysing ancient written documents such as envelopes, inks, and newspapers. This technique clearly demonstrated the differences between new and old inks and papers. More data is needed to show other features of this technique. (author)

  16. Microbial status and product labelling of 58 original tattoo inks

    DEFF Research Database (Denmark)

    Høgsberg, T; Saunte, D M; Frimodt-møller, Niels

    2011-01-01

    and labelled according to REACH as if they were plain chemicals. Objective  The objective of this study was to check the microbial product safety of unopened and opened tattoo ink stock bottles. Packaging, labelling, preservation, sterility and contamination with micro-organisms were studied. Methods  Physical......-pathogenic environmental bacteria. Yeast or moulds were detected in none of the samples. A total of 31% of the manufacturers informed only about the brand name. No information about content, sterility, risks or expiry date was indicated on the label. A total of 42% claimed sterility of their inks. A total of 54% labelled...

  17. Pigments and oligomers for inks - moving towards the best combination

    International Nuclear Information System (INIS)

    Hutchinson, I.; Smith, S.; Grierson, W.; Devine, E.

    1999-01-01

    The formulation of UV curable printing inks depends on several complex factors. If the individual components of the ink are not complementary, then performance problems can arise. One critical combination is that between the pigment and the oligomer. In a new approach to improve understanding of pigment/oligomer interactions, the resources of a pigment manufacturer and an oligomer manufacturer have been combined to investigate the problem. Initial screening of process yellow pigments and several oligomer types highlighted performance variations which were then examined in more detail

  18. Determination and optimization of the ζ potential in boron electrophoretic deposition on aluminium substrates

    International Nuclear Information System (INIS)

    Oliveira Sampa, M.H. de; Vinhas, L.A.; Pino, E.S.

    1991-05-01

    In this work we present an introduction of the electrophoretic process followed by a detailed experimental treatment of the technique used in the determination and optimization of the ζ-potential, mainly as a function of the electrolyte concentration, in a high purity boron electrophoretics deposition on aluminium substrates used as electrodes in neutron detectors. (author)

  19. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed in...

  20. Applicability of surface-enhanced resonance Raman scattering for the direct discrimination of ballpoint pen inks

    NARCIS (Netherlands)

    Seifar, R.M.; Verheul, J.M.; Ariese, F.; Brinkman, U.A.T.; Gooijer, C.

    2001-01-01

    In situ surface-enhanced resonance Raman spectroscopy (SERRS) with excitation at 685 nm is suitable for the direct discrimination of blue and black ballpoint pen inks on paper. For black inks, shorter excitation wavelengths can also be used. For blue inks, SERRS at 514.5 and 457.9 nm does not

  1. Experimental Investigation of Thermal Conductivity of Concrete Containing Micro-Encapsulated Phase Change Materials

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2011-01-01

    in this article utilizes integration of the concrete and the microencapsulated Phase Change Material (PCM). PCM has the ability to absorb and release significant amounts of heat at a specific temperature range. As a consequence of admixing PCM to the concrete, new thermal properties like thermal conductivity...... and specific heat capacity have to be defined. This paper presents results from the measurements of the thermal conductivity of various microencapsulated PCM-concrete and PCM-cement-paste mixes. It was discovered that increase of the amount of PCM decreases the thermal conductivity of the concrete PCM mixture....... Finally, a theoretical calculation methodology of thermal conductivity for PCM-concrete mixes is developed....

  2. Microencapsulated PCM slurry for heat transfer media. 4. Reduction of undercooling

    International Nuclear Information System (INIS)

    Akino, Norio; Nakano, Fumihiko; Kubo, Shinji; Nagashima, Akira; Sagiya, Syojiro; Nakanishi, Masayuki.

    1997-01-01

    New heat transfer media with large heat capacity is under development, using a slurry of microencapsulated-phase-change-material (MCPCM) mixed into carrying liquid. To prepare stable MCPCM slurry, fatty acid is selected as PCM owing to relatively large density, and diameter of MCPCM particles are below 10 μm. The temperature difference between melting and freezing points, the so-called undercooling becomes remarkable. To reduce the undercooling, an additive is mixed into fatty acid to introduce nucleation cites. It is concluded that Hexatriacontane is effective to remove undercooling of microencapsulated Lauric acid, Myristic acid and their mixture, and Sebacic acid is effective for Lauric acid. (author)

  3. Microencapsulated fuel technology for commercial light water and advanced reactor application

    International Nuclear Information System (INIS)

    Terrani, Kurt A.; Snead, Lance L.; Gehin, Jess C.

    2012-01-01

    The potential application of microencapsulated fuels to light water reactors (LWRs) has been explored. The specific fuel manifestation being put forward is for coated fuel particles embedded in silicon carbide or zirconium metal matrices. Detailed descriptions of these concepts are presented, along with a review of attributes, potential benefits, and issues with respect to their application in LWR environments, specifically from the standpoints of materials, neutronics, operations, and economics. Preliminary experiment and modeling results imply that with marginal redesign, significant gains in operational reliability and accident response margins could be potentially achieved by replacing conventional oxide-type LWR fuel with microencapsulated fuel forms.

  4. Some aspects of the hydrodynamics of the microencapsulation route to NIF mandrels

    International Nuclear Information System (INIS)

    Gresho, P.M.

    1999-01-01

    Spherical plastic shells for use as mandrels for the fabrication of ICF (Inertial Confinement Fusion) target capsules can be produced by solution-based microencapsulation techniques. The specifications for these mandrels in terms of sphericity are extremely rigorous, and it is clear that various aspects of the solution hydrodynamics associated with their production are important in controlling the quality of the final product. This paper explores what the author knows (and needs to know) about the hydrodynamics of the microencapsulation process in order to lay the foundation for process improvements as well as identify inherent limits

  5. Viability of microencapsulated Lactobacillus casei in synbiotic mayonnaise

    Directory of Open Access Journals (Sweden)

    Lieu, M.D.

    2017-07-01

    Full Text Available In this study, whey protein, maltodextrin and GOS (Galacto-oligosaccharides used as microencapsulating agents to protect Lactobacillus casei during spray-drying and mayonnaise storage. The morphology of microcapsules, pH charges, the survival rate during mayonnaise storage as well as survival in simulated gastric fluid (SGF and intestinal fluid (SIF was tested in this study. The results indicated that whey protein showed a protective effect better than maltodextrin during spray-drying. The particles showed spherical shape and typical concavity of all samples and encapsulating agents were not affected by the size and surface structure of particles. The pH charges were not significantly different in all mayonnaise samples in this test. The viability of free cell L. casei after 6 weeks storage was significant decrease about 4 log CFU/g compared to 1.55 to 3.27 log CFU/g in the mayonnaise samples containing microcapsules in which maltodextrin showed the lowest of L. casei survival rate. In SGF and SIF conditions, maltodextrin act as prebiotic sufficiently which do not need adding GOS. The combination of whey protein and maltodextrin in which maltodextrin plays a role as supporting agents for the spray-drying process as well as prebiotic potential, while whey protein with high buffer property which enhancing the survival rate of L. casie in low pH.

  6. Use of yeast spores for microencapsulation of enzymes.

    Science.gov (United States)

    Shi, Libing; Li, Zijie; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki

    2014-08-01

    Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.

  7. Microencapsulation of tramadol hydrochloride and physicochemical evaluation of formulations

    International Nuclear Information System (INIS)

    Murtaza, G.; Ahmad, M.

    2009-01-01

    The present project involves the microencapsulation of tramadol hydrochloride with ethocel using a non-solvent addition coacervation technique. The concentration of ethocel was varied to get a prolonged release profile. Then microparticles were compressed into tablets to study the variation of drug release between the microparticles and tablets. The microparticles were off white, aggregated and irregular in morphology having good percentage entrapment efficiency and percentage production yield. Dissolution study was made using USP XXIV apparatus I and II respectively, in 900 ml double distilled water at 50 rpm maintained at 37 degree C. An Initial burst effect was noted in the drug release behavior. Polyisobutylene concentration affected inversely the rate of drug release from microparticles. Dissolution media and stirring speed affected insignificantly (p>.05) the release pattern. Tramadol hydrochloride tablets showed good stability and reproducibility. UV and FTIR spectroscopy and X-Ray diffractometry proved that tramadol hydrochloride was completely and uniformly distributed in ethocel with out any strong interaction. The mechanism of drug release was anomalous diffusion that was best fit to Higuchi's equation. It can be concluded that multi-unit, slow-release tramadol hydrochloride microparticles can be formulated efficiently with non-solvent addition coacervation technique using ethocel. (author)

  8. Iron microencapsulation in gum tragacanth using solvent evaporation method.

    Science.gov (United States)

    Asghari-Varzaneh, Elham; Shahedi, Mohammad; Shekarchizadeh, Hajar

    2017-10-01

    In this study iron salt (FeSO 4 ·7H 2 O) was microencapsulated in gum tragacanth hydrogel using solvent evaporation method. Three significant parameters (ferrous sulfate content, content of gum tragacanth, and alcohol to mixture ratio) were optimized by response surface methodology to obtain maximum encapsulation efficiency. Ferrous sulfate content, 5%, content of gum tragacanth, 22%, and alcohol to mixture ratio, 11:1 was determined to be the optimum condition to reach maximum encapsulation efficiency. Microstructure of iron microcapsules was thoroughly monitored using scanning electron microscopy (SEM). The microphotographs indicated two distinct crystalline and amorphous structures in the microcapsules. This structure was confirmed by X-ray diffraction (XRD) pattern of microcapsules. Fourier transform infrared (FTIR) spectra of iron microcapsules identified the presence of iron in the tragacanth microcapsules. The average size of microcapsules was determined by particle size analyzer. Release assessment of iron in simulated gastric fluid showed its complete release in stomach which is necessary for its absorption in duodenum. However, the use of encapsulated iron in gum tragacanth in watery foods is rather recommended due to the fast release of iron in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Microencapsulation of Bacterial Cells by Emulsion Technique for Probiotic Application.

    Science.gov (United States)

    Mandal, Surajit; Hati, Subrota

    2017-01-01

    Probiotics are dietary concepts to improve the dynamics of intestinal microbial balance favorably. Careful screening of probiotic strains for their technological suitability can also allow selection of strains with the best manufacturing and food technology characteristics. However, even the most robust probiotic bacteria are currently in the range of food applications to which they can be applied. Additionally, bacteria with exceptional functional heath properties are ruled out due to technological limitations. New process and formulation technologies will enable both expansion of the range of products in to which probiotics can be applied and the use of efficacious stains that currently cannot be manufactured or stored with existing technologies. Viability of probiotics has been both a marketing and technological concern for many industrial produces. Probiotics are difficult to work with, the bacteria often die during processing, and shelf life is unpredictable. Probiotics are extremely susceptible environmental conditions such as oxygen, processing and preservation treatments, acidity, and salt concentration, which collectively affect the overall viability of probiotics. Manufacturers have long been fortifying products with probiotics; they have faced significant processing challenges regarding the stability and survivability of probiotics during processing and preservation treatments, storage as well during their passage through GIT. Application of microencapsulation significantly improves the stability of probiotics during food processing and gastrointestinal transit.

  10. Microencapsulation of Self Healing Agents for Corrosion Control Coatings

    Science.gov (United States)

    Jolley, S. T.; Li, W.; Buhrow, J. W.; Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, is a very costly problem that has a major impact on the global economy. Results from a 2-year breakthrough study released in 2002 by the U.S. Federal Highway Administration (FHWA) showed that the total annual estimated direct cost associated with metallic corrosion in nearly every U.S. industry sector was a staggering $276 billion, approximately 3.1% of the nation's Gross Domestic Product (GOP). Corrosion protective coatings are widely used to protect metallic structures from the detrimental effects of corrosion but their effectiveness can be seriously compromised by mechanical damage, such as a scratch, that exposes the metallic substrate. The incorporation of a self healing mechanism into a corrosion control coating would have the potential to significantly increase its effectiveness and useful lifetime. This paper describes work performed to incorporate a number of microcapsule-based self healing systems into corrosion control coatings. The work includes the preparation and evaluation of self-healing systems based on curable epoxy, acrylate, and siloxane resins, as well as, microencapsulated systems based on passive, solvent born, healing agent delivery. The synthesis and optimization of microcapsule-based self healing systems for thin coating (less than 100 micron) will be presented.

  11. Microencapsulation of Algal Oil Using Spray Drying Technology

    Directory of Open Access Journals (Sweden)

    Xueshan Pan

    2018-01-01

    Full Text Available This work aims at developing a process of microencapsulation of algal oil containing ≥40 % docosahexaenoic acid (DHA using spray drying technology. Purity Gum® 2000 and Capsul®, both obtained from waxy corn starch, were chosen as the encapsulation materials. The effects of emulsification conditions on the droplet size, stability, viscosity and surface tension, and the effects of spraying conditions on the particle size, moisture content and surface oil content were investigated successively. The morphology of emulsion droplets and the microcapsules was observed by optical microscope and scanning electron micro scopy. The results showed that the produced spherical microcapsules were smooth and free of pores, cracks, and surface indentation when shear velocity was 8.63 m/s in the first step of emulsification, homogenization pressure was 1.75·10˄8 Pa and number of passes through homogenization unit was six for fine emulsification, rotational speed of spray disk was 400 s-1, and air inlet temperature was 170 °C. Therefore, it was concluded that the emulsification and encapsulation of algal oil containing DHA with above process was feasible.

  12. Electrophoretic Nanocrystalline Graphene Film Electrode for Lithium Ion Battery

    International Nuclear Information System (INIS)

    Kaprans, Kaspars; Bajars, Gunars; Kucinskis, Gints; Dorondo, Anna; Mateuss, Janis; Gabrusenoks, Jevgenijs; Kleperis, Janis; Lusis, Andrejs

    2015-01-01

    Graphene sheets were fabricated by electrophoretic deposition method from water suspension of graphene oxide followed by thermal reduction. The formation of nanocrystalline graphene sheets has been confirmed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrochemical performance of graphene sheets as anode material for lithium ion batteries was evaluated by cycling voltammetry, galvanostatic charge-discharge cycling, and electrochemical impedance spectroscopy. Fabricated graphene sheets exhibited high discharge capacity of about 1120 mAh·g −1 and demonstrated good reversibility of lithium intercalation and deintercalation in graphene sheet film with capacity retention over 85 % after 50 cycles. Results show that nanocrystalline graphene sheets prepared by EPD demonstrated a high potential for application as anode material in lithium ion batteries

  13. Continuous electrophoretic purification of individual analytes from multicomponent mixtures.

    Science.gov (United States)

    McLaren, David G; Chen, David D Y

    2004-04-15

    Individual analytes can be isolated from multicomponent mixtures and collected in the outlet vial by carrying out electrophoretic purification through a capillary column. Desired analytes are allowed to migrate continuously through the column under the electric field while undesired analytes are confined to the inlet vial by application of a hydrodynamic counter pressure. Using pressure ramping and buffer replenishment techniques, 18% of the total amount present in a bulk sample can be purified when the resolution to the adjacent peak is approximately 3. With a higher resolution, the yield could be further improved. Additionally, by periodically introducing fresh buffer into the sample, changes in pH and conductivity can be mediated, allowing higher purity (>or=99.5%) to be preserved in the collected fractions. With an additional reversed cycle of flow counterbalanced capillary electrophoresis, any individual component in a sample mixture can be purified providing it can be separated in an electrophoresis system.

  14. Electrophoretic deposition of nickel zinc ferrite nanoparticles into microstructured patterns

    Directory of Open Access Journals (Sweden)

    Stefan J. Kelly

    2016-05-01

    Full Text Available Using DC electric fields, nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4 nanoparticles (Dh =16.6 ± 3.6 nm are electrophoretically deposited onto silicon substrates to form dense structures defined by photoresist molds. Parameters such as electric field, bath composition, and deposition time are tuned to produce films ranging in thickness from 177 to 805 nm. The deposited films exhibit soft magnetic properties with a saturation magnetization of 60 emu/g and a coercivity of 2.6 kA/m (33 Oe. Additionally, the influence of the photoresist mold on the deposit profile is studied, and patterned films with different shapes (lines, squares, circles, etc. are demonstrated with feature sizes down to 5 μm.

  15. Preparation of guinea pig macrophage for electrophoretic experiments in space

    Science.gov (United States)

    1979-01-01

    Methods of storage and cultivation of macrophage cells in preparation for space experiments were investigated. Results show that freezing and thawing immediately after extraction did not cause any change in viability or electrophoretic mobility of the cells. A prolonged storage at -80 C did cause cell damage as indicated by a 95% reduction in variable cells. Cell damage was decreased when Glycerol or Dimethyl Sulfoxide (DMSO) was added as a cryogenic protective agent. A 100% viability was observed in cultivation experiments after two weeks due to the additional serum. Results from gamma-glutamyl transpeptidase study showed a zero activity rate. It is suggested that a flat stationary field be used for the collection and use of macrophage. It was found that a 24-hour delay in obtaining macrophage cells helps to maintain a pure culture.

  16. Electrophoretic Deposition of Gallium with High Deposition Rate

    Directory of Open Access Journals (Sweden)

    Hanfei Zhang

    2014-12-01

    Full Text Available In this work, electrophoretic deposition (EPD is reported to form gallium thin film with high deposition rate and low cost while avoiding the highly toxic chemicals typically used in electroplating. A maximum deposition rate of ~0.6 μm/min, almost one order of magnitude higher than the typical value reported for electroplating, is obtained when employing a set of proper deposition parameters. The thickness of the film is shown to increase with deposition time when sequential deposition is employed. The concentration of Mg(NO32, the charging salt, is also found to be a critical factor to control the deposition rate. Various gallium micropatterns are obtained by masking the substrate during the process, demonstrating process compatibility with microfabrication. The reported novel approach can potentially be employed in a broad range of applications with Ga as a raw material, including microelectronics, photovoltaic cells, and flexible liquid metal microelectrodes.

  17. Electrophoretic formation of semiconductor layers with adjustable band gap

    Science.gov (United States)

    Shindrov, Alexander; Yuvchenko, Sergey; Vikulova, Maria; Tretyachenko, Elena; Zimnyakov, Dmitry; Gorokhovsky, Alexander

    2017-11-01

    The ceramic layers of the potassium polytitanates modified by transition metal salts were electrophoretically deposited onto the surface of glassy substrate coated with indium-tin oxide. The deposition allows obtaining a dense ceramic layer formed by composite agglomerates consisting of nanoscale particles with average size of 130-190 nm. The optical absorption spectra of the coatings modified in the mixtures of aqueous solutions of different transition metal salts were investigated. It was recognized that a bandgap value of these composites can be adjusted in a range from 1.4 to 2.3 eV depending the chemical composition of layered double hydroxide obtained during modification. This might be very promising for optoelectronic applications of such coatings due to an explicit control of optical properties.

  18. Electrophoretic deposition and field emission properties of patterned carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao Haifeng; Song Hang; Li Zhiming; Yuan Guang; Jin Yixin

    2005-01-01

    Patterned carbon nanotubes on silicon substrates were obtained using electrophoretic method. The carbon nanotubes migrated towards the patterned silicon electrode in the electrophoresis suspension under the applied voltage. The carbon nanotubes arrays adhered well on the silicon substrates. The surface images of carbon nanotubes were observed by scanning electron microscopy. The field emission properties of the patterned carbon nanotubes were tested in a diode structure under a vacuum pressure below 5 x 10 -4 Pa. The measured emission area was about 1.0 mm 2 . The emission current density up to 30 mA/cm 2 at an electric field of 8 V/μm has been obtained. The deposition of patterned carbon nanotubes by electrophoresis is an alternative method to prepare field emission arrays

  19. Combined electrophoretic-separation and electrospray method and system

    Science.gov (United States)

    Smith, R.D.; Olivares, J.A.

    1989-06-27

    A system and method for analyzing molecular constituents of a composition sample includes: forming a solution of the sample, separating the solution by capillary zone electrophoresis into an eluent of constituents longitudinally separated according to their relative electrophoretic mobilities, electrospraying the eluent to form a charged spray in which the molecular constituents have a temporal distribution; and detecting or collecting the separated constituents in accordance with the temporal distribution in the spray. A first high-voltage (e.g., 5--100 kVDC) is applied to the solution. The spray is charged by applying a second high voltage (e.g., [+-]2--8 kVDC) between the eluent at the capillary exit and a cathode spaced in front of the exit. A complete electrical circuit is formed by a conductor which directly contacts the eluent at the capillary exit. 10 figs.

  20. Writer identification using directional ink-trace width measurements

    NARCIS (Netherlands)

    Brink, A. A.; Smit, J.; Bulacu, M. L.; Schomaker, L. R. B.

    As suggested by modern paleography, the width of ink traces is a powerful source of information for off-line writer identification, particularly if combined with its direction. Such measurements can be computed using simple, fast and accurate methods based on pixel contours, the combination of which

  1. Rheological behavior of silver nanowire conductive inks during screen printing

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shohreh; Barkey, Dale P., E-mail: dpb@unh.edu; Gupta, Nivedita [University of New Hampshire, Department of Chemical Engineering (United States)

    2016-08-15

    The rheological behavior of silver nanowire (AgNW) suspensions adapted for screen printing inks was investigated. Aqueous silver nanowire inks consisting of AgNW (length of 30 μm, and diameter of 40 and 90 nm), dispersant and binder were formulated. The effect of AgNW content on the rheological behavior of the ink and the build-up of ink structure after screen printing were examined as they depend on applied shear and temperature. Rheological measurements under conditions that mimic the screen printing process were done to assess viscoelastic properties induced by flow alignment of the wires and the subsequent recovery of the low shear structure. The Stretched Exponential model (SEmo) was used to model the recovery process after screen printing to obtain the characteristic time of the recovery or build-up process. The characteristic time was determined at several temperatures to obtain the activation energy of recovery. The domination of Brownian motion or non-Brownian motion behavior can be characterized by a Peclet number, which is the ratio of shear rate to the rotational diffusion coefficient. The Peclet number and the dimensionless concentration of wires were used to assess the recovery mechanism. The steady viscosity at low and high shear rates was also treated by an activation energy analysis.

  2. Antifungal and Antihepatotoxic Effects of Sepia Ink Extract against ...

    African Journals Online (AJOL)

    Background: There is a great need for novel strategies to overcome the high mortality associated with invasive pulmonary aspergillosis (IPA) in immunocompromised patients. To evaluate the antifungal and antihepatotoxic potentials of Sepia ink extract, its effect on liver oxidative stress levels was analyzed against IPA in ...

  3. Rheological behavior of silver nanowire conductive inks during screen printing

    Science.gov (United States)

    Hemmati, Shohreh; Barkey, Dale P.; Gupta, Nivedita

    2016-08-01

    The rheological behavior of silver nanowire (AgNW) suspensions adapted for screen printing inks was investigated. Aqueous silver nanowire inks consisting of AgNW (length of 30 μm, and diameter of 40 and 90 nm), dispersant and binder were formulated. The effect of AgNW content on the rheological behavior of the ink and the build-up of ink structure after screen printing were examined as they depend on applied shear and temperature. Rheological measurements under conditions that mimic the screen printing process were done to assess viscoelastic properties induced by flow alignment of the wires and the subsequent recovery of the low shear structure. The Stretched Exponential model (SEmo) was used to model the recovery process after screen printing to obtain the characteristic time of the recovery or build-up process. The characteristic time was determined at several temperatures to obtain the activation energy of recovery. The domination of Brownian motion or non-Brownian motion behavior can be characterized by a Peclet number, which is the ratio of shear rate to the rotational diffusion coefficient. The Peclet number and the dimensionless concentration of wires were used to assess the recovery mechanism. The steady viscosity at low and high shear rates was also treated by an activation energy analysis.

  4. Rheological behavior of silver nanowire conductive inks during screen printing

    International Nuclear Information System (INIS)

    Hemmati, Shohreh; Barkey, Dale P.; Gupta, Nivedita

    2016-01-01

    The rheological behavior of silver nanowire (AgNW) suspensions adapted for screen printing inks was investigated. Aqueous silver nanowire inks consisting of AgNW (length of 30 μm, and diameter of 40 and 90 nm), dispersant and binder were formulated. The effect of AgNW content on the rheological behavior of the ink and the build-up of ink structure after screen printing were examined as they depend on applied shear and temperature. Rheological measurements under conditions that mimic the screen printing process were done to assess viscoelastic properties induced by flow alignment of the wires and the subsequent recovery of the low shear structure. The Stretched Exponential model (SEmo) was used to model the recovery process after screen printing to obtain the characteristic time of the recovery or build-up process. The characteristic time was determined at several temperatures to obtain the activation energy of recovery. The domination of Brownian motion or non-Brownian motion behavior can be characterized by a Peclet number, which is the ratio of shear rate to the rotational diffusion coefficient. The Peclet number and the dimensionless concentration of wires were used to assess the recovery mechanism. The steady viscosity at low and high shear rates was also treated by an activation energy analysis.

  5. In search of the rainbow: Colored inks in surgical pathology

    Directory of Open Access Journals (Sweden)

    Chandralekha Tampi

    2012-01-01

    Full Text Available Introduction: Although surgical pathologists are aware of the multiple advantages that coloured inks contribute to surgical pathology practice, these coloured inks are not available in India and importing them is not a viable proposition. A systematic search for locally available coloring agents was done, and resulted in identifying specific shades within a popular set of children′s hobby colors of a particular brand. They retain their bright distinct colors on paraffin blocks and sections. These paints are available all over India, and are cheap, safe, and easy to use. Coloring gross specimen excision margins with different colors, adds precision to margin examination. It allows three-dimensional microscopic reconstruction of the tumor vis-a-vis its various neighboring anatomic structures. It allows postoperative comparison of tissue planes predicted by preoperative imaging. It maintains orientation of grossed and dissected specimens, enabling the pathologist to re-visit the grossed specimen, if required, and confidently allows further sampling if necessary. Aim: A systematic search for indigenous coloring agents was carried out, which included the dyes used in the histopathology laboratory, gelatin, commercially available paints, including acrylic paints and inks. Results: The study identified specific shades within a brand of acrylic colors that are easily available and simple to use, with good results on microscopic examination. Conclusion: Colored inks lend precision to margin examination. A set of easily procurable colors are available in our country, which are easy to use, with distinct bright colors, safe, and reliable.

  6. The Sneaky Sneaker Spies and the Mysterious Black Ink

    Science.gov (United States)

    Savran, Michelle

    2012-01-01

    In this article, the author describes the process of making "The Sneaky Sneaker Spies and the Mysterious Black Ink," a six-minute animation starring five art students who form a detective club. This animation is available online for art teachers to use in their own classrooms. After showing this video in class, art teachers could have students try…

  7. Radiation cure technology used in inks and coatings

    International Nuclear Information System (INIS)

    Ravijst, J.-P.

    1995-01-01

    The radiation cure technology in inks and coatings by ultraviolet light (UV) and electron beam (EB) was introduced. The technology is the only one which meets the 3-E rules. An advantage of this technology is that a wide range of substrates can be printed such as paper, card, metal and even heat sensitive plastics

  8. Ridge Width Correlations between Inked Prints and Powdered Latent Fingerprints.

    Science.gov (United States)

    De Alcaraz-Fossoul, Josep; Barrot-Feixat, Carme; Zapico, Sara C; Mancenido, Michelle; Broatch, Jennifer; Roberts, Katherine A; Carreras-Marin, Clara; Tasker, Jack

    2017-10-03

    A methodology to estimate the time of latent fingerprint deposition would be of great value to law enforcement and courts. It has been observed that ridge topography changes as latent prints age, including the widths of ridges that could be measured as a function of time. Crime suspects are commonly identified using fingerprint databases that contain reference inked tenprints (flat and rolled impressions). These can be of interest in aging studies as they provide baseline information relating to the original (nonaged) ridges' widths. In practice, the age of latent fingerprints could be estimated following a comparison process between the evidentiary aged print and the corresponding reference inked print. The present article explores possible correlations between inked and fresh latent fingerprints deposited on different substrates and visualized with TiO 2 . The results indicate that the ridge width of flat inked prints is most similar to fresh latent fingerprints , and these should be used as the comparison standard for future aging studies. © 2017 American Academy of Forensic Sciences.

  9. INK AND CLEANER WASTE REDUCTION EVALUATION FOR FLEXOGRAPHIC PRINTERS

    Science.gov (United States)

    This report describes the technical and economic effects incurred by a flexographic label printer who changed the type of ink and cleaning agent used in its print shop. The changes were incurred as the best way to eliminate all hazardous materials. The company's corporate managem...

  10. Ink and Wash Painting for Children with Visual Impairment

    Science.gov (United States)

    Shih, Chih-Ming; Chao, Hsin-Yi

    2010-01-01

    Five children with visual impairments received instruction in drawing, using ink and wash painting and calligraphy techniques. A special system developed by a blind Taiwanese Chinese calligrapher, Tsann-Cherng Liaw, was used to help the children orient and refine their work. Children's performance on simple drawing tasks was compared before and…

  11. Electrophoretic deposition of ultrasonicated and functionalized nanomaterials for multifunctional composites

    Science.gov (United States)

    An, Qi

    Recent advances in the synthesis and characterization of nanostructured composite materials have enabled a broad range of opportunities for engineering the properties of polymer-matrix materials. Carbon nanotubes (CNTs) are known to have exceptional mechanical, electrical and thermal properties. Because of their small size, CNTs can occupy regions between traditional micro-scale reinforcements and create a hierarchical micro/nano structure spanning several orders of magnitude. Since CNTs possess critical reinforcement dimensions below 100 nm, new opportunities exist for tailoring the fiber/matrix interphase regions and ultimately the mechanical and electrical performance of advanced fiber-composites with minimal impact on the fiber-dominated properties. This growing interest in nanoscale hybridization with conventional fiber reinforcement has highlighted the need to develop new processing techniques for successful CNT integration. In this work, a novel and industrially scalable approach for producing multi-scale hybrid carbon nanotube/fiber composites using an electrophoretic deposition (EPD) technique has been studied as an alternative to in situ chemical vapor deposition growth (CVD). EPD is a widely used industrial coating process employed in areas ranging from automotive to electronics production. The method has a number of benefits which include low energy use and the ability to homogenously coat complex shapes with well adhered films of controlled thickness and density. A stable aqueous dispersion of multi-walled carbon nanotubes (MWCNTs) was produced using a novel ozonolysis and ultrasonication (USO) technique that results in dispersion and functionalization in a single step. Networks of CNTs span between adjacent fibers and the resulting composites exhibit significant increases in electrical conductivity and considerable improvements in the interlaminar shear strength and fracture toughness. In order to better understand the underlying mechanisms behind the

  12. [Study on relationship of dose-effect and time-effect of APA microencapsulated bovine chromaffin cells on pain treatment].

    Science.gov (United States)

    Hui, Jianfeng; Li, Tao; Du, Zhi; Song, Jichang

    2011-12-01

    This study was to investigate the relationship of dose-effect and time-effect of Alginate-Polylysine-Alginate (APA) microencapsulated bovine chromaffin cells on the treatment of pain model rats. Using a rat model of painful peripheral neuropathy, the antinociceptive effects of APA microencapsulated bovine cells transplanted into the subarachnoid space was evaluated by cold allodynia test and hot hyperalgesia test. Compared with control group, the withdrawal difference with cell number 50 thousands groups, 100 thousands groups and 200 thousands groups was reduced (P APA microencapsulated bovine chromaffin cells which were transplanted to treat pain model rats, and the effective antinociception remained longer than 12 weeks.

  13. Characterization of printed pigment-based inks on ink-jet media using cross-sectional electron microscopy

    International Nuclear Information System (INIS)

    Almeida, P. de; Pataki, T.; Peeters, D.; Roost, C. van

    2004-01-01

    This paper reports on the microscopic assessment of representative specimen cross-sections prepared by microtomy and ultramicrotomy with emphasis in structure-property information using optical, scanning and transmission electron microscopy, namely, the absolute optical density δ, the measured effective printing coverage C-tilde, the averaged pigment-based ink layer thickness t-bar, and the morphology at 100% nominal printing coverage. This work shows that for different test patches printed at the same nominal printing coverage a number of different printing schemes yield a pre-defined absolute optical density δ which basically depends on the measured effective printing coverage C-tilde and the type of pigment-based inks used (spectral absorptivity m≠∞) and therefore on the averaged pigment-based ink layer thickness t-bar. A method for estimating the spectral absorptivity m is presented which combines the absolute optical density δ of the test patch and the averaged pigment-based ink layer thickness t-bar as measured from cross-sectional electron microscopy

  14. Microencapsulation of maqui (Aristotelia chilensis Molina Stuntz leaf extracts to preserve and control antioxidant properties

    Directory of Open Access Journals (Sweden)

    Leslie Vidal J

    2013-03-01

    Full Text Available Microencapsulation technology is an alternative to stabilize stress factors and protect food ingredients or additives, which include environmentally sensitive bioactive principles in protective matrices to increase their functionality and life span. The objective of this research was to study conditions to obtain microcapsules with antioxidant capacity from a maqui (Aristotelia chilensis [Molina] Stuntz, Elaeocarpaceae leaf extract by emulsification and subsequent retention after microencapsulation. Microcapsules were produced by water-in-oil emulsion (W/O using a phase of the aqueous maqui leaf extract and gum arabic, and a liquid vaseline phase. Maqui leaf extract antioxidant capacity was 99.66% compared with the aqueous phase of the emulsion at 94.38 and 93.06% for 5% and 15% gum arabic, respectively. The mean yield of maqui leaf extract microencapsulation with 5% gum arabic varied between 38 and 48%, whereas with 15% gum arabic it was 39%. Once the antioxidant microcapsules were formed, mean extract antioxidant capacity ranged between 30 and 35%. Both yields responded similarly to changes in gum arabic concentrations (5% and 15% in the aqueous phase of the emulsion; 5% concentration produced a microcapsule size from 1.0 to 10 urn. Maqui leaf extracts with high phenolic compound levels, which can be stabilized and protected by the microencapsulation process, produce new natural preservative systems as compared with their synthetic counterparts.

  15. Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics

    Directory of Open Access Journals (Sweden)

    Ahmed Hassan

    2016-10-01

    Full Text Available Phase change materials (PCMs have been identified as potential candidates for building energy optimization by increasing the thermal mass of buildings. The increased thermal mass results in a drop in the cooling/heating loads, thus decreasing the energy demand in buildings. However, direct incorporation of PCMs into building elements undermines their structural performance, thereby posing a challenge for building integrity. In order to retain/improve building structural performance, as well as improving energy performance, micro-encapsulated PCMs are integrated into building materials. The integration of microencapsulation PCMs into building materials solves the PCM leakage problem and assures a good bond with building materials to achieve better structural performance. The aim of this article is to identify the optimum micro-encapsulation methods and materials for improving the energy, structural and safety performance of buildings. The article reviews the characteristics of micro-encapsulated PCMs relevant to building integration, focusing on safety rating, structural implications, and energy performance. The article uncovers the optimum combinations of the shell (encapsulant and core (PCM materials along with encapsulation methods by evaluating their merits and demerits.

  16. Microencapsulation of Theobroma cacao L. waste extract: optimization using response surface methodology.

    Science.gov (United States)

    Gabbay Alves, Taís Vanessa; Silva da Costa, Russany; Aliakbarian, Bahar; Casazza, Alessandro Alberto; Perego, Patrizia; Carréra Silva Júnior, José Otávio; Ribeiro Costa, Roseane Maria; Converti, Attilio

    2017-03-01

    The cocoa extract (Theobroma cacao L.) has a significant amount of polyphenols (TP) with potent antioxidant activity (AA). This study aims to optimise microencapsulation of the extract of cocoa waste using chitosan and maltodextrin. Microencapsulation tests were performed according to a Box-Behnken factorial design, and the results were evaluated by response surface methodology with temperature, maltodextrin concentration (MD) and extract flowrate (EF) as independent variables, and the fraction of encapsulated TP, TP encapsulation yield, AA, yield of drying and solubility index as responses. The optimum conditions were: inlet temperature of 170 °C, MD of 5% and EF of 2.5 mL/min. HPLC analysis identified epicatechin as the major component of both the extract and microparticles. TP release was faster at pH 3.5 than in water. These results as a whole suggest that microencapsulation was successful and the final product can be used as a nutrient source for aquatic animal feed. Highlights Microencapsulation is optimised according to a factorial design of the Box-Behnken type. Epicatechin is the major component of both the extract and microcapsules. The release of polyphenols from microcapsules is faster at pH 3.5 than in water.

  17. Effects of microencapsulation on bioavailability of fish oil omega-3 fatty acids

    DEFF Research Database (Denmark)

    Christophersen, Philip Carsten B; Yang, Mingshi; Mu, Huiling

    2016-01-01

    Increased research interest in the health benefits of fish oils and the wide publicity of these studies have led to the marketing and launch of a wide array of new and traditional food and beverage products enriched with omega-3 fatty acids. This chapter focuses on the impact of microencapsulation...

  18. Hypocaloric diet associated with the consumption of jam enriched with microencapsulated fish oil decreases insulin resistance.

    Science.gov (United States)

    Soares de Oliveira Carvalho, Anna Paula; Kimi Uehara, Sofia; Nogueria Netto, José Firmino; Rosa, Glorimar

    2014-05-01

    The metabolic syndrome is related to the increase in cardiovascular diseases. Polyunsaturated fatty acids from fish oil help in reducing cardiovascular risk factors and are natural bindings of PPAR2. To evaluate the impact of hypocaloric diet associated with microencapsulated fish oil supplementation in women with metabolic syndrome. We conducted a randomized, single-blind and placebo-controlled clinical trial with adult women who presented metabolic syndrome (n = 30) for 90 days. The volunteers were divided into two groups: placebo group (n = 15) and microencapsulated fish oil group (n = 15) (3 g/day of microencapsulated fish oil containing 0.41 g/day of eicosapentaenoic acid and decosahexaneoic acid). Anthropometric, body composition, clinical and laboratory parameters were assessed before and after the intervention. Paired t-test was used for comparisons within groups and Student's t-test for comparison between groups. We considered p hypocaloric diet associated with the consumption of microencapsulated fish oil was effective in reducing blood glucose, insulinemia and insulin resistance in women with MS. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. Investigation of Microencapsulated BSH Active Lactobacillus in the Simulated Human GI Tract

    Directory of Open Access Journals (Sweden)

    Christopher Martoni

    2007-01-01

    Full Text Available This study investigated the use of microencapsulated bile salt hydrolase (BSH overproducing Lactobacillus plantarum 80 cells for oral delivery applications using a dynamic computer-controlled model simulating the human gastrointestinal (GI tract. Bile salt deconjugation rates for microencapsulated BSH overproducing cells were 4.87 ± 0.28 μmol/g microcapsule/h towards glycoconjugates and 0.79 ± 0.15 μmol/g microcapsule/h towards tauroconjugates in the simulated intestine, a significant (P< .05 increase over microencapsulated wild-type cells. Microcapsules protected the encased cells in the simulated stomach prior to intestinal release, maintaining cell viability above 109 cfu/mL at pH 2.5 and 3.0 and above 106 cfu/mL at pH 2.0 after 2-hour residence times. In the simulated intestine, encased cell viability was maintained above 1010 cfu/mL after 3, 6, and 12-hour residence times in bile concentrations up to 1.0%. Results show that microencapsulation has potential in the oral delivery of live BSH active bacterial cells. However, in vivo testing is required.

  20. The direct incorporation of micro-encapsulated phase change materials in the concrete mixing process

    NARCIS (Netherlands)

    Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M.; Durmisevic, E.

    2009-01-01

    The present study refers to a set of tests using different amounts of microencapsulated PCM directly mixed into self-compacting concrete. This SCC is investigated regarding its fresh and hardened properties. It will be shown that increasing PCM amounts lead to lower thermal conductivity and

  1. Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review.

    Science.gov (United States)

    Castro-Rosas, Javier; Ferreira-Grosso, Carlos Raimundo; Gómez-Aldapa, Carlos Alberto; Rangel-Vargas, Esmeralda; Rodríguez-Marín, María Luisa; Guzmán-Ortiz, Fabiola Araceli; Falfan-Cortes, Reyna Nallely

    2017-12-01

    Food safety and microbiological quality are major priorities in the food industry. In recent years, there has been an increasing interest in the use of natural antimicrobials in food products. An ongoing challenge with natural antimicrobials is their degradation during food storage and/or processing, which reduces their antimicrobial activity. This creates the necessity for treatments that maintain their stability and/or activity when applied to food. Microencapsulation of natural antimicrobial compounds is a promising alternative once this technique consists of producing microparticles, which protect the encapsulated active substances. In other words, the material to be protected is embedded inside another material or system known as wall material. There are few reports in the literature about microencapsulation of antimicrobial compounds. These published articles report evidence of increased antimicrobial stability and activity when the antimicrobials are microencapsulated when compared to unprotected ones during storage. This review focuses mainly on natural sources of antimicrobial compounds and the methodological approach for encapsulating these natural compounds. Current data on the microencapsulation of antimicrobial compounds and their incorporation into food suggests that 1) encapsulation increases compound stability during storage and 2) encapsulation of antimicrobial compounds reduces their interaction with food components, preventing their inactivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Plasma Creatine Kinetics After Ingestion of Microencapsulated Creatine Monohydrate with Enhanced Stability in Aqueous Solutions.

    Science.gov (United States)

    Hone, Michelle; Kent, Robert M; Scotto di Palumbo, Alessandro; Bleiel, Sinead B; De Vito, Giuseppe; Egan, Brendan

    2017-07-04

    Creatine monohydrate represents one of the largest sports supplement markets. Enhancing creatine (CRE) stability in aqueous solutions, such as with microencapsulation, represents innovation potential. Ten physically active male volunteers were randomly assigned in a double-blind design to either placebo (PLA) (3-g maltodextrin; n = 5) or microencapsulated CRE (3-g creatine monohydrate; n = 5) conditions. Experimental conditions involved ingestion of the samples in a 70-mL ready-to-drink format. CRE was delivered in a novel microencapsulation matrix material consisting entirely of hydrolyzed milk protein. Three hours after ingestion, plasma creatine concentrations were unchanged during PLA, and averaged ∼45 μM. During CRE, plasma creatine concentration peaked after 30 min at 101.6 ± 14.9 μM (p creatine concentration gradually trended downwards but remained significantly elevated (∼50% above resting levels) 3 hr after ingestion. These results demonstrate that the microencapsulated form of creatine monohydrate reported herein remains bioavailable when delivered in aqueous conditions, and has potential utility in ready-to-drink formulations for creatine supplementation.

  3. A VERSATILE ALGINATE DROPLET GENERATOR APPLICABLE FOR MICROENCAPSULATION OF PANCREATIC-ISLETS

    NARCIS (Netherlands)

    WOLTERS, GHJ; FRITSCHY, WM; GERRITS, D; VANSCHILFAGAARDE, R

    1992-01-01

    Alginate beads for immunoisolation of pancreatic islets by microencapsulation should be small, smooth, and spherical in order to ensure that around the islets a strong alginate-polylysine-alginate capsule will be formed with optimal biocompatibility and diffusion of nutrients and hormones. However,

  4. Solubility of drugs in aqueous polymeric solution: effect of ovalbumin on microencapsulation process.

    Science.gov (United States)

    Aziz, Hesham Abdul; Tan, Yvonne Tze Fung; Peh, Kok Khiang

    2012-03-01

    Microencapsulation of water-soluble drugs using coacervation-phase separation method is very challenging, as these drugs partitioned into the aqueous polymeric solution, resulting in poor drug entrapment. For evaluating the effect of ovalbumin on the microencapsulation of drugs with different solubility, pseudoephedrine HCl, verapamil HCl, propranolol HCl, paracetamol, and curcuminoid were used. In addition, drug mixtures comprising of paracetamol and pseudoephedrine HCl were also studied. The morphology, encapsulation efficiency, particle size, and in vitro release profile were investigated. The results showed that the solubility of the drug determined the ratio of ovalbumin to be used for successful microencapsulation. The optimum ratios of drug, ovalbumin, and gelatin for water-soluble (pseudoephedrine HCl, verapamil HCl, and propranolol HCl), sparingly water-soluble (paracetamol), and water-insoluble (curcuminoid) drugs were found to be 1:1:2, 2:3:5, and 1:3:4. As for the drug mixture, the optimum ratio of drug, ovalbumin, and gelatin was 2:3:5. Encapsulated particles prepared at the optimum ratios showed high yield, drug loading, entrapment efficiency, and sustained release profiles. The solubility of drug affected the particle size of the encapsulated particle. Highly soluble drugs resulted in smaller particle size. In conclusion, addition of ovalbumin circumvented the partitioning effect, leading to the successful microencapsulation of water-soluble drugs.

  5. Microencapsulation of indocyanine green for potential applications in image-guided drug delivery.

    Science.gov (United States)

    Zhu, Zhiqiang; Si, Ting; Xu, Ronald X

    2015-02-07

    We present a novel process to encapsulate indocyanine green (ICG) in liposomal droplets at high concentration for potential applications in image-guided drug delivery. The microencapsulation process follows two consecutive steps of droplet formation by liquid-driven coaxial flow focusing (LDCFF) and solvent removal by oil phase dewetting. These biocompatible lipid vesicles may have important applications in drug delivery and fluorescence imaging.

  6. Effect of blueberry extract from blueberry pomace on the microencapsulated fish oil

    Science.gov (United States)

    The effect of the addition of blueberry extract (BE) obtained from blueberry pomace on lipid oxidation of pollock liver oil (PO) during microencapsulation was evaluated. An emulsion containing PO and BE (EBE) was prepared and spray dried in a pilot scale spray dryer. Thiobarbituric acids (TBARS) of ...

  7. Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL 442: enhancement of survivability and thermotolerance.

    Science.gov (United States)

    Shaharuddin, Shahrulzaman; Muhamad, Ida Idayu

    2015-03-30

    The aim of this research was to enhance the survivability of Lactobacillus rhamnosus NRRL 442 against heat exposure via a combination of immobilization and microencapsulation processes using sugarcane bagasse (SB) and sodium alginate (NaA), respectively. The microcapsules were synthesized using different alginate concentration of 1, 2 and 3% and NaA:SB ratio of 1:0, 1:1 and 1:1.5. This beneficial step of probiotic immobilization before microencapsulation significantly enhanced microencapsulation efficiency and cell survivability after heat exposure of 90°C for 30s. Interestingly, the microcapsule of SB-immobilized probiotic could obtain protection from heat using microencapsulation of NaA concentration as low as 1%. SEM images illustrated the incorporation of immobilized L. rhamnosus within alginate matrices and its changes after heat exposure. FTIR spectra confirmed the change in functional bonding in the presence of sugarcane bagasse, probiotic and alginate. The results demonstrated a great potential in the synthesis of heat resistant microcapsules for probiotic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Cemil; Sari, Ahmet; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-01-15

    This study is focused on the preparation, characterization, and determination of thermal properties of microencapsulated docosane with polymethylmethacrylate (PMMA) as phase change material for thermal energy storage. Microencapsulation of docosane has been carried out by emulsion polymerization. The microencapsulated phase change material (MEPCM) was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Thermal properties and thermal stability of MEPCM were measured by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC analysis indicated that the docosane in the microcapsules melts at 41.0 C and crystallizes at 40.6 C. It has latent heats of 54.6 and -48.7 J/g for melting and crystallization, respectively. TGA showed that the MEPCM degraded in three distinguishable steps and had good chemical stability. Accelerated thermal cycling tests also indicated that the MEPCM had good thermal reliability. Based on all these results, it can be concluded that the microencapsulated docosane as MEPCMs have good potential for thermal energy storage purposes such as solar space heating applications. (author)

  9. Microencapsulated n-octacosane as phase change material for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet; Alkan, Cemil; Karaipekli, Ali [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey); Uzun, Orhan [Department of Physics, Gaziosmanpasa University, 60240 Tokat (Turkey)

    2009-10-15

    This study deals with preparation and characterization of polymethylmetracrylate (PMMA) microcapsules containing n-octacosane as phase change material for thermal energy storage. The surface morphology, particle size and particle size distribution (PSD) were studied by scanning electron microscopy (SEM). The chemical characterization of PMMA/octacosane microcapsules was made by FT-IR spectroscopy method. Thermal properties and thermal stability of microencapsulated octacosane were determined using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The melting and freezing temperatures and the latent heats of the microencapsulated octacosane as PCM were measured as 50.6 and 53.2 C, 86.4 and -88.5 J/g, respectively, by DSC analysis. TGA analysis indicated that the microencapsulated octacosane degrade in two steps and had good chemical stability. Thermal cycling test shows that the microcapsules have good thermal reliability with respect to the accelerated thermal cycling. Based on the results, it can be considered that the microencapsulated octacosane have good energy storage potential. (author)

  10. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets

    NARCIS (Netherlands)

    DeVos, P; DeHaan, BJ; Wolters, GHJ; Strubbe, JH; VanSchilfgaarde, R; van Schilfgaarde, P.

    Graft failure of alginate-polylysine microencapsulated islets is often interpreted as the consequence of a non-specific foreign body reaction against the microcapsules, initiated by impurities present in crude alginate. The aim of the present study was to investigate if purification of the alginate

  11. Development of phase change materials based microencapsulated technology for buildings: A review

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, V.V.; Kaushik, S.C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Tyagi, S.K. [School of Infrastructure Technology and Resource Management, Shri Mata Vaishno Devi University, Katra 182320, J and K (India); Akiyama, T. [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-86283 (Japan)

    2011-02-15

    Thermal energy storage (TES) systems using phase change material (PCM) have been recognized as one of the most advanced energy technologies in enhancing the energy efficiency and sustainability of buildings. Now the research is focus on suitable method to incorporate PCMs with building. There are several methods to use phase change materials (PCMs) in thermal energy storage (TES) for different applications. Microencapsulation is one of the well known and advanced technologies for better utilization of PCMs with building parts, such as, wall, roof and floor besides, within the building materials. Phase change materials based microencapsulation for latent heat thermal storage (LHTS) systems for building application offers a challenging option to be employed as effective thermal energy storage and a retrieval device. Since the particular interest in using microencapsulation PCMs for concrete and wall/wallboards, the specific research efforts on both subjects are reviewed separately. This paper presents an overview of the previous research work on microencapsulation technology for thermal energy storage incorporating the phase change materials (PCMs) in the building applications, along with few useful conclusive remarks concluded from the available literature. (author)

  12. Application of acid-catalyzed hydrolysis of dispersed organic solvent in developing new microencapsulation process technology.

    Science.gov (United States)

    Lee, Honghwa; Lee, Sunhwa; Bhattacharjee, Himanshu; Sah, Hongkee

    2012-01-01

    The aim of this study was to evaluate a new microencapsulation technology employing an acid-catalyzed solvent extraction method in conjunction to an emulsion-based microencapsulation process. Its process consisted of emulsifying a dispersed phase of poly(D,L-lactide-co-glycolide) and isopropyl formate in an aqueous phase. This step was followed by adding hydrochloric acid to the resulting oil-in-water emulsion, in order to initiate the hydrolysis of isopropyl formate dissolved in the aqueous phase. Its hydrolysis caused the liberation of water-soluble species, that is, isopropanol and formic acid. This event triggered continual solvent leaching out of emulsion droplets, thereby initiating microsphere solidification. This new processing worked well for encapsulation of progesterone and ketoprofen that were chosen as a nonionizable model drug and a weakly acidic one, respectively. Furthermore, the structural integrity of poly(D,L-lactide-co-glycolide) was retained during microencapsulation. The new microencapsulation technology, being conceptually different from previous approaches, might be useful in preparing various polymeric particles.

  13. Phenolic extracts of Rubus ulmifolius Schott flowers: characterization, microencapsulation and incorporation into yogurts as nutraceutical sources.

    Science.gov (United States)

    Martins, Ana; Barros, Lillian; Carvalho, Ana Maria; Santos-Buelga, Celestino; Fernandes, Isabel P; Barreiro, Filomena; Ferreira, Isabel C F R

    2014-06-01

    Rubus ulmifolius Schott (Rosaceae), known as wild blackberry, is a perennial shrub found in wild and cultivated habitats in Europe, Asia and North Africa. Traditionally, it is used for homemade remedies because of its medicinal properties, including antioxidant activity. In the present work, phenolic extracts of R. ulmifolius flower buds obtained by decoction and hydroalcoholic extraction were chemically and biologically characterized. Several phenolic compounds were identified in both decoction and hydroalcoholic extracts of flowers, ellagitannin derivatives being the most abundant ones, namely the sanguiin H-10 isomer and lambertianin. Additionally, comparing with the decoction form, the hydroalcoholic extract presented both higher phenolic content and antioxidant activity. The hydroalcoholic extract was thereafter microencapsulated in an alginate-based matrix and incorporated into a yogurt to achieve antioxidant benefits. In what concerns the performed incorporation tests, the obtained results pointed out that, among the tested samples, the yoghurt containing the microencapsulated extract presented a slightly higher antioxidant activity, and that both forms (free and microencapsulated extracts) gave rise to products with higher activity than the control. In conclusion, this study demonstrated the antioxidant potential of the R. ulmifolius hydroalcoholic extract and the effectiveness of the microencapsulation technique used for its preservation, thus opening new prospects for the exploitation of these natural phenolic extracts in food applications.

  14. Application of fully ceramic microencapsulated fuels in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, C.; George, N.; Maldonado, I. [Dept. of Nuclear Engineering, Univ. of Tennessee-Knoxville, Knoxville, TN 37996-2300 (United States); Godfrey, A.; Terrani, K.; Gehin, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2012-07-01

    This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO{sub 2} rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)

  15. Application of fully ceramic microencapsulated fuels in light water reactors

    International Nuclear Information System (INIS)

    Gentry, C.; George, N.; Maldonado, I.; Godfrey, A.; Terrani, K.; Gehin, J.

    2012-01-01

    This study performs a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in light water reactors (LWRs). In particular, pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor (PWR). Using uranium-based fuel and Pu/Np-based fuel in TRistructural isotropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher fissile material density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design with 19.75% enrichment would need roughly 12% additional fissile material in comparison to that of a standard UO 2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a 'color-set' array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the Pu/Np-based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, the feasibility of core designs fully loaded with Pu/Np FCM lattices was demonstrated using the NESTLE three-dimensional core simulator. (authors)

  16. Application of Fully Ceramic Microencapsulated Fuels in Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gentry, Cole A [ORNL; George, Nathan M [ORNL; Maldonado, G Ivan [ORNL; Godfrey, Andrew T [ORNL; Terrani, Kurt A [ORNL; Gehin, Jess C [ORNL

    2012-01-01

    This study aims to perform a preliminary evaluation of the feasibility of incorporation of Fully Ceramic Microencapsulated (FCM) fuels in Light Water Reactors (LWRs). In particular pin cell, lattice, and full core analyses are carried out on FCM fuel in a pressurized water reactor. Using uranium-based fuel and transuranic (TRU) based fuel in TRistructural ISOtropic (TRISO) particle form, each fuel design was examined using the SCALE 6.1 analytical suite. In regards to the uranium-based fuel, pin cell calculations were used to determine which fuel material performed best when implemented in the fuel kernel as well as the size of the kernel and surrounding particle layers. The higher physical density of uranium mononitride (UN) proved to be favorable, while the parametric studies showed that the FCM particle fuel design would need roughly 12% additional fissile material in comparison to that of a standard UO2 rod in order to match the lifetime of an 18-month PWR cycle. As part of the fuel assembly design evaluations, fresh feed lattices were modeled to analyze the within-assembly pin power peaking. Also, a color-set array of assemblies was constructed to evaluate power peaking and power sharing between a once-burned and a fresh feed assembly. In regards to the TRU based fuel, lattice calculations were performed to determine an optimal lattice design based on reactivity behavior, pin power peaking, and isotopic content. After obtaining a satisfactory lattice design, feasibility of core designs fully loaded with TRU FCM lattices was demonstrated using the NESTLE three-dimensional core simulator.

  17. Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules.

    Science.gov (United States)

    Campos, Daniela C; Acevedo, Francisca; Morales, Eduardo; Aravena, Javiera; Amiard, Véronique; Jorquera, Milko A; Inostroza, Nitza G; Rubilar, Mónica

    2014-09-01

    Plant growth promoting bacteria and nitrogen-fixing bacteria (NFB) used for crop inoculation have important biotechnological potential as a sustainable fertilization tool. However, the main limitation of this technology is the low inoculum survival rate under field conditions. Microencapsulation of bacterial cells in polymer matrices provides a controlled release and greater protection against environmental conditions. In this context, the aim of this study was to isolate and characterize putative NFB associated with lupin nodules and to evaluate their microencapsulation by spray drying. For this purpose, 21 putative NFB were isolated from lupin nodules and characterized (16S rRNA genes). Microencapsulation of bacterial cells by spray drying was studied using a mixture of sodium alginate:maltodextrin at different ratios (0:15, 1:14, 2:13) and concentrations (15 and 30% solids) as the wall material. The microcapsules were observed under scanning electron microscopy to verify their suitable morphology. Results showed the association between lupin nodules of diverse known NFB and nodule-forming bacteria belonging to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Bacteroidetes. In microencapsulation assays, the 1:14 ratio of sodium alginate:maltodextrin (15% solids) showed the highest cell survival rate (79%), with a microcapsule yield of 27% and spherical microcapsules of 5-50 µm in diameter. In conclusion, diverse putative NFB genera and nodule-forming bacteria are associated with the nodules of lupine plants grown in soils in southern Chile, and their microencapsulation by spray drying using sodium alginate:maltodextrin represents a scalable process to generate a biofertilizer as an alternative to traditional nitrogen fertilization.

  18. An optimized probucol microencapsulated formulation integrating a secondary bile acid (deoxycholic acid as a permeation enhancer

    Directory of Open Access Journals (Sweden)

    Mooranian A

    2014-09-01

    Full Text Available Armin Mooranian,1 Rebecca Negrulj,1 Nigel Chen-Tan,2 Gerald F Watts,3 Frank Arfuso,4 Hani Al-Salami11Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, 2Faculty of Science and Engineering, Curtin University, 3School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia, 4School of Biomedical Science, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, AustraliaAbstract: The authors have previously designed, developed, and characterized a novel microencapsulated formulation as a platform for the targeted delivery of therapeutics in an animal model of type 2 diabetes, using the drug probucol (PB. The aim of this study was to optimize PB microcapsules by incorporating the bile acid deoxycholic acid (DCA, which has good permeation-enhancing properties, and to examine its effect on microcapsules’ morphology, rheology, structural and surface characteristics, and excipients’ chemical and thermal compatibilities. Microencapsulation was carried out using a BÜCHI-based microencapsulating system established in the authors’ laboratory. Using the polymer sodium alginate (SA, two microencapsulated formulations were prepared: PB-SA (control and PB-DCA-SA (test at a constant ratio (1:30 and 1:3:30, respectively. Complete characterization of the microcapsules was carried out. The incorporation of DCA resulted in better structural and surface characteristics, uniform morphology, and stable chemical and thermal profiles, while size and rheological parameters remained similar to control. In addition, PB-DCA-SA microcapsules showed good excipients’ compatibilities, which were supported by data from differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray studies, suggesting

  19. Evaluation of pilot-scale microencapsulation of probiotics and product effect on broilers.

    Science.gov (United States)

    Zhang, L; Li, J; Yun, T T; Li, A K; Qi, W T; Liang, X X; Wang, Y W; Liu, S

    2015-10-01

    This study was conducted to evaluate the pilot-scale production of microencapsulated in a 500-L fermenter using emulsion and gelation and to assess the effect of the products on the growth performance, antioxidant activity, immune function, and cecal microbiota in Arbor Acres broilers. A total of seven hundred 1-d-old male Arbor Acres broilers were randomly assigned to 7 dietary treatments with 5 replicate pens per treatment and 20 broilers per pen. The dietary treatments were as follows: 1) basal diet (CON), 2) basal diet containing 0.1% Aureomycin (ANT), 3) basal diet containing unencapsulated at a dose of 1 × 10 cfu/kg of feed (P1), 4) basal diet containing unencapsulated at a dose of 1 × 10 cfu/kg of feed (P2), 5) basal diet containing 0.01% empty microcapsules (CAP), 6) basal diet containing microencapsulated at a dose of 1 × 10 cfu/kg of feed (CAPP1), and 7) basal diet containing microencapsulated at a dose of 1 × 10 cfu/kg of feed (CAPP2). The feeding experiment included 2 phases: the starter phase from d 1 to 21 and the grower phase from d 22 to 42. The results showed that a 500-L fermenter could produce 20.73 ± 4.05 kg of microcapsules with an approximate diameter of 549 μm. The feeding experiment showed that ADG of broilers in CAPP1 was significantly ( microencapsulation of microbial cells can be achieved using emulsion and initial gelation and that the dietary administration of microencapsulated can significantly enhance the growth performance, immune function, cecum microbial community, and overall health of broilers.

  20. Double enzymatic hydrolysis preparation of heme from goose blood and microencapsulation to promote its stability and absorption.

    Science.gov (United States)

    Wang, Baowei; Cheng, Fansheng; Gao, Shun; Ge, Wenhua; Zhang, Mingai

    2017-02-15

    Iron deficiency anemia (IDA) is the most common nutritional deficiency worldwide. This deficiency could be solved by preparing stable, edible, and absorbable iron food ingredients using environmentally friendly methods. This study investigated enzymatic hydrolysis and microencapsulation process of goose blood. The physicochemical properties, stabilities of the microencapsulated goose blood hydrolysate (MGBH) and a supplement for rats with IDA were also evaluated. The results showed that the synergetic hydrolytic action of neutrase and alkaline protease significantly increased the heme-releasing efficiency. The heme was then microencapsulated using sodium caseinate, maltodextrin and carboxymethyl cellulose (CMC) as the edible wall material, and the encapsulation efficiency of the product reached 98.64%. Meanwhile, favorable thermal, storage and light stabilities were observed for the microencapsulation. It was found that MGBH can significantly improve the body weight and hematological parameters of IDA Wistar rat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Black Ink and Red Ink (BIRI) Testing: A Testing Method to Evaluate Both Recall and Recognition Learning in Accelerated Adult-Learning Courses

    Science.gov (United States)

    Rodgers, Joseph Lee; Rodgers, Jacci L.

    2011-01-01

    We propose, develop, and evaluate the black ink-red ink (BIRI) method of testing. This approach uses two different methods within the same test administration setting, one that matches recognition learning and the other that matches recall learning. Students purposively define their own tradeoff between the two approaches. Evaluation of the method…

  2. The effect of sampling methods on the apparent constituents of ink from the squid Sepioteuthis australis.

    Science.gov (United States)

    Madaras, F; Gerber, J P; Peddie, F; Kokkinn, M J

    2010-11-01

    Results of experiments conducted on ink recovered from the squid Sepioteuthis australis indicate that there is no epinephrine or protein naturally present in the ink as it would be ejected in vivo. Protein content was effectively zero when ink was syringed from the duct end of the ink sac of freshly killed animals. By contrast, there were proteins in samples collected from dead specimens where ink was collected by a stripping method. From these samples, a single large molecular weight protein was identified as having tyrosinase activity. Digestion of syringed ink did not yield signs of melanin-bound proteins. Analysis of supernatants after centrifugation of squid ink consistently revealed the presence of DOPA, dopamine, and taurine, whereas epinephrine and nor-epinephrine were recorded from what was believed to be contaminated ink. Histological investigations of the ink sac revealed a compartmentalised glandular structure distal to the duct end. Closer observation of the glandular tissue showed that compartments increased in size as they matured and moved further into the lumen. It was concluded that the presence of epinephrine and tyrosinase (or a related protein) in the ink of S. australis could be attributed to rupturing of basal glandular compartments or contamination from other sources during the extraction process.

  3. Effect of Hyperbranched Polymers on Curing Behavior of UV Curable Inks in Inkjet Printing

    Directory of Open Access Journals (Sweden)

    Samane Jafarifard

    2016-07-01

    Full Text Available A high quality and high resolution printing can be rapidly created by inkjet printing technology. Inkjet printing is one of the most economic printing methods and ink waste in this technique is very low. Inkjet process provides printing on any type of substrates. The UV curable inks are special types of printing inks that have been widely used in the last decades. The use of UV curable inks is more attractive in inkjet printing technology in comparison to other methods of printing. The most important advantage of UV curable inks in this method is that they are VOC-free and compatible and have good adhesion on many types of substrates. In this research, the effect of hyperbranched polymers on the curing behavior of UV curable inks was investigated. Two types of hyperbranched polymers with hydroxyl and fatty acid chain terminal groups were used in ink formulations. The effect of hyperbranched polymers on the curing behavior of UV curable ink was investigated by real-time FTIR analysis. The results showed that the hyperbranched polymers could improve curing process by increasing the conversion rate of the third curing stage. All ink formulations containing hyperbranched polymers showed higher conversion than a neat sample. The highest conversion was 77 % for the blend containing a hyperbranched polymer with hydroxyl end groups while the neat sample showed a final conversion of 55%. UV curable inks in inkjet process containing hyperbranched polymers with hydroxyl end groups showed a higher final conversion than neat sample.

  4. MR scanning, tattoo inks, and risk of thermal burn

    DEFF Research Database (Denmark)

    Alsing, K. K.; Johannesen, H. H.; Hvass Hansen, R.

    2017-01-01

    : Magnetic resonance imaging effects on 3 commonly used commercial ink stock products marketed for cosmetic tattooing was studied. A main study tested 22 formulations based on 11 pigment raw materials, for example, one line of 11 called pastes and another called dispersions. Samples were spread in petri...... dishes and tested with a 0.97 T neodymium solid magnet to observe visual magnetic behavior. Before MRI, the surface temperature of the ink was measured using an infrared probe. Samples were placed in a clinical 3T scanner. Two scans were performed, that is, one in the isocenter and one 30 cm away from...... the center. After scanning, the surface temperature was measured again. Chemical analysis of samples was performed by mass spectroscopy. Results: Mean temperature increase measured in the isocenter ranged between 0.14 and 0.26°C (P

  5. Atmospheric pressure DBD gun and its application in ink printability

    International Nuclear Information System (INIS)

    Chen Qiang; Zhang Yuefei; Han Erli; Ge Yuanjing

    2005-01-01

    In this paper, a plasma source discharging at atmospheric pressure and its characterization diagnosed by a Langmuir probe and a digital camera are presented. As an application the dielectric barrier discharge (DBD) gun modifying an ultraviolet cured resin surface for ink printability is reported. The results from the digital camera indicate the uniformity and homogeneity of the plasma generated from the gun in the downstream but depending on the input power, diameter of electrodes, gas flow rates and the distance between the substrates and the nozzle. The contact angle measurement proves the efficiency of gun during the surface modification. The ink printability following DBD gun processing described here was significantly improved. The performed surface analysis using Fourier transform infrared indicates that the polarity of surface grafted in plasma is responsible for the film printability

  6. Effect of hydrophobic microstructured surfaces on conductive ink printing

    International Nuclear Information System (INIS)

    Kim, Seunghwan; Kang, Hyun Wook; Lee, Kyung Heon; Sung, Hyung Jin

    2011-01-01

    Conductive ink was printed on various microstructured substrates to measure the printing quality. Poly-dimethylsiloxane (PDMS) substrates were used to test the printability of the hydrophobic surface material. Microstructured arrays of 10 µm regular PDMS cubes were prepared using the MEMS fabrication technique. The gap distance between the cubes was varied from 10 to 40 µm. The printing wettability of the microstructured surfaces was determined by measuring the contact angle of a droplet of silver conductive ink. Screen-printing methods were used in the conductive line printing experiment. Test line patterns with finely varying widths (30–250 µm) were printed repeatedly, and the conductivity of the printed lines was measured. The printability, which was defined as the ratio of the successfully printed patterns to the total number of printed patterns, was analyzed as a function of the linewidth and the gap distance of the microstructured surfaces

  7. Direct ink write fabrication of transparent ceramic gain media

    Science.gov (United States)

    Jones, Ivy Krystal; Seeley, Zachary M.; Cherepy, Nerine J.; Duoss, Eric B.; Payne, Stephen A.

    2018-01-01

    Solid-state laser gain media based on the garnet structure with two spatially distinct but optically contiguous regions have been fabricated. Transparent gain media comprised of a central core of Y2.97Nd0.03Al5.00O12.00 (Nd:YAG) and an undoped cladding region of Y3Al5O12 (YAG) were fabricated by direct ink write and transparent ceramic processing. Direct ink write (DIW) was employed to form the green body, offering a general route to preparing functionally structured solid-state laser gain media. Fully-dense transparent optical ceramics in a "top hat" geometry with YAG/Nd:YAG have been fabricated by DIW methods with optical scatter at 1064 nm of <3%/cm.

  8. Powder ink coatings in nuclear medicine and nuclear technology

    International Nuclear Information System (INIS)

    Kunze, S.; Schlautek, H.

    1996-01-01

    Powder ink coatings are being used more and more frequently to protect the surfaces of movable objects of metal, such as machines, equipment, furniture, shelves, because this solvent-free coating technique, which produces almost no residues, helps to keep the environment clean. The white and grey baking coatings so far tested for decontaminability are presented in the article. Powder ink coatings of different shades and with different binders were tested for their ability to meet future standards. All systems under examination demonstrated excellent decontaminability before and after gamma exposure to 0.3 MGy. The same performance was obtained also after exposure to 3 MGy (ten times the level required for coatings in nuclear installations according to DIN 55991 Part 1), with the exception of one polyester metallic coating. After having been exposed to chemicals and decontamination solutions, all specimens showed only permissible discoloration. (orig.) [de

  9. Inkjet printing technology and conductive inks synthesis for microfabrication techniques

    International Nuclear Information System (INIS)

    Dang, Mau Chien; Dung Dang, Thi My; Fribourg-Blanc, Eric

    2013-01-01

    Inkjet printing is an advanced technique which reliably reproduces text, images and photos on paper and some other substrates by desktop printers and is now used in the field of materials deposition. This interest in maskless materials deposition is coupled with the development of microfabrication techniques for the realization of circuits or patterns on flexible substrates for which printing techniques are of primary interest. This paper is a review of some results obtained in inkjet printing technology to develop microfabrication techniques at Laboratory for Nanotechnology (LNT). Ink development, in particular conductive ink, study of printed patterns, as well as application of these to the realization of radio-frequency identification (RFID) tags on flexible substrates, are presented. (paper)

  10. Electrophoretic deposition of PEEK-TiO 2 composite coatings on stainless steel

    KAUST Repository

    Seuß , Sigrid; Subhani, Tayyab; Yi Kang, Min; Okudaira, Kenji; Ventura, Isaac Aguilar; Boccaccini, Aldo R.

    2012-01-01

    Electrophoretic deposition (EPD) has been successfully used to deposit composite coatings composed of polyetheretherketone (PEEK) and titanium dioxide (TiO 2) nanoparticles on 316L stainless steel substrates. The suspensions of TiO2 nanoparticles

  11. INFLUENCE OF BORATE BUFFERS ON THE ELECTROPHORETIC BEHAVIOR OF HUMIC SUBSTANCES IN CAPILLARY ZONE ELECTROPHORESIS

    Science.gov (United States)

    The influence of tetrahydroxyborate ions on the electrophoretic mobility of humic acids was evaluated by capillary electrophoresis (CE). Depending on the molarity of borate ions in the separation buffer, the humic acids exhibit electropherograms with sharp peaks consistently exte...

  12. Effect of AOT Microemulsion Composition on the Hydrodynamic Diameter and Electrophoretic Mobility of Titanium Oxide Nanoparticles

    Science.gov (United States)

    Shaparenko, N. O.; Beketova, D. I.; Demidova, M. G.; Bulavchenko, A. I.

    2018-05-01

    The hydrodynamic diameter and electrophoretic mobility of titania nanoparticles in AOT microemulsions are studied depending on their water content (from 0 to 1.5 vol %), chloroform content in n-decane-chloroform mixture (from 0 to 30 vol %) and temperature (from 0 to 60°C). Considerable changes in diameter (from 20 to 400 nm) are detected upon adding water to the microemulsion. The electrophoretic mobility grows by 2-3 times upon adding chloroform, or as the temperature falls. The observed features allow us to halve the time of electrophoretic concentration for 140 nm TiO2 nanoparticles, and to concentrate 14 nm nanoparticles that do not exhibit electrophoretic mobility in the absence of chloroform.

  13. Establishment of a Model of Microencapsulated SGC7901 Human Gastric Carcinoma Cells Cocultured with Tumor-Associated Macrophages

    Directory of Open Access Journals (Sweden)

    Jin-Ming Zhu

    2018-01-01

    Full Text Available The important factors of poor survival of gastric cancer (GC are relapse and metastasis. For further elucidation of the mechanism, a culture system mimicking the microenvironment of the tumor in humans was needed. We established a model of microencapsulated SGC7901 human GC cells and evaluated the effects of coculturing spheres with tumor-associated macrophages (TAMs. SGC7901 cells were encapsulated in alginate-polylysine-sodium alginate (APA microcapsules using an electrostatic droplet generator. MTT assays showed that the numbers of microencapsulated cells were the highest after culturing for 14 days. Metabolic curves showed consumption of glucose and production of lactic acid by day 20. Immunocytochemistry confirmed that Proliferating Cell Nuclear Antigen (PCNA and Vascular Endothelial Growth Factor (VEGF were expressed in microencapsulated SGC7901 cells on days 7 and 14. The expression of PCNA was observed outside spheroids; however, VEGF was found in the entire spheroids. PCNA and VEGF were increased after being cocultured with TAMs. Matrix metalloproteinase-2 (MMP-2 and matrix metalloproteinase-9 (MMP-9 expressions were detected in the supernatant of microencapsulated cells cocultured with TAMs but not in microencapsulated cells. Our study confirms the successful establishment of the microencapsulated GC cells. TAMs can promote PCNA, VEGF, MMP-2, and MMP-9 expressions of the GC cells.

  14. Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage

    International Nuclear Information System (INIS)

    Alva, Guruprasad; Huang, Xiang; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: •Myristic acid–palmitic acid eutectic was microencapsulated with silica shell. •Structure, morphology of microencapsulated phase change material were investigated. •Thermal capacity, stability of microencapsulated phase change material were analyzed. •Silica shell improved thermal stability of microencapsulated phase change material. -- Abstract: In this work microencapsulation of myristic acid–palmitic acid (MA–PA) eutectic mixture with silica shell using sol−gel method has been attempted. The core phase change material (PCM) for thermal energy storage was myristic acid−palmitic acid eutectic mixture and the shell material to prevent the PCM core from leakage was silica prepared from methyl triethoxysilane (MTES). Thermal properties of the microcapsules were measured by differential scanning calorimeter (DSC). The morphology and particle size of the microcapsules were examined by scanning electronic microscope (SEM). Fourier transformation infrared spectrophotometer (FT–IR) and X–ray diffractometer (XRD) were used to investigate the chemical structure and crystalloid phase of the microcapsules respectively. The DSC results indicated that microencapsulated phase change material (MPCM) melts at 46.08 °C with a latent heat of 169.69 kJ kg −1 and solidifies at 44.35 °C with a latent heat of 159.59 kJ kg −1 . The thermal stability of the microcapsules was analyzed by a thermogravimeter (TGA). The results indicated that the MPCM has good thermal stability and is suitable for thermal energy storage application.

  15. Inkjet printing of silver citrate conductive ink on PET substrate

    Energy Technology Data Exchange (ETDEWEB)

    Nie Xiaolei [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Wang Hong, E-mail: hongwang@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zou Jing [Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A direct synthesis method of silver conductive film on PET substrate was presented. Black-Right-Pointing-Pointer A stable particle-free conductive ink was prepared. Black-Right-Pointing-Pointer Formation of silver-amine complex reduced the thermal decomposition temperature. Black-Right-Pointing-Pointer Conductive patterns for flexible electronics were fabricated by inkjet printing. Black-Right-Pointing-Pointer Silver film on PET substrate possessed highest adhesion rating even without polymer. - Abstract: Direct synthesis of silver conductive film on PET substrate by inkjet printing silver citrate conductive ink was presented in this paper. This kind of conductive ink contained silver citrate as silver precursor, 1,2-diaminopropane as complex agent dissolving the silver salt and methanol and isopropanol as a media adjusting the viscosity and surface tension. The formation of silver-amine complex reduced the decomposition temperature from 180 Degree-Sign C to 135 Degree-Sign C, thus the ink could be cured at relatively low temperature. The film reached the lowest resistivity of 17 {mu}{Omega} cm after cured at 150 Degree-Sign C for 50 min, 3.1 {mu}{Omega} cm at 230 Degree-Sign C and possessed high reflection and excellent adhesive property. Electrical conductivity, surface morphology and composition were investigated by four-point probe method, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). It is demonstrated how the cured condition affects the silver film. Moreover, radio-frequency identification (RFID) antenna was fabricated by inkjet printing, which opens up routes for the flexible electronics fabrication.

  16. Mod silver metallization: Screen printing and ink-jet printing

    Science.gov (United States)

    Vest, R. W.; Vest, G. M.

    1985-01-01

    Basic material efforts have proven to be very successful. Adherent and conductive films were achieved. A silver neodecanoate/bismuth 2-ethylhexanoate mixture has given the best results in both single and double layer applications. Another effort is continuing to examine the feasibility of applying metallo-organic deposition films by use of an ink jet printer. Direct line writing would result in a saving of process time and materials. So far, some well defined lines have been printed.

  17. Inkjet printing of silver citrate conductive ink on PET substrate

    International Nuclear Information System (INIS)

    Nie Xiaolei; Wang Hong; Zou Jing

    2012-01-01

    Highlights: ► A direct synthesis method of silver conductive film on PET substrate was presented. ► A stable particle-free conductive ink was prepared. ► Formation of silver-amine complex reduced the thermal decomposition temperature. ► Conductive patterns for flexible electronics were fabricated by inkjet printing. ► Silver film on PET substrate possessed highest adhesion rating even without polymer. - Abstract: Direct synthesis of silver conductive film on PET substrate by inkjet printing silver citrate conductive ink was presented in this paper. This kind of conductive ink contained silver citrate as silver precursor, 1,2-diaminopropane as complex agent dissolving the silver salt and methanol and isopropanol as a media adjusting the viscosity and surface tension. The formation of silver-amine complex reduced the decomposition temperature from 180 °C to 135 °C, thus the ink could be cured at relatively low temperature. The film reached the lowest resistivity of 17 μΩ cm after cured at 150 °C for 50 min, 3.1 μΩ cm at 230 °C and possessed high reflection and excellent adhesive property. Electrical conductivity, surface morphology and composition were investigated by four-point probe method, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). It is demonstrated how the cured condition affects the silver film. Moreover, radio-frequency identification (RFID) antenna was fabricated by inkjet printing, which opens up routes for the flexible electronics fabrication.

  18. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    OpenAIRE

    Klančnik, Maja

    2014-01-01

    The intention of the study was to improve the efficiency of total organic carbon (TOC) and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99...

  19. Advanced Methods for Direct Ink Write Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Compel, W. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lewicki, J. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-24

    Lawrence Livermore National Laboratory is one of the world’s premier labs for research and development of additive manufacturing processes. Out of these many processes, direct ink write (DIW) is arguably one of the most relevant for the manufacture of architected polymeric materials, components and hardware. However, a bottleneck in this pipeline that has largely been ignored to date is the lack of advanced software implementation with respect to toolpath execution. There remains to be a convenient, automated method to design and produce complex parts that is user-friendly and enabling for the realization of next generation designs and structures. For a material to be suitable as a DIW ink it must possess the appropriate rheological properties for this process. Most importantly, the material must exhibit shear-thinning in order to extrude through a print head and have a rapid recovery of its static shear modulus. This makes it possible for the extrudate to be self-supporting upon exiting the print head. While this and other prerequisites narrow the scope of ‘offthe- shelf’ printable materials directly amenable to DIW, the process still tolerates a wide range of potential feedstock materials. These include metallic alloys, inorganic solvent borne dispersions, polymeric melts, filler stabilized monomer compositions, pre-elastomeric feedstocks and thermoset resins each of which requires custom print conditions tailored to the individual ink. As such, an ink perfectly suited for DIW may be prematurely determined to be undesirable for the process if printed under the wrong conditions. Defining appropriate print conditions such as extrusion rate, layer height, and maximum bridge length is a vital first step in validating an ink’s DIW capability.

  20. Electrophoretic mobility patterns of collagen following laser welding

    Science.gov (United States)

    Bass, Lawrence S.; Moazami, Nader; Pocsidio, Joanne O.; Oz, Mehmet C.; LoGerfo, Paul; Treat, Michael R.

    1991-06-01

    Clinical application of laser vascular anastomosis in inhibited by a lack of understanding of its mechanism. Whether tissue fusion results from covalent or non-covalent bonding of collagen and other structural proteins is unknown. We compared electrophoretic mobility of collagen in laser treated and untreated specimens of rat tail tendon (>90% type I collagen) and rabbit aorta. Welding was performed, using tissue shrinkage as the clinical endpoint, using the 808 nm diode laser (power density 14 watts/cm2) and topical indocyanine green dye (max absorption 805 nm). Collagen was extracted with 8 M urea (denaturing), 0.5 M acetic acid (non-denaturing) and acetic acid/pepsin (cleaves non- helical protein). Mobility patterns on gel electrophoresis (SDS-PAGE) after urea or acetic acid extraction were identical in the lasered and control tendon and vessel (confirmed by optical densitometry), revealing no evidence of formation of novel covalent bonds. Alpha and beta band intensity was diminished in pepsin incubated lasered specimens compared with controls (optical density ratio 0.00 +/- 9 tendon, 0.65 +/- 0.12 aorta), indicating the presence of denatured collagen. With the laser parameters used, collagen is denatured without formation of covalent bonds, suggesting that non-covalent interaction between denatured collagen molecules may be responsible for the weld. Based on this mechanism, welding parameters can be chosen which produce collagen denaturation without cell death.

  1. Electrophoretic variants of blood proteins in japanese, 5

    International Nuclear Information System (INIS)

    Fujita, Mikio; Satoh, Chiyoko; Asakawa, Jun-ichi; Nagahata, Yuko; Tanaka, Yoshiko; Hazama, Ryuji; Goriki, Kazuaki.

    1985-08-01

    The plasma ceruloplasmin (CP) of 22,367 children of atomic bomb survivors in Hiroshima and Nagasaki was examined for variants by electrophoresis. The sample was composed of 14,964 unrelated children and 7,403 siblings of the unrelated persons. A total of seven types of electrophoretic variants were detected; four migrating anodally and three cathodally to the normal B band. We have reported two of these variants, CP A sub(NG1) and CP C sub(NG1), previously but the other five, CP A sub(NG2), CP A sub(HR1), CP A sub(HR2), CP C sub(HR1), and CP C sub(HR2), are newly identified. The allelic frequency of CP*CNG1 was 0.00916, so that the variant is considered to be a polymorphic allele. Homozygosity for the CP*CNG1 allele was detected in five individuals. This is the first report of a homozygous phenotype for a CP variant in a Japanese population. Family study of the new five variants all demonstrated patterns of codominant inheritance. (author)

  2. Electrophoretic nanotechnology of composite electrodes for electrochemical supercapacitors.

    Science.gov (United States)

    Su, Y; Zhitomirsky, I

    2013-02-14

    The electrophoretic deposition (EPD) method has been developed for the fabrication of MnO(2)-multiwalled carbon nanotube (MWCNT) films for application in electrochemical supercapacitors (ESs). For MWCNT applications, which depend on electrical conductivity, it is challenging to achieve dispersion and EPD of pristine MWCNT and avoid defects due to chemical treatment or functionalization. An important finding was the possibility of efficient dispersion and controlled EPD of MWCNT using calconcarboxylic acid (CCA). Moreover, the use of CCA allowed efficient dispersion of MnO(2) in concentrated suspensions and EPD of MnO(2) films. The comparison of the experimental data for chromotrope FB (CFB) and CCA and chemical structures of the molecules provided insight into the mechanism of CCA adsorption on MnO(2). The fabrication of stable suspensions of MnO(2) nanoparticles containing MWCNT, and controlled codeposition of both materials is a crucial aspect in the EPD of composites. The new approach was based on the use of CCA as a charging and dispersing agent for EPD of MnO(2) nanoparticles and MWCNT. The deposition yield measurements at various experimental conditions and Fourier transform infrared spectroscopy data, coupled with results of electron microscopy, thermogravimetric, and differential thermal analysis provided evidence of the formation of MnO(2)-MWCNT composites. The electrochemical testing results and impedance spectroscopy data showed good capacitive behavior of the composite films and the beneficial effect of MWCNTs.

  3. Validation of an electrophoretic method to detect albuminuria in cats.

    Science.gov (United States)

    Ferlizza, Enea; Dondi, Francesco; Andreani, Giulia; Bucci, Diego; Archer, Joy; Isani, Gloria

    2017-08-01

    Objectives The aims of this study were to validate a semi-automated high-resolution electrophoretic technique to quantify urinary albumin in healthy and diseased cats, and to evaluate its diagnostic performance in cases of proteinuria and renal diseases. Methods Urine samples were collected from 88 cats (healthy; chronic kidney disease [CKD]; lower urinary tract disease [LUTD]; non-urinary tract diseases [OTHER]). Urine samples were routinely analysed and high-resolution electrophoresis (HRE) was performed. Within-assay and between-assay variability, linearity, accuracy, recovery and the lowest detectable and quantifiable bands were calculated. Receiver operating curve (ROC) analysis was also performed. Results All coefficients of variation were HRE allowed the visualisation of a faint band of albumin and a diffused band between alpha and beta zones in healthy cats, while profiles from diseased cats were variable. Albumin (mg/dl) and urine albumin:creatinine ratio (UAC) were significantly ( P HRE is an accurate and precise method that could be used to measure albuminuria in cats. UAC was useful to correctly classify proteinuria and to discriminate between healthy and diseased cats. HRE might also provide additional information on urine proteins with a profile of all proteins (albumin and globulins) to aid clinicians in the diagnosis of diseases characterised by proteinuria.

  4. Polyacrylamide medium for the electrophoretic separation of biomolecules

    Science.gov (United States)

    Madabhushi, Ramakrishna S.; Gammon, Stuart A.

    2003-11-11

    A polyacryalmide medium for the electrophoretic separation of biomolecules. The polyacryalmide medium comprises high molecular weight polyacrylamides (PAAm) having a viscosity average molecular weight (M.sub.v) of about 675-725 kDa were synthesized by conventional red-ox polymerization technique. Using this separation medium, capillary electrophoresis of BigDye DNA sequencing standard was performed. A single base resolution of .about.725 bases was achieved in .about.60 minute in a non-covalently coated capillary of 50 .mu.m i.d., 40 cm effective length, and a filed of 160 V/cm at 40.degree. C. The resolution achieved with this formulation to separate DNA under identical conditions is much superior (725 bases vs. 625 bases) and faster (60 min. vs. 75 min.) to the commercially available PAAm, such as supplied by Amersham. The formulation method employed here to synthesize PAAm is straight-forward, simple and does not require cumbersome methods such as emulsion polymerizaiton in order to achieve very high molecular weights. Also, the formulation here does not require separation of PAAm from the reaction mixture prior to reconstituting the polymer to a final concentration. Furthermore, the formulation here is prepared from a single average mol. wt. PAAm as opposed to the mixture of two different average mo. wt. PAAm previously required to achieve high resolution.

  5. 3D Printing by Multiphase Silicone/Water Capillary Inks.

    Science.gov (United States)

    Roh, Sangchul; Parekh, Dishit P; Bharti, Bhuvnesh; Stoyanov, Simeon D; Velev, Orlin D

    2017-08-01

    3D printing of polymers is accomplished easily with thermoplastics as the extruded hot melt solidifies rapidly during the printing process. Printing with liquid polymer precursors is more challenging due to their longer curing times. One curable liquid polymer of specific interest is polydimethylsiloxane (PDMS). This study demonstrates a new efficient technique for 3D printing with PDMS by using a capillary suspension ink containing PDMS in the form of both precured microbeads and uncured liquid precursor, dispersed in water as continuous medium. The PDMS microbeads are held together in thixotropic granular paste by capillary attraction induced by the liquid precursor. These capillary suspensions possess high storage moduli and yield stresses that are needed for direct ink writing. They could be 3D printed and cured both in air and under water. The resulting PDMS structures are remarkably elastic, flexible, and extensible. As the ink is made of porous, biocompatible silicone that can be printed directly inside aqueous medium, it can be used in 3D printed biomedical products, or in applications such as direct printing of bioscaffolds on live tissue. This study demonstrates a number of examples using the high softness, elasticity, and resilience of these 3D printed structures. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ag–graphene hybrid conductive ink for writing electronics

    International Nuclear Information System (INIS)

    Xu, L Y; Yang, G Y; Jing, H Y; Han, Y D; Wei, J

    2014-01-01

    With the aim of preparing a method for the writing of electronics on paper by the use of common commercial rollerball pens loaded with conductive ink, hybrid conductive ink composed of Ag nanoparticles (15 wt%) and graphene–Ag composite nanosheets (0.15 wt%) formed by depositing Ag nanoparticles (∼10 nm) onto graphene sheets was prepared for the first time. Owing to the electrical pathway effect of graphene and the decreased contact resistance of graphene junctions by depositing Ag nanoparticles (NPs) onto graphene sheets, the concentration of Ag NPs was significantly reduced while maintaining high conductivity at a curing temperature of 100 ° C. A typical resistivity value measured was 1.9 × 10 −7  Ω m, which is 12 times the value for bulk silver. Even over thousands of bending cycles or rolling, the resistance values of writing tracks only increase slightly. The stability and flexibility of the writing circuits are good, demonstrating the promising future of this hybrid ink and direct writing method. (paper)

  7. Inkjet printing of silver citrate conductive ink on PET substrate

    Science.gov (United States)

    Nie, Xiaolei; Wang, Hong; Zou, Jing

    2012-11-01

    Direct synthesis of silver conductive film on PET substrate by inkjet printing silver citrate conductive ink was presented in this paper. This kind of conductive ink contained silver citrate as silver precursor, 1,2-diaminopropane as complex agent dissolving the silver salt and methanol and isopropanol as a media adjusting the viscosity and surface tension. The formation of silver-amine complex reduced the decomposition temperature from 180 °C to 135 °C, thus the ink could be cured at relatively low temperature. The film reached the lowest resistivity of 17 μΩ cm after cured at 150 °C for 50 min, 3.1 μΩ cm at 230 °C and possessed high reflection and excellent adhesive property. Electrical conductivity, surface morphology and composition were investigated by four-point probe method, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS). It is demonstrated how the cured condition affects the silver film. Moreover, radio-frequency identification (RFID) antenna was fabricated by inkjet printing, which opens up routes for the flexible electronics fabrication.

  8. Coagulation and Adsorption Treatment of Printing Ink Wastewater

    Directory of Open Access Journals (Sweden)

    Maja Klančnik

    2015-03-01

    Full Text Available The intention of the study was to improve the efficiency of total organic carbon (TOC and colour removal from the wastewater samples polluted with flexographic printing ink following coagulation treatments with further adsorption onto activated carbons and ground orange peel. The treatment efficiencies were compared to those of further flocculation treatments and of coagulation and adsorption processes individually. Coagulation was a relatively effective single-treatment method, removing 99.7% of the colour and 86.9% of the organic substances (TOC from the printing ink wastewater samples. Further flocculation did not further eliminate organic pollutants, whereas subsequent adsorption with 7 g/l of granular activated carbon further reduced organic substances by 35.1%, and adsorption with 7 g/l of powdered activated carbon further reduced organic substances by 59.3%. Orange peel was an inappropriate adsorbent for wastewater samples with low amounts of pollution, such as water that had been treated by coagulation. However, in highly polluted printing ink wastewater samples, the adsorption treatment with ground orange peel achieved efficiencies comparable to those of the granular activated carbon treatments.

  9. Fabrication of fully ceramic microencapsulated fuel by hot pressing

    International Nuclear Information System (INIS)

    Lee, H. G.; Kim, D. J; Park, J. Y.; Kim, W. J.; Lee, S. J

    2014-01-01

    Fully ceramic microencapsulated(FCM) nuclear fuel is one of the recently suggested concept to enhance stability nuclear fuel itself. The requirements to increase the accident tolerance of nuclear fuel are mainly two parts: First, the performance has to be maintained compared to the existing UO 2 nuclear fuel and zircaloy cladding system under the normal operation condition. Second, under the severe accident condition, the high temperature structural integrity has to be kept and the generation rate of hydrogen has to be decrease largely. FCM nuclear fuel consists of tristructural isotropic(TRISO) fuel particle and SiC matrix. The relative thermal conductivity of the SiC matrix as compared to UO 2 is quite good, yielding as-irradiated fuel centerline temperature compared to high temperature for the existing fuel leading to reduced stored energy in the core and reduced operational release of fission products from the fuel. Generally SiC ceramics are fabricated via liquid phase sintering due to strong covalent bonding property and low self-diffusivity coefficient. Hot pressing is very effective method to conduct sintering of SiC powder including different second phase. In this study, SiC-matrix composite including TRISO particles were sintered by hot pressing with Al 2 O 3 -Y 2 O 3 additive system. Various sintering condition were investigated to obtain high relative density above 95%. The internal distribution of TRISO particles within SiC-matrix composite was observed by x-ray radiograph. From the analysis of the cross-section of SiC-matrix composite, the fracture of TRISO particles was investigated. In order to uniform distribution of TRISO particle embedded in the SiC matrix, SiC powder overcoating is considered. SiC matrix composite including TRISO was fabricated by hot pressing. FCM pallets with full density were obtained with Al 2 O 3 -Y 2 O 3 additive system. From the microstructure image, the effect of the sintering additive contents and sintering mechanism

  10. Novel materials for electronic device fabrication using ink-jet printing technology

    International Nuclear Information System (INIS)

    Kumashiro, Yasushi; Nakako, Hideo; Inada, Maki; Yamamoto, Kazunori; Izumi, Akira; Ishihara, Masamichi

    2009-01-01

    Novel materials and a metallization technique for the printed electronics were studied. Insulator inks and conductive inks were investigated. For the conductive ink, the nano-sized copper particles were used as metallic sources. These particles were prepared from a copper complex by a laser irradiation process in the liquid phase. Nano-sized copper particles were consisted of a thin copper oxide layer and a metal copper core wrapped by the layer. The conductive ink showed good ink-jettability. In order to metallize the printed trace of the conductive ink on a substrate, the atomic hydrogen treatment was carried out. Atomic hydrogen was generated on a heated tungsten wire and carried on the substrate. The temperature of the substrate was up to 60 deg. C during the treatment. After the treatment, the conductivity of a copper trace was 3 μΩ cm. It was considered that printed wiring boards can be easily fabricated by employing the above materials.

  11. Drying characteristics of hui ink at 25 °C and 35 °C

    Science.gov (United States)

    Fu, Yang; Yao, Yao; Liu, Le; Wang, Fengwen; Yang, Shuyun

    2018-05-01

    Temperature and humidity are the main factors affecting the drying of Hui ink. For the experiment, fresh Hui ink billets from two big ink industries were selected. We tried to find the fast and efficient drying conditions of Hui ink and calculate effective diffusion coefficient by performing manual control of temperature and relative humidity (RH). Several dry kinetic models were fitted. A constant temperature incubator was utilized for temperature control, while humidification and dehumidification were implemented accordingly for RH control. Setups of 25 °C and 35 °C were designed, and a relative humidity of 60%, 65%, 70%, and 75% was applied for each temperature. The process of ink drying was recorded, and the drying effect of Hui ink was estimated through expert decision. The appropriate drying temperature and humidity of the Jinbuhuan(J) and Huangshansongyan(H) ink billets from Lao Hu Kai Wen Ink Industry are at (31.99 ± 1.41) °C and (55.84 ± 10.38)% RH, whereas those of the Songyantanhei(ST), Chunyouyan(CY), and Quansongyan(QS) ink billets from Ju Mo Tang Ink Industry are at (23.70 ± 2.19) °C and (60.56 ± 2.16)% RH or (34.56 ± 2.37) °C and (59.16 ± 6.38)% RH; Initial moisture content of Hui ink has great influence on the water loss in the drying process; The effective diffusion coefficient of the ink lump ranges from 8.41538E-07 to 1.95891E-06 m2·s-1, and increases mainly with the temperature's rising; Logarithmic model fits best of the chosen models.

  12. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions.

    Science.gov (United States)

    Cánepa, Eduardo T; Scassa, María E; Ceruti, Julieta M; Marazita, Mariela C; Carcagno, Abel L; Sirkin, Pablo F; Ogara, María F

    2007-07-01

    The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.

  13. A stretchable and screen-printable conductive ink for stretchable electronics

    Science.gov (United States)

    Mohammed, Anwar; Pecht, Michael

    2016-10-01

    Stretchable electronics can offer an added degree of design freedom and generate products with unprecedented capabilities. Stretchable conductive ink serving as interconnect, is a key enabler for stretchable electronics. This paper focuses on the development of a stretchable and screen printable conductive ink which could be stretched more than 500 cycles at 20% strain while maintaining electrical and mechanical integrity. The screen printable and stretchable conductive ink developed in this paper marks an important milestone for this nascent technology.

  14. Electrical and Physical Property Characterization of Single Walled Carbon Nanotube Ink for Flexible Printed Electronics

    Science.gov (United States)

    2015-03-01

    accurately can the 2 ink be printed? How well does the ink adhere to its substrate? How does the substrate affect the adhesion properties? In what...physical characteristics, some of which may be incompatible with inkjet printing, or the Dimatix DMP 2800 specifically. 3.2.1.2 Ink Solvent...The tape test is conducted by applying a flexible adhesive -backed polymer to the fully-dried printed circuit. The tape is then removed and analyzed

  15. Optimization of a microfluidic electrophoretic immunoassay using a Peltier cooler.

    Science.gov (United States)

    Mukhitov, Nikita; Yi, Lian; Schrell, Adrian M; Roper, Michael G

    2014-11-07

    Successful analysis of electrophoretic affinity assays depends strongly on the preservation of the affinity complex during separations. Elevated separation temperatures due to Joule heating promotes complex dissociation leading to a reduction in sensitivity. Affinity assays performed in glass microfluidic devices may be especially prone to this problem due to poor heat dissipation due to the low thermal conductivity of glass and the large amount of bulk material surrounding separation channels. To address this limitation, a method to cool a glass microfluidic chip for performing an affinity assay for insulin was achieved by a Peltier cooler localized over the separation channel. The Peltier cooler allowed for rapid stabilization of temperatures, with 21°C the lowest temperature that was possible to use without producing detrimental thermal gradients throughout the device. The introduction of cooling improved the preservation of the affinity complex, with even passive cooling of the separation channel improving the amount of complex observed by 2-fold. Additionally, the capability to thermostabilize the separation channel allowed for utilization of higher separation voltages than what was possible without temperature control. Kinetic CE analysis was utilized as a diagnostic of the affinity assay and indicated that optimal conditions were at the highest separation voltage, 6 kV, and the lowest separation temperature, 21°C, leading to 3.4% dissociation of the complex peak during the separation. These optimum conditions were used to generate a calibration curve and produced 1 nM limits of detection, representing a 10-fold improvement over non-thermostated conditions. This methodology of cooling glass microfluidic devices for performing robust and high sensitivity affinity assays on microfluidic systems should be amenable in a number of applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Serum Protein Electrophoretic Pattern in Neonatal Calves Treated with Clinoptilolite

    Directory of Open Access Journals (Sweden)

    Simona Marc

    2018-05-01

    Full Text Available The objective of our study was to determine the effects of clinoptilolite supplemented in colostrum on the blood serum protein electrophoretic pattern of new-born calves. Methods: Romanian Black and White new-born calves involved in the study were divided into 3 groups: the control group (C that received colostrum without clinoptilolite, and experimental groups I (E1 and II (E2 that received colostrum supplemented with 0.5% and 2% clinoptilolite, respectively. The concentration of total protein and protein fractions (albumin, α1-globulin, α2-globulin, β-globulin and γ-globulin were analyzed by electrophoresis on cellulose acetate. Results: At hour 30 after birth, concentrations of γ-globulins, β-globulin and total protein in E1 group of calves were higher than in control group by 42.11% (p < 0.05, 28.48% (p > 0.05 and 18.52% (p > 0.05, respectively, and were higher, but not significantly, in group E2 compared to the control group. This was in accordance with a significant lower albumin/globulin ratio in groups E1 and E2 (29.35%, p < 0.05 and 35.87%, p < 0.05, respectively than in control group at 30 h postpartum, which indicates an obvious increase of the globulins fraction in experimental groups. The conclusion: Clinoptilolite was effective in improving passive transfer in new-born calves, but it was more effective if added in colostrum with a dose of 0.5% than with a dose of 2%.

  17. Thermal Analysis of Braille Formed by Using Screen Printing and Inks with Thermo Powder

    Directory of Open Access Journals (Sweden)

    Svіtlana HAVENKO

    2015-03-01

    Full Text Available In order to improve the integration of blind people into society, suitable conditions should be provided for them. The expansion of Braille (BR use could serve the purpose. Depending on the materials used for Braille, it can be formed or printed in different ways: embossing, screen printing, thermoforming, digital printing. The aim of this research is to determine the effect of thermal properties of screen printing inks and inks with thermo-powder on the qualitative parameters of Braille. Screen printing inks and inks with thermo-powder were chosen for the research. Carrying out the qualitative analysis of printouts with Braille, the thermal stability was evaluated by analyzing the thermograms obtained with derivatograph Q-1500. This paper presents the findings of the thermogravimetric (TG, differential thermogravimetric (DTG and differential thermal analysis (DTA of printouts printed on paperboard Plike and using traditional screen printing inks and screen printing inks with thermo-powder. Based on the testing findings it is determined that thermal stability of printouts printed with thermo-powder ink is higher than printed with screen printing inks. It is determined that the appropriate temperature range of screen printing inks with thermo-powder drying is 98 ºC – 198 ºC because in this case better relief of Braille dots is obtained.DOI: http://dx.doi.org/10.5755/j01.ms.21.1.5702

  18. Analysis of writing inks on paper using direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Jones, Roger W; McClelland, John F

    2013-09-10

    Ink analysis is central to questioned document examination. We applied direct analysis in real time mass spectrometry (DART MS) to ballpoint, gel, and fluid writing ink analysis. DART MS acquires the mass spectrum of an ink while it is still on a document without altering the appearance of the document. Spectra were acquired from ink on a variety of papers, and the spectrum of the blank paper could be subtracted out to produce a cleanly isolated ink spectrum in most cases. Only certain heavy or heavily processed papers interfered. The time since an ink is written on paper has a large effect on its spectrum. DART spectra change radically during the first few months after an ink is written as the more volatile components evaporate, but the spectra stabilize after that. A library-search study involving 166 well-aged inks assessed the ability to identify inks from their DART spectra. The aggregate success rate was 92%. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Investigation into the Friction and Roughness Properties of Prints Using Conventional and UV Inks

    Directory of Open Access Journals (Sweden)

    Giedrė Giraitytė

    2015-03-01

    Full Text Available The article experimentally investigates the properties of offset print friction and determines static and kinetic coeffi­cients of friction. Conventional and UV inks have been found to increase the static friction coefficient and re­duce the kinetic friction coefficient between paper and print. The roughness pro­perties of two different types of paper and prints using conventional and UV inks have been examined and compared thus determining that conventional inks strongly increase the roughness of print surface and that the influence of UV inks depend on the type of paper.

  20. Development of black ink for calligraphy purpose in the production of Al-quran

    Science.gov (United States)

    Rahim, F. F. A.; Jai, J.; Hamzah, F.; Bakar, N. F. A.

    2018-03-01

    Commercialised calligraphy inks are currently formulated for general purposes and is not to be practiced solely for the writings of Al-Quran. Thus the usage on Al-Quran is uncertain due to the unknown ingredients used. The virtue of this work is to develop halal and genuine formulations of black inks for calligraphy purpose in the production of Al-Quran manuscript. The black ink produced is required to have few properties; rich solid black, soft handling, fast drying time, non-lifting, non-feathering and waterproof. Pigment used include graphene, charcoal and lampblack. The binders are shellac and acrylic emulsion while solvent used are glycerol and ethanol. From the chosen pigments, binders and solvent, 19 formulation of inks were developed by manipulating the type and amount of each element. Evaluation of all 19 inks produced were done by an expert calligrapher using a professional scale. From the evaluation, one ink was chosen to have the best characteristics of an ink (ink code S9) with formulation of 0.3 g lampblack and 13 mL shellac. The produced black ink has fulfilled the requirement by the calligraphy expert.

  1. Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics.

    Science.gov (United States)

    Farraj, Yousef; Grouchko, Michael; Magdassi, Shlomo

    2015-01-31

    Highly conductive copper patterns on low-cost flexible substrates are obtained by inkjet printing a metal complex based ink. Upon heating the ink, the soluble complex, which is composed of copper formate and 2-amino-2-methyl-1-propanol, decomposes under nitrogen at 140 °C and is converted to pure metallic copper. The decomposition process of the complex is investigated and a suggested mechanism is presented. The ink is stable in air for prolonged periods, with no sedimentation or oxidation problems, which are usually encountered in copper nanoparticle based inks.

  2. Hyperspectral imaging technology for revealing the original handwritings covered by the same inks

    Directory of Open Access Journals (Sweden)

    Yuanyuan Lian

    2017-01-01

    Full Text Available This manuscript presents a preliminary investigation on the applicability of hyperspectral imaging technology for nondestructive and rapid analysis to reveal covered original handwritings. The hyperspectral imager Nuance-Macro was used to collect the reflected light signature of inks from the overlapping parts. The software Nuance1p46 was used to analyze the reflected light signature of inks which shows the covered original handwritings. Different types of black/blue ballpoint pen inks and black/blue gel pen inks were chosen for sample preparation. From the hyperspectral images examined, the covered original handwritings of application were revealed in 90.5%, 69.1%, 49.5%, and 78.6% of the cases. Further, the correlation between the revealing effect and spectral characteristics of the reflected light of inks at the overlapping parts was interpreted through theoretical analysis and experimental verification. The results indicated that when the spectral characteristics of the reflected light of inks at the overlapping parts were the same or very similar to that of the ink that was used to cover the original handwriting, the original handwriting could not be shown. On the contrary, when the spectral characteristics of the reflected light of inks at the overlapping parts were different to that of the ink that was used to cover the original handwriting, the original handwriting was revealed.

  3. Different types of inks having certain medicolegal importance: Deciphering the faded and physically erased handwriting

    Directory of Open Access Journals (Sweden)

    Manal Abd-ElAziz Abd-ElZaher

    2014-06-01

    Full Text Available Disappearing ink is a type of ink which could be used to forge documents as it will fade away without any trace within 40–65 h. Erasable ink is another type of ink easily removed by certain rubbers incorporated in each pen. Both types of inks were applied separately on different types of papers (checks, standard white foolscap, and plain white A4 paper. For vanishing ink, it was observed visually in the first 6 h and then every 6 h. It was found that the vanishing ink disappeared completely within 2 h on checks, 36 h on standard white foolscap paper, and 40 h on plain white A4 paper. For erasable ink, the written strokes were manipulated manually using the incorporated eraser. Deciphering the faded writing failed by the conventional methods, but oblique light can reveal the indentation marks. The faded writing became visible when treated with weak alkaline (NaOH solutions. Erasable ink was deciphered with the aid of infra-red radiation combined with VSC-6000 as clear white traces against red fluorescence. It was concluded that the use of a weak (NaOH solution is an effective method for revealing the faded writing, and the infra-red illumination is also effective.

  4. Assessing Ink Transfer Performance of Gravure-Offset Fine-Line Circuitry Printing

    Science.gov (United States)

    Cheng, Hsien-Chie; Chen, You-Wei; Chen, Wen-Hwa; Lu, Su-Tsai; Lin, Shih-Ming

    2018-03-01

    In this study, the printing mechanism and performance of gravure-offset fine-line circuitry printing technology are investigated in terms of key printing parameters through experimental and theoretical analyses. First, the contact angles of the ink deposited on different substrates, blankets, and gravure metal plates are experimentally determined; moreover, their temperature and solvent content dependences are analyzed. Next, the ink solvent absorption and evaporation behaviors of the blankets at different temperatures, times, and numbers of printing repetitions are characterized by conducting experiments. In addition, while printing repeatedly, the surface characteristics of the blankets, such as the contact angle, vary with the amount of absorbed ink solvent, further affecting the ink transfer performance (ratio) and printing quality. Accordingly, the surface effect of the blanket due to ink solvent absorption on the ink contact angle is analyzed. Furthermore, the amount of ink transferred from the gravure plate to the blanket in the "off process" and from the blanket to the substrate in the "set process" is evaluated by conducting a simplified plate-to-plate experiment. The influences of loading rate (printing velocity), temperature, and solvent content on the ink transfer performance are addressed. Finally, the ink transfer mechanism is theoretically analyzed for different solvent contents using Surface Evolver. The calculation results are compared with those of the experiment.

  5. Natural convection heat transfer from a heated horizontal cylinder with Microencapsulated Phase-Change-Material slurries

    International Nuclear Information System (INIS)

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nagashima, Akira

    1998-01-01

    The present study investigates natural convection heat transfer from a heated cylinder cooled by a water slurry of Microencapsulated Phase Change Material (MCPCM). A normal paraffin hydrocarbon with carbon number of 18 and melting point of 27.9degC, is microencapsulated by Melamine resin into particles of which average diameter is 9.5 μm and specific weight is same as water. The slurry of the MCPCM and water is put into a rectangular enclosure with a heated horizontal cylinder. The heat transfer coefficients of the cylinder were evaluated. Changing the concentrations of PCM and temperature difference between cylinder surface and working fluid. Addition of MCPCM into water, the heat transfer is enhanced significantly comparison with pure water in cases with phase change and is reduced slightly in cases without phase change. (author)

  6. Microencapsulation techniques to develop formulations of insulin for oral delivery: a review.

    Science.gov (United States)

    Cárdenas-Bailón, Fernando; Osorio-Revilla, Guillermo; Gallardo-Velázquez, Tzayhrí

    2013-01-01

    Oral insulin delivery represents one of the most challenging goals for pharmaceutical industry. In general, it is accepted that oral administration of insulin would be more accepted by patients and insulin would be delivered in a more physiological way than the parenteral route. From all strategies to deliverer insulin orally, microencapsulation or nanoencapsulation of insulin are the most promising approaches because these techniques protect insulin from enzymatic degradation in stomach, show a good release profile at intestine pH values, maintain biological activity during formulation and enhance intestinal permeation at certain extent. From different microencapsulation techniques, it seems that complex coacervation, multiple emulsion and internal gelation are the most appropriate techniques to encapsulate insulin due to their relative ease of preparation. Besides that, the use of organic solvents is not required and can be scaled up at low cost; however, relative oral bioavailability still needs to be improved.

  7. Protection of fish oil from oxidation by microencapsulation using freeze-drying techniques

    DEFF Research Database (Denmark)

    Heinzelmann, K.; Franke, K.; Jensen, Benny

    2000-01-01

    (N-3)-Polyunsaturated fatty acids (PUFAs) reduce the risk of coronary heart disease. Cold sea water plankton and plankton- consuming fish are known sources of (n-3)-PUFAs. Enriching normal food components with fish oil is a tool for increasing the intake of (n-3)-PUFAs. Due to the high sensitivity...... different freezing techniques and subsequently freeze-dried. Several parameters regarding formulation and process (addition of antioxidants to the fish oil, use of carbohydrates, homogenisation and freezing conditions, initial freeze-drying temperature, grinding) were varied to evaluate their influence...... on the oxidative stability of dried microencapsulated fish oil. The shelf life of the produced samples was determined by measuring the development of volatile oxidation products vs. storage time. It could be shown that the addition of antioxidants to fish oil was necessary to produce dried microencapsulated fish...

  8. Antinociceptive effect of intrathecal microencapsulated human pheochromocytoma cell in a rat model of bone cancer pain.

    Science.gov (United States)

    Li, Xiao; Li, Guoqi; Wu, Shaoling; Zhang, Baiyu; Wan, Qing; Yu, Ding; Zhou, Ruijun; Ma, Chao

    2014-07-08

    Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l) lysine-alginate (APA) microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.

  9. Antinociceptive Effect of Intrathecal Microencapsulated Human Pheochromocytoma Cell in a Rat Model of Bone Cancer Pain

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2014-07-01

    Full Text Available Human pheochromocytoma cells, which are demonstrated to contain and release met-enkephalin and norepinephrine, may be a promising resource for cell therapy in cancer-induced intractable pain. Intrathecal injection of alginate-poly (l lysine-alginate (APA microencapsulated human pheochromocytoma cells leads to antinociceptive effect in a rat model of bone cancer pain, and this effect was blocked by opioid antagonist naloxone and alpha 2-adrenergic antagonist rauwolscine. Neurochemical changes of cerebrospinal fluid are in accordance with the analgesic responses. Taken together, these data support that human pheochromocytoma cell implant-induced antinociception was mediated by met-enkephalin and norepinephrine secreted from the cell implants and acting at spinal receptors. Spinal implantation of microencapsulated human pheochromocytoma cells may provide an alternative approach for the therapy of chronic intractable pain.

  10. Alginate Microencapsulation of Human Islets Does Not Increase Susceptibility to Acute Hypoxia

    Science.gov (United States)

    Hals, I. K.; Rokstad, A. M.; Strand, B. L.; Oberholzer, J.; Grill, V.

    2013-01-01

    Islet transplantation in diabetes is hampered by the need of life-long immunosuppression. Encapsulation provides partial immunoprotection but could possibly limit oxygen supply, a factor that may enhance hypoxia-induced beta cell death in the early posttransplantation period. Here we tested susceptibility of alginate microencapsulated human islets to experimental hypoxia (0.1–0.3% O2 for 8 h, followed by reoxygenation) on viability and functional parameters. Hypoxia reduced viability as measured by MTT by 33.8 ± 3.5% in encapsulated and 42.9 ± 5.2% in nonencapsulated islets (P microencapsulation of human islets does not increase susceptibility to acute hypoxia. This is a positive finding in relation to potential use of encapsulation for islet transplantation. PMID:24364039

  11. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: doseng_1982@hotmail.com; Xu Lingling; Shang Hongbo; Zhang Zhibin [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2009-03-15

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 deg. C, the latent heat of fusion was about 80 J g{sup -1}, the particle diameter was 20-35 {mu}m.

  12. Natural convection heat transfer enhancement using Microencapsulated Phase-Change-Material slurries

    International Nuclear Information System (INIS)

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nakano, Fumihiko; Nagashima, Akira.

    1997-01-01

    The present study investigates natural convection heat transfer from a heated cylinder cooled by a water slurry of Microencapsulated Phase Change Material (MCPCM). A normal paraffin hydrocarbon with carbon number of 18 and melting point of 27.9degC, is microencapsulated by Melamine resin into particles of which average diameter is 9.5μm and specific weight is same as water. The slurry of the MCPCM and water is put into a test apparatus, which is a rectangular enclosure with a heated horizontal cylinder. As the concentrations of PCM in the slurry are changed in 1,3 and 5%, the heat transfer coefficients of the cylinder are larger than that of water as working fluid, by 3,20 and 35% enhancements respectively. (author)

  13. Microencapsulation of silicon nitride particles with yttria and yttria-alumina precursors

    International Nuclear Information System (INIS)

    Garg, A.K.; De Jonghe, L.C.

    1990-01-01

    Procedures are described to deposit uniform layers of yttria and yttria-alumina precursors on fine powders and whiskers of silicon nitride. The coatings were produced by aging at elevated temperatures aqueous systems containing the silicon nitride core particles, yttrium and aluminum nitrates, and urea. Optimum concentrations of the core particles, in relation to the reactants, were established to promote surface deposition of the oxide precursors. Polymeric dispersants were used effectively to prevent agglomeration of the solids during the microencapsulation process. The morphology of the powders was characterized using scanning and transmission electron microscopy. The mechanisms for the formation of the coated layers are discussed. A description is provided that allows qualitative assessment of the experimental factors that determine microencapsulation by a slurry method

  14. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    International Nuclear Information System (INIS)

    Chen Liang; Xu Lingling; Shang Hongbo; Zhang Zhibin

    2009-01-01

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 deg. C, the latent heat of fusion was about 80 J g -1 , the particle diameter was 20-35 μm

  15. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chen; Lingling, Xu; Hongbo, Shang; Zhibin, Zhang [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2009-03-15

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 C, the latent heat of fusion was about 80 J g{sup -1}, the particle diameter was 20-35 {mu}m. (author)

  16. Preparation of micro-encapsulated strawberry fragrance and its application in the aromatic wallpaper

    Directory of Open Access Journals (Sweden)

    Xiao Zuobing

    2017-03-01

    Full Text Available Micro-encapsulated strawberry fragrance was successfully prepared with wall materials including maltodextrin, sodium octenylsuccinate and gum Arabic. The micro-capsule was added to wallpaper and aromatic wallpaper with strawberry characteristics was obtained. The particle distribution, surface morphology, chemical structure, thermal property and controlled release performance of micro-encapsulated fragrance and aromatic wallpaper were investigated using laser particle size analyzer, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FT-TR, thermal gravity analysis (TGA and chromatography-mass spectrometer (GC-MS. The results showed that the average diameter of micro-capsule was 2 μm and the particles mainly distributed in the tissues of wallpaper. The result of TGA showed that the micro-capsule had a good stability. Meanwhile, the aromatic wallpaper had strawberry aroma more than 3 months and took on excellent controlled release performance.

  17. Comparative Evaluation of Viability of Encapsulated Lactobacillus casei Using Two Different Methods of Microencapsulation

    OpenAIRE

    Petreska Ivanovska, Tanja; Smilkov, Katarina; Zivikj, Zoran; Petrusevska Tozi, Lidija; Mladenovska, Kristina

    2014-01-01

    Microencapsulation using two different methods, spray- drying and emulsion technique were applied to preserve the viability of the probiotic Lactobacillus casei during manufacture and refrigerated storage. As coating materials to encapsulate the probiotic by spray-drying method, compatible biopolymers alginate and chitosan were utilized, while as a cross-linking agent, CaCl2 was used. In addition to the probiotic, oligofructose enriched inulin (Synergy 1®) as prebiotic was added to the medium...

  18. Microencapsulated acids associated with essential oils and acid salts for piglets in the nursery phase

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Callegari

    2016-08-01

    Full Text Available The objective of this study was to evaluate the use of commercial blends of organic and inorganic acids combined with essential oils for piglets in the nursery phase. The formulations were administered as microcapsules or as acid salts. Ninety-six, Pen Ar Lan, barrow and female piglets, weaned at a body weight of 600 kg ± 12 kg and age of 23 days were subjected to four treatments. The animals were distributed in randomized blocks of three animals per pen and 8 replicates per treatment. The treatments consisted of four different diets: control (free of organic acids; acid and essential oil blends (fumaric acid 10,5%, malic acid 8.0%, essential oils; in microencapsulated form; microencapsulated acid blend (phosphoric acid 10%, citric acid 10%, malic acid 10%, fumaric acid 20%; in microencapsulated form; and acid salt blend (formic acid 40.5%, phosphoric acid 13.6%, propionic acid 4.9% and salts (23.2% calcium and 4.4% phosphorus available. The performance parameters, digestive transit time, weights of organs of the digestive tract, bacterial count of feces (Lactobacillus, E coli and Salmonella ssp and Clostridium, pH of the stomach and duodenal content did not differ between treatment groups (P > 005. All treatments containing organic acids exhibited positive effects on diarrhea control (P < 005. The cecal contents of volatile fatty acids (VFA were higher in piglets fed diets containing acids than in animals that received the control diet (P < 005, and blends containing essential oils improved the jejunum villus height compared with the control group. The use of diets containing acids improved diarrhea control and VFA production in the cecum, and specifically the diets containing microencapsulated acid blends required the lowest doses to be effective.

  19. Microencapsulation of natural antioxidants for food application - The specific case of coffee antioxidants - A review

    OpenAIRE

    Joana Aguiar; Berta Nogueiro Estevinho; Lúcia Silveira Santos

    2016-01-01

    Background: Functional foods fortified with antioxidants are gaining more popularity since consumption alone of foods naturally rich in antioxidants is insufficient to reduce oxidative stress associated with various diseases. Despite their beneficial effects, natural antioxidants present in coffee are sensitive to heat, light and oxygen, limiting their application in the food industry. Although microencapsulation is able to protect the antioxidant from degradation, mask its taste and control ...

  20. Microencapsulated bitter compounds (from Gentiana lutea) reduce daily energy intakes in humans.

    Science.gov (United States)

    Mennella, Ilario; Fogliano, Vincenzo; Ferracane, Rosalia; Arlorio, Marco; Pattarino, Franco; Vitaglione, Paola

    2016-11-10

    Mounting evidence showed that bitter-tasting compounds modulate eating behaviour through bitter taste receptors in the gastrointestinal tract. This study aimed at evaluating the influence of microencapsulated bitter compounds on human appetite and energy intakes. A microencapsulated bitter ingredient (EBI) with a core of bitter Gentiana lutea root extract and a coating of ethylcellulose-stearate was developed and included in a vanilla microencapsulated bitter ingredient-enriched pudding (EBIP). The coating masked bitterness in the mouth, allowing the release of bitter secoiridoids in the gastrointestinal tract. A cross-over randomised study was performed: twenty healthy subjects consumed at breakfast EBIP (providing 100 mg of secoiridoids) or the control pudding (CP) on two different occasions. Blood samples, glycaemia and appetite ratings were collected at baseline and 30, 60, 120 and 180 min after breakfast. Gastrointestinal peptides, endocannabinoids (EC) and N-acylethanolamines (NAE) were measured in plasma samples. Energy intakes were measured at an ad libitum lunch 3 h after breakfast and over the rest of the day (post lunch) through food diaries. No significant difference in postprandial plasma responses of gastrointestinal hormones, glucose, EC and NAE and of appetite between EBIP and CP was found. However, a trend for a higher response of glucagon-like peptide-1 after EBIP than after CP was observed. EBIP determined a significant 30 % lower energy intake over the post-lunch period compared with CP. These findings were consistent with the tailored release of bitter-tasting compounds from EBIP along the gastrointestinal tract. This study demonstrated that microencapsulated bitter secoiridoids were effective in reducing daily energy intake in humans.

  1. Fish Oil Microencapsulation as Omega-3 Fatty Acids Fortification Material for Cream of Crab Soup

    Directory of Open Access Journals (Sweden)

    Santiara Putri Pramesti

    2015-11-01

    Full Text Available Omega-3 fatty acids have important roles in improvement of intelligent and health of human. Microencapsulation of fish oil as source of omega-3 fatty acids is an effort to maintain flavor, aroma, stability, and also to successfully transfer bioactive component from the fish oil as fortification material for foods or medicines. Improvement of instant crab cream soup enriched with fish oil as source of omega-3 fatty acid has never been conducted before. The purpose of this research was to improve microencapsulation method for fish oil as source of omega-3 fatty acids as fortification material for instant cream of crab soup. Microencapsulation methods in this research are homogenization and spray drying. The results showed that the best microcapsule was obtained from homogenization treatment for 10 minutes with efficiency of 90.41±0.64%. The shape of the obtained microcapsule was spherical with average size of 6.52 μm, with induction time up to 26.09±0.01 hours. The best cream of crab soup formula was at fish oil microcapsule concentration of 3.30%, with 8.19% daily value of omega-3, inclusion 11.32% of EPA and DHA at serving size of 17.56 gram.

  2. Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality.

    Science.gov (United States)

    Ezhilarasi, Perumal Natarajan; Indrani, Dasappa; Jena, Bhabani Sankar; Anandharamakrishnan, Chinnaswamy

    2014-04-01

    (-)-Hydroxycitric acid (HCA) is the major acid present in the fruit rinds of certain species of Garcinia. HCA has been reported to have several health benefits. As HCA is highly hygroscopic in nature and thermally sensitive, it is difficult to incorporate in foodstuffs. Hence, Garcinia cowa fruit extract was microencapsulated using three different wall materials such as whey protein isolate (WPI), maltodextrin (MD) and a combination of whey protein isolate and maltodextrin (WPI + MD) by spray drying. Further, these microencapsulated powders were evaluated for their impact on bread quality and HCA retention. Maltodextrin (MD) encapsulates had higher free (86%) and net HCA (90%) recovery. Microencapsulates incorporated breads had enhanced qualitative characteristics and higher HCA content than water extract incorporated bread due to efficient encapsulation during bread baking. Comparatively, bread with MD encapsulates showed softer crumb texture, desirable sensory attributes with considerable volume and higher HCA content. The higher HCA contents of encapsulate incorporated breads were sufficient to claim for functionality of HCA in bread. Comparatively, MD had efficiently encapsulated Garcinia fruit extract during spray drying and bread baking. Spray drying proved to be an excellent encapsulation technique for incorporation into the food system. © 2013 Society of Chemical Industry.

  3. Solar-absorbing metamaterial microencapsulation of phase change materials for thermo-regulating textiles

    Directory of Open Access Journals (Sweden)

    William Tong

    2015-04-01

    Full Text Available This paper presents a novel concept for designing solar-absorbing metamaterial microcapsules of phase change materials (PCMs integrated with thermo-regulating smart textiles intended for coats or garments, especially for wear in space or cold weather on earth. The metamaterial is a periodically nanostructured metal-dielectric-metal thin film and can acquire surface plasmons to trap or absorb solar energy at subwavelength scales. This kind of metamaterial microencapsulation is not only able to take advantage of latent heat that can be stored or released from the PCMs over a tunable temperature range, but also has other advantages over conventional polymer microencapsulation of PCMs, such as enhanced thermal conductivity, improved flame-retardant capabilities, and usage as an extra solar power resource. The thermal analysis for this kind of microencapsulation has been done and can be used as a guideline for designing integrated thermo-regulating smart textiles in the future. These metamaterial microcapsules may open up new routes to enhancing thermo-regulating textiles with novel properties and added value.

  4. Microencapsulation of Natural Anthocyanin from Purple Rosella Calyces by Freeze Drying

    Science.gov (United States)

    Nafiunisa, A.; Aryanti, N.; Wardhani, D. H.; Kumoro, A. C.

    2017-11-01

    Anthocyanin extract in powder form will improve its use since the powder is easier to store and more applicable. Microencapsulation method is introduced as an efficient way for protecting pigment such as anthocyanin. This research was aimed to characterise anthocyanin encapsulated products prepared from purple Roselle calyces by freeze drying. The liquid anthocyanin extracts from ultrasound-assisted extraction were freeze-dried with and without the addition of 10% w/w maltodextrins as a carrier and coating agents. The quality attributes of the powders were characterised by their colour intensity, water content, and solubility. Analysis of encapsulated material was performed for the powder added by maltodextrin. The stability of the microencapsulated pigment in solution form was determined for 11 days. Total anthocyanin content was observed through pH differential method. The results of the colour intensity analysis confirm that the product with maltodextrin addition has more intense colour with L* value of 29.69 a* value of 54.29 and b* value of 8.39. The result with the addition of maltodextrin has less moisture content and more soluble in water. It is verified that better results were obtained for powder with maltodextrin addition. Anthocyanin in the powder form with maltodextrin addition exhibits higher stability even after 11 days. In conclusion, the microencapsulation of anthocyanin with maltodextrin as a carrier and coating agent presented a potential method to produce anthocyanin powder from purple Roselle.

  5. The Application of Microencapsulated Phycocyanin as a Blue Natural Colorant to the Quality of Jelly Candy

    Science.gov (United States)

    Dewi, E. N.; Kurniasih, R. A.; Purnamayati, L.

    2018-02-01

    Phycocyanin is a blue color pigment which can be extracted from Spirulina sp. makes it potential to use as an alternative natural dye in the food product. The aim of this research was to determine the application of microencapsulated phycocyanin processed using spray dried method to the jelly candy. As a natural blue colorant, phycocyanin was expected to be safe for the consumer. The jelly candy was evaluated on the characteristics of its moisture, ash, Aw, pH, color appearance, and phycocyanin spectra with FTIR. The phycocyanin was microencapsulated using maltodextrin and Na-alginate as the coating materials (maltodextrin and Na-alginate in ratio 9:1.0 w/w). The spray drying process was operated with an inlet temperature of 80°C. The various concentrations of microencapsulated phycocyanin were added to the jelly candy such as 0%, 1%, 3%, 5% and jelly candy with brilliant blue used as comparison, each called PC, PS, PT, PL, and PB. The results showed that the various concentrations of phycocyanin added on the jelly product had significantly different on moisture content, Aw, and blue color. The FTIR spectra indicated that phycocyanin still persisted on the jelly candy. PL was the best jelly candy with the bluest color under PB.

  6. Physicochemical Properties and Storage Stability of Microencapsulated DHA-Rich Oil with Different Wall Materials.

    Science.gov (United States)

    Chen, Wuxi; Wang, Haijun; Zhang, Ke; Gao, Feng; Chen, Shulin; Li, Demao

    2016-08-01

    This study aimed to evaluate the physicochemical properties and storage stability of microencapsulated DHA-rich oil spray dried with different wall materials: model 1 (modified starch, gum arabic, and maltodextrin), model 2 (soy protein isolate, gum arabic, and maltodextrin), and model 3 (casein, glucose, and lactose). The results indicated that model 3 exhibited the highest microencapsulation efficiency (98.66 %) and emulsion stability (>99 %), with a moisture content and mean particle size of 1.663 % and 14.173 μm, respectively. Differential scanning calorimetry analysis indicated that the Tm of DHA-rich oil microcapsules was high, suggesting that the entire structure of the microcapsules remained stable during thermal processing. A thermogravimetric analysis curve showed that the product lost 5 % of its weight at 172 °C and the wall material started to degrade at 236 °C. The peroxide value of microencapsulated DHA-rich oil remained at one ninth after accelerated oxidation at 45 °C for 8 weeks to that of the unencapsulated DHA-rich oil, thus revealing the promising oxidation stability of DHA-rich oil in microcapsules.

  7. Phase diagram studies for microencapsulation of pharmaceuticals using cellulose acetate trimellitate.

    Science.gov (United States)

    Sanghvi, S P; Nairn, J G

    1991-04-01

    Phase diagrams were prepared to indicate the region of microcapsule formation for the following system: cellulose acetate trimellitate, light mineral oil, and the solvent mixture (acetone:ethanol), using chloroform as the hardening agent. The effect of sorbitan monoleate, sorbitan monolaurate, and sorbitan trioleate on the region of the phase diagram for the formation of microcapsules was investigated. The results indicate that microcapsules are readily formed when the polymer concentration is in the 0.5-1.5% range and the solvent concentration is in the 5-10% range. Aggregation of microcapsules was minimized by using lower solvent concentration. Low concentrations of sorbitan monooleate in mineral oil (less than or equal to 1%) gave products that had smoother coats and more uniform particle size. Surfactants with low hydrophile:lipophile balance produced larger regions on the phase diagram for microencapsulation compared with a surfactant with higher hydrophile:lipophile balance. A mechanism for microencapsulation is described. Tartrazine microcapsules produced using different concentrations of surfactant were tested for dissolution characteristics in both acidic and neutral conditions. Tartrazine-containing microcapsules prepared by using 3% sorbitan monooleate had the lowest release in acidic conditions. The effect of surfactant and formulation concentration on microcapsule size was studied by analyzing the particle size distribution for both blank and tartrazine-containing microcapsules. The smallest microcapsule size was obtained when the sorbitan monooleate concentration was 3%. It appears that there is an upper limit for the surfactant concentration that could be used to achieve successful microencapsulation.

  8. Effects on bread and oil quality after functionalization with microencapsulated chia oil.

    Science.gov (United States)

    González, Agustín; Martínez, Marcela L; León, Alberto E; Ribotta, Pablo D

    2018-03-23

    Omega-3 and omega-6 fatty acids-rich oils suffer oxidation reactions that alter their chemical and organoleptic quality. Microencapsulation can be a powerful tool for protection against ambient conditions. In the present study, the addition of microencapsulated chia oil as an ingredient in bread preparations and its effect on the technological and chemical quality of breads was investigated. Microencapsulation of chia oil was carried out by freeze-drying with soy proteins as wall material and oil release was determined under in vitro gastric and intestinal conditions. Encapsulated oil-containing bread showed no differences in specific volume, average cell area, firmness and chewiness with respect to control bread. Unencapsulated oil-containing bread showed a marked increase in hydroperoxide values respect to control, whereas encapsulated oil-containing bread values were not affected by baking and bread storage. The fatty acid profiles showed a decrease of 13% and 16%, respectively, in α-linolenic acid in the encapsulated and unencapsulated oils with respect to bulk chia oil. Sensory analysis showed no significant differences between bread samples. The addition of encapsulated chia oil did not alter the technological quality of breads and prevented the formation of hydroperoxide radicals. A ration of encapsulated oil-containing bread contributes 60% of the recommended dietary intake of omega-3 fatty acids. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  9. Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-02-01

    Full Text Available To enhance the thermal stability and permeability resistance, a comb-like polymer with crystallizable side chains was fabricated as solid-solid phase change materials (PCMs inside the cores of microcapsules and nanocapsules prepared via in-situ polymerization. In this study, the effects on the surface morphology and microstructure of micro/nanocapsules caused by microencapsulating different types of core materials (i.e., n-hexadecane, ethyl hexadecanoate, hexadecyl acrylate and poly(hexadecyl acrylate were systematically studied via field emission scanning electron microscope (FE-SEM and transmission electron microscope (TEM. The confined crystallization behavior of comb-like polymer PCMs cores was investigated via differential scanning calorimeter (DSC. Comparing with low molecular organic PCMs cores, the thermal stability of PCMs microencapsulated comb-like polymer enhanced significantly, and the permeability resistance improved obviously as well. Based on these resultant analysis, the microencapsulated comb-like polymeric PCMs with excellent thermal stability and permeability resistance showed promising foreground in the field of organic solution spun, melt processing and organic coating.

  10. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Hua [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Tang, Gang [School of Architecture and Civil Engineering, Anhui University of Technology, 59 Hudong Road, Ma’anshan, Anhui 243002 (China); Hu, Wei-Zhao; Wang, Bi-Bo; Pan, Ying [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Song, Lei, E-mail: leisong@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123 (China)

    2015-08-30

    Highlights: • MCAHP was prepared and applied in polyamide 6. • MCA as the capsule material can improve the fire safety of AHP. • Flame retardant polyamide 6 composites with MCAHP show good flame retardancy. - Abstract: Aluminum hypophosphite (AHP) is an effective phosphorus-containing flame retardant. But AHP also has fire risk that it will decompose and release phosphine which is spontaneously flammable in air and even can form explosive mixtures with air in extreme cases. In this paper, AHP has been microencapsulated by melamine cyanurate (MCA) to prepare microencapsulated aluminum hypophosphite (MCAHP) with the aim of enhancing the fire safety in the procedure of production, storage and use. Meanwhile, MCA was a nitrogen-containing flame retardant that can work with AHP via the nitrogen-phosphorus synergistic effect to show improved flame-retardant property than other capsule materials. After microencapsulation, MCA presented as a protection layer inhibit the degradation of AHP and postpone the generation of phosphine. Furthermore, the phosphine concentration could be effectively diluted by inert decomposition products of MCA. These nonflammable decomposition products of MCA could separate phosphine from air delay the oxidizing reaction with oxygen and decrease the heat release rate, which imply that the fire safety of AHP has been improved. Furthermore, MCAHP was added into polyamide 6 to prepare flame retardant polyamide 6 composites (FR-PA6) which show good flame retardancy.

  11. Optimisation of the microencapsulation of tuna oil in gelatin-sodium hexametaphosphate using complex coacervation.

    Science.gov (United States)

    Wang, Bo; Adhikari, Benu; Barrow, Colin J

    2014-09-01

    The microencapsulation of tuna oil in gelatin-sodium hexametaphosphate (SHMP) using complex coacervation was optimised for the stabilisation of omega-3 oils, for use as a functional food ingredient. Firstly, oil stability was optimised by comparing the accelerated stability of tuna oil in the presence of various commercial antioxidants, using a Rancimat™. Then zeta-potential (mV), turbidity and coacervate yield (%) were measured and optimised for complex coacervation. The highest yield of complex coacervate was obtained at pH 4.7 and at a gelatin to SHMP ratio of 15:1. Multi-core microcapsules were formed when the mixed microencapsulation system was cooled to 5 °C at a rate of 12 °C/h. Crosslinking with transglutaminase followed by freeze drying resulted in a dried powder with an encapsulation efficiency of 99.82% and a payload of 52.56%. Some 98.56% of the oil was successfully microencapsulated and accelerated stability using a Rancimat™ showed stability more than double that of non-encapsulated oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin.

    Science.gov (United States)

    Akhavan Mahdavi, Sahar; Jafari, Seid Mahdi; Assadpoor, Elham; Dehnad, Danial

    2016-04-01

    The barberry (Berberis vulgaris) extract which is a rich source of anthocyanins was used for spray drying encapsulation with three different wall materials, i.e., combination of maltodextrin and gum Arabic (MD+GA), maltodextrin and gelatin (MD+GE), and maltodextrin (MD). Response Surface Methodology (RSM) was applied for optimization of microencapsulation efficiency and physical properties of encapsulated powders considering wall material type as well as different ratios of core to wall materials as independent variables. Physical characteristics of spray-dried powders were investigated by further analyses of moisture content, hygroscopicity, degree of caking, solubility, bulk and absolute density, porosity, flowability and microstructural evaluation of encapsulated powders. Our results indicated that samples produced with MD+GA as wall materials represented the highest process efficiency and best powder quality; the optimum conditions of microencapsulation process for barberry anthocyanins were found to be the wall material content and anthocyanin load of 24.54% and 13.82%, respectively. Under such conditions, the microencapsulation efficiency (ME) of anthocyanins could be as high as 92.83%. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6

    International Nuclear Information System (INIS)

    Ge, Hua; Tang, Gang; Hu, Wei-Zhao; Wang, Bi-Bo; Pan, Ying; Song, Lei; Hu, Yuan

    2015-01-01

    Highlights: • MCAHP was prepared and applied in polyamide 6. • MCA as the capsule material can improve the fire safety of AHP. • Flame retardant polyamide 6 composites with MCAHP show good flame retardancy. - Abstract: Aluminum hypophosphite (AHP) is an effective phosphorus-containing flame retardant. But AHP also has fire risk that it will decompose and release phosphine which is spontaneously flammable in air and even can form explosive mixtures with air in extreme cases. In this paper, AHP has been microencapsulated by melamine cyanurate (MCA) to prepare microencapsulated aluminum hypophosphite (MCAHP) with the aim of enhancing the fire safety in the procedure of production, storage and use. Meanwhile, MCA was a nitrogen-containing flame retardant that can work with AHP via the nitrogen-phosphorus synergistic effect to show improved flame-retardant property than other capsule materials. After microencapsulation, MCA presented as a protection layer inhibit the degradation of AHP and postpone the generation of phosphine. Furthermore, the phosphine concentration could be effectively diluted by inert decomposition products of MCA. These nonflammable decomposition products of MCA could separate phosphine from air delay the oxidizing reaction with oxygen and decrease the heat release rate, which imply that the fire safety of AHP has been improved. Furthermore, MCAHP was added into polyamide 6 to prepare flame retardant polyamide 6 composites (FR-PA6) which show good flame retardancy

  14. Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol.

    Science.gov (United States)

    Mooranian, Armin; Negrulj, Rebecca; Chen-Tan, Nigel; Al-Sallami, Hesham S; Fang, Zhongxiang; Mukkur, T K; Mikov, Momir; Golocorbin-Kon, Svetlana; Fakhoury, Marc; Watts, Gerald F; Matthews, Vance; Arfuso, Frank; Al-Salami, Hani

    2014-01-01

    In previous studies, we successfully designed complex multicompartmental microcapsules as a platform for the oral targeted delivery of lipophilic drugs in type 2 diabetes (T2D). Probucol (PB) is an antihyperlipidemic and antioxidant drug with the potential to show benefits in T2D. We aimed to create a novel microencapsulated formulation of PB and to examine the shape, size, and chemical, thermal, and rheological properties of these microcapsules in vitro. Microencapsulation was carried out using the Büchi-based microencapsulating system developed in our laboratory. Using the polymer, sodium alginate (SA), empty (control, SA) and loaded (test, PB-SA) microcapsules were prepared at a constant ratio (1:30). Complete characterizations of microcapsules, in terms of morphology, thermal profiles, dispersity, and spectral studies, were carried out in triplicate. PB-SA microcapsules displayed uniform and homogeneous characteristics with an average diameter of 1 mm. The microcapsules exhibited pseudoplastic-thixotropic characteristics and showed no chemical interactions between the ingredients. These data were further supported by differential scanning calorimetric analysis and Fourier transform infrared spectral studies, suggesting microcapsule stability. The new PB-SA microcapsules have good structural properties and may be suitable for the oral delivery of PB in T2D. Further studies are required to examine the clinical efficacy and safety of PB in T2D.

  15. Process optimization of microencapsulation of curcumin in γ-polyglutamic acid using response surface methodology.

    Science.gov (United States)

    Ko, Wen-Ching; Chang, Chao-Kai; Wang, Hsiu-Ju; Wang, Shian-Jen; Hsieh, Chang-Wei

    2015-04-01

    The aim of this study was to develop an optimal microencapsulation method for an oil-soluble component (curcumin) using γ-PGA. The results show that Span80 significantly enhances the encapsulation efficiency (EE) of γ-Na(+)-PGA microcapsules. Therefore, the effects of γ-Na(+)-PGA, curcumin and Span80 concentration on EE of γ-Na(+)-PGA microcapsules were studied by means of response surface methodology (RSM). It was found that the optimal microencapsulation process is achieved by using γ-Na(+)-PGA 6.05%, curcumin 15.97% and Span80 0.61% with a high EE% (74.47 ± 0.20%). Furthermore, the models explain 98% of the variability in the responses. γ-Na(+)-PGA seems to be a good carrier for the encapsulation of curcumin. In conclusion, this simple and versatile approach can potentially be applied to the microencapsulation of various oil-soluble components for food applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Microencapsulated PCM slurries for heat transfer and energy storage in spacecraft systems

    Science.gov (United States)

    Colvin, David P.; Mulligan, James C.; Bryant, Yvonne G.; Duncan, John L.; Gravely, Benjamin T.

    1992-01-01

    The technical feasibility for providing significantly enhanced heat transport and storage as well as improved thermal control has been investigated during several Small Business Innovative Research (SBIR) programs for NASA, the United States Air Force (USAF), and the Strategic Defense Initiative Organization (SDIO) using microencapsulated phase change materials (PCMs) in both aqueous and nonaqueous two-component slurries. In the program for SDIO, novel two-component coolant fluids were prepared and successfully tested at both low (300 K) and intermediate temperatures (460 to 700 K). The two-component fluid slurries of microencapsulated PCMs included organic particles in aqueous and nonaqueous liquids, as well as microencapsulated metals that potentially could be carried by liquid metals or used as powdered heat sinks. Simulation and experimental studies showed that such active cooling systems could be designed and operated with enhancements of heat capacity that exceeded 10 times or 1000 percent that for the base fluid along with significant enhancement in the fluid's heat capacity. Furthermore, this enhancement provided essentially isothermal conditions throughout the pumped primary coolant fluid loop. The results suggest that together with much higher fluid thermal capacity, greater uniformity of temperature is achievable with such fluids, and that significant reductions in pumping power, system size, and system mass are also possible.

  17. Microencapsulation of Lactobacillus rhamnosus GG by Transglutaminase Cross-Linked Soy Protein Isolate to Improve Survival in Simulated Gastrointestinal Conditions and Yoghurt.

    Science.gov (United States)

    Li, Chun; Wang, Chun-Ling; Sun, Yu; Li, Ai-Li; Liu, Fei; Meng, Xiang-Chen

    2016-07-01

    Microencapsulation is an effective way to improve the survival of probiotics in simulated gastrointestinal (GI) conditions and yoghurt. In this study, microencapsulation of Lactobacillus rhamnosus GG (LGG) was prepared by first cross-linking of soy protein isolate (SPI) using transglutaminase (TGase), followed by embedding the bacteria in cross-linked SPI, and then freeze-drying. The survival of microencapsulated LGG was evaluated in simulated GI conditions and yoghurt. The results showed that a high microencapsulation yield of 67.4% was obtained. The diameter of the microencapsulated LGG was in the range of 52.83 to 275.16 μm. Water activity did not differ between free and microencapsulated LGG after freeze-drying. The survival of microencapsulated LGG under simulated gastric juice (pH 2.5 and 3.6), intestinal juice (0.3% and 2% bile salt) and storage at 4 °C were significantly higher than that of free cells. The survival of LGG in TGase cross-linked SPI microcapsules was also improved to 14.5 ± 0.5% during storage in yoghurt. The microencapsulation of probiotics by TGase-treated SPI can be a suitable alternative to polysaccharide gelation technologies. © 2016 Institute of Food Technologists®

  18. Ink dating part II: Interpretation of results in a legal perspective.

    Science.gov (United States)

    Koenig, Agnès; Weyermann, Céline

    2018-01-01

    The development of an ink dating method requires an important investment of resources in order to step from the monitoring of ink ageing on paper to the determination of the actual age of a questioned ink entry. This article aimed at developing and evaluating the potential of three interpretation models to date ink entries in a legal perspective: (1) the threshold model comparing analytical results to tabulated values in order to determine the maximal possible age of an ink entry, (2) the trend tests that focusing on the "ageing status" of an ink entry, and (3) the likelihood ratio calculation comparing the probabilities to observe the results under at least two alternative hypotheses. This is the first report showing ink dating interpretation results on a ballpoint be ink reference population. In the first part of this paper three ageing parameters were selected as promising from the population of 25 ink entries aged during 4 to 304days: the quantity of phenoxyethanol (PE), the difference between the PE quantities contained in a naturally aged sample and an artificially aged sample (R NORM ) and the solvent loss ratio (R%). In the current part, each model was tested using the three selected ageing parameters. Results showed that threshold definition remains a simple model easily applicable in practice, but that the risk of false positive cannot be completely avoided without reducing significantly the feasibility of the ink dating approaches. The trend tests from the literature showed unreliable results and an alternative had to be developed yielding encouraging results. The likelihood ratio calculation introduced a degree of certainty to the ink dating conclusion in comparison to the threshold approach. The proposed model remains quite simple to apply in practice, but should be further developed in order to yield reliable results in practice. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  19. Chemical composition of felt-tip pen inks.

    Science.gov (United States)

    Germinario, Giulia; Garrappa, Silvia; D'Ambrosio, Valeria; van der Werf, Inez Dorothé; Sabbatini, Luigia

    2018-01-01

    Felt-tip pens are frequently used for the realization of sketches, drawings, architectural projects, and other technical designs. The formulations of these inks are usually rather complex and may be associated to those of modern paint materials where, next to the binding medium and pigments/dyes, solvents, fillers, emulsifiers, antioxidants, plasticizers, light stabilizers, biocides, and so on are commonly added. Felt-tip pen inks are extremely sensitive to degradation and especially exposure to light may cause chromatic changes and fading. In this study, we report on the complete chemical characterization of modern felt-tip pen inks that are commercially available and commonly used for the realization of artworks. Three brands of felt-tip pens (Faber-Castell, Edding, and Stabilo) were investigated with complementary analytical techniques such as thin-layer chromatography (TLC), VIS-reflectance spectroscopy, μ-Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS), GC-MS, and Fourier transform infrared (FTIR) spectroscopy. The use of TLC proved to be very powerful in the study of complex mixtures of synthetic dyes. First derivatives of the reflectance spectra acquired on the TLC spots were useful in the preliminary identification of the dye, followed by Raman spectroscopy and SERS, which allowed for the unambiguous determination of the chemical composition of the pigments (phthalocyanines, dioxazines, and azo pigments) and dyes (azo dyes, triarylmethanes, xanthenes). FTIR spectroscopy was used especially for the detection of additives, as well as for confirming the nature of solvents and dyes/pigments. Finally, (Py-)GC-MS data provided information on the binders (styrene-acrylic resins, plant gums), solvents, and additives, as well as on pigments and dyes.

  20. Screen-printing ink transfer in a sexual assault case.

    Science.gov (United States)

    Amick, Janeice F; Beheim, Chris W

    2002-05-01

    Yellow plastic-like particles were discovered on the clothing and body of a sexual assault victim. These particles were later associated to an athletic jersey with flaking yellow screen-printed numbers and letters, worn by the suspect. Depending on its intended substrate, screen-print ink can vary in color and composition. Particles dislodged from screen-printed garments may exhibit fabric impressions. Screen-printed clothing, commonly encountered in forensic casework, should be viewed as a potential source of trace evidence.

  1. Functional inks and printing of two-dimensional materials.

    Science.gov (United States)

    Hu, Guohua; Kang, Joohoon; Ng, Leonard W T; Zhu, Xiaoxi; Howe, Richard C T; Jones, Christopher G; Hersam, Mark C; Hasan, Tawfique

    2018-05-08

    Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.

  2. Determining the coating speed limitations for organic photovoltaic inks

    DEFF Research Database (Denmark)

    Jakubka, Florian; Heyder, Madeleine; Machui, Florian

    2013-01-01

    To determine the output capability of present organic photovoltaic (OPV) materials, it is important to know the theoretical maximum coating speeds of the used semiconductor formulations. Here, we present a comprehensive investigation of the coating stability window of several prototype organic...... semiconductor inks relevant for organic solar cells. The coating stability window was first determined experimentally by a sheet to sheet coater at velocities of up to 10 m/min. A numerical simulation model based on the Coating Window Suite 2010 software was established to give insight into the coating...

  3. Three-dimensional fluorescence analysis of chernozem humic acids and their electrophoretic fractions

    Science.gov (United States)

    Trubetskoi, O. A.; Trubetskaya, O. E.

    2017-09-01

    Polyacrylamide gel electrophoresis in combination with size-exclusion chromatography (SEC-PAGE) has been used to obtain stable electrophoretic fractions of different molecular size (MS) from chernozem humic acids (HAs). Three-dimensional fluorescence charts of chernozem HAs and their fractions have been obtained for the first time, and all fluorescence excitation-emission maxima have been identified in the excitation wavelength range of 250-500 nm. It has been found that fractionation by the SEC-PAGE method results in a nonuniform distribution of protein- and humin-like fluorescence of the original HA preparation among the electrophoretic fractions. The electrophoretic fractions of the highest and medium MSs have only the main protein-like fluorescence maximum and traces of humin-like fluorescence. In the electrophoretic fraction of the lowest MS, the intensity of protein-like fluorescence is low, but the major part of humin-like fluorescence is localized there. Relationships between the intensity of protein-like fluorescence and the weight distribution of amino acids have been revealed, as well as between the degree of aromaticity and the intensity of humin-like fluorescence in electrophoretic fractions of different MSs. The obtained relationships can be useful in the interpretation of the spatial structural organization and ecological functions of soil HAs.

  4. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage.

    Science.gov (United States)

    Silakhori, Mahyar; Naghavi, Mohammad Sajad; Metselaar, Hendrik Simon Cornelis; Mahlia, Teuku Meurah Indra; Fauzi, Hadi; Mehrali, Mohammad

    2013-04-29

    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.

  5. MICROENCAPSULATION OF INDIGENOUS POULTRY LACTIC ACID BACTERIA PROBIOTIC ON THE COMPETITIVE EXCLUSION AGAINST Salmonella enteritidis AND Escherichia coli IN VITRO

    Directory of Open Access Journals (Sweden)

    Monica Sonia Indri Pradipta

    2017-05-01

    Full Text Available This study was conducted to investigate the effect of microencapsulation of lactic acid bacteria (LAB probiotic isolated from chickens’ gastrointestinal tract on Salmonella enterica serotype enteritidis ATCC 13076 and Escherichia coli EPEC. Probiotic of LAB used were Streptococcus thermophilus strain Kp-2, Lactobacillus murinus strain Ar-3, and Pediococcus acidilactici strain Kd-6. Microencapsulation were conducted by spray drying with inlet/outlet temperatures of 160/80°C using maltodextrin and skim milk powder (20% w/v as coating materials. Competitive exclusion test was conducted in vitro using well diffusion method. Variable measured in this study was the clear zone observed. The data of clear zone among treatments were analyzed using analysis of variance (ANOVA one way followed by Duncan multiple range test (DMRT; except the data of clear zone resulted by probiotic before and after microencapsulation that was analyzed using t-test. The result showed that the ability of each strain against pathogen was decreased after being encapsulated. S. thermophilus before and after microencapsulation had the same antagonistic ability against E. coli and S. enteritidis (P>0.05. Microencapsulation process with spray drying method decreased antagonistic ability of probiotic against pathogenic bacteria both in single and multi strain.

  6. Advanced progress of microencapsulation technologies: in vivo and in vitro models for studying oral and transdermal drug deliveries.

    Science.gov (United States)

    Lam, P L; Gambari, R

    2014-03-28

    This review provides an overall discussion of microencapsulation systems for both oral and transdermal drug deliveries. Clinically, many drugs, especially proteins and peptides, are susceptible to the gastrointestinal tract and the first-pass metabolism after oral administration while some drugs exhibit low skin permeability through transdermal delivery route. Medicated microcapsules as oral and transdermal drug delivery vehicles are believed to offer an extended drug effect at a relatively low dose and provide a better patient compliance. The polymeric microcapsules can be produced by different microencapsulation methods and the drug microencapsulation technology provides the quality preservation for drug stabilization. The release of the entrapped drug is controlled and prolonged for specific usages. Some recent studies have focused on the evaluation of drug containing microcapsules on potential biological and therapeutic applications. For the oral delivery, in vivo animal models were used for evaluating possible treatment effects of drug containing microcapsules. For the transdermal drug delivery, skin delivery models were introduced to investigate the potential skin delivery of medicated microcapsules. Finally, the challenges and limitations of drug microencapsulation in real life are discussed and the commercially available drug formulations using microencapsulation technology for oral and transdermal applications are shown. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A comparison of different silver inks for printing of conductive tracks on paper substrates for rapid prototyping of electronic circuits

    CSIR Research Space (South Africa)

    Bezuidenhout, PH

    2015-11-01

    Full Text Available This study compares the performance between two commercially-available electrically conductive silver inks, Harima NPS-J nanopaste and the NBSIJ-FD02 Mitsubishi conductive ink, used in rapid prototyping of electronic circuits. The comparative...

  8. Bioanalytical evidence that chemicals in tattoo ink can induce adaptive stress responses.

    Science.gov (United States)

    Neale, Peta A; Stalter, Daniel; Tang, Janet Y M; Escher, Beate I

    2015-10-15

    Tattooing is becoming increasingly popular, particularly amongst young people. However, tattoo inks contain a complex mixture of chemical impurities that may pose a long-term risk for human health. As a first step towards the risk assessment of these complex mixtures we propose to assess the toxicological hazard potential of tattoo ink chemicals with cell-based bioassays. Targeted modes of toxic action and cellular endpoints included cytotoxicity, genotoxicity and adaptive stress response pathways. The studied tattoo inks, which were extracted with hexane as a proxy for the bioavailable fraction, caused effects in all bioassays, with the red and yellow tattoo inks having the greatest response, particularly inducing genotoxicity and oxidative stress response endpoints. Chemical analysis revealed the presence of polycyclic aromatic hydrocarbons in the tested black tattoo ink at concentrations twice the recommended level. The detected polycyclic aromatic hydrocarbons only explained 0.06% of the oxidative stress response of the black tattoo ink, thus the majority of the effect was caused by unidentified components. The study indicates that currently available tattoo inks contain components that induce adaptive stress response pathways, but to evaluate the risk to human health further work is required to understand the toxicokinetics of tattoo ink chemicals in the body. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Making innovative tattoo ink products with improved safety: possible and impossible ingredients in practical usage.

    Science.gov (United States)

    Dirks, Michael

    2015-01-01

    Today's tattoo inks are no longer just simple solids in liquid suspension. Nowadays, these inks are high-tech dispersions made from finely spread pigments in a binder-solvent mixture. These so-called colour dispersions must follow the modern standards of tattooing, which are increasing every year. They must be rich in chromophoric pigments and yet fluid, they must not dry rapidly, and there should be no occurrence of any sedimentation, even during longer tattoo seasons. An innovative tattoo ink should enable long-lasting, brilliant tattoos without a negative impact on the artist's workflow and of course without endangering the consumer. The high standard in tattoos, regarding the motives and techniques, that is witnessed today could not be achieved by the artists without quality tools and modern tattoo ink. This article will give the reader a brief overview of the different ingredients of tattoo ink and of the function of binding agents and solvents in modern tattoo ink as well as describe what additives are used to achieve the desired behaviour during application. Furthermore, the article will take a look into the pigments that are used in tattoo ink and show why certain pigments are not suited for tattoo ink. The differences, advantages and disadvantages of organic and inorganic pigments will be explained. © 2015 S. Karger AG, Basel.

  10. Model compounds of iron gall inks – a Mössbauer study

    International Nuclear Information System (INIS)

    Lerf, A.; Wagner, F. E.

    2016-01-01

    Ferrogallic inks were used for at least two millennia before they became obsolete in the 20 th century. The chemistry of such inks is, however, still largely unclear. Today it is of particular interest for the conservation of old manuscripts. 57 Fe Mössbauer spectra of the ink on historical documents showed the presence of Fe(II) oxalate and of Fe(III) sites presumably representing iron oxihydroxides. To obtain more information on the behaviour of ink on paper we have performed Mössbauer studies at 300 and 4.2 K on iron gall inks prepared from FeSO 4 ⋅7H 2 O and tannin. These inks were either written on paper or isolated as a precipitate by centrifugation. In the dried precipitate there is still a strong contribution of the FeSO 4 ⋅7H 2 O which is absent in the same ink written on paper, for which a broad ferrous component with a quadrupole splitting (QS) of about 2.5 mm/s was found. The dominant Fe(III) site present in all inks on paper with QS ≈ 0.82 mm/s is not Fe(III) gallate and different from the precipitates. We propose that nanoparticulate oxidic clusters or molecular composites covered by a shell of polymerized oxidation products of the phenols are formed on the paper.

  11. Silver-organo-complex ink with high conductivity and inkjet stability

    KAUST Repository

    Vaseem, Mohammad

    2017-06-22

    A robust formulation of silver-organo-complex (SOC) ink and method of making same are provided. In an aspect, the complexing molecules act as reducing agents. The silver loaded ink can be printed and sintered on a wide range of substrates with uniform surface morphology and excellent adhesion.

  12. A fully printed ferrite nano-particle ink based tunable antenna

    KAUST Repository

    Ghaffar, Farhan A.; Vaseem, Mohammad; Shamim, Atif

    2016-01-01

    on conventional microwave substrates. In order to have a fully printed fabrication process, the substrate also need to be printed. In this paper, a fully printed multi-layer process utilizing custom Fe2O3 based magnetic ink and a silver organic complex (SOC) ink

  13. Model compounds of iron gall inks – a Mössbauer study

    Energy Technology Data Exchange (ETDEWEB)

    Lerf, A. [Bavarian Academy of Sciences, Walther Meißner Institute (Germany); Wagner, F. E., E-mail: fwagner@tum.de [Technical University of Munich, Physics Department E15 (Germany)

    2016-12-15

    Ferrogallic inks were used for at least two millennia before they became obsolete in the 20{sup th} century. The chemistry of such inks is, however, still largely unclear. Today it is of particular interest for the conservation of old manuscripts. {sup 57}Fe Mössbauer spectra of the ink on historical documents showed the presence of Fe(II) oxalate and of Fe(III) sites presumably representing iron oxihydroxides. To obtain more information on the behaviour of ink on paper we have performed Mössbauer studies at 300 and 4.2 K on iron gall inks prepared from FeSO{sub 4}⋅7H{sub 2}O and tannin. These inks were either written on paper or isolated as a precipitate by centrifugation. In the dried precipitate there is still a strong contribution of the FeSO{sub 4}⋅7H{sub 2}O which is absent in the same ink written on paper, for which a broad ferrous component with a quadrupole splitting (QS) of about 2.5 mm/s was found. The dominant Fe(III) site present in all inks on paper with QS ≈ 0.82 mm/s is not Fe(III) gallate and different from the precipitates. We propose that nanoparticulate oxidic clusters or molecular composites covered by a shell of polymerized oxidation products of the phenols are formed on the paper.

  14. Nucleophilic stabilization of water-based reactive ink for titania-based thin film inkjet printing

    DEFF Research Database (Denmark)

    Gadea, Christophe; Marani, Debora; Esposito, Vincenzo

    2017-01-01

    Drop on demand deposition (DoD) of titanium oxide thin films (<500 nm) is performed via a novel titanium-alkoxide-based solution that is tailored as a reactive ink for inkjet printing. The ink is developed as water-based solution by a combined use of titanium isopropoxide and n-methyldiethanolami...

  15. Application of cellulose nanofibers to remove water-based flexographic inks from wastewaters.

    Science.gov (United States)

    Balea, Ana; Monte, M Concepción; de la Fuente, Elena; Negro, Carlos; Blanco, Ángeles

    2017-02-01

    Water-based or flexographic inks in paper and plastic industries are more environmentally favourable than organic solvent-based inks. However, their use also creates new challenges because they remain dissolved in water and alter the recycling process. Conventional deinking technologies such as flotation processes do not effectively remove them. Adsorption, coagulation/flocculation, biological and membrane processes are either expensive or have negative health impacts, making the development of alternative methods necessary. Cellulose nanofibers (CNF) are biodegradable, and their structural and mechanical properties are useful for wastewater treatment. TEMPO-oxidised CNF have been evaluated for the decolourisation of wastewaters that contained copper phthalocyanine blue, carbon black and diarlyide yellow pigments. CNF in combination with a cationic polyacrylamide (cPAM) has also been tested. Jar-test methodology was used to evaluate the efficiency of the different treatments and cationic/anionic demand, turbidity and ink concentration in waters were measured. Results show that dual-component system for ink removal has a high potential as an alternative bio-based adsorbent for the removal of water-based inks. In addition, experiments varying CNF and cPAM concentrations were performed to optimise the ink-removal process. Ink concentration reductions of 100%, 87.5% and 83.3% were achieved for copper phthalocyanine blue, carbon black and diarlyide yellow pigments, respectively. Flocculation studies carried out show the decolourisation mechanism during the dual-component treatment of wastewaters containing water-based inks.

  16. Ink jet technology for large area organic light-emitting diode and organic photovoltaic applications

    NARCIS (Netherlands)

    Ren, M.; Gorter, H.; Michels, J.; Andriessen, R.

    2011-01-01

    Due to its flexibility and ease of patterning, ink jet printing has become a popular technique for the noncontact deposition of liquids, solutions, and melts on a variety of substrates at lateral resolutions down to 10 μm. This article presents a study of ink jet printing of homogeneous layers of

  17. Silver-organo-complex ink with high conductivity and inkjet stability

    KAUST Repository

    Vaseem, Mohammad; McKerricher, Garret; Shamim, Atif

    2017-01-01

    A robust formulation of silver-organo-complex (SOC) ink and method of making same are provided. In an aspect, the complexing molecules act as reducing agents. The silver loaded ink can be printed and sintered on a wide range of substrates with uniform surface morphology and excellent adhesion.

  18. Description of development of an analytical method for measurement of PAA in tattoo ink and PMU

    DEFF Research Database (Denmark)

    Lassen, Pia

    This review gives a background on azo pigments and primary aromatic amines (PAA) and describe how to develop a robust method for analyzing these in tattoo ink.......This review gives a background on azo pigments and primary aromatic amines (PAA) and describe how to develop a robust method for analyzing these in tattoo ink....

  19. Iron Oxide Nanoparticle-Based Magnetic Ink Development for Fully Printed Tunable Radio-Frequency Devices

    KAUST Repository

    Vaseem, Mohammad

    2018-01-30

    The field of printed electronics is still in its infancy and most of the reported work is based on commercially available nanoparticle-based metallic inks. Although fully printed devices that employ dielectric/semiconductor inks have recently been reported, there is a dearth of functional inks that can demonstrate controllable devices. The lack of availability of functional inks is a barrier to the widespread use of fully printed devices. For radio-frequency electronics, magnetic materials have many uses in reconfigurable components but rely on expensive and rigid ferrite materials. A suitable magnetic ink can facilitate the realization of fully printed, magnetically controlled, tunable devices. This report presents the development of an iron oxide nanoparticle-based magnetic ink. First, a tunable inductor is fully printed using iron oxide nanoparticle-based magnetic ink. Furthermore, iron oxide nanoparticles are functionalized with oleic acid to make them compatible with a UV-curable SU8 solution. Functionalized iron oxide nanoparticles are successfully embedded in the SU8 matrix to make a magnetic substrate. The as-fabricated substrate is characterized for its magnetostatic and microwave properties. A frequency tunable printed patch antenna is demonstrated using the magnetic and in-house silver-organo-complex inks. This is a step toward low-cost, fully printed, controllable electronic components.

  20. On quantification of residual ink content and deinking efficiency in recycling of mixed office waste paper

    Science.gov (United States)

    Bo Li; Gaosheng Wang; Kefu Chen; David W. Vahey; Junyong Zhu

    2011-01-01

    Although (flotation) deinking has been a common industry practice for several decades, true residual ink content and deinking efficiency have never been quantified. Paper brightness and ERIC (Effective Residual Ink Concentration), based on measurements of the absorption coefficient of deinked pulp, have been used to determine performance of flotation deinking processes...

  1. Microbiological survey of commercial tattoo and permanent makeup inks available in the United States.

    Science.gov (United States)

    Nho, S W; Kim, S-J; Kweon, O; Howard, P C; Moon, M S; Sadrieh, N K; Cerniglia, C E

    2018-05-01

    Tattooing and use of permanent makeup (PMU) has dramatically increased over the last decade, with a concomitant increase in ink-related infections. The aim of this study was to determine whether micro-organisms are present, and if so, the number and their identification in the commercial tattoo and PMU inks available in the United States. We surveyed 85 unopened tattoo and PMU inks, purchased from 13 companies. We incubated 100 μl of ink samples on trypticase soy agar plates for bacterial growth, 7H10 Middlebrook medium for mycobacterial growth, and Sabouraud dextrose medium for fungal growth. In total, 42 inks were contaminated with micro-organisms (49%). Thirty-three inks were contaminated with bacteria, 2 inks with fungi, and 7 inks had both bacterial and fungal growth. Mycobacteria were not detected in any of the examined tattoo and PMU inks. In 26 inks, microbial concentrations ranged between 10 1 and 10 3 CFU per ml, but higher counts (>10 3 CFU per ml) were recorded in 16 inks. We identified 83 bacteria by their 16S rDNA sequences, including 20 genera and 49 species. Strains of Bacillus spp. (53%) were dominant, followed by Lysinibacillus fusiformis (7%) and Pseudomonas aeruginosa (5%). Thirty-four (41%) possibly clinically relevant strains were identified, including P. aeruginosa, Dermacoccus barathri and Roseomonas mucosa, some of which have been previously reported to be associated with human skin infections. The results indicate that commercial tattoo and PMU inks on the US market surveyed in this study contain a wide range of micro-organisms, including pathogenic bacteria. Microbial contaminants in tattoo and PMU inks are an emerging safety concern for public health. This study provides evidence that microbial contamination of tattoo and PMU inks available in the United States is more common than previously thought and highlights the importance of monitoring these products for potentially pathogenic micro-organisms. Published 2018. This article is a U

  2. Electrophoretic separations on paper: Past, present, and future-A review.

    Science.gov (United States)

    Nanthasurasak, Pavisara; Cabot, Joan Marc; See, Hong Heng; Guijt, Rosanne M; Breadmore, Michael C

    2017-09-08

    Point-of-collection (POC) devices aim for a fast, on-site detection for medical and environmental purposes. In this area, microfluidic Paper-based Analytical Devices (μPADs) have recently gained popularity because these are potentially cheap and environmentally friendly to produce, and easy to use. From an analytical perspective, paper is well known for its use as a substrate for chromatography, but less known for its use in electrophoretic separations. With the recent interest in μPADs, most applications are based on rather simple assays with relatively few applications incorporating an analytical separation. The focus of this review is on paper-based electrophoresis, originating with the key developments in the 1940s and 1950s as well as the recent developments of electrophoretic μPADs, and concluding with a critical discussion of the opportunities and challenges for electrophoretic μPADS in the future. Copyright © 2017. Published by Elsevier B.V.

  3. The analysis of ink jet printed eco-font efficiency

    Directory of Open Access Journals (Sweden)

    Rastko Milošević

    2016-07-01

    Full Text Available Utilization of eco-font for office printing is one of sustainable, “green” printing concepts, which besides obvious economic benefits, as a result has a certain effect on environmental sustainability as well. The fundamental problem that this practice faces is decreased quality of text printed using eco-fonts comparing to those printed with regular fonts. The aim of this research is eco-font efficiency estimation, i.e. determination of toner usage reduction level of ink jet printed documents typed with this font type, as well as estimation of the extent humans perceive differences between text printed with eco-font and the one printed by its „non-eco“ equivalent. Combining instrumental measuring method and digital image analysis, it was found that this simple principle (eco-font utilization enables substantial toner usage reduction for an ink jet printing system, while visual test showed that visual experience of text printed using eco-font is sufficient. In addition, awareness of benefits that eco-font utilization brings, change users’ attitude towards eco-font quality.

  4. Microvalve-based bioprinting - process, bio-inks and applications.

    Science.gov (United States)

    Ng, Wei Long; Lee, Jia Min; Yeong, Wai Yee; Win Naing, May

    2017-03-28

    Bioprinting is an emerging research field that has attracted tremendous attention for various applications; it offers a highly automated, advanced manufacturing platform for the fabrication of complex bioengineered constructs. Different bio-inks comprising multiple types of printable biomaterials and cells are utilized during the bioprinting process to improve the homology to native tissues and/or organs in a highly reproducible manner. This paper, presenting a first-time comprehensive yet succinct review of microvalve-based bioprinting, provides an in-depth analysis and comparison of different drop-on-demand bioprinting systems and highlights the important considerations for microvalve-based bioprinting systems. This review paper reports a detailed analysis of its printing process, bio-ink properties and cellular components on the printing outcomes. Lastly, this review highlights the significance of drop-on-demand bioprinting for various applications such as high-throughput screening, fundamental cell biology research, in situ bioprinting and fabrication of in vitro tissue constructs and also presents future directions to transform the microvalve-based bioprinting technology into imperative tools for tissue engineering and regenerative medicine.

  5. Emulsion Inks for 3D Printing of High Porosity Materials.

    Science.gov (United States)

    Sears, Nicholas A; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth M

    2016-08-01

    Photocurable emulsion inks for use with solid freeform fabrication (SFF) to generate constructs with hierarchical porosity are presented. A high internal phase emulsion (HIPE) templating technique was utilized to prepare water-in-oil emulsions from a hydrophobic photopolymer, surfactant, and water. These HIPEs displayed strong shear thinning behavior that permitted layer-by-layer deposition into complex shapes and adequately high viscosity at low shear for shape retention after extrusion. Each layer was actively polymerized with an ultraviolet cure-on-dispense (CoD) technique and compositions with sufficient viscosity were able to produce tall, complex scaffolds with an internal lattice structure and microscale porosity. Evaluation of the rheological and cure properties indicated that the viscosity and cure rate both played an important role in print fidelity. These 3D printed polyHIPE constructs benefit from the tunable pore structure of emulsion templated material and the designed architecture of 3D printing. As such, these emulsion inks can be used to create ultra high porosity constructs with complex geometries and internal lattice structures not possible with traditional manufacturing techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Causes and Recommendations for Unanticipated Ink Retention Following Tattoo Removal Treatment

    Science.gov (United States)

    Chen, Cynthia L.; Desai, Alpesh; Desai, Tejas

    2013-01-01

    While placement of ink into the skin is a long-standing tradition, patients are now seeking tattoo removal on a more frequent basis. Once considered acceptable removal options, tattoo ink removal via physical destruction included dermabrasion, chemical destruction, salabrasion, thermal destruction, and cryotherapy. Now these options are used extremely infrequently. These modalities provided unpredictable results and often required prolonged healing times and left patients with skin discoloration, pain, scarring, and ink retention. Even the widely adopted use of lasers, now considered the gold standard method, offers some level of unpredictability surrounding the natural progression of ink resolution. Multiple factors need to be taken into consideration when successfully removing tattoo pigment including the modalities used, number and frequency of treatments, proper device technique, and physiological barriers to tattoo removal. This paper serves to elucidate the common causes of ink retention following tattoo removal treatment with recommendations on how best to address this relatively common occurrence. PMID:23882312

  7. Identification of inks and structural characterization of contemporary artistic prints by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Oujja, M.; Vila, A.; Rebollar, E.; Garcia, J.F.; Castillejo, M.

    2005-01-01

    Identification of the inks used in artistic prints and the order in which different ink layers have been applied on a paper substrate are important factors to complement the classical stylistic aspects for the authentication of this type of objects. Laser-induced breakdown spectroscopy (LIBS) is investigated to determine the chemical composition and structural distribution of the constituent materials of model prints made by applying one or two layers of several blue and black inks on an Arches paper substrate. By using suitable laser excitation conditions, identification of the inks was possible by virtue of emissions from key elements present in their composition. Analysis of successive spectra on the same spot allowed the identification of the order in which the inks were applied on the paper. The results show the potential of laser-induced breakdown spectroscopy for the chemical and structural characterization of artistic prints

  8. 9 CFR 316.5 - Branding ink; to be furnished by official establishments; approval by Program; color.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Branding ink; to be furnished by... THEIR CONTAINERS § 316.5 Branding ink; to be furnished by official establishments; approval by Program... purpose shall be used to apply ink brands bearing official marks to carcasses of cattle, sheep, swine, or...

  9. INK128 Exhibits Synergy with Azoles against Exophiala spp. and Fusarium spp.

    Science.gov (United States)

    Gao, Lujuan; Sun, Yi; He, Chengyan; Li, Ming; Zeng, Tongxiang; Lu, Qiaoyun

    2016-01-01

    Infections of Exophiala spp. and Fusarium spp. are often chronic and recalcitrant. Systemic disseminations, which mostly occur in immunocompromised patients, are often refractory to available antifungal therapies. The conserved target of rapamycin (TOR) orchestrates cell growth and proliferation in response to nutrients and growth factors, which are important for pathogenicity and virulence. INK128 is a second-generation ATP-competitive TOR inhibitor, which binds the TOR catalytic domain and selectively inhibits TOR. In the present study, we investigated the in vitro activities of INK128 alone and the interactions of INK128 with conventional antifungal drugs including itraconazole, voriconazole, posaconazole, and amphotericin B against 18 strains of Exophiala spp. and 10 strains of Fusarium spp. via broth microdilution checkerboard technique system adapted from Clinical and Laboratory Standards Institute broth microdilution method M38-A2. INK128 alone was inactive against all isolates tested. However, favorable synergistic effects between INK128 and voriconazole were observed in 61% Exophiala strains and 60% Fusarium strains, despite Fusarium strains exhibited high MIC values (4-8 μg/ml) against voriconazole. In addition, synergistic effects of INK128/itraconazole were shown in 33% Exophiala strains and 30% Fusarium strains, while synergy of INK128/posaconazole were observed in 28% Exophiala strains and 30% Fusarium strains. The effective working ranges of INK128 were 0.125-2 μg/ml and 1-4 μg/ml against Exophiala isolates and Fusarium isolates, respectively. No synergistic effect was observed when INK128 was combined with amphotericin B. No antagonism was observed in all combinations. In conclusion, INK128 could enhance the in vitro antifungal activity of voriconazole, itraconazole and posaconazole against Exophiala spp. and Fusarium spp., suggesting that azoles, especially voriconazole, combined with TOR kinase inhibitor might provide a potential strategy to

  10. Copper Nanowires as Conductive Ink for Low-Cost Draw-On Electronics.

    Science.gov (United States)

    Jason, Naveen Noah; Shen, Wei; Cheng, Wenlong

    2015-08-05

    This work tackles the complicated problem of clump formation and entanglement of high aspect ratio copper nanowires, due to which a well dispersed solution for use as a true ink for drawable electronics has not been made until now. Through rheology studies even a hard to use material like copper nanowires was tailored to be made into a highly efficient conductive ink with only 2 vol % or 18.28 wt % loading which is far lower than existing nanoparticle based inks. This versatile ink can be applied onto various substrates such as paper, PET, PDMS and latex. By using the ink in a roller ball pen, a bending sensor device was simply drawn on paper, which demonstrated detection of various degrees of convex bending and was highly durable as shown in the 10,000 bending cycling test. A highly sensitive strain sensor which has a maximum gauge factor of 54.38 was also fabricated by simply painting the ink onto latex rubber strip using a paintbrush. Finally a complex conductive pattern depicting the Sydney Opera House was painted on paper to demonstrate the versatility and robustness of the ink. The use of Cu NWs is highly economical in terms of the conductive filler loading in the ink and the cost of copper itself as compared to other metal NPs, CNT, and graphene-based inks. The demonstrated e-ink, devices, and facile device fabrication methods push the field one step closer to truly creating cheap and highly reliable skin like devices "on the fly".

  11. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis.

    Science.gov (United States)

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime

    2017-07-01

    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Laboratory evaluation of lambda-cyhalothrin a microencapsulated formulation on mosquito nets for control of vector mosquitos.

    Science.gov (United States)

    Vythilingam, I; Zainal, A R; Hamidah, T

    1999-03-01

    Two formulations of lambda-cyhalothrin (EC-Emulsion concentrate and MC-Microencapsulated) were impregnated into bednets made of polyethylene and polyester. The nets were treated at a dosage of 15 mg/m2. For bioassay of insecticidal efficacy, female Anopheles maculatus and Aedes aegypti were exposed to the nets for two minutes and mortality was scored 24 hours later. The nets were also tested after repeated washings with water and with soap and water. Microencapsulated (2.5CS) formulation was more effective than emulsion concentrate (2.5EC) formulation on both net materials--polyethylene and polyester. Repeated washing with water and soap reduces the efficacy of all bednet treatment combinations. Microencapsulated formulation on polyethylene gave best results; it could sustain up to five washes with water and two with soap and water.

  13. Effect of microencapsulated fish oil on blood metabolites and rumen fatty acids in Sannan Lactating dairy goat

    Directory of Open Access Journals (Sweden)

    Rashid Safari

    2015-01-01

    Full Text Available To estimate the effect of microencapsulated fish oil on blood metabolites, rumen and blood plasma fatty acids concentrations twelve Sannan dairy goats with 30 ± 5 days in milk (DIM were allocated to 3 treatments in a 3×2 change over design with 2 periods of 30 days. Treatments were: 1 the control (without fish oil, 2 microencapsulated fish oil (2% fish oil capsulated in 6% treated whey protein concentrate, 3 fish oil (2% fish oil and 6% whey protein concentrate. Concentration of C18:0 in the rumen for microencapsulated fish oil decreased significantly in comparison with the control. The same manner was observed in goat’s blood plasma for microencapsulated fish oil. Microencapsulated fish oil led to a significant increase in polyunsaturated fatty acids concentration, hence concentration of C18:3, C20:5 EPA, C22:5 DPA and C22:6 DHA as a source of ω3 fatty acids increased 10, 20, 10 and 13 folds in comparison with the control and 10, 20, 2 and 2.5 folds in comparison with the fish oil treatment, respectively. HDL concentration in protected fish oil was significantly higher than that for the control and unprotected fish oil treatments. It seems that fish oil supplementation caused significant changes in blood fatty acids composition of ruminants as well as ω3 fatty acids in their products. Significant increase of ω3 fatty acids in blood plasma of microencapsulated fish oil treatment showed the protective effect of capsulation against rumen microbial biohydrogenation.

  14. Enhanced dispersibility and dispersion stability of dodecylamine-protected silver nanoparticles by dodecanethiol for ink-jet conductive inks

    International Nuclear Information System (INIS)

    Zhou, Xueqin; Li, Wei; Wu, Meilan; Tang, Shen; Liu, Dongzhi

    2014-01-01

    This work studied dodecylamine-protected silver nanoparticles modified by a small amount of dodecanethiol as the co-protective agent. Contents of the dodecanethiol and the protective agent capping on the surface of silver nanoparticles were analyzed using the method of oxygen flask combustion and a thermogravimetric analysis instrument. Results of electrical property determination and transmission electron microscopy indicate that certain amount of capping dodecanethiol can slow down the spontaneous sintering process of silver nanoparticles. When capping DDT content of silver nanoparticles is 1.70 wt%, 10 wt% suspensions are stable under −18 °C and can be stored stably at room temperature as long as 120 days. Furthermore, the silver nanoparticle concentration could be increased to 20 wt% with a stable storage time of 60 days at room temperature. Finally, stable polymer-free conductive inks with the silver nanoparticle concentration of 20 wt% were produced to fabricate patterns by ink-jet printing. The resistivity of the PI-supported patterns having been annealed at 130 °C for 10 min is 7.2 μΩ cm.

  15. Thermally Dried Ink-Jet Process for 6,13-Bis(triisopropylsilylethynyl)-Pentacene for High Mobility and High Uniformity on a Large Area Substrate

    Science.gov (United States)

    Ryu, Gi Seong; Lee, Myung Won; Jeong, Seung Hyeon; Song, Chung Kun

    2012-05-01

    In this study we developed a simple ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene), which is known as a high-mobility soluble organic semiconductor, to achieve relatively high-mobility and high-uniformity performance for large-area applications. We analyzed the behavior of fluorescent particles in droplets and applied the results to determining a method of controlling the behavior of TIPS-pentacene molecules. The grain morphology of TIPS-pentacene varied depending on the temperature applied to the droplets during drying. We were able to obtain large and uniform grains at 46 °C without any “coffee stain”. The process was applied to a large-size organic thin-film transistor (OTFT) backplane for an electrophoretic display panel containing 192×150 pixels on a 6-in.-sized substrate. The average of mobilities of 36 OTFTs, which were taken from different locations of the backplane, was 0.44±0.08 cm2·V-1·s-1, with a small deviation of 20%, over a 6-in.-size area comprising 28,800 OTFTs. This process providing high mobility and high uniformity can be achieved by simply maintaining the whole area of the substrate at a specific temperature (46 °C in this case) during drying of the droplets.

  16. Thermally dried ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene for high mobility and high uniformity on a large area substrate

    Science.gov (United States)

    Ryu, Gi Seong; Lee, Myung Won; Jeong, Seung Hyeon; Song, Chung Kun

    2012-01-01

    In this study we developed a simple ink-jet process for 6,13-bis(triisopropylsilylethynyl)-pentacene (TIPS-pentacene), which is known as a high-mobility soluble organic semiconductor, to achieve relatively high-mobility and high-uniformity performance for large-area applications. We analyzed the behavior of fluorescent particles in droplets and applied the results to determining a method of controlling the behavior of TIPS-pentacene molecules. The grain morphology of TIPS-pentacene varied depending on the temperature applied to the droplets during drying. We were able to obtain large and uniform grains at 46 degrees C without any "coffee stain". The process was applied to a large-size organic thin-film transistor (OTFT) backplane for an electrophoretic display panel containing 192 x 150 pixels on a 6-in.-sized substrate. The average of mobilities of 36 OTFTs, which were taken from different locations of the backplane, was 0.44 +/- 0.08 cm2.V-1.s-1, with a small deviation of 20%, over a 6-in.-size area comprising 28,800 OTFTs. This process providing high mobility and high uniformity can be achieved by simply maintaining the whole area of the substrate at a specific temperature (46 degrees C in this case) during drying of the droplets.

  17. Microencapsulation of borage oil with blends of milk protein, β-glucan and maltodextrin through spray drying: physicochemical characteristics and stability of the microcapsules.

    Science.gov (United States)

    Li, Ru-Yi; Shi, Yan

    2018-02-01

    Borage oil is a rich commercial source of γ-linolenic acid (18:3n-6). However, borage oil is rich in omega-6 polyunsaturated fatty acids and vulnerable to oxidation. Thus, selecting appropriate wall materials is critical to the encapsulation of borage oil. The present study investigated the influence of wall materials on the physicochemical characteristics and stability of microencapsulated borage oil by spray drying. Blends of milk protein [sodium caseinate (CAS) or whey protein concentrate], β-glucan (GLU) and maltodextrin (MD) were used as the wall materials for encapsulating borage oil. The microencapsulation of borage oil with different wall materials attained high encapsulation efficiencies. The microencapsulated borage oil prepared with CAS-MD achieved the optimal encapsulation efficiency of 96.62%. The oxidative stabilities of borage oil and microencapsulated borage oil were measured by accelerated storage test at 45 °C and 33% relative humidity for 30 days. The microencapsulated borage oil presented lower peroxide values than those of borage oil, and the microcapsules prepared with CAS-10GLU-MD (consisting of CAS 50 g kg -1 , GLU 100 g kg -1 and MD 475 g kg -1 of microencapsulation) conferred borage oil with high protection against lipid oxidation. The results of the present study demonstrate that the CAS-GLU-MD blend is appropriate for microencapsulating borage oil. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Characterization of Printing Inks Using DART-Q-TOF-MS and Attenuated Total Reflectance (ATR) FTIR.

    Science.gov (United States)

    Williamson, Rhett; Raeva, Anna; Almirall, Jose R

    2016-05-01

    The rise in improved and widely accessible printing technology has resulted in an interest to develop rapid and minimally destructive chemical analytical techniques that can characterize printing inks for forensic document analysis. Chemical characterization of printing inks allows for both discrimination of inks originating from different sources and the association of inks originating from the same source. Direct analysis in real-time mass spectrometry (DART-MS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were used in tandem to analyze four different classes of printing inks: inkjets, toners, offset, and intaglio. A total of 319 samples or ~ 80 samples from each class were analyzed directly on a paper substrate using the two methods. DART-MS was found to characterize the semi-volatile polymeric vehicle components, while ATR-FTIR provided chemical information associated with the bulk components of these inks. Complimentary data results in improved discrimination when both techniques are used in succession resulting in >96% discrimination for all toners, 95% for all inkjets, >92% for all offset, and >54% for all intaglio inks. © 2016 American Academy of Forensic Sciences.

  19. Fourier Transform Infrared (FTIR Spectroscopy with Chemometric Techniques for the Classification of Ballpoint Pen Inks

    Directory of Open Access Journals (Sweden)

    Muhammad Naeim Mohamad Asri

    2015-12-01

    Full Text Available FTIR spectroscopic techniques have been shown to possess good abilities to analyse ballpoint pen inks. These in-situ techniques involve directing light onto ballpoint ink samples to generate an FTIR spectrum, providing “molecular fingerprints” of the ink samples thus allowing comparison by direct visual comparison. In this study, ink from blue (n=15 and red (n=15 ballpoint pens of five different brands: Kilometrico®, G-Soft®, Stabilo®, Pilot® and Faber Castell® was analysed using the FTIR technique with the objective of establishing a distinctive differentiation according to the brand. The resulting spectra were first compared and grouped manually. Due to the similarities in terms of colour and shade of the inks, distinctive differentiation could not be achieved by means of direct visual comparison. However, when the same spectral data was analysed by Principal Component Analysis (PCA software, distinctive grouping of the ballpoint pen inks was achieved. Our results demonstrate that PCA can be used objectively to investigate ballpoint pen inks of similar colour and more importantly of different brands.

  20. Influence of the Substrate Properties on the Offset Printing ink Colour Matching

    Directory of Open Access Journals (Sweden)

    Anne Blayo

    2003-07-01

    Full Text Available The printing industry has been using computerised ink colour matching for a long time. The problem of ink formulation is to match a given standard colour with only three or four inks from a basis of about twelve inks.This is generally achieved by calculations based on the well-known Kubelka-Munk turbid media theory, which gives excellent results in many industrial situations. However, some hypotheses are necessary to apply the Kubelka-Munk model and corrections to the measured reflectance are often required (Saunderson’s correction coefficients, for example.One limitation in the resolution of this method of formulation may arise from the fact that the characterisation of the basic inks is made on one standard substrate, which may differ a lot from the real printing substrate.The aim of this work is precisely to study the contribution of the substrate to the colour matching procedure. The properties of the substrate which intervene in the process are physical properties (thickness, absorbency… and optical properties (brightness and gloss. Five different papers were chosen to make the characterisations of the basic offset inks. The reflectance measurements were performed with spectrophotometer X-Rite with the D/0° geometry, specular excluded or included, coupled with a coloured matching software (X-Rite Inkmaster. A special emphasis was put on the influence on the calculation of the ink film thickness, estimated for the different substrates, and on the choice of the correction coefficients for the Kubelka-Munk theory.

  1. Fast and Simple Forensic Red Pen Ink Analysis Using Ultra-Performance Liquid Chromatography (UPLC)

    International Nuclear Information System (INIS)

    Lee, L.C.; Ying, S.L.; Wan Nur Syazwani Wan Mohamad Fuad; Ab Aziz Ishak; Khairul Osman

    2016-01-01

    Ultra-performance liquid chromatography (UPLC) is more effective than high performance liquid chromatography in terms of analysis speed and sensitivity. This paper presents a feasibility study on forensic red pen inks analysis using UPLC. A total of 12 varieties of red ball point pen inks were purchased from selected stationary shop. For each variety, four different individual pens were sampled to provide intra-variability within a particular variety of pen. The proposed approach is very simple that it only involved limited analysis step and chemicals. A total of 144 chromatograms were obtained from red ink entries extracted with 1.5 mL 80 % (v/v) acetonitrile. Peaks originated from pen inks were determined by comparing the chromatograms of both blank paper and blank solvent against that of ink samples. Subsequently, one-way ANOVA was conducted to discriminate all 66 possible pairs for red pen inks. Results showed that the proposed approach giving discriminating power of 95.45 %. The outcome of the study indicates that UPLC could be a fast and simple approach to red ball point pen inks analysis. (author)

  2. Sintering of MnCo2O4 coatings prepared by electrophoretic deposition

    DEFF Research Database (Denmark)

    Bobruk, M.; Molin, Sebastian; Chen, Ming

    2018-01-01

    Sintering of MnCo2O4 coatings prepared by electrophoretic deposition on steel substrates has been studied in air and in reducing-oxidizing atmosphere. Effect of temperature and pO2 on the resulting coating density was evaluated from scanning electron microscopy images of polished cross sections...

  3. Zirconium phosphate coating on aluminium foams by electrophoretic deposition for acidic catalysis

    NARCIS (Netherlands)

    Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2012-01-01

    The electrophoretic deposition method has been applied for the formation of an amorphous zirconium phosphate layer on the surface of open-cell aluminum foam. The aluminum foam was fully and uniformly covered by the zirconium phosphate layer with a good mechanical adherence to the support. The

  4. Electrophoretic pattern of sera from lambs and kids vaccinated with irradiated Amphistome metacercariae (Cercariae indicae XXVI)

    International Nuclear Information System (INIS)

    Hafeez, Md.; Rao, B.V.

    1986-01-01

    Preliminary work has been done to study certain responses induced by irradiated amphistome metacercariae used as a vaccine to immunise lambs, kids and calves. The electrophoretic pattern of the sera collected from lambs and kids vaccinated with gamma irradiated amphistome matacercariae (C.I. XXVI) has been reported in this study. (author). 10 refs., 1 table

  5. Capillary electrophoretic enantioseparation of selegiline, methamphetamine and ephedrine using a neutral β-cyclodextrin epichlorhydrin polymer

    NARCIS (Netherlands)

    Sevcik, J.; Stransky, Z.; Ingelse, B.A.; Lemr, K.

    1996-01-01

    This paper describes the development of a capillary zone electrophoretic method for chiral separation of three basic compounds of the selegiline synthetic pathway: ephedrine, methamphetamine and selegiline. The method developed allows one to separate the studied compounds in one run using a neutral

  6. Characterization of Dickeya and Pectobacterium species by capillary electrophoretic techniques and MALDI-TOF MS

    Czech Academy of Sciences Publication Activity Database

    Šalplachta, Jiří; Kubesová, Anna; Horký, J.; Matoušková, H.; Tesařová, Marie; Horká, Marie

    2015-01-01

    Roč. 407, č. 25 (2015), s. 7625-7635 ISSN 1618-2642 R&D Projects: GA MV VG20112015021 Institutional support: RVO:68081715 Keywords : bacteria * electrophoretic techniques * MALDI Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.125, year: 2015 http://hdl.handle.net/11104/0250090

  7. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    Science.gov (United States)

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  8. A rollable, organic electrophoretic QVGA display with field-shielded pixel architecture

    NARCIS (Netherlands)

    Gelinck, G.H.; Huitema, H.E.A.; Mil, M. van; Veenendaal, E. van; Lieshout, P.J.G. van; Touwslager, F.; Patry, S.F.; Sohn, S.; Whitesides, T.; McCreary, M.D.

    2006-01-01

    A 100-um thin QVGA display was made by combining a 25-um thin organic transistor active-matrix backplane with an electrophoretic display film. High contrast and low crosstalk was achieved by the addition of a field shield to the backplane. The display can be bent repeatedly to a radius of 2 mm

  9. Field inversion gel electrophoretic analysis of Legionella pneumophila strains associated with nosocomial legionellosis in children.

    Science.gov (United States)

    Green, M; Wald, E R; Dashefsky, B; Barbadora, K; Wadowsky, R M

    1996-01-01

    Two nosocomial cases of Legionnaires' disease occurred in children. Legionella pneumophila serogroup 1 was isolated from both patients and 30 of 39 plumbing system sites in the hospital. The patient and hospital environmental isolates yielded identical field inversion gel electrophoretic patterns which differed from patterns observed with epidemiologically unrelated strains.

  10. Sialic acid accelerates the electrophoretic velocity of injured dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Chen-xu Li

    2015-01-01

    Full Text Available Peripheral nerve injury has been shown to result in ectopic spontaneous discharges on soma and injured sites of sensory neurons, thereby inducing neuropathic pain. With the increase of membrane proteins on soma and injured site neurons, the negatively charged sialic acids bind to the external domains of membrane proteins, resulting in an increase of this charge. We therefore speculate that the electrophoretic velocity of injured neurons may be faster than non-injured neurons. The present study established rat models of neuropathic pain via chronic constriction injury. Results of the cell electrophoresis test revealed that the electrophoretic velocity of injured neuronal cells was faster than that of non-injured (control cells. We then treated cells with divalent cations of Ca 2+ and organic compounds with positive charges, polylysine to counteract the negatively charged sialic acids, or neuraminidase to specifically remove sialic acids from the membrane surface of injured neurons. All three treatments significantly reduced the electrophoretic velocity of injured neuronal cells. These findings suggest that enhanced sialic acids on injured neurons may accelerate the electrophoretic velocity of injured neurons.

  11. Cosmic Ink: Fragments from the Past on Journal Pages

    Science.gov (United States)

    Mandrino, A.; Gargano, M.; Gasperini, A.

    2015-04-01

    This contribution describes an editorial project started in 2012 to enhance the cultural heritage of the Italian observatories. It includes a regular column Cieli di inchiostro (Cosmic ink) devoted to promoting the astronomical historical archives and published in the Giornale di astronomia, a journal of the Società Astronomica Italiana. In every issue of the journal, a significant historical artifact is presented and described. This can be a letter, a diary page, a photograph, a map, a drawing, or another type of item pulled out of the archival folders to bring its history to light. The column is intended to invite historians, amateurs, and students to search and use the documents kept in the archives of the observatories.

  12. Plasmonic laser printing for ink-free color decoration

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Vannahme, Christoph; Højlund-Nielsen, Emil

    2016-01-01

    Here we show a method of color printing on nanoimprinted plasmonic metasurfaces [1] using laser post-writing. Laser pulses induce transient local heat generation that leads to melting and reshaping of the imprinted nanostructures [2]. This leads to melting and reshaping of the imprinted 20nm Al...... also be used on a larger scale to personify products such as mobile phones with unique decorations, names, etc‥ This laser technology may create environmentally sound color printing solutions and simplify the production for consumer products....... structures embedded in plastics. Depending on the laser pulse energy density, different surface morphologies that support different plasmonic resonances leading to different color appearances can be created. Color printing by this technology has several advantages over dye technology: ink/toner-free, sub...

  13. Ultrafast Paper Thermometers Based on a Green Sensing Ink.

    Science.gov (United States)

    Tao, Xinglei; Jia, Hanyu; He, Yonglin; Liao, Shenglong; Wang, Yapei

    2017-03-24

    With the use of an ionic liquid as the ultrathermosensitive fluid, a paper thermometer is successfully developed with intrinsic ability of ultrafast response and high stability upon temperature change. The fluidic nature allows the ionic liquid to be easily deposited on paper by pen writing or inkjet printing, affording great promise for large-scale fabrication of low-cost paper sensors. Owing to the advantages of nonvolatilization, excellent continuity and deformability, the thermosensitive ink trapped within the cellulose fibers of paper matrix has no leakage or evaporation at open states, ensuring the excellent stability and repeatability of thermal sensing against arbitrary bending and folding operation. By shortening the heat exchange distance between ionic liquid and samples, it takes only 8 s for the thermometer to reach an electrical equilibrium at a given temperature. Moreover, the paper thermometer can be applied to remotely monitor temperature change with the combination of a wireless communication technology.

  14. Microencapsulation of rifampicin: A technique to preserve the mechanical properties of bone cement.

    Science.gov (United States)

    Sanz-Ruiz, Pablo; Carbó-Laso, Esther; Del Real-Romero, Juan Carlos; Arán-Ais, Francisca; Ballesteros-Iglesias, Yolanda; Paz-Jiménez, Eva; Sánchez-Navarro, Magdalena; Pérez-Limiñana, María Ángeles; Vaquero-Martín, Javier

    2018-01-01

    Two-stage exchange with antibiotic-loaded bone cement spacers remains the gold standard for chronic periprosthetic joint infection (PJI). Rifampicin is highly efficient on stationary-phase staphylococci in biofilm; however, its addition to PMMA to manufacture spacers prevents polymerization and reduces mechanical properties. Isolation of rifampicin during polymerization by microencapsulation could allow manufacturing rifampicin-loaded bone cement maintaining elution and mechanical properties. Microcapsules of rifampicin with alginate, polyhydroxybutyratehydroxyvalerate (PHBV), ethylcellulose and stearic acid (SA) were synthesized. Alginate and PHBV microcapsules were added to bone cement and elution, compression, bending, hardness, setting time and microbiological tests were performed. Repeated measures ANOVA and Bonferroni post-hoc test were performed, considering a p cement specimens containing alginate microcapsules eluted more rifampicin than PHBV microcapsules or non-encapsulated rifampicin over time (p Cement with alginate microcapsules showed similar behavior in hardness tests to control cement over the study period (73 ± 1.68H D ). PMMA with alginate microcapsules exhibited the largest zones of inhibition in microbiological tests. Statistically significant differences in mean diameters of zones of inhibition between PMMA loaded with alginate-rifampicin (p = 0.0001) and alginate-PHBV microcapsules (p = 0.0001) were detected. Rifampicin microencapsulation with alginate is the best choice to introduce rifampicin in PMMA preserving mechanical properties, setting time, elution, and antimicrobial properties. The main applicability of this study is the opportunity for obtaining rifampicin-loaded PMMA by microencapsulation of rifampicin in alginate microparticles, achieving high doses of rifampicin in infected tissues, increasing the successful of PJI treatment. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res

  15. Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage

    International Nuclear Information System (INIS)

    Tang, Xiaofen; Li, Wei; Zhang, Xingxiang; Shi, Haifeng

    2014-01-01

    Microencapsulated phase change material with a low supercooling degree is one of the increasing important researches as well as industrial application for thermal energy storage. This study develops a novel and low supercooling microencapsulated n-octadecane (MicroC18) with n-octadecyl methacrylate (ODMA)–methacrylic acid (MAA) copolymer as shell using suspension-like polymerization. The fabrication and properties of MicroC18 were characterized by using a field-emission scanning electron microscope (FE-SEM), Fourier transformed infrared spectroscopy (FTIR), particle size distribution analysis, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The MicroC18 with spherical shapes and an average diameter of 1.60–1.68 μm are fabricated. The onset crystallizing temperatures of MicroC18 are only 4 °C below that of n-octadecane. The unique copolymer shell has a significant impact on the low supercooling of MicroC18. The n-octadecane in all of the samples crystalizes by heterogeneous nucleation. The content of n-octadecane in the microcapsules is low; however, the microcapsules still exhibit high enthalpy through the contribution of the shells. At a monomers/n-octadecane mass ratio is 2:1, as used in the recipes, the MicroC18 with highest phase change enthalpy was obtained. The temperature of thermal resistant of MicroC18 is approximately 235.6 °C, which is affected by the thickness of the polymer shell. - Highlights: • Microencapsulated n-octadecane with comb-like copolymer shell has low supercooling. • The unique shell plays a significant role in suppressing supercooling. • The types of cross-linker affect morphologies and heat enthalpies of microcapsules. • Microcapsules exhibit high phase change enthalpies and thermal stabilities

  16. Evaluation of Eudragit® Retard Polymers for the Microencapsulation of Alpha-Lipoic Acid.

    Science.gov (United States)

    Pecora, Tiziana M G; Musumeci, Teresa; Musumeci, Lucrezia; Fresta, Massimo; Pignatello, Rosario

    2016-01-01

    Microencapsulation of natural antioxidants in polymeric systems represents a possible strategy for improving the oral bioavailability of compounds that are otherwise poorly soluble. α-lipoic acid (ALA) was microencapsulated with polymethacrylate polymers (blends at various ratios of Eudragit® RS100 and RL100 resins). Microspheres were produced by solvent displacement of an ethanol cosolution of ALA and polymers; the microsuspensions were then freeze-dried, using trehalose as a cryoprotector. Microspheres were characterized in the solid state for micromeritic properties and drug loading, as well as by infrared spectroscopy, powder X-ray diffractometry and differential scanning calorimetry. The antioxidant activity of free and encapsulated ALA was assessed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. In vitro release studies, performed in simulated gastric (pH 1.2) and intestinal fluid (pH 6.8), showed that, depending on polymer composition and drug-to-polymer ratio, ALA release can be slowed down, compared to the dissolution pattern of the free drug. Solid-state characterization confirmed the chemical stability of ALA in the microspheres, suggesting that ALA did not develop strong interactions with the polymer and was present in an amorphous or a disordered-crystalline state within the polymer network. As indicated by the DPPH assay, the microencapsulation of ALA in Eudragit® Retard matrices did not alter its antioxidant activity. ALA was effectively encapsulated in Eudragit® Retard matrices, showing a chemical stability up to 6 months at room conditions and at 40°C. Moreover, since the drug maintained its antioxidant activity in vitro, the potential application of these microparticulate systems for oral administration would deserve further studies.

  17. Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum.

    Science.gov (United States)

    Rosas-Flores, Walfred; Ramos-Ramírez, Emma Gloria; Salazar-Montoya, Juan Alfredo

    2013-10-15

    Sodium alginate (SA) at 2% (w/v) and low acylated gellan gum (LAG) at 0.2% (w/v) were used to microencapsulate Lactobacillus helveticus and Lactobacillus delbrueckii spp lactis by employing the internal ionic gelation technique through water-oil emulsions at three different stirring rates: 480, 800 and 1200 rpm. The flow behavior of the biopolymer dispersions, the activation energy of the emulsion, the microencapsulation efficiency, the size distribution, the microcapsules morphology and the effect of the stirring rate on the culture viability were analyzed. All of the dispersions exhibited a non-Newtonian shear-thinning flow behavior because the apparent viscosity decreased in value when the shear rate was increased. The activation energy was calculated using the Arrhenius-like equation; the value obtained for the emulsion was 32.59 kJ/mol. It was observed that at 400 rpm, the microencapsulation efficiency was 92.83%, whereas at 800 and 1200 rpm, the stirring rates reduced the efficiency to 15.83% and 4.56%, respectively, evidencing the sensitivity of the microorganisms to the shear rate (13.36 and 20.05 s(-1)). Both optical and scanning electron microscopy (SEM) showed spherical microcapsules with irregular topography due to the presence of holes on its surface. The obtained size distribution range was modified when the stirring rate was increased. At 400 rpm, bimodal behavior was observed in the range of 20-420 μm; at 800 and 1200 rpm, the behavior became unimodal and the range was from 20 to 200 μm and 20 to 160 μm, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying.

    Science.gov (United States)

    Gansau, Jennifer; Kelly, Lara; Buckley, Conor

    2018-06-11

    Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x106 cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be used in a

  19. Pickering emulsion: A novel template for microencapsulated phase change materials with polymer–silica hybrid shell

    International Nuclear Information System (INIS)

    Yin, Dezhong; Ma, Li; Liu, Jinjie; Zhang, Qiuyu

    2014-01-01

    MePCMs (microencapsulated phase change materials) with covalently bonded SiO 2 /polymer hybrid as shell were fabricated via Pickering emulsion polymerization stabilized solely by organically-modified SiO 2 particles. Morphology and core–shell structure of these microcapsules were observed by scanning electron microscopy (SEM). Thermal properties of microencapsulated 1-dodecanol were determined using DSC (differential scanning calorimetry) and TGA (thermal gravimetric analysis). The results indicate that mass ratio of St (styrene)/DVB (divinylbenzene)/dodecanol has great effect on the morphology, inner structure, microencapsulation efficiency and durability of resultant MePCMs. When ratio of St/DVB/dodecanol was 5/1/12, dodecanol content of as much as 62.8% is obtained and the utility efficiency of dodecanol reaches 94.2%. The prepared MePCMs present good durability and thermal reliability. 2.2% of core material leached away the microcapsule after suspended in water for 10 days and 5.8% of core material leached after 2000 accelerated thermal cycling. Our study demonstrated that Pickering emulsion polymerization is a simple and robust method for the preparation of MePCMs with polymer–inorganic hybrids as shell. - Highlights: • We fabricated MePCM via surfactant-free Pickering emulsion polymerization. • The shell of MePCM was composed of PS/SiO 2 organic–inorganic hybrids. • The phase change enthalpy of MePCM is 125.0 J g −1 and the utility efficiency of 1-dodecanol reached 94.2%. • Only 2.2% and 5.8% of core material lost after durability test and 2000 accelerated thermal cycling respectively

  20. Microencapsulation of a fatty acid with Poly(melamine–urea–formaldehyde)

    International Nuclear Information System (INIS)

    Konuklu, Yeliz; Paksoy, Halime O.; Unal, Murat; Konuklu, Suleyman

    2014-01-01

    Highlights: • Decanoic(capric) acid microcapsules were prepared with different capsule wall materials. • The one-step in situ polymerization technique was used. • Leakage-free, thermally stable microPCMs was prepared with Poly(MUF). • Influence of different surfactants on encapsulation and thermal properties reported. - Abstract: The main purpose of this study is to obtain leakage-free, thermally stable decanoic acid microcapsules (microPCMs) for thermal energy storage applications. Decanoic acid (capric acid) is an environmentally friendly fatty acid since it is obtained from vegetable and animal oils. MicroPCMs were prepared with different capsule wall materials via a one-step in situ polymerization technique. The properties of microencapsulated PCMs have been analyzed by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analyzer (TGA), Fourier transform infrared (FTIR) spectra analysis and particle size analyzer. The microPCMs prepared using Poly(urea–formaldehyde) (PUF) exhibit higher heat capacities and the microPCMs prepared using Poly(melamine–formaldehyde) (PMF) exhibit higher thermal stabilities. In order to obtain microPCMs with better properties such as suitable latent heat and better heat resistance at high temperatures, we microencapsulated decanoic acid with Poly (melamine–urea–formaldehyde) (PMUF). Furthermore, the effects of surfactants on microPCMs with PMUF were investigated by SEM, a particle size analyzer, DSC, and TGA. The results show that the binary surfactant system was a suitable emulsifier for this process. We determined that the melting temperature was close to 33 °C, the latent heat storage capacity was about 88 J/g, and the mean particle diameter was 0.28 μm for microPCMs with PMUF. We recommend decanoic acid microencapsulated with PMUF for thermally stable and leakage-free applications above 95 °C

  1. Microencapsulation of butyl stearate with melamine-formaldehyde resin: Effect of decreasing the pH value on the composition and thermal stability of microcapsules

    Directory of Open Access Journals (Sweden)

    M. Krajnc

    2012-10-01

    Full Text Available The object of this study was to investigate how different decreasing of pH regimes during microencapsulation process with melamine-formaldehyde (MF resin affects the composition, morphology and thermal stability of microcapsules containing a phase-change material (PCM. Technical butyl stearate was used as PCM. Microencapsulation was carried out at 70°C. For all experiments the starting pH value was 6.0. After one hour of microencapsulation at the starting pH value, the pH value was lowered to final pH value (5.5; 5.0; 4.5 in a stepwise or linear way. The properties of microcapsules were monitored during and after the microencapsulation process. The results showed that pH value decreasing regime was critical for the morphology and stability of microcapsules. During microencapsulations with a stepwise decrease of pH value we observed faster increase of the amount of MF resin in the microencapsulation product compared to the microencapsulations with a linear pH value decrease. However, faster deposition in the case of microencapsulations with stepwise decrease of pH value did not result in thicker MF shells. The shell thickness increased much faster when the pH value was decreased in a linear way or in several smaller steps. It was shown that for the best thermal stability of microcapsules, the pH value during microencapsulation had to be lowered in a linear way or in smaller steps to 5.0 or lower.

  2. Detection and identification of dyes in blue writing inks by LC-DAD-orbitrap MS.

    Science.gov (United States)

    Sun, Qiran; Luo, Yiwen; Yang, Xu; Xiang, Ping; Shen, Min

    2016-04-01

    In the field of forensic questioned document examination, to identify dyes detected in inks not only provides a solid foundation for ink discrimination in forged contents identification, but also facilitates the investigation of ink origin or the study regarding ink dating. To detect and identify potential acid and basic dyes in blue writing inks, a liquid chromatography-diode array detection-Orbitrap mass spectrometry (LC-DAD-Orbitrap MS) method was established. Three sulfonic acid dyes (Acid blue 1, Acid blue 9 and Acid red 52) and six triphenylmethane basic dyes (Ethyl violet, Crystal violet, Methyl violet 2B, Basic blue 7, Victoria blue B and Victoria blue R) were employed as reference dyes for method development. Determination of the nine dyes was validated to evaluate the instrument performance, and it turned out to be sensitive and stable enough for quantification. The method was then applied in the screening analysis of ten blue roller ball pen inks and twenty blue ballpoint pen inks. As a result, including TPR (a de-methylated product of Crystal violet), ten known dyes and four unknown dyes were detected in the inks. The latter were further identified as a de-methylated product of Victoria blue B, Acid blue 104, Acid violet 49 and Acid blue 90, through analyzing their characteristic precursor and product ions acquired by Orbitrap MS with good mass accuracy. The results showed that the established method is capable of detecting and identifying potential dyes in blue writing inks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. STUDY OF INK LAYER BY METHOD OF ATTENUATED TOTAL REFLECTANCE SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    D. G. Fatkhullina

    2016-05-01

    Full Text Available Subject of Research. Researchresults of thickness distribution of an ink layer smearedon a glass surface are presented. The orange ink which is used as a coloring pigment in writing instrument (highlighter is selectedasan object of study. Method. Researches were carried out by the method of attenuated total reflectance(ATR spectroscopy. The spectral setup fitted up on the basis of monochromator MDR-204 was usedin the experiment. The peculiarity of the measurement scheme is the applicationofhigh-resolution camera as a radiation detector and information storage as an images package. Researches allowed receivingexperimental data in the form of ink ATR spectra arrayfor studied areas of layer surface in a given spectral range. Main Results. The estimation of ink layer thickness was done, that gives the possibilityto visualize its distribution over the surface using three-dimensional modeling capabilities. The thickness of the ink layer is not more than 0.12 microns and arithmetic mean of the thickness is0.06 microns. The local areas are observed in an ink distribution, they have a maximum layer thickness (0.07-0.12 microns or areas with the ink thickness less then 0.03 microns. Variation of the ink layer thicknessbetween the local areas is smooth. Practical Relevance. The proposed measuring scheme, the sequence of registration and processing of experimental data can be used to studyink distribution within the thickness of a surface layer of other materials,for example, in analysis of signs performed by an ink on paper medium in order to identify them in such areas of science as forensic science andstudy of art.

  4. Black Ink of Activated Carbon Derived From Palm Kernel Cake (PKC)

    Science.gov (United States)

    Selamat, M. H.; Ahmad, A. H.

    2009-06-01

    Recycling the waste from natural plant to produce useful end products will benefit many industries and help preserve the environment. The research reported in this paper is an investigation on the use of the natural waste of palm kernel cake (PKC) to produce carbon residue as a black carbon for pigment source by using pyrolysis process. The activated carbons (AC) is produced in powder form using ball milling process. Rheological spectra in ink is one of quality control process in determining its performance properties. Findings from this study will help expand the scientific knowledge-base for black ink production and formulation base on PKC. Various inks with different weight percentage compositions of AC will be made and tested against its respective rheological properties in order to determine ideal ink printing system. The items in the formulation used comprised of organic and bio-waste materials with added additive to improve the quality of the black ink. Modified Polyurethane was used as binder. The binder's properties highlighted an ideal vehicle to be applied for good black ink opacity performance. The rheological behaviour is a general foundation for ink characterization where the wt% of AC-PKC resulted in different pseudoplastic behaviors, including the Newtonian behavior. The result found that Newtonian field was located in between 2 wt% and 10 wt% of AC-PKC composition with binder. Mass spectroscopy results shown that the carbon content in PKC is high and very suitable for black performance. In the ageing test, the pigment of PKC perform fairly according to the standard pigment of Black carbon (CB) of ferum oxide pigment. The contact angle for substrate's wettability of the ink system shown a good angle proven to be a water resistive coating on paper subtrates; an advantage of the PKC ink pigment performance.

  5. Degradation of inkjet ink by greensand and ultrasonic sonification

    Directory of Open Access Journals (Sweden)

    Mirela Rožić

    2017-07-01

    Full Text Available The study describes the degradation of inkjet ink at low frequency ultrasound (US and greensand to compare their reactivity. Environmental sonochemistry is a rapidly growing area and an example of the advanced oxidation process (AOP that deals with the destruction of organic species in aqueous solutions. Greensand is a granular material coated with a thin layer of manganese dioxide (MnO2 which is among the strongest natural oxidants. In our study magenta inkjet water-based printing ink was dissolved in distilled water and the solutions obtained after degradation were analysed in terms of total organic compound (TOC and absorption curves in the visible spectra. Also used for the process monitoring was high performance liquid chromatography (HPLC. The efficiency of discoloration is significantly affected by the effluent pH. The efficiency of discolouration was higher when the pH of initial solution was 2 with respect to the initial solution pH of 5.5. In all solutions, irrespective of the initial pH value and the processing method the oxidation of polyhydric alcohols occurs. Although the decomposition is significant, surface peaks resulting from HPLC analysis are very small. Decolourization is closely related to the cleavage of the – C=C and -N=N- bonds, and oxidation of polyhydric alcohol to the formation of monosaccharides, carboxylic acids or other low molecular weight compounds with a lesser number of unsaturated double bonds. These compounds have low UV absorbance or they absorb below 200 nm and therefore their detection is impossible. Thus, the obtained total organic compound results indicate a small degree of mineralization. The effectiveness of the low-frequency ultrasound (20 kHz oxidation is similar to the effectiveness of oxidation by greendsand.

  6. Enhanced heat transport in environmental systems using microencapsulated phase change materials

    Science.gov (United States)

    Colvin, D. P.; Mulligan, J. C.; Bryant, Y. G.

    1992-01-01

    A methodology for enhanced heat transport and storage that uses a new two-component fluid mixture consisting of a microencapsulated phase change material (microPCM) for enhanced latent heat transport is outlined. SBIR investigations for NASA, USAF, SDIO, and NSF since 1983 have demonstrated the ability of the two-component microPCM coolants to provide enhancements in heat transport up to 40 times over that of the carrier fluid alone, enhancements of 50 to 100 percent in the heat transfer coefficient, practically isothermal operation when the coolant flow is circulated in an optimal manner, and significant reductions in pump work.

  7. [Mouthwash solutions with microencapsuled natural extracts: Efficiency for dental plaque and gingivitis].

    Science.gov (United States)

    Vervelle, A; Mouhyi, J; Del Corso, M; Hippolyte, M-P; Sammartino, G; Dohan Ehrenfest, D M

    2010-06-01

    Mouthwash solutions are mainly used for their antiseptic properties. They currently include synthetic agents (chlorhexidine, triclosan, etc.) or essential oils (especially Listerine). Many natural extracts may also be used. These associate both antiseptic effects and direct action on host response, due to their antioxidant, immunoregulatory, analgesic, buffering, or healing properties. The best known are avocado oil, manuka oil, propolis oil, grapefruit seed extract, pycnogenol, aloe vera, Q10 coenzyme, green tea, and megamin. The development of new technologies, such as microencapsulation (GingiNat concept), may allow an in situ slow release of active ingredients during several hours, and open new perspectives for mouthwash solutions. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  8. Micro-Encapsulation of non-aqueous solvents for energy-efficient carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Stolaroff, Joshua K; Ye, Congwang; Oakdale, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baker, Sarah; Nugyen, Du; Smith, William; Aines, Roger

    2016-11-14

    Here, we demonstrate micro-encapsulation of several promising designer solvents: an IL, PCIL, and CO2BOL. We develop custom polymers that cure by UV light in the presence of each solvent while maintaining high CO2 permeability. We use several new process strategies to accommodate the viscosity and phase changes. We then measure and compare the CO2 absorption rate and capacity as well as the multi-cycle performance of the encapsulated solvents. These results are compared with previous work on encapsulated sodium carbonate solution. The prospects for designer solvents to reduce the cost of post-combustion capture and the implications for process design with encapsulated solvents are discussed.

  9. Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol

    Directory of Open Access Journals (Sweden)

    Mooranian A

    2014-09-01

    Full Text Available Armin Mooranian,1 Rebecca Negrulj,1 Nigel Chen-Tan,2 Hesham S Al-Sallami,3 Zhongxiang Fang,4 TK Mukkur,5 Momir Mikov,6,7 Svetlana Golocorbin-Kon,6,7 Marc Fakhoury,8 Gerald F Watts,9 Vance Matthews,10 Frank Arfuso,5 Hani Al-Salami1 1Biotechnology and Drug Development Research Laboratory School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia; 2Faculty of Science and Engineering, Curtin University, Perth, Western Australia, Australia; 3School of Pharmacy, University of Otago, Dunedin, New Zealand; 4School of Public Health, Curtin University, Perth, Western Australia, Australia; 5Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Science, Curtin University, Perth, Western Australia, Australia; 6Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Serbia; 7Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Serbia; 8Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; 9School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia; 10Laboratory for Metabolic Dysfunction, UWA Centre for Medical Research, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia Introduction: In previous studies, we successfully designed complex multicompartmental microcapsules as a platform for the oral targeted delivery of lipophilic drugs in type 2 diabetes (T2D. Probucol (PB is an antihyperlipidemic and antioxidant drug with the potential to show benefits in T2D. We aimed to create a novel microencapsulated formulation of PB and to examine the shape, size, and chemical, thermal, and rheological properties of these microcapsules in vitro. Method: Microencapsulation was carried out using the Büchi-based microencapsulating system developed in our laboratory. Using the polymer, sodium

  10. Effectiveness of India ink as a long-term colonic mucosal marker.

    Science.gov (United States)

    Fennerty, M B; Sampliner, R E; Hixson, L J; Garewal, H S

    1992-01-01

    We prospectively studied the use of India ink as a long-term or "permanent" mucosal marker as part of a study investigating the natural history of diminutive distal colorectal polyps. Twenty-six patients had 32 India ink tatoos implanted. The tatoo sites of the 19 patients who were followed at least 6 months continued to display intensely stained mucosa at the original sites. No side effects or complications were encountered. India ink appears to be a safe and effective long-term marker for colonic mucosal lesions.

  11. On-capillary sample cleanup method for the electrophoretic determination of carbohydrates in juice samples.

    Science.gov (United States)

    Morales-Cid, Gabriel; Simonet, Bartolomé M; Cárdenas, Soledad; Valcárcel, Miguel

    2007-05-01

    On many occasions, sample treatment is a critical step in electrophoretic analysis. As an alternative to batch procedures, in this work, a new strategy is presented with a view to develop an on-capillary sample cleanup method. This strategy is based on the partial filling of the capillary with carboxylated single-walled carbon nanotube (c-SWNT). The nanoparticles retain interferences from the matrix allowing the determination and quantification of carbohydrates (viz glucose, maltose and fructose). The precision of the method for the analysis of real samples ranged from 5.3 to 6.4%. The proposed method was compared with a method based on a batch filtration of the juice sample through diatomaceous earth and further electrophoretic determination. This method was also validated in this work. The RSD for this other method ranged from 5.1 to 6%. The results obtained by both methods were statistically comparable demonstrating the accuracy of the proposed methods and their effectiveness. Electrophoretic separation of carbohydrates was achieved using 200 mM borate solution as a buffer at pH 9.5 and applying 15 kV. During separation, the capillary temperature was kept constant at 40 degrees C. For the on-capillary cleanup method, a solution containing 50 mg/L of c-SWNTs prepared in 300 mM borate solution at pH 9.5 was introduced for 60 s into the capillary just before sample introduction. For the electrophoretic analysis of samples cleaned in batch with diatomaceous earth, it is also recommended to introduce into the capillary, just before the sample, a 300 mM borate solution as it enhances the sensitivity and electrophoretic resolution.

  12. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell

    International Nuclear Information System (INIS)

    Qiu, Xiaolin; Lu, Lixin; Wang, Ju; Tang, Guoyi; Song, Guolin

    2015-01-01

    Highlights: • Microencapsulation of octadecane and paraffin by crosslinked poly(lauryl methacrylate). • Octadecane microcapsules have a melting enthalpy of about 118 J g −1 . • Weight loss temperatures of the microcapsules were increased by 67 °C and 28 °C. • Phase change enthalpies decreased by around 10 wt% after 500 thermal cycles. • Foams with microcapsules can be applied for passive temperature control. - Abstract: Microencapsulation of n-octadecane or paraffin with poly(lauryl methacrylate) (PLMA) shell was performed by a suspension-like polymerization. The polymer shell was crosslinked by pentaerythritol tetraacrylate (PETRA). The surface morphologies of microcapsules were investigated by scanning electron microscopy (SEM). Phase change properties, thermal reliabilities and thermal stabilities of microcapsules were determined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The n-octadecane microcapsule exhibits higher melting enthalpy (118.0 J g −1 ) and crystallization enthalpy (108.3 J g −1 ) compared with the paraffin microcapsule. The thermal resistant temperatures were enhanced by more than 25 °C when n-alkanes were microencapsulated by PLMA. The PCM contents of microcapsules decreased by less than 4 wt% and 6 wt% after 500 and 1000 thermal cycles, respectively. Heat-up experiments indicated that microcapsule-treated foams exhibited upgraded thermal regulation capacities. Consequently, microencapsulated n-octadecane or paraffin with PLMA as shell possesses good potentials for heat storage and thermal regulation.

  13. Heat Storage Performance of the Prefabricated Hollow Core Concrete Deck Element with Integrated Microencapsulated Phase Change Material

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2012-01-01

    The paper presents the numerically calculated dynamic heat storage capacity of the prefabricated hollow core concrete deck element with and without microencapsulated phase change material (PCM). The reference deck is the ordinary deck made of standard concrete material and that is broadly used...

  14. Pheromone-based disruption of Eucosma sonomana and Rhyacionia zozana (Lepidoptera: Tortricidae) using aerially applied microencapsulated pheromone

    Science.gov (United States)

    Nancy E. Gillette; John D. Stein; Donald R. Owen; Jeffrey N. Webster; Sylvia R. Mori

    2006-01-01

    Two aerial applications of microencapsulated pheromone were conducted on five 20.2 ha plots to disrupt western pine shoot borer (Eucosma sonomana Kearfott) and ponderosa pine tip moth (Rhyacionia zowna (Kearfott): Lepidoptera: Tortricidae) orientation to pheromones and oviposition in ponderosa pine plantations in 2002 and 2004...

  15. Fabrication, thermal properties and thermal stabilities of microencapsulated n-alkane with poly(lauryl methacrylate) as shell

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaolin, E-mail: shirleyqiu2009@gmail.com [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Lu, Lixin; Wang, Ju [Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122 (China); Tang, Guoyi [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2015-11-20

    Highlights: • Microencapsulation of octadecane and paraffin by crosslinked poly(lauryl methacrylate). • Octadecane microcapsules have a melting enthalpy of about 118 J g{sup −1}. • Weight loss temperatures of the microcapsules were increased by 67 °C and 28 °C. • Phase change enthalpies decreased by around 10 wt% after 500 thermal cycles. • Foams with microcapsules can be applied for passive temperature control. - Abstract: Microencapsulation of n-octadecane or paraffin with poly(lauryl methacrylate) (PLMA) shell was performed by a suspension-like polymerization. The polymer shell was crosslinked by pentaerythritol tetraacrylate (PETRA). The surface morphologies of microcapsules were investigated by scanning electron microscopy (SEM). Phase change properties, thermal reliabilities and thermal stabilities of microcapsules were determined by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The n-octadecane microcapsule exhibits higher melting enthalpy (118.0 J g{sup −1}) and crystallization enthalpy (108.3 J g{sup −1}) compared with the paraffin microcapsule. The thermal resistant temperatures were enhanced by more than 25 °C when n-alkanes were microencapsulated by PLMA. The PCM contents of microcapsules decreased by less than 4 wt% and 6 wt% after 500 and 1000 thermal cycles, respectively. Heat-up experiments indicated that microcapsule-treated foams exhibited upgraded thermal regulation capacities. Consequently, microencapsulated n-octadecane or paraffin with PLMA as shell possesses good potentials for heat storage and thermal regulation.

  16. Effects of micro-encapsulation on morphology and endocrine function of cryopreserved neonatal porcine islet-like cell clusters.

    Science.gov (United States)

    Murakami, M; Satou, H; Kimura, T; Kobayashi, T; Yamaguchi, A; Nakagawara, G; Iwata, H

    2000-10-27

    For the success of clinical islets transplantation, the development of a long-term storage method is necessary. However, the structure of digested islets is scanty for culture and cryopreservation. In this study, the effect of micro-encapsulation to cryopreserved porcine islet-like cell clusters (ICCs) was investigated. The ICCs prepared from neonatal pigs by collagenase digestion and culture technique were cryopreserved and micro-encapsulated in 5% agarose membranes. After cryopreservation, ICC cultured without encapsulation (group A) and cultured with encapsulation (group B) were assessed by comparison with no cryopreserved ICC (control) both in vitro by static incubation test and in vivo in a xenotransplantation study. Micro-encapsulation was able to maintain the fine morphology and the number of ICCs of group B after 7 days of culture. There were not significant differences in insulin secretion of group B and control on day 1 and 7 of culture (1 day:11+/-0.99, 7 days: 5.30+/-1.08 microU/ICC/hr NS versus control). On day 7 of culture, the retrieval rate of group B (105.2+/-9.8%) is obviously higher compared with group A (63.0+/-6.3%). In the xenotransplatation model, the ICCs of group B showed long survival time (7.9+/-0.4 weeks) and good transplantation effect. Our study suggests that micro-encapsulation is one of the useful method for cryopreserved ICC to maintain the fine morphology and effectively recover the endocrine function.

  17. Microencapsulated conjugated linoleic acid associated with hypocaloric diet reduces body fat in sedentary women with metabolic syndrome.

    Science.gov (United States)

    Carvalho, Roberta F; Uehara, Sofia K; Rosa, Glorimar

    2012-01-01

    Animal studies have suggested beneficial effects of conjugated linoleic acid (CLA) in reducing body fat mass and improvement in the serum lipid profile and glycemia. However, these effects are controversial in humans. The purpose of this study was to investigate the effects of microencapsulated CLA supplementation on body composition, body mass index, waist circumference, and blood pressure in sedentary women with metabolic syndrome. This study was a placebo-controlled and randomized clinical trial. Fourteen women diagnosed with metabolic syndrome received light strawberry jam enriched or not with microencapsulated CLA (3 g/day) as a mixture of 38.57% cis-9, trans-11, and 39.76% trans-10, cis-12 CLA isomers associated with a hypocaloric diet for 90 days. The subjects were monitored to assess variables associated with the metabolic syndrome, in addition to assessing adherence with the intervention. There were no significant effects of microencapsulated CLA on the lipid profile or blood pressure. Mean plasma insulin concentrations were significantly lower in women supplemented with microencapsulated CLA (Δ T₉₀ - T₀ = -12.87 ± 4.26 μU/mL, P = 0.02). Microencapsulated CLA supplementation did not alter the waist circumference, but there was a reduction in body fat mass detected after 30 days (Δ = -2.68% ± 0.82%, P = 0.02), which was maintained until the 90-day intervention period (Δ = -3.32% ± 1.41%, P = 0.02) in the microencapsulated CLA group. The placebo group showed this effect only after 90 days (Δ = -1.97% ± 0.60%, P = 0.02), but had a reduced waist circumference (Δ T₉₀ - T₀ = -4.25 ± 1.31 cm, P = 0.03). Supplementation with mixed-isomer microencapsulated CLA may have a favorable effect on glycemic control and body fat mass loss at an earlier time in sedentary women with metabolic syndrome, although there were no effects on lipid profile and blood pressure.

  18. Microencapsulated conjugated linoleic acid associated with hypocaloric diet reduces body fat in sedentary women with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Carvalho RF

    2012-12-01

    Full Text Available Roberta F Carvalho,1 Sofia K Uehara,2 Glorimar Rosa1,21Medicine Department, Federal University of Rio de Janeiro, Brazil; 2Nutrition and Dietetic Department, Josué de Castro Institute of Nutrition, Federal University of Rio de Janeiro, BrazilBackground: Animal studies have suggested beneficial effects of conjugated linoleic acid (CLA in reducing body fat mass and improvement in the serum lipid profile and glycemia. However, these effects are controversial in humans. The purpose of this study was to investigate the effects of microencapsulated CLA supplementation on body composition, body mass index, waist circumference, and blood pressure in sedentary women with metabolic syndrome.Methods: This study was a placebo-controlled and randomized clinical trial. Fourteen women diagnosed with metabolic syndrome received light strawberry jam enriched or not with microencapsulated CLA (3 g/day as a mixture of 38.57% cis-9, trans-11, and 39.76% trans-10, cis-12 CLA isomers associated with a hypocaloric diet for 90 days. The subjects were monitored to assess variables associated with the metabolic syndrome, in addition to assessing adherence with the intervention.Results: There were no significant effects of microencapsulated CLA on the lipid profile or blood pressure. Mean plasma insulin concentrations were significantly lower in women supplemented with microencapsulated CLA (Δ T90 – T0 = −12.87 ± 4.26 µU/mL, P = 0.02. Microencapsulated CLA supplementation did not alter the waist circumference, but there was a reduction in body fat mass detected after 30 days (Δ = −2.68% ± 0.82%, P = 0.02, which was maintained until the 90-day intervention period (Δ = −3.32% ± 1.41%, P = 0.02 in the microencapsulated CLA group. The placebo group showed this effect only after 90 days (Δ = −1.97% ± 0.60%, P = 0.02, but had a reduced waist circumference (Δ T90 – T0 = −4.25 ± 1.31 cm, P = 0.03.Conclusion: Supplementation with mixed

  19. Microencapsulated conjugated linoleic acid associated with hypocaloric diet reduces body fat in sedentary women with metabolic syndrome

    Science.gov (United States)

    Carvalho, Roberta F; Uehara, Sofia K; Rosa, Glorimar

    2012-01-01

    Background Animal studies have suggested beneficial effects of conjugated linoleic acid (CLA) in reducing body fat mass and improvement in the serum lipid profile and glycemia. However, these effects are controversial in humans. The purpose of this study was to investigate the effects of microencapsulated CLA supplementation on body composition, body mass index, waist circumference, and blood pressure in sedentary women with metabolic syndrome. Methods This study was a placebo-controlled and randomized clinical trial. Fourteen women diagnosed with metabolic syndrome received light strawberry jam enriched or not with microencapsulated CLA (3 g/day) as a mixture of 38.57% cis-9, trans-11, and 39.76% trans-10, cis-12 CLA isomers associated with a hypocaloric diet for 90 days. The subjects were monitored to assess variables associated with the metabolic syndrome, in addition to assessing adherence with the intervention. Results There were no significant effects of microencapsulated CLA on the lipid profile or blood pressure. Mean plasma insulin concentrations were significantly lower in women supplemented with microencapsulated CLA (Δ T90 – T0 = −12.87 ± 4.26 μU/mL, P = 0.02). Microencapsulated CLA supplementation did not alter the waist circumference, but there was a reduction in body fat mass detected after 30 days (Δ = −2.68% ± 0.82%, P = 0.02), which was maintained until the 90-day intervention period (Δ = −3.32% ± 1.41%, P = 0.02) in the microencapsulated CLA group. The placebo group showed this effect only after 90 days (Δ = −1.97% ± 0.60%, P = 0.02), but had a reduced waist circumference (Δ T90 – T0 = −4.25 ± 1.31 cm, P = 0.03). Conclusion Supplementation with mixed-isomer microencapsulated CLA may have a favorable effect on glycemic control and body fat mass loss at an earlier time in sedentary women with metabolic syndrome, although there were no effects on lipid profile and blood pressure. PMID:23271912

  20. Characteristics of indium-tin-oxide (ITO) nanoparticle ink-coated layers recycled from ITO scraps

    Science.gov (United States)

    Cha, Seung-Jae; Hong, Sung-Jei; Lee, Jae Yong

    2015-09-01

    This study investigates the characteristics of an indium-tin-oxide (ITO) ink layer that includes nanoparticles synthesized from ITO target scraps. The particle size of the ITO nanoparticle was less than 15 nm, and the crystal structure was cubic with a (222) preferred orientation. Also, the composition ratio of In to Sn was 92.7 to 7.3 in weight. The ITO nanoparticles were well dispersed in the ink solvent to formulate a 20-wt% ITO nanoparticle ink. Furthermore, the ITO nanoparticle ink was coated onto a glass substrate, followed by heat-treatment at 600 °C. The layer showed good sheet resistances below 400 Ω/□ and optical transmittances higher than 88% at 550 nm. Thus, we can conclude that the characteristics of the layer make it highly applicable to a transparent conductive electrode.

  1. Methodology and technological aspects of the flexible substrate preparation for ink-jet printing technology

    Science.gov (United States)

    Tarapata, Grzegorz; Marzecki, Michał

    2013-10-01

    The ink-jet printing technology becomes especially promising for wide volume of production of cheap sensors, consumable electronics and other dedicated applications of everyday life like smart packaging, smart textiles, smart labels, etc. To achieve this goal new materials compatible with ink-jet printing should be developed. Currently on the market there is a growing number of inks with different properties, but their use requires many tests related to its printability and their interaction with other materials. The paper presents technological problems that are encountered by people associated with fabrication of various devices with using of inkjet printing techniques. Results presented in the paper show the influence of surface preparation techniques on the quality of achieved shapes, the impact of other materials already deposited and the impact of another external factors. During carried out experiments the printer Dimatix DMP 2831 and several inks base on nanosilver or dielectric UV curable was used.

  2. Colored inks analysis and differentiation: A first step in artistic contemporary prints discrimination

    International Nuclear Information System (INIS)

    Vila, Anna; Ferrer, Nuria; Garcia, Jose F.

    2007-01-01

    Prints are the most popular artistic technique. Due to their manufacturing procedure, they are also one of the most frequently falsified types of artwork. In terms of their economic and historic value, the chemical analysis and characterisation of coloured inks and their principal constituent materials (pigments), together with the historical and aesthetic information available in the Catalogues Raisonees, are important tools in distinguishing originals from non-original prints. The chemical characterisation and discrimination of coloured inks has test in this study. Analysis using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray diffraction (XRD) has been done on blue pigments and inks, due to this colour is one of the most representative for the presence of organic and inorganic materials in their composition. Conclusion obtained for this colour would demonstrate the capability of the approach when it is applied to any other coloured set of inks

  3. Ink jet assisted metallization for low cost flat plate solar cells

    Science.gov (United States)

    Teng, K. F.; Vest, R. W.

    1987-01-01

    Computer-controlled ink-jet-assisted metallization of the front surface of solar cells with metalorganic silver inks offers a maskless alternative method to conventional photolithography and screen printing. This method can provide low cost, fine resolution, reduced process complexity, avoidance of degradation of the p-n junction by firing at lower temperature, and uniform line film on rough surface of solar cells. The metallization process involves belt furnace firing and thermal spiking. With multilayer ink jet printing and firing, solar cells of about 5-6 percent efficiency without antireflection (AR) coating can be produced. With a titanium thin-film underlayer as an adhesion promoter, solar cells of average efficiency 8.08 percent without AR coating can be obtained. This efficiency value is approximately equal to that of thin-film solar cells of the same lot. Problems with regard to lower inorganic content of the inks and contact resistance are noted.

  4. A facile approach to a silver conductive ink with high performance for macroelectronics

    Science.gov (United States)

    Tao, Yu; Tao, Yuxiao; Wang, Biaobing; Wang, Liuyang; Tai, Yanlong

    2013-06-01

    An unusual kind of transparent and high-efficiency organic silver conductive ink (OSC ink) was synthesized with silver acetate as silver carrier, ethanolamine as additive, and different kinds of aldehyde-based materials as reduction agents and was characterized by using a thermogravimetric analyzer, X-ray diffraction, a scanning electron microscope, and a four-point probe. The results show that different reduction agents all have an important influence on the conductive properties of the ink through a series of complex chemical reactions, and especially when formic acid or dimethylformamide was used as the reduction agent and sintered at 120°C for 30 s, the resistivity can be lowered to 6 to 9 μΩ·cm. Furthermore, formula mechanism, conductive properties, temperature, and dynamic fatigue properties were investigated systematically, and the feasibility of the OSC ink was also verified through the preparation of an antenna pattern.

  5. Digital holographic inspection for drying processes of paint films and ink dots

    Science.gov (United States)

    Yokota, M.; Aoyama, F.

    2017-06-01

    Digital holographic techniques to investigate drying processes of both paint films and ink dot is presented. The proposed technique based on digital holographic interferometry can achieve both visualization of variations and analysis of dryness of paint films in the drying process by using phase changes between two subsequent reconstructed complex amplitudes of the reflected light from the film. To follow the drying processes, holograms are recorded at a constant time interval. Phase-shifting digital holography has been applied to analyze the dryness of commercial paints applied on the metal plate. For analysis of an ink dot having diameter of a few hundred micrometers, digital holographic microscopy is applied to evaluating the time history of dryness of ink dot in the drying process. This paper describes these holographic techniques applied to the commercially available paint and ink and presents some experimental results.

  6. Discrimination of Black Ball-point Pen Inks by High Performance Liquid Chromatography (HPLC)

    International Nuclear Information System (INIS)

    Mohamed Izzharif Abdul Halim; Norashikin Saim; Rozita Osman; Halila Jasmani; Nurul Nadhirah Zainal Abidin

    2013-01-01

    In this study, thirteen types of black ball-point pen inks of three major brands were analyzed using high performance liquid chromatography (HPLC). Separation of the ink components was achieved using Bondapak C-18 column with gradient elution using water, ethanol and ethyl acetate. The chromatographic data obtained at wavelength 254.8 nm was analyzed using agglomerative hierarchical clustering (AHC) and principle component analysis (PCA). AHC was able to group the inks into three clusters. This result was supported by PCA, whereby distinct separation of the three different brands was achieved. Therefore, HPLC in combination with chemometric methods may be a valuable tool for the analysis of black ball-point pen inks for forensic purposes. (author)

  7. A fully printed ferrite nano-particle ink based tunable antenna

    KAUST Repository

    Ghaffar, Farhan A.

    2016-11-02

    Inkjet printing or printing in general has emerged as a very attractive method for the fabrication of low cost and large size electronic systems. However, most of the printed designs rely on nano-particle based metallic inks which are printed on conventional microwave substrates. In order to have a fully printed fabrication process, the substrate also need to be printed. In this paper, a fully printed multi-layer process utilizing custom Fe2O3 based magnetic ink and a silver organic complex (SOC) ink is demonstrated for tunable antennas applications. The ink has been characterized for high frequency and magnetostatic properties. Finally as a proof of concept, a microstrip patch antenna is realized using the proposed fabrication technique which shows a tuning range of 12.5 %.

  8. EPA Region 8, Memo on Desktop Printer Ink Cartridges Policy & Voluntary Printer Turn-in

    Science.gov (United States)

    This memo requests EPA Region 8 users to voluntarily turn-in their desktop printers and notifies users of the Region 8 policy to not provide maintenance or ink and toner cartridges for desktop printers.

  9. Effect of BaTiO3 Nanopowder Concentration on Rheological Behaviour of Ceramic Inkjet Inks

    Science.gov (United States)

    Kyrpal, R.; Dulina, I.; Ragulya, A.

    2015-04-01

    The relationship between rheological properties of ceramic inkjet inks based on BaTiO3 nanopowder and solid phase concentration has been investigated. In the ink volume takes place the formation periodic colloidal structures (PCS). The determining factor of structure formation is powder-dispersant ratio. Structural constitution of in the system with the low pigment concentration represented as PCS2, that contains solid particles in deflocculated that stabilized by the presence of adsorption-solvate layers. Dilatant structure formation for such inks explained by constrained conditions of the interaction. Samples with high BaTiO3 concentration have been classified as PKS1. Dilatant properties of the PKS1 resulted in particles rearrangement under the influence of the flow. In the region of some values powder-dispersant ratio take place conversation PKS2 to PKS1 and ink structure transformation from monodisperse to aggregate state.

  10. Colored inks analysis and differentiation: A first step in artistic contemporary prints discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Anna [Department de Pintura, Conservacio-Restauracio, Facultat de Belles Arts, Universitat de Barcelona, C/Pau Gargallo 4, 08028 Barcelona (Spain)]. E-mail: avila@sct.ub.es; Ferrer, Nuria [Serveis Cientificotecnics, Universitat de Barcelona, C/Lluis Sole i Sabaris 1, 08028 Barcelona (Spain)]. E-mail: nferrer@sctub.es; Garcia, Jose F. [Department de Pintura, Conservacio-Restauracio, Facultat de Belles Arts, Universitat de Barcelona, C/Pau Gargallo 4, 08028 Barcelona (Spain)]. E-mail: ifgarcia@ub.edu

    2007-04-04

    Prints are the most popular artistic technique. Due to their manufacturing procedure, they are also one of the most frequently falsified types of artwork. In terms of their economic and historic value, the chemical analysis and characterisation of coloured inks and their principal constituent materials (pigments), together with the historical and aesthetic information available in the Catalogues Raisonees, are important tools in distinguishing originals from non-original prints. The chemical characterisation and discrimination of coloured inks has test in this study. Analysis using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray diffraction (XRD) has been done on blue pigments and inks, due to this colour is one of the most representative for the presence of organic and inorganic materials in their composition. Conclusion obtained for this colour would demonstrate the capability of the approach when it is applied to any other coloured set of inks.

  11. Microencapsulate Aspergillus niger peptidases from agroindustrial waste wheat bran: spray process evaluation and stability.

    Science.gov (United States)

    Cabral, T P F; Bellini, N C; Assis, K R; Teixeira, C C C; Lanchote, A D; Cabral, H; Freitas, L A P

    2017-09-01

    The aim of this work was to obtain microencapsulated stable Aspergillus niger peptidases by post fermentation spray drying. The enzymatic extract was evaluated before and after spray drying microencapsulation to verify the effects of five different process parameters on the extract enzymatic activity, i.e. air flow, extract feed rate, drying temperature, homogenising time and weight ratio of extract to encapsulation material. The optimal conditions were determined by desirability functions and experimentally confirmed. Additionally, the stability of the microparticles was assessed during 60 days at 4 °C, 25 °C and 40 °C. The results revealed that the microparticles stored at 4 °C retained approximately 100% of their proteolytic activity at nine days of storage. Considering the industrial adaptation of the bioprocess and the prospect of commercial application of the proteases, the evaluation of different parameters for drying enzymes is required as a valuable alternative to obtain biotechnological products with high added value.

  12. Enhancing stability of essential oils by microencapsulation for preservation of button mushroom during postharvest

    Science.gov (United States)

    Alikhani-Koupaei, Majid; Mazlumzadeh, Meisam; Sharifani, Mohamadmehdi; Adibian, Mohamad

    2014-01-01

    Fresh button mushrooms (Agaricus bisporus L.) are sensitive to browning, water loss, and microbial attack. The short shelf-life of mushrooms is an impediment to the distribution and marketing of the fresh product. Essential oils outstand as an alternative to chemical preservatives and their use in foods meets the demands of consumers for natural products. To resolve controlled release of oil and increase in antioxidant and antimicrobial activities, the oil was incorporated into microcapsules. Effects of microcapsulated thyme (Thymus vulgaris L.) and rosemary (Rosmarinus officinalis L.) on quality of fresh button mushroom were compared. Physicochemical qualities were evaluated during 15 days of storage at 4 ± 0.5°C. All treatments prevented product weight loss and decrease in polyphenoloxidase and peroxidase activities during storage. Color and firmness, microbiological analysis, and total phenolic content caused the least change. With use of microencapsulated oils, mushrooms were within acceptable limits during 10 days of storage. Microencapsulated rosemary oil produced the highest beneficial effects and has potential to improve quality of button mushrooms and extend shelf-life. PMID:25473510

  13. MICROENCAPSULATION OF TURMERIC OLEORESIN IN BINARY AND TERNARY BLENDS OF GUM ARABIC, MALTODEXTRIN AND MODIFIED STARCH

    Directory of Open Access Journals (Sweden)

    Diana Maria Cano-Higuita

    2015-04-01

    Full Text Available Spray-drying is a suitable method to obtain microencapsulated active substances in the powdered form, resulting in powders with improved protection against environmental factors as well as with higher solubility in water, as in the case of turmeric oleoresin. The present study investigated the spray-drying process of turmeric oleoresin microencapsulated with binary and ternary mixtures of different wall materials: gum Arabic, maltodextrin, and modified corn starch. A statistical simplex centroid experimental design was used considering the encapsulation efficiency, curcumin retention, process yield, water content, solubility, and particle morphology as the analyzed responses. Wall matrices containing higher proportions of modified starch and gum Arabic resulted in higher encapsulation efficiency and curcumin retention, whereas the process yield and water content increased with higher proportions of maltodextrin and gum Arabic, respectively. Regression models of the responses were obtained using a surface response method (ANOVA way, showing statistical values of R2 > 0.790. Also, mean analysis was carried out by Tukey's test, permitting to observe some statistical differences between the blends

  14. Microencapsulation of Saccharomyces cerevisiae and its evaluation to protect in simulated gastric conditions.

    Science.gov (United States)

    Ghorbani-Choboghlo, Hassan; Zahraei-Salehi, Taghi; Ashrafi-Helan, Javad; Yahyaraeyat, Ramak; Pourjafar, Hadi; Nikaein, Donya; Balal, Asad; Khosravi, Ali-Reza

    2015-12-01

    Probiotic yeasts are used in production of functional foods and pharmaceutical products. They play an important role in promoting and maintaining human health. Until now, little work has been published on improving the survival of Saccharomyces in stimulated gastrointestinal condition. In this study the exposure of the yeast in the capsulate and free forms to artificial gastrointestinal conditions was assessed and the number of viable Saccharomyces cerevisiae cells during 0 to 120 mines in these conditions was evaluated by a pour plate method using sabouraud dextrose agar. Results showed the shape of the beads was generally spherical, sometimes elliptical with a mean diameter of about 50-90 μm. Also count of viable probiotic cells obtained for all the microcapsules were above the recommended levels for a probiotic food. Also decrease of approximately 4 logs was noted in the number of free cells after 2 h of incubation at pH 2 and 8, when compared to decreases of about 2 logs in the all microencapsulated S. cerevisiae under similar conditions. It is concluded that microencapsulation process was significantly able to increase the survival rate of Saccharomyces in a simulated gastrointestinal condition (p<0.05)..

  15. Microencapsulation of ethanol extract propolis by maltodextrin and freeze-dried preparation

    Science.gov (United States)

    Mangiring, Getta Austin; Pratami, Diah Kartika; Hermansyah, Heri; Wijanarko, Anondho; Rohmatin, Etin; Sahlan, Muhamad

    2018-02-01

    Propolis has been known to have many benefits for human health, such as anti-cancer, anti-tumor, anti-oxidant, anti-bacterial, and anti-inflammatory. Currently in Indonesia there are quite a lot of propolis-based products, such as soap, toothpaste, skin cream, or health products in liquid form. However, there is still no propolis product in powder form. In this research, microencapsulation of propolis using maltodextrin coating with freeze drying method will be done. Propolis powder has been tested for polyphenols and it was found that crude propolis (175 ml : 75 gr) had the highest polyphenols content in powder form, 434,438 µg /mL. Soft propolis (125 ml : 125 gr) has 4.533% of moisture content, which was the lowest result in these study. And also, the soft propolis (125 ml : 125 gr) has the highest solubility in water with 69% as the result. Propolis powder that has the highest solubility can be seen morphology using Scanning Electron Mocroscope (SEM). The result of the SEM test showed that the propolised powder form did not alter the morphology of maltodextrin. This indicates the success of microencapsulation, because the form of the coating agent maltodextrin was also not uniform.

  16. Phytoextraction of Pb and Cu contaminated soil with maize and microencapsulated EDTA.

    Science.gov (United States)

    Xie, Zhiyi; Wu, Longhua; Chen, Nengchang; Liu, Chengshuai; Zheng, Yuji; Xu, Shengguang; Li, Fangbai; Xu, Yanling

    2012-09-01

    Chelate-assisted phytoextraction using agricultural crops has been widely investigated as a remediation technique for soils contaminated with low mobility potentially toxic elements. Here, we report the use of a controlled-release microencapsulated EDTA (Cap-EDTA) by emulsion solvent evaporation to phytoremediate soil contaminated with Pb and Cu. Incubation experiments were carried out to assess the effect of Cap- and non-microencapsulated EDTA (Ncap-EDTA) on the mobility of soil metals. Results showed EDTA effectively increased the mobility of Pb and Cu in the soil solution and Cap-EDTA application provided lower and more constant water-soluble concentrations of Pb and Cu in comparison with. Phytotoxicity may be alleviated and plant uptake of Pb and Cu may be increased after the incorporation of Cap-EDTA. In addition phytoextraction efficiencies of maize after Cap- and Ncap-EDTA application were tested in a pot experiment. Maize shoot concentrations of Pb and Cu were lower with Cap-EDTA application than with Ncap-EDTA. However, shoot dry weight was significantly higher with Cap-EDTA application. Consequently, the Pb and Cu phytoextraction potential of maize significantly increased with Cap-EDTA application compared with the control and Ncap-EDTA application.

  17. Spray-drying microencapsulation of synergistic antioxidant mushroom extracts and their use as functional food ingredients.

    Science.gov (United States)

    Ribeiro, Andreia; Ruphuy, Gabriela; Lopes, José Carlos; Dias, Madalena Maria; Barros, Lillian; Barreiro, Filomena; Ferreira, Isabel C F R

    2015-12-01

    In this work, hydroalcoholic extracts of two mushrooms species, Suillus luteus (L.: Fries) (Sl) and Coprinopsis atramentaria (Bull.) (Ca), were studied for their synergistic antioxidant effect and their viability as functional food ingredients tested by incorporation into a food matrix (cottage cheese). In a first step, the individual extracts and a combination of both, showing synergistic effects (Sl:Ca, 1:1), were microencapsulated by spray-drying using maltodextrin as the encapsulating material. The incorporation of free extracts resulted in products with a higher initial antioxidant activity (t0) but declining after 7 days (t7), which was associated with their degradation. However, the cottage cheese enriched with the microencapsulated extracts, that have revealed a lower activity at the initial time, showed an increase at t7. This improvement can be explained by an effective protection provided by the microspheres together with a sustained release. Analyses performed on the studied cottage cheese samples showed the maintenance of the nutritional properties and no colour modifications were noticed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Thermal characterization of polymer matrix composites containing microencapsulated paraffin in solid or liquid state

    International Nuclear Information System (INIS)

    Sari-Bey, Sana; Fois, Magali; Krupa, Igor; Ibos, Laurent; Benyoucef, Boumédiène

    2014-01-01

    Highlights: • Thermal characterization of PCL/Micronal composites. • Melting enthalpy and heat capacity measured by DSC. • Interest: have measured thermal properties at different temperatures. • Thermophysical properties measurement temperatures chosen outside phase changes. • Characteristics useful to model composites heat transfer for LHTES applications. - Abstract: This work focuses on the study of heat transfer mechanisms in composites materials which may be used for Latent Heat Thermal Energy Storage applications. These composites contain phase change material (PCM) which can absorb and release energy during thermal cycling. PCM’s used here are paraffins microencapsulated in poly(methylmethacrylate); microencapsulation avoids the flow of paraffin when it is in the liquid state. Samples with different paraffin weight fractions and particles shape and distribution were studied in this work. Scanning Electron Microscopy and Differential Scanning Calorimetry were used to determine morphology and perform measurements of phase changes temperatures, enthalpies and heat capacity respectively. Further, a periodic method (DICO) allowed measuring thermal conductivity (λ) and diffusivity (a) of the composites at temperatures below and above of the paraffin phase change from crystalline solid to isotropic liquid

  19. Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties

    Directory of Open Access Journals (Sweden)

    Regiane Victória de Barros Fernandes

    2013-02-01

    Full Text Available Spray drying is an important method used by the food industry in the production of microencapsulated flavors to improve handling and dispersion properties. The objective of this study was to evaluate the influence of the process conditions on the properties of rosemary essential oil microencapsulated by spray drying using gum Arabic as encapsulant. The effects of the wall material concentration (10-30%, inlet air temperature (135-195 ºC, and feed flow rate (0.5-1.0 L.h-1 on the moisture content, hygroscopicity, wettability, solubility, bulk and tapped densities, particle density, flowability, and cohesiveness were evaluated using a 2³ central composite rotational experimental design. Moisture content, hygroscopicity and wettability were significantly affected by the three factors analyzed. Bulk density was positively influenced by the wall material concentration and negatively by the inlet air temperature. Particle density was influenced by the wall material concentration and the inlet air temperature variables, both in a negative manner. As for the solubility, tapped density, flowability, and cohesiveness, the models did not fit the data well. The results indicated that moderate wall material concentration (24%, low inlet air temperature (135 ºC, and moderate feed flow rate (0.7 L.h-1 are the best spray drying conditions.

  20. Alginate Microencapsulation of Human Islets Does Not Increase Susceptibility to Acute Hypoxia

    Directory of Open Access Journals (Sweden)

    I. K. Hals

    2013-01-01

    Full Text Available Islet transplantation in diabetes is hampered by the need of life-long immunosuppression. Encapsulation provides partial immunoprotection but could possibly limit oxygen supply, a factor that may enhance hypoxia-induced beta cell death in the early posttransplantation period. Here we tested susceptibility of alginate microencapsulated human islets to experimental hypoxia (0.1–0.3% O2 for 8 h, followed by reoxygenation on viability and functional parameters. Hypoxia reduced viability as measured by MTT by 33.8±3.5% in encapsulated and 42.9±5.2% in nonencapsulated islets (P<0.2. Nonencapsulated islets released 37.7% (median more HMGB1 compared to encapsulated islets after hypoxic culture conditions (P<0.001. Glucose-induced insulin release was marginally affected by hypoxia. Basal oxygen consumption was equally reduced in encapsulated and nonencapsulated islets, by 22.0±6.1% versus 24.8±5.7%. Among 27 tested cytokines/chemokines, hypoxia increased the secretion of IL-6 and IL-8/CXCL8 in both groups of islets, whereas an increase of MCP-1/CCL2 was seen only with nonencapsulated islets. Conclusion. Alginate microencapsulation of human islets does not increase susceptibility to acute hypoxia. This is a positive finding in relation to potential use of encapsulation for islet transplantation.