WorldWideScience

Sample records for microcomputed tomography guided

  1. Compression-recovery model of absorptive glass mat (AGM) separator guided by X-ray micro-computed tomography analysis

    Science.gov (United States)

    Kameswara Rao, P. V.; Rawal, Amit; Kumar, Vijay; Rajput, Krishn Gopal

    2017-10-01

    Absorptive glass mat (AGM) separators play a key role in enhancing the cycle life of the valve regulated lead acid (VRLA) batteries by maintaining the elastic characteristics under a defined level of compression force with the plates of the electrodes. Inevitably, there are inherent challenges to maintain the required level of compression characteristics of AGM separators during the charge and discharge of the battery. Herein, we report a three-dimensional (3D) analytical model for predicting the compression-recovery behavior of AGM separators by formulating a direct relationship with the constituent fiber and structural parameters. The analytical model of compression-recovery behavior of AGM separators has successfully included the fiber slippage criterion and internal friction losses. The presented work uses, for the first time, 3D data of fiber orientation from X-ray micro-computed tomography, for predicting the compression-recovery behavior of AGM separators. A comparison has been made between the theoretical and experimental results of compression-recovery behavior of AGM samples with defined fiber orientation characteristics. In general, the theory agreed reasonably well with the experimental results of AGM samples in both dry and wet states. Through theoretical modeling, fiber volume fraction was established as one of the key structural parameters that modulates the compression hysteresis of an AGM separator.

  2. MicroComputed Tomography: Methodology and Applications

    International Nuclear Information System (INIS)

    Stock, Stuart R.

    2009-01-01

    Due to the availability of commercial laboratory systems and the emergence of user facilities at synchrotron radiation sources, studies of microcomputed tomography or microCT have increased exponentially. MicroComputed Technology provides a complete introduction to the technology, describing how to use it effectively and understand its results. The first part of the book focuses on methodology, covering experimental methods, data analysis, and visualization approaches. The second part addresses various microCT applications, including porous solids, microstructural evolution, soft tissue studies, multimode studies, and indirect analyses. The author presents a sufficient amount of fundamental material so that those new to the field can develop a relative understanding of how to design their own microCT studies. One of the first full-length references dedicated to microCT, this book provides an accessible introduction to field, supplemented with application examples and color images.

  3. Microcomputed tomography-based assessment of retrieved dental implants

    NARCIS (Netherlands)

    Narra, N.; Antalainen, A.K.; Zipprich, H.; Sándor, G.K.; Wolff, J.

    2015-01-01

    Purpose: The aim of this study was to demonstrate the potential of microcomputed tomography (micro-CT) technology in the assessment of retrieved dental implants. Cases are presented to illustrate the value of micro-CT imaging techniques in determining possible mechanical causes for dental implant

  4. Fundamental image quality limits for microcomputed tomography in small animals

    International Nuclear Information System (INIS)

    Ford, N.L.; Thornton, M.M.; Holdsworth, D.W.

    2003-01-01

    Small-animal imaging has become increasingly more important as transgenic and knockout mice are produced to model human diseases. One imaging technique that has emerged is microcomputed tomography (micro-CT). For live-animal imaging, the precision in the images will be determined by the x-ray dose given to the animal. As a result, we propose a simple method to predict the noise performance of an x-ray micro-CT system as a function of dose and image resolution. An ideal, quantum-noise limited micro-CT scanner, assumed to have perfect resolution and ideal efficiency, was modeled. Using a simplified model, the coefficient of variation (COV) of the linear attenuation coefficient was calculated for a range of entrance doses and isotropic voxel sizes. COV calculations were performed for the ideal case and with simulated imperfections in efficiency and resolution. Our model was validated in phantom studies and mouse images were acquired with a specimen scanner to illustrate the results. A simplified model of noise propagation in the case of isotropic resolution indicates that the COV in the linear attenuation coefficient is proportional to (dose) -1/2 and to the (isotropic voxel size) -2 in the reconstructed volume. Therefore an improvement in the precision can be achieved only by increasing the isotropic voxel size (thereby decreasing the resolution of the image) or by increasing the x-ray dose. For the ideal scanner, a COV of 1% in the linear attenuation coefficient for an image of a mouse exposed to 0.25 Gy is obtained with a minimum isotropic voxel size of 135 μm. However, the same COV is achieved at a dose of 5.0 Gy with a 65 μm isotropic voxel size. Conversely, for a 68 mm diameter rat, a COV of 1% obtained from an image at 5.0 Gy would require an isotropic voxel size of 100 μm. These results indicate that short-term, potentially lethal, effects of ionizing radiation will limit high-resolution live animal imaging. As improvements in detector technology allow the

  5. Micro-computed tomography of pupal metamorphosis in the solitary bee Megachile rotundata

    Science.gov (United States)

    Insect metamorphosis involves a complex change in form and function, but most of these changes are internal and treated as a black box. In this study, we examined development of the solitary bee, Megachile rotundata, using micro-computed tomography (µCT) and digital volume analysis. We describe deve...

  6. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography.

    NARCIS (Netherlands)

    Schouten, C.; Meijer, G.J.; Beucken, J.J.J.P van den; Spauwen, P.H.M.; Jansen, J.A.

    2009-01-01

    In the present study, the effects of implant design and surface properties on peri-implant bone response were evaluated with both conventional histomorphometry and micro-computed tomography (micro-CT), using two geometrically different dental implants (Screw type, St; Push-in, Pi) either or not

  7. Getting Started with Microcomputers--A Practical Beginner's Guide.

    Science.gov (United States)

    Davies, Norman F.

    1985-01-01

    Discusses the results of a questionnaire sent to experts in the field of computer assisted language learning. Covers such topics as: 1) points to consider before buying a microcomputer; 2) recommended brands and peripheral equipment; 3) software; 4) utilizing programming languages; and 5) literature and contact organizations. (SED)

  8. A nanotube-based field emission x-ray source for microcomputed tomography

    International Nuclear Information System (INIS)

    Zhang, J.; Cheng, Y.; Lee, Y.Z.; Gao, B.; Qiu, Q.; Lin, W.L.; Lalush, D.; Lu, J.P.; Zhou, O.

    2005-01-01

    Microcomputed tomography (micro-CT) is a noninvasive imaging tool commonly used to probe the internal structures of small animals for biomedical research and for the inspection of microelectronics. Here we report the development of a micro-CT scanner with a carbon nanotube- (CNT-) based microfocus x-ray source. The performance of the CNT x-ray source and the imaging capability of the micro-CT scanner were characterized

  9. Ceramic and polymeric dental onlays evaluated by photo-elasticity, optical coherence tomography, and micro-computed tomography

    Science.gov (United States)

    Sinescu, Cosmin; Negrutiu, Meda; Topala, Florin; Ionita, Ciprian; Negru, Radu; Fabriky, Mihai; Marcauteanu, Corina; Bradu, Adrian; Dobre, George; Marsavina, Liviu; Rominu, Mihai; Podoleanu, Adrian

    2011-10-01

    Dental onlays are restorations used to repair rear teeth that have a mild to moderate amount of decay. They can also be used to restore teeth that are cracked or fractured if the damage is not severe enough to require a dental crown. The use of onlays requires less tooth reduction than does the use of metal fillings. This allows dentists to conserve more of a patient's natural tooth structure in the treatment process. The aims of this study are to evaluate the biomechanical comportment of the dental onlays, by using the 3D photo elasticity method and to investigate the integrity of the structures and their fitting to the dental support. For this optical coherence tomography and micro-computed tomography were employed. Both methods were used to investigate 37 dental onlays, 17 integral polymeric and 20 integral ceramic. The results permit to observe materials defects inside the ceramic or polymeric onlays situate in the biomechanically tensioned areas that could lead to fracture of the prosthetic structure. Marginal fitting problems of the onlays related to the teeth preparations were presented in order to observe the possibility of secondary cavities. The resulted images from the optical coherence tomography were verified by the micro-computed tomography. In conclusion, the optical coherence tomography can be used as a clinical method in order to evaluate the integrity of the dental ceramic and polymeric onlays and to investigate the quality of the marginal fitting to the teeth preparations.

  10. Inside marginal adaptation of crowns by X-ray micro-computed tomography

    International Nuclear Information System (INIS)

    Dos Santos, T. M.; Lima, I.; Lopes, R. T.; Author, S. B. Jr.

    2015-01-01

    The objective of this work was to access dental arcade by using X-ray micro-computed tomography. For this purpose high resolution system was used and three groups were studied: Zirkonzahn CAD-CAM system, IPS e.max Press, and metal ceramic. The three systems assessed in this study showed results of marginal and discrepancy gaps clinically accepted. The great result of 2D and 3D evaluations showed that the used technique is a powerful method to investigate quantitative characteristics of dental arcade. (authors)

  11. Inside marginal adaptation of crowns by X-ray micro-computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dos Santos, T. M.; Lima, I.; Lopes, R. T. [Nuclear Instrumentation Laboratory, Nuclear Engineering Program, Federal University of Rio de Janeiro, RJ, (Brazil); Author, S. B. Jr. [Department of Physics, Colorado State University, Ft. Collins, CO 80523, (United States)

    2015-07-01

    The objective of this work was to access dental arcade by using X-ray micro-computed tomography. For this purpose high resolution system was used and three groups were studied: Zirkonzahn CAD-CAM system, IPS e.max Press, and metal ceramic. The three systems assessed in this study showed results of marginal and discrepancy gaps clinically accepted. The great result of 2D and 3D evaluations showed that the used technique is a powerful method to investigate quantitative characteristics of dental arcade. (authors)

  12. Micro-computed tomography newly developed for in vivo small animal imaging

    International Nuclear Information System (INIS)

    Arai, Yoshinori; Ninomiya, Tadashi; Kato, Takafumi; Masuda, Yuji

    2005-01-01

    The aim of this paper is to report a newly developed micro-computed tomography system for in vivo use. The system was composed of a micro-focus X-ray tube and an image intensifier (I.I.), both of which rotated around the object stage. A guinea pig and a rat were examined. The anesthetized animal was set on the secure object stage. Images of the head of the guinea pig and the tibia knee joint of the rat were taken. In addition, an image of the rat's tail was taken. The reconstruction and the image viewing were carried out using I-View software. The voxel matrix was 512 x 512 x 384. The voxel sizes ranged from 10 x 10 x 10 μm to 100 x 100 x 100 μm. The exposure time was 17 s, and the reconstruction time was 150 s. The head of the guinea pig and the tibia/knee joint of the rat were observed clearly under 100-μm and 30μm voxels, respectively. The trabecular bone of the tail was also observed clearly under a 10 μm voxel. The newly developed micro-computed tomography system makes it possible to obtain images of anesthetized animals set on a secure object stage. Clear bone images of the small animals could be obtained within a short time. (author)

  13. In vivo quantitative assessment of myocardial structure, function, perfusion and viability using cardiac micro-computed tomography

    NARCIS (Netherlands)

    E.D. van Deel (Elza); Y. Ridwan (Yanto); van Vliet, J.N. (J. Nicole); Belenkov, S. (Sasha); J. Essers (Jeroen)

    2016-01-01

    textabstractThe use of Micro-Computed Tomography (MicroCT) for in vivo studies of small animals as models of human disease has risen tremendously due to the fact that MicroCT provides quantitative high-resolution three-dimensional (3D) anatomical data non-destructively and longitudinally. Most

  14. Quantification of lung fibrosis and emphysema in mice using automated micro-computed tomography.

    Directory of Open Access Journals (Sweden)

    Ellen De Langhe

    Full Text Available BACKGROUND: In vivo high-resolution micro-computed tomography allows for longitudinal image-based measurements in animal models of lung disease. The combination of repetitive high resolution imaging with fully automated quantitative image analysis in mouse models of lung fibrosis lung benefits preclinical research. This study aimed to develop and validate such an automated micro-computed tomography analysis algorithm for quantification of aerated lung volume in mice; an indicator of pulmonary fibrosis and emphysema severity. METHODOLOGY: Mice received an intratracheal instillation of bleomycin (n = 8, elastase (0.25 U elastase n = 9, 0.5 U elastase n = 8 or saline control (n = 6 for fibrosis, n = 5 for emphysema. A subset of mice was scanned without intervention, to evaluate potential radiation-induced toxicity (n = 4. Some bleomycin-instilled mice were treated with imatinib for proof of concept (n = 8. Mice were scanned weekly, until four weeks after induction, when they underwent pulmonary function testing, lung histology and collagen quantification. Aerated lung volumes were calculated with our automated algorithm. PRINCIPAL FINDINGS: Our automated image-based aerated lung volume quantification method is reproducible with low intra-subject variability. Bleomycin-treated mice had significantly lower scan-derived aerated lung volumes, compared to controls. Aerated lung volume correlated with the histopathological fibrosis score and total lung collagen content. Inversely, a dose-dependent increase in lung volume was observed in elastase-treated mice. Serial scanning of individual mice is feasible and visualized dynamic disease progression. No radiation-induced toxicity was observed. Three-dimensional images provided critical topographical information. CONCLUSIONS: We report on a high resolution in vivo micro-computed tomography image analysis algorithm that runs fully automated and allows quantification of aerated lung volume in mice. This

  15. Segmentation of Synchrotron Radiation micro-Computed Tomography Images using Energy Minimization via Graph Cuts

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson A.M. [Federal University of Western Para (Brazil); Physics Institute, Rio de Janeiro State University (Brazil); Giusti, Alessandro [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Almeida, Andre P. de, E-mail: apalmeid@gmail.com [Physics Institute, Rio de Janeiro State University (Brazil); Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Nogueira, Liebert; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro (Brazil); Almeida, Carlos E. de [Radiological Sciences Laboratory, Rio de Janeiro State University (Brazil); Barroso, Regina C. [Physics Institute, Rio de Janeiro State University (Brazil)

    2012-07-15

    The research on applications of segmentation algorithms to Synchrotron Radiation X-Ray micro-Computed Tomography (SR-{mu}CT) is an open problem, due to the interesting and well-known characteristics of SR images, such as the phase contrast effect. The Energy Minimization via Graph Cuts (EMvGC) algorithm represents state-of-art segmentation algorithm, presenting an enormous potential of application in SR-{mu}CT imaging. We describe the application of the algorithm EMvGC with swap move for the segmentation of bone images acquired at the ELETTRA Laboratory (Trieste, Italy). - Highlights: Black-Right-Pointing-Pointer Microstructures of Wistar rats' ribs are investigated with Synchrotron Radiation {mu}CT imaging. Black-Right-Pointing-Pointer The present work is part of a research on the effects of radiotherapy on the thoracic region. Black-Right-Pointing-Pointer Application of the Energy Minimization via Graph Cuts algorithm for segmentation is described.

  16. Micro-computed tomography imaging and analysis in developmental biology and toxicology.

    Science.gov (United States)

    Wise, L David; Winkelmann, Christopher T; Dogdas, Belma; Bagchi, Ansuman

    2013-06-01

    Micro-computed tomography (micro-CT) is a high resolution imaging technique that has expanded and strengthened in use since it was last reviewed in this journal in 2004. The technology has expanded to include more detailed analysis of bone, as well as soft tissues, by use of various contrast agents. It is increasingly applied to questions in developmental biology and developmental toxicology. Relatively high-throughput protocols now provide a powerful and efficient means to evaluate embryos and fetuses subjected to genetic manipulations or chemical exposures. This review provides an overview of the technology, including scanning, reconstruction, visualization, segmentation, and analysis of micro-CT generated images. This is followed by a review of more recent applications of the technology in some common laboratory species that highlight the diverse issues that can be addressed. Copyright © 2013 Wiley Periodicals, Inc.

  17. Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans.

    Science.gov (United States)

    Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph

    2014-04-01

    Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.

  18. Segmentation of Synchrotron Radiation micro-Computed Tomography Images using Energy Minimization via Graph Cuts

    International Nuclear Information System (INIS)

    Meneses, Anderson A.M.; Giusti, Alessandro; Almeida, André P. de; Nogueira, Liebert; Braz, Delson; Almeida, Carlos E. de; Barroso, Regina C.

    2012-01-01

    The research on applications of segmentation algorithms to Synchrotron Radiation X-Ray micro-Computed Tomography (SR-μCT) is an open problem, due to the interesting and well-known characteristics of SR images, such as the phase contrast effect. The Energy Minimization via Graph Cuts (EMvGC) algorithm represents state-of-art segmentation algorithm, presenting an enormous potential of application in SR-μCT imaging. We describe the application of the algorithm EMvGC with swap move for the segmentation of bone images acquired at the ELETTRA Laboratory (Trieste, Italy). - Highlights: ► Microstructures of Wistar rats' ribs are investigated with Synchrotron Radiation μCT imaging. ► The present work is part of a research on the effects of radiotherapy on the thoracic region. ► Application of the Energy Minimization via Graph Cuts algorithm for segmentation is described.

  19. Application of micro-computed tomography to microstructure studies of the medicinal fungus Hericium coralloides.

    Science.gov (United States)

    Pallua, Johannes D; Kuhn, Volker; Pallua, Anton F; Pfaller, Kristian; Pallua, Anton K; Recheis, Wolfgang; Pöder, Reinhold

    2015-01-01

    The potential of 3-D nondestructive imaging techniques such as micro-computed tomography (micro-CT) was evaluated to study morphological patterns of the potential medicinal fungus Hericium coralloides (Basidiomycota). Micro-CT results were correlated with histological information gained from scanning electron microscopy (SEM) and light microscopy (LM). It is demonstrated that the combination of these imaging methods results in a more distinct picture of the morphology of the edible and potentially medicinal Hericium coralloides basidiomata. In addition we have created 3-D reconstructions and visualizations based on micro-CT imagery from a randomly selected part of the upper region of a fresh H. coralloides basidioma: Analyses for the first time allowed an approximation of the evolutionary effectiveness of this bizarrely formed basidioma type in terms of the investment of tissue biomass and its reproductive output (production of basidiospores). © 2015 by The Mycological Society of America.

  20. Detecting and visualizing internal 3D oleoresin in agarwood by means of micro-computed tomography

    International Nuclear Information System (INIS)

    Khairiah Yazid; Roslan Yahya; Mat Rosol Awang

    2012-01-01

    Detection and analysis of oleoresin is particularly significant since the commercial value of agarwood is related to the quantity of oleoresins that are present. A modern technique of non-destructive may reach the interior region of the wood. Currently, tomographic image data in particular is most commonly visualized in three dimensions using volume rendering. The aim of this paper is to explore the potential of high resolution non-destructive 3D visualization technique, X-ray micro-computed tomography, as imaging tools to visualize micro-structure oleoresin in agarwood. Investigations involving desktop X-ray micro-tomography system on high grade agarwood sample, performed at the Centre of Tomography in Nuclear Malaysia, demonstrate the applicability of the method. Prior to experiments, a reference test was conducted to stimulate the attenuation of oleoresin in agarwood. Based on the experiment results, micro-CT imaging with voxel size 7.0 μm is capable to of detecting oleoresin and pores in agarwood. This imaging technique, although sophisticated can be used for standard development especially in grading of agarwood for commercial activities. (author)

  1. Limitations of using micro-computed tomography to predict bone-implant contact and mechanical fixation.

    Science.gov (United States)

    Liu, S; Broucek, J; Virdi, A S; Sumner, D R

    2012-01-01

    Fixation of metallic implants to bone through osseointegration is important in orthopaedics and dentistry. Model systems for studying this phenomenon would benefit from a non-destructive imaging modality so that mechanical and morphological endpoints can more readily be examined in the same specimens. The purpose of this study was to assess the utility of an automated microcomputed tomography (μCT) program for predicting bone-implant contact (BIC) and mechanical fixation strength in a rat model. Femurs in which 1.5-mm-diameter titanium implants had been in place for 4 weeks were either embedded in polymethylmethacrylate (PMMA) for preparation of 1-mm-thick cross-sectional slabs (16 femurs: 32 slabs) or were used for mechanical implant pull-out testing (n= 18 femurs). All samples were scanned by μCT at 70 kVp with 16 μm voxels and assessed by the manufacturer's software for assessing 'osseointegration volume per total volume' (OV/TV). OV/TV measures bone volume per total volume (BV/TV) in a 3-voxel-thick ring that by default excludes the 3 voxels immediately adjacent to the implant to avoid metal-induced artefacts. The plastic-embedded samples were also analysed by backscatter scanning electron microscopy (bSEM) to provide a direct comparison of OV/TV with a well-accepted technique for BIC. In μCT images in which the implant was directly embedded within PMMA, there was a zone of elevated attenuation (>50% of the attenuation value used to segment bone from marrow) which extended 48 μm away from the implant surface. Comparison of the bSEM and μCT images showed high correlations for BV/TV measurements in areas not affected by metal-induced artefacts. In addition for bSEM images, we found that there were high correlations between peri-implant BV/TV within 12 μm of the implant surface and BIC (correlation coefficients ≥0.8, p implant pull-out strength (r= 0.401, p= 0.049) and energy to failure (r= 0.435, p= 0.035). Thus, the need for the 48-μm-thick exclusion

  2. Nondestructive observation of teeth post core-space using optical coherence tomography: comparison with microcomputed tomography and live images

    Science.gov (United States)

    Minamino, Takuya; Mine, Atsushi; Matsumoto, Mariko; Sugawa, Yoshihiko; Kabetani, Tomoshige; Higashi, Mami; Kawaguchi, Asuka; Ohmi, Masato; Awazu, Kunio; Yatani, Hirofumi

    2015-10-01

    No previous reports have observed inside the root canal using both optical coherence tomography (OCT) and x-ray microcomputed tomography (μCT) for the same sample. The purpose of this study was to clarify both OCT and μCT image properties from observations of the same root canal after resin core build-up treatment. As OCT allows real-time observation of samples, gap formation may be able to be shown in real time. A dual-cure, one-step, self-etch adhesive system bonding agent, and dual-cure resin composite core material were used in root canals in accordance with instructions from the manufacturer. The resulting OCT images were superior for identifying gap formation at the interface, while μCT images were better to grasp the tooth form. Continuous tomographic images from real-time OCT observation allowed successful construction of a video of the resin core build-up procedure. After 10 to 12 s of light curing, a gap with a clear new signal occurred at the root-core material interface, proceeding from the coronal side (6 mm from the cemento-enamel junction) to the apical side of the root.

  3. Evaluation of Root Canal Preparation Using Rotary System and Hand Instruments Assessed by Micro-Computed Tomography

    Science.gov (United States)

    Stavileci, Miranda; Hoxha, Veton; Görduysus, Ömer; Tatar, Ilkan; Laperre, Kjell; Hostens, Jeroen; Küçükkaya, Selen; Muhaxheri, Edmond

    2015-01-01

    Background Complete mechanical preparation of the root canal system is rarely achieved. Therefore, the purpose of this study was to evaluate and compare the root canal shaping efficacy of ProTaper rotary files and standard stainless steel K-files using micro-computed tomography. Material/Methods Sixty extracted upper second premolars were selected and divided into 2 groups of 30 teeth each. Before preparation, all samples were scanned by micro-computed tomography. Thirty teeth were prepared with the ProTaper system and the other 30 with stainless steel files. After preparation, the untouched surface and root canal straightening were evaluated with micro-computed tomography. The percentage of untouched root canal surface was calculated in the coronal, middle, and apical parts of the canal. We also calculated straightening of the canal after root canal preparation. Results from the 2 groups were statistically compared using the Minitab statistical package. Results ProTaper rotary files left less untouched root canal surface compared with manual preparation in coronal, middle, and apical sector (protary techniques completely prepared the root canal, and both techniques caused slight straightening of the root canal. PMID:26092929

  4. Evaluation of Root Canal Preparation Using Rotary System and Hand Instruments Assessed by Micro-Computed Tomography.

    Science.gov (United States)

    Stavileci, Miranda; Hoxha, Veton; Görduysus, Ömer; Tatar, Ilkan; Laperre, Kjell; Hostens, Jeroen; Küçükkaya, Selen; Muhaxheri, Edmond

    2015-06-20

    Complete mechanical preparation of the root canal system is rarely achieved. Therefore, the purpose of this study was to evaluate and compare the root canal shaping efficacy of ProTaper rotary files and standard stainless steel K-files using micro-computed tomography. Sixty extracted upper second premolars were selected and divided into 2 groups of 30 teeth each. Before preparation, all samples were scanned by micro-computed tomography. Thirty teeth were prepared with the ProTaper system and the other 30 with stainless steel files. After preparation, the untouched surface and root canal straightening were evaluated with micro-computed tomography. The percentage of untouched root canal surface was calculated in the coronal, middle, and apical parts of the canal. We also calculated straightening of the canal after root canal preparation. Results from the 2 groups were statistically compared using the Minitab statistical package. ProTaper rotary files left less untouched root canal surface compared with manual preparation in coronal, middle, and apical sector (p<0.001). Similarly, there was a statistically significant difference in root canal straightening after preparation between the techniques (p<0.001). Neither manual nor rotary techniques completely prepared the root canal, and both techniques caused slight straightening of the root canal.

  5. Investigation of hindwing folding in ladybird beetles by artificial elytron transplantation and microcomputed tomography.

    Science.gov (United States)

    Saito, Kazuya; Nomura, Shuhei; Yamamoto, Shuhei; Niiyama, Ryuma; Okabe, Yoji

    2017-05-30

    Ladybird beetles are high-mobility insects and explore broad areas by switching between walking and flying. Their excellent wing transformation systems enabling this lifestyle are expected to provide large potential for engineering applications. However, the mechanism behind the folding of their hindwings remains unclear. The reason is that ladybird beetles close the elytra ahead of wing folding, preventing the observation of detailed processes occurring under the elytra. In the present study, artificial transparent elytra were transplanted on living ladybird beetles, thereby enabling us to observe the detailed wing-folding processes. The result revealed that in addition to the abdominal movements mentioned in previous studies, the edge and ventral surface of the elytra, as well as characteristic shaped veins, play important roles in wing folding. The structures of the wing frames enabling this folding process and detailed 3D shape of the hindwing were investigated using microcomputed tomography. The results showed that the tape spring-like elastic frame plays an important role in the wing transformation mechanism. Compared with other beetles, hindwings in ladybird beetles are characterized by two seemingly incompatible properties: ( i ) the wing rigidity with relatively thick veins and ( ii ) the compactness in stored shapes with complex crease patterns. The detailed wing-folding process revealed in this study is expected to facilitate understanding of the naturally optimized system in this excellent deployable structure.

  6. Root canal morphology of primary molars: a micro-computed tomography study.

    Science.gov (United States)

    Fumes, A C; Sousa-Neto, M D; Leoni, G B; Versiani, M A; da Silva, L A B; da Silva, R A B; Consolaro, A

    2014-10-01

    This was to investigate the root canal morphology of primary molar teeth using micro-computed tomography. Primary maxillary (n = 20) and mandibular (n = 20) molars were scanned at a resolution of 16.7 μm and analysed regarding the number, location, volume, area, structured model index (SMI), area, roundness, diameters, and length of canals, as well as the thickness of dentine in the apical third. Data were statistically compared by using paired-sample t test, independent sample t test, and one-way analysis of variance with significance level set as 5%. Overall, no statistical differences were found between the canals with respect to length, SMI, dentine thickness, area, roundness, and diameter (p > 0.05). A double canal system was observed in the mesial and mesio-buccal roots of the mandibular and maxillary molars, respectively. The thickness in the internal aspect of the roots was lower than in the external aspect. Cross-sectional evaluation of the roots in the apical third showed flat-shaped canals in the mandibular molars and ribbon- and oval-shaped canals in the maxillary molars. External and internal anatomy of the primary first molars closely resemble the primary second molars. The reported data may help clinicians to obtain a thorough understanding of the morphological variations of root canals in primary molars to overcome problems related to shaping and cleaning procedures, allowing appropriate management strategies for root canal treatment.

  7. Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography

    International Nuclear Information System (INIS)

    Veyhl, C.; Belova, I.V.; Murch, G.E.; Fiedler, T.

    2011-01-01

    Research highlights: → Elastic and plastic anisotropy is observed for both materials → Both show qualitatively similar characteristics with quantitative differences → Distinctly higher mechanical properties for closed-cell foam → The 'big' and 'small' models show good agreement for the closed-cell foam. - Abstract: In the present paper, the macroscopic mechanical properties of open-cell M-Pore sponge (porosity of 91-93%) and closed-cell Alporas foam (porosity of 80-86%) are investigated. The complex geometry of these cellular materials is scanned by micro-computed tomography and used in finite element (FE) analysis. The mechanical properties are determined by uni-axial compression simulations in three perpendicular directions (x-, y- and z-direction). M-Pore and Alporas exhibit the same qualitative mechanical characteristics but with quantitative differences. In both cases, strong anisotropy is observed for Young's modulus and the 0.002 offset yield stress. Furthermore, for the investigated relative density range a linear dependence between relative density and mechanical properties is found. Finally, a distinctly higher Young's modulus and 0.002 offset yield stress is observed for Alporas.

  8. The microstructure of capsule containing self-healing materials: A micro-computed tomography study

    Energy Technology Data Exchange (ETDEWEB)

    Van Stappen, Jeroen, E-mail: Jeroen.Vanstappen@ugent.be [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent (Belgium); SIM vzw, Technologiepark 935, B-9052 Zwijnaarde (Belgium); Bultreys, Tom [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent (Belgium); Gilabert, Francisco A. [Mechanics of Materials and Structures, Dept. of Materials Science and Engineering, Ghent University, Technologiepark Zwijnaarde 903, B-9052 Zwijnaarde (Belgium); SIM vzw, Technologiepark 935, B-9052 Zwijnaarde (Belgium); Hillewaere, Xander K.D. [Polymer Chemistry Research Group, Dept. of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent (Belgium); SIM vzw, Technologiepark 935, B-9052 Zwijnaarde (Belgium); Gómez, David Garoz [Mechanics of Materials and Structures, Dept. of Materials Science and Engineering, Ghent University, Technologiepark Zwijnaarde 903, B-9052 Zwijnaarde (Belgium); SIM vzw, Technologiepark 935, B-9052 Zwijnaarde (Belgium); Van Tittelboom, Kim [Magnel Laboratory for Concrete Research, Dept. of Structural Engineering, Ghent University, Technologiepark Zwijnaarde 904, B-9052 Ghent (Belgium); Dhaene, Jelle [UGCT/Radiation Physics, Dept. of Physics and Astronomy, Ghent University, Proeftuinstraat 86, B-9000 Ghent (Belgium); De Belie, Nele [Magnel Laboratory for Concrete Research, Dept. of Structural Engineering, Ghent University, Technologiepark Zwijnaarde 904, B-9052 Ghent (Belgium); Van Paepegem, Wim [Mechanics of Materials and Structures, Dept. of Materials Science and Engineering, Ghent University, Technologiepark Zwijnaarde 903, B-9052 Zwijnaarde (Belgium); Du Prez, Filip E. [Polymer Chemistry Research Group, Dept. of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000 Ghent (Belgium); Cnudde, Veerle [UGCT/PProGRess, Dept. of Geology, Ghent University, Krijgslaan 281 S8, B-9000 Ghent (Belgium)

    2016-09-15

    Autonomic self-healing materials are materials with built-in (micro-) capsules or vessels, which upon fracturing release healing agents in order to recover the material's physical and mechanical properties. In order to better understand and engineer these materials, a thorough characterization of the material's microstructural behavior is essential and often overlooked. In this context, micro-computed tomography (μCT) can be used to investigate the three dimensional distribution and (de)bonding of (micro-) capsules in their native state in a polymer system with self-healing properties. Furthermore, in-situ μCT experiments in a self-healing polymer and a self-healing concrete system can elucidate the breakage and leakage behavior of (micro-) capsules at the micrometer scale. While challenges related to image resolution and contrast complicate the characterization in specific cases, non-destructive 3D imaging with μCT is shown to contribute to the understanding of the link between the microstructure and the self-healing behavior of these complex materials. - Highlights: • μCT imaging allows for the analysis of microcapsule distribution patterns in self-healing materials. • μCT allows for qualitative and quantitative measurements of healing agent release from carriers in self-healing materials. • Experimental set-ups can be optimized by changing chemical compounds in the system to ensure maximum quality imaging.

  9. Micro-computed tomography and bond strength analysis of different root canal filling techniques

    Directory of Open Access Journals (Sweden)

    Juliane Nhata

    2014-01-01

    Full Text Available Introduction: The aim of this study was to evaluate the quality and bond strength of three root filling techniques (lateral compaction, continuous wave of condensation and Tagger′s Hybrid technique [THT] using micro-computed tomography (CT images and push-out tests, respectively. Materials and Methods: Thirty mandibular incisors were prepared using the same protocol and randomly divided into three groups (n = 10: Lateral condensation technique (LCT, continuous wave of condensation technique (CWCT, and THT. All specimens were filled with Gutta-percha (GP cones and AH Plus sealer. Five specimens of each group were randomly chosen for micro-CT analysis and all of them were sectioned into 1 mm slices and subjected to push-out tests. Results: Micro-CT analysis revealed less empty spaces when GP was heated within the root canals in CWCT and THT when compared to LCT. Push-out tests showed that LCT and THT had a significantly higher displacement resistance (P < 0.05 when compared to the CWCT. Bond strength was lower in apical and middle thirds than in the coronal thirds. Conclusions: It can be concluded that LCT and THT were associated with higher bond strengths to intraradicular dentine than CWCT. However, LCT was associated with more empty voids than the other techniques.

  10. Effect of piezocision on root resorption associated with orthodontic force: A microcomputed tomography study.

    Science.gov (United States)

    Patterson, Braydon M; Dalci, Oyku; Papadopoulou, Alexandra K; Madukuri, Suman; Mahon, Jonathan; Petocz, Peter; Spahr, Axel; Darendeliler, M Ali

    2017-01-01

    The purpose of this study was to investigate the effect of piezocision on orthodontically induced inflammatory root resorption. Fourteen patients were included in this split-mouth study; 1 side was assigned to piezocision, and the other side served as the control. Vertical corticotomy cuts of 4 to 5 mm in length were performed on either side of each piezocision premolar, and 150-g buccal tipping forces were applied to the premolars. After 4 weeks, the maxillary first premolars were extracted and scanned with microcomputed tomography. There was a significantly greater total amount of root resorption seen on the piezocision sides when compared with the control sides (P = 0.029). The piezocision procedure resulted in a 44% average increase in root resorption. In 5 patients, there was noticeable piezocision-related iatrogenic root damage. When that was combined with the orthodontic root resorption found on the piezocision-treated teeth, there was a statistically significant 110% average increase in volumetric root loss when compared with the control side (P = 0.005). The piezocision procedure that initiates the regional acceleratory phenomenon may increase the iatrogenic root resorption when used in conjunction with orthodontic forces. Piezocision applied close to the roots may cause iatrogenic damage to the neighboring roots and should be used carefully. Copyright © 2017.

  11. In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during orthodontic tooth movement.

    Science.gov (United States)

    Ru, Nan; Liu, Sean Shih-Yao; Zhuang, Li; Li, Song; Bai, Yuxing

    2013-05-01

    To observe the real-time microarchitecture changes of the alveolar bone and root resorption during orthodontic treatment. A 10 g force was delivered to move the maxillary left first molars mesially in twenty 10-week-old rats for 14 days. The first molar and adjacent alveolar bone were scanned using in vivo microcomputed tomography at the following time points: days 0, 3, 7, and 14. Microarchitecture parameters, including bone volume fraction, structure model index, trabecular thickness, trabecular number, and trabecular separation of alveolar bone, were measured on the compression and tension side. The total root volume was measured, and the resorption crater volume at each time point was calculated. Univariate repeated measures analysis of variance with Bonferroni corrections were performed to compare the differences in each parameter between time points with significance level at P Root resorption volume of the mesial root increased significantly on day 7 of orthodontic loading. Real-time root and bone resorption during orthodontic movement can be observed in 3 dimensions using in vivo micro-CT. Alveolar bone resorption and root resorption were observed mostly in the apical third on day 7 on the compression side; bone formation was observed on day 14 on the tension side during orthodontic tooth movement.

  12. Micro-computed tomography characterization of tissue engineering scaffolds: effects of pixel size and rotation step.

    Science.gov (United States)

    Cengiz, Ibrahim Fatih; Oliveira, Joaquim Miguel; Reis, Rui L

    2017-08-01

    Quantitative assessment of micro-structure of materials is of key importance in many fields including tissue engineering, biology, and dentistry. Micro-computed tomography (µ-CT) is an intensively used non-destructive technique. However, the acquisition parameters such as pixel size and rotation step may have significant effects on the obtained results. In this study, a set of tissue engineering scaffolds including examples of natural and synthetic polymers, and ceramics were analyzed. We comprehensively compared the quantitative results of µ-CT characterization using 15 acquisition scenarios that differ in the combination of the pixel size and rotation step. The results showed that the acquisition parameters could statistically significantly affect the quantified mean porosity, mean pore size, and mean wall thickness of the scaffolds. The effects are also practically important since the differences can be as high as 24% regarding the mean porosity in average, and 19.5 h and 166 GB regarding the characterization time and data storage per sample with a relatively small volume. This study showed in a quantitative manner the effects of such a wide range of acquisition scenarios on the final data, as well as the characterization time and data storage per sample. Herein, a clear picture of the effects of the pixel size and rotation step on the results is provided which can notably be useful to refine the practice of µ-CT characterization of scaffolds and economize the related resources.

  13. Micro-computed tomography visualization of the vestigial alimentary canal in adult oestrid flies.

    Science.gov (United States)

    Martín-Vega, D; Garbout, A; Ahmed, F; Ferrer, L M; Lucientes, J; Colwell, D D; Hall, M J R

    2018-02-16

    Oestrid flies (Diptera: Oestridae) do not feed during the adult stage as they acquire all necessary nutrients during the parasitic larval stage. The adult mouthparts and digestive tract are therefore frequently vestigial; however, morphological data on the alimentary canal in adult oestrid flies are scarce and a proper visualization of this organ system within the adult body is lacking. The present work visualizes the morphology of the alimentary canal in adults of two oestrid species, Oestrus ovis L. and Hypoderma lineatum (de Villiers), with the use of non-invasive micro-computed tomography (micro-CT) and compares it with the highly developed alimentary canal of the blow fly Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). Both O. ovis and H. lineatum adults showed significant reductions of the cardia and the diameter of the digestive tract, an absence of the helicoidal portion of the midgut typical of other cyclorrhaphous flies, and a lack of crop and salivary glands. Given the current interest in the alimentary canal in adult dipterans in biomedical and developmental biology studies, further understanding of the morphology and development of this organ system in adult oestrids may provide valuable new insights in several areas of research. © 2018 The Royal Entomological Society.

  14. Visualization of haemophilic arthropathy in F8(-/-) rats by ultrasonography and micro-computed tomography

    DEFF Research Database (Denmark)

    Christensen, K R; Roepstorff, K; Petersen, M

    2017-01-01

    opportunities. Recently, a F8(-/-) rat model of HA was developed. The size of the rat allows for convenient and high resolution imaging of the joints, which could enable in vivo studies of HA development. AIM: To determine whether HA in the F8(-/-) rat can be visualized using ultrasonography (US) and micro......-computed tomography (μCT). METHODS: Sixty F8(-/-) and 20 wild-type rats were subjected to a single or two induced knee bleeds. F8(-/-) rats were treated with either recombinant human FVIII (rhFVIII) or vehicle before the induction of knee bleeds. Haemophilic arthropathy was visualized using in vivo US and ex vivo μCT......, and the observations correlated with histological evaluation. RESULTS: US and μCT detected pathologies in the knee related to HA. There was a strong correlation between disease severity determined by μCT and histopathology. rhFVIII treatment reduced the pathology identified with both imaging techniques. CONCLUSION: US...

  15. Detection of marginal leakage of Class V restorations in vitro by micro-computed tomography.

    Science.gov (United States)

    Zhao, X Y; Li, S B; Gu, L J; Li, Y

    2014-01-01

    This in vitro study evaluated the efficacy of micro-computed tomography (CT) in marginal leakage detection of Class V restorations. Standardized Class V preparations with cervical margins in dentin and occlusal margins in enamel were made in 20 extracted human molars and restored with dental bonding agents and resin composite. All teeth were then immersed in 50% ammoniacal silver nitrate solution for 12 hours, followed by a developing solution for eight hours. Each restoration was scanned by micro-CT, the depth of marginal silver leakage in the central scanning section was measured, and the three-dimensional images of the silver leakage around each restoration were reconstructed. Afterward, all restorations were cut through the center and examined for leakage depth using a microscope. The silver leakage depth of each restoration obtained by the micro-CT and the microscope were compared for equivalency. The silver leakage depth in cervical walls observed by micro-CT and microscope showed no significant difference; however, in certain cases the judgment of leakage depth in the occlusal wall in micro-CT image was affected by adjacent enamel structure, providing less leakage depth than was observed with the microscope (pleakage around the Class V restorations with clear borders only in the dentin region. It can be concluded that micro-CT can detect nondestructively the leakage around a resin composite restoration in two and three dimensions, with accuracy comparable to that of the conventional microscope method in the dentin region but with inferior accuracy in the enamel region.

  16. Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties.

    Science.gov (United States)

    Alberich-Bayarri, Angel; Moratal, David; Ivirico, Jorge L Escobar; Rodríguez Hernández, José C; Vallés-Lluch, Ana; Martí-Bonmatí, Luis; Estellés, Jorge Más; Mano, Joao F; Pradas, Manuel Monleón; Ribelles, José L Gómez; Salmerón-Sánchez, Manuel

    2009-10-01

    Detailed knowledge of the porous architecture of synthetic scaffolds for tissue engineering, their mechanical properties, and their interrelationship was obtained in a nondestructive manner. Image analysis of microcomputed tomography (microCT) sections of different scaffolds was done. The three-dimensional (3D) reconstruction of the scaffold allows one to quantify scaffold porosity, including pore size, pore distribution, and struts' thickness. The porous morphology and porosity as calculated from microCT by image analysis agrees with that obtained experimentally by scanning electron microscopy and physically measured porosity, respectively. Furthermore, the mechanical properties of the scaffold were evaluated by making use of finite element modeling (FEM) in which the compression stress-strain test is simulated on the 3D structure reconstructed from the microCT sections. Elastic modulus as calculated from FEM is in agreement with those obtained from the stress-strain experimental test. The method was applied on qualitatively different porous structures (interconnected channels and spheres) with different chemical compositions (that lead to different elastic modulus of the base material) suitable for tissue regeneration. The elastic properties of the constructs are explained on the basis of the FEM model that supports the main mechanical conclusion of the experimental results: the elastic modulus does not depend on the geometric characteristics of the pore (pore size, interconnection throat size) but only on the total porosity of the scaffold. (c) 2009 Wiley Periodicals, Inc.

  17. Application of microcomputed tomography for quantitative analysis of dental root canal obturations

    Directory of Open Access Journals (Sweden)

    Anna Kierklo

    2014-03-01

    Full Text Available Introduction: The aim of the study was to apply microcomputed tomography to quantitative evaluation of voids and to test any specific location of voids in tooth’s root canal obturations. Materials and Methods: Twenty root canals were prepared and obturated with gutta-percha and Tubli-Seal sealer using the thermoplastic compaction method (System B + Obtura II. Roots were scanned and three-dimensional visualization was obtained. The volume and Feret’s diameter of I-voids (at the filling/dentine interface and S-voids (surrounded by filling material were measured.Results: The results revealed that none of the scanned root canal fillings were void-free. For I-voids, the volume fraction was significantly larger, but their number was lower (P = 0.0007, than for S-voids. Both types of voids occurred in characteristic regions (P < 0.001. I-voids occurred mainly in the apical third, while S-voids in the coronal third of the canal filling.Conclusions: Within the limitations of this study, our results indicate that microtomography, with proposed semi-automatic algorithm, is a useful tools for three-dimensional quantitative evaluation of dental root canal fillings. In canals filled with thermoplastic gutta-percha and Tubli-Seal, voids at the interface between the filling and canal dentine deserve special attention due to of their periapical location, which might promote apical microleakage. Further studies might help to elucidate the clinical relevance of these results.

  18. The quantitative assessment of peri-implant bone responses using histomorphometry and micro-computed tomography.

    Science.gov (United States)

    Schouten, Corinne; Meijer, Gert J; van den Beucken, Jeroen J J P; Spauwen, Paul H M; Jansen, John A

    2009-09-01

    In the present study, the effects of implant design and surface properties on peri-implant bone response were evaluated with both conventional histomorphometry and micro-computed tomography (micro-CT), using two geometrically different dental implants (Screw type, St; Push-in, Pi) either or not surface-modified (non-coated, CaP-coated, or CaP-coated+TGF-beta1). After 12 weeks of implantation in a goat femoral condyle model, peri-implant bone response was evaluated in three different zones (inner: 0-500 microm; middle: 500-1000 microm; and outer: 1000-1500 microm) around the implant. Results indicated superiority of conventional histomorphometry over micro-CT, as the latter is hampered by deficits in the discrimination at the implant/tissue interface. Beyond this interface, both analysis techniques can be regarded as complementary. Histomorphometrical analysis showed an overall higher bone volume around St compared to Pi implants, but no effects of surface modification were observed. St implants showed lowest bone volumes in the outer zone, whereas inner zones were lowest for Pi implants. These results implicate that for Pi implants bone formation started from two different directions (contact- and distance osteogenesis). For St implants it was concluded that undersized implantation technique and loosening of bone fragments compress the zones for contact and distant osteogenesis, thereby improving bone volume at the interface significantly.

  19. Cochlear implant-related three-dimensional characteristics determined by micro-computed tomography reconstruction.

    Science.gov (United States)

    Ni, Yusu; Dai, Peidong; Dai, Chunfu; Li, Huawei

    2017-01-01

    To explore the structural characteristics of the cochlea in three-dimensional (3D) detail using 3D micro-computed tomography (mCT) image reconstruction of the osseous labyrinth, with the aim of improving the structural design of electrodes, the selection of stimulation sites, and the effectiveness of cochlear implantation. Three temporal bones were selected from among adult donors' temporal bone specimens. A micro-CT apparatus (GE eXplore) was used to scan three specimens with a voxel resolution of 45 μm. We obtained about 460 slices/specimen, which produced abundant data. The osseous labyrinth images of three specimens were reconstructed from mCT. The cochlea and its spiral characteristics were measured precisely using Able Software 3D-DOCTOR. The 3D images of the osseous labyrinth, including the cochlea, vestibule, and semicircular canals, were reconstructed. The 3D models of the cochlea showed the spatial relationships and surface structural characteristics. Quantitative data concerning the cochlea and its spiral structural characteristics were analyzed with regard to cochlear implantation. The 3D reconstruction of mCT images clearly displayed the detailed spiral structural characteristics of the osseous labyrinth. Quantitative data regarding the cochlea and its spiral structural characteristics could help to improve electrode structural design, signal processing, and the effectiveness of cochlear implantation. Clin. Anat. 30:39-43, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Influence of peri-implant artifacts on bone morphometric analysis with micro-computed tomography.

    Science.gov (United States)

    Song, Jin Wook; Cha, Jung Yul; Bechtold, Till Edward; Park, Young Chel

    2013-01-01

    To determine the optimal dilation pixel size distance from the mini-implant interface needed to compensate for the metal artifact on micro-computed tomography (micro-CT) for bone morphometric analysis. A total of 72 self-drilling mini-implants were placed into the buccal alveolar bone of six male beagle dogs. After 12 weeks of orthodontic loading, specimens were harvested and scanned with micro-CT (Skyscan 1076) at a resolution of 9 μm. Using the reload plug-in and dilation procedure of CTAn, the percentage of bone-implant contact (BIC) and bone volume density (BV/TV, bone volume/total volume), respectively, were measured from one to seven pixels from the metal implant surface. Each pixel size of dilation (PSD) were compared with that of a ground histologic section, and the optimal PSD for bone morphometric analysis using micro-CT was determined. BIC values from micro-CT analysis decreased when the PSD increased (P micro-CT showed the highest correlation coefficient with BIC from histologic slides when the PSD was 5 to 7 (P micro-CT showed a very high correlation with BV/TV from histologic slides in all ranges (P micro-CT, at least 5 PSD from the metal implant surface is needed.

  1. Early Lung Adenocarcinoma in Mice: Micro-Computed Tomography Manifestations and Correlation with Pathology

    Directory of Open Access Journals (Sweden)

    Lin Deng

    2017-06-01

    Full Text Available Lung cancer is the most common fatal malignancy for both men and women and adenocarcinoma is the most common histologic type. Early diagnosis of lung cancer can significantly improve the survival rate of patients. This study aimed to investigate the micro-computed tomography (micro-CT manifestations of early lung adenocarcinoma (LAC in mice and to provide a new perspective for early clinical diagnosis. Early LAC models in 10 mice were established by subcutaneously injecting 1-methyl-3-nitro-1-nitrosoguanidine (MNNG solution. Micro-CT scan and multiple planar reconstruction (MPR were used for mouse lungs. Micro-CT features of early LAC, especially the relationships between tumor and bronchus, were analyzed and correlated with pathology. Micro-CT findings of early LAC were divided into three types: non-solid (n = 8, 6%, partly solid (n = 85, 64% and totally solid (n = 39, 30%. Tumor-bronchus relationships, which could be observed in 110 of 132(83% LAC, were classified into four patterns: type I (n = 16, 15%, bronchus was truncated at the margin of the tumor; type II (n = 33, 30%, bronchus penetrated into the tumor with tapered narrowing and interruption; type III (n = 38, 35%, bronchus penetrated into the tumor with a patent and intact lumen; type IV (n = 99, 90%, bronchus ran at the border of the tumor with an intact or compressed lumen. Micro-CT manifestations of early LAC correlated well with pathological findings. Micro-CT can clearly demonstrate the features of mouse early LAC and bronchus-tumor relationships, and can also provide a new tool and perspective for the study of early LAC.

  2. Evaluation of a new mid-scala cochlear implant electrode using microcomputed tomography.

    Science.gov (United States)

    Frisch, Christopher D; Carlson, Matthew L; Lane, John I; Driscoll, Colin L W

    2015-12-01

    To investigate electrode position, depth of insertion, and electrode contact using an electrode array with a mid-scala design following round window (RW) and cochleostomy insertion. Eight fresh-frozen cadaveric bones were implanted; half via a RW approach and half through an anteroinferior cochleostomy using a styleted mid-scala electrode design. Microcomputed tomography was used to acquire oblique coronal and oblique axial reformations. Individual electrode positions along each array, insertional depth, and electrode contact were determined using National Institutes of Health Image J software. All electrodes were inserted without significant resistance. The average angular depth of insertion was 436.5° for the RW group and 422.7° for the cochleostomy group. All electrodes acquired a perimodiolar position in the proximal segment and a lateral wall position at the basal turn, regardless of approach. Electrodes distal to the basal turn demonstrated a variable location, with 78% mid scala. One cochleostomy array fractured through the interscalar partition (ISP), acquiring a scala vestibuli position. The odds ratio for either abutting the modiolus, ISP, lateral wall or floor, or fracturing through the ISP were 2.7 times more likely following a cochleostomy insertion (P = .032). The styleted mid-scala electrode design acquires a proximal perimodiolar position, a lateral wall location, as it traverses the basal turn, and most commonly a mid-scala position in the distal array. Interscalar excursion occurred in one of the cochleostomy insertions. Cochleostomy insertion is more likely to result in ultimate final electrode position adjacent to critical intracochlear structures. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Assessing apical transportation in curved canals: comparison between cross-sections and micro-computed tomography

    Directory of Open Access Journals (Sweden)

    Laila Gonzales Freire

    2012-06-01

    Full Text Available The aim of this study was to compare two methods of assessing apical transportation in curved canals after rotary instrumentation, namely, cross-sections and micro-computed tomography (µCT. Thirty mandibular molars were divided into two groups and prepared according to the requirements of each method. In G1 (cross-sections, teeth were embedded in resin blocks and sectioned at 2.0, 3.5, and 5.0 mm from the anatomic apex. Pre- and postoperative sections were photographed and analyzed. In G2 (µCT, teeth were embedded in a rubber-base impression material and scanned before and after instrumentation. Mesiobuccal canals were instrumented with the Twisted File (TF system (SybronEndo, Orange, USA, and mesiolingual canals, with the EndoSequence (ES system (Brasseler, Savannah, USA. Images were reconstructed, and sections corresponding to distances 2.0, 3.5, and 5.0 mm from the anatomic apex were selected for comparison. Data were analyzed using Mann-Whitney's test at a 5% significance level. The TF and ES instruments produced little deviation from the root canal center, with no statistical difference between them (P > 0.05. The canal transportation results were significantly lower (0.056 mm in G2 than in G1 (0.089 mm (p = 0.0012. The µCT method was superior to the cross-section method, especially in view of its ability to preserve specimens and provide results that are more closely related to clinical situations.

  4. Microcomputed tomography analysis of mesiobuccal orifices and major apical foramen in first maxillary molars.

    Science.gov (United States)

    Spagnuolo, Gianrico; Ametrano, Gianluca; D'Antò, Vincenzo; Formisano, Anna; Simeone, Michele; Riccitiello, Francesco; Amato, Massimo; Rengo, Sandro

    2012-01-01

    Aim of the study was to determined by microcomputed tomography (µCT) the horizontal distance between the main (MB1) and the second mesiobuccal canal (MB2) orifices, the vertical distance between the MB1 and MB2 orifices planes, and the distance between the anatomic apex and major apical foramen (AF). Furthermore, we characterized the entire internal and external anatomy of the MB, distalbuccal (DB) and palatal (P) maxillary first molars roots. Twenty-two intact extracted first maxillary molars were scanned by X-ray computed transaxial µCT and then 2D and 3D images were processed and analyzed. The results showed that 77.27% of the mesiobuccal (MB) roots presented a second MB canal, and 29.41% of the MB2 were independent from the MB1 canals. In 15 teeth, there were three root canal orifices on the chamber floor, and 10 of these teeth presented MB2 canals. The mean vertical distance between the MB1 and MB2 planes was 1.68 ± 0.83 mm. Seven teeth had four orifices. The mean horizontal interorificial distance between the MB1 and MB2 orifices was 1.21 ± 0.5 mm. Accessory canals were observed in 33.33% of the roots, loops in 6.06%, while isthmuses were found in 15 of the 22 MB roots. Of the total roots, 74.24% presented one foramen, while all of the roots showed a major apical foramen that was not coincident with the anatomic apex. Our µCT analysis provided interesting features on the horizontal and vertical distance between the MB1 and MB2 orifices and on the distance of AF and anatomic apex. These results have an important clinical value because might support the endodontist in the recruitment, negotiation and obturation of maxillary first molar canal system.

  5. Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent.

    Science.gov (United States)

    Leng, Huijie; Wang, Xiang; Ross, Ryan D; Niebur, Glen L; Roeder, Ryan K

    2008-01-01

    Accumulation of microdamage during fatigue can lead to increased fracture susceptibility in bone. Current techniques for imaging microdamage in bone are inherently destructive and two-dimensional. Therefore, the objective of this study was to image the accumulation of fatigue microdamage in cortical bone using micro-computed tomography (micro-CT) with a barium sulfate (BaSO(4)) contrast agent. Two symmetric notches were machined on the tensile surface of bovine cortical bone beams in order to generate damage ahead of the stress concentrations during four-point bending fatigue. Specimens were loaded to a specified number of cycles or until one notch fractured, such that the other notch exhibited the accumulation of microdamage prior to fracture. Microdamage ahead of the notch was stained in vitro by precipitation of BaSO(4) and imaged using micro-CT. Reconstructed images showed a distinct region of bright voxels around the notch tip or along propagating cracks due to the presence of BaSO(4), which was verified by backscattered electron imaging and energy dispersive spectroscopy. The shape of the stained region ahead of the notch tip was consistent with principal strain contours calculated by finite element analysis. The relative volume of the stained region was correlated with the number of loading cycles by non-linear regression using a power-law. This study demonstrates new methods for the non-destructive and three-dimensional detection of fatigue microdamage accumulation in cortical bone in vitro, which may be useful to gain further understanding into the role of microdamage in bone fragility.

  6. Effects of lithium on extraction socket healing in rats assessed with micro-computed tomography.

    Science.gov (United States)

    Zeng, Yun Ting; Fu, Bin; Tang, Guo Hua; Zhang, Lei; Qian, Yu Fen

    2013-09-01

    Lithium is an activator of β-catenin signaling and β-catenin plays an important role in regulating bone formation and remodeling. The purpose of this study was to investigate the effects of lithium on bone repair in tooth extraction sockets in rats. Twenty male Wistar rats were subjected to maxillary left second molar extraction. The animals received a daily injection of lithium chloride (LiCl) or the same dose of sodium chloride (NaCl) starting 7 days before tooth extraction until sacrifice 14 days after extraction. Rats were randomly divided into: (1) a pre-treated group that received LiCl injection from 7 days before to 3 days after tooth extraction; (2) a post-treated group that received LiCl injection starting 4 days after tooth extraction; (3) a continuously treated group that received LiCl injection for the entire 21 days; and (4) a control group that received NaCl injection only. The volume of new bone and the bone density in the extraction socket were quantified by micro-computed tomography. The percentage of new bone formation in the extraction socket was as follows: 63.2 ± 13.4% (pre-treated group), 53.9 ± 9.8% (post-treated), 23.8 ± 8.0% (continuously treated) and 37.5 ± 4.2% (control). The difference in percentage was statistically significant between each pair of groups. Pre- and post-treated groups also showed a significant increase in the density of new bone. Lithium enhances bone repair in extraction sockets when delivered before or after tooth extraction. Tooth extraction during lithium treatment may impair bone healing.

  7. Optimizing a micro-computed tomography-based surrogate measurement of bone-implant contact.

    Science.gov (United States)

    Meagher, Matthew J; Parwani, Rachna N; Virdi, Amarjit S; Sumner, Dale R

    2018-03-01

    Histology and backscatter scanning electron microscopy (bSEM) are the current gold standard methods for quantifying bone-implant contact (BIC), but are inherently destructive. Microcomputed tomography (μCT) is a non-destructive alternative, but attempts to validate μCT-based assessment of BIC in animal models have produced conflicting results. We previously showed in a rat model using a 1.5 mm diameter titanium implant that the extent of the metal-induced artefact precluded accurate measurement of bone sufficiently close to the interface to assess BIC. Recently introduced commercial laboratory μCT scanners have smaller voxels and improved imaging capabilities, possibly overcoming this limitation. The goals of the present study were to establish an approach for optimizing μCT imaging parameters and to validate μCT-based assessment of BIC. In an empirical parametric study using a 1.5 mm diameter titanium implant, we determined 90 kVp, 88 µA, 1.5 μm isotropic voxel size, 1600 projections/180°, and 750 ms integration time to be optimal. Using specimens from an in vivo rat experiment, we found significant correlations between bSEM and μCT for BIC with the manufacturer's automated analysis routine (r = 0.716, p = 0.003) or a line-intercept method (r = 0.797, p = 0.010). Thus, this newer generation scanner's improved imaging capability reduced the extent of the metal-induced artefact zone enough to permit assessment of BIC. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:979-986, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Attenuation Drift in the Micro-Computed Tomography System at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Dooraghi, Alex A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seetho, Isaac [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kallman, Jeff [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lennox, Kristin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glascoe, Lee [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-12

    The maximum allowable level of drift in the linear attenuation coefficients (μ) for a Lawrence Livermore National Laboratory (LLNL) micro-computed tomography (MCT) system was determined to be 0.1%. After ~100 scans were acquired during the period of November 2014 to March 2015, the drift in μ for a set of six reference materials reached or exceeded 0.1%. Two strategies have been identified to account for or correct the drift. First, normalizing the 160 kV and 100 kV μ data by the μ of water at the corresponding energy, in contrast to conducting normalization at the 160 kV energy only, significantly compensates for measurement drift. Even after the modified normalization, μ of polytetrafluoroethylene (PTFE) increases linearly with scan number at an average rate of 0.00147% per scan. This is consistent with PTFE radiation damage documented in the literature. The second strategy suggested is the replacement of the PTFE reference with fluorinated ethylene propylene (FEP), which has the same effective atomic number (Ze) and electron density (ρe) as PTFE, but is 10 times more radiation resistant. This is important as effective atomic number and electron density are key parameters in analysis. The presence of a material with properties such as PTFE, when taken together with the remaining references, allows for a broad range of the (Ze, ρe) feature space to be used in analysis. While FEP is documented as 10 times more radiation resistant, testing will be necessary to assess how often, if necessary, FEP will need to be replaced. As radiation damage to references has been observed, it will be necessary to monitor all reference materials for radiation damage to ensure consistent x-ray characteristics of the references.

  9. A generic, geometric cocalibration method for a combined system of fluorescence molecular tomography and microcomputed tomography with arbitrarily shaped objects

    International Nuclear Information System (INIS)

    Fu Jianwei; Yang Xiaoquan; Wang Kan; Luo Qingming; Gong Hui

    2011-01-01

    Purpose: A combined system of fluorescence molecular tomography and microcomputed tomography (FMT and mCT) can provide molecular and anatomical information of small animals in a single study with intrinsically coregistered images. The anatomical information provided by the mCT subsystem is commonly used as a reference to locate the fluorophore distribution or as a priori structural information to improve the performance of FMT. Therefore, the transformation between the coordinate systems of the subsystem needs to be determined in advanced. Methods: A cocalibration method for the combined system of FMT and mCT is proposed. First, linear models are adopted to describe the galvano mirrors and the charge-coupled device (CCD) camera in the FMT subsystem. Second, the position and orientation of the galvano mirrors are determined with the input voltages of the galvano mirrors and the markers, whose positions are predetermined. The position, orientation and normalized pixel size of the CCD camera are obtained by analysing the projections of a point-like marker at different positions. Finally, the orientation and position of sources and the corresponding relationship between the detectors and their projections on the image plane are predicted. Because the positions of the markers are acquired with mCT, the registration of the FMT and mCT could be realized by direct image fusion. Results: The accuracy and consistency of this method in the presence of noise is evaluated by computer simulation. Next, a practical implementation for an experimental FMT and mCT system is carried out and validated. The maximum prediction error of the source positions on the surface of a cylindrical phantom is within 0.375 mm and that of the projections of a point-like marker is within 0.629 pixel. Finally, imaging experiments of the fluorophore distribution in a cylindrical phantom and a phantom with a complex shape demonstrate the feasibility of the proposed method. Conclusions: This method is

  10. Three-dimensional digitizer (neuronavigator): new equipment for computed tomography-guided stereotaxic surgery.

    Science.gov (United States)

    Watanabe, E; Watanabe, T; Manaka, S; Mayanagi, Y; Takakura, K

    1987-06-01

    A new device was invented as an adjunct for computed tomography (CT)-guided stereotaxic or open neurosurgery. It is composed of a multijoint three-dimensional digitizer (sensor arm) and a microcomputer, which indicates the place of the sensor arm tip on preoperative CT images. Computed tomography scan is performed preoperatively with three markers placed on the nasion and ears. At surgery, after fixing the patient's head and the sensor arm, sampling of the standard points was done to translate the position of the tip of the sensor arm onto the CT images displayed on a computer screen. In this way positional data from conventional preoperative CT scan can be directly transferred into the surgical field. This system has the unique feature of introducing CT-guided stereotaxis into conventional open neurosurgery.

  11. Viability of microcomputed tomography to study tropical marine worm galleries in humid muddy sediments

    International Nuclear Information System (INIS)

    Pennafirme, Simone F.; Machado, Alessandra S.; Lima, Inaya; Suzuki, Katia N.; Lopes, Ricardo T.

    2013-01-01

    Bioturbation is an ecological process driven by organisms, which transports nutrients and gases from air/water to sediment through their galleries, by the time they feed, burrow and/or construct galleries. This exchange is vital to the maintenance of micro and macrobenthic organisms, mainly in muddy flat environments. Species with distinct galleries could create levels of bioturbation, affecting the benthic interactions. In this sense, it is fundamental developing a non-destructive method that permits identifying/quantifying the properties of these galleries. The recent advances in micro-computed tomography are allowing the high resolution 3D images generation. However, once muddy sediments are rich in organic matter and interstitial water, these would lead to motion artifacts which could, in turn, decrease the accuracy of galleries identification/quantification. In this context, the aim of this study was to develop a protocol which combines laboratory experiments and microtomography analysis in order to generate accurate 3D images of the small marine worm's galleries within humid muddy sediments. The sediment was collected at both muddy flats of Surui's and Itaipu lagoon's mangroves (RJ-Brazil), sieved (0.5mm mesh) and introduced with one individual of the marine worm Laeonereis acuta (Nereididae, Polychaeta) in each acrylic corer holders (4.4cm of internal diameter). High energy microtomography scanner was used to obtain 3D images and the setup calibration was 130 kV and 61 mA. Each acquisition image time was among 4h and 6h. Several procedures of drying remained water inside the cores were performed aiming obtaining images without movement artifacts due to circulating water, and this issue was one of the main studied parameter. In order to investigate possible chemical effects, 2ml of formalin (35%) with menthol were added to the surface of the cores. The results show that although the drying time was appropriated, the chemicals created bubbles within the

  12. Viability of microcomputed tomography to study tropical marine worm galleries in humid muddy sediments

    Energy Technology Data Exchange (ETDEWEB)

    Pennafirme, Simone F., E-mail: sipennafirme@gmail.com [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Biologia. Dept. de Biologia Marinha; Machado, Alessandra S.; Lima, Inaya; Suzuki, Katia N.; Lopes, Ricardo T., E-mail: machado@lin.ufrj.br, E-mail: inaya@lin.ufrj.br, E-mail: norisuzuki6@yahoo.com.br, E-mail: ricardo@lin.ufj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), RJ (Brazil). Lab. de Instrumentacao Nuclear

    2013-07-01

    Bioturbation is an ecological process driven by organisms, which transports nutrients and gases from air/water to sediment through their galleries, by the time they feed, burrow and/or construct galleries. This exchange is vital to the maintenance of micro and macrobenthic organisms, mainly in muddy flat environments. Species with distinct galleries could create levels of bioturbation, affecting the benthic interactions. In this sense, it is fundamental developing a non-destructive method that permits identifying/quantifying the properties of these galleries. The recent advances in micro-computed tomography are allowing the high resolution 3D images generation. However, once muddy sediments are rich in organic matter and interstitial water, these would lead to motion artifacts which could, in turn, decrease the accuracy of galleries identification/quantification. In this context, the aim of this study was to develop a protocol which combines laboratory experiments and microtomography analysis in order to generate accurate 3D images of the small marine worm's galleries within humid muddy sediments. The sediment was collected at both muddy flats of Surui's and Itaipu lagoon's mangroves (RJ-Brazil), sieved (0.5mm mesh) and introduced with one individual of the marine worm Laeonereis acuta (Nereididae, Polychaeta) in each acrylic corer holders (4.4cm of internal diameter). High energy microtomography scanner was used to obtain 3D images and the setup calibration was 130 kV and 61 mA. Each acquisition image time was among 4h and 6h. Several procedures of drying remained water inside the cores were performed aiming obtaining images without movement artifacts due to circulating water, and this issue was one of the main studied parameter. In order to investigate possible chemical effects, 2ml of formalin (35%) with menthol were added to the surface of the cores. The results show that although the drying time was appropriated, the chemicals created bubbles

  13. Micro-computed tomography study of the internal anatomy of mesial root canals of mandibular molars.

    Science.gov (United States)

    Villas-Bôas, Marcelo Haas; Bernardineli, Norberti; Cavenago, Bruno Cavalini; Marciano, Marina; Del Carpio-Perochena, Aldo; de Moraes, Ivaldo Gomes; Duarte, Marco H; Bramante, Clovis M; Ordinola-Zapata, Ronald

    2011-12-01

    The aim of this study was to determine the mesiodistal and buccolingual diameter, apical volume, and the presence of isthmuses at the apical level of mesial root canals of mandibular molars. Sixty extracted first and second mandibular molars were scanned by using a SkyScan 1076 micro-computed tomography system with a voxel size of 18 μm. The apical thirds of the samples were reconstructed to allow a perpendicular section of the apical third by using the multiplanar reconstruction tool of the OsiriX software. The mesiodistal and the buccolingual distances of root canals were measured between the 1- to 4-mm levels. The type of root canal isthmuses present at these levels was classified by using modified criteria of Hsu and Kim. The volume of the root canal anatomy between the 1- to 3-mm apical levels was obtained by using the CTAN-CTVOL software. The medians of the mesiodistal diameter at the 1-, 2-, 3-, and 4-mm levels in the mesiobuccal and mesiolingual canals were 0.22 and 0.23 mm, 0.27 and 0.27 mm, 0.30 and 0.30 mm, and 0.36 and 0.35 mm, respectively. The buccolingual lengths at the 1-, 2-, 3-, and 4-mm levels were 0.37-0.35 mm, 0.55-0.41 mm, 0.54-0.49 mm, and 0.54 and 0.60 mm, respectively. The presence of isthmuses was more prevalent at the 3- to 4-mm level. However, 27 cases presented complete or incomplete isthmuses at the 1-mm apical level. The mean of the volume of the apical third was 0.83 mm(3), with a minimum value of 0.02 and a maximum value of 2.4 mm(3). Mesial root canals of mandibular molars do not present a consistent pattern. A high variability of apical diameters exists. The presence of isthmuses at the apical third was not uncommon even at the 1-mm apical level. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Micro-Computed Tomography Evaluation of Human Fat Grafts in Nude Mice

    Science.gov (United States)

    Chung, Michael T.; Hyun, Jeong S.; Lo, David D.; Montoro, Daniel T.; Hasegawa, Masakazu; Levi, Benjamin; Januszyk, Michael; Longaker, Michael T.

    2013-01-01

    Background Although autologous fat grafting has revolutionized the field of soft tissue reconstruction and augmentation, long-term maintenance of fat grafts is unpredictable. Recent studies have reported survival rates of fat grafts to vary anywhere between 10% and 80% over time. The present study evaluated the long-term viability of human fat grafts in a murine model using a novel imaging technique allowing for in vivo volumetric analysis. Methods Human fat grafts were prepared from lipoaspirate samples using the Coleman technique. Fat was injected subcutaneously into the scalp of 10 adult Crl:NU-Foxn1nu CD-1 male mice. Micro-computed tomography (CT) was performed immediately following injection and then weekly thereafter. Fat volume was rendered by reconstructing a three-dimensional (3D) surface through cubic-spline interpolation. Specimens were also harvested at various time points and sections were prepared and stained with hematoxylin and eosin (H&E), for macrophages using CD68 and for the cannabinoid receptor 1 (CB1). Finally, samples were explanted at 8- and 12-week time points to validate calculated micro-CT volumes. Results Weekly CT scanning demonstrated progressive volume loss over the time course. However, volumetric analysis at the 8- and 12-week time points stabilized, showing an average of 62.2% and 60.9% survival, respectively. Gross analysis showed the fat graft to be healthy and vascularized. H&E analysis and staining for CD68 showed minimal inflammatory reaction with viable adipocytes. Immunohistochemical staining with anti-human CB1 antibodies confirmed human origin of the adipocytes. Conclusions Studies assessing the fate of autologous fat grafts in animals have focused on nonimaging modalities, including histological and biochemical analyses, which require euthanasia of the animals. In this study, we have demonstrated the ability to employ micro-CT for 3D reconstruction and volumetric analysis of human fat grafts in a mouse model. Importantly

  15. Investigation of spatial resolution characteristics of an in vivo microcomputed tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Muhammad U. [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); Zhou, Zhongxing [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); School of Precision and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Ren, Liqiang; Wong, Molly; Li, Yuhua; Zheng, Bin [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); Yang, Kai [Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (United States); Liu, Hong, E-mail: liu@ou.edu [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2016-01-21

    The spatial resolution characteristics of an in vivo microcomputed tomography (CT) system was investigated in the in-plane (x–y), cross plane (z) and projection imaging modes. The microCT system utilized in this study employs a flat panel detector with a 127 µm pixel pitch, a microfocus x-ray tube with a focal spot size ranging from 5–30 µm, and accommodates three geometric magnifications (M) of 1.72, 2.54 and 5.10. The in-plane modulation transfer function (MTF) curves were measured as a function of the number of projections, geometric magnification (M), detector binning and reconstruction magnification (M{sub Recon}). The in plane cutoff frequency (10% MTF) ranged from 2.31 lp/mm (M=1.72, 2×2 binning) to 12.56 lp/mm (M=5.10, 1×1 binning) and a bar pattern phantom validated those measurements. A slight degradation in the spatial resolution was observed when comparing the image reconstruction with 511 and 918 projections, whose effect was visible at the lower frequencies. Small value of M{sub Recon} has little or no impact on the in-plane spatial resolution owning to a stable system. Large value of M{sub Recon} has implications on the spatial resolution and it was evident when comparing the bar pattern images reconstructed with M{sub Recon}=1.25 and 2.5. The cross plane MTF curves showed that the spatial resolution increased as the slice thickness decreased. The cutoff frequencies in the projection imaging mode yielded slightly higher values as compared to the in-plane and cross plane modes at all the geometric magnifications (M). At M=5.10, the cutoff resolution of the projection and cross plane on an ultra-high contrast resolution bar chip phantom were 14.9 lp/mm and 13–13.5 lp/mm. Due to the finite focal spot size of the x-ray tube, the detector blur and the reconstruction kernel functions, the system's spatial resolution does not reach the limiting spatial resolution as defined by the Nyquist's detector criteria with an ideal point source

  16. Non-destructive morphological observations of the fleshy brittle star, Asteronyx loveni using micro-computed tomography (Echinodermata, Ophiuroidea, Euryalida).

    Science.gov (United States)

    Okanishi, Masanori; Fujita, Toshihiko; Maekawa, Yu; Sasaki, Takenori

    2017-01-01

    The first morphological observation of a euryalid brittle star, Asteronyx loveni , using non-destructive X-ray micro-computed tomography (µCT) was performed. The body of euryalids is covered by thick skin, and it is very difficult to observe the ossicles without dissolving the skin. Computed tomography with micrometer resolution (approximately 4.5-15.4 µm) was used to construct 3D images of skeletal ossicles and soft tissues in the ophiuroid's body. Shape and positional arrangement of taxonomically important ossicles were clearly observed without any damage to the body. Detailed pathways inside the vertebral ossicles, lateral arm plates, and arm spines for passage of nerves and water vascular structures were observed. Inter-vertebral muscles were also observed. Forms and 3D arrangements of many important taxonomical characters of the euryalids were scrutinized by µCT in high enough resolution for taxonomic description of ophiuroids.

  17. Non-destructive morphological observations of the fleshy brittle star, Asteronyx loveni using micro-computed tomography (Echinodermata, Ophiuroidea, Euryalida

    Directory of Open Access Journals (Sweden)

    Massanori Okanishi

    2017-03-01

    Full Text Available The first morphological observation of a euryalid brittle star, Asteronyx loveni, using non-destructive X-ray micro-computed tomography (µCT was performed. The body of euryalids is covered by thick skin, and it is very difficult to observe the ossicles without dissolving the skin. Computed tomography with micrometer resolution (approximately 4.5–15.4 µm was used to construct 3D images of skeletal ossicles and soft tissues in the ophiuroid’s body. Shape and positional arrangement of taxonomically important ossicles were clearly observed without any damage to the body. Detailed pathways inside the vertebral ossicles, lateral arm plates, and arm spines for passage of nerves and water vascular structures were observed. Inter-vertebral muscles were also observed. Forms and 3D arrangements of many important taxonomical characters of the euryalids were scrutinized by µCT in high enough resolution for taxonomic description of ophiuroids.

  18. Physical properties of root cementum: Part 26. Effects of micro-osteoperforations on orthodontic root resorption: A microcomputed tomography study.

    Science.gov (United States)

    Chan, Emmanuel; Dalci, Oyku; Petocz, Peter; Papadopoulou, Alexandra K; Darendeliler, M Ali

    2018-02-01

    Studies have demonstrated the potential efficacy of micro-osteoperforations in accelerating tooth movement by amplifying the expression of inflammatory markers. The aim of this investigation was to examine the effects of micro-osteoperforations on orthodontic root resorption with microcomputed tomography. This prospective controlled clinical trial involved 20 subjects requiring extraction of the maxillary first premolars as part of their orthodontic treatment. A buccal tipping force of 150 g was applied to both premolars. Using the Propel appliance (Propel Orthodontics, San Jose, Calif), micro-osteoperforations were applied at a depth of 5 mm on the mesial and distal aspects in the midroot region of the experimental side of the first premolar root; the contralateral side served as the control. After 28 days, both premolars were extracted. The teeth were scanned under microcomputed tomography, and the volumes of root resorption craters were calculated and compared. Premolars treated with micro-osteoperforation exhibited significantly greater average total amounts of root resorption than did the control teeth (0.576 vs 0.406 mm 3 ). The total average volumetric root loss of premolars treated with micro-osteoperforation was 42% greater than that of the control teeth. This 28-day trial showed that micro-osteoperforations resulted in greater orthodontic root resorption. However, these results should be verified in patients who are undergoing full-length orthodontic treatment. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  19. High pressure-elevated temperature x-ray micro-computed tomography for subsurface applications.

    Science.gov (United States)

    Iglauer, Stefan; Lebedev, Maxim

    2018-06-01

    Physical, chemical and mechanical pore-scale (i.e. micrometer-scale) mechanisms in rock are of key importance in many, if not all, subsurface processes. These processes are highly relevant in various applications, e.g. hydrocarbon recovery, CO 2 geo-sequestration, geophysical exploration, water production, geothermal energy production, or the prediction of the location of valuable hydrothermal deposits. Typical examples are multi-phase flow (e.g. oil and water) displacements driven by buoyancy, viscous or capillary forces, mineral-fluid interactions (e.g. mineral dissolution and/or precipitation over geological times), geo-mechanical rock behaviour (e.g. rock compaction during diagenesis) or fines migration during water production, which can dramatically reduce reservoir permeability (and thus reservoir performance). All above examples are 3D processes, and 2D experiments (as traditionally done for micro-scale investigations) will thus only provide qualitative information; for instance the percolation threshold is much lower in 3D than in 2D. However, with the advent of x-ray micro-computed tomography (μCT) - which is now routinely used - this limitation has been overcome, and such pore-scale processes can be observed in 3D at micrometer-scale. A serious complication is, however, the fact that in the subsurface high pressures and elevated temperatures (HPET) prevail, due to the hydrostatic and geothermal gradients imposed upon it. Such HPET-reservoir conditions significantly change the above mentioned physical and chemical processes, e.g. gas density is much higher at high pressure, which strongly affects buoyancy and wettability and thus gas distributions in the subsurface; or chemical reactions are significantly accelerated at increased temperature, strongly affecting fluid-rock interactions and thus diagenesis and deposition of valuable minerals. It is thus necessary to apply HPET conditions to the aforementioned μCT experiments, to be able to mimic subsurface

  20. A Micro-Computed Tomography Technique to Study the Quality of Fibre Optics Embedded in Composite Materials

    Directory of Open Access Journals (Sweden)

    Gabriele Chiesura

    2015-05-01

    Full Text Available Quality of embedment of optical fibre sensors in carbon fibre-reinforced polymers plays an important role in the resultant properties of the composite, as well as for the correct monitoring of the structure. Therefore, availability of a tool able to check the optical fibre sensor-composite interaction becomes essential. High-resolution 3D X-ray Micro-Computed Tomography, or Micro-CT, is a relatively new non-destructive inspection technique which enables investigations of the internal structure of a sample without actually compromising its integrity. In this work the feasibility of inspecting the position, the orientation and, more generally, the quality of the embedment of an optical fibre sensor in a carbon fibre reinforced laminate at unit cell level have been proven.

  1. Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications

    DEFF Research Database (Denmark)

    Hiller, Jochen; Maisl, Michael; Reindl, Leonard M

    2012-01-01

    This paper presents physical and metrological characterization measurements conducted for an industrial x-ray micro-computed tomography (CT) system. As is well known in CT metrology, many factors, e.g., in the scanning and reconstruction process, the image processing, and the 3D data evaluation...... components of a CT scanner, i.e. the x-ray tube and the flat-panel detector, are characterized. The contrast and noise transfer property of the scanner is obtained using image-processing methods based on linear systems theory. A long-term temperature measurement in the scanner cabinet has been carried out....... The dimensional measurement property has been quantified by using a calibrated ball-bar and uncertainty budgeting. Information about the performance of a CT scanner system in terms of contrast and noise transmission and sources of geometrical errors will help plan CT scans more efficiently. In particular...

  2. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation.

    Science.gov (United States)

    Kang, Sung-Won; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Kim, Tae-Il; Yi, Won-Jin

    2015-03-01

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (pimplants using micro-CT analysis using a region-based segmentation method.

  3. Effect of micro-computed tomography voxel size and segmentation method on trabecular bone microstructure measures in mice

    Directory of Open Access Journals (Sweden)

    Blaine A. Christiansen

    2016-12-01

    Full Text Available Micro-computed tomography (μCT is currently the gold standard for determining trabecular bone microstructure in small animal models. Numerous parameters associated with scanning and evaluation of μCT scans can strongly affect morphologic results obtained from bone samples. However, the effect of these parameters on specific trabecular bone outcomes is not well understood. This study investigated the effect of μCT scanning with nominal voxel sizes between 6–30 μm on trabecular bone outcomes quantified in mouse vertebral body trabecular bone. Additionally, two methods for determining a global segmentation threshold were compared: based on qualitative assessment of 2D images, or based on quantitative assessment of image histograms. It was found that nominal voxel size had a strong effect on several commonly reported trabecular bone parameters, in particular connectivity density, trabecular thickness, and bone tissue mineral density. Additionally, the two segmentation methods provided similar trabecular bone outcomes for scans with small nominal voxel sizes, but considerably different outcomes for scans with larger voxel sizes. The Qualitatively Selected segmentation method more consistently estimated trabecular bone volume fraction (BV/TV and trabecular thickness across different voxel sizes, but the Histogram segmentation method more consistently estimated trabecular number, trabecular separation, and structure model index. Altogether, these results suggest that high-resolution scans be used whenever possible to provide the most accurate estimation of trabecular bone microstructure, and that the limitations of accurately determining trabecular bone outcomes should be considered when selecting scan parameters and making conclusions about inter-group variance or between-group differences in studies of trabecular bone microstructure in small animals. Keywords: Trabecular bone, Microstructure, Micro-computed tomography, Voxel size, Resolution

  4. Influence of low-intensity pulsed ultrasound on osteogenic tissue regeneration in a periodontal injury model: X-ray image alterations assessed by micro-computed tomography.

    Science.gov (United States)

    Wang, Yunji; Chai, Zhaowu; Zhang, Yuanyuan; Deng, Feng; Wang, Zhibiao; Song, Jinlin

    2014-08-01

    This study was conducted to evaluate, with micro-computed tomography, the influence of low-intensity pulsed ultrasound on wound-healing in periodontal tissues. Periodontal disease with Class II furcation involvement was surgically produced at the bilateral mandibular premolars in 8 adult male beagle dogs. Twenty-four teeth were randomly assigned among 4 groups (G): G1, periodontal flap surgery; G2, periodontal flap surgery+low-intensity pulsed ultrasound (LIPUS); G3, guided tissue regeneration (GTR) surgery; G4, GTR surgery plus LIPUS. The affected area in the experimental group was exposed to LIPUS. At 6 and 8weeks, the X-ray images of regenerated teeth were referred to micro-CT scanning for 3-D measurement. Bone volume (BV), bone surface (BS), and number of trabeculae (Tb) in G2 and G4 were higher than in G1 and G3 (pperiodontal flap surgery group. LIPUS irradiation increased the number, volume, and area of new alveolar bone trabeculae. LIPUS has the potential to promote the repair of periodontal tissue, and may work effectively if combined with GTR. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Field trials results of guided wave tomography

    International Nuclear Information System (INIS)

    Volker, Arno; Zon, Tim van; Leden, Edwin van der

    2015-01-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Guided wave travel time tomography is a method capable of providing an absolute wall thickness map. This method is currently making the transition from the laboratory to the field. For this purpose a dedicated data acquisition system and special purpose EMAT sensor rings have been developed. The system can be deployed for permanent monitoring and inspections. Field trials have been conducted on various pipes with different diameters, containing either liquid or gas. The main focus has been on pipe supports. The results demonstrate the successful operation of the technology in the field. Expected corrosion damage was clearly visible on the produced results enabling asset owner to make calculated decisions on the pipelines safety, maintenance and operations

  6. Field trials results of guided wave tomography

    Science.gov (United States)

    Volker, Arno; van Zon, Tim; van der Leden, Edwin

    2015-03-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Guided wave travel time tomography is a method capable of providing an absolute wall thickness map. This method is currently making the transition from the laboratory to the field. For this purpose a dedicated data acquisition system and special purpose EMAT sensor rings have been developed. The system can be deployed for permanent monitoring and inspections. Field trials have been conducted on various pipes with different diameters, containing either liquid or gas. The main focus has been on pipe supports. The results demonstrate the successful operation of the technology in the field. Expected corrosion damage was clearly visible on the produced results enabling asset owner to make calculated decisions on the pipelines safety, maintenance and operations.

  7. Three-dimensional evaluation of human jaw bone microarchitecture: correlation between the microarchitectural parameters of cone beam computed tomography and micro-computer tomography.

    Science.gov (United States)

    Kim, Jo-Eun; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Huh, Kyung-Hoe

    2015-12-01

    To evaluate the potential feasibility of cone beam computed tomography (CBCT) in the assessment of trabecular bone microarchitecture. Sixty-eight specimens from four pairs of human jaw were scanned using both micro-computed tomography (micro-CT) of 19.37-μm voxel size and CBCT of 100-μm voxel size. The correlation of 3-dimensional parameters between CBCT and micro-CT was evaluated. All parameters, except bone-specific surface and trabecular thickness, showed linear correlations between the 2 imaging modalities (P < .05). Among the parameters, bone volume, percent bone volume, trabecular separation, and degree of anisotropy (DA) of CBCT images showed strong correlations with those of micro-CT images. DA showed the strongest correlation (r = 0.693). Most microarchitectural parameters from CBCT were correlated with those from micro-CT. Some microarchitectural parameters, especially DA, could be used as strong predictors of bone quality in the human jaw. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Evaluation of marginal and internal adaptation of hybrid and nanoceramic systems with microcomputed tomography: An in vitro study.

    Science.gov (United States)

    Yildirim, Güler; Uzun, Ismail H; Keles, Ali

    2017-08-01

    The accuracy of recently introduced chairside computer-aided design and computer-aided manufacturing (CAD-CAM) blocks is not well established, and marginal integrity and internal adaptation are not known. The purpose of this in vitro study was to evaluate the marginal and internal adaptation of hybrid and nanoceramics using microcomputed tomography (μ-CT). The marginal and internal adaptation of 3 polymer-infiltrated ceramic-network (PICN) materials (Vita Enamic [VE]; Lava Ultimate [LU]; Vita Suprinity [VS]) were compared with lithium disilicate (IPS e.max.CAD, IPS). Ninety-six specimens (48 dies and 48 crowns) were prepared (n=12 each group) using a chairside CAD-CAM system. The restorations were scanned with μ-CT, with 160 measurements made for each crown, and used in 2-dimensional (2D) analysis. The marginal adaptation of marginal discrepancy (MD), absolute marginal discrepancy (AMD), internal adaptation of shoulder area (SA), axial space (AS), and occlusal space (OS) were compared using appropriate statistical analysis methods (α=.05). Cement volumes were compared using 3D analysis. The IPS blocks showed higher MD (130 μm), AMD (156 μm), SA (111 μm) (P.05). IPS had the largest cement space at 18 mm 3 (Pmarginal and internal adaptation values were within a clinically acceptable range for all 3 hybrids and nanoceramics tested. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Automatic quantitative micro-computed tomography evaluation of angiogenesis in an axially vascularized tissue-engineered bone construct.

    Science.gov (United States)

    Arkudas, Andreas; Beier, Justus Patrick; Pryymachuk, Galyna; Hoereth, Tobias; Bleiziffer, Oliver; Polykandriotis, Elias; Hess, Andreas; Gulle, Heinz; Horch, Raymund E; Kneser, Ulrich

    2010-12-01

    We invented an automatic observer-independent quantitative method to analyze vascularization using micro-computed tomography (CT) along with three-dimensional (3D) reconstruction in a tissue engineering model. An arteriovenous loop was created in the medial thigh of 30 rats and was placed in a particulated porous hydroxyapatite and beta-tricalcium phosphate matrix, filled with fibrin (10 mg/mL fibrinogen and 2 IU/mL thrombin) without (group A) or with (group B) application of fibrin-gel-immobilized angiogenetic growth factors vascular endothelial growth factor (VEGF¹⁶⁵) and basic fibroblast growth factor (bFGF). The explantation intervals were 2, 4, and 8 weeks. Specimens were investigated by means of micro-CT followed by an automatic 3D analysis, which was correlated to histomorphometrical findings. In both groups, the arteriovenous loop led to generation of dense vascularized connective tissue with differentiated and functional vessels inside the matrix. Quantitative analysis of vascularization using micro-CT showed to be superior to histological analysis. The micro-CT analysis also allows the assessment of different other, more complex vascularization parameters within 3D constructs, demonstrating an early improvement of vascularization by application of fibrin-gel-immobilized VEGF¹⁶⁵ and bFGF. In this study quantitative analysis of vascularization using micro-CT along with 3D reconstruction and automatic analysis exhibit to be a powerful method superior to histological evaluation of cross sections.

  10. Synchrotron-radiation-based X-ray micro-computed tomography reveals dental bur debris under dental composite restorations.

    Science.gov (United States)

    Hedayat, Assem; Nagy, Nicole; Packota, Garnet; Monteith, Judy; Allen, Darcy; Wysokinski, Tomasz; Zhu, Ning

    2016-05-01

    Dental burs are used extensively in dentistry to mechanically prepare tooth structures for restorations (fillings), yet little has been reported on the bur debris left behind in the teeth, and whether it poses potential health risks to patients. Here it is aimed to image dental bur debris under dental fillings, and allude to the potential health hazards that can be caused by this debris when left in direct contact with the biological surroundings, specifically when the debris is made of a non-biocompatible material. Non-destructive micro-computed tomography using the BioMedical Imaging & Therapy facility 05ID-2 beamline at the Canadian Light Source was pursued at 50 keV and at a pixel size of 4 µm to image dental bur fragments under a composite resin dental filling. The bur's cutting edges that produced the fragment were also chemically analyzed. The technique revealed dental bur fragments of different sizes in different locations on the floor of the prepared surface of the teeth and under the filling, which places them in direct contact with the dentinal tubules and the dentinal fluid circulating within them. Dispersive X-ray spectroscopy elemental analysis of the dental bur edges revealed that the fragments are made of tungsten carbide-cobalt, which is bio-incompatible.

  11. Variation in Lateral Plate Quality in Threespine Stickleback from Fresh, Brackish and Marine Water: A Micro-Computed Tomography Study.

    Directory of Open Access Journals (Sweden)

    Elisabeth Wiig

    Full Text Available It is important to understand the drivers leading to adaptive phenotypic diversity within and among species. The threespine stickleback (Gasterosteus aculeatus has become a model system for investigating the genetic and phenotypic responses during repeated colonization of fresh waters from the original marine habitat. During the freshwater colonization process there has been a recurrent and parallel reduction in the number of lateral bone plates, making it a suitable system for studying adaptability and parallel evolution.The aim of this study was to investigate an alternative evolutionary path of lateral plate reduction, where lateral plates are reduced in size rather than number.A total of 72 threespine stickleback individuals from freshwater (n = 54, brackish water (n = 27 and marine water (n = 9 were analysed using microcomputed tomography (μCT to determine variation in size, thickness and structure of the lateral plates. Furthermore, whole-body bone volume, and bone volume, bone surface and porosity of lateral plate number 4 were quantified in all specimens from each environment.The results showed a significant difference in plate size (area and volume among populations, where threespine stickleback from polymorphic freshwater and brackish water populations displayed lateral plates reduced in size (area and volume compared to marine stickleback.Reduction of lateral plates in threespine stickleback in fresh and brackish water occurs by both plate loss and reduction in plate size (area and volume.

  12. Quantitative three-dimensional analysis of root canal curvature in maxillary first molars using micro-computed tomography.

    Science.gov (United States)

    Lee, Jong-Ki; Ha, Byung-Hyun; Choi, Jeong-Ho; Heo, Seok-Mo; Perinpanayagam, Hiran

    2006-10-01

    In endodontic therapy, access and instrumentation are strongly affected by root canal curvature. However, the few studies that have actually measured curvature are mostly from two-dimensional radiographs. The purpose of this study was to measure the three-dimensional (3D) canal curvature in maxillary first molars using micro-computed tomography (microCT) and mathematical modeling. Extracted maxillary first molars (46) were scanned by microCT (502 image slices/tooth, 1024 X 1024 pixels, voxel size of 19.5 x 19.5 x 39.0 microm) and their canals reconstructed by 3D modeling software. The intersection of major and minor axes in the canal space of each image slice were connected to create an imaginary central axis for each canal. The radius of curvature of the tangential circle was measured and inverted as a measure of curvature using custom-made mathematical modeling software. Root canal curvature was greatest in the apical third and least in the middle third for all canals. The greatest curvatures were in the mesiobuccal (MB) canal (0.76 +/- 0.48 mm(-1)) with abrupt curves, and the least curvatures were in the palatal (P) canal (0.38 +/- 0.34 mm(-1)) with a gradual curve. This study has measured the 3D curvature of root canals in maxillary first molars and reinforced the value of microCT with mathematical modeling.

  13. Using Micro-Computed Tomography to Evaluate the Dynamics of Orthodontically Induced Root Resorption Repair in a Rat Model.

    Directory of Open Access Journals (Sweden)

    Xiaolin Xu

    Full Text Available To observe dynamic changes in root resorption repair, tooth movement relapse and alveolar bone microstructure following the application of orthodontic force.Forces of 20 g, 50 g or 100 g were delivered to the left maxillary first molars of fifteen 10-week-old rats for 14 days. Each rat was subjected to micro-computed tomography scanning at 0, 3, 7, 10, 14, 28 and 42 days after force removal. The root resorption crater volume, tooth movement relapse and alveolar bone microarchitecture were measured at each time point.From day 3 to day 14, the root resorption volume decreased significantly in each group. In the 20-g force group, the root resorption volume gradually stabilized after 14 days, whereas in the 50-g and 100-g force groups, it stabilized after 28 days. In all groups, tooth movement relapsed significantly from day 0 to day 14 and then remained stable. From day 3 to day 10, the 20-g group exhibited faster relapse than the 50-g and 100-g groups. In all groups, the structure model index and trabecular separation decreased slowly from day 0 to day 10 and eventually stabilized. Trabecular number increased slowly from day 0 to day 7 and then stabilized.The initial stage of root resorption repair did not change significantly and was followed by a dramatic repair period before stabilizing. The most serious tooth movement relapse occurred immediately after the appliance was removed, and then the tooth completely returned to the original position.

  14. Interrupted orthodontic force results in less root resorption than continuous force in human premolars as measured by microcomputed tomography.

    Science.gov (United States)

    Sawicka, Monika; Bedini, Rossella; Wierzbicki, Piotr M; Pameijer, Cornelis H

    2014-01-01

    Root resorption is an undesirable but very frequently occurring sequel of orthodontic treatment. The aim of this study was to compare root resorption caused by either continuous (CF) or interrupted (IF) orthodontic force. The study was performed on human subjects on 30 first upper and lower premolars scheduled for extraction for orthodontic reasons. During four weeks before extraction 12 teeth were subjected to either CF or IF. The force was generated by a segmental titanium-molybdenum alloy cantilever spring that was activated in buccal direction. Initially a force of 60 CentiNewton was used in both CF and IF groups, the force in the former, however, was reactivated every week for 4 weeks. There was no reactivation of force in the IF group after initial application. A morphometric analysis of root resorption was performed by microcomputed tomography and the extent of tooth movement was measured on stone casts. Furthermore, a Tartarate-Resistant Acidic Phosphatase activity (TRAP), the marker enzyme of osteoclasts and cementoclasts, was determined by histochemical method. The Mann-Whitney U test was used to compare the difference in measured parameters between treatment and control tooth groups. The number of resorption craters was significantly higher and their average volume almost twice as large in the CF compared to the IF group (p root structure as opposed to continuous force while the same tooth movement was achieved.

  15. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer.

    Science.gov (United States)

    Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A; Then, Kong Yong

    2017-02-08

    Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.

  16. Virtual forensic entomology: improving estimates of minimum post-mortem interval with 3D micro-computed tomography.

    Science.gov (United States)

    Richards, Cameron S; Simonsen, Thomas J; Abel, Richard L; Hall, Martin J R; Schwyn, Daniel A; Wicklein, Martina

    2012-07-10

    We demonstrate how micro-computed tomography (micro-CT) can be a powerful tool for describing internal and external morphological changes in Calliphora vicina (Diptera: Calliphoridae) during metamorphosis. Pupae were sampled during the 1st, 2nd, 3rd and 4th quarter of development after the onset of pupariation at 23 °C, and placed directly into 80% ethanol for preservation. In order to find the optimal contrast, four batches of pupae were treated differently: batch one was stained in 0.5M aqueous iodine for 1 day; two for 7 days; three was tagged with a radiopaque dye; four was left unstained (control). Pupae stained for 7d in iodine resulted in the best contrast micro-CT scans. The scans were of sufficiently high spatial resolution (17.2 μm) to visualise the internal morphology of developing pharate adults at all four ages. A combination of external and internal morphological characters was shown to have the potential to estimate the age of blowfly pupae with a higher degree of accuracy and precision than using external morphological characters alone. Age specific developmental characters are described. The technique could be used as a measure to estimate a minimum post-mortem interval in cases of suspicious death where pupae are the oldest stages of insect evidence collected. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer

    Directory of Open Access Journals (Sweden)

    Pooi Ling Mok

    2017-02-01

    Full Text Available Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases.

  18. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    Energy Technology Data Exchange (ETDEWEB)

    Mitroglou, N.; Lorenzi, M.; Gavaises, M. [City University London, School of Mathematics Computer Science and Engineering, London (United Kingdom); Santini, M. [University of Bergamo, Department of Engineering, Bergamo (Italy)

    2016-11-15

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions. (orig.)

  19. Micro-Computed Tomography Detection of Gold Nanoparticle-Labelled Mesenchymal Stem Cells in the Rat Subretinal Layer

    Science.gov (United States)

    Mok, Pooi Ling; Leow, Sue Ngein; Koh, Avin Ee-Hwan; Mohd Nizam, Hairul Harun; Ding, Suet Lee Shirley; Luu, Chi; Ruhaslizan, Raduan; Wong, Hon Seng; Halim, Wan Haslina Wan Abdul; Ng, Min Hwei; Idrus, Ruszymah Binti Hj.; Chowdhury, Shiplu Roy; Bastion, Catherine Mae-Lynn; Subbiah, Suresh Kumar; Higuchi, Akon; Alarfaj, Abdullah A.; Then, Kong Yong

    2017-01-01

    Mesenchymal stem cells are widely used in many pre-clinical and clinical settings. Despite advances in molecular technology; the migration and homing activities of these cells in in vivo systems are not well understood. Labelling mesenchymal stem cells with gold nanoparticles has no cytotoxic effect and may offer suitable indications for stem cell tracking. Here, we report a simple protocol to label mesenchymal stem cells using 80 nm gold nanoparticles. Once the cells and particles were incubated together for 24 h, the labelled products were injected into the rat subretinal layer. Micro-computed tomography was then conducted on the 15th and 30th day post-injection to track the movement of these cells, as visualized by an area of hyperdensity from the coronal section images of the rat head. In addition, we confirmed the cellular uptake of the gold nanoparticles by the mesenchymal stem cells using transmission electron microscopy. As opposed to other methods, the current protocol provides a simple, less labour-intensive and more efficient labelling mechanism for real-time cell tracking. Finally, we discuss the potential manipulations of gold nanoparticles in stem cells for cell replacement and cancer therapy in ocular disorders or diseases. PMID:28208719

  20. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    Science.gov (United States)

    Mitroglou, N.; Lorenzi, M.; Santini, M.; Gavaises, M.

    2016-11-01

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions.

  1. Application of X-ray micro-computed tomography on high-speed cavitating diesel fuel flows

    International Nuclear Information System (INIS)

    Mitroglou, N.; Lorenzi, M.; Gavaises, M.; Santini, M.

    2016-01-01

    The flow inside a purpose built enlarged single-orifice nozzle replica is quantified using time-averaged X-ray micro-computed tomography (micro-CT) and high-speed shadowgraphy. Results have been obtained at Reynolds and cavitation numbers similar to those of real-size injectors. Good agreement for the cavitation extent inside the orifice is found between the micro-CT and the corresponding temporal mean 2D cavitation image, as captured by the high-speed camera. However, the internal 3D structure of the developing cavitation cloud reveals a hollow vapour cloud ring formed at the hole entrance and extending only at the lower part of the hole due to the asymmetric flow entry. Moreover, the cavitation volume fraction exhibits a significant gradient along the orifice volume. The cavitation number and the needle valve lift seem to be the most influential operating parameters, while the Reynolds number seems to have only small effect for the range of values tested. Overall, the study demonstrates that use of micro-CT can be a reliable tool for cavitation in nozzle orifices operating under nominal steady-state conditions. (orig.)

  2. Construction of three-dimensional tooth model by micro-computed tomography and application for data sharing.

    Science.gov (United States)

    Kato, A; Ohno, N

    2009-03-01

    The study of dental morphology is essential in terms of phylogeny. Advances in three-dimensional (3D) measurement devices have enabled us to make 3D images of teeth without destruction of samples. However, raw fundamental data on tooth shape requires complex equipment and techniques. An online database of 3D teeth models is therefore indispensable. We aimed to explore the basic methodology for constructing 3D teeth models, with application for data sharing. Geometric information on the human permanent upper left incisor was obtained using micro-computed tomography (micro-CT). Enamel, dentine, and pulp were segmented by thresholding of different gray-scale intensities. Segmented data were separately exported in STereo-Lithography Interface Format (STL). STL data were converted to Wavefront OBJ (OBJect), as many 3D computer graphics programs support the Wavefront OBJ format. Data were also applied to Quick Time Virtual Reality (QTVR) format, which allows the image to be viewed from any direction. In addition to Wavefront OBJ and QTVR data, the original CT series were provided as 16-bit Tag Image File Format (TIFF) images on the website. In conclusion, 3D teeth models were constructed in general-purpose data formats, using micro-CT and commercially available programs. Teeth models that can be used widely would benefit all those who study dental morphology.

  3. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Won; Lee, Woo Jin; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il; Yi, Won Ji [Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2015-03-15

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

  4. Potential Bone to Implant Contact Area of Short Versus Standard Implants: An In Vitro Micro-Computed Tomography Analysis.

    Science.gov (United States)

    Quaranta, Alessandro; DʼIsidoro, Orlando; Bambini, Fabrizio; Putignano, Angelo

    2016-02-01

    To compare the available potential bone-implant contact (PBIC) area of standard and short dental implants by micro-computed tomography (μCT) assessment. Three short implants with different diameters (4.5 × 6 mm, 4.1 × 7 mm, and 4.1 × 6 mm) and 2 standard implants (3.5 × 10 mm and 3.3 × 9 mm) with diverse design and surface features were scanned with μCT. Cross-sectional images were obtained. Image data were manually processed to find the plane that corresponds to the most coronal contact point between the crestal bone and implant. The available PBIC was calculated for each sample. Later on, the cross-sectional slices were processed by a 3-dimensional (3D) software, and 3D images of each sample were used for descriptive analysis and display the microtopography and macrotopography. The wide-diameter short implant (4.5 × 6 mm) showed the higher PBIC (210.89 mm) value followed by the standard (178.07 mm and 185.37 mm) and short implants (130.70 mm and 110.70 mm). Wide-diameter short implants show a surface area comparable with standard implants. Micro-CT analysis is a promising technique to evaluate surface area in dental implants with different macrodesign, microdesign, and surface features.

  5. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

    International Nuclear Information System (INIS)

    Kang, Sung Won; Lee, Woo Jin; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il; Yi, Won Ji

    2015-01-01

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

  6. Assessment of residual coronal tooth structure postendodontic cavity preparation using digital dental impressions and micro-computed tomography.

    Science.gov (United States)

    Al-Nuaimi, Nassr; Patel, Shanon; Foschi, Federico; Mannocci, Francesco; Austin, Rupert S

    To evaluate the in vitro accuracy of digital impressions for three-dimensional (3D) volumetric measurement of residual coronal tooth structure postendodontic cavity preparation, with reference to micro-computed tomography (μCT). Quantification of the accuracy and precision of the intraoral digital scanner (3M True Definition Scanner - IOS) was performed using a metrology gauge block and a profilometric calibration model. Thirty-four human extracted molars with endodontic access cavities were scanned using both intraoral scanning (test scanner) in high-resolution mode, and µCT (reference scanner: GE Locus SP μCT scanner) in high- (HiResCT) and low- (LoResCT) resolution modes. Comparisons of volumetric accuracy and 3D profilometric deviations were performed using surface metrology software. One-way repeated measures analysis of variance (ANOVA), in combination with the Bonferroni post hoc test, was implemented to compare the differences in volume measurements between scanning methods. Digital scanning revealed smaller volume measurements by 1.36% and 0.68% compared to HiResCT and LoResCT, respectively. There was a statistically significant difference in the volumetric measurements obtained from the IOS scanner and both HiResCT and LoResCT scans (P digital scanner was able to reliably measure the extra- and intracoronal aspect of the endodontically accessed tooth.

  7. Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts.

    Directory of Open Access Journals (Sweden)

    Robert S Stephenson

    Full Text Available The general anatomy of the cardiac conduction system (CCS has been known for 100 years, but its complex and irregular three-dimensional (3D geometry is not so well understood. This is largely because the conducting tissue is not distinct from the surrounding tissue by dissection. The best descriptions of its anatomy come from studies based on serial sectioning of samples taken from the appropriate areas of the heart. Low X-ray attenuation has formerly ruled out micro-computed tomography (micro-CT as a modality to resolve internal structures of soft tissue, but incorporation of iodine, which has a high molecular weight, into those tissues enhances the differential attenuation of X-rays and allows visualisation of fine detail in embryos and skeletal muscle. Here, with the use of a iodine based contrast agent (I(2KI, we present contrast enhanced micro-CT images of cardiac tissue from rat and rabbit in which the three major subdivisions of the CCS can be differentiated from the surrounding contractile myocardium and visualised in 3D. Structures identified include the sinoatrial node (SAN and the atrioventricular conduction axis: the penetrating bundle, His bundle, the bundle branches and the Purkinje network. Although the current findings are consistent with existing anatomical representations, the representations shown here offer superior resolution and are the first 3D representations of the CCS within a single intact mammalian heart.

  8. Enabling three-dimensional densitometric measurements using laboratory source X-ray micro-computed tomography

    Science.gov (United States)

    Pankhurst, M. J.; Fowler, R.; Courtois, L.; Nonni, S.; Zuddas, F.; Atwood, R. C.; Davis, G. R.; Lee, P. D.

    2018-01-01

    We present new software allowing significantly improved quantitative mapping of the three-dimensional density distribution of objects using laboratory source polychromatic X-rays via a beam characterisation approach (c.f. filtering or comparison to phantoms). One key advantage is that a precise representation of the specimen material is not required. The method exploits well-established, widely available, non-destructive and increasingly accessible laboratory-source X-ray tomography. Beam characterisation is performed in two stages: (1) projection data are collected through a range of known materials utilising a novel hardware design integrated into the rotation stage; and (2) a Python code optimises a spectral response model of the system. We provide hardware designs for use with a rotation stage able to be tilted, yet the concept is easily adaptable to virtually any laboratory system and sample, and implicitly corrects the image artefact known as beam hardening.

  9. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Alvarenga de Moura Meneses, Anderson, E-mail: ameneses@ieee.org [Radiological Sciences Laboratory, Rio de Janeiro State University, Rua Sao Francisco Xavier 524, CEP 20550-900, RJ (Brazil); Giusti, Alessandro [IDSIA (Dalle Molle Institute for Artificial Intelligence), University of Lugano (Switzerland); Pereira de Almeida, Andre; Parreira Nogueira, Liebert; Braz, Delson [Nuclear Engineering Program, Federal University of Rio de Janeiro, RJ (Brazil); Cely Barroso, Regina [Laboratory of Applied Physics on Biomedical Sciences, Physics Department, Rio de Janeiro State University, RJ (Brazil); Almeida, Carlos Eduardo de [Radiological Sciences Laboratory, Rio de Janeiro State University, Rua Sao Francisco Xavier 524, CEP 20550-900, RJ (Brazil)

    2011-12-21

    Synchrotron Radiation (SR) X-ray micro-Computed Tomography ({mu}CT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-{mu}CT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-{mu}CT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-{mu}CT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.

  10. Effectiveness of rosiglitazone on bleomycin-induced lung fibrosis: Assessed by micro-computed tomography and pathologic scores

    International Nuclear Information System (INIS)

    Jin, Gong Yong; Bok, Se Mi; Han, Young Min; Chung, Myung Ja; Yoon, Kwon-Ha; Kim, So Ri; Lee, Yong Chul

    2012-01-01

    Peroxisome proliferator-activated receptor-γ (PPARγ) agonists exhibit potent anti-fibrotic effects in the lung and other tissues. Recently, micro-computed tomography (CT) has been a useful tool for the investigation of lung diseases in small animals and is now increasingly applied to visualize and quantify the pulmonary structures. However, there is little information on the assessment for therapeutic effects of PPARγ agonists on the pulmonary fibrosis in mice using micro-CT. This study was aimed to determine the capability of micro-CT in examining the effects of rosiglitazone on pulmonary fibrosis. We used a murine model of bleomycin-induced lung fibrosis to evaluate the feasibility of micro-CT in evaluating the therapeutic potential of rosiglitazone on pulmonary fibrosis, comparing with pathologic scores. On micro-CT findings, ground glass opacity (80%) and consolidation (20%) were observed predominantly at 3 weeks after the instillation of bleomycin, and the radiologic features became more complex at 6 weeks. In bleomycin-instilled mice treated with rosiglitazone, the majority (80%) showed normal lung features on micro-CT. Radiological-pathologic correlation analyses revealed that ground glass opacity and consolidation were correlated closely with acute inflammation, while reticular opacity was well correlated with histological honeycomb appearance. These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis in mice and that the visualization of bleomycin-induced pulmonary fibrosis using micro-CT is satisfactory to assess the effects of rosiglitazone. It implies that micro-CT can be applied to evaluate therapeutic efficacies of a variety of candidate drugs for lung diseases.

  11. Characterization of the porous structures of the green body and sintered biomedical titanium scaffolds with micro-computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Arifvianto, B., E-mail: b.arifvianto@tudelft.nl; Leeflang, M.A.; Zhou, J.

    2016-11-15

    The present research was aimed at gaining an understanding of the porous structure changes from the green body through water leaching and sintering to titanium scaffolds. Micro-computed tomography (micro-CT) was performed to generate 3D models of titanium scaffold preforms containing carbamide space-holding particles and sintered scaffolds containing macro- and micro-pores. The porosity values and structural parameters were determined by means of image analysis. The result showed that the porosity values, macro-pore sizes, connectivity densities and specific surface areas of the titanium scaffolds sintered at 1200 °C for 3 h did not significantly deviate from those of the green structures with various volume fractions of the space holder. Titanium scaffolds with a maximum specific surface area could be produced with an addition of 60–65 vol% carbamide particles to the matrix powder. The connectivity of pores inside the scaffold increased with rising volume fraction of the space holder. The shrinkage of the scaffolds prepared with > 50 vol% carbamide space holder, occurring during sintering, was caused by the reductions of macro-pore sizes and micro-pore sizes as well as the thickness of struts. In conclusion, the final porous structural characteristics of titanium scaffolds could be estimated from those of the green body. - Highlights: •Porous structures of green body and sintered titanium scaffolds was studied. •Porous structures of both samples were quantitatively characterized with micro-CT. •Porous structures of scaffolds could be controlled from the green body. •Shrinkage mechanisms of titanium scaffolds during sintering was established.

  12. Use of Micro-Computed Tomography for Dental Studies in Modern and Fossil Odontocetes: Potential Applications and Limitations

    Directory of Open Access Journals (Sweden)

    Carolina Loch

    2013-10-01

    Full Text Available Teeth are important elements in studies of modern and fossil Cetacea (whales, dolphins, providing information on feeding habits, estimations of age and phylogenetic relationships. The growth layer groups (GLGs recorded in dentine have demonstrated application for aging studies, but also have the potential to elucidate life history phenomena such as metabolic or physiologic events. Micro-Computed Tomography (Micro-CT is a non-invasive and non-destructive technique that allows 3-dimensional study of mineralized tissues, such as human teeth, and their physical properties. Teeth from extant dolphins (Cetacea: Odontoceti and some fossil odontocetes were scanned in a Skyscan 1172 Micro-CT desktop system. X-rays were generated at 100 kV and 100 µA for extant samples, and at 80kV and 124 µA for fossils. 0.5 mm thick aluminum and copper filters were used in the beam. Reconstructed images were informative for most extant species, showing a good resolution of the enamel layer, dentine and pulp cavity. Greyscale changes in the dentinal layers were not resolved enough to show GLGs. Visualization of the internal structure in fossil cetacean teeth depended on the degree of diagenetic alteration in the specimen; undifferentiated enamel and dentine regions probably reflect secondary mineralization. However, internal details were finely resolved for one fossil specimen, showing the enamel, internal layers of dentine and the pulp cavity. Micro-CT has been proven to be a useful tool for resolving the internal morphology of fossil and extant teeth of cetaceans before they are sectioned for other morphological analyses; however some methodological refinements are still necessary to allow better resolution of dentine for potential application in non-destructive age determination studies.

  13. Micro-Computed Tomography Analysis of the Root Canal Morphology of Palatal Roots of Maxillary First Molars.

    Science.gov (United States)

    Marceliano-Alves, Marília; Alves, Flávio Rodrigues Ferreira; Mendes, Daniel de Melo; Provenzano, José Claudio

    2016-02-01

    A thorough knowledge of root canal anatomy is critical for successful root canal treatments. This study evaluated the internal anatomy of the palatal roots of maxillary first molars with micro-computed tomography (microCT). The palatal roots of extracted maxillary first molars (n = 169) were scanned with microCT to determine several anatomic parameters, including main canal classification, lateral canal occurrence and location, degree of curvature, main foramen position, apical constriction presence, diameters 1 and 2 mm from the apex and 1 mm from the foramen, minor dentin thickness in those regions, canal volume, surface area, and convexity. All canals were classified as Vertucci type I. The cross sections were oval in 61% of the canals. Lateral canals were found in 25% of the samples. The main foramen did not coincide with the root apex in 95% of the cases. Only 8% of the canals were classified as straight. Apical constriction was identified in 38% of the roots. The minor and major canal diameters and minor dentin thickness were decreased near the apex. The minor dentin thickness 1 mm from the foramen was 0.82 mm. The palatal canals exhibited a volume of 6.91 mm(3) and surface area of 55.31 mm(2) and were rod-shaped. The root canals of the palatal roots were classified as type I. However, some factors need to be considered during the treatment of these roots, including the frequent ocurrence of moderate/severe curvatures, oval-shaped cross-sections, and lateral canals, noncoincidence of the apical foramen with the root apex, and absence of apical constriction in most cases. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)

    International Nuclear Information System (INIS)

    Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y.; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han

    2012-01-01

    The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO 4 ) solution. As a tissue-staining contrast agent, OsO 4 is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO 4 preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE -/- ) mice at 10 μm resolution. The results show that walls of coronary arteries as small as 45 μm in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO 4 and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.

  15. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    International Nuclear Information System (INIS)

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron

    2010-01-01

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 μm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 μm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154±113 μm. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  16. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    International Nuclear Information System (INIS)

    Moding, Everett J.; Clark, Darin P.; Qi, Yi; Li, Yifan; Ma, Yan; Ghaghada, Ketan; Johnson, G. Allan; Kirsch, David G.; Badea, Cristian T.

    2013-01-01

    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P 2 =0.53) and dextran accumulation (R 2 =0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment

  17. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Moding, Everett J. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Clark, Darin P.; Qi, Yi [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Li, Yifan; Ma, Yan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Ghaghada, Ketan [The Edward B. Singleton Department of Pediatric Radiology, Texas Children' s Hospital, Houston, Texas (United States); Johnson, G. Allan [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Kirsch, David G. [Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina (United States); Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Badea, Cristian T., E-mail: cristian.badea@duke.edu [Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States)

    2013-04-01

    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at day 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P<.05). There was a positive correlation between CT measurement of tumor FBV on day 1 and extravasated iodine on day 4 with microvascular density (MVD) on day 4 (R{sup 2}=0.53) and dextran accumulation (R{sup 2}=0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment.

  18. Integration and evaluation of a needle-positioning robot with volumetric microcomputed tomography image guidance for small animal stereotactic interventions

    Energy Technology Data Exchange (ETDEWEB)

    Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek; Holdsworth, David W.; Lacefield, James C.; Fenster, Aaron [Biomedical Engineering Graduate Program and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Medical Biophysics and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, Department of Surgery, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Electrical and Computer Engineering, Department of Medical Biophysics, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada); Biomedical Engineering Graduate Program, Department of Medical Biophysics, Department of Medical Imaging, and Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)

    2010-04-15

    Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.

  19. Micro-computed tomography assessment of human alveolar bone: bone density and three-dimensional micro-architecture.

    Science.gov (United States)

    Kim, Yoon Jeong; Henkin, Jeffrey

    2015-04-01

    Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.

  20. Effectiveness of rosiglitazone on bleomycin-induced lung fibrosis: Assessed by micro-computed tomography and pathologic scores

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Gong Yong; Bok, Se Mi; Han, Young Min [Department of Radiology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Chung, Myung Ja [Department of Pathology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Yoon, Kwon-Ha [Department of Radiology, Iksan Hospital, Iksan (Korea, Republic of); Kim, So Ri [Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Yong Chul, E-mail: leeyc@jbnu.ac.kr [Department of Internal Medicine and Research Center for Pulmonary Disorders, Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2012-08-15

    Peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) agonists exhibit potent anti-fibrotic effects in the lung and other tissues. Recently, micro-computed tomography (CT) has been a useful tool for the investigation of lung diseases in small animals and is now increasingly applied to visualize and quantify the pulmonary structures. However, there is little information on the assessment for therapeutic effects of PPAR{gamma} agonists on the pulmonary fibrosis in mice using micro-CT. This study was aimed to determine the capability of micro-CT in examining the effects of rosiglitazone on pulmonary fibrosis. We used a murine model of bleomycin-induced lung fibrosis to evaluate the feasibility of micro-CT in evaluating the therapeutic potential of rosiglitazone on pulmonary fibrosis, comparing with pathologic scores. On micro-CT findings, ground glass opacity (80%) and consolidation (20%) were observed predominantly at 3 weeks after the instillation of bleomycin, and the radiologic features became more complex at 6 weeks. In bleomycin-instilled mice treated with rosiglitazone, the majority (80%) showed normal lung features on micro-CT. Radiological-pathologic correlation analyses revealed that ground glass opacity and consolidation were correlated closely with acute inflammation, while reticular opacity was well correlated with histological honeycomb appearance. These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis in mice and that the visualization of bleomycin-induced pulmonary fibrosis using micro-CT is satisfactory to assess the effects of rosiglitazone. It implies that micro-CT can be applied to evaluate therapeutic efficacies of a variety of candidate drugs for lung diseases.

  1. Quantitative in vivo micro-computed tomography for assessment of age-dependent changes in murine whole-body composition

    Directory of Open Access Journals (Sweden)

    Kim L. Beaucage

    2016-12-01

    Full Text Available Micro-computed tomography (micro-CT is used routinely to quantify skeletal tissue mass in small animal models. Our goal was to evaluate repeated in vivo micro-CT imaging for monitoring whole-body composition in studies of growth and aging in mice. Male mice from 2 to 52 weeks of age were anesthetized and imaged using an eXplore Locus Ultra and/or eXplore speCZT scanner. Images were reconstructed into 3D volumes, signal-intensity thresholds were used to classify each voxel as adipose, lean or skeletal tissue, and tissue masses were calculated from known density values. Images revealed specific changes in tissue distribution with growth and aging. Quantification showed biphasic increases in total CT-derived body mass, lean and skeletal tissue masses, consisting of rapid increases to 8 weeks of age, followed by slow linear increases to 52 weeks. In contrast, bone mineral density increased rapidly to a stable plateau at ~14 weeks of age. On the other hand, adipose tissue mass increased continuously with age. A micro-CT-derived total mass was calculated for each mouse and compared with gravimetrically measured mass, which differed on average by <3%. Parameters were highly reproducible for mice of the same age, but variability increased slightly with age. There was also good agreement in parameters for the same group of mice scanned on the eXplore Locus Ultra and eXplore speCZT systems. This study provides reference values for normative comparisons; as well, it demonstrates the usefulness of in vivo single-energy micro-CT scans to quantify whole-body composition in high-throughput studies of growth and aging in mice. Keywords: Adipose tissue, Bone mineral content, Bone mineral density, Growth, Lean tissue, Skeletal tissue

  2. Potential and limitations of X-Ray micro-computed tomography in arthropod neuroanatomy: A methodological and comparative survey

    Science.gov (United States)

    Sombke, Andy; Lipke, Elisabeth; Michalik, Peter; Uhl, Gabriele; Harzsch, Steffen

    2015-01-01

    Classical histology or immunohistochemistry combined with fluorescence or confocal laser scanning microscopy are common techniques in arthropod neuroanatomy, and these methods often require time-consuming and difficult dissections and sample preparations. Moreover, these methods are prone to artifacts due to compression and distortion of tissues, which often result in information loss and especially affect the spatial relationships of the examined parts of the nervous system in their natural anatomical context. Noninvasive approaches such as X-ray micro-computed tomography (micro-CT) can overcome such limitations and have been shown to be a valuable tool for understanding and visualizing internal anatomy and structural complexity. Nevertheless, knowledge about the potential of this method for analyzing the anatomy and organization of nervous systems, especially of taxa with smaller body size (e.g., many arthropods), is limited. This study set out to analyze the brains of selected arthropods with micro-CT, and to compare these results with available histological and immunohistochemical data. Specifically, we explored the influence of different sample preparation procedures. Our study shows that micro-CT is highly suitable for analyzing arthropod neuroarchitecture in situ and allows specific neuropils to be distinguished within the brain to extract quantitative data such as neuropil volumes. Moreover, data acquisition is considerably faster compared with many classical histological techniques. Thus, we conclude that micro-CT is highly suitable for targeting neuroanatomy, as it reduces the risk of artifacts and is faster than classical techniques. J. Comp. Neurol. 523:1281–1295, 2015. © 2015 Wiley Periodicals, Inc. PMID:25728683

  3. Automated segmentation of synchrotron radiation micro-computed tomography biomedical images using Graph Cuts and neural networks

    International Nuclear Information System (INIS)

    Alvarenga de Moura Meneses, Anderson; Giusti, Alessandro; Pereira de Almeida, André; Parreira Nogueira, Liebert; Braz, Delson; Cely Barroso, Regina; Almeida, Carlos Eduardo de

    2011-01-01

    Synchrotron Radiation (SR) X-ray micro-Computed Tomography (μCT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-μCT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-μCT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-μCT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.

  4. Impaired bone formation in ovariectomized mice reduces implant integration as indicated by longitudinal in vivo micro-computed tomography.

    Science.gov (United States)

    Li, Zihui; Kuhn, Gisela; Schirmer, Michael; Müller, Ralph; Ruffoni, Davide

    2017-01-01

    Although osteoporotic bone, with low bone mass and deteriorated bone architecture, provides a less favorable mechanical environment than healthy bone for implant fixation, there is no general agreement on the impact of osteoporosis on peri-implant bone (re)modeling, which is ultimately responsible for the long term stability of the bone-implant system. Here, we inserted an implant in a mouse model mimicking estrogen deficiency-induced bone loss and we monitored with longitudinal in vivo micro-computed tomography the spatio-temporal changes in bone (re)modeling and architecture, considering the separate contributions of trabecular, endocortical and periosteal surfaces. Specifically, 12 week-old C57BL/6J mice underwent OVX/SHM surgery; 9 weeks after we inserted special metal-ceramics implants into the 6th caudal vertebra and we measured bone response with in vivo micro-CT weekly for the following 6 weeks. Our results indicated that ovariectomized mice showed a reduced ability to increase the thickness of the cortical shell close to the implant because of impaired peri-implant bone formation, especially at the periosteal surface. Moreover, we observed that healthy mice had a significantly higher loss of trabecular bone far from the implant than estrogen depleted animals. Such behavior suggests that, in healthy mice, the substantial increase in peri-implant bone formation which rapidly thickened the cortex to secure the implant may raise bone resorption elsewhere and, specifically, in the trabecular network of the same bone but far from the implant. Considering the already deteriorated bone structure of estrogen depleted mice, further bone loss seemed to be hindered. The obtained knowledge on the dynamic response of diseased bone following implant insertion should provide useful guidelines to develop advanced treatments for osteoporotic fracture fixation based on local and selective manipulation of bone turnover in the peri-implant region.

  5. Impaired bone formation in ovariectomized mice reduces implant integration as indicated by longitudinal in vivo micro-computed tomography.

    Directory of Open Access Journals (Sweden)

    Zihui Li

    Full Text Available Although osteoporotic bone, with low bone mass and deteriorated bone architecture, provides a less favorable mechanical environment than healthy bone for implant fixation, there is no general agreement on the impact of osteoporosis on peri-implant bone (remodeling, which is ultimately responsible for the long term stability of the bone-implant system. Here, we inserted an implant in a mouse model mimicking estrogen deficiency-induced bone loss and we monitored with longitudinal in vivo micro-computed tomography the spatio-temporal changes in bone (remodeling and architecture, considering the separate contributions of trabecular, endocortical and periosteal surfaces. Specifically, 12 week-old C57BL/6J mice underwent OVX/SHM surgery; 9 weeks after we inserted special metal-ceramics implants into the 6th caudal vertebra and we measured bone response with in vivo micro-CT weekly for the following 6 weeks. Our results indicated that ovariectomized mice showed a reduced ability to increase the thickness of the cortical shell close to the implant because of impaired peri-implant bone formation, especially at the periosteal surface. Moreover, we observed that healthy mice had a significantly higher loss of trabecular bone far from the implant than estrogen depleted animals. Such behavior suggests that, in healthy mice, the substantial increase in peri-implant bone formation which rapidly thickened the cortex to secure the implant may raise bone resorption elsewhere and, specifically, in the trabecular network of the same bone but far from the implant. Considering the already deteriorated bone structure of estrogen depleted mice, further bone loss seemed to be hindered. The obtained knowledge on the dynamic response of diseased bone following implant insertion should provide useful guidelines to develop advanced treatments for osteoporotic fracture fixation based on local and selective manipulation of bone turnover in the peri-implant region.

  6. Analysis of mandibular second molars with fused roots and shallow radicular grooves by using micro-computed tomography.

    Science.gov (United States)

    Amoroso-Silva, Pablo; De Moraes, Ivaldo Gomes; Marceliano-Alves, Marilia; Bramante, Clovis Monteiro; Zapata, Ronald Ordinola; Hungaro Duarte, Marco Antonio

    2018-01-01

    This study aimed to describe the morphological and morphometric aspects of fused mandibular second molars with radicular shallow grooves using micro-computed tomography (CT). Eighty-eight mandibular second molars with fused roots were scanned in a micro-CT scanner at a voxel size of 19.6 μm. After reconstruction, only molars without C-shaped roots and presenting shallow radicular grooves were selected. 30 molars were chosen for further analysis. Canal cross-sections were classified according to Fan's modified classification (C1, C2, C3, and C4) and morphometric parameters at the apical region, examination of accessory foramina and tridimensional configuration were evaluated. Three-dimensional reconstructions indicated a higher prevalence of merging type ( n = 22). According to Fan's modified classification, the C4 configuration was predominant in the 3 apical mm. Roundness median values revealed a more round-shaped canals at 3 mm (0.72) than at 2 (0.63) and 1 (0.61) mm from the apex. High values of major and minor diameters were observed in the canals of these evaluated sections. In addition, few accessory apical foramina were observed at 1 and 2 mm from the apex. The average distance between last accessory foramina and the anatomic apex was 1.17 mm. A less complex internal anatomy is found when a mandibular second molar presents fused roots with shallow radicular grooves. The merging type canal was frequently observed. Moreover, the C4 configuration was predominant at a point 3 mm from the apex and presented rounded canals, large apical diameters, and few accessory foramina. The cervical and middle thirds presented C3 and C1 canal configurations most frequently. A minor morphological complexity is found when fused mandibular second molars present shallow radicular grooves.

  7. The dental cavities of equine cheek teeth: three-dimensional reconstructions based on high resolution micro-computed tomography

    Directory of Open Access Journals (Sweden)

    Kopke Susan

    2012-09-01

    Full Text Available Abstract Background Recent studies reported on the very complex morphology of the pulp system in equine cheek teeth. The continuous production of secondary dentine leads to distinct age-related changes of the endodontic cavity. Detailed anatomical knowledge of the dental cavities in all ages is required to explain the aetiopathology of typical equine endodontic diseases. Furthermore, data on mandibular and maxillary pulp systems is in high demand to provide a basis for the development of endodontic therapies. However, until now examination of the pulp cavity has been based on either sectioned teeth or clinical computed tomography. More precise results were expected by using micro-computed tomography with a resolution of about 0.1 mm and three-dimensional reconstructions based on previous greyscale analyses and histological verification. The aim of the present study was to describe the physiological configurations of the pulp system within a wide spectrum of tooth ages. Results Maxillary teeth: All morphological constituents of the endodontic cavity were present in teeth between 4 and 16 years: Triadan 06s displayed six pulp horns and five root canals, Triadan 07-10s five pulp horns and four root canals and Triadan 11s seven pulp horns and four to six root canals. A common pulp chamber was most frequent in teeth ≤5 years, but was found even in a tooth of 9 years. A large variety of pulp configurations was observed within 2.5 and 16 years post eruption, but most commonly a separation into mesial and distal pulp compartments was seen. Maxillary cheek teeth showed up to four separate pulp compartments but the frequency of two, three and four pulp compartments was not related to tooth age (P > 0.05. In Triadan 06s, pulp horn 6 was always connected to pulp horns 1 and 3 and root canal I. In Triadan 11s, pulp horns 7 and 8 were present in variable constitutions. Mandibular teeth: A common pulp chamber was present in teeth up to 15 years, but most

  8. Determination of strain fields in porous shape memory alloys using micro-computed tomography

    Science.gov (United States)

    Bormann, Therese; Friess, Sebastian; de Wild, Michael; Schumacher, Ralf; Schulz, Georg; Müller, Bert

    2010-09-01

    Shape memory alloys (SMAs) belong to 'intelligent' materials since the metal alloy can change its macroscopic shape as the result of the temperature-induced, reversible martensite-austenite phase transition. SMAs are often applied for medical applications such as stents, hinge-less instruments, artificial muscles, and dental braces. Rapid prototyping techniques, including selective laser melting (SLM), allow fabricating complex porous SMA microstructures. In the present study, the macroscopic shape changes of the SMA test structures fabricated by SLM have been investigated by means of micro computed tomography (μCT). For this purpose, the SMA structures are placed into the heating stage of the μCT system SkyScan 1172™ (SkyScan, Kontich, Belgium) to acquire three-dimensional datasets above and below the transition temperature, i.e. at room temperature and at about 80°C, respectively. The two datasets were registered on the basis of an affine registration algorithm with nine independent parameters - three for the translation, three for the rotation and three for the scaling in orthogonal directions. Essentially, the scaling parameters characterize the macroscopic deformation of the SMA structure of interest. Furthermore, applying the non-rigid registration algorithm, the three-dimensional strain field of the SMA structure on the micrometer scale comes to light. The strain fields obtained will serve for the optimization of the SLM-process and, more important, of the design of the complex shaped SMA structures for tissue engineering and medical implants.

  9. Three-Dimensional Imaging Using Microcomputed Tomography For Studying Gaharu Morphology

    International Nuclear Information System (INIS)

    Yazid, Khair'iah; Bin Awang, Mat Rasol; Mohamed, Abdul Aziz; Bin Hj Khalid, Mohd Ashhar; Masschaele, Bert; Abdullah, Mohd. Zaid; Saleh, Junita Mohamad

    2010-01-01

    To demonstrates the potential application of the high resolution X-ray micro-CT technique in the analysis of internal structure in Gaharu wood. Gaharu or internationally, Agar wood, is known for its fragrant resinous wood. The hardware device used in this study was an X-ray micro-CT scanner at Center of Tomography (UGCT), CT facility in Ghent University, Belgium. This technique allows the 3D investigation of the internal structure of the wood in a non-destructive way. Most of the data analysis was done with the software VG Studio Max and MATLAB. Here we present some preliminary results from three-dimensional images from a piece of high grade Gaharu. Micro-CT images of the specimens were obtained at 7 μm resolution. Besides a clear distinction between pores and material, some bright white areas occur in the reconstruction images. Not only the volume visualization is helpful, morphological parameters of open-pores and dark resins are calculated from these 3D data set. The micro-CT technique is a valid support for evaluating the pores structure and resin distribution in Gaharu.

  10. Vascular imaging with contrast agent in hard and soft tissues using microcomputed-tomography.

    Science.gov (United States)

    Blery, P; Pilet, P; Bossche, A Vanden-; Thery, A; Guicheux, J; Amouriq, Y; Espitalier, F; Mathieu, N; Weiss, P

    2016-04-01

    Vascularization is essential for many tissues and is a main requisite for various tissue-engineering strategies. Different techniques are used for highlighting vasculature, in vivo and ex vivo, in 2-D or 3-D including histological staining, immunohistochemistry, radiography, angiography, microscopy, computed tomography (CT) or micro-CT, both stand-alone and synchrotron system. Vascularization can be studied with or without a contrast agent. This paper presents the results obtained with the latest Skyscan micro-CT (Skyscan 1272, Bruker, Belgium) following barium sulphate injection replacing the bloodstream in comparison with results obtained with a Skyscan In Vivo 1076. Different hard and soft tissues were perfused with contrast agent and were harvested. Samples were analysed using both forms of micro-CT, and improved results were shown using this new micro-CT. This study highlights the vasculature using micro-CT methods. The results obtained with the Skyscan 1272 are clearly defined compared to results obtained with Skyscan 1076. In particular, this instrument highlights the high number of small vessels, which were not seen before at lower resolution. This new micro-CT opens broader possibilities in detection and characterization of the 3-D vascular tree to assess vascular tissue engineering strategies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  11. Complex Odontoma: A Case Report with Micro-Computed Tomography Findings

    Directory of Open Access Journals (Sweden)

    L. A. N. Santos

    2016-01-01

    Full Text Available Odontomas are the most common benign tumors of odontogenic origin. They are normally diagnosed on routine radiographs, due to the absence of symptoms. Histopathologic evaluation confirms the diagnosis especially in cases of complex odontoma, which may be confused during radiographic examination with an osteoma or other highly calcified bone lesions. The micro-CT is a new technology that enables three-dimensional analysis with better spatial resolution compared with cone beam computed tomography. Another great advantage of this technology is that the sample does not need special preparation or destruction in the sectioned area as in histopathologic evaluation. An odontoma with CBCT and microtomography images is presented in a 26-year-old man. It was first observed on panoramic radiographs and then by CBCT. The lesion and the impacted third molar were surgically excised using a modified Neumann approach. After removal, it was evaluated by histopathology and microtomography to confirm the diagnostic hypothesis. According to the results, micro-CT enabled the assessment of the sample similar to histopathology, without destruction of the sample. With further development, micro-CT could be a powerful diagnostic tool in future research.

  12. Bone histomorphometric quantification by X-ray phase contrast and transmission 3D SR microcomputed tomography

    International Nuclear Information System (INIS)

    Nogueira, L.P.; Pinheiro, C.J.G.; Braz, D.; Oliveira, L.F.; Barroso, R.C.

    2008-01-01

    Full text: Conventional histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed tomography is a noninvasive technique, which can be used to evaluate histomorphometric indices. In this technique, the output 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. Looking for better resolutions and visualization of soft tissues, X-ray phase contrast imaging technique was developed. The objective of this work was to perform histomorphometric quantification of human cancellous bone using 3D synchrotron X ray computed microtomography, using two distinct techniques: transmission and phase contrast, in order to compare the results and evaluate the viability of applying the same methodology of quantification for both technique. All experiments were performed at the ELETTRA Synchrotron Light Laboratory in Trieste (Italy). MicroCT data sets were collected using the CT set-up on the SYRMEP (Synchrotron Radiation for Medical Physics) beamline. Results showed that there is a better correlation between histomorphometric parameters of both techniques when morphological filters had been used. However, using these filters, some important information given by phase contrast are lost and they shall be explored by new techniques of quantification

  13. Evaluating tooth restorations: micro-computed tomography in practical training for students in dentistry

    Science.gov (United States)

    Deyhle, Hans; Schmidli, Fredy; Krastl, Gabriel; Müller, Bert

    2010-09-01

    Direct composite fillings belong to widespread tooth restoration techniques in dental medicine. The procedure consists of successive steps, which include etching of the prepared tooth surface, bonding and placement of composite in incrementally built up layers. Durability and lifespan of the composite inlays strongly depend on the accurate completion of the individual steps to be also realized by students in dental medicine. Improper handling or nonconformity in the bonding procedure often lead to air enclosures (bubbles) as well as to significant gaps between the composite layers or at the margins of the restoration. Traditionally one analyzes the quality of the restoration cutting the tooth in an arbitrarily selected plane and inspecting this plane by conventional optical microscopy. Although the precision of this established method is satisfactory, it is restricted to the selected two-dimensional plane. Rather simple micro computed tomography (μCT) systems, such as SkyScan 1174™, allows for the non-destructive three-dimensional imaging of restored teeth ex vivo and virtually cutting the tomographic data in any desired direction, offering a powerful tool for inspection of the restored tooth with micrometer resolution before cutting and thus also to select a two-dimensional plane with potential defects. In order to study the influence of the individual steps on the resulted tooth restoration, direct composite fillings were placed in mod cavities of extracted teeth. After etching, an adhesive was applied in half of the specimens. From the tomographic datasets, it becomes clear that gaps occur more frequently when bonding is omitted. The visualization of air enclosures offers to determine the probability to find a micrometer-sized defect using an arbitrarily selected cutting plane for inspection.

  14. Validation of Optical Coherence Tomography against Micro-computed Tomography for Evaluation of Remaining Coronal Dentin Thickness.

    Science.gov (United States)

    Majkut, Patrycja; Sadr, Alireza; Shimada, Yasushi; Sumi, Yasunori; Tagami, Junji

    2015-08-01

    Optical coherence tomography (OCT) is a noninvasive modality to obtain in-depth images of biological structures. A dental OCT system has become available for chairside application. This in vitro study hypothesized that swept-source OCT can be used to measure the remaining dentin thickness (RDT) at the roof of the dental pulp chamber during excavation of deep caries. Human molar teeth with deep occlusal caries were investigated. After obtaining 2-dimensional and 3-dimensional OCT scans using a swept-source OCT system at a 1330-nm center wavelength, RDT was evaluated by image analysis software. Microfocus x-ray computed tomographic (micro-CT) images were obtained from the same cross sections to confirm OCT findings. The smallest RDT values at the visible pulp horn were measured on OCT and micro-CT imaging and compared using the Pearson correlation. Pulpal horns and pulp chamber roof observation under OCT and micro-CT imaging resulted in comparable images that allowed the measurement of coronal dentin thickness. RDT measured by OCT showed optical values range between 140 and 2300 μm, which corresponded to the range of 92-1524 μm on micro-CT imaging. A strong correlation was found between the 2 techniques (r = 0.96, P structures during deep caries excavation. Exposure of the vital dental pulp because of the removal of very thin remaining coronal dentin can be avoided with this novel noninvasive technique. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Retention assessment of magnetic nanoparticles in rat arteries with micro-computed tomography.

    Science.gov (United States)

    Tu, Shu-Ju; Wu, Siao-Yun; Wang, Fu-Sheng; Ma, Yunn-Hwa

    2014-03-07

    Magnetic nanoparticles (MNPs) may serve as carriers for pharmacological agents to the target in a magnetic-force guiding system. It is essential to achieve effective retention of MNPs through the external magnet placement. However, it is difficult to estimate the retention efficiency of MNPs and validate the experimental strategies. Micro-CT was used to identify the spatial distribution of MNP retention and image analysis is then extended to evaluate the MNP delivery efficiency. Male Sprague Dawley rats were anesthetized to expose abdominal arteries with an NdFeB magnet of 4.9 kG placed by the left iliac artery. After a 20 min equilibrium period, arteries were ligated, removed and fixed in a paraformaldehyde solution. Experiments were performed with intravenous injection in our platform with two independent groups. MNPs were used in the first group, while chemical compounds of recombinant tissue plaminogen activator were attached to MNPs as rtPA (recombinant tissue plaminogen activator)-MNPs in the second group. Image analysis of micro-CT shows the average retention volume of MNPs and rtPA-MNPs in the left iliac arteries is 9.3 and 6.3 fold of that in the right. Large local aggregation of MNPs and rtPA-MNPs in the left iliac arteries is the consequence of external magnet placement, suggesting feasibility of magnetic targeting through the intravenous administration. We also determined that on average 0.57% and 0.064% of MNPs and rtPA-MNPs respectively were retained in the left iliac artery. It was estimated that the average rtPA concentration of 60.16 µg mL(-1) may be achieved with rtPA-MNPs. With the micro-CT imaging approach, we accomplished visualization of the aggregation of retained particles; reconstructed 3D distribution of relative retention; estimated the average particle number of local retention; determined efficiency of targeted delivery. In particular, our quantitative image assessment suggests that intravenous administration of rtPA-MNPs may retain

  16. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    Science.gov (United States)

    Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.

    2016-09-01

    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it

  17. Intramembranous bone healing process subsequent to tooth extraction in mice: micro-computed tomography, histomorphometric and molecular characterization.

    Science.gov (United States)

    Vieira, Andreia Espindola; Repeke, Carlos Eduardo; Ferreira Junior, Samuel de Barros; Colavite, Priscila Maria; Biguetti, Claudia Cristina; Oliveira, Rodrigo Cardoso; Assis, Gerson Francisco; Taga, Rumio; Trombone, Ana Paula Favaro; Garlet, Gustavo Pompermaier

    2015-01-01

    Bone tissue has a significant potential for healing, which involves a significant the interplay between bone and immune cells. While fracture healing represents a useful model to investigate endochondral bone healing, intramembranous bone healing models are yet to be developed and characterized. In this study, a micro-computed tomography, histomorphometric and molecular (RealTimePCRarray) characterization of post tooth-extraction alveolar bone healing was performed on C57Bl/6 WT mice. After the initial clot dominance (0 h), the development of a provisional immature granulation tissue is evident (7 d), characterized by marked cell proliferation, angiogenesis and inflammatory cells infiltration; associated with peaks of growth factors (BMP-2-4-7,TGFβ1,VEGFa), cytokines (TNFα, IL-10), chemokines & receptors (CXCL12, CCL25, CCR5, CXCR4), matrix (Col1a1-2, ITGA4, VTN, MMP1a) and MSCs (CD105, CD106, OCT4, NANOG, CD34, CD146) markers expression. Granulation tissue is sequentially replaced by more mature connective tissue (14 d), characterized by inflammatory infiltrate reduction along the increased bone formation, marked expression of matrix remodeling enzymes (MMP-2-9), bone formation/maturation (RUNX2, ALP, DMP1, PHEX, SOST) markers, and chemokines & receptors associated with healing (CCL2, CCL17, CCR2). No evidences of cartilage cells or tissue were observed, strengthening the intramembranous nature of bone healing. Bone microarchitecture analysis supports the evolving healing, with total tissue and bone volumes as trabecular number and thickness showing a progressive increase over time. The extraction socket healing process is considered complete (21 d) when the dental socket is filled by trabeculae bone with well-defined medullary canals; it being the expression of mature bone markers prevalent at this period. Our data confirms the intramembranous bone healing nature of the model used, revealing parallels between the gene expression profile and the

  18. Prediction of primary breast cancer size and T-stage using micro-computed tomography in lumpectomy specimens

    Directory of Open Access Journals (Sweden)

    Wafa M Sarraj

    2015-01-01

    Full Text Available Background: Histopathology is the only accepted method to measure and stage the breast tumor size. However, there is a need to find another method to measure and stage the tumor size when the pathological assessment is not available. Micro-computed tomography. (micro-CT has the ability to measure tumor in three dimensions in an intact lumpectomy specimen. In this study, we aimed to determine the accuracy of micro-CT to measure and stage the primary tumor size in breast lumpectomy specimens, as compared to the histopathology. Materials and Methods: Seventy-two women who underwent lumpectomy surgery at the Massachusetts General Hospital Department of Surgery from June 2011 to September 2011, and from August 2013 to December 2013 participated in this study. The lumpectomy specimens were scanned using micro-CT followed by routine pathological processing. The maximum dimension of the invasive breast tumor was obtained from the micro-CT image and was compared to the corresponding pathology report for each subject. Results: The invasive tumor size measurement by micro-CT was underestimated in 24. cases. (33%, overestimated in 37. cases. (51%, and matched it exactly in 11. cases. (15% compared to the histopathology measurement for all the cases. However, micro-CT T.stage classification differed from histopathology in only 11. (15.2% with 6. cases. (8.3% classified as a higher stage by micro-CT, and 5. cases. (6.9% classified as lower compared to histopathology. In addition, micro-CT demonstrated a statically significant strong agreement (κ =0.6, P < 0.05 with pathological tumor size and staging for invasive ductal carcinoma. (IDC group. In contrast, there was no agreement. (κ = .2, P = 0.67 between micro-CT and pathology in estimating and staging tumor size for invasive lobular carcinoma. (ILC group. This could be explained by a small sample size. (7 for ILC group. Conclusions: Micro-CT is a promising modality for measuring and staging the IDC.

  19. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    International Nuclear Information System (INIS)

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-01-01

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm 3 , which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm 3 , requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm 3 ) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm 3 and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0.05, Tukey's HSD

  20. Intramembranous bone healing process subsequent to tooth extraction in mice: micro-computed tomography, histomorphometric and molecular characterization.

    Directory of Open Access Journals (Sweden)

    Andreia Espindola Vieira

    Full Text Available Bone tissue has a significant potential for healing, which involves a significant the interplay between bone and immune cells. While fracture healing represents a useful model to investigate endochondral bone healing, intramembranous bone healing models are yet to be developed and characterized. In this study, a micro-computed tomography, histomorphometric and molecular (RealTimePCRarray characterization of post tooth-extraction alveolar bone healing was performed on C57Bl/6 WT mice. After the initial clot dominance (0 h, the development of a provisional immature granulation tissue is evident (7 d, characterized by marked cell proliferation, angiogenesis and inflammatory cells infiltration; associated with peaks of growth factors (BMP-2-4-7,TGFβ1,VEGFa, cytokines (TNFα, IL-10, chemokines & receptors (CXCL12, CCL25, CCR5, CXCR4, matrix (Col1a1-2, ITGA4, VTN, MMP1a and MSCs (CD105, CD106, OCT4, NANOG, CD34, CD146 markers expression. Granulation tissue is sequentially replaced by more mature connective tissue (14 d, characterized by inflammatory infiltrate reduction along the increased bone formation, marked expression of matrix remodeling enzymes (MMP-2-9, bone formation/maturation (RUNX2, ALP, DMP1, PHEX, SOST markers, and chemokines & receptors associated with healing (CCL2, CCL17, CCR2. No evidences of cartilage cells or tissue were observed, strengthening the intramembranous nature of bone healing. Bone microarchitecture analysis supports the evolving healing, with total tissue and bone volumes as trabecular number and thickness showing a progressive increase over time. The extraction socket healing process is considered complete (21 d when the dental socket is filled by trabeculae bone with well-defined medullary canals; it being the expression of mature bone markers prevalent at this period. Our data confirms the intramembranous bone healing nature of the model used, revealing parallels between the gene expression profile and the

  1. Micro-computed tomography-based phenotypic approaches in embryology: procedural artifacts on assessments of embryonic craniofacial growth and development

    Directory of Open Access Journals (Sweden)

    Logan C Cairine

    2010-02-01

    Full Text Available Abstract Background Growing demand for three dimensional (3D digital images of embryos for purposes of phenotypic assessment drives implementation of new histological and imaging techniques. Among these micro-computed tomography (μCT has recently been utilized as an effective and practical method for generating images at resolutions permitting 3D quantitative analysis of gross morphological attributes of developing tissues and organs in embryonic mice. However, histological processing in preparation for μCT scanning induces changes in organ size and shape. Establishing normative expectations for experimentally induced changes in size and shape will be an important feature of 3D μCT-based phenotypic assessments, especially if quantifying differences in the values of those parameters between comparison sets of developing embryos is a primary aim. Toward that end, we assessed the nature and degree of morphological artifacts attending μCT scanning following use of common fixatives, using a two dimensional (2D landmark geometric morphometric approach to track the accumulation of distortions affecting the embryonic head from the native, uterine state through to fixation and subsequent scanning. Results Bouin's fixation reduced average centroid sizes of embryonic mouse crania by approximately 30% and substantially altered the morphometric shape, as measured by the shift in Procrustes distance, from the unfixed state, after the data were normalized for naturally occurring shape variation. Subsequent μCT scanning produced negligible changes in size but did appear to reduce or even reverse fixation-induced random shape changes. Mixtures of paraformaldehyde + glutaraldehyde reduced average centroid sizes by 2-3%. Changes in craniofacial shape progressively increased post-fixation. Conclusions The degree to which artifacts are introduced in the generation of random craniofacial shape variation relates to the degree of specimen dehydration during the

  2. Micro-computed tomography-based phenotypic approaches in embryology: procedural artifacts on assessments of embryonic craniofacial growth and development.

    Science.gov (United States)

    Schmidt, Eric J; Parsons, Trish E; Jamniczky, Heather A; Gitelman, Julian; Trpkov, Cvett; Boughner, Julia C; Logan, C Cairine; Sensen, Christoph W; Hallgrímsson, Benedikt

    2010-02-17

    Growing demand for three dimensional (3D) digital images of embryos for purposes of phenotypic assessment drives implementation of new histological and imaging techniques. Among these micro-computed tomography (microCT) has recently been utilized as an effective and practical method for generating images at resolutions permitting 3D quantitative analysis of gross morphological attributes of developing tissues and organs in embryonic mice. However, histological processing in preparation for microCT scanning induces changes in organ size and shape. Establishing normative expectations for experimentally induced changes in size and shape will be an important feature of 3D microCT-based phenotypic assessments, especially if quantifying differences in the values of those parameters between comparison sets of developing embryos is a primary aim. Toward that end, we assessed the nature and degree of morphological artifacts attending microCT scanning following use of common fixatives, using a two dimensional (2D) landmark geometric morphometric approach to track the accumulation of distortions affecting the embryonic head from the native, uterine state through to fixation and subsequent scanning. Bouin's fixation reduced average centroid sizes of embryonic mouse crania by approximately 30% and substantially altered the morphometric shape, as measured by the shift in Procrustes distance, from the unfixed state, after the data were normalized for naturally occurring shape variation. Subsequent microCT scanning produced negligible changes in size but did appear to reduce or even reverse fixation-induced random shape changes. Mixtures of paraformaldehyde + glutaraldehyde reduced average centroid sizes by 2-3%. Changes in craniofacial shape progressively increased post-fixation. The degree to which artifacts are introduced in the generation of random craniofacial shape variation relates to the degree of specimen dehydration during the initial fixation. Fixation methods that

  3. A new stereotactic apparatus guided by computed tomography

    International Nuclear Information System (INIS)

    Huk, W.J.

    1981-01-01

    The accurate information provided by computer tomography about existence, shape, and localization of intracranial neoplasms in an early phase and in inaccessible regions have improved the diagnostics greatly, so that these lie far ahead of the therapeutic possibilities for brain tumors. To reduce this wide margin we have developed a new targeting device which makes a stereotactic approach to central lesions under sight-control by computed tomography within the computed tomography-scanner possible. With the help of this simple device we are now able to perform stereotactic procedures for tumor biopsy guided by computed tomography, needling and drainage of abscesses and cysts, and finally for the implantation of radioactive material for the interstitial radiotherapy of inoperable cysts and tumors. (orig.) [de

  4. X-Ray Micro-Computed Tomography of Apollo Samples as a Curation Technique Enabling Better Research

    Science.gov (United States)

    Ziegler, R. A.; Almeida, N. V.; Sykes, D.; Smith, C. L.

    2014-01-01

    X-ray micro-computed tomography (micro-CT) is a technique that has been used to research meteorites for some time and many others], and recently it is becoming a more common tool for the curation of meteorites and Apollo samples. Micro-CT is ideally suited to the characterization of astromaterials in the curation process as it can provide textural and compositional information at a small spatial resolution rapidly, nondestructively, and without compromising the cleanliness of the samples (e.g., samples can be scanned sealed in Teflon bags). This data can then inform scientists and curators when making and processing future sample requests for meteorites and Apollo samples. Here we present some preliminary results on micro-CT scans of four Apollo regolith breccias. Methods: Portions of four Apollo samples were used in this study: 14321, 15205, 15405, and 60639. All samples were 8-10 cm in their longest dimension and approximately equant. These samples were micro-CT scanned on the Nikon HMXST 225 System at the Natural History Museum in London. Scans were made at 205-220 kV, 135-160 microamps beam current, with an effective voxel size of 21-44 microns. Results: Initial examination of the data identify a variety of mineral clasts (including sub-voxel FeNi metal grains) and lithic clasts within the regolith breccias. Textural information within some of the lithic clasts was also discernable. Of particular interest was a large basalt clast (approx.1.3 cc) found within sample 60639, which appears to have a sub-ophitic texture. Additionally, internal void space, e.g., fractures and voids, is readily identifiable. Discussion: It is clear from the preliminary data that micro-CT analyses are able to identify important "new" clasts within the Apollo breccias, and better characterize previously described clasts or igneous samples. For example, the 60639 basalt clast was previously believed to be quite small based on its approx.0.5 sq cm exposure on the surface of the main mass

  5. Technical aspects of X-ray micro-computed tomography. Initial experience of 27-μm resolution using feldkamp cone-beam reconstruction

    International Nuclear Information System (INIS)

    Yamamoto, Shuji; Suzuki, Masahiro; Kohara, Kazushi; Iinuma, Gen; Moriyama, Noriyuki

    2007-01-01

    The objective of this study was to introduce the technical utility of micro-computed tomography (CT) with 27-μm resolution by cone-beam CT algorithm. Whole-body micro-CT scans were performed to honeybee. Two- and three-dimensional image analyses were performed by originally developed and available open-source software for acquired images. The original contribution of this work is to describe the technical characteristics of the X-ray micro-CT system, keeping a small experimental insect in a unique condition. Micro-CT may be used as a rapid prototyping tool to research and understand the high-resolution system with Feldkamp cone-beam reconstruction. (author)

  6. Apical Root Canal Morphology of Mesial Roots of Mandibular First Molar Teeth with Vertucci Type II Configuration by Means of Micro-Computed Tomography.

    Science.gov (United States)

    Keleş, Ali; Keskin, Cangül

    2017-03-01

    The aim of this study was to assess the features of the apical root canal anatomy and its relation to the level at which 2 separate root canals merge in the mesial roots of the mandibular first molars with Vertucci type II canal configuration by using micro-computed tomography analysis. The anatomic features of the apical 3 mm of root canals in 83 mesial roots of mandibular first molar teeth were investigated by micro-computed tomography and software imaging according to the level at which 2 separate root canals merge. The most apical slice where a visible root canal was detectable was recorded as 0 level. The specimens from where 2 root canals rejoin at within 3 mm from the 0 level were then assigned to group 1 (n = 37), whereas the specimens from where root canals rejoin 3-9 mm from the 0 level were assigned to group 2 (n = 46). Data were presented by using descriptive statistics and Mann-Whitney U tests, with the significance level set at 5%. In all specimens the long oval type of cross-sectional shape increased from 50.9% at 1 mm to 80.5% at 3 mm. Group 1 presented significantly higher major diameter values compared with group 2 (P  .05) between groups. Group 2 displayed significantly higher roundness values than group 1 (P < .05). A long oval root cross section of apical root canal anatomy is more prevalent in roots for which 2 root canals merge within apical 3 mm of root canals. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Recent developments in guided wave travel time tomography

    Energy Technology Data Exchange (ETDEWEB)

    Zon, Tim van; Volker, Arno [TNO, Stieltjesweg 1, P.O. box 155 2600 AD Delft (Netherlands)

    2014-02-18

    The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improve the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well.

  8. Development of a guidance guide for dosimetry in computed tomography

    International Nuclear Information System (INIS)

    Fontes, Ladyjane Pereira

    2016-01-01

    Due to frequent questions from users of ionization chambers pencil type calibrated in the Instrument Calibration Laboratory of the Institute of Energy and Nuclear Research (LCI - IPEN), on how to properly apply the factors indicated in their calibration certificates, a guide was prepared guidance for dosimetry in computed tomography. The guide includes guidance prior knowledge of half value layer (HVL), as it is necessary to know the effective beam energy for application quality for correction factor (kq). The evaluation of HVL in TC scanners becomes a difficult task due to system geometry and therefore a survey was conducted of existing methodologies for the determination of HVL in clinical beams Computed Tomography, taking into account technical, practical and economic factors. In this work it was decided to test a Tandem System consists of absorbing covers made in the workshop of IPEN, based on preliminary studies due to low cost and good response. The Tandem system consists of five cylindrical absorbing layers of 1mm, 3mm, 5mm, 7mm and 10mm aluminum and 3 cylindrical absorbing covers 15mm, 25mm and acrylic 35mm (PMMA) coupled to the ionization chamber of commercial pencil type widely used in quality control tests in dosimetry in clinical beams Computed tomography. Through Tandem curves it was possible to assess HVL values and from the standard curve pencil-type ionization chamber, Kq find the appropriate beam. The elaborate Guide provides information on how to build the calibration curve on the basis of CSR, to find the Kq and information for construction Tandem curve, to find values close to CSR. (author)

  9. Microcomputer interfacing and applications

    CERN Document Server

    Mustafa, M A

    1990-01-01

    This is the applications guide to interfacing microcomputers. It offers practical non-mathematical solutions to interfacing problems in many applications including data acquisition and control. Emphasis is given to the definition of the objectives of the interface, then comparing possible solutions and producing the best interface for every situation. Dr Mustafa A Mustafa is a senior designer of control equipment and has written many technical articles and papers on the subject of computers and their application to control engineering.

  10. Adjunctive Steps for Disinfection of the Mandibular Molar Root Canal System: A Correlative Bacteriologic, Micro-Computed Tomography, and Cryopulverization Approach.

    Science.gov (United States)

    Alves, Flávio R F; Andrade-Junior, Carlos V; Marceliano-Alves, Marília F; Pérez, Alejandro R; Rôças, Isabela N; Versiani, Marco A; Sousa-Neto, Manoel D; Provenzano, José C; Siqueira, José F

    2016-11-01

    This study evaluated the disinfecting ability of chemomechanical preparation with rotary nickel-titanium instruments, followed by 2 distinct adjunctive procedures in the root canals of extracted mandibular molars by means of a correlative analytical approach. Twenty-two extracted mandibular molars were selected and anatomically matched between groups on the basis of micro-computed tomographic analysis. In the first phase of the experiment, root canals were contaminated with Enterococcus faecalis and subjected to chemomechanical preparation with BT RaCe instruments and 2.5% NaOCl irrigation. Then either XP-Endo Finisher instrument or passive ultrasonic irrigation was used to supplement disinfection. Micro-computed tomography was used to show whether the percentage of unprepared areas correlated to bacterial counts. In the second phase, the same teeth were contaminated once again, and the adjunctive procedures were used. Samples from the isthmus area of mesial roots and the apical 5-mm fragment of distal roots were obtained by cryopulverization. Samples taken before and after treatment steps in both phases were evaluated by quantitative polymerase chain reaction and statistically analyzed. In phase 1, preparation in both groups resulted in substantial decrease of bacterial counts (P  .05). In phase 2, both methods had significant antibacterial effects in the main canal, but none of them could predictably disinfect the isthmus/recess areas. Both XP-Endo Finisher and passive ultrasonic irrigation exhibited antibacterial effectiveness, but only the former caused a significant reduction in the bacterial counts after chemomechanical preparation. None of them were effective in predictably disinfecting the isthmus/recess areas. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Peri-implant osseointegration after low-level laser therapy: micro-computed tomography and resonance frequency analysis in an animal model.

    Science.gov (United States)

    Mayer, Luciano; Gomes, Fernando Vacilotto; de Oliveira, Marília Gerhardt; de Moraes, João Feliz Duarte; Carlsson, Lennart

    2016-12-01

    The purpose of the present study is to evaluate the effects of low-level laser therapy on the osseointegration process by comparing resonance frequency analysis measurements performed at implant placement and after 30 days and micro-computed tomography images in irradiated vs nonirradiated rabbits. Fourteen male New Zealand rabbits were randomly divided into two groups of seven animals each, one control group (nonirradiated animals) and one experimental group that received low-level laser therapy (Thera Lase®, aluminum-gallium-arsenide laser diode, 10 J per spot, two spots per session, seven sessions, 830 nm, 50 mW, CW, Ø 0.0028 cm 2 ). The mandibular left incisor was surgically extracted in all animals, and one osseointegrated implant was placed immediately afterward (3.25ø × 11.5 mm; NanoTite, BIOMET 3i). Resonance frequency analysis was performed with the Osstell® device at implant placement and at 30 days (immediately before euthanasia). Micro-computed tomography analyses were then conducted using a high-resolution scanner (SkyScan 1172 X-ray Micro-CT) to evaluate the amount of newly formed bone around the implants. Irradiated animals showed significantly higher implant stability quotients at 30 days (64.286 ± 1.596; 95 % confidence interval (CI) 60.808-67.764) than controls (56.357 ± 1.596; 95 %CI 52.879-59.835) (P = .000). The percentage of newly formed bone around the implants was also significantly higher in irradiated animals (75.523 ± 8.510; 95 %CI 61.893-89.155) than in controls (55.012 ± 19.840; 95 %CI 41.380-68.643) (P = .027). Laser therapy, based on the irradiation protocol used in this study, was able to provide greater implant stability and increase the volume of peri-implant newly formed bone, indicating that laser irradiation effected an improvement in the osseointegration process.

  12. A Micro-computed Tomography Evaluation of the Shaping Ability of Two Nickel-titanium Instruments, HyFlex EDM and ProTaper Next.

    Science.gov (United States)

    Venino, Pier Matteo; Citterio, Claudio Luigi; Pellegatta, Alberto; Ciccarelli, Marta; Maddalone, Marcello

    2017-04-01

    The aim of this study was to evaluate and compare, by means of micro-computed tomography imaging, the shaping ability of ProTaper Next (PTN) and the novel HyFlex EDM (HFEDM) instruments. Forty teeth were randomly divided into 2 groups and prepared with PTN or HFEDM. Root canal transportation and centering ratio were evaluated in mesiodistal and buccolingual directions at 5 levels (at the midpoint of the apical, middle, and coronal thirds and at the boundaries between them). Variations in volume, surface, and cross-sectional shape were measured for the apical, middle, and coronal thirds. The null hypotheses were that no differences existed between the 2 groups. The D'Agostino-Pearson test (α = .05) was conducted to assess the normality of the data sets. The distributions were compared by using the Mann-Whitney test (α = .05). Statistically significant differences (P < .005) were recorded only for buccolingual canal transportation and centering ratio at the section between the middle and coronal thirds, where HFEDM files were superior. HFEDM and PTN files were similarly effective, and both safely prepared the root canals, respecting their original anatomies. HFEDM files performed better in terms of buccolingual canal transportation and centering ratio at the section between the middle and coronal thirds. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Diagnostic Value of Ex-Vivo Three-Dimensional Micro-Computed Tomography Imaging of Primary Nonhematopoietic Human Bone Tumors: Osteosarcoma versus Chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Langheinrich, A. C.; Stolle, C.; Kampschulte, M.; Lommel, D.; Rau, W. S.; Bassaly, B. (Depts. of Radiology and Pathology, Univ. of Giessen, Giessen (Germany))

    2008-10-15

    Background: Osteosarcoma and chondrosarcoma are the most common nonhematopoietic primary malignancies of bone. However, unusual radiographic appearances can lead to delay in diagnosis and confusion with benign diseases. Purpose: To evaluate the feasibility of micro-computed tomography (CT) for the analysis of primary, nonhematopoietic human bone tumors ex vivo. Material and Methods: Samples from 12 human bone specimens (osteosarcoma, n=6; chondrosarcoma, n=6) obtained for diagnostic purposes were scanned using industrial X-ray film without amplifier foil and scanned with micro-CT (7- and 12-mum-cubic voxels). Trabecular bone CT 'density' and tumor matrix CT 'density' were determined, and results were compared with those obtained from a detailed conventional histopathologic analysis of corresponding cross-sections. The significance of differences in grayscale measurements was tested with analysis of variance. Results: Micro-CT provided quantitative information on bone morphology equivalent to histopathological analysis. We established grayscale measurements by which tumor matrices of chondrosarcoma and osteosarcoma could be radiographically categorized following histological classifications (P<0.001). Conclusion: Micro-CT is feasible for the analysis and differentiation of human osteosarcoma and chondrosarcoma

  14. Rotary nickel-titanium GT and ProTaper files for root canal shaping by novice operators: a radiographic and micro-computed tomography evaluation.

    Science.gov (United States)

    Gekelman, Diana; Ramamurthy, Ramya; Mirfarsi, Sahar; Paqué, Frank; Peters, Ove A

    2009-11-01

    The purpose of this study was to assess canal preparation outcomes in vitro by novice clinicians after standardized teaching sessions. All students received a training session. In experiment 1, twenty canals of mandibular molars were prepared with GT and ProTaper rotaries by 10 students. Standardized radiographs were exposed before and after canal preparation, and canal curvature was measured; canals were assessed for patency and preparation time. In experiment 2, mandibular molars (20 canals) were submitted to microcomputed tomography before and after canal preparation with ProTaper and GT rotaries by 2 dental students. Canals were metrically assessed for changes (volume, surface, cross-sectional shape, transportation) during canal preparation by using software. In experiment 1, canal curvature decreased by 7.6 degrees and 7.8 degrees for GT and ProTaper preparations; there were no broken instruments, and 2 canals lost patency. The time for GT preparation was longer than for ProTaper (29.7 +/- 6.8 vs 19.4 +/- 8.1 minutes, P session.

  15. Micro-computed tomography (μCT) as a novel method in ecotoxicology--determination of morphometric and somatic data in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Brinkmann, Markus; Rizzo, Larissa Y; Lammers, Twan; Gremse, Felix; Schiwy, Sabrina; Kiessling, Fabian; Hollert, Henner

    2016-02-01

    Fish are important sentinel organisms for the assessment of water quality and play a central role in ecotoxicological research. Of particular importance to the assessment of health and fitness of fish stocks in response to environmental conditions or pollution are morphometric (e.g. Fulton's condition index) and somatic indices (e.g. hepatosomatic, and gonadosomatic index). Standard measurements of somatic indices are invasive and require, by definition, the sacrifice of examined animals, thus prohibiting longitudinal studies and relocation of animals captured in the field. As a potential solution, in the present study, we propose the use of micro-computed tomography (μCT) as imaging modality to non-invasively tomographically image rainbow trout (Oncorhynchus mykiss) exposed to different sediment suspensions. We here demonstrate that μCT can be used as a tool to reliably measure the volumes of different organs, which could then be applied as a substitute of their weights in calculation of somatic indices. To the best of our knowledge, this study is the first to report the results of μCT analyses in the context of ecotoxicological research in rainbow trout. It has the potential to greatly increase the information value of experiments conducted with fish and also to potentially reduce the number of animals required for studying temporal effects through facilitating longitudinal studies within the same individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Micro-computed tomography and histomorphometric analysis of the effects of platelet-rich fibrin on bone regeneration in the rabbit calvarium.

    Science.gov (United States)

    Acar, Ahmet Hüseyin; Yolcu, Ümit; Gül, Mehmet; Keleş, Ali; Erdem, Necip Fazıl; Altundag Kahraman, Sevil

    2015-04-01

    The present study aimed to investigate the effectiveness of platelet-rich fibrin (PRF) on bone regeneration when used alone or in combination with hydroxyapatite (HA)/beta-tricalcium phosphate (βTCP). In this study, 20 New Zealand white rabbits were used and four calvarial defects were prepared in each animal. PRF, Straumann(®) Bone Ceramic (SBC), or PRF+SBC was applied to the defects; one defect was left untreated as a control. Ten rabbits were sacrificed at week 4 (T1) and 10 at week 8 (T2). After micro-computed tomography (micro-CT) scanning, the samples were sent for histological and histomorphometric analysis to evaluate and compare the volume and area of regenerated bone. Histomorphometric and micro-CT analysis showed that both PRF and SBC significantly increased bone regeneration at T1 and T2 (P<0.01). When PRF was used in combination with HA/βTCP, a further significant increase in new bone formation was observed at T1 and T2 compared with that when PRF or SBC was used alone (P<0.01). PRF has a positive effect on bone formation when used alone and in combination with HA/βTCP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. If the skull fits: magnetic resonance imaging and microcomputed tomography for combined analysis of brain and skull phenotypes in the mouse

    Science.gov (United States)

    Blank, Marissa C.; Roman, Brian B.; Henkelman, R. Mark; Millen, Kathleen J.

    2012-01-01

    The mammalian brain and skull develop concurrently in a coordinated manner, consistently producing a brain and skull that fit tightly together. It is common that abnormalities in one are associated with related abnormalities in the other. However, this is not always the case. A complete characterization of the relationship between brain and skull phenotypes is necessary to understand the mechanisms that cause them to be coordinated or divergent and to provide perspective on the potential diagnostic or prognostic significance of brain and skull phenotypes. We demonstrate the combined use of magnetic resonance imaging and microcomputed tomography for analysis of brain and skull phenotypes in the mouse. Co-registration of brain and skull images allows comparison of the relationship between phenotypes in the brain and those in the skull. We observe a close fit between the brain and skull of two genetic mouse models that both show abnormal brain and skull phenotypes. Application of these three-dimensional image analyses in a broader range of mouse mutants will provide a map of the relationships between brain and skull phenotypes generally and allow characterization of patterns of similarities and differences. PMID:22947655

  18. Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations

    International Nuclear Information System (INIS)

    Gunde, Akshay C.; Bera, Bijoyendra; Mitra, Sushanta K.

    2010-01-01

    The present study reports a numerical investigation of water and CO 2 (carbon dioxide) flooding at the pore scale of a porous medium. We use high resolution micro-computed tomography (micro-CT) images of Berea sandstone core to obtain the pore geometry. The numerical solution used for the simulation was carried out by a finite element based software package. Level Set method is used to determine the position of the interface between two immiscible fluids when oil is displaced by water and CO 2 , respectively. The present formulation is validated against single-phase flow through the porous structure. It is found that, fluid flow inside the pore space takes place through preferential inlet and outlet pores. For two-phase flow, it is observed that continuous displacement of oil occurs during water flooding but CO 2 is able to displace oil at certain locations in the pores. Also, the separation of flow front is observed in the case of CO 2 flooding. A quantitative comparison of the results obtained in two types of flooding simulations suggests that water displaces a higher volume of oil than CO 2 in the time period for which the simulations are performed.

  19. Cone-Beam Computed Tomography-Guided Percutaneous Radiologic Gastrostomy

    International Nuclear Information System (INIS)

    Moehlenbruch, Markus; Nelles, Michael; Thomas, Daniel; Willinek, Winfried; Gerstner, Andreas; Schild, Hans H.; Wilhelm, Kai

    2010-01-01

    The purpose of this study was to investigate the feasibility of a flat-detector C-arm-guided radiographic technique (cone-beam computed tomography [CBCT]) for percutaneous radiologic gastrostomy (PRG) insertion. Eighteen patients (13 men and 5 women; mean age 62 years) in whom percutaneous endoscopic gastrostomy (PEG) had failed underwent CBCT-guided PRG insertion. PEG failure or unsuitability was caused by upper gastrointestinal tract obstruction in all cases. Indications for gastrostomy were esophageal and head and neck malignancies, respectively. Before the PRG procedure, initial C-arm CBCT scans were acquired. Three- and 2-dimensional soft-tissue reconstructions of the epigastrium region were generated on a dedicated workstation. Subsequently, gastropexy was performed with T-fasteners after CBCT-guided puncture of the stomach bubble, followed by insertion of an 14F balloon-retained catheter through a peel-away introducer. Puncture of the stomach bubble and PRG insertion was technically successful in all patients without alteration of the epigastric region. There was no malpositioning of the tube or other major periprocedural complications. In 2 patients, minor complications occurred during the first 30 days of follow-up (PRG malfunction: n = 1; slight infection: n = 1). Late complications, which were mainly tube disturbances, were observed in 2 patients. The mean follow-up time was 212 days. CBCT-guided PRG is a safe, well-tolerated, and successful method of gastrostomy insertion in patients in whom endoscopic gastrostomy is not feasible. CBCT provides detailed imaging of the soft tissue and surrounding structures of the epigastric region in one diagnostic tour and thus significantly improves the planning of PRG procedures.

  20. Computed tomography - guided cutting needle biopsy of pulmonary lesions

    International Nuclear Information System (INIS)

    Liao Shin Yu; Deheinzelin, Daniel; Younes, Riad N.; Chojniak, Rubens

    2002-01-01

    The purpose of this study was to report the experience of a radiology department in the use of computed tomography-guided cutting needle biopsy of pulmonary nodules, by evaluating diagnostic yield and incidence of complications. This is a retrospective analysis of 52 consecutive patients who underwent lung lesion biopsy guided by computed tomography, performed between May 1997 and May 2000. Thirty-five patients were male and 17 were female, with ages ranging from 5 to 85 years (median, 62 years). The size of the lesions ranged from 1.8 to 15 cm (median, 5.4 cm). In a total of 52 biopsies of lung lesions, 51 biopsies (98.1%) supplied appropriate material for histopathological diagnosis, with 9 diagnosed (17.3%) as benign and 42 (80.8%) as malignant lesions. Specific diagnosis was obtained in 44 (84.6%) biopsies: 4 benign (9.1%) and 40 (90.9%) malignant lesions. The sensitivity, specificity, and accuracy of the cutting needle biopsies for determining presence of malignancy were 96.8%, 100%, and 97.2%, respectively. Complications occurred in 9 cases (17.3%), including 6 cases (11.5%) of small pneumothorax, 1 (1.9%) of hemoptysis, 1 (1.9%) of pulmonary hematoma, and 1 (1.9%) of thoracic wall hematoma. All had spontaneous resolution. There were no complications requiring subsequent intervention. The high sensitivity and specificity of the method and the low rate of complications have established cutting needle biopsy as an efficient and safe tool for the diagnosis of lung lesions. In our hospital, cutting needle biopsy is considered a reliable procedure for the evaluation of indeterminate pulmonary nodules. (author)

  1. Diffuse optical tomography for breast cancer imaging guided by computed tomography: A feasibility study.

    Science.gov (United States)

    Baikejiang, Reheman; Zhang, Wei; Li, Changqing

    2017-01-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as hemoglobin, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer imaging. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at the wavelength of 650 nm and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements and width of measurement patch, have been investigated. Our results indicate that an air-cooling EMCCD camera is good enough for the transmission mode DOT imaging. We have also found that measurements at six angular projections are sufficient for DOT to reconstruct the optical targets with 2 and 4 times absorption contrast when the CT guidance is applied. Finally, we have described our future research plan on integration of a multispectral DOT imaging system into a breast CT scanner.

  2. Guided wave tomography in anisotropic media using recursive extrapolation operators

    Science.gov (United States)

    Volker, Arno

    2018-04-01

    Guided wave tomography is an advanced technology for quantitative wall thickness mapping to image wall loss due to corrosion or erosion. An inversion approach is used to match the measured phase (time) at a specific frequency to a model. The accuracy of the model determines the sizing accuracy. Particularly for seam welded pipes there is a measurable amount of anisotropy. Moreover, for small defects a ray-tracing based modelling approach is no longer accurate. Both issues are solved by applying a recursive wave field extrapolation operator assuming vertical transverse anisotropy. The inversion scheme is extended by not only estimating the wall loss profile but also the anisotropy, local material changes and transducer ring alignment errors. This makes the approach more robust. The approach will be demonstrated experimentally on different defect sizes, and a comparison will be made between this new approach and an isotropic ray-tracing approach. An example is given in Fig. 1 for a 75 mm wide, 5 mm deep defect. The wave field extrapolation based tomography clearly provides superior results.

  3. Optical Coherence Tomography-Guided Decisions in Retinoblastoma Management.

    Science.gov (United States)

    Soliman, Sameh E; VandenHoven, Cynthia; MacKeen, Leslie D; Héon, Elise; Gallie, Brenda L

    2017-06-01

    Assess the role of handheld optical coherence tomography (OCT) in guiding management decisions during diagnosis, treatment, and follow-up of eyes affected by retinoblastoma. Retrospective, noncomparative, single-institution case series. All children newly diagnosed with retinoblastoma from January 2011 to December 2015 who had an OCT session during their active treatment at The Hospital for Sick Children (SickKids) in Toronto, Canada. The OCT sessions for fellow eyes of unilateral retinoblastoma without any suspicious lesion and those performed more than 6 months after the last treatment were excluded. Data collected included age at presentation, sex, family history, RB1 mutation status, 8th edition TNMH cancer staging and International Intraocular Retinoblastoma Classification (IIRC), and number of OCT sessions per eye. Details of each session were scored for indication-related details (informative or not) and assessed for guidance (directive or not), diagnosis (staging changed, new tumors found or excluded), treatment (modified, stopped, or modality shifted), or follow-up modified. Frequency of OCT-guided management decisions, stratified by indication and type of guidance (confirmatory vs. influential). Sixty-three eyes of 44 children had 339 OCT sessions over the course of clinical management (median number of OCT scans per eye, 5; range, 1-15). The age at presentation and presence of a heritable RB1 mutation significantly correlated with an increased number of OCT sessions. Indications included evaluation of post-treatment scar (55%) or fovea (16%), and posterior pole scanning for new tumors (11%). Of all sessions, 92% (312/339) were informative; 19 of 27 noninformative sessions had large, elevated lesions; of these, 14 of 19 were T2a or T2b (IIRC group C or D) eyes. In 94% (293/312) of the informative sessions, OCT directed treatment decisions (58%), diagnosis (16%), and follow-up (26%). Optical coherence tomography influenced and changed management from pre

  4. Ultrasound-guided versus computed tomography-scan guided biopsy of pleural-based lung lesions.

    Science.gov (United States)

    Khosla, Rahul; McLean, Anna W; Smith, Jessica A

    2016-01-01

    Computed tomography (CT) guided biopsies have long been the standard technique to obtain tissue from the thoracic cavity and is traditionally performed by interventional radiologists. Ultrasound (US) guided biopsy of pleural-based lesions, performed by pulmonologists is gaining popularity and has the advantage of multi-planar imaging, real-time technique, and the absence of radiation exposure to patients. In this study, we aim to determine the diagnostic accuracy, the time to diagnosis after the initial consult placement, and the complications rates between the two different modalities. A retrospective study of electronic medical records was done of patients who underwent CT-guided biopsies and US-guided biopsies for pleural-based lesions between 2005 and 2014 and the data collected were analyzed for comparing the two groups. A total of 158 patients underwent 162 procedures during the study period. 86 patients underwent 89 procedures in the US group, and 72 patients underwent 73 procedures in the CT group. The overall yield in the US group was 82/89 (92.1%) versus 67/73 (91.8%) in the CT group (P = 1.0). Average days to the procedure was 7.2 versus 17.5 (P = 0.00001) in the US and CT group, respectively. Complication rate was higher in CT group 17/73 (23.3%) versus 1/89 (1.1%) in the US group (P guided biopsy is similar to that of CT-guided biopsy, with a lower complication rate and a significantly reduced time to the procedure.

  5. Computerized tomography-guided neurolytic splanchnic nerve block

    International Nuclear Information System (INIS)

    Henriquet, Franco; De Martini, Giuseppe; Roy, Maria Teresa; Pretrolesi, Fabio; Martinoli, Carlo; Cariati, Maurizio; Fiorentini, Franco.

    1997-01-01

    Computerized tomography-guided neurolytic splanchnic nerve block is a technique for relieving abdominal cancer pain; the goal is the alcoholic neurolytic interruption of the sensitive structures in retroperitoneal space. Computerized tomography yields accurate anatomical detailing and the course for needle placement and alcohol spread. January, 1993, to July, 1996, twenty-one bilateral splanchnic nerve blocks were performed through the posterior access. Forty-eight hours after alcoholism. 14 patients (66%) had complete pain regression; 52% of the patients needed no analgesics for 6 to 54 days and only 9 patients (42%) needed another low opioid therapy. Complications included hypotension and diarrhea in all cases. One had a cardiac arrest and diet 8 days after the procedure. There were no other complications. The whole procedure usually lasted 60 min (range: 45 to 90 min). Splanchnic nerve neurolysis is a useful treatment in the patients with severe chronic abdominal pain. It is used as a second line treatment when large lesions change celia anatomy and complicate the percutaneous block of the celiac plexus. Endosulfan, Malathion and Methyl parathion, on the metabolic rate of the estuarine clam, Villorita cyprinoides var. cochinensis, have been investigated. The animals exposed to the lower sublethal concentrations of Endosulfan, Malthion and Methyl parathion consumed oxygen at the rate of 1.60, 1.98 and 2.09 ml. 0 2 g - 1 h -1 respectively, while at the higher concentrations of the pesticides, consumption of oxygen by the animal dropped to nearly half the control value. When compared to Malathion and Methyl parathion. Endosulfan induced animals recorded a greater reduction in her percentage deviation (from control) of oxygen consumption, possibly due to hypoxia induced by the pollutants

  6. Cone-Beam Computed Tomography for Image-Guided Radiation Therapy of Prostate Cancer

    Science.gov (United States)

    2008-01-01

    imaging in small- animal on-Medical Physics, Vol. 34, No. 12, December 2007cology models,” Mol. Imag. 3, 55–62 2004. 8E. B. Walters, K. Panda , J. A...publication 8 October 2007; published 28 November 2007 Cone-beam microcomputed tomography microCT is one of the most popular choices for small animal ...imaging which is becoming an important tool for studying animal models with transplanted diseases. Region-of-interest ROI imaging techniques in CT, which

  7. Assessment of three root canal preparation techniques on root canal geometry using micro-computed tomography: In vitro study

    Directory of Open Access Journals (Sweden)

    Shaikha M Al-Ali

    2012-01-01

    Full Text Available Aim: To assess the effects of three root canal preparation techniques on canal volume and surface area using three-dimensionally reconstructed root canals in extracted human maxillary molars. Materials and Methods: Thirty extracted Human Maxillary Molars having three separate roots and similar root shape were randomly selected from a pool of extracted teeth for this study and stored in normal saline solution until used. A computed tomography scanner (Philips Brilliance CT 64-slice was used to analyze root canals in extracted maxillary molars. Specimens were scanned before and after canals were prepared using stainless steel K-Files, Ni-Ti rotary ProTaper and rotary SafeSiders instruments. Differences in dentin volume removed, the surface area, the proportion of unchanged area and canal transportation were calculated using specially developed software. Results: Instrumentation of canals increased volume and surface area. Statistical analysis found a statistically significant difference among the 3 groups in total change in volume (P = 0.001 and total change in surface area (P = 0.13. Significant differences were found when testing both groups with group III (SafeSiders. Significant differences in change of volume were noted when grouping was made with respect to canal type (in MB and DB (P < 0.05. Conclusion: The current study used computed tomography, an innovative and non destructive technique, to illustrate changes in canal geometry. Overall, there were few statistically significant differences between the three instrumentation techniques used. SafeSiders stainless steel 40/0.02 instruments exhibit a greater cutting efficiency on dentin than K-Files and ProTaper. CT is a new and valuable tool to study root canal geometry and changes after preparation in great details. Further studies with 3D-techniques are required to fully understand the biomechanical aspects of root canal preparation.

  8. Radiological and micro-computed tomography analysis of the bone at dental implants inserted 2, 3 and 4 mm apart in a minipig model with platform switching incorporated.

    Science.gov (United States)

    Elian, Nicolas; Bloom, Mitchell; Dard, Michel; Cho, Sang-Choon; Trushkowsky, Richard D; Tarnow, Dennis

    2014-02-01

    The purpose of this study was to assess the effect of inter-implant distance on interproximal bone utilizing platform switching. Analysis of interproximal bone usually depends on traditional two-dimensional radiographic assessment. Although there has been increased reliability of current techniques, there has been an inability to track bone level changes over time and in three dimensions. Micro-CT has provided three-dimensional imaging that can be used in conjunction with traditional two-dimensional radiographic techniques. This study was performed on 24 female minipigs. Twelve animals received three implants with an inter-implant distance of 3 mm on one side of the mandible and another three implants on the contra-lateral side, where the implants were placed 2 mm apart creating a split mouth design. Twelve other animals received three implants with an inter-implant distance of 3 mm on one side of the mandible and another three implants on the contra-lateral side, where the implants were placed 4 mm apart creating a split mouth design too. The quantitative evaluation was performed comparatively on radiographs taken at t 0 (immediately after implantation) and at t 8 weeks (after termination). The samples were scanned by micro-computed tomography (μCT) to quantify the first bone to implant contact (fBIC) and bone volume/total volume (BV/TV). Mixed model regressions using the nonparametric Brunner-Langer method were used to determine the effect of inter-implant distance on the measured outcomes. The change in bone level was determined using radiography and its mean was 0.05 mm for an inter-implant distance of 3 and 0.00 mm for a 2 mm distance (P = 0.7268). The mean of this outcome was 0.18 mm for the 3 mm and for 4 mm inter-implant distance (P = 0.9500). Micro-computed tomography showed that the fBIC was always located above the reference, 0.27 and 0.20 mm for the comparison of 2-3 mm (P = 0.4622) and 0.49 and 0.34 mm for the inter-implant distance of 3 and 4 mm (P

  9. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers.

    Science.gov (United States)

    Wang, Chun-Neng; Hsu, Hao-Chun; Wang, Cheng-Chun; Lee, Tzu-Kuei; Kuo, Yan-Fu

    2015-01-01

    The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D) images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D) images by using microcomputed tomography (μCT) and to examine the floral shape variations by using geometric morphometrics (GM). To demonstrate the advantages of the 3D-μCT-GM approach, we applied the approach to a second-generation population of florist's gloxinia (Sinningia speciosa) crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks) from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-μCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.

  10. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers

    Directory of Open Access Journals (Sweden)

    Chun-Neng eWang

    2015-09-01

    Full Text Available The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D images by using microcomputed tomography (μCT and to examine the floral shape variations by using geometric morphometrics (GM. To demonstrate the advantages of the 3D-µCT-GM approach, we applied the approach to a second-generation population of florist’s gloxinia (Sinningia speciosa crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-µCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations.

  11. [Comparison of effectiveness and safety between Twisted File technique and ProTaper Universal rotary full sequence based on micro-computed tomography].

    Science.gov (United States)

    Chen, Xiao-bo; Chen, Chen; Liang, Yu-hong

    2016-02-18

    To evaluate the efficacy and security of two type of rotary nickel titanium system (Twisted File and ProTaper Universal) for root canal preparation based on micro-computed tomography(micro-CT). Twenty extracted molars (including 62 canals) were divided into two experimental groups and were respectively instrumented using Twisted File rotary nickel titanium system (TF) and ProTaper Universal rotary nickel titanium system (PU) to #25/0.08 following recommended protocol. Time for root canal instrumentation (accumulation of time for every single file) was recorded. The 0-3 mm root surface from apex was observed under an optical stereomicroscope at 25 × magnification. The presence of crack line was noted. The root canals were scanned with micro-CT before and after root canal preparation. Three-dimensional shape images of canals were reconstructed, calculated and evaluated. The amount of canal central transportation of the two groups was calculated and compared. The shorter preparation time [(0.53 ± 0.14) min] was observed in TF group, while the preparation time of PU group was (2.06 ± 0.39) min (Pvs. (0.097 ± 0.084) mm, P<0.05]. No instrument separation was observed in both the groups. Cracks were not found in both the groups either based in micro-CT images or observation under an optical stereomicroscope at 25 × magnification. Compared with ProTaper Universal, Twisted File took less time in root canal preparation and exhibited better shaping ability, and less canal transportation.

  12. Evaluation of apical canal shapes produced sequentially during instrumentation with stainless steel hand and Ni-Ti rotary instruments using Micro-computed tomography

    Directory of Open Access Journals (Sweden)

    Woo-Jin Lee

    2011-05-01

    Full Text Available Objectives The purpose of this study was to determine the optimal master apical file size with minimal transportation and optimal efficiency in removing infected dentin. We evaluated the transportation of the canal center and the change in untouched areas after sequential preparation with a #25 to #40 file using 3 different instruments: stainless steel K-type (SS K-file hand file, ProFile and LightSpeed using microcomputed tomography (MCT. Materials and Methods Thirty extracted human mandibular molars with separated orifices and apical foramens on mesial canals were used. Teeth were randomly divided into three groups: SS K-file, Profile, LightSpeed and the root canals were instrumented using corresponding instruments from #20 to #40. All teeth were scanned with MCT before and after instrumentation. Cross section images were used to evaluate canal transportation and untouched area at 1- , 2- , 3- , and 5- mm level from the apex. Data were statistically analyzed according to' repeated nested design'and Mann-Whitney test (p = 0.05. Results In SS K-file group, canal transportation was significantly increased over #30 instrument. In the ProFile group, canal transportation was significantly increased after preparation with the #40 instrument at the 1- and 2- mm levels. LightSpeed group showed better centering ability than ProFile group after preparation with the #40 instrument at the 1 and 2 mm levels. Conclusions SS K-file, Profile, and LightSpeed showed differences in the degree of apical transportation depending on the size of the master apical file.

  13. Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor-β1

    Directory of Open Access Journals (Sweden)

    Gauldie Jack

    2010-12-01

    Full Text Available Abstract Background Micro-computed tomography (micro-CT is a novel tool for monitoring acute and chronic disease states in small laboratory animals. Its value for assessing progressive lung fibrosis in mice has not been reported so far. Here we examined the importance of in vivo micro-CT as non-invasive tool to assess progression of pulmonary fibrosis in mice over time. Methods Pulmonary fibrosis was induced in mice by intratracheal delivery of an adenoviral gene vector encoding biologically active TGF-ß1 (AdTGF-ß1. Respiratory gated and ungated micro-CT scans were performed at 1, 2, 3, and 4 weeks post pulmonary adenoviral gene or control vector delivery, and were then correlated with respective histopathology-based Ashcroft scoring of pulmonary fibrosis in mice. Visual assessment of image quality and consolidation was performed by 3 observers and a semi-automated quantification algorithm was applied to quantify aerated pulmonary volume as an inverse surrogate marker for pulmonary fibrosis. Results We found a significant correlation between classical Ashcroft scoring and micro-CT assessment using both visual assessment and the semi-automated quantification algorithm. Pulmonary fibrosis could be clearly detected in micro-CT, image quality values were higher for respiratory gated exams, although differences were not significant. For assessment of fibrosis no significant difference between respiratory gated and ungated exams was observed. Conclusions Together, we show that micro-CT is a powerful tool to assess pulmonary fibrosis in mice, using both visual assessment and semi-automated quantification algorithms. These data may be important in view of pre-clinical pharmacologic interventions for the treatment of lung fibrosis in small laboratory animals.

  14. The influence of alendronate on the healing of extraction sockets of ovariectomized rats assessed by in vivo micro-computed tomography.

    Science.gov (United States)

    Jee, Jeong-Hyun; Lee, Wan; Lee, Byung Do

    2010-08-01

    Many dental patients take bisphosphonates to reduce the risk of hip and vertebral fractures. In vivo micro-computed tomography (micro-CT) was used to examine the longitudinal inhibitory effect of alendronate on the healing of extraction sockets in ovariectomized rats. Twenty 5-week-old Sprague-Dawley rats were assigned randomly to 1 of 3 groups: sham-operated (n = 5), and 2 ovariectomized (OVX) groups: saline treated (0.1 mL/100 g/d, n = 7) and alendronate treated (1 mg/kg/d, n = 8). Before micro-CT scanning, the left maxillary first molars of the rats were extracted. In vivo micro-CT (spatial resolution 50 x 50 mum) of the jaw was performed at baseline and at 2-week intervals for 6 weeks. Alveolar-bone radiographic densities and dimensions were analyzed with repeated measures analysis of variance. The bony healing patterns of the extraction sockets were also evaluated in each group. The radiographic socket densities of the sham-treated and OVX-alendronate groups significantly increased during the first 4 weeks after extraction (P sockets in the OVX-saline group increased, but the increase was significantly lower than for the other groups at 4 weeks (P sockets in all groups 2 to 6 weeks after extraction. There was a significant loss of alveolar ridge height at the second week postextraction compared with baseline, and at the fourth week compared with the second week (P sockets in estrogen-deficient rats and helps resist the loss of alveolar bone adjacent to extraction sockets. Copyright 2010 Mosby, Inc. All rights reserved.

  15. Effect of Porous Titanium Granules on Bone Regeneration and Primary Stability in Maxillary Sinus: A Human Clinical, Histomorphometric, and Microcomputed Tomography Analyses.

    Science.gov (United States)

    Dursun, Ceyda Kanli; Dursun, Erhan; Eratalay, Kenan; Orhan, Kaan; Tatar, Ilkan; Baris, Emre; Tözüm, Tolga Fikret

    2016-03-01

    The aim of this randomized controlled study was to comparatively analyze the new bone (NB), residual bone, and graft-bone association in bone biopsies retrieved from augmented maxillary sinus sites by histomorphometry and microcomputed tomography (MicroCT) in a split-mouth model to test the efficacy of porous titanium granules (PTG) in maxillary sinus augmentation. Fifteen patients were included in the study and each patient was treated with bilateral sinus augmentation procedure using xenograft (equine origine, granule size 1000-2000 μm) and xenograft (1 g) + PTG (granule size 700-1000 μm, pore size >50 μm) (1 g), respectively. After a mean of 8.4 months, 30 bone biopsies were retrieved from the implant sites for three-dimensional MicroCT and two-dimensional histomorphometric analyses. Bone volume and vital NB percentages were calculated. Immediate after core biopsy, implants having standard dimensions were placed and implant stability quotient values were recorded at baseline and 3 months follow-up. There were no significant differences between groups according to residual bone height, residual bone width, implant dimensions, and implant stability quotient values (baseline and 3 months). According to MicroCT and two-dimensional histomorphometric analyses, the volume of newly formed bone was 57.05% and 52.67%, and 56.5% and 55.08% for xenograft + PTG and xenograft groups, respectively. No statistically significant differences found between groups according to NB percentages and higher Hounsfield unit values were found for xenograft + PTG group. The findings of the current study supports that PTG, which is a porous, permanent nonresorbable bone substitute, may have a beneficial osteoconductive effect on mechanical strength of NB in augmented maxillary sinus.

  16. Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing.

    Science.gov (United States)

    Douglas, Timothy E L; Dziadek, Michal; Gorodzha, Svetlana; Lišková, Jana; Brackman, Gilles; Vanhoorne, Valérie; Vervaet, Chris; Balcaen, Lieve; Del Rosario Florez Garcia, Maria; Boccaccini, Aldo R; Weinhardt, Venera; Baumbach, Tilo; Vanhaecke, Frank; Coenye, Tom; Bačáková, Lucie; Surmeneva, Maria A; Surmenev, Roman A; Cholewa-Kowalska, Katarzyna; Skirtach, Andre G

    2018-06-01

    Mineralization of hydrogel biomaterials is desirable to improve their suitability as materials for bone regeneration. In this study, gellan gum (GG) hydrogels were formed by simple mixing of GG solution with bioactive glass microparticles of 45S5 composition, leading to hydrogel formation by ion release from the amorphous bioactive glass microparticles. This resulted in novel injectable, self-gelling composites of GG hydrogels containing 20% bioactive glass. Gelation occurred within 20 min. Composites containing the standard 45S5 bioactive glass preparation were markedly less stiff. X-ray microcomputed tomography proved to be a highly sensitive technique capable of detecting microparticles of diameter approximately 8 μm, that is, individual microparticles, and accurately visualizing the size distribution of bioactive glass microparticles and their aggregates, and their distribution in GG hydrogels. The widely used melt-derived 45S5 preparation served as a standard and was compared with a calcium-rich, sol-gel derived preparation (A2), as well as A2 enriched with zinc (A2Zn5) and strontium (A2Sr5). A2, A2Zn, and A2Sr bioactive glass particles were more homogeneously dispersed in GG hydrogels than 45S5. Composites containing all four bioactive glass preparations exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. Composites containing A2Zn5 and A2Sr5 bioactive glasses supported the adhesion and growth of osteoblast-like cells and were considerably more cytocompatible than 45S5. All composites underwent mineralization with calcium-deficient hydroxyapatite upon incubation in simulated body fluid. The extent of mineralization appeared to be greatest for composites containing A2Zn5 and 45S5. The results underline the importance of the choice of bioactive glass when preparing injectable, self-gelling composites. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Three-dimensional quantification of orthodontic root resorption with time-lapsed imaging of micro-computed tomography in a rodent model.

    Science.gov (United States)

    Yang, Chongshi; Zhang, Yuanyuan; Zhang, Yan; Fan, Yubo; Deng, Feng

    2015-01-01

    Despite various X-ray approaches have been widely used to monitor root resorption after orthodontic treatment, a non-invasive and accurate method is highly desirable for long-term follow up. The aim of this study was to build a non-invasive method to quantify longitudinal orthodontic root resorption with time-lapsed images of micro-computed tomography (micro-CT) in a rodent model. Twenty male Sprague Dawley (SD) rats (aged 6-8 weeks, weighing 180-220 g) were used in this study. A 25 g orthodontic force generated by nickel-titanium coil spring was applied to the right maxillary first molar for each rat, while contralateral first molar was severed as a control. Micro-CT scan was performed at day 0 (before orthodontic load) and days 3, 7, 14, and 28 after orthodontic load. Resorption of mesial root of maxillary first molars at bilateral sides was calculated from micro-CT images with registration algorithm via reconstruction, superimposition and partition operations. Obvious resorption of mesial root of maxillary first molar can be detected at day 14 and day 28 at orthodontic side. Most of the resorption occurred in the apical region at distal side and cervical region at mesiolingual side. Desirable development of molar root of rats was identified from day 0 to day 28 at control side. The development of root concentrated on apical region. This non-invasive 3D quantification method with registration algorithm can be used in longitudinal study of root resorption. Obvious root resorption in rat molar can be observed three-dimensionally at day 14 and day 28 after orthodontic load. This indicates that registration algorithm combined with time-lapsed images provides clinic potential application in detection and quantification of root contour.

  18. Micro-Computed Tomography Evaluation of ProTaper Next and BioRace Shaping Outcomes in Maxillary First Molar Curved Canals.

    Science.gov (United States)

    Pasqualini, Damiano; Alovisi, Mario; Cemenasco, Andrea; Mancini, Lucia; Paolino, Davide Salvatore; Bianchi, Caterina Chiara; Roggia, Andrea; Scotti, Nicola; Berutti, Elio

    2015-10-01

    The aim of this micro-computed tomography study was to describe the shaping properties of ProGlider/ProTaper Next (PG/PTN) and ScoutRace/BioRace (SR/BR) nickel-titanium rotary systems. Thirty maxillary first permanent molars were selected. Mesiobuccal canals were randomly assigned (n = 15) to PG/PTN or SR/BR groups. Irrigation was performed with 5% NaOCl and 10% EDTA. Specimens were scanned (voxel size, 9.1 μm) for matching volumes and surface areas and post-treatment analyses. Root canal centering ability, canal geometry enlargement, and thickness of dentinal wall at inner curvature were assessed at apical level and point of maximum curvature. Results were analyzed with 4 one-way analyses of variance. Canal centering ability was superior in PG/PTN (P = .006 at apical level, P = .025 at point of maximum curvature). PG/PTN demonstrated a more conservative increase of canal areas (P = .027 at apical level, P = .038 at point of maximum curvature). Centrifugal increase in canal diameters did not significantly differ between groups (P = .65 at apical level, P = .61 at point of maximum curvature). Inner dentinal wall thickness was less reduced with PG/PTN compared with SR/BR, with no statistical differences (P = .23 at point of maximum curvature, P = .89 at apical level). PG/PTN shaping taper ranged between 6% and 7%. Neither system produced significant shaping errors in curved canals. PG/PTN system showed better preservation of canal anatomy. PTN offset section did not influence final preparation taper. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Micro-computed tomography (μCT) as a novel method in ecotoxicology — determination of morphometric and somatic data in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Brinkmann, Markus, E-mail: markus.brinkmann@bio5.rwth-aachen.de [Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Rizzo, Larissa Y.; Lammers, Twan; Gremse, Felix [Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen (Germany); Schiwy, Sabrina [Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Kiessling, Fabian [Department of Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen (Germany); Hollert, Henner, E-mail: henner.hollert@bio5.rwth-aachen.de [Department of Ecosystem Analysis, Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); College of Resources and Environmental Science, Chongqing University, 1 Tiansheng Road Beibei, Chongqing 400715 (China); College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai (China); State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University (China)

    2016-02-01

    Fish are important sentinel organisms for the assessment of water quality and play a central role in ecotoxicological research. Of particular importance to the assessment of health and fitness of fish stocks in response to environmental conditions or pollution are morphometric (e.g. Fulton's condition index) and somatic indices (e.g. hepatosomatic, and gonadosomatic index). Standard measurements of somatic indices are invasive and require, by definition, the sacrifice of examined animals, thus prohibiting longitudinal studies and relocation of animals captured in the field. As a potential solution, in the present study, we propose the use of micro-computed tomography (μCT) as imaging modality to non-invasively tomographically image rainbow trout (Oncorhynchus mykiss) exposed to different sediment suspensions. We here demonstrate that μCT can be used as a tool to reliably measure the volumes of different organs, which could then be applied as a substitute of their weights in calculation of somatic indices. To the best of our knowledge, this study is the first to report the results of μCT analyses in the context of ecotoxicological research in rainbow trout. It has the potential to greatly increase the information value of experiments conducted with fish and also to potentially reduce the number of animals required for studying temporal effects through facilitating longitudinal studies within the same individuals. - Highlights: • μCT was used for volumetric imaging sediment-exposed and unexposed rainbow trout • Liver volumes determined by μCT were highly correlated with liver weights. • The perfusion of organs in fish could also be studied by means of μCT. • It was shown that μCT is a useful tool in context of ecotoxicological research.

  20. Micro-computed tomography (μCT) as a novel method in ecotoxicology — determination of morphometric and somatic data in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Brinkmann, Markus; Rizzo, Larissa Y.; Lammers, Twan; Gremse, Felix; Schiwy, Sabrina; Kiessling, Fabian; Hollert, Henner

    2016-01-01

    Fish are important sentinel organisms for the assessment of water quality and play a central role in ecotoxicological research. Of particular importance to the assessment of health and fitness of fish stocks in response to environmental conditions or pollution are morphometric (e.g. Fulton's condition index) and somatic indices (e.g. hepatosomatic, and gonadosomatic index). Standard measurements of somatic indices are invasive and require, by definition, the sacrifice of examined animals, thus prohibiting longitudinal studies and relocation of animals captured in the field. As a potential solution, in the present study, we propose the use of micro-computed tomography (μCT) as imaging modality to non-invasively tomographically image rainbow trout (Oncorhynchus mykiss) exposed to different sediment suspensions. We here demonstrate that μCT can be used as a tool to reliably measure the volumes of different organs, which could then be applied as a substitute of their weights in calculation of somatic indices. To the best of our knowledge, this study is the first to report the results of μCT analyses in the context of ecotoxicological research in rainbow trout. It has the potential to greatly increase the information value of experiments conducted with fish and also to potentially reduce the number of animals required for studying temporal effects through facilitating longitudinal studies within the same individuals. - Highlights: • μCT was used for volumetric imaging sediment-exposed and unexposed rainbow trout • Liver volumes determined by μCT were highly correlated with liver weights. • The perfusion of organs in fish could also be studied by means of μCT. • It was shown that μCT is a useful tool in context of ecotoxicological research.

  1. Determination of the Dynamics of Healing at the Tissue-Implant Interface by Means of Microcomputed Tomography and Functional Apparent Moduli

    Science.gov (United States)

    Chang, Po-Chun; Seol, Yang-Jo; Goldstein, Steven A.; Giannobile, William V.

    2014-01-01

    Purpose It is currently a challenge to determine the biomechanical properties of the hard tissue–dental implant interface. Recent advances in intraoral imaging and tomographic methods, such as microcomputed tomography (micro-CT), provide three-dimensional details, offering significant potential to evaluate the bone-implant interface, but yield limited information regarding osseointegration because of physical scattering effects emanating from metallic implant surfaces. In the present study, it was hypothesized that functional apparent moduli (FAM), generated from functional incorporation of the peri-implant structure, would eliminate the radiographic artifact–affected layer and serve as a feasible means to evaluate the biomechanical dynamics of tissue-implant integration in vivo. Materials and Methods Cylindric titanium mini-implants were placed in osteotomies and osteotomies with defects in rodent maxillae. The layers affected by radiographic artifacts were identified, and the pattern of tissue-implant integration was evaluated from histology and micro-CT images over a 21-day observation period. Analyses of structural information, FAM, and the relationship between FAM and interfacial stiffness (IS) were done before and after eliminating artifacts. Results Physical artifacts were present within a zone of about 100 to 150 μm around the implant in both experimental defect situations (osteotomy alone and osteotomy + defect). All correlations were evaluated before and after eliminating the artifact-affected layers, most notably during the maturation period of osseointegration. A strong correlation existed between functional bone apparent modulus and IS within 300 μm at the osteotomy defects (r > 0.9) and functional composite tissue apparent modulus in the osteotomy defects (r > 0.75). Conclusion Micro-CT imaging and FAM were of value in measuring the temporal process of tissue-implant integration in vivo. This approach will be useful to complement imaging

  2. Three-Dimensional Nonlinear Finite Element Analysis and Microcomputed Tomography Evaluation of Microgap Formation in a Dental Implant Under Oblique Loading.

    Science.gov (United States)

    Jörn, Daniela; Kohorst, Philipp; Besdo, Silke; Borchers, Lothar; Stiesch, Meike

    2016-01-01

    Since bacterial leakage along the implant-abutment interface may be responsible for peri-implant infections, a realistic estimation of the interface gap width during function is important for risk assessment. The purpose of this study was to compare two methods for investigating microgap formation in a loaded dental implant, namely, microcomputed tomography (micro-CT) and three-dimensional (3D) nonlinear finite element analysis (FEA); additionally, stresses to be expected during loading were also evaluated by FEA. An implant-abutment complex was inspected for microgaps between the abutment and implant in a micro-CT scanner under an oblique load of 200 N. A numerical model of the situation was constructed; boundary conditions and external load were defined according to the experiment. The model was refined stepwise until its load-displacement behavior corresponded sufficiently to data from previous load experiments. FEA of the final, validated model was used to determine microgap widths. These were compared with the widths as measured in micro-CT inspection. Finally, stress distributions were evaluated in selected regions. No microgaps wider than 13 μm could be detected by micro-CT for the loaded implant. FEA revealed gap widths up to 10 μm between the implant and abutment at the side of load application. Furthermore, FEA predicted plastic deformation in a limited area at the implant collar. FEA proved to be an adequate method for studying microgap formation in dental implant-abutment complexes. FEA is not limited in gap width resolution as are radiologic techniques and can also provide insight into stress distributions within the loaded complex.

  3. Experimental Results of Guided Wave Travel Time Tomography

    Science.gov (United States)

    Volker, Arno; Mast, Arjan; Bloom, Joost

    2010-02-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Both economical and social requirements are pushing the industry to even higher levels of availability, reliability and safety of installations. The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections reducing uncertainty and extending inspection intervals. Guided wave travel time tomography is a promising method to monitor the wall thickness quantitatively over large areas. Obviously the robustness and reliability of such a monitoring system is of paramount importance. Laboratory experiments have been carried out on a 10″ pipe with a nominal wall thickness of 8 mm. Multiple, inline defects have been created with a realistic morphology. The depth of the defects was increased stepwise from 0.5 mm to 2 mm. Additionally the influences of the presence of liquid inside the pipe and surface roughness have been evaluated as well. Experimental results show that this method is capable of providing quantitative wall thickness information over a distance of 4 meter, with a sufficient accuracy such that results can be used for trending. The method has no problems imaging multiple defects.

  4. Micro-computed tomography derived anisotropy detects tumor provoked deviations in bone in an orthotopic osteosarcoma murine model.

    Directory of Open Access Journals (Sweden)

    Heather A Cole

    Full Text Available Radiographic imaging plays a crucial role in the diagnosis of osteosarcoma. Currently, computed-tomography (CT is used to measure tumor-induced osteolysis as a marker for tumor growth by monitoring the bone fractional volume. As most tumors primarily induce osteolysis, lower bone fractional volume has been found to correlate with tumor aggressiveness. However, osteosarcoma is an exception as it induces osteolysis and produces mineralized osteoid simultaneously. Given that competent bone is highly anisotropic (systematic variance in its architectural order renders its physical properties dependent on direction of load and that tumor induced osteolysis and osteogenesis are structurally disorganized relative to competent bone, we hypothesized that μCT-derived measures of anisotropy could be used to qualitatively and quantitatively detect osteosarcoma provoked deviations in bone, both osteolysis and osteogenesis, in vivo. We tested this hypothesis in a murine model of osteosarcoma cells orthotopically injected into the tibia. We demonstrate that, in addition to bone fractional volume, μCT-derived measure of anisotropy is a complete and accurate method to monitor osteosarcoma-induced osteolysis. Additionally, we found that unlike bone fractional volume, anisotropy could also detect tumor-induced osteogenesis. These findings suggest that monitoring tumor-induced changes in the structural property isotropy of the invaded bone may represent a novel means of diagnosing primary and metastatic bone tumors.

  5. Quantitative pre-clinical screening of therapeutics for joint diseases using contrast enhanced micro-computed tomography.

    Science.gov (United States)

    Willett, N J; Thote, T; Hart, M; Moran, S; Guldberg, R E; Kamath, R V

    2016-09-01

    The development of effective therapies for cartilage protection has been limited by a lack of efficient quantitative cartilage imaging modalities in pre-clinical in vivo models. Our objectives were two-fold: first, to validate a new contrast-enhanced 3D imaging analysis technique, equilibrium partitioning of an ionic contrast agent-micro computed tomography (EPIC-μCT), in a rat medial meniscal transection (MMT) osteoarthritis (OA) model; and second, to quantitatively assess the sensitivity of EPIC-μCT to detect the effects of matrix metalloproteinase inhibitor (MMPi) therapy on cartilage degeneration. Rats underwent MMT surgery and tissues were harvested at 1, 2, and 3 weeks post-surgery or rats received an MMPi or vehicle treatment and tissues harvested 3 weeks post-surgery. Parameters of disease progression were evaluated using histopathology and EPIC-μCT. Correlations and power analyses were performed to compare the techniques. EPIC-μCT was shown to provide simultaneous 3D quantification of multiple parameters, including cartilage degeneration and osteophyte formation. In MMT animals treated with MMPi, OA progression was attenuated, as measured by 3D parameters such as lesion volume and osteophyte size. A post-hoc power analysis showed that 3D parameters for EPIC-μCT were more sensitive than 2D parameters requiring fewer animals to detect a therapeutic effect of MMPi. 2D parameters were comparable between EPIC-μCT and histopathology. This study demonstrated that EPIC-μCT has high sensitivity to provide 3D structural and compositional measurements of cartilage and bone in the joint. EPIC-μCT can be used in combination with histology to provide a comprehensive analysis to screen new potential therapies. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  6. Imaging study of pancreatic ductal adenocarcinomas in Syrian hamsters using X-ray micro-computed tomography (CT)

    International Nuclear Information System (INIS)

    Kitahashi, Tsukasa; Mutoh, Michihiro; Tsurusaki, Masakatsu

    2010-01-01

    X-ray computed tomography (CT) has been used for diagnoses of human pancreatic cancer. Although micro-CT is a useful approach to evaluate macromorphology of organs/tissue also in animal models, reports on pancreatic tumors are limited. In this study, the utility of micro-CT was assessed in characterizing chemically induced pancreatic tumors in Syrian hamsters. Hamsters treated with or without N-nitrosobis(2-oxopropyl)amine (BOP) were injected with the antispasmodic agent, scopolamine butylbromide, and contrast agents, 5 or 10 mL/kg body weight of iopamidol or Fenestra VC at 18-38 weeks, then examined by micro-CT scanning with a respiratory gating system. Both peristaltic and respiratory movements were substantially suppressed by the combination of scopolamine butylbromide treatment and the respiratory gating system, resulting in improvements of image qualities. Iopamidol clearly visualized the pancreatic parenchyma and contrasted the margins among the pancreas and other abdominal organs/tissue. Meanwhile Fenestra VC predominantly contrasted abdominal vascular systems, but the margins among pancreas and other organs/tissue remained obscure. Six pancreatic tumors of 4-13 mm in diameter were detected in four of 15 animals, but not the five tumors of 1-4 mm in diameter. The inner tumor images were heterogeneously or uniformly visualized by iopamidol and Fenestra VC. Overall, iopamidol could clearly contrast between pancreatic parenchyma and the tumors as compared with Fenestra VC. All tumors confirmed were histopathologically diagnosed as pancreatic ductal adenocarcinomas. Thus, micro-CT could be useful to evaluate the carcinogenic processes and preventive methods of pancreatic cancer in hamsters and to assess the novel contrast agents for detection of small pancreatic cancer in humans. (author)

  7. Internal structures of scaffold-free 3D cell cultures visualized by synchrotron radiation-based micro-computed tomography

    Science.gov (United States)

    Saldamli, Belma; Herzen, Julia; Beckmann, Felix; Tübel, Jutta; Schauwecker, Johannes; Burgkart, Rainer; Jürgens, Philipp; Zeilhofer, Hans-Florian; Sader, Robert; Müller, Bert

    2008-08-01

    Recently the importance of the third dimension in cell biology has been better understood, resulting in a re-orientation towards three-dimensional (3D) cultivation. Yet adequate tools for their morphological characterization have to be established. Synchrotron radiation-based micro computed tomography (SRμCT) allows visualizing such biological systems with almost isotropic micrometer resolution, non-destructively. We have applied SRμCT for studying the internal morphology of human osteoblast-derived, scaffold-free 3D cultures, termed histoids. Primary human osteoblasts, isolated from femoral neck spongy bone, were grown as 2D culture in non-mineralizing osteogenic medium until a rather thick, multi-cellular membrane was formed. This delicate system was intentionally released to randomly fold itself. The folded cell cultures were grown to histoids of cubic milli- or centimeter size in various combinations of mineralizing and non-mineralizing osteogenic medium for a total period of minimum 56 weeks. The SRμCT-measurements were performed in the absorption contrast mode at the beamlines BW 2 and W 2 (HASYLAB at DESY, Hamburg, Germany), operated by the GKSS-Research Center. To investigate the entire volume of interest several scans were performed under identical conditions and registered to obtain one single dataset of each sample. The histoids grown under different conditions exhibit similar external morphology of globular or ovoid shape. The SRμCT-examination revealed the distinctly different morphological structures inside the histoids. One obtains details of the histoids that permit to identify and select the most promising slices for subsequent histological characterization.

  8. Ultrasonic guided wave tomography for wall thickness mapping in pipes

    Science.gov (United States)

    Willey, Carson L.

    Corrosion and erosion damage pose fundamental challenges to operation of oil and gas infrastructure. In order to manage the life of critical assets, plant operators must implement inspection programs aimed at assessing the severity of wall thickness loss (WTL) in pipelines, vessels, and other structures. Maximum defect depth determines the residual life of these structures and therefore represents one of the key parameters for robust damage mitigation strategies. In this context, continuous monitoring with permanently installed sensors has attracted significant interest and currently is the subject of extensive research worldwide. Among the different monitoring approaches being considered, significant promise is offered by the combination of guided ultrasonic wave technology with the principles of model based inversion under the paradigm of what is now referred to as guided wave tomography (GWT). Guided waves are attractive because they propagate inside the wall of a structure over a large distance. This can yield significant advantages over conventional pulse-echo thickness gage sensors that provide insufficient area coverage -- typically limited to the sensor footprint. While significant progress has been made in the application of GWT to plate-like structures, extension of these methods to pipes poses a number of fundamental challenges that have prevented the development of sensitive GWT methods. This thesis focuses on these challenges to address the complex guided wave propagation in pipes and to account for parametric uncertainties that are known to affect model based inversion and which are unavoidable in real field applications. The main contribution of this work is the first demonstration of a sensitive GWT method for accurately mapping the depth of defects in pipes. This is achieved by introducing a novel forward model that can extract information related to damage from the complex waveforms measured by pairs of guided wave transducers mounted on the pipe

  9. Computed tomography-guided percutaneous gastrostomy: initial experience at a cancer center

    Energy Technology Data Exchange (ETDEWEB)

    Tyng, Chiang Jeng; Santos, Erich Frank Vater; Guerra, Luiz Felipe Alves; Bitencourt, Almir Galvao Vieira; Barbosa, Paula Nicole Vieira Pinto; Chojniak, Rubens [A. C. Camargo Cancer Center, Sao Paulo, SP (Brazil); Universidade Federal do Espirito Santo (HUCAM/UFES), Vitoria, ES (Brazil). Hospital Universitario Cassiano Antonio de Morais. Radiologia e Diagnostico por Imagem

    2017-03-15

    Gastrostomy is indicated for patients with conditions that do not allow adequate oral nutrition. To reduce the morbidity and costs associated with the procedure, there is a trend toward the use of percutaneous gastrostomy, guided by endoscopy, fluoroscopy, or, most recently, computed tomography. The purpose of this paper was to review the computed tomography-guided gastrostomy procedure, as well as the indications for its use and the potential complications. (author)

  10. Computed tomography-guided percutaneous gastrostomy: initial experience at a cancer center

    International Nuclear Information System (INIS)

    Tyng, Chiang Jeng; Santos, Erich Frank Vater; Guerra, Luiz Felipe Alves; Bitencourt, Almir Galvao Vieira; Barbosa, Paula Nicole Vieira Pinto; Chojniak, Rubens; Universidade Federal do Espirito Santo

    2017-01-01

    Gastrostomy is indicated for patients with conditions that do not allow adequate oral nutrition. To reduce the morbidity and costs associated with the procedure, there is a trend toward the use of percutaneous gastrostomy, guided by endoscopy, fluoroscopy, or, most recently, computed tomography. The purpose of this paper was to review the computed tomography-guided gastrostomy procedure, as well as the indications for its use and the potential complications. (author)

  11. Possible Radiation-Induced Damage to the Molecular Structure of Wooden Artifacts Due to Micro-Computed Tomography, Handheld X-Ray Fluorescence, and X-Ray Photoelectron Spectroscopic Techniques

    Directory of Open Access Journals (Sweden)

    Madalena Kozachuk

    2016-05-01

    Full Text Available This study was undertaken to ascertain whether radiation produced by X-ray photoelectron spectroscopy (XPS, micro-computed tomography (μCT and/or portable handheld X-ray fluorescence (XRF equipment might damage wood artifacts during analysis. Changes at the molecular level were monitored by Fourier transform infrared (FTIR analysis. No significant changes in FTIR spectra were observed as a result of μCT or handheld XRF analysis. No substantial changes in the collected FTIR spectra were observed when XPS analytical times on the order of minutes were used. However, XPS analysis collected over tens of hours did produce significant changes in the FTIR spectra.

  12. Guided mass spectrum labelling in atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D., E-mail: daniel.haley@materials.ox.ac.uk [Max-Planck-Institut für Eisenforschung, Max-Plack Straße 1, Düsseldorf (Germany); Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Choi, P.; Raabe, D. [Max-Planck-Institut für Eisenforschung, Max-Plack Straße 1, Düsseldorf (Germany)

    2015-12-15

    Atom probe tomography (APT) is a valuable near-atomic scale imaging technique, which yields mass spectrographic data. Experimental correctness can often pivot on the identification of peaks within a dataset, this is a manual process where subjectivity and errors can arise. The limitations of manual procedures complicate APT experiments for the operator and furthermore are a barrier to technique standardisation. In this work we explore the capabilities of computer-guided ranging to aid identification and analysis of mass spectra. We propose a fully robust algorithm for enumeration of the possible identities of detected peak positions, which assists labelling. Furthermore, a simple ranking scheme is developed to allow for evaluation of the likelihood of each possible identity being the likely assignment from the enumerated set. We demonstrate a simple, yet complete work-chain that allows for the conversion of mass-spectra to fully identified APT spectra, with the goal of minimising identification errors, and the inter-operator variance within APT experiments. This work chain is compared to current procedures via experimental trials with different APT operators, to determine the relative effectiveness and precision of the two approaches. It is found that there is little loss of precision (and occasionally gain) when participants are given computer assistance. We find that in either case, inter-operator precision for ranging varies between 0 and 2 “significant figures” (2σ confidence in the first n digits of the reported value) when reporting compositions. Intra-operator precision is weakly tested and found to vary between 1 and 3 significant figures, depending upon species composition levels. Finally it is suggested that inconsistencies in inter-operator peak labelling may be the largest source of scatter when reporting composition data in APT. - Highlights: • Demonstration of a complete, but simple, automation chain for APT spectra analysis. • Algorithm for

  13. Guided mass spectrum labelling in atom probe tomography

    International Nuclear Information System (INIS)

    Haley, D.; Choi, P.; Raabe, D.

    2015-01-01

    Atom probe tomography (APT) is a valuable near-atomic scale imaging technique, which yields mass spectrographic data. Experimental correctness can often pivot on the identification of peaks within a dataset, this is a manual process where subjectivity and errors can arise. The limitations of manual procedures complicate APT experiments for the operator and furthermore are a barrier to technique standardisation. In this work we explore the capabilities of computer-guided ranging to aid identification and analysis of mass spectra. We propose a fully robust algorithm for enumeration of the possible identities of detected peak positions, which assists labelling. Furthermore, a simple ranking scheme is developed to allow for evaluation of the likelihood of each possible identity being the likely assignment from the enumerated set. We demonstrate a simple, yet complete work-chain that allows for the conversion of mass-spectra to fully identified APT spectra, with the goal of minimising identification errors, and the inter-operator variance within APT experiments. This work chain is compared to current procedures via experimental trials with different APT operators, to determine the relative effectiveness and precision of the two approaches. It is found that there is little loss of precision (and occasionally gain) when participants are given computer assistance. We find that in either case, inter-operator precision for ranging varies between 0 and 2 “significant figures” (2σ confidence in the first n digits of the reported value) when reporting compositions. Intra-operator precision is weakly tested and found to vary between 1 and 3 significant figures, depending upon species composition levels. Finally it is suggested that inconsistencies in inter-operator peak labelling may be the largest source of scatter when reporting composition data in APT. - Highlights: • Demonstration of a complete, but simple, automation chain for APT spectra analysis. • Algorithm for

  14. Computer tomography guided lung biopsy using interactive breath-hold control

    DEFF Research Database (Denmark)

    Ashraf, Haseem; Krag-Andersen, Shella; Naqibullah, Matiullah

    2017-01-01

    Background: Interactive breath-hold control (IBC) may improve the accuracy and decrease the complication rate of computed tomography (CT)-guided lung biopsy, but this presumption has not been proven in a randomized study. Methods: Patients admitted for CT-guided lung biopsy were randomized...

  15. Rescuing Perishable Neuroanatomical Information from a Threatened Biodiversity Hotspot: Remote Field Methods for Brain Tissue Preservation Validated by Cytoarchitectonic Analysis, Immunohistochemistry, and X-Ray Microcomputed Tomography.

    Science.gov (United States)

    Hughes, Daniel F; Walker, Ellen M; Gignac, Paul M; Martinez, Anais; Negishi, Kenichiro; Lieb, Carl S; Greenbaum, Eli; Khan, Arshad M

    2016-01-01

    Biodiversity hotspots, which harbor more endemic species than elsewhere on Earth, are increasingly threatened. There is a need to accelerate collection efforts in these regions before threatened or endangered species become extinct. The diverse geographical, ecological, genetic, morphological, and behavioral data generated from the on-site collection of an individual specimen are useful for many scientific purposes. However, traditional methods for specimen preparation in the field do not permit researchers to retrieve neuroanatomical data, disregarding potentially useful data for increasing our understanding of brain diversity. These data have helped clarify brain evolution, deciphered relationships between structure and function, and revealed constraints and selective pressures that provide context about the evolution of complex behavior. Here, we report our field-testing of two commonly used laboratory-based techniques for brain preservation while on a collecting expedition in the Congo Basin and Albertine Rift, two poorly known regions associated with the Eastern Afromontane biodiversity hotspot. First, we found that transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions. Second, field-perfused brain tissue subjected to prolonged post-fixation remained readily compatible with subsequent immunohistochemical detection of neural antigens, with immunostaining that was comparable to that of laboratory-perfused brain tissue. Third, immersion-fixation of lizard brains, prepared under identical environmental conditions, was readily compatible with subsequent iodine-enhanced X-ray microcomputed tomography, which facilitated the non-destructive imaging of the intact brain within its skull. In summary, we have validated

  16. The effect of a manual instrumentation technique on five types of premolar root canal geometry assessed by microcomputed tomography and three-dimensional reconstruction

    International Nuclear Information System (INIS)

    Li, Ke-Zeng; Gao, Yuan; Zhang, Ru; Hu, Tao; Guo, Bin

    2011-01-01

    Together with diagnosis and treatment planning, a good knowledge of the root canal system and its frequent variations is a necessity for successful root canal therapy. The selection of instrumentation techniques for variants in internal anatomy of teeth has significant effects on the shaping ability and cleaning effectiveness. The aim of this study was to reveal the differences made by including variations in the internal anatomy of premolars into the study protocol for investigation of a single instrumentation technique (hand ProTaper instruments) assessed by microcomputed tomography and three-dimensional reconstruction. Five single-root premolars, whose root canal systems were classified into one of five types, were scanned with micro-CT before and after preparation with a hand ProTaper instrument. Instrumentation characteristics were measured quantitatively in 3-D using a customized application framework based on MeVisLab. Numeric values were obtained for canal surface area, volume, volume changes, percentage of untouched surface, dentin wall thickness, and the thickness of dentin removed. Preparation errors were also evaluated using a color-coded reconstruction. Canal volumes and surface areas were increased after instrumentation. Prepared canals of all five types were straightened, with transportation toward the inner aspects of S-shaped or multiple curves. However, a ledge was formed at the apical third curve of the type II canal system and a wide range in the percentage of unchanged canal surfaces (27.4-83.0%) was recorded. The dentin walls were more than 0.3 mm thick except in a 1 mm zone from the apical surface and the hazardous area of the type II canal system after preparation with an F3 instrument. The 3-D color-coded images showed different morphological changes in the five types of root canal systems shaped with the same hand instrumentation technique. Premolars are among the most complex teeth for root canal treatment and instrumentation techniques

  17. The effect of a manual instrumentation technique on five types of premolar root canal geometry assessed by microcomputed tomography and three-dimensional reconstruction

    Directory of Open Access Journals (Sweden)

    Hu Tao

    2011-06-01

    Full Text Available Abstract Background Together with diagnosis and treatment planning, a good knowledge of the root canal system and its frequent variations is a necessity for successful root canal therapy. The selection of instrumentation techniques for variants in internal anatomy of teeth has significant effects on the shaping ability and cleaning effectiveness. The aim of this study was to reveal the differences made by including variations in the internal anatomy of premolars into the study protocol for investigation of a single instrumentation technique (hand ProTaper instruments assessed by microcomputed tomography and three-dimensional reconstruction. Methods Five single-root premolars, whose root canal systems were classified into one of five types, were scanned with micro-CT before and after preparation with a hand ProTaper instrument. Instrumentation characteristics were measured quantitatively in 3-D using a customized application framework based on MeVisLab. Numeric values were obtained for canal surface area, volume, volume changes, percentage of untouched surface, dentin wall thickness, and the thickness of dentin removed. Preparation errors were also evaluated using a color-coded reconstruction. Results Canal volumes and surface areas were increased after instrumentation. Prepared canals of all five types were straightened, with transportation toward the inner aspects of S-shaped or multiple curves. However, a ledge was formed at the apical third curve of the type II canal system and a wide range in the percentage of unchanged canal surfaces (27.4-83.0% was recorded. The dentin walls were more than 0.3 mm thick except in a 1 mm zone from the apical surface and the hazardous area of the type II canal system after preparation with an F3 instrument. Conclusions The 3-D color-coded images showed different morphological changes in the five types of root canal systems shaped with the same hand instrumentation technique. Premolars are among the most

  18. Rescuing Perishable Neuroanatomical Information from a Threatened Biodiversity Hotspot: Remote Field Methods for Brain Tissue Preservation Validated by Cytoarchitectonic Analysis, Immunohistochemistry, and X-Ray Microcomputed Tomography.

    Directory of Open Access Journals (Sweden)

    Daniel F Hughes

    Full Text Available Biodiversity hotspots, which harbor more endemic species than elsewhere on Earth, are increasingly threatened. There is a need to accelerate collection efforts in these regions before threatened or endangered species become extinct. The diverse geographical, ecological, genetic, morphological, and behavioral data generated from the on-site collection of an individual specimen are useful for many scientific purposes. However, traditional methods for specimen preparation in the field do not permit researchers to retrieve neuroanatomical data, disregarding potentially useful data for increasing our understanding of brain diversity. These data have helped clarify brain evolution, deciphered relationships between structure and function, and revealed constraints and selective pressures that provide context about the evolution of complex behavior. Here, we report our field-testing of two commonly used laboratory-based techniques for brain preservation while on a collecting expedition in the Congo Basin and Albertine Rift, two poorly known regions associated with the Eastern Afromontane biodiversity hotspot. First, we found that transcardial perfusion fixation and long-term brain storage, conducted in remote field conditions with no access to cold storage laboratory equipment, had no observable impact on cytoarchitectural features of lizard brain tissue when compared to lizard brain tissue processed under laboratory conditions. Second, field-perfused brain tissue subjected to prolonged post-fixation remained readily compatible with subsequent immunohistochemical detection of neural antigens, with immunostaining that was comparable to that of laboratory-perfused brain tissue. Third, immersion-fixation of lizard brains, prepared under identical environmental conditions, was readily compatible with subsequent iodine-enhanced X-ray microcomputed tomography, which facilitated the non-destructive imaging of the intact brain within its skull. In summary, we

  19. Physical properties of root cementum: part 20. Effect of fluoride on orthodontically induced root resorption with light and heavy orthodontic forces for 4 weeks: a microcomputed tomography study.

    Science.gov (United States)

    Karadeniz, Ersan Ilsay; Gonzales, Carmen; Nebioglu-Dalci, Oyku; Dwarte, Dennis; Turk, Tamer; Isci, Devrim; Sahin-Saglam, Aynur M; Alkis, Huseyin; Elekdag-Turk, Selma; Darendeliler, M Ali

    2011-11-01

    The major side effect of orthodontic treatment is orthodontically induced inflammatory root resorption. Fluoride was previously shown to reduce the volume of the root resorption craters in rats. However, the effect of fluoride on orthodontically induced inflammatory root resorption in humans has not yet been investigated. The aim of this study was to investigate the effect of high and low amounts of fluoride intake from birth on orthodontically induced inflammatory root resorption under light (25 g) and heavy (225 g) force applications. Forty-eight patients who required maxillary premolar extractions as part of their orthodontic treatment were selected from 2 cities in Turkey with high and low fluoride concentrations in the public water of ≥ 2 and ≤ 0.05 ppm, respectively. The patients were randomly separated into 4 groups of 12 each: group 1, high fluoride intake and heavy force; group 2, low fluoride intake and heavy force; group 3, high fluoride intake and light force; and group 4, low fluoride intake and light force. Light or heavy buccal tipping orthodontic forces were applied on the maxillary first premolars for 28 days. At day 28, the teeth were extracted, and the samples were analyzed with microcomputed tomography. Fluoride reduced the volume of root resorption craters in all groups; however, this effect was significantly different with high force application (P = 0.015). It was also found that light forces caused less root resorption than heavy forces. There was no statistical difference in the amount of root resorption observed on root surfaces (buccal, lingual, mesial, and distal) in all groups. However, the middle third of the roots showed the least root resorption. With high fluoride intake and heavy force application, less root resorption was found in all root surfaces and root thirds. Fluoride may reduce the volume of root resorption craters. This effect is significant with heavy force applications (P root showed significantly greater root

  20. Micro-Scale Distribution of CA4+ in Ex Vivo Human Articular Cartilage Detected with Contrast-Enhanced Micro-Computed Tomography Imaging

    Science.gov (United States)

    Karhula, Sakari S.; Finnilä, Mikko A.; Freedman, Jonathan D.; Kauppinen, Sami; Valkealahti, Maarit; Lehenkari, Petri; Pritzker, Kenneth P. H.; Nieminen, Heikki J.; Snyder, Brian D.; Grinstaff, Mark W.; Saarakkala, Simo

    2017-08-01

    Contrast-enhanced micro-computed tomography (CEµCT) with cationic and anionic contrast agents reveals glycosaminoglycan (GAG) content and distribution in articular cartilage (AC). The advantage of using cationic stains (e.g. CA4+) compared to anionic stains (e.g. Hexabrix®), is that it distributes proportionally with GAGs, while anionic stain distribution in AC is inversely proportional to the GAG content. To date, studies using cationic stains have been conducted with sufficient resolution to study its distributions on the macro-scale, but with insufficient resolution to study its distributions on the micro-scale. Therefore, it is not known whether the cationic contrast agents accumulate in extra/pericellular matrix and if they interact with chondrocytes. The insufficient resolution has also prevented to answer the question whether CA4+ accumulation in chondrons could lead to an erroneous quantification of GAG distribution with low-resolution µCT setups. In this study, we use high-resolution µCT to investigate whether CA4+ accumulates in chondrocytes, and further, to determine whether it affects the low-resolution ex vivo µCT studies of CA4+ stained human AC with varying degree of osteoarthritis. Human osteochondral samples were immersed in three different concentrations of CA4+ (3 mgI/ml, 6mgI/ml, and 24 mgI/ml) and imaged with high-resolution µCT at several timepoints. Different uptake diffusion profiles of CA4+ were observed between the segmented chondrons and the rest of the tissue. While the X-ray -detected CA4+ concentration in chondrons was greater than in the rest of the AC, its contribution to the uptake into the whole tissue was negligible and in line with macro-scale GAG content detected from histology. The efficient uptake of CA4+ into chondrons and surrounding territorial matrix can be explained by the micro-scale distribution of GAG content. CA4+ uptake in chondrons occurred regardless of the progression stage of osteoarthritis in the samples

  1. Micro-Scale Distribution of CA4+ in Ex vivo Human Articular Cartilage Detected with Contrast-Enhanced Micro-Computed Tomography Imaging

    Directory of Open Access Journals (Sweden)

    Sakari S. Karhula

    2017-08-01

    Full Text Available Contrast-enhanced micro-computed tomography (CEμCT with cationic and anionic contrast agents reveals glycosaminoglycan (GAG content and distribution in articular cartilage (AC. The advantage of using cationic stains (e.g., CA4+ compared to anionic stains (e.g., Hexabrix®, is that it distributes proportionally with GAGs, while anionic stain distribution in AC is inversely proportional to the GAG content. To date, studies using cationic stains have been conducted with sufficient resolution to study its distributions on the macro-scale, but with insufficient resolution to study its distributions on the micro-scale. Therefore, it is not known whether the cationic contrast agents accumulate in extra/pericellular matrix and if they interact with chondrocytes. The insufficient resolution has also prevented to answer the question whether CA4+ accumulation in chondrons could lead to an erroneous quantification of GAG distribution with low-resolution μCT setups. In this study, we use high-resolution μCT to investigate whether CA4+ accumulates in chondrocytes, and further, to determine whether it affects the low-resolution ex vivo μCT studies of CA4+ stained human AC with varying degree of osteoarthritis. Human osteochondral samples were immersed in three different concentrations of CA4+ (3 mgI/ml, 6 mgI/ml, and 24 mgI/ml and imaged with high-resolution μCT at several timepoints. Different uptake diffusion profiles of CA4+ were observed between the segmented chondrons and the rest of the tissue. While the X-ray -detected CA4+ concentration in chondrons was greater than in the rest of the AC, its contribution to the uptake into the whole tissue was negligible and in line with macro-scale GAG content detected from histology. The efficient uptake of CA4+ into chondrons and surrounding territorial matrix can be explained by the micro-scale distribution of GAG content. CA4+ uptake in chondrons occurred regardless of the progression stage of osteoarthritis

  2. Imaging the Aqueous Humor Outflow Pathway in Human Eyes by Three-dimensional Micro-computed Tomography (3D micro-CT)

    Energy Technology Data Exchange (ETDEWEB)

    C Hann; M Bentley; A Vercnocke; E Ritman; M Fautsch

    2011-12-31

    The site of outflow resistance leading to elevated intraocular pressure in primary open-angle glaucoma is believed to be located in the region of Schlemm's canal inner wall endothelium, its basement membrane and the adjacent juxtacanalicular tissue. Evidence also suggests collector channels and intrascleral vessels may have a role in intraocular pressure in both normal and glaucoma eyes. Traditional imaging modalities limit the ability to view both proximal and distal portions of the trabecular outflow pathway as a single unit. In this study, we examined the effectiveness of three-dimensional micro-computed tomography (3D micro-CT) as a potential method to view the trabecular outflow pathway. Two normal human eyes were used: one immersion fixed in 4% paraformaldehyde and one with anterior chamber perfusion at 10 mmHg followed by perfusion fixation in 4% paraformaldehyde/2% glutaraldehyde. Both eyes were postfixed in 1% osmium tetroxide and scanned with 3D micro-CT at 2 {mu}m or 5 {mu}m voxel resolution. In the immersion fixed eye, 24 collector channels were identified with an average orifice size of 27.5 {+-} 5 {mu}m. In comparison, the perfusion fixed eye had 29 collector channels with a mean orifice size of 40.5 {+-} 13 {mu}m. Collector channels were not evenly dispersed around the circumference of the eye. There was no significant difference in the length of Schlemm's canal in the immersed versus the perfused eye (33.2 versus 35.1 mm). Structures, locations and size measurements identified by 3D micro-CT were confirmed by correlative light microscopy. These findings confirm 3D micro-CT can be used effectively for the non-invasive examination of the trabecular meshwork, Schlemm's canal, collector channels and intrascleral vasculature that comprise the distal outflow pathway. This imaging modality will be useful for non-invasive study of the role of the trabecular outflow pathway as a whole unit.

  3. Long-term Risedronate Treatment Normalizes Mineralization and Continues to Preserve Trabecular Architecture: Sequential Triple Biopsy Studies with Micro-Computed Tomography

    International Nuclear Information System (INIS)

    Borah, B.; Dufresne, T.; Ritman, E.; Jorgensen, S.; Liu, S.; Chmielewski, P.; Phipps, R.; Zhou, X.; Sibonga, J.; Turner, R.

    2006-01-01

    The objective of the study was to assess the time course of changes in bone mineralization and architecture using sequential triple biopsies from women with postmenopausal osteoporosis (PMO) who received long-term treatment with risedronate. Transiliac biopsies were obtained from the same subjects (n = 7) at baseline and after 3 and 5 years of treatment with 5 mg daily risedronate. Mineralization was measured using 3-dimensional (3D) micro-computed tomography (CT) with synchrotron radiation and was compared to levels in healthy premenopausal women (n = 12). Compared to the untreated PMO women at baseline, the premenopausal women had higher average mineralization (Avg-MIN) and peak mineralization (Peak-MIN) by 5.8% (P = 0.003) and 8.0% (P = 0.003), respectively, and lower ratio of low to high-mineralized bone volume (BMR-V) and surface area (BMR-S) by 73.3% (P = 0.005) and 61.7% (P 0.003), respectively. Relative to baseline, 3 years of risedronate treatment significantly increased Avg-MIN (4.9 ± 1.1%, P = 0.016) and Peak-MIN (6.2 ± 1.5%, P = 0.016), and significantly decreased BMR-V (-68.4 ± 7.3%, P = 0.016) and BMR-S (-50.2 ± 5.7%, P = 0.016) in the PMO women. The changes were maintained at the same level when treatment was continued up to 5 years. These results are consistent with the significant reduction of turnover observed after 3 years of treatment and which was similarly maintained through 5 years of treatment. Risedronate restored the degree of mineralization and the ratios of low- to high-mineralized bone to premenopausal levels after 3 years of treatment, suggesting that treatment reduced bone turnover in PMO women to healthy premenopausal levels. Conventional micro-CT analysis further demonstrated that bone volume (BV/TV) and trabecular architecture did not change from baseline up to 5 years of treatment, suggesting that risedronate provided long-term preservation of trabecular architecture in the PMO women. Overall, risedronate provided sustained

  4. Comparison of the accuracy of 3-dimensional cone-beam computed tomography and micro-computed tomography reconstructions by using different voxel sizes.

    Science.gov (United States)

    Maret, Delphine; Peters, Ove A; Galibourg, Antoine; Dumoncel, Jean; Esclassan, Rémi; Kahn, Jean-Luc; Sixou, Michel; Telmon, Norbert

    2014-09-01

    Cone-beam computed tomography (CBCT) data are, in principle, metrically exact. However, clinicians need to consider the precision of measurements of dental morphology as well as other hard tissue structures. CBCT spatial resolution, and thus image reconstruction quality, is restricted by the acquisition voxel size. The aim of this study was to assess geometric discrepancies among 3-dimensional CBCT reconstructions relative to the micro-CT reference. A total of 37 permanent teeth from 9 mandibles were scanned with CBCT 9500 and 9000 3D and micro-CT. After semiautomatic segmentation, reconstructions were obtained from CBCT acquisitions (voxel sizes 76, 200, and 300 μm) and from micro-CT (voxel size 41 μm). All reconstructions were positioned in the same plane by image registration. The topography of the geometric discrepancies was displayed by using a color map allowing the maximum differences to be located. The maximum differences were mainly found at the cervical margins and on the cusp tips or incisal edges. Geometric reconstruction discrepancies were significant at 300-μm resolution (P = .01, Wilcoxon test). To study hard tissue morphology, CBCT acquisitions require voxel sizes smaller than 300 μm. This experimental study will have to be complemented by studies in vivo that consider the conditions of clinical practice. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Investigation of a pre-clinical mandibular bone notch defect model in miniature pigs: clinical computed tomography, micro-computed tomography, and histological evaluation.

    Science.gov (United States)

    Carlisle, Patricia L; Guda, Teja; Silliman, David T; Lien, Wen; Hale, Robert G; Brown Baer, Pamela R

    2016-02-01

    To validate a critical-size mandibular bone defect model in miniature pigs. Bilateral notch defects were produced in the mandible of dentally mature miniature pigs. The right mandibular defect remained untreated while the left defect received an autograft. Bone healing was evaluated by computed tomography (CT) at 4 and 16 weeks, and by micro-CT and non-decalcified histology at 16 weeks. In both the untreated and autograft treated groups, mineralized tissue volume was reduced significantly at 4 weeks post-surgery, but was comparable to the pre-surgery levels after 16 weeks. After 16 weeks, CT analysis indicated that significantly greater bone was regenerated in the autograft treated defect than in the untreated defect (P=0.013). Regardless of the treatment, the cortical bone was superior to the defect remodeled over 16 weeks to compensate for the notch defect. The presence of considerable bone healing in both treated and untreated groups suggests that this model is inadequate as a critical-size defect. Despite healing and adaptation, the original bone geometry and quality of the pre-injured mandible was not obtained. On the other hand, this model is justified for evaluating accelerated healing and mitigating the bone remodeling response, which are both important considerations for dental implant restorations.

  6. Computerized Tomography and its Applications : a Guided Tour

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1992-01-01

    We present a review of the mathematical principles of computerized tomography. Topics treated include the role of the Radon transform and related transforms, inversion formulas, uniqueness, ill-posedness and stability, practical reconstruction algorithms, and various generalizations such as

  7. Comparison tomography relocation hypocenter grid search and guided grid search method in Java island

    International Nuclear Information System (INIS)

    Nurdian, S. W.; Adu, N.; Palupi, I. R.; Raharjo, W.

    2016-01-01

    The main data in this research is earthquake data recorded from 1952 to 2012 with 9162 P wave and 2426 events are recorded by 30 stations located around Java island. Relocation hypocenter processed using grid search and guidded grid search method. Then the result of relocation hypocenter become input for tomography pseudo bending inversion process. It can be used to identification the velocity distribution in subsurface. The result of relocation hypocenter by grid search and guided grid search method after tomography process shown in locally and globally. In locally area grid search method result is better than guided grid search according to geological reseach area. But in globally area the result of guided grid search method is better for a broad area because the velocity variation is more diverse than the other one and in accordance with local geological research conditions. (paper)

  8. Computed tomography-guided percutaneous core needle biopsy of deep seated bone lesions in two dogs

    International Nuclear Information System (INIS)

    Mori, T.; Sakaida, M.; Yamada, M.; Akiyama, H.; Takai, Y.; Sakai, H.; Maruo, K.

    2006-01-01

    Computed Tomography (CT)-guided percutaneous core needle biopsies were undertaken for the diagnosis of osteosarcoma in the pelvis (case 1) and myeloma (case 2) in the seventh lumber vertebra which were difficult to targeted by palpation, ultrasound or fluoroscopy. In both cases, enough tissue for pathological diagnosis were obtained without any complication. CT-guided biopsy was thought to be a safe, easy and effective technique for the evaluation of the deep seated bone lesion

  9. Computed tomography-guided percutaneous biopsy of pancreatic masses using pneumodissection

    Directory of Open Access Journals (Sweden)

    Chiang Jeng Tyng

    2013-06-01

    Full Text Available Objective To describe the technique of computed tomography-guided percutaneous biopsy of pancreatic tumors with pneumodissection. Materials and Methods In the period from June 2011 to May 2012, seven computed tomography-guided percutaneous biopsies of pancreatic tumors utilizing pneumodissection were performed in the authors' institution. All the procedures were performed with an automatic biopsy gun and coaxial system with Tru-core needles. The biopsy specimens were histologically assessed. Results In all the cases the pancreatic mass could not be directly approached by computed tomography without passing through major organs and structures. The injection of air allowed the displacement of adjacent structures and creation of a safe coaxial needle pathway toward the lesion. Biopsy was successfully performed in all the cases, yielding appropriate specimens for pathological analysis. Conclusion Pneumodissection is a safe, inexpensive and technically easy approach to perform percutaneous biopsy in selected cases where direct access to the pancreatic tumor is not feasible.

  10. Computed tomography-guided percutaneous biopsy of pancreatic masses using pneumodissection

    International Nuclear Information System (INIS)

    Tyng, Chiang Jeng; Bitencourt, Almir Galvao Vieira; Almeida, Maria Fernanda Arruda; Barbosa, Paula Nicole Vieira; Martins, Eduardo Bruno Lobato; Junior, Joao Paulo Kawaoka Matushita; Chojniak, Rubens; Coimbra, Felipe Jose Fernandez

    2013-01-01

    Objective: to describe the technique of computed tomography-guided percutaneous biopsy of pancreatic tumors with pneumodissection. Materials and methods: in the period from June 2011 to May 2012, seven computed tomography guided percutaneous biopsies of pancreatic tumors utilizing pneumodissection were performed in the authors' institution. All the procedures were performed with an automatic biopsy gun and coaxial system with Tru-core needles. The biopsy specimens were histologically assessed. Results: in all the cases the pancreatic mass could not be directly approached by computed tomography without passing through major organs and structures. The injection of air allowed the displacement of adjacent structures and creation of a safe coaxial needle pathway toward the lesion. Biopsy was successfully performed in all the cases, yielding appropriate specimens for pathological analysis. Conclusion: Pneumodissection is a safe, inexpensive and technically easy approach to perform percutaneous biopsy in selected cases where direct access to the pancreatic tumor is not feasible. (author)

  11. Feasibility of Computed Tomography-Guided Methods for Spatial Normalization of Dopamine Transporter Positron Emission Tomography Image.

    Science.gov (United States)

    Kim, Jin Su; Cho, Hanna; Choi, Jae Yong; Lee, Seung Ha; Ryu, Young Hoon; Lyoo, Chul Hyoung; Lee, Myung Sik

    2015-01-01

    Spatial normalization is a prerequisite step for analyzing positron emission tomography (PET) images both by using volume-of-interest (VOI) template and voxel-based analysis. Magnetic resonance (MR) or ligand-specific PET templates are currently used for spatial normalization of PET images. We used computed tomography (CT) images acquired with PET/CT scanner for the spatial normalization for [18F]-N-3-fluoropropyl-2-betacarboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP-CIT) PET images and compared target-to-cerebellar standardized uptake value ratio (SUVR) values with those obtained from MR- or PET-guided spatial normalization method in healthy controls and patients with Parkinson's disease (PD). We included 71 healthy controls and 56 patients with PD who underwent [18F]-FP-CIT PET scans with a PET/CT scanner and T1-weighted MR scans. Spatial normalization of MR images was done with a conventional spatial normalization tool (cvMR) and with DARTEL toolbox (dtMR) in statistical parametric mapping software. The CT images were modified in two ways, skull-stripping (ssCT) and intensity transformation (itCT). We normalized PET images with cvMR-, dtMR-, ssCT-, itCT-, and PET-guided methods by using specific templates for each modality and measured striatal SUVR with a VOI template. The SUVR values measured with FreeSurfer-generated VOIs (FSVOI) overlaid on original PET images were also used as a gold standard for comparison. The SUVR values derived from all four structure-guided spatial normalization methods were highly correlated with those measured with FSVOI (P normalization methods provided reliable striatal SUVR values comparable to those obtained with MR-guided methods. CT-guided methods can be useful for analyzing dopamine transporter PET images when MR images are unavailable.

  12. A Comparison of Endoscopic Ultrasound Guided Biopsy and Positron Emission Tomography with Integrated Computed Tomography in Lung Cancer Staging

    DEFF Research Database (Denmark)

    Larsen, Stine Schmidt; Vilmann, P; Krasnik, K

    2009-01-01

    BACKGROUND AND STUDY AIMS: Exact staging of patients with non-small-cell lung cancer (NSCLC) is important to improve selection of resectable and curable patients for surgery. Positron emission tomography with integrated computed tomography (PET/CT) and endoscopic ultrasound guided fine needle...... aspiration biopsy (EUS-FNA) are new and promising methods, but indications in lung cancer staging are controversial. Only few studies have compared the 2 methods. The aim of this study was to assess and compare the diagnostic values of PET/CT and EUS-FNA for diagnosing advanced lung cancer in patients, who...... had both procedures performed. PATIENTS AND METHODS: 27 patients considered to be potential candidates for resection of NSCLC underwent PET/CT and EUS-FNA. Diagnoses were confirmed either by open thoracotomy, mediastinoscopy or clinical follow-up. Advanced lung cancer was defined as tumour...

  13. PIC microcomputer guide for beginner

    International Nuclear Information System (INIS)

    Shin, Chulho

    2001-03-01

    This book comprised of four parts. The first part deals with computer one chip, voltage current, resistance, electronic components, logical element, TTL and CMOS, memory and I/O and MDS. The second part is about PIC16C84 which describes its memory structure, registers and PIC16C84 command. The third part deals with LED control program, jet car LED, quiz buzzer program, LED spectrum, digital dice, two digital dices and time bomb. The last part introduces PIC16C71 and temperature controller.

  14. Trend Analysis Using Microcomputers.

    Science.gov (United States)

    Berger, Carl F.

    A trend analysis statistical package and additional programs for the Apple microcomputer are presented. They illustrate strategies of data analysis suitable to the graphics and processing capabilities of the microcomputer. The programs analyze data sets using examples of: (1) analysis of variance with multiple linear regression; (2) exponential…

  15. Sketching with a microcomputer

    DEFF Research Database (Denmark)

    Jacobi, P.

    This report describes the use of a microcomputer as a tool for the sketch design phase of the building process. A housing development scheme comprising 175 dwellings is chosen for illustrating the procedures. Here the microcomputer is utilized for analysing the landscape, for the three-dimensiona...

  16. Microcomputers "Goto" School.

    Science.gov (United States)

    Piele, Donald T.

    This paper is a report of a pilot project in which a microcomputer was placed in a sixth grade classroom for eight weeks for the purpose of developing logical thinking skills. Students were first given instruction on how to program the APPLE II microcomputer to draw color graphics designs; they were then given similar problems to solve using the…

  17. Doing Physics with Microcomputers.

    Science.gov (United States)

    Bak, Per

    1983-01-01

    Describes how microcomputers can perform very demanding/large-scale physics calculations at speeds not much slower than those of modern, full-size computers. Among the examples provided are a Monte Carlo simulation of the three-dimensional Ising model and a program (for the Apple microcomputer) using the time-independent Schrodinger Equation. (JN)

  18. Microcomputers, Model Rockets, and Race Cars.

    Science.gov (United States)

    Mirus, Edward A., Jr.

    1985-01-01

    The industrial education orientation program at Wisconsin School for the Deaf (WSD) presents problem-solving situations to all seventh- and eighth-grade hearing-impaired students. WSD developed user-friendly microcomputer software to guide students individually through complex computations involving model race cars and rockets while freeing…

  19. Optical coherence tomography in guided surgery of GI cancer

    Science.gov (United States)

    Zagaynova, Elena V.; Abelevich, Alexander I.; Zagaynov, Vladimir E.; Gladkova, Natalia D.; Denisenko, Arkady N.; Feldchtein, Felix I.; Snopova, Ludmila B.; Kutis, Irina S.

    2005-04-01

    Optical Coherence Tomography (OCT) is a new high spatial resolution, real-time optical imaging modality, known from prior pilot studies for its high sensitivity to invasive cancer. We reported our results in an OCT feasibility study for accurate determination of the proximal border for esophageal carcinoma and the distal border for rectal carcinoma. The OCT study enrolled 19 patients with rectal adenocarcinoma and 24 patients with distal esophageal carcinoma (14 squamous cell carcinomas, 10 adenocarcinomas). During pre-surgery planning endoscopy we performed in vivo OCT imaging of the tumor border at four dial clock axes (12, 3, 6 and 9 o"clock). The OCT border then was marked by an electrocoagulator, or by a methylene blue tattoo. A cold biopsy (from the esophagus) was performed at visual and OCT borders and compared with visual and OCT readings. 27 post-surgery excised specimens were analyzed. OCT borders matched the histopathology in 94% cases in the rectum and 83.3% in the esophagus. In the cases of a mismatch between the OCT and histology borders, a deep tumor invasion occurred in the muscle layer (esophagus, rectum). Because of its high sensitivity to mucosal cancer, OCT can be used for pre-surgery planning and surgery guidance of the proximal border for esophageal carcinoma and the distal border for rectal carcinoma. However, deep invasion in the rectum or esophageal wall has to be controlled by alternative diagnostic modalities.

  20. Quantification of thickness loss in a liquid-loaded plate using ultrasonic guided wave tomography

    Science.gov (United States)

    Rao, Jing; Ratassepp, Madis; Fan, Zheng

    2017-12-01

    Ultrasonic guided wave tomography (GWT) provides an attractive solution to map thickness changes from remote locations. It is based on the velocity-to-thickness mapping employing the dispersive characteristics of selected guided modes. This study extends the application of GWT on a liquid-loaded plate. It is a more challenging case than the application on a free plate, due to energy of the guided waves leaking into the liquid. In order to ensure the accuracy of thickness reconstruction, advanced forward models are developed to consider attenuation effects using complex velocities. The reconstruction of the thickness map is based on the frequency-domain full waveform inversion (FWI) method, and its accuracy is discussed using different frequencies and defect dimensions. Validation experiments are carried out on a water-loaded plate with an irregularly shaped defect using S0 guided waves, showing excellent performance of the reconstruction algorithm.

  1. Shaping ability of the conventional nickel-titanium and reciprocating nickel-titanium file systems: a comparative study using micro-computed tomography.

    Science.gov (United States)

    Hwang, Young-Hye; Bae, Kwang-Shik; Baek, Seung-Ho; Kum, Kee-Yeon; Lee, WooCheol; Shon, Won-Jun; Chang, Seok Woo

    2014-08-01

    This study used micro-computed tomographic imaging to compare the shaping ability of Mtwo (VDW, Munich, Germany), a conventional nickel-titanium file system, and Reciproc (VDW), a reciprocating file system morphologically similar to Mtwo. Root canal shaping was performed on the mesiobuccal and distobuccal canals of extracted maxillary molars. In the RR group (n = 15), Reciproc was used in a reciprocating motion (150° counterclockwise/30° clockwise, 300 rpm); in the MR group, Mtwo was used in a reciprocating motion (150° clockwise/30° counterclockwise, 300 rpm); and in the MC group, Mtwo was used in a continuous rotating motion (300 rpm). Micro-computed tomographic images taken before and after canal shaping were used to analyze canal volume change and the degree of transportation at the cervical, middle, and apical levels. The time required for canal shaping was recorded. Afterward, each file was analyzed using scanning electron microscopy. No statistically significant differences were found among the 3 groups in the time for canal shaping or canal volume change (P > .05). Transportation values of the RR and MR groups were not significantly different at any level. However, the transportation value of the MC group was significantly higher than both the RR and MR groups at the cervical and apical levels (P file deformation was observed for 1 file in group RR (1/15), 3 files in group MR (3/15), and 5 files in group MC (5/15). In terms of shaping ability, Mtwo used in a reciprocating motion was not significantly different from the Reciproc system. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Cranial radiotherapy guided by computed tomography with or without fields conformation in pediatric

    International Nuclear Information System (INIS)

    Fernandez, Diego; Caussa, Lucas; Murina, Patricia; Zunino, Silvia

    2007-01-01

    Many malignancies in children can be cured by radiotherapy, acute toxicity and the significant effect of delayed treatment are worrying for the patient, family and society. Therefore, the end of the pediatric radiotherapy is to maintain or improve the cure rate of cancer, diminishing the aftermath of treatment. The goal of this study is to measure differences in doses to the healthy tissue of the central nervous system with two radiotherapy techniques, both guided by computed tomography [es

  3. Computed tomography-guided core-needle biopsy of lung lesions: an oncology center experience

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Marcos Duarte; Fonte, Alexandre Calabria da; Chojniak, Rubens, E-mail: marcosduarte@yahoo.com.b [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Dept. of Radiology and Imaging Diagnosis; Andrade, Marcony Queiroz de [Hospital Alianca, Salvador, BA (Brazil); Gross, Jefferson Luiz [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Dept. of Chest Surgery

    2011-03-15

    Objective: The present study is aimed at describing the experience of an oncology center with computed tomography guided core-needle biopsy of pulmonary lesions. Materials and Methods: Retrospective analysis of 97 computed tomography-guided core-needle biopsy of pulmonary lesions performed in the period between 1996 and 2004 in a Brazilian reference oncology center (Hospital do Cancer - A.C. Camargo). Information regarding material appropriateness and the specific diagnoses were collected and analyzed. Results: Among 97 lung biopsies, 94 (96.9%) supplied appropriate specimens for histological analyses, with 71 (73.2%) cases being diagnosed as malignant lesions and 23 (23.7%) diagnosed as benign lesions. Specimens were inappropriate for analysis in three cases. The frequency of specific diagnosis was 83 (85.6%) cases, with high rates for both malignant lesions with 63 (88.7%) cases and benign lesions with 20 (86.7%). As regards complications, a total of 12 cases were observed as follows: 7 (7.2%) cases of hematoma, 3 (3.1%) cases of pneumothorax and 2 (2.1%) cases of hemoptysis. Conclusion: Computed tomography-guided core needle biopsy of lung lesions demonstrated high rates of material appropriateness and diagnostic specificity, and low rates of complications in the present study. (author)

  4. Uncommon primary tumors of the orbit diagnosed by computed tomography-guided core needle biopsy: report of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Tyng, Chiang Jeng; Matushita Junior, Joao Paulo Kawaoka; Bitencourt, Almir Galvao Vieira; Amoedo, Mauricio Kauark; Barbosa, Paula Nicole Vieira; Chojniak, Rubens, E-mail: almirgvb@yahoo.com.br [A.C.Camargo Cancer Center, Sao Paulo, SP (Brazil). Dept. de Imagem; Neves, Flavia Branco Cerqueira Serra [Hospital do Servidor Publico Estadual, Sao Paulo, SP (Brazil). Div. de Oftalmologia

    2014-11-15

    Computed tomography-guided percutaneous biopsy is a safe and effective alternative method for evaluating selected intra-orbital lesions where the preoperative diagnosis is important for the therapeutic planning. The authors describe two cases of patients with uncommon primary orbital tumors whose diagnosis was obtained by means of computed tomography-guided core needle biopsy, with emphasis on the technical aspects of the procedure. (author)

  5. Positron Emission Tomography Computed Tomography: A Guide for the General Radiologist.

    Science.gov (United States)

    Beadsmoore, Clare; Newman, David; MacIver, Duncan; Pawaroo, Davina

    2015-11-01

    Cancer remains a leading cause of death in Canada and worldwide. Whilst advances in anatomical imaging to detect and monitor malignant disease have continued over the last few decades, limitations remain. Functional imaging, such as positron emission tomography (PET), has improved the sensitivity and specificity in detecting malignant disease. In combination with computed tomography (CT), PET is now commonly used in the oncology setting and is an integral part of many cancer patients' pathways. Although initially the CT component of the study was purely for attenuation of the PET imaging and to provide anatomical coregistration, many centers now combine the PET study with a diagnostic quality contrast enhanced CT to provide one stop staging, thus refining the patient's pathway. The commonest tracer used in everyday practice is FDG (F18-fluorodeoxyglucose). There are many more tracers in routine clinical practice and those with emerging roles, such as 11C-choline, useful in the imaging of prostate cancer; 11C-methionine, useful in imaging brain tumours; C11-acetate, used in imaging hepatocellular carcinomas; 18F-FLT, which can be used as a marker of cellular proliferation in various malignancies; and F18-DOPA and various 68Ga-somatostatin analogues, used in patients with neuroendocrine tumours. In this article we concentrate on FDG PETCT as this is the most commonly available and widely utilised tracer now used to routinely stage a number of cancers. PETCT alters the stage in approximately one-third of patients compared to anatomical imaging alone. Increasingly, PETCT is being used to assess early metabolic response to treatment. Metabolic response can be seen much earlier than a change in the size/volume of the disease which is measured by standard CT imaging. This can aid treatment decisions in both in terms of modifying therapy and in addition to providing important prognostic information. Furthermore, it is helpful in patients with distorted anatomy from surgery

  6. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  7. Spontaneous Coronary Dissection: “Live Flash” Optical Coherence Tomography Guided Angioplasty

    Science.gov (United States)

    Bento, Angela Pimenta; Fernandes, Renato Gil dos Santos Pinto; Neves, David Cintra Henriques Silva; Patrício, Lino Manuel Ribeiro; de Aguiar, José Eduardo Chambel

    2016-01-01

    Optical Coherence tomography (OCT) is a light-based imaging modality which shows tremendous potential in the setting of coronary imaging. Spontaneous coronary artery dissection (SCAD) is an infrequent cause of acute coronary syndrome (ACS). The diagnosis of SCAD is made mainly with invasive coronary angiography, although adjunctive imaging modalities such as computed tomography angiography, IVUS, and OCT may increase the diagnostic yield. The authors describe a clinical case of a young woman admitted with the diagnosis of ACS. The ACS was caused by SCAD detected in the coronary angiography and the angioplasty was guided by OCT. OCT use in the setting of SCAD has been already described and the true innovation in this case was this unique use of OCT. The guidance of angioplasty with live and short images was very useful as it allowed clearly identifying the position of the guidewires at any given moment without the use of prohibitive amounts of contrast. PMID:26989520

  8. Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration for Staging of Patients with Non-Small Cell Lung Cancer without Mediastinal Involvement at Positron Emission Tomography-Computed Tomography

    DEFF Research Database (Denmark)

    Naur, Therese Maria Henriette; Konge, Lars; Clementsen, Paul Frost

    2017-01-01

    BACKGROUND: Staging of lung cancer is essential to the treatment, which is curative only in cases of localized disease. Previous studies have suggested that endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is unnecessary when positron emission tomography-computed tomog...

  9. A method for three-dimensional analysis of the root canal system, before and after mechanical instrumentation, using X-ray Micro-computed tomography

    DEFF Research Database (Denmark)

    Markvart, Merete; Bjørndal, Lars; Larsen, Per

    . Extracted molar teeth were embedded in resin and kept moisturized. Each root canal was instrumented with NiTi instruments to #40. The teeth were scanned before and after instrumentation, using a microCT40 micro-tomography (SCANCO Medical AG, Bassersdorf, Switzerland). The reconstructed slices were imported......Clinical studies have shown a connection between the reduction of micro-organisms in the root canal and the degree of apical enlargement. The aim of this study was to create a non-invasive 3D model for monitoring the apical enlargement in molar teeth before and after mechanical instrumentation...

  10. Comparison of the accuracy of cone beam computed tomography and medical computed tomography: implications for clinical diagnostics with guided surgery.

    Science.gov (United States)

    Abboud, Marcus; Calvo-Guirado, Jose Luis; Orentlicher, Gary; Wahl, Gerhard

    2013-01-01

    This study compared the accuracy of cone beam computed tomography (CBCT) and medical-grade CT in the context of evaluating the diagnostic value and accuracy of fiducial marker localization for reference marker-based guided surgery systems. Cadaver mandibles with attached radiopaque gutta-percha markers, as well as glass balls and composite cylinders of known dimensions, were measured manually with a highly accurate digital caliper. The objects were then scanned using a medical-grade CT scanner (Philips Brilliance 64) and five different CBCT scanners (Sirona Galileos, Morita 3D Accuitomo 80, Vatech PaX-Reve3D, 3M Imtech Iluma, and Planmeca ProMax 3D). The data were then imported into commercially available software, and measurements were made of the scanned markers and objects. CT and CBCT measurements were compared to each other and to the caliper measurements. The difference between the CBCT measurements and the caliper measurements was larger than the difference between the CT measurements and the caliper measurements. Measurements of the cadaver mandible and the geometric reference markers were highly accurate with CT. The average absolute errors of the human mandible measurements were 0.03 mm for CT and 0.23 mm for CBCT. The measurement errors of the geometric objects based on CT ranged between 0.00 and 0.12 mm, compared to an error range between 0.00 and 2.17 mm with the CBCT scanners. CT provided the most accurate images in this study, closely followed by one CBCT of the five tested. Although there were differences in the distance measurements of the hard tissue of the human mandible between CT and CBCT, these differences may not be of clinical significance for most diagnostic purposes. The fiducial marker localization error caused by some CBCT scanners may be a problem for guided surgery systems.

  11. Computed tomography-guided percutaneous biopsy of bone lesions: rate of diagnostic success and complications

    International Nuclear Information System (INIS)

    Maciel, Macello Jose Sampaio; Tyng, Chiang Jeng; Barbosa, Paula Nicole Vieira Pinto; Bitencourt, Almir Galvao Vieira; Matushita Junior, Joao Paulo Kawaoka; Zurstrassen, Charles Edouard; Chung, Wu Tu; Chojniak, Rubens

    2014-01-01

    Objective: To determine the rates of diagnostic success and complications of computed tomography (CT)-guided percutaneous biopsy of bone lesions suspected for malignancy. Materials and Methods: Retrospective study including 186 cases of CT-guided percutaneous biopsies of bone lesions in the period from January, 2010 to December, 2012. All the specimens were obtained with 8-10 gauge needles. The following data were collected: demographics, previous history of malignancy, data related to the lesion, to the procedure, and to histological results. Results: Most patients were women (57%), and the mean age was 53.0 ± 16.4 years. In 139 cases (74.6%), there was diagnostic suspicion of metastasis and the most common primary tumors were breast (32.1%) and prostate (11.8%). The bones most commonly involved were spine (36.0%), hip (32.8%) and long bones (18.3%). Complications occurred in only three cases (1.6%) including bone fracture, paraesthesia with functional impairment, and needle breakage requiring surgical removal. The specimens collected from 183 lesions (98.4%) were considered appropriate for diagnosis. Malignant results were more frequently found in patients who had a suspected secondary lesion and history of known malignancy (p < 0.001), and in patients who underwent PET/CT-guided procedures (p = 0.011). Conclusion: CT-guided percutaneous biopsy is a safe and effective procedure for the diagnosis of suspicious bone lesions. (author)

  12. Incidental finding of a left over guide wire on a positron emission tomography

    International Nuclear Information System (INIS)

    Yap, Kok Hooi; Lee, Phong Teck; Buch, Mamta; Rammohan, Kandadai Seshadri

    2012-01-01

    The Seldinger technique is commonly used cannulate vessels for radiographical procedures. Loss of a guide wire into the circulation is a rare and preventable complication. It is often noticed by chance during routine radiographs. However, there is a lack of reported cases of incidental fin dings of leftover guide wire on a PET scan. An intravascular foreign body should be retrieved as soon as the diagnosis is made, to prevent complications such as embolisation or vascular damage by fractured wires. Interventional radiology is the method of choice for retrieval. We report a rare case of the coincidental finding of a lost guide wire on a PET scan. A 37 year old man presented with psychotic episodes, thigh weakness, weight gain, increased appetite and leg cramps. He was subsequently diagnosed with cushing syndrome secondary to ectopic adrenocorticotropic secretion from a right lung tumour. He subsequently underwent a staging positron emission tomography (PET) scan. The lung tumour had no uptake on PET bit had increased activity uptake on octreotide scanning. These appearances were suggestive of with carcinoid tumour. The PET scan also revealed an incidental finding of a leftover guide wire used during peripheral inserted central catheter (PICC) recently. The wire extended from right atrium to inferior vena cava. It also showed a high uptake in the adrenal glands, indicating hyperplasia, which was most likely due to adrenocorticotropic hormone stimulation. He underwent a percutaneous wire retrieval via the right femoral vein in a cardiac catheterisation laboratory and was transferred to a thoracic surgical unit for lung tumor resection

  13. Incidental finding of a left over guide wire on a positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Kok Hooi; Lee, Phong Teck; Buch, Mamta; Rammohan, Kandadai Seshadri

    2012-12-15

    The Seldinger technique is commonly used cannulate vessels for radiographical procedures. Loss of a guide wire into the circulation is a rare and preventable complication. It is often noticed by chance during routine radiographs. However, there is a lack of reported cases of incidental fin dings of leftover guide wire on a PET scan. An intravascular foreign body should be retrieved as soon as the diagnosis is made, to prevent complications such as embolisation or vascular damage by fractured wires. Interventional radiology is the method of choice for retrieval. We report a rare case of the coincidental finding of a lost guide wire on a PET scan. A 37 year old man presented with psychotic episodes, thigh weakness, weight gain, increased appetite and leg cramps. He was subsequently diagnosed with cushing syndrome secondary to ectopic adrenocorticotropic secretion from a right lung tumour. He subsequently underwent a staging positron emission tomography (PET) scan. The lung tumour had no uptake on PET bit had increased activity uptake on octreotide scanning. These appearances were suggestive of with carcinoid tumour. The PET scan also revealed an incidental finding of a leftover guide wire used during peripheral inserted central catheter (PICC) recently. The wire extended from right atrium to inferior vena cava. It also showed a high uptake in the adrenal glands, indicating hyperplasia, which was most likely due to adrenocorticotropic hormone stimulation. He underwent a percutaneous wire retrieval via the right femoral vein in a cardiac catheterisation laboratory and was transferred to a thoracic surgical unit for lung tumor resection.

  14. Computed tomography-guided percutaneous biopsy of bone lesions: rate of diagnostic success and complications

    Energy Technology Data Exchange (ETDEWEB)

    Maciel, Macello Jose Sampaio; Tyng, Chiang Jeng; Barbosa, Paula Nicole Vieira Pinto; Bitencourt, Almir Galvao Vieira; Matushita Junior, Joao Paulo Kawaoka; Zurstrassen, Charles Edouard; Chung, Wu Tu; Chojniak, Rubens, E-mail: macellomaciel@me.com [A.C.Camargo Cancer Center, Sao Paulo, SP (Brazil)

    2014-09-15

    Objective: To determine the rates of diagnostic success and complications of computed tomography (CT)-guided percutaneous biopsy of bone lesions suspected for malignancy. Materials and Methods: Retrospective study including 186 cases of CT-guided percutaneous biopsies of bone lesions in the period from January, 2010 to December, 2012. All the specimens were obtained with 8-10 gauge needles. The following data were collected: demographics, previous history of malignancy, data related to the lesion, to the procedure, and to histological results. Results: Most patients were women (57%), and the mean age was 53.0 ± 16.4 years. In 139 cases (74.6%), there was diagnostic suspicion of metastasis and the most common primary tumors were breast (32.1%) and prostate (11.8%). The bones most commonly involved were spine (36.0%), hip (32.8%) and long bones (18.3%). Complications occurred in only three cases (1.6%) including bone fracture, paraesthesia with functional impairment, and needle breakage requiring surgical removal. The specimens collected from 183 lesions (98.4%) were considered appropriate for diagnosis. Malignant results were more frequently found in patients who had a suspected secondary lesion and history of known malignancy (p < 0.001), and in patients who underwent PET/CT-guided procedures (p = 0.011). Conclusion: CT-guided percutaneous biopsy is a safe and effective procedure for the diagnosis of suspicious bone lesions. (author)

  15. A Study of Acute and Chronic Tissue Changes in Surgical and Traumatically-Induced Experimental Models of Knee Joint Injury Using Magnetic Resonance Imaging and Micro-Computed Tomography

    Science.gov (United States)

    Fischenich, Kristine M.; Pauly, Hannah M.; Button, Keith D.; Fajardo, Ryan S.; DeCamp, Charles E.; Haut, Roger C.; Haut Donahue, Tammy L.

    2016-01-01

    Objective The objective of this study was to monitor the progression of joint damage in two animal models of knee joint trauma using two non-invasive, clinically available imaging modalities. Methods A 3-T clinical magnet and micro-computed tomography (mCT) was used to document changes immediately following injury (acute) and post-injury (chronic) at time points of 4, 8, or 12 weeks. Joint damage was recorded at dissection and compared to the chronic magnetic resonance imaging (MRI) record. Fifteen Flemish Giant rabbits were subjected to a single tibiofemoral compressive impact (ACLF), and 18 underwent a combination of anterior cruciate ligament (ACL) and meniscal transection (mACLT). Results All ACLF animals experienced ACL rupture, and 13 also experienced acute meniscal damage. All ACLF and mACLT animals showed meniscal and articular cartilage damages at dissection. Meniscal damage was documented as early as 4 weeks and worsened in 87% of the ACLF animals and 71% of the mACLT animals. Acute cartilage damage also developed further and increased in occurrence with time in both models. A progressive decrease in bone quantity and quality was documented in both models. The MRI data closely aligned with dissection notes suggesting this clinical tool may be a non-invasive method for documenting joint damage in lapine models of knee joint trauma. Conclusions The study investigates the acute to chronic progression of meniscal and cartilage damage at various time points, and chronic changes to the underlying bone in two models of posttraumatic osteoarthritis (PTOA), and highlights the dependency of the model on the location, type, and progression of damage over time. PMID:27756698

  16. Guiding flying-spot laser transepithelial phototherapeutic keratectomy with optical coherence tomography.

    Science.gov (United States)

    Li, Yan; Yokogawa, Hideaki; Tang, Maolong; Chamberlain, Winston; Zhang, Xinbo; Huang, David

    2017-04-01

    To analyze transepithelial phototherapeutic keratectomy (PTK) results using optical coherence tomography (OCT) and develop a model to guide the laser dioptric and depth settings. Casey Eye Institute, Portland, Oregon, USA. Prospective nonrandomized case series. Patients with superficial corneal opacities and irregularities had transepithelial PTK with a flying-spot excimer laser by combining wide-zone myopic and hyperopic astigmatic ablations. Optical coherence tomography was used to calculate corneal epithelial lenticular masking effects, guide refractive laser settings, and measure opacity removal. The laser ablation efficiency and the refractive outcome were investigated using multivariate linear regression models. Twenty-six eyes of 20 patients received PTK to remove opacities and irregular astigmatism due to scar, dystrophy, radial keratotomy, or previous corneal surgeries. The uncorrected distance visual acuity and corrected distance visual acuity were significantly improved (P laser ablation depths were 31.3% (myopic ablation) and 63.0% (hyperopic ablation) deeper than the manufacturer's nomogram. The spherical equivalent of the corneal epithelial lenticular masking effect was 0.73 diopter ± 0.61 (SD). The refractive outcome highly correlated to the laser settings and epithelial lenticular masking effect (Pearson R = 0.96, P < .01). The ablation rate of granular dystrophy opacities appeared to be slower. Smoothing ablation under masking fluid was needed to prevent focal steep islands in these cases. The OCT-measured ablation depth efficiency could guide opacity removal. The corneal epithelial lenticular masking effect could refine the spherical refractive nomogram to achieve a better refractive outcome after transepithelial ablation. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Computed tomography fluoroscopy-guided placement of iliosacral screws in patients with unstable posterior pelvic fractures

    International Nuclear Information System (INIS)

    Iguchi, Toshihiro; Ogawa, Ken-Ichi; Doi, Takeshi; Munetomo, Kazuo; Miyasho, Koji; Hiraki, Takao; Kanazawa, Susumu; Ozaki, Toshifumi

    2010-01-01

    The purpose of this study was to evaluate retrospectively the safety and effectiveness of the computed tomography (CT) fluoroscopy-guided placement of iliosacral screws in patients with unstable posterior pelvic fractures. Six patients (four women and two men; mean age 55.8 years; range 35-77 years) with unstable posterior pelvic fractures underwent iliosacral screw placement under CT fluoroscopy guidance between November 2007 and August 2008. Unstable pelvic ring injury (AO types B and C) was the indication for this procedure. In all the six patients except one, CT fluoroscopy-guided placement had been technically successful. In one patient, a second screw had been inserted, with a tilt to the caudal site, and slightly advanced into the extrasacral body; afterward, it could be exchanged safely for a shorter screw. Five patients and one patient underwent placement of two screws and one screw, respectively. The mean duration of the procedure was 15.0 min (range 9-30 min) per screw; the duration was 12.3 min and 18.2 min for the first and second screws, respectively. No complications requiring treatment occurred during or after the procedure. The mean clinical and radiologic follow-up period was 14 months (range 6-21 months). All pelvic injuries had healed satisfactorily, without complication, and all patients are now doing well clinically and can walk. CT fluoroscopy-guided placement of iliosacral screws is a safe and effective treatment in patients with unstable posterior pelvic fractures. (orig.)

  18. User-guided segmentation for volumetric retinal optical coherence tomography images

    Science.gov (United States)

    Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.

    2014-01-01

    Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962

  19. Ultrasound guided electrical impedance tomography for 2D free-interface reconstruction

    Science.gov (United States)

    Liang, Guanghui; Ren, Shangjie; Dong, Feng

    2017-07-01

    The free-interface detection problem is normally seen in industrial or biological processes. Electrical impedance tomography (EIT) is a non-invasive technique with advantages of high-speed and low cost, and is a promising solution for free-interface detection problems. However, due to the ill-posed and nonlinear characteristics, the spatial resolution of EIT is low. To deal with the issue, an ultrasound guided EIT is proposed to directly reconstruct the geometric configuration of the target free-interface. In the method, the position of the central point of the target interface is measured by a pair of ultrasound transducers mounted at the opposite side of the objective domain, and then the position measurement is used as the prior information for guiding the EIT-based free-interface reconstruction. During the process, a constrained least squares framework is used to fuse the information from different measurement modalities, and the Lagrange multiplier-based Levenberg-Marquardt method is adopted to provide the iterative solution of the constraint optimization problem. The numerical results show that the proposed ultrasound guided EIT method for the free-interface reconstruction is more accurate than the single modality method, especially when the number of valid electrodes is limited.

  20. Ultrasound guided electrical impedance tomography for 2D free-interface reconstruction

    International Nuclear Information System (INIS)

    Liang, Guanghui; Ren, Shangjie; Dong, Feng

    2017-01-01

    The free-interface detection problem is normally seen in industrial or biological processes. Electrical impedance tomography (EIT) is a non-invasive technique with advantages of high-speed and low cost, and is a promising solution for free-interface detection problems. However, due to the ill-posed and nonlinear characteristics, the spatial resolution of EIT is low. To deal with the issue, an ultrasound guided EIT is proposed to directly reconstruct the geometric configuration of the target free-interface. In the method, the position of the central point of the target interface is measured by a pair of ultrasound transducers mounted at the opposite side of the objective domain, and then the position measurement is used as the prior information for guiding the EIT-based free-interface reconstruction. During the process, a constrained least squares framework is used to fuse the information from different measurement modalities, and the Lagrange multiplier-based Levenberg–Marquardt method is adopted to provide the iterative solution of the constraint optimization problem. The numerical results show that the proposed ultrasound guided EIT method for the free-interface reconstruction is more accurate than the single modality method, especially when the number of valid electrodes is limited. (paper)

  1. Image-Guided Radiotherapy for Liver Cancer Using Respiratory-Correlated Computed Tomography and Cone-Beam Computed Tomography

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Sweeney, Reinhart A.; Wilbert, Juergen; Krieger, Thomas; Richter, Anne; Baier, Kurt; Mueller, Gerd; Sauer, Otto; Flentje, Michael

    2008-01-01

    Purpose: To evaluate a novel four-dimensional (4D) image-guided radiotherapy (IGRT) technique in stereotactic body RT for liver tumors. Methods and Materials: For 11 patients with 13 intrahepatic tumors, a respiratory-correlated 4D computed tomography (CT) scan was acquired at treatment planning. The target was defined using CT series reconstructed at end-inhalation and end-exhalation. The liver was delineated on these two CT series and served as a reference for image guidance. A cone-beam CT scan was acquired after patient positioning; the blurred diaphragm dome was interpreted as a probability density function showing the motion range of the liver. Manual contour matching of the liver structures from the planning 4D CT scan with the cone-beam CT scan was performed. Inter- and intrafractional uncertainties of target position and motion range were evaluated, and interobserver variability of the 4D-IGRT technique was tested. Results: The workflow of 4D-IGRT was successfully practiced in all patients. The absolute error in the liver position and error in relation to the bony anatomy was 8 ± 4 mm and 5 ± 2 mm (three-dimensional vector), respectively. Margins of 4-6 mm were calculated for compensation of the intrafractional drifts of the liver. The motion range of the diaphragm dome was reproducible within 5 mm for 11 of 13 lesions, and the interobserver variability of the 4D-IGRT technique was small (standard deviation, 1.5 mm). In 4 patients, the position of the intrahepatic lesion was directly verified using a mobile in-room CT scanner after application of intravenous contrast. Conclusion: The results of our study have shown that 4D image guidance using liver contour matching between respiratory-correlated CT and cone-beam CT scans increased the accuracy compared with stereotactic positioning and compared with IGRT without consideration of breathing motion

  2. Fluoroscopy-Guided Percutaneous Lung Biopsy: A Valuable Alternative to Computed Tomography

    International Nuclear Information System (INIS)

    Kurban, L.A.; Gomersall, L.; Weir, J.; Wade, P.

    2008-01-01

    Background: Computed tomography (CT) fluoroscopy nowadays is the most preferred method of guidance to perform percutaneous lung biopsy of pulmonary masses. Conventional fluoroscopy is an increasingly forgotten technique that still can be used to perform lung biopsies, with many advantages. Purpose: To compare the accuracy, safety, and effective dose (ED) of conventional fluoroscopy-guided needle lung biopsy (FNLB) with CT-guided needle lung biopsy procedures (CTNLB) reported in the literature. Material and Methods: 100 consecutive patients who underwent FNLB were reviewed retrospectively. Using the final histological diagnoses and the clinical and radiological course of the disease as references, the accuracy and sensitivity of FNLB were calculated. The complication rates of FNLB were assessed. Using computer software (XDOSE), the ED was calculated. The accuracy, complication rates, and the ED of FNLB were compared with CTNLB reported in the literature. Results: The overall accuracy rate and sensitivity of FNLB were both 87%, which are comparable to the range of accuracies reported in the literature for CTNLB (74-97%). The complication rates of FNLB were also comparable to the complication rates reported for CTNLB. The commonest complication was pneumothorax, at a rate of 25%. The ED of FNLB was small, significantly lower than reported in the literature for CT-guided procedures. The mean ED of FNLB was 0.029 mSv, which is approximately equivalent to one chest X-ray. Conclusion: Conventional fluoroscopy is an accurate, safe, and low-dose alternative modality to CT to obtain an image-guided histological diagnosis of pulmonary lesions

  3. Computed tomography-guided needle biopsy of lung lesions in fourteen cats and dogs

    International Nuclear Information System (INIS)

    Yoshida, K.; Mori, T.; Yamada, M.; Sakaida, M.; Yonemaru, K.; Murakami, M.; Sakai, H.; Maruo, K.

    2007-01-01

    Computed tomography (CT)-guided fine-needle aspirates (FNA) or core biopsies of lung lesions were performed in nine dogs and five cats. A clinical diagnosis was obtained in twelve of fourteen animals (85%), namely 80% FNA and 100% core biopsies. Eight animals had other mass (es) apart from the lung, and five were diagnosed to metastases. In only one case, the lung mass was histopathologically diagnosed as a malignant primary tumor. Iatrogenic complications through the lung biopsies were noted in four animals, and three showed mild pneumothorax on CT images and one was bleeding from the needle. However, between fifteen and thirty minutes after the biopsy, no animal indicated signs of pneumothorax or hemorrhage

  4. Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography

    Science.gov (United States)

    Pan, Y. T.; Xie, T. Q.; Du, C. W.; Bastacky, S.; Meyers, S.; Zeidel, M. L.

    2003-12-01

    We report an experimental study of the possibility of enhancing early bladder cancer diagnosis with fluorescence-image-guided endoscopic optical coherence tomography (OCT). After the intravesical instillation of a 10% solution of 5-aminolevulinic acid, simultaneous fluorescence imaging (excitation of 380-420 nm, emission of 620-700 nm) and OCT are performed on rat bladders to identify the photochemical and morphological changes associated with uroepithelial tumorigenesis. The preliminary results of our ex vivo study reveal that both fluorescence and OCT can identify early uroepithelial cancers, and OCT can detect precancerous lesions (e.g., hyperplasia) that fluorescence may miss. This suggests that a cystoscope combining 5-aminolevulinic acid fluorescence and OCT imaging has the potential to enhance the efficiency and sensitivity of early bladder cancer diagnosis.

  5. Imaging osteoarthritis in the knee joints using x-ray guided diffuse optical tomography

    Science.gov (United States)

    Zhang, Qizhi; Yuan, Zhen; Sobel, Eric S.; Jiang, Huabei

    2010-02-01

    In our previous studies, near-infrared (NIR) diffuse optical tomography (DOT) had been successfully applied to imaging osteoarthritis (OA) in the finger joints where significant difference in optical properties of the joint tissues was evident between healthy and OA finger joints. Here we report for the first time that large joints such as the knee can also be optically imaged especially when DOT is combined with x-ray tomosynthesis where the 3D image of the bones from x-ray is incorporated into the DOT reconstruction as spatial a priori structural information. This study demonstrates that NIR light can image large joints such as the knee in addition to finger joints, which will drastically broaden the clinical utility of our x-ray guided DOT technique for OA diagnosis.

  6. Guided access cavity preparation using cone-beam computed tomography and optical surface scans - an ex vivo study

    DEFF Research Database (Denmark)

    Buchgreitz, J; Buchgreitz, M; Mortensen, D

    2016-01-01

    AIM: To evaluate ex vivo, the accuracy of a preparation procedure planned for teeth with pulp canal obliteration (PCO) using a guide rail concept based on a cone-beam computed tomography (CBCT) scan merged with an optical surface scan. METHODOLOGY: A total of 48 teeth were mounted in acrylic bloc...

  7. The using of megavoltage computed tomography in image-guided brachytherapy for cervical cancer: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Tharavichitkul, Ekkasit; Janla-or, Suwapim; Wanwilairat, Somsak; Chakrabandhu, Somvilai; Klunklin, Pitchayaponne; Onchan, Wimrak; Supawongwattana, Bongkot; Chitapanarux, Imjai [Division of Therapeutic Radiology and Oncology, Dept. of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai (Thailand); Galalae, Razvan M. [Faculty of Medicine, Christian-Albrecht University (Campus Kiel), Kiel (Germany)

    2015-06-15

    We present a case of cervical cancer treated by concurrent chemoradiation. In radiation therapy part, the combination of the whole pelvic helical tomotherapy plus image-guided brachytherapy with megavoltage computed tomography of helical tomotherapy was performed. We propose this therapeutic approach could be considered in a curative setting in some problematic situation as our institution.

  8. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.

    Science.gov (United States)

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2011-02-21

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

  9. Microcomputers and computer networks

    International Nuclear Information System (INIS)

    Owens, J.L.

    1976-01-01

    Computers, for all their speed and efficiency, have their foibles and failings. Until the advent of minicomputers, users often had to supervise their programs personally to make sure they executed correctly. Minicomputers could take over some of these chores, but they were too expensive to be dedicated to any but the most vital services. Inexpensive, easily programmed microcomputers are easing this limitation, and permitting a flood of new applications. 3 figures

  10. Computed tomography-guided percutaneous catheter drainage of primary and secondary iliopsoas abscesses

    International Nuclear Information System (INIS)

    Cantasdemir, M.; Kara, B.; Cebi, D.; Selcuk, N.D.; Numan, F.

    2003-01-01

    AIM: To report our experience with computed tomography (CT)-guided percutaneous catheter drainage (PCD) of iliopsoas abscesses. MATERIALS AND METHODS: Twenty-two iliopsoas abscesses in 21 patients (11 women, 10 men) aged between 18 and 66 years (mean 36 years) were treated with PCD. Abdominal CT demonstrated the iliopsoas abscesses, which were definitively determined by Gram staining and aspirate cultures. Twenty of the 22 iliopsoas abscesses were primary and two were secondary. All PCD procedures were performed under local anaesthesia using a single-step trocar technique (n=19) or Seldinger technique (n=3). RESULTS: PCD was an effective treatment in 21 out of the 22 iliopsoas abscesses. Recurrence was seen in three abscesses as minimal residual collections. Two of them resolved spontaneously with anti-tuberculous regimen. One required percutaneous needle aspiration. The procedure failed in a diabetic patient with a secondary abscess, who died due to sepsis. The length of time that catheters remained in place ranged from 21 to 75 days (mean 59.7 days). Complications included catheter dislocation in four abscesses, which required removal of dislocated catheters and indwelling new ones. CONCLUSION: CT-guided PCD is a safe and effective front-line treatment of iliopsoas abscesses. Surgery should be reserved for failure of PCD and presence of contraindications to PCD

  11. Computer tomography urography assisted real-time ultrasound-guided percutaneous nephrolithotomy on renal calculus.

    Science.gov (United States)

    Fang, You-Qiang; Wu, Jie-Ying; Li, Teng-Cheng; Zheng, Hao-Feng; Liang, Guan-Can; Chen, Yan-Xiong; Hong, Xiao-Bin; Cai, Wei-Zhong; Zang, Zhi-Jun; Di, Jin-Ming

    2017-06-01

    This study aimed to assess the role of pre-designed route on computer tomography urography (CTU) in the ultrasound-guided percutaneous nephrolithotomy (PCNL) for renal calculus.From August 2013 to May 2016, a total of 100 patients diagnosed with complex renal calculus in our hospital were randomly divided into CTU group and control group (without CTU assistance). CTU was used to design a rational route for puncturing in CTU group. Ultrasound was used in both groups to establish a working trace in the operation areas. Patients' perioperative parameters and postoperative complications were recorded.All operations were successfully performed, without transferring to open surgery. Time of channel establishment in CTU group (6.5 ± 4.3 minutes) was shorter than the control group (10.0 ± 6.7 minutes) (P = .002). In addition, there was shorter operation time, lower rates of blood transfusion, secondary operation, and less establishing channels. The incidence of postoperative complications including residual stones, sepsis, severe hemorrhage, and perirenal hematoma was lower in CTU group than in control group.Pre-designing puncture route on CTU images would improve the puncturing accuracy, lessen establishing channels as well as improve the security in the ultrasound-guided PCNL for complex renal calculus, but at the cost of increased radiation exposure.

  12. Efficacy of computed tomography guided radiofrequency ablation forosteoid osteomas in 31 patients

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon; Ahn, Joong Mo; Lee, Joon Woo; Lee, Guen Young; Lee, Eu Gene; Oh, Joo Han; Cho, Hwan Seong; Kang, Heung Sik [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2015-04-15

    To present the clinical outcome of computed tomography (CT) guided radiofrequency ablation (RFA) for osteoid osteoma. Thirty-one patients (M:F = 23:8, mean age: 20 years, range: 4-54 years) who underwent RFA for clinically suspected osteoid osteoma from May 2004 to December 2013 were retrospectively reviewed. RFA was done in all cases under CT guidance by one of three radiologists in our department. Electronic medical records and images were retrospectively reviewed in all patients. Lesions were located in femur (n = 20), tibia (n = 5), fibula (n = 2), humerus (n = 3), talus (n = 2), and calcaneus (n = 1). On discharge, 27 of 33 cases showed complete remission of pain (82%). One major complication (compartment syndrome) and 2 minor complications (reactive synovitis, minimal skin burn at electrode insertion site) were observed. On the last follow-up (0-78 months, mean: 12.6 months) 27 of 33 cases were successfully treated (82%) and had no more complaints. 3 cases presented remaining pain (9%). In 3 cases relapse occurred (9%) and RFA was repeated in 1 case. The repeated treatment was successful. CT-guided RFA is an effective method for the treatment of osteoid osteoma.

  13. Just-in-time tomography (JiTT): a new concept for image-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Pang, G; Rowlands, J A [Toronto-Sunnybrook Regional Cancer Centre, 2075 Bayview Avenue, Toronto M4N 3M5 (Canada); Imaging Research, Sunnybrook and Women' s College Health Sciences Centre, Departments of Radiation Oncology and Medical Biophysics, University of Toronto, Toronto (Canada)

    2005-11-07

    Soft-tissue target motion is one of the main concerns in high-precision radiation therapy. Cone beam computed tomography (CBCT) has been developed recently to image soft-tissue targets in the treatment room and guide the radiation therapy treatment. However, due to its relatively long image acquisition time the CBCT approach cannot provide images of the target at the instant of the treatment and thus it is not adequate for imaging targets with intrafraction motion. In this note, a new approach for image-guided radiation therapy-just-in-time tomography (JiTT)-is proposed. Differing from CBCT, JiTT takes much less time to generate the needed tomographical, beam's-eye-view images of the treatment target at the right moment to guide the radiation therapy treatment. (note)

  14. Just-in-time tomography (JiTT): a new concept for image-guided radiation therapy

    International Nuclear Information System (INIS)

    Pang, G; Rowlands, J A

    2005-01-01

    Soft-tissue target motion is one of the main concerns in high-precision radiation therapy. Cone beam computed tomography (CBCT) has been developed recently to image soft-tissue targets in the treatment room and guide the radiation therapy treatment. However, due to its relatively long image acquisition time the CBCT approach cannot provide images of the target at the instant of the treatment and thus it is not adequate for imaging targets with intrafraction motion. In this note, a new approach for image-guided radiation therapy-just-in-time tomography (JiTT)-is proposed. Differing from CBCT, JiTT takes much less time to generate the needed tomographical, beam's-eye-view images of the treatment target at the right moment to guide the radiation therapy treatment. (note)

  15. Physical properties of root cementum: Part 18. The extent of root resorption after the application of light and heavy controlled rotational orthodontic forces for 4 weeks: a microcomputed tomography study.

    Science.gov (United States)

    Wu, Andy T J; Turk, Tamer; Colak, Canan; Elekdağ-Turk, Selma; Jones, Allan S; Petocz, Peter; Darendeliler, M Ali

    2011-05-01

    The aim of this prospective randomized clinical trial was to quantitatively measure and compare the locations, dimensions, and volume of root resorption craters in human premolars after the application of controlled light and heavy rotational orthodontic forces over a 28-day (4-week) period. Fifteen patients requiring bilateral extraction of maxillary first premolars as part of their orthodontic treatment were recruited for this study. Each patient received a heavy (225 g) rotational force on 1 premolar and a light (25 g) rotational force on the contralateral premolar. Orthodontic rotational forces were applied over 28 days with buccal and palatal cantilever springs; 0.016-inch beta-titanium molybdenum alloys were used to apply the light force and 0.018-inch stainless steel was used for the heavy force. After the 28-day experimental period, the upper first premolars were extracted under stringent protocols to prevent root surface damage. The samples were then scanned using a microcomputed tomography (micro-CT) scan x-ray system (SkyScan 1072, Skyscan, Aartselaar, Belgium), and analyzed using convex hull algorithm (CHULL2D; University of Sydney, Sydney, Australia) software to obtain direct volumetric measurements. The mean volume of resorption craters was 0.42 in the light force group and 0.51 in the heavy force group (P = 0.013). When separated at the root level, the difference in volume of root resorption craters between the 2 groups was significantly different only at the midlevel (P = 0.001). Root resorption craters were consistently detected at the boundaries between the buccal and distal surfaces and the mesial and lingual surfaces. The result supports our hypothesis that positive areas develop significantly more root resorption craters at all 3 levels, as compared with minimal areas (paired t test root resorption than light rotational forces and compression areas (buccal-distal and lingual-mesial surfaces in this study) showed significantly higher root

  16. Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis

    Science.gov (United States)

    2011-01-01

    Introduction Osteoarthritis (OA) is a complex, multifactorial joint disease affecting both the cartilage and the subchondral bone. Animal models of OA aid in the understanding of the pathogenesis of OA and testing suitable drugs for OA treatment. In this study we characterized the temporal changes in the tibial subchondral bone architecture in a rat model of low-dose monosodium iodoacetate (MIA)-induced OA using in vivo micro-computed tomography (CT). Methods Male Wistar rats received a single intra-articular injection of low-dose MIA (0.2 mg) in the right knee joint and sterile saline in the left knee joint. The animals were scanned in vivo by micro-CT at two, six, and ten weeks post-injection, analogous to early, intermediate, and advanced stages of OA, to assess architectural changes in the tibial subchondral bone. The articular cartilage changes in the tibiae were assessed macroscopically and histologically at ten weeks post-injection. Results Interestingly, tibiae of the MIA-injected knees showed significant bone loss at two weeks, followed by increased trabecular thickness and separation at six and ten weeks. The trabecular number was decreased at all time points compared to control tibiae. The tibial subchondral plate thickness of the MIA-injected knee was increased at two and six weeks and the plate porosity was increased at all time points compared to control. At ten weeks, histology revealed loss of proteoglycans, chondrocyte necrosis, chondrocyte clusters, cartilage fibrillation, and delamination in the MIA-injected tibiae, whereas the control tibiae showed no changes. Micro-CT images and histology showed the presence of subchondral bone sclerosis, cysts, and osteophytes. Conclusions These findings demonstrate that the low-dose MIA rat model closely mimics the pathological features of progressive human OA. The low-dose MIA rat model is therefore suitable to study the effect of therapeutic drugs on cartilage and bone in a non-trauma model of OA. In vivo

  17. Success rates for computed tomography-guided musculoskeletal biopsies performed using a low-dose technique

    International Nuclear Information System (INIS)

    Motamedi, Kambiz; Levine, Benjamin D.; Seeger, Leanne L.; McNitt-Gray, Michael F.

    2014-01-01

    To evaluate the success rate of a low-dose (50 % mAs reduction) computed tomography (CT) biopsy technique. This protocol was adopted based on other successful reduced-CT radiation dose protocols in our department, which were implemented in conjunction with quality improvement projects. The technique included a scout view and initial localizing scan with standard dose. Additional scans obtained for further guidance or needle adjustment were acquired by reducing the tube current-time product (mAs) by 50 %. The radiology billing data were searched for CT-guided musculoskeletal procedures performed over a period of 8 months following the initial implementation of the protocol. These were reviewed for the type of procedure and compliance with the implemented protocol. The compliant CT-guided biopsy cases were then retrospectively reviewed for patient demographics, tumor pathology, and lesion size. Pathology results were compared to the ultimate diagnoses and were categorized as diagnostic, accurate, or successful. Of 92 CT-guided procedures performed during this period, two were excluded as they were not biopsies (one joint injection and one drainage), 19 were excluded due to non-compliance (operators neglected to follow the protocol), and four were excluded due to lack of available follow-up in our electronic medical records. A total of 67 compliant biopsies were performed in 63 patients (two had two biopsies, and one had three biopsies). There were 32 males and 31 females with an average age of 50 (range, 15-84 years). Of the 67 biopsies, five were non-diagnostic and inaccurate and thus unsuccessful (7 %); five were diagnostic but inaccurate and thus unsuccessful (7 %); 57 were diagnostic and accurate thus successful (85 %). These results were comparable with results published in the radiology literature. The success rate of CT-guided biopsies using a low-dose protocol is comparable to published rates for conventional dose biopsies. The implemented low-dose protocol

  18. Success rates for computed tomography-guided musculoskeletal biopsies performed using a low-dose technique

    Energy Technology Data Exchange (ETDEWEB)

    Motamedi, Kambiz; Levine, Benjamin D.; Seeger, Leanne L.; McNitt-Gray, Michael F. [UCLA Health System, Radiology, Los Angeles, CA (United States)

    2014-11-15

    To evaluate the success rate of a low-dose (50 % mAs reduction) computed tomography (CT) biopsy technique. This protocol was adopted based on other successful reduced-CT radiation dose protocols in our department, which were implemented in conjunction with quality improvement projects. The technique included a scout view and initial localizing scan with standard dose. Additional scans obtained for further guidance or needle adjustment were acquired by reducing the tube current-time product (mAs) by 50 %. The radiology billing data were searched for CT-guided musculoskeletal procedures performed over a period of 8 months following the initial implementation of the protocol. These were reviewed for the type of procedure and compliance with the implemented protocol. The compliant CT-guided biopsy cases were then retrospectively reviewed for patient demographics, tumor pathology, and lesion size. Pathology results were compared to the ultimate diagnoses and were categorized as diagnostic, accurate, or successful. Of 92 CT-guided procedures performed during this period, two were excluded as they were not biopsies (one joint injection and one drainage), 19 were excluded due to non-compliance (operators neglected to follow the protocol), and four were excluded due to lack of available follow-up in our electronic medical records. A total of 67 compliant biopsies were performed in 63 patients (two had two biopsies, and one had three biopsies). There were 32 males and 31 females with an average age of 50 (range, 15-84 years). Of the 67 biopsies, five were non-diagnostic and inaccurate and thus unsuccessful (7 %); five were diagnostic but inaccurate and thus unsuccessful (7 %); 57 were diagnostic and accurate thus successful (85 %). These results were comparable with results published in the radiology literature. The success rate of CT-guided biopsies using a low-dose protocol is comparable to published rates for conventional dose biopsies. The implemented low-dose protocol

  19. Computed tomography guided needle biopsy: experience from 1,300 procedures

    Energy Technology Data Exchange (ETDEWEB)

    Chojniak, Rubens; Isberner, Rony Klaus; Viana, Luciana Marinho; Yu, Liao Shin; Aita, Alessandro Amorim; Soares, Fernando Augusto [Hospital do Cancer A.C. Camargo, Sao Paulo, SP (Brazil). Dept. de Radiologia e Patologia

    2006-01-15

    Context and objective: computed tomography (CT) guided biopsy is widely accepted as effective and safe for diagnosis in many settings. Accuracy depends on target organ and needle type. Cutting needles present advantages over fine needles. This study presents experience from CT guided biopsies performed at an oncology center. Design and setting: retrospective study at Hospital do Cancer A. C. Camargo, Sao Paulo.Methods: 1,300 consecutive CT guided biopsies performed between July 1994 and February 2000 were analyzed. Nodules or masses were suspected as primary malignancy in 845 cases (65%) or metastatic lesion in 455 (35%). 628 lesions were thoracic, 281 abdominal, 208 retroperitoneal, 134 musculoskeletal and 49 head/neck. All biopsies were performed by one radiologist or under his supervision: 765 (59%) with 22-gauge fine-needle/aspiration technique and 535 (41%) with automated 16 or 18-gauge cutting-needle biopsy. Results: adequate samples were obtained in 70-92% of fine-needle and 93-100% of cutting-needle biopsies. The specific diagnosis rates were 54-67% for fine-needle and 82-100% for cutting-needle biopsies, according to biopsy site. For any site, sample adequacy and specific diagnosis rate were always better for cutting-needle biopsy. Among 530 lung biopsies, there were 84 pneumothorax (16%) and two hemothorax (0.3%) cases, with thoracic drainage in 24 (4.9%). Among abdominal and retroperitoneal biopsies, there were two cases of major bleeding and one of peritonitis. Conclusion: both types of needle showed satisfactory results, but cutting-needle biopsy should be used when specific diagnosis is desired without greater incidence of complications. (author)

  20. Tomography

    International Nuclear Information System (INIS)

    1985-01-01

    Already widely accepted in medicine, tomography can also be useful in industry. The theory behind tomography and a demonstration of the technique to inspect a motorcycle carburetor is presented. To demonstrate the potential of computer assisted tomography (CAT) to accurately locate defects in three dimensions, a sectioned 5 cm gate valve with a shrink cavity made visible by the sectioning was tomographically imaged using a Co-60 source. The tomographic images revealed a larger cavity below the sectioned surface. The position of this cavity was located with an in-plane and axial precision of approximately +-1 mm. The volume of the cavity was estimated to be approximately 40 mm 3

  1. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    International Nuclear Information System (INIS)

    Kim, Joshua; Zhang, Tiezhi; Lu, Weiguo

    2014-01-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source–dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10–15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source–dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented. (paper)

  2. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  3. US-guided diffuse optical tomography for breast lesions: the reliability of clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Jung; Kim, Ji Youn; Youn, Jung Hyun; Kim, Myung Hyun; Koo, Hye Ryoung; Kim, Soo Jin; Sohn, Yu-Mee; Moon, Hee Jung; Kim, Eun-Kyung [Yonsei University College of Medicine, Institute of Radiological Science, Seoul (Korea, Republic of); Yonsei University College of Medicine, Department of Radiology, Seoul (Korea, Republic of)

    2011-07-15

    To prospectively assess the reliability of US-guided diffuse optical tomography (US-DOT) using interobserver agreement for the diagnosis of breast lesions with individual real-time imaging and to assess the interobserver agreement of conventional sonography (US) combined with US-DOT for differentiation between benignity and malignancy breast lesions. An Institutional Review Board approved this study, and all subjects provided written informed consent. 122 breast lesions in 111 patients evaluated with US-guided core biopsy were included. Assessments with US and US-DOT for cases subjected to biopsy were obtained by two radiologists using individual real-time imaging prior to biopsy and were prospectively recorded by each performer. With DOT, the total haemoglobin concentration (THC) for each breast lesion was measured. Histopathological results from US-guided biopsies were used as a reference standard. To assess measurement interobserver agreement, the intraclass correlation coefficient (ICC) and the Bland-Altman plot were used for THC in US-DOT and the kappa values and ROC analysis were used to evaluate the diagnostic performances of the US BI-RADS final assessment in US and combined US and US-DOT. Of 122 US-guided core biopsied lesions, 83 (68.0%) were diagnosed as benign, and 39 (32.0%) as malignant. Excellent correlation was seen in the THC in US-DOT (ICC score 0.796; 95% confidence interval, 0.708-0.857). The interobserver agreement in BI-RADS final assessment with US and US-DOT (almost perfect; {kappa} = 0.8618) was improved compared with that of US (substantial agreement, {kappa} = 0.6574). However, the overall areas under the ROC curve did not show significant differences between US and combined US and US-DOT, 0.8894 and 0.8975, respectively (P = 0.981). The reliability of THC in US-DOT showed excellent correlation in overall real-time performance. Although the inter-observer agreement for BI-RADS final assessment of US was improved by using US-DOT, the

  4. Computed-tomography-guided anatomic standardization for quantitative assessment of dopamine transporter SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Kota [National Center of Neurology and Psychiatry, Department of Radiology, Tokyo (Japan); National Center of Neurology and Psychiatry, Integrative Brain Imaging Center, Tokyo (Japan); Imabayashi, Etsuko; Matsuda, Hiroshi [National Center of Neurology and Psychiatry, Integrative Brain Imaging Center, Tokyo (Japan); Sumida, Kaoru; Sone, Daichi; Kimura, Yukio; Sato, Noriko [National Center of Neurology and Psychiatry, Department of Radiology, Tokyo (Japan); Mukai, Youhei; Murata, Miho [National Center of Neurology and Psychiatry, Department of Neurology, Tokyo (Japan)

    2017-03-15

    For the quantitative assessment of dopamine transporter (DAT) using [{sup 123}I]FP-CIT single-photon emission computed tomography (SPECT) (DaTscan), anatomic standardization is preferable for achieving objective and user-independent quantification of striatal binding using a volume-of-interest (VOI) template. However, low accumulation of DAT in Parkinson's disease (PD) would lead to a deformation error when using a DaTscan-specific template without any structural information. To avoid this deformation error, we applied computed tomography (CT) data obtained using SPECT/CT equipment to anatomic standardization. We retrospectively analyzed DaTscan images of 130 patients with parkinsonian syndromes (PS), including 80 PD and 50 non-PD patients. First we segmented gray matter from CT images using statistical parametric mapping 12 (SPM12). These gray-matter images were then anatomically standardized using the diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL) algorithm. Next, DaTscan images were warped with the same parameters used in the CT anatomic standardization. The target striatal VOIs for decreased DAT in PD were generated from the SPM12 group comparison of 20 DaTscan images from each group. We applied these VOIs to DaTscan images of the remaining patients in both groups and calculated the specific binding ratios (SBRs) using nonspecific counts in a reference area. In terms of the differential diagnosis of PD and non-PD groups using SBR, we compared the present method with two other methods, DaTQUANT and DaTView, which have already been released as software programs for the quantitative assessment of DaTscan images. The SPM12 group comparison showed a significant DAT decrease in PD patients in the bilateral whole striatum. Of the three methods assessed, the present CT-guided method showed the greatest power for discriminating PD and non-PD groups, as it completely separated the two groups. CT-guided anatomic standardization using

  5. Microcomputer Competencies for Vocational Teachers.

    Science.gov (United States)

    Roth, Gene L.; Tesolowski, Dennis G.

    1984-01-01

    This joint research and development project of two state departments of education used the DACUM (Developing a Curriculum) process to identify microcomputer competencies for vocational instructors. Brainstorming techniques were used to identify five categories of microcomputer applications and to determine which competencies belonged in each…

  6. Efficacy of Lower-Body Shielding in Computed Tomography Fluoroscopy-Guided Interventions

    International Nuclear Information System (INIS)

    Mahnken, Andreas H.; Sedlmair, Martin; Ritter, Christine; Banckwitz, Rosemarie; Flohr, Thomas

    2012-01-01

    Purpose: Computed tomography (CT) fluoroscopy-guided interventions pose relevant radiation exposure to the interventionalist. The goal of this study was to analyze the efficacy of lower-body shielding as a simple structural method for decreasing radiation dose to the interventionalist without limiting access to the patient. Material and Methods: All examinations were performed with a 128-slice dual source CT scanner (12 × 1.2-mm collimation; 120 kV; and 20, 40, 60, and 80 mAs) and an Alderson-Rando phantom. Scatter radiation was measured with an ionization chamber and a digital dosimeter at standardized positions and heights with and without a lower-body lead shield (0.5-mm lead equivalent; Kenex, Harlow, UK). Dose decreases were computed for the different points of measurement. Results: On average, lower-body shielding decreased scatter radiation by 38.2% within a 150-cm radius around the shielding. This decrease is most significant close to the gantry opening and at low heights of 50 and 100 cm above the floor with a maximum decrease of scatter radiation of 95.9% close to the scanner’s isocentre. With increasing distance to the gantry opening, the effect decreased. There is almost no dose decrease effect at ≥150 above the floor. Scatter radiation and its decrease were linearly correlated with the tube current-time product (r 2 = 0.99), whereas percent scatter radiation decrease was independent of the tube current-time product. Conclusion: Lower-body shielding is an effective way to decrease radiation exposure to the interventionalist and should routinely be used in CT fluoroscopy-guided interventions.

  7. Surgical positioning of orthodontic mini-implants with guides fabricated on models replicated with cone-beam computed tomography.

    Science.gov (United States)

    Kim, Seong-Hun; Choi, Yong-Suk; Hwang, Eui-Hwan; Chung, Kyu-Rhim; Kook, Yoon-Ah; Nelson, Gerald

    2007-04-01

    This article illustrates a new surgical guide system that uses cone-beam computed tomography (CBCT) images to replicate dental models; surgical guides for the proper positioning of orthodontic mini-implants were fabricated on the replicas, and the guides were used for precise placement. The indications, efficacy, and possible complications of this method are discussed. Patients who were planning to have orthodontic mini-implant treatment were recruited for this study. A CBCT system (PSR 9000N, Asahi Roentgen, Kyoto, Japan) was used to acquire virtual slices of the posterior maxilla that were 0.1 to 0.15 mm thick. Color 3-dimensional rapid prototyping was used to differentiate teeth, alveolus, and maxillary sinus wall. A surgical guide for the mini-implant was fabricated on the replica model. Proper positioning for mini-implants on the posterior maxilla was determined by viewing the CBCT images. The surgical guide was placed on the clinical site, and it allowed precise pilot drilling and accurate placement of the mini-implant. CBCT imaging allows remarkably lower radiation doses and thinner acquisition slices compared with medical computed tomography. Virtually reproduced replica models enable precise planning for mini-implant positions in anatomically complex sites.

  8. Image-guided modified deep anterior lamellar keratoplasty (DALK) corneal transplant using intraoperative optical coherence tomography

    Science.gov (United States)

    Tao, Yuankai K.; LaBarbera, Michael; Ehlers, Justis P.; Srivastava, Sunil K.; Dupps, William J.

    2015-03-01

    Deep anterior lamellar keratoplasty (DALK) is an alternative to full-thickness corneal transplant and has advantages including the absence of allograft rejection; shortened duration of topical corticosteroid treatment and reduced associated risk of glaucoma, cataract, or infection; and enables use of grafts with poor endothelial quality. DALK begins by performing a trephination of approximately 80% stromal thickness, as measured by pachymetry. After removal of the anterior stoma, a needle is inserted into the residual stroma to inject air or viscoelastic to dissect Descemet's membrane. These procedures are inherently difficult and intraoperative rates of Descemet's membrane perforation between 4-39% have been reported. Optical coherence tomography (OCT) provides high-resolution images of tissue microstructures in the cornea, including Descemet's membrane, and allows quantitation of corneal layer thicknesses. Here, we use crosssectional intraoperative OCT (iOCT) measurements of corneal thickness during surgery and a novel micrometeradjustable biopsy punch to precision-cut the stroma down to Descemet's membrane. Our prototype cutting tool allows us to establish a dissection plane at the corneal endothelium interface, mitigates variability in cut-depths as a result of tremor, reduces procedure complexity, and reduces complication rates. iOCT-guided modified DALK procedures were performed on 47 cadaveric porcine eyes by non-experts and achieved a perforation rate of ~5% with a mean corneal dissection time care.

  9. Creating vascular models by postprocessing computed tomography angiography images: a guide for anatomical education.

    Science.gov (United States)

    Govsa, Figen; Ozer, Mehmet Asim; Sirinturk, Suzan; Eraslan, Cenk; Alagoz, Ahmet Kemal

    2017-08-01

    A new application of teaching anatomy includes the use of computed tomography angiography (CTA) images to create clinically relevant three-dimensional (3D) printed models. The purpose of this article is to review recent innovations on the process and the application of 3D printed models as a tool for using under and post-graduate medical education. Images of aortic arch pattern received by CTA were converted into 3D images using the Google SketchUp free software and were saved in stereolithography format. Using a 3D printer (Makerbot), a model mode polylactic acid material was printed. A two-vessel left aortic arch was identified consisting of the brachiocephalic trunk and left subclavian artery. The life-like 3D models were rotated 360° in all axes in hand. The early adopters in education and clinical practices have embraced the medical imaging-guided 3D printed anatomical models for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between the anatomical structures. Printed vascular models are used to assist in preoperative planning, develop intraoperative guidance tools, and to teach patients surgical trainees in surgical practice.

  10. [Fluoroscopy dose reduction of computed tomography guided chest interventional radiology using real-time iterative reconstruction].

    Science.gov (United States)

    Hasegawa, Hiroaki; Mihara, Yoshiyuki; Ino, Kenji; Sato, Jiro

    2014-11-01

    The purpose of this study was to evaluate the radiation dose reduction to patients and radiologists in computed tomography (CT) guided examinations for the thoracic region using CT fluoroscopy. Image quality evaluation of the real-time filtered back-projection (RT-FBP) images and the real-time adaptive iterative dose reduction (RT-AIDR) images was carried out on noise and artifacts that were considered to affect the CT fluoroscopy. The image standard deviation was improved in the fluoroscopy setting with less than 30 mA on 120 kV. With regard to the evaluation of artifact visibility and the amount generated by the needle attached to the chest phantom, there was no significant difference between the RT-FBP images with 120 kV, 20 mA and the RT-AIDR images with low-dose conditions (greater than 80 kV, 30 mA and less than 120 kV, 20 mA). The results suggest that it is possible to reduce the radiation dose by approximately 34% at the maximum using RT-AIDR while maintaining image quality equivalent to the RT-FBP images with 120 V, 20 mA.

  11. Percutaneous computed tomography-guided ethanol injection in aldosterone-producing adrenocortical adenoma

    International Nuclear Information System (INIS)

    Rossi, R.; Savastano, S.; Tommaselli, A.P.

    1995-01-01

    The feasibility, safety and effectiveness of percutaneous computed tomography-guided ethanol injection (PEI-CT) was investigated in a patient affected by aldosterone-producing adenoma (APA). A 42-year-old male patient with typical features of hyperaldosteronism presented a solitary left adrenal adenoma measuring 2 cm, with a normal contralateral gland, evidenced by both CT scan and adrenal [ 75 Se-19]-nor-cholesterol scintigraphy. After normalization of potassium plasma levels, 4 ml of sterile 95% ethanol with 0.5 ml of 80% iothalamate sodium was injected. The procedure was completed in about 30 min. No severe pain or local complication was noted. Five hour after PEI, a fourfold and a twofold increase in aldosterone and cortisol plasma levels were observed, respectively. After 11 days on a normal sodium and potassium diet, normal potassium plasma levels and reduced aldosterone plasma levels were present, with reappearance of an aldosterone postural response. Plasma renin activity and aldosterone plasma levels normalized 1 month later, with reappearance also of a plasma renin activity postural response and maintenance of normal potassium plasma levels on a high sodium and normal potassium diet. The patient has remained hypertensive, although lower antihypertensive drug dosages have been employed. After 17 months, normal biochemical, hormonal and morphological findings were present. The authors suggested PEI-CT as a further alternative approach to surgery in the management of carefully selected patients with APA. 15 refs., 2 figs., 1 tab

  12. Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents

    Science.gov (United States)

    Ardeshirpour, Yasaman; Biswal, Nrusingh; Aguirre, Andres; Zhu, Quing

    2011-04-01

    In diffuse optical tomography (DOT), a typical perturbation approach requires two sets of measurements obtained at the lesion breast (lesion or target site) and a contra-lateral location of the normal breast (reference site) for image reconstruction. For patients who have a small amount of breast tissue, the chest-wall underneath the breast tissue at both sites affects the imaging results. In this group of patients, the perturbation, which is the difference between measurements obtained at the lesion and reference sites, may include the information of background mismatch which can generate artifacts or affect the reconstructed quantitative absorption coefficient of the lesion. Also, for patients who have a single breast due to prior surgery, the contra-lateral reference is not available. To improve the DOT performance or overcome its limitation, we introduced a new method based on an exogenous contrast agent and demonstrate its performance using animal models. Co-registered ultrasound was used to guide the lesion localization. The results have shown that artifacts caused by background mismatch can be reduced significantly by using this new method.

  13. A study of MRI-guided diffuse fluorescence molecular tomography for monitoring PDT effects in pancreas cancer

    Science.gov (United States)

    Samkoe, Kimberley S.; Davis, Scott C.; Srinivasan, Subhadra; O'Hara, Julia A.; Hasan, Tayyaba; Pogue, Brian W.

    2009-06-01

    Over the last several decades little progress has been made in the therapy and treatment monitoring of pancreas adenocarcinoma, a devastating and aggressive form of cancer that has a 5-year patient survival rate of 3%. Currently, investigations for the use of interstitial Verteporfin photodynamic therapy (PDT) are being undertaken in both orthotopic xenograft mouse models and in human clinical trials. In the mouse models, magnetic resonance (MR) imaging has been used as a measure of surrogate response to Verteporfin PDT; however, MR imaging alone lacks the molecular information required to assess the metabolic function and growth rates of the tumor immediately after treatment. We propose the implementation of MR-guided fluorescence tomography in conjunction with a fluorescently labeled (IR-Dye 800 CW, LI-COR) epidermal growth factor (EGF) as a molecular measure of surrogate response. To demonstrate the effectiveness of MR-guided diffuse fluorescence tomography for molecular imaging, we have used the AsPC-1 (+EGFR) human pancreatic adenocarcinoma in an orthotopic mouse model. EGF IRDye 800CW was injected 48 hours prior to imaging. MR image sequences were collected simultaneously with the fluorescence data using a MR-coupled diffuse optical tomography system. Image reconstruction was performed multiple times with varying abdominal organ segmentation in order to obtain a optimal tomographic image. It is shown that diffuse fluorescence tomography of the orthotopic pancreas model is feasible, with consideration of confounding fluorescence signals from the multiple organs and tissues surrounding the pancreas. MR-guided diffuse fluorescence tomography will be used to monitor EGF response after photodynamic therapy. Additionally, it provide the opportunity to individualize subsequent therapies based on response to PDT as well as to evaluate the success of combination therapies, such as PDT with chemotherapy, antibody therapy or even radiation.

  14. Tomography

    International Nuclear Information System (INIS)

    Barrett, H.H.; Gordon, S.; Swindell, W.

    1980-01-01

    Apparatus is described for generating a two-dimensional back-projected image of a slice of an object in tomography. The apparatus uses optical techniques to perform the functions of filtering and back projection. Central to the technique is a cylindrical drum which rotates at a fast rate and whose rotational axis tilts at a slower rate. The novel method overcomes the problem of image blurring due to motion which occurs in many tomographic techniques. It also has the advantages of being less expensive and simpler compared to tomography using digital processing techniques which require fast computers. (UK)

  15. Efficacy and safety of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension guided by cone-beam computed tomography and electrocardiogram-gated area detector computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ogo, Takeshi, E-mail: ogo.takeshi.hp@mail.ncvc.go.jp [Division of Pulmonary Circulation, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, Osaka (Japan); Department of Advanced Mediccal Research for Pulmonary Hypertension, National Cerebral and Cardiovascular Centre, Osaka (Japan); Fukuda, Tetsuya [Department of Radiology, National Cerebral and Cardiovascular Centre, Osaka (Japan); Tsuji, Akihiro; Fukui, Shigefumi; Ueda, Jin [Division of Pulmonary Circulation, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, Osaka (Japan); Sanda, Yoshihiro [Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, Osaka (Japan); Morita, Yoshiaki [Department of Radiology, National Cerebral and Cardiovascular Centre, Osaka (Japan); Asano, Ryotaro; Konagai, Nao [Division of Pulmonary Circulation, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, Osaka (Japan); Yasuda, Satoshi [Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Centre, Osaka (Japan)

    2017-04-15

    Highlights: • Recent advancement in CT enables distal CTEpH lesions to be visualized. • We investigated the efficacy and safety of BPA guided by CBCT or ECG-gated area detector CT. • BPA guided by CBCT or ECG-gated area detector CT is effective and safe in patients with CTEpH . • These new advanced CT techniques may be useful in pre-BPA target lesion assessment. - Abstract: Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a disease characterized by chronic obstructive thrombus and pulmonary hypertension. Balloon pulmonary angioplasty (BPA), an emerging alternative catheter-based treatment for inoperable patients with CTEPH, has not yet been standardised, especially for lesion assessment in distal pulmonary arteries. Recent advancement in computed tomography enables distal CTEPH lesions to be visualized. Methods: We retrospectively studied 80 consecutive patients with inoperable CTEPH who received BPA guided by cone-beam computed tomography (CT) (CBCT) or electrocardiogram (ECG)-gated area detector CT (ADCT) for target lesion assessment. We collected clinical and hemodynamic data, including procedural complications, before BPA and at 3 months and 1 year after BPA. Results: Three hundred eight-five BPA sessions (4.8 sessions/patient) were performed for the lesions of subsegmental arteries (1155 lesions), segmental arteries (738 lesions), and lobar arteries (4 lesions) identified by CBCT or ECG-gated ADCT. Significant improvements in the symptoms, 6-min walk distance, brain natriuretic peptide level, exercise capacity, and haemodynamics were observed 3 months and 1 year after BPA. No cases of death or cardiogenic shock with a low rate of severe wire perforation (0.3%) and severe reperfusion oedema (0.3%) were observed. Conclusions: BPA guided by CBCT or ECG-gated ADCT is effective and remarkably safe in patients with CTEPH . These new advanced CT techniques may be useful in pre-BPA target lesion assessment.

  16. Efficacy and safety of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension guided by cone-beam computed tomography and electrocardiogram-gated area detector computed tomography

    International Nuclear Information System (INIS)

    Ogo, Takeshi; Fukuda, Tetsuya; Tsuji, Akihiro; Fukui, Shigefumi; Ueda, Jin; Sanda, Yoshihiro; Morita, Yoshiaki; Asano, Ryotaro; Konagai, Nao; Yasuda, Satoshi

    2017-01-01

    Highlights: • Recent advancement in CT enables distal CTEpH lesions to be visualized. • We investigated the efficacy and safety of BPA guided by CBCT or ECG-gated area detector CT. • BPA guided by CBCT or ECG-gated area detector CT is effective and safe in patients with CTEpH . • These new advanced CT techniques may be useful in pre-BPA target lesion assessment. - Abstract: Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a disease characterized by chronic obstructive thrombus and pulmonary hypertension. Balloon pulmonary angioplasty (BPA), an emerging alternative catheter-based treatment for inoperable patients with CTEPH, has not yet been standardised, especially for lesion assessment in distal pulmonary arteries. Recent advancement in computed tomography enables distal CTEPH lesions to be visualized. Methods: We retrospectively studied 80 consecutive patients with inoperable CTEPH who received BPA guided by cone-beam computed tomography (CT) (CBCT) or electrocardiogram (ECG)-gated area detector CT (ADCT) for target lesion assessment. We collected clinical and hemodynamic data, including procedural complications, before BPA and at 3 months and 1 year after BPA. Results: Three hundred eight-five BPA sessions (4.8 sessions/patient) were performed for the lesions of subsegmental arteries (1155 lesions), segmental arteries (738 lesions), and lobar arteries (4 lesions) identified by CBCT or ECG-gated ADCT. Significant improvements in the symptoms, 6-min walk distance, brain natriuretic peptide level, exercise capacity, and haemodynamics were observed 3 months and 1 year after BPA. No cases of death or cardiogenic shock with a low rate of severe wire perforation (0.3%) and severe reperfusion oedema (0.3%) were observed. Conclusions: BPA guided by CBCT or ECG-gated ADCT is effective and remarkably safe in patients with CTEPH . These new advanced CT techniques may be useful in pre-BPA target lesion assessment.

  17. Tomography

    International Nuclear Information System (INIS)

    Allan, C.J.; Keller, N.A.; Lupton, L.R.; Taylor, T.; Tonner, P.D.

    1984-10-01

    Tomography is a non-intrusive imaging technique being developed at CRNL as an industrial tool for generating quantitative cross-sectional density maps of objects. Of most interest is tomography's ability to: distinguish features within complex geometries where other NDT techniques fail because of the complexity of the geometry; detect/locate small density changes/defects within objects, e.g. void fraction measurements within thick-walled vessels, shrink cavities in castings, etc.; provide quantitative data that can be used in analyses, e.g. of complex processes, or fracture mechanics; and provide objective quantitative data that can be used for (computer-based) quality assurance decisions, thereby reducing and in some cases eliminating the present subjectivity often encountered in NDT. The CRNL program is reviewed and examples are presented to illustrate the potential and the limitations of the technology

  18. Efficacy and safety of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension guided by cone-beam computed tomography and electrocardiogram-gated area detector computed tomography.

    Science.gov (United States)

    Ogo, Takeshi; Fukuda, Tetsuya; Tsuji, Akihiro; Fukui, Shigefumi; Ueda, Jin; Sanda, Yoshihiro; Morita, Yoshiaki; Asano, Ryotaro; Konagai, Nao; Yasuda, Satoshi

    2017-04-01

    Chronic thromboembolic pulmonary hypertension (CTEPH) is a disease characterized by chronic obstructive thrombus and pulmonary hypertension. Balloon pulmonary angioplasty (BPA), an emerging alternative catheter-based treatment for inoperable patients with CTEPH, has not yet been standardised, especially for lesion assessment in distal pulmonary arteries. Recent advancement in computed tomography enables distal CTEPH lesions to be visualized. We retrospectively studied 80 consecutive patients with inoperable CTEPH who received BPA guided by cone-beam computed tomography (CT) (CBCT) or electrocardiogram (ECG)-gated area detector CT (ADCT) for target lesion assessment. We collected clinical and hemodynamic data, including procedural complications, before BPA and at 3 months and 1year after BPA. Three hundred eight-five BPA sessions (4.8 sessions/patient) were performed for the lesions of subsegmental arteries (1155 lesions), segmental arteries (738 lesions), and lobar arteries (4 lesions) identified by CBCT or ECG-gated ADCT. Significant improvements in the symptoms, 6-min walk distance, brain natriuretic peptide level, exercise capacity, and haemodynamics were observed 3 months and 1year after BPA. No cases of death or cardiogenic shock with a low rate of severe wire perforation (0.3%) and severe reperfusion oedema (0.3%) were observed. BPA guided by CBCT or ECG-gated ADCT is effective and remarkably safe in patients with CTEPH . These new advanced CT techniques may be useful in pre-BPA target lesion assessment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Value of computed tomography for evaluating the injection site in endosonography-guided celiac plexus neurolysis

    International Nuclear Information System (INIS)

    Sakamoto, Hiroki; Kitano, Masayuki; Nishio, Takeshi; Takeyama, Yoshifumi; Yasuda, Chikao; Kudo, Masatoshi

    2006-01-01

    Endosonography-guided celiac plexus neurolysis (EUS-CPN) safely and effectively relieves pain associated with intra-abdominal malignancies when the neurolytic is accurately injected. We applied contrast medium to evaluate the ethanol injection sites in patients who received EUS-CPN due to abdominal pain caused by malignancies. We injected, under the guidance of endoscopic ultrasonography (EUS), ethanol containing 10% contrast medium into the celiac plexus of patients with intra-abdominal pain due to malignancies. Immediately after the endoscopic therapy, patients underwent computed tomography (CT) to confirm the injection site. Images of distribution of injected solutions were classified into three groups. Injected solution dispersed in unilateral and bilateral anterocrural space was defined as ''unilateral injection'' or bilateral injection'', respectively. Injected solution located out of the anterocrural space was defined as ''inappropriate injection''. Pre- and postprocedure pain was assessed using a standard analog scale. Before and 2, 4, 8, 12, and 16 weeks after the procedure, pain scores were evaluated. From April 2003 to May 2005, 13 patients were enrolled in this study. Improvement of pain score in the ''bilateral injection'' and ''unilateral injection'' groups was significantly superior to the change in the ''inappropriate injection'' group. Although EUS-CPN was effective in eight of 13 patients (61.5%), additional EUS-CPN to the ''inappropriate injection group'' increased the response rate to 84.6%. Injection of ethanol to the anterocrural space by EUS-CPN produced adequate pain relief. Immediate examination by CT for confirmation of injection sites after EUS-CPN would increase the likelihood of induction of pain relief. (author)

  20. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation

    International Nuclear Information System (INIS)

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Wong, John; Iordachita, Iulian; Siewerdsen, Jeffrey

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (‘tubular’ geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (‘pancake’ geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry

  1. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    Science.gov (United States)

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-07

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.

  2. Microcomputer Typewriting in Business Education.

    Science.gov (United States)

    Schmidt, B. June; Stewart, Jeffrey R.

    1983-01-01

    Describes a research project on the role of the instructor in managing microcomputer typewriting instruction. The teachers selected software, familiarized students with the equipment, provided support, monitored progress, helped students establish goals, and provided instructional activities. (JOW)

  3. Systematic study of target localization for bioluminescence tomography guided radiation therapy

    Science.gov (United States)

    Yu, Jingjing; Zhang, Bin; Iordachita, Iulian I.; Reyes, Juvenal; Lu, Zhihao; Brock, Malcolm V.; Patterson, Michael S.; Wong, John W.

    2016-01-01

    Purpose: To overcome the limitation of CT/cone-beam CT (CBCT) in guiding radiation for soft tissue targets, the authors developed a spectrally resolved bioluminescence tomography (BLT) system for the small animal radiation research platform. The authors systematically assessed the performance of the BLT system in terms of target localization and the ability to resolve two neighboring sources in simulations, tissue-mimicking phantom, and in vivo environments. Methods: Multispectral measurements acquired in a single projection were used for the BLT reconstruction. The incomplete variables truncated conjugate gradient algorithm with an iterative permissible region shrinking strategy was employed as the optimization scheme to reconstruct source distributions. Simulation studies were conducted for single spherical sources with sizes from 0.5 to 3 mm radius at depth of 3–12 mm. The same configuration was also applied for the double source simulation with source separations varying from 3 to 9 mm. Experiments were performed in a standalone BLT/CBCT system. Two self-illuminated sources with 3 and 4.7 mm separations placed inside a tissue-mimicking phantom were chosen as the test cases. Live mice implanted with single-source at 6 and 9 mm depth, two sources at 3 and 5 mm separation at depth of 5 mm, or three sources in the abdomen were also used to illustrate the localization capability of the BLT system for multiple targets in vivo. Results: For simulation study, approximate 1 mm accuracy can be achieved at localizing center of mass (CoM) for single-source and grouped CoM for double source cases. For the case of 1.5 mm radius source, a common tumor size used in preclinical study, their simulation shows that for all the source separations considered, except for the 3 mm separation at 9 and 12 mm depth, the two neighboring sources can be resolved at depths from 3 to 12 mm. Phantom experiments illustrated that 2D bioluminescence imaging failed to distinguish two sources

  4. Systematic study of target localization for bioluminescence tomography guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jingjing [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231 and School of Physics and Information Technology, Shaanxi Normal University, Shaanxi 710119 (China); Zhang, Bin; Reyes, Juvenal; Wong, John W.; Wang, Ken Kang-Hsin, E-mail: kwang27@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Iordachita, Iulian I. [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Lu, Zhihao [Department of Oncology and Department of Surgery, Johns Hopkins University, Baltimore, Maryland 21231 and Key laboratory of Carcinogenesis and Translational Research, Department of GI Oncology, Peking University, Beijing Cancer Hospital and Institute, Beijing 100142 (China); Brock, Malcolm V. [Department of Oncology and Department of Surgery, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Patterson, Michael S. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4L8 (Canada)

    2016-05-15

    Purpose: To overcome the limitation of CT/cone-beam CT (CBCT) in guiding radiation for soft tissue targets, the authors developed a spectrally resolved bioluminescence tomography (BLT) system for the small animal radiation research platform. The authors systematically assessed the performance of the BLT system in terms of target localization and the ability to resolve two neighboring sources in simulations, tissue-mimicking phantom, and in vivo environments. Methods: Multispectral measurements acquired in a single projection were used for the BLT reconstruction. The incomplete variables truncated conjugate gradient algorithm with an iterative permissible region shrinking strategy was employed as the optimization scheme to reconstruct source distributions. Simulation studies were conducted for single spherical sources with sizes from 0.5 to 3 mm radius at depth of 3–12 mm. The same configuration was also applied for the double source simulation with source separations varying from 3 to 9 mm. Experiments were performed in a standalone BLT/CBCT system. Two self-illuminated sources with 3 and 4.7 mm separations placed inside a tissue-mimicking phantom were chosen as the test cases. Live mice implanted with single-source at 6 and 9 mm depth, two sources at 3 and 5 mm separation at depth of 5 mm, or three sources in the abdomen were also used to illustrate the localization capability of the BLT system for multiple targets in vivo. Results: For simulation study, approximate 1 mm accuracy can be achieved at localizing center of mass (CoM) for single-source and grouped CoM for double source cases. For the case of 1.5 mm radius source, a common tumor size used in preclinical study, their simulation shows that for all the source separations considered, except for the 3 mm separation at 9 and 12 mm depth, the two neighboring sources can be resolved at depths from 3 to 12 mm. Phantom experiments illustrated that 2D bioluminescence imaging failed to distinguish two sources

  5. Preliminary Results of Emergency Computed Tomography-Guided Ventricular Drain Placement-Precision for the Most Difficult Cases.

    Science.gov (United States)

    Nowacki, Andreas; Wagner, Franca; Söll, Nicole; Hakim, Arsany; Beck, Jürgen; Raabe, Andreas; Z'Graggen, Werner J

    2018-04-05

    External ventricular drainage (EVD) catheter placement is one of the most commonly performed neurosurgical procedures. The study's objective was to compare a computed tomography (CT) bolt scan-guided approach for the placement of EVDs with conventional landmark-based insertion. In this retrospective case-control study, we analyzed patients undergoing bolt-kit EVD catheter placement, either CT-guided or landmark-based, between 2013 and 2016. The CT bolt scan-guided approach was based on a dose-reduced CT scan after bolt fixation with immediate image reconstruction along the axis of the bolt to evaluate the putative insertion axis. If needed, angulation of the bolt was corrected and the procedure repeated before the catheter was inserted. Primary endpoint was the accuracy of insertion. Secondary endpoints were the overall number of attempts, duration of intervention, complication rates, and cumulative radiation dose. In total, 34 patients were included in the final analysis. In the group undergoing CT-guided placement, the average ventricle width was significantly smaller (P = 0.04) and average midline shift significantly more pronounced (P = 0.01). CT-guided placement resulted in correct positioning of the catheter in the ipsilateral frontal horn in all 100% of the cases compared with landmark-guided insertion (63%; P = 0.01). Application of the CT-guided approach increased the number of total CT scans (3.6 ± 1.9) and the overall radiation dose (3.34 ± 1.61 mSv) compared with the freehand insertion group (1.84 ± 2.0 mSv and 1.55 ± 1.66 mSv). No differences were found for the other secondary outcome parameters. CT-guided bolt-kit EVD catheter placement is feasible and accurate in the most difficult cases. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography

    Science.gov (United States)

    Brooksby, Ben; Pogue, Brian W.; Jiang, Shudong; Dehghani, Hamid; Srinivasan, Subhadra; Kogel, Christine; Tosteson, Tor D.; Weaver, John; Poplack, Steven P.; Paulsen, Keith D.

    2006-06-01

    Magnetic resonance (MR)-guided near-infrared spectral tomography was developed and used to image adipose and fibroglandular breast tissue of 11 normal female subjects, recruited under an institutional review board-approved protocol. Images of hemoglobin, oxygen saturation, water fraction, and subcellular scattering were reconstructed and show that fibroglandular fractions of both blood and water are higher than in adipose tissue. Variation in adipose and fibroglandular tissue composition between individuals was not significantly different across the scattered and dense breast categories. Combined MR and near-infrared tomography provides fundamental molecular information about these tissue types with resolution governed by MR T1 images. hemoglobin | magnetic resonance imaging | water | fat | oxygen saturation

  7. Tevatron extraction microcomputer

    International Nuclear Information System (INIS)

    Chapman, L.; Finley, D.A.; Harrison, M.; Merz, W.; Batavia, IL)

    1985-01-01

    Extraction in the Fermilab Tevatron is controlled by a multi-processor Multibus microcomputer system called QXR (Quad eXtraction Regulator). QXR monitors several analog beam signals and controls three sets of power supplies: the ''bucker'' and ''pulse'' magnets at a rate of 5760 Hz, and the ''QXR'' magnets at 720 Hz. QXR supports multiple slow spills (up to a total of 35 seconds) with multiple fast pulses intermixed. It linearizes the slow spill and bucks out the high frequency components. Fast extraction is done by outputting a variable pulse waveform. Closed loop learning techniques are used to improve performance from cycle to cycle for both slow and fast extraction. The system is connected to the Tevatron clock system so that it can track the machine cycle. QXR is also connected to the rest of the Fermilab control system, ACNET. Through ACNET, human operators and central computers can monitor and control extraction through communications with QXR. The controls hardware and software both employ some standard and some specialized components. This paper gives an overview of QXR as a control system; another paper (1) summarizes performance

  8. Tevatron extraction microcomputer

    International Nuclear Information System (INIS)

    Chapman, L.; Finley, D.A.; Harrison, M.; Merz, W.

    1985-06-01

    Extraction in the Fermilab Tevatron is controlled by a multi-processor Multibus microcomputer system called QXR (Quad eXtraction Regulator). QXR monitors several analog beam signals and controls three sets of power supplies: the ''bucker'' and ''pulse'' magnets at a rate of 5760 Hz, and the ''QXR'' magnets at 720 Hz. QXR supports multiple slow spills (up to a total of 35 seconds) with multiple fast pulses intermixed. It linearizes the slow spill and bucks out the high frequency components. Fast extraction is done by outputting a variable pulse waveform. Closed loop learning techniques are used to improve performance from cycle to cycle for both slow and fast extraction. The system is connected to the Tevatron clock system so that it can track the machine cycle. QXR is also connected to the rest of the Fermilab control system, ACNET. Through ACNET, human operators and central computers can monitor and control extraction through communications with QXR. The controls hardware and software both employ some standard and some specialized components. This paper gives an overview of QXR as a control system; another paper summarizes performance

  9. Effective Microcomputer Management: An Executive Level Guide.

    Science.gov (United States)

    1986-03-27

    capacity of what can be accomplished - but at a price. Brod [Ref. 25: pp. 16-171 uses the term " technostress " to describe the inability to cope with...T., Structured Analysis and System Sr~cifcatonYourdon, Inc. , 1S/9. 25. Brod, C. , Technostress , Addison-Wesley, 1984. 26. Brod, C. Technostress

  10. C-arm cone beam computed tomography needle path overlay for fluoroscopic guided vertebroplasty.

    Science.gov (United States)

    Tam, Alda L; Mohamed, Ashraf; Pfister, Marcus; Chinndurai, Ponraj; Rohm, Esther; Hall, Andrew F; Wallace, Michael J

    2010-05-01

    Retrospective review. To report our early clinical experience using C-arm cone beam computed tomography (C-arm CBCT) with fluoroscopic overlay for needle guidance during vertebroplasty. C-arm CBCT is advanced three-dimensional (3-D) imaging technology that is currently available on state-of-the-art flat panel based angiography systems. The imaging information provided by C-arm CBCT allows for the acquisition and reconstruction of "CT-like" images in flat panel based angiography/interventional suites. As part of the evolution of this technology, enhancements allowing the overlay of cross-sectional imaging information can now be integrated with real time fluoroscopy. We report our early clinical experience with C-arm CBCT with fluoroscopic overlay for needle guidance during vertebroplasty. This is a retrospective review of 10 consecutive oncology patients who underwent vertebroplasty of 13 vertebral levels using C-arm CBCT with fluoroscopic overlay for needle guidance from November 2007 to December 2008. Procedural data including vertebral level, approach (transpedicular vs. extrapedicular), access (bilateral vs. unilateral) and complications were recorded. Technical success with the overlay technology was assessed based on accuracy which consisted of 4 measured parameters: distance from target to needle tip, distance from planned path to needle tip, distance from midline to needle tip, and distance from the anterior 1/3 of the vertebral body to needle tip. Success within each parameter required that the distance between the needle tip and parameter being evaluated be no more than 5 mm on multiplanar CBCT or fluoroscopy. Imaging data for 12 vertebral levels was available for review. All vertebral levels were treated using unilateral access and 9 levels were treated with an extrapedicular approach. Technical success rates were 92% for both distance from planned path and distance from midline to final needle tip, 100% when distance from needle tip to the anterior 1

  11. Development of a guidance guide for dosimetry in computed tomography; Desenvolvimento de um guia orientativo para dosimetria em tomografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Ladyjane Pereira

    2016-07-01

    Due to frequent questions from users of ionization chambers pencil type calibrated in the Instrument Calibration Laboratory of the Institute of Energy and Nuclear Research (LCI - IPEN), on how to properly apply the factors indicated in their calibration certificates, a guide was prepared guidance for dosimetry in computed tomography. The guide includes guidance prior knowledge of half value layer (HVL), as it is necessary to know the effective beam energy for application quality for correction factor (kq). The evaluation of HVL in TC scanners becomes a difficult task due to system geometry and therefore a survey was conducted of existing methodologies for the determination of HVL in clinical beams Computed Tomography, taking into account technical, practical and economic factors. In this work it was decided to test a Tandem System consists of absorbing covers made in the workshop of IPEN, based on preliminary studies due to low cost and good response. The Tandem system consists of five cylindrical absorbing layers of 1mm, 3mm, 5mm, 7mm and 10mm aluminum and 3 cylindrical absorbing covers 15mm, 25mm and acrylic 35mm (PMMA) coupled to the ionization chamber of commercial pencil type widely used in quality control tests in dosimetry in clinical beams Computed tomography. Through Tandem curves it was possible to assess HVL values and from the standard curve pencil-type ionization chamber, Kq find the appropriate beam. The elaborate Guide provides information on how to build the calibration curve on the basis of CSR, to find the Kq and information for construction Tandem curve, to find values close to CSR. (author)

  12. Cone-beam computed tomography fusion and navigation for real-time positron emission tomography-guided biopsies and ablations: a feasibility study.

    Science.gov (United States)

    Abi-Jaoudeh, Nadine; Mielekamp, Peter; Noordhoek, Niels; Venkatesan, Aradhana M; Millo, Corina; Radaelli, Alessandro; Carelsen, Bart; Wood, Bradford J

    2012-06-01

    To describe a novel technique for multimodality positron emission tomography (PET) fusion-guided interventions that combines cone-beam computed tomography (CT) with PET/CT before the procedure. Subjects were selected among patients scheduled for a biopsy or ablation procedure. The lesions were not visible with conventional imaging methods or did not have uniform uptake on PET. Clinical success was defined by adequate histopathologic specimens for molecular profiling or diagnosis and by lack of enhancement on follow-up imaging for ablation procedures. Time to target (time elapsed between the completion of the initial cone-beam CT scan and first tissue sample or treatment), total procedure time (time from the moment the patient was on the table until the patient was off the table), and number of times the needle was repositioned were recorded. Seven patients underwent eight procedures (two ablations and six biopsies). Registration and procedures were completed successfully in all cases. Clinical success was achieved in all biopsy procedures and in one of the two ablation procedures. The needle was repositioned once in one biopsy procedure only. On average, the time to target was 38 minutes (range 13-54 min). Total procedure time was 95 minutes (range 51-240 min, which includes composite ablation). On average, fluoroscopy time was 2.5 minutes (range 1.3-6.2 min). An integrated cone-beam CT software platform can enable PET-guided biopsies and ablation procedures without the need for additional specialized hardware. Copyright © 2012 SIR. Published by Elsevier Inc. All rights reserved.

  13. Tomography

    International Nuclear Information System (INIS)

    Brown, B.H.; Barber, D.C.; Freeston, I.L.

    1983-01-01

    Tomography images of a body are constructed by placing a plurality of surface electrodes at spaced intervals on the body, causing currents to flow in the body (e.g. by applying a potential between each pair of electrodes in turn, or by induction), and measuring the potential between pairs of electrodes, calculating the potential expected in each case on the assumption that the body consists of a medium of uniform impedance, plotting the isopotentials corresponding to the calculated results to create a uniform image of the body, obtaining the ratio between the measured potential and the calculated potential in each case, and modifying the image in accordance with the respective ratios by increasing the assumed impedance along an isopotential in proportion to a ratio greater than unity or decreasing the assumed impedance in proportion to a ratio less than unity. The modified impedances along the isopotentials for each pair of electrodes are superimposed. The calculations are carried out using a computer and the plotting is carried out by a visual display unit and/or a print-out unit. (author)

  14. Microcomputer data acquisition and control.

    Science.gov (United States)

    East, T D

    1986-01-01

    In medicine and biology there are many tasks that involve routine well defined procedures. These tasks are ideal candidates for computerized data acquisition and control. As the performance of microcomputers rapidly increases and cost continues to go down the temptation to automate the laboratory becomes great. To the novice computer user the choices of hardware and software are overwhelming and sadly most of the computer sales persons are not at all familiar with real-time applications. If you want to bill your patients you have hundreds of packaged systems to choose from; however, if you want to do real-time data acquisition the choices are very limited and confusing. The purpose of this chapter is to provide the novice computer user with the basics needed to set up a real-time data acquisition system with the common microcomputers. This chapter will cover the following issues necessary to establish a real time data acquisition and control system: Analysis of the research problem: Definition of the problem; Description of data and sampling requirements; Cost/benefit analysis. Choice of Microcomputer hardware and software: Choice of microprocessor and bus structure; Choice of operating system; Choice of layered software. Digital Data Acquisition: Parallel Data Transmission; Serial Data Transmission; Hardware and software available. Analog Data Acquisition: Description of amplitude and frequency characteristics of the input signals; Sampling theorem; Specification of the analog to digital converter; Hardware and software available; Interface to the microcomputer. Microcomputer Control: Analog output; Digital output; Closed-Loop Control. Microcomputer data acquisition and control in the 21st Century--What is in the future? High speed digital medical equipment networks; Medical decision making and artificial intelligence.

  15. Reactor physics using a microcomputer

    International Nuclear Information System (INIS)

    Murray, R.L.

    1983-01-01

    The object of the work reported is to develop educational computer modules for all aspects of reactor physics. The modules consist of a description of the theory, mathematical method, computer program listing, sample calculations, and problems for the student, along with a card deck. Modules were first written in FORTRAN for an IBM 360/75, then later in BASIC for microcomputers. Problems include: limitation of equipment, choice of format for the program, the variety of dialects of BASIC used in the different microcomputer and peripherals brands, and knowing when to quit in the process of developing a program

  16. Image Guided Radiation Therapy Using Synthetic Computed Tomography Images in Brain Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Price, Ryan G. [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan (United States); Kim, Joshua P.; Zheng, Weili [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan (United States); Glide-Hurst, Carri, E-mail: churst2@hfhs.org [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan (United States); Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan (United States)

    2016-07-15

    Purpose: The development of synthetic computed tomography (CT) (synCT) derived from magnetic resonance (MR) images supports MR-only treatment planning. We evaluated the accuracy of synCT and synCT-generated digitally reconstructed radiographs (DRRs) relative to CT and determined their performance for image guided radiation therapy (IGRT). Methods and Materials: Magnetic resonance simulation (MR-SIM) and CT simulation (CT-SIM) images were acquired of an anthropomorphic skull phantom and 12 patient brain cancer cases. SynCTs were generated using fluid attenuation inversion recovery, ultrashort echo time, and Dixon data sets through a voxel-based weighted summation of 5 tissue classifications. The DRRs were generated from the phantom synCT, and geometric fidelity was assessed relative to CT-generated DRRs through bounding box and landmark analysis. An offline retrospective analysis was conducted to register cone beam CTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system. Planar MV and KV images (n=37) were rigidly registered to synCT and CT DRRs using an in-house script. Planar and volumetric registration reproducibility was assessed and margin differences were characterized by the van Herk formalism. Results: Bounding box and landmark analysis of phantom synCT DRRs were within 1 mm of CT DRRs. Absolute planar registration shift differences ranged from 0.0 to 0.7 mm for phantom DRRs on all treatment platforms and from 0.0 to 0.4 mm for volumetric registrations. For patient planar registrations, the mean shift differences were 0.4 ± 0.5 mm (range, −0.6 to 1.6 mm), 0.0 ± 0.5 mm (range, −0.9 to 1.2 mm), and 0.1 ± 0.3 mm (range, −0.7 to 0.6 mm) for the superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) axes, respectively. The mean shift differences in volumetric registrations were 0.6 ± 0.4 mm (range, −0.2 to 1.6 mm), 0.2 ± 0.4 mm (range, −0.3 to 1.2 mm), and 0.2 ± 0

  17. Image Guided Radiation Therapy Using Synthetic Computed Tomography Images in Brain Cancer

    International Nuclear Information System (INIS)

    Price, Ryan G.; Kim, Joshua P.; Zheng, Weili; Chetty, Indrin J.; Glide-Hurst, Carri

    2016-01-01

    Purpose: The development of synthetic computed tomography (CT) (synCT) derived from magnetic resonance (MR) images supports MR-only treatment planning. We evaluated the accuracy of synCT and synCT-generated digitally reconstructed radiographs (DRRs) relative to CT and determined their performance for image guided radiation therapy (IGRT). Methods and Materials: Magnetic resonance simulation (MR-SIM) and CT simulation (CT-SIM) images were acquired of an anthropomorphic skull phantom and 12 patient brain cancer cases. SynCTs were generated using fluid attenuation inversion recovery, ultrashort echo time, and Dixon data sets through a voxel-based weighted summation of 5 tissue classifications. The DRRs were generated from the phantom synCT, and geometric fidelity was assessed relative to CT-generated DRRs through bounding box and landmark analysis. An offline retrospective analysis was conducted to register cone beam CTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system. Planar MV and KV images (n=37) were rigidly registered to synCT and CT DRRs using an in-house script. Planar and volumetric registration reproducibility was assessed and margin differences were characterized by the van Herk formalism. Results: Bounding box and landmark analysis of phantom synCT DRRs were within 1 mm of CT DRRs. Absolute planar registration shift differences ranged from 0.0 to 0.7 mm for phantom DRRs on all treatment platforms and from 0.0 to 0.4 mm for volumetric registrations. For patient planar registrations, the mean shift differences were 0.4 ± 0.5 mm (range, −0.6 to 1.6 mm), 0.0 ± 0.5 mm (range, −0.9 to 1.2 mm), and 0.1 ± 0.3 mm (range, −0.7 to 0.6 mm) for the superior-inferior (S-I), left-right (L-R), and anterior-posterior (A-P) axes, respectively. The mean shift differences in volumetric registrations were 0.6 ± 0.4 mm (range, −0.2 to 1.6 mm), 0.2 ± 0.4 mm (range, −0.3 to 1.2 mm), and 0.2 ± 0

  18. Assessing Functional Vision Using Microcomputers.

    Science.gov (United States)

    Spencer, Simon; Ross, Malcolm

    1989-01-01

    The paper describes a software system which uses microcomputers to aid in the assessment of functional vision in visually impaired students. The software also aims to be visually stimulating and to develop hand-eye coordination, visual memory, and cognitive abilities. (DB)

  19. Microcomputers in the Introductory Laboratory.

    Science.gov (United States)

    Bare, John K.

    1982-01-01

    A microcomputer was used successfully to replicate Sternberg's 1966 study of retrieval from short-term memory and Sperling's 1960 study on sensory or iconic memory. Computers with a capacity for measuring reaction time are useful in the laboratory for introductory psychology courses. (SR)

  20. Reinforcement and Drill by Microcomputer.

    Science.gov (United States)

    Balajthy, Ernest

    1984-01-01

    Points out why drill work has a role in the language arts classroom, explores the possibilities of using a microcomputer to give children drill work, and discusses the characteristics of a good software program, along with faults found in many software programs. (FL)

  1. Portable microcomputer controlled radiation counter

    International Nuclear Information System (INIS)

    Mason, E.W.; Weber, J.M.

    1984-01-01

    A portable microcomputer controlled counter for use as a radiation counter is described. The counter uses digital processing of input pulses from a radiation detector. The number of counts received by the microcomputer per unit time is used to calculate a value for display using a calibration factor obtained during physical calibration of the instrument with a radiation source or with a pulse generator. The keyboard is used to enter calibration points. The number of calibration points which may be entered depends on the degree of accuracy desired by the user. The high voltage generator which drives the detector is triggered by pulses from the microcomputer in relation to the count rate. After processing the count, the resulting count rate or dose rate is displayed on the liquid crystal display. The counter is autoranging in which the decimal point is shifted as necessary by the microcomputer. The units displayed are determined by the user by means of a multiposition switch. Low battery and an overrange condition are displayed. An interface is provided via a connector to allow parallel transmission of data to peripheral devices. Low battery power consumption is featured. The counter is capable of providing more accurate readings than currently available counters

  2. History Microcomputer Games: Update 2.

    Science.gov (United States)

    Sargent, James E.

    1985-01-01

    Provides full narrative reviews of B-1 Nuclear Bomber (Avalon, 1982); American History Adventure (Social Science Microcomputer Review Software, 1985); Government Simulations (Prentice-Hall, 1985); and The Great War, FDR and the New Deal, and Hitler's War, all from New Worlds Software, 1985. Lists additional information on five other history and…

  3. Microcomputers: An Interlibrary Loan Application.

    Science.gov (United States)

    Evans, Elizabeth A.

    1984-01-01

    Description of a microcomputer-based system for local processing of interlibrary loan (ILL) requests developed at Environmental Protection Agency library discusses database management systems, hardware, databases, and command files. Subsequent changes resulting from system's implementation at East Carolina University Health Sciences Library are…

  4. Percutaneous transthoracic computed tomography-guided AICD insertion in a patient with extracardiac Fontan conduit.

    LENUS (Irish Health Repository)

    Murphy, Darra T

    2011-02-01

    Percutaneous pulmonary venous atrial puncture was performed under computed tomography guidance to successfully place an automated implantable cardiac defibrillator into a 26-year-old patient with extracardiac Fontan conduit who had presented with two out-of-hospital cardiac arrests. The procedure avoided the need for lead placement at thoracotomy.

  5. Osteoid osteomas in common and in technically challenging locations treated with computed tomography-guided percutaneous radiofrequency ablation

    International Nuclear Information System (INIS)

    Mylona, Sophia; Patsoura, Sofia; Karapostolakis, Georgios; Galani, Panagiota; Pomoni, Anastasia; Thanos, Loukas

    2010-01-01

    To evaluate the efficacy of computed tomography (CT)-guided radiofrequency (RF) ablation for the treatment of osteoid osteomas in common and in technically challenging locations. Twenty-three patients with osteoid osteomas in common (nine cases) and technically challenging [14 cases: intra-articular (n = 7), spinal (n = 5), metaphyseal (n = 2)] positions were treated with CT-guided RF ablation. Therapy was performed under conscious sedation with a seven-array expandable RF electrode for 8-10 min at 80-110 C and power of 90-110 W. The patients went home under instruction. A brief pain inventory (BPI) score was calculated before and after (1 day, 4 weeks, 6 months and 1 year) treatment. All procedures were technically successful. Primary clinical success was 91.3% (21 of total 23 patients), despite the lesions' locations. BPI score was dramatically reduced after the procedure, and the decrease in BPI score was significant (P < 0.001, paired t-test; n - 1 = 22) for all periods during follow up. Two patients had persistent pain after 1 month and were treated successfully with a second procedure (secondary success rate 100%). No immediate or delayed complications were observed. CT-guided RF ablation is safe and highly effective for treatment of osteoid osteomas, even in technically difficult positions. (orig.)

  6. Computed tomography-guided interstitial high dose rate brachytherapy for centrally located liver tumours: a single institution study

    Energy Technology Data Exchange (ETDEWEB)

    Tselis, Nikolaos; Chatzikonstantinou, Georgios; Zamboglou, Nikolaos [Klinikum Offenbach, Department of Radiation Oncology, Offenbach am Main (Germany); Kolotas, Christos [Hirslanden Medical Center, Institute for Radiotherapy, Aarau (Switzerland); Milickovic, Natasa; Baltas, Dimos [Klinikum Offenbach, Department of Medical Physics and Engineering, Offenbach am Main (Germany)

    2013-08-15

    To evaluate the clinical outcome of computed tomography (CT)-guided interstitial (IRT) high-dose-rate (HDR) brachytherapy (BRT) in the treatment of unresectable primary and secondary liver malignancies. This report updates and expands our previously described experience with this treatment technique. Forty-one patients with 50 tumours adjacent to the liver hilum and bile duct bifurcation were treated in 59 interventions of CT-guided IRT HDR BRT. The tumours were larger than 4 cm with a median volume of 84 cm{sup 3} (38-1,348 cm{sup 3}). The IRT HDR BRT delivered a median total physical dose of 20.0 Gy (7.0-32.0 Gy) in twice daily fractions of median 7.0 Gy (4.0-10.0 Gy) in 19 patients and in once daily fractions of median 8.0 Gy (7.0-14.0 Gy) in 22 patients. With a median follow-up of 12.4 months, the local control for metastatic hepatic tumours was 89 %, 73 % and 63 % at 6, 12 and 18 months respectively. The local control for primary hepatic tumours was 90 %, 81 % and 50 % at 6, 12 and 18 months respectively. Severe side effects occurred in 5.0 % of interventions with no treatment-related deaths. CT-guided IRT HDR BRT is a promising procedure for the radiation treatment of centrally located liver malignancies. (orig.)

  7. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair.

    Science.gov (United States)

    Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong

    2014-09-10

    The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.

  8. Percutaneous computed tomography-guided core needle biopsy of soft tissue tumors: results and correlation with surgical specimen analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chojniak, Rubens; Grigio, Henrique Ramos; Bitencourt, Almir Galvao Vieira; Pinto, Paula Nicole Vieira; Tyng, Chiang J.; Cunha, Isabela Werneck da; Aguiar Junior, Samuel; Lopes, Ademar, E-mail: chojniak@uol.com.br [Hospital A.C. Camargo, Sao Paulo, SP (Brazil)

    2012-09-15

    Objective: To evaluate the efficacy of percutaneous computed tomography (CT)-guided core needle biopsy of soft tissue tumors in obtaining appropriate samples for histological analysis, and compare its diagnosis with the results of the surgical pathology as available. Materials and Methods: The authors reviewed medical records, imaging and histological reports of 262 patients with soft-tissue tumors submitted to CT-guided core needle biopsy in an oncologic reference center between 2003 and 2009. Results: Appropriate samples were obtained in 215 (82.1%) out of the 262 patients. The most prevalent tumors were sarcomas (38.6%), metastatic carcinomas (28.8%), benign mesenchymal tumors (20.5%) and lymphomas (9.3%). Histological grading was feasible in 92.8% of sarcoma patients, with the majority of them (77.9%) being classified as high grade tumors. Out of the total sample, 116 patients (44.3%) underwent surgical excision and diagnosis confirmation. Core biopsy demonstrated 94.6% accuracy in the identification of sarcomas, with 96.4% sensitivity and 89.5% specificity. A significant intermethod agreement about histological grading was observed between core biopsy and surgical resection (p < 0.001; kappa = 0.75). Conclusion: CT-guided core needle biopsy demonstrated a high diagnostic accuracy in the evaluation of soft tissue tumors as well as in the histological grading of sarcomas, allowing an appropriate therapeutic planning (author)

  9. Feasibility of optimizing the dose distribution in lung tumors using fluorine-18-fluorodeoxyglucose positron emission tomography and single photon emission computed tomography guided dose prescriptions

    International Nuclear Information System (INIS)

    Das, S.K.; Miften, M.M.; Zhou, S.; Bell, M.; Munley, M.T.; Whiddon, C.S.; Craciunescu, O.; Baydush, A.H.; Wong, T.; Rosenman, J.G.; Dewhirst, M.W.; Marks, L.B.

    2004-01-01

    The information provided by functional images may be used to guide radiotherapy planning by identifying regions that require higher radiation dose. In this work we investigate the dosimetric feasibility of delivering dose to lung tumors in proportion to the fluorine-18-fluorodeoxyglucose activity distribution from positron emission tomography (FDG-PET). The rationale for delivering dose in proportion to the tumor FDG-PET activity distribution is based on studies showing that FDG uptake is correlated to tumor cell proliferation rate, which is shown to imply that this dose delivery strategy is theoretically capable of providing the same duration of local control at all voxels in tumor. Target dose delivery was constrained by single photon emission computed tomography (SPECT) maps of normal lung perfusion, which restricted irradiation of highly perfused lung and imposed dose-function constraints. Dose-volume constraints were imposed on all other critical structures. All dose-volume/function constraints were considered to be soft, i.e., critical structure doses corresponding to volume/function constraint levels were minimized while satisfying the target prescription, thus permitting critical structure doses to minimally exceed dose constraint levels. An intensity modulation optimization methodology was developed to deliver this radiation, and applied to two lung cancer patients. Dosimetric feasibility was assessed by comparing spatially normalized dose-volume histograms from the nonuniform dose prescription (FDG-PET proportional) to those from a uniform dose prescription with equivalent tumor integral dose. In both patients, the optimization was capable of delivering the nonuniform target prescription with the same ease as the uniform target prescription, despite SPECT restrictions that effectively diverted dose from high to low perfused normal lung. In one patient, both prescriptions incurred similar critical structure dosages, below dose-volume/function limits

  10. In vitro ceramic scaffold mineralization: comparison between histological and micro-computed topographical analysis

    NARCIS (Netherlands)

    Thimm, B.W.; Wechsler, O.; Bohner, M.; Müller, R.; Hofmann, S.

    2013-01-01

    The porous structure of beta-tricalcium phosphate (b-TCP) scaffolds was assessed by conventional histomor- phometry and micro-computed tomography (micro-CT) to evaluate the substitutability of time-consuming histomor- phometry by rapid micro-CT. Extracellular matrix mineral- ization on human

  11. Reliability of implant placement with stereolithographic surgical guides generated from computed tomography: clinical data from 94 implants.

    Science.gov (United States)

    Ersoy, Ahmet Ersan; Turkyilmaz, Ilser; Ozan, Oguz; McGlumphy, Edwin A

    2008-08-01

    Dental implant placement requires precise planning with regard to anatomic limitations and restorative goals. The aim of this study was to evaluate the match between the positions and axes of the planned and placed implants using stereolithographic (SLA) surgical guides. Ninety-four implants were placed using SLA surgical guides generated from computed tomography (CT) between 2005 and 2006. Radiographic templates were used for all subjects during CT imaging. After obtaining three-dimensional CT images, each implant was virtually placed on the CT images. SLA surgical guides, fabricated using an SLA machine with a laser beam to polymerize the liquid photo-polymerized resin, were used during implant placement. A new CT scan was taken for each subject following implant placement. Special software was used to fuse the images of the planned and placed implants, and the locations and axes were compared. Compared to the planned implants, the placed implants showed angular deviation of 4.9 degrees+/-2.36 degrees, whereas the mean linear deviation was 1.22+/-0.85 mm at the implant neck and 1.51+/-1 mm at the implant apex. Compared to the implant planning, the angular deviation and linear deviation at the neck and apex of the placed maxillary implants were 5.31 degrees+/-0.36 degrees, 1.04+/-0.56 mm, and 1.57+/-0.97 mm, respectively, whereas corresponding figures for placed mandibular implants were 4.44 degrees+/-0.31 degrees, 1.42+/-1.05 mm, and 1.44+/-1.03 mm, respectively. SLA surgical guides using CT data may be reliable in implant placement and make flapless implant placement possible.

  12. Magnetic resonance tomography-guided interventional procedure for diagnosis of prostate cancer

    International Nuclear Information System (INIS)

    Schernthaner, M.; Helbich, T.H.; Fueger, B.J.; Memarsadeghi, M.; Stiglbauer, A.; Linhart, H.G.; Doan, A.; Pinker, K.; Brader, P.; Margreiter, M.

    2011-01-01

    In recent years magnetic resonance imaging (MRI) has been increasingly established in the diagnosis of prostate cancer in addition to transrectal ultrasonography (TRUS). The use of T2-weighted imaging allows an exact delineation of the zonal anatomy of the prostate and its surrounding structures. Other MR imaging tools, such as dynamic contrast-enhanced T1-weighted imaging or diffusion-weighted imaging allow an inference of the biochemical characteristics (multiparametric MRI). Prostate cancer, which could only be diagnosed using MR imaging or lesions suspected as being prostate cancer, which are localized in the anterior aspect of the prostate and were missed with repetitive TRUS biopsy, need to undergo MR guided biopsy. Recent studies have shown a good correlation between MR imaging and histopathology of specimens collected by MR-guided biopsy. Improved lesion targeting is therefore possible with MR-guided biopsy. So far data suggest that MR-guided biopsy of the prostate is a promising alternative diagnostic tool to TRUS-guided biopsy. (orig.) [de

  13. Magnetic resonance imaging-guided attenuation and scatter corrections in three-dimensional brain positron emission tomography

    CERN Document Server

    Zaidi, H; Slosman, D O

    2003-01-01

    Reliable attenuation correction represents an essential component of the long chain of modules required for the reconstruction of artifact-free, quantitative brain positron emission tomography (PET) images. In this work we demonstrate the proof of principle of segmented magnetic resonance imaging (MRI)-guided attenuation and scatter corrections in 3D brain PET. We have developed a method for attenuation correction based on registered T1-weighted MRI, eliminating the need of an additional transmission (TX) scan. The MR images were realigned to preliminary reconstructions of PET data using an automatic algorithm and then segmented by means of a fuzzy clustering technique which identifies tissues of significantly different density and composition. The voxels belonging to different regions were classified into air, skull, brain tissue and nasal sinuses. These voxels were then assigned theoretical tissue-dependent attenuation coefficients as reported in the ICRU 44 report followed by Gaussian smoothing and additio...

  14. Microscope-integrated intraoperative optical coherence tomography-guided small-incision lenticule extraction: New surgical technique.

    Science.gov (United States)

    Sharma, Namrata; Urkude, Jayanand; Chaniyara, Manthan; Titiyal, Jeewan S

    2017-10-01

    We describe the surgical technique of microscope-integrated intraoperative optical coherence tomography (OCT)-guided small-incision lenticule extraction. The technique enables manual tracking of surgical instruments and identification of the desired dissection plane. It also helps discern the relation between the dissector and the intrastromal lenticule. The dissection plane becomes hyperreflective on dissection, ensuring complete separation of the intrastromal lenticule from the overlying and underlying stroma. Inadvertent posterior plane entry, cap-lenticule adhesion, incomplete separation of the lenticule, creation of a false plane, and lenticule remnants may be recognized intraoperatively so corrective steps can be taken immediately. In cases with a hazy overlying cap, microscope-integrated intraoperative OCT enables localization and extraction of the lenticule. The technique is helpful for inexperienced surgeons, especially in cases with low amplitudes of refractive errors, ie, thin lenticules. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  15. 3D microcomputer tomograph for materials development and testing of components

    International Nuclear Information System (INIS)

    Riesemeier, H.; Goebbels, J.; Illerhaus, B.; Onel, Y.; Reimers, P.

    1993-01-01

    Examples prove the great capacity of 3D microcomputerized tomography in characterising new materials, particularly in the development stage. Cracks and delamination after deliberate damage are shown with good resolution. In showing complex structures, the possibility of picture reproduction of any sectional plane is of great use. 3D microcomputer tomography is therefore a futuristic process in materials research and for small of component series in production, eg: in the aircraft and space industry. (orig./DG) [de

  16. Computed tomography-guided bupivacaine and corticosteroid injection for the treatment of symptomatic calcification in the great toe tendon

    Directory of Open Access Journals (Sweden)

    Karatoprak O

    2014-04-01

    Full Text Available Omer Karatoprak,1 Sinan Karaca,2 Mehmet Nuri Erdem,3 Ozgur Karaman,2 Azmi Hamzaoglu41Department of Orthopedic Surgery, Kadikoy Florence Nightingale Hospital, Istanbul, Turkey; 2Department of Orthopedic Surgery, Fatih Sultan Mehmet Training and Research Hospital Atasehir, Istanbul, Turkey; 3Department of Orthopedics and Traumatology, Kolan International Hospital Sisli, Istanbul, Turkey; 4Department of Orthopedic Surgery, Istanbul Florence Nightingale Hospital, Istanbul TurkeyBackground: Calcification in the great toe tendon is a rare disorder that is characterized by the deposition of calcium on degenerative collagen fibrils.Case presentations: In this report, we present two cases of calcific tendonitis: one in the adductor hallucis and the other in the flexor hallucis longus tendon. We preferred computed tomography-guided steroid injection in our cases because of pain unresponsive to conservative treatment. Patients were free of symptoms at the follow-up visit, 4 weeks after injection.Conclusion: Calcification of the hallux tendons is a rare disorder. Treatment of tendonitis consists of nonsteroidal anti-inflammatory drugs. Local anesthetic and steroid injection may be considered in cases unresponsive to conservative treatment. Because of the anatomic location of tendons, injection could be difficult. Computed tomography guidance may improve the success rate of injections.Keywords: bupivacaine, calcification, great toe tendons, corticosteroid injection

  17. Computed tomography-guided percutaneous biopsy of pancreatic masses using pneumodissection; Biopsia percutanea de massas pancreaticas guiada por tomografia computadorizada com pneumodisseccao

    Energy Technology Data Exchange (ETDEWEB)

    Tyng, Chiang Jeng; Bitencourt, Almir Galvao Vieira; Almeida, Maria Fernanda Arruda; Barbosa, Paula Nicole Vieira; Martins, Eduardo Bruno Lobato; Junior, Joao Paulo Kawaoka Matushita; Chojniak, Rubens, E-mail: chiangjengtyng@gmail.com [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Dept. de Imagem; Coimbra, Felipe Jose Fernandez [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Dept. de Cirurgia Abdominal

    2013-05-15

    Objective: to describe the technique of computed tomography-guided percutaneous biopsy of pancreatic tumors with pneumodissection. Materials and methods: in the period from June 2011 to May 2012, seven computed tomography guided percutaneous biopsies of pancreatic tumors utilizing pneumodissection were performed in the authors' institution. All the procedures were performed with an automatic biopsy gun and coaxial system with Tru-core needles. The biopsy specimens were histologically assessed. Results: in all the cases the pancreatic mass could not be directly approached by computed tomography without passing through major organs and structures. The injection of air allowed the displacement of adjacent structures and creation of a safe coaxial needle pathway toward the lesion. Biopsy was successfully performed in all the cases, yielding appropriate specimens for pathological analysis. Conclusion: Pneumodissection is a safe, inexpensive and technically easy approach to perform percutaneous biopsy in selected cases where direct access to the pancreatic tumor is not feasible. (author)

  18. Magnetic resonance imaging-guided attenuation correction of positron emission tomography data in PET/MRI

    OpenAIRE

    Izquierdo-Garcia, David; Catana, Ciprian

    2016-01-01

    Attenuation correction (AC) is one of the most important challenges in the recently introduced combined positron emission tomography/magnetic resonance imaging (PET/MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients (LACs) of the tissues and other components located in the PET field of view (FoV). MR-AC methods can be divided into three main categories: segmentation-, atlas- and PET-based. This review aims to...

  19. [Value of the optical coherence tomography in the treatment guided of the stent failure. Case report].

    Science.gov (United States)

    Macías, Enrico; Tellez, Alejandro; Ochoa, Jorge; Ortíz, José E

    2014-01-01

    Since the advent of bare metal and drug-eluting stents, the surgical revascularization have declined considerably, however the thrombosis and in-stent restenosis are important complications of these devices. There are several factors that predispose to thrombosis and in-stent restenosis. Conventional angiography has serious limitations to determine the causes of stent failure. Optical coherence tomography is a very sensitive technique to determine the cause of thrombosis and in-stent restenosis. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  20. Validating atlas-guided DOT: a comparison of diffuse optical tomography informed by atlas and subject-specific anatomies.

    Science.gov (United States)

    Cooper, Robert J; Caffini, Matteo; Dubb, Jay; Fang, Qianqian; Custo, Anna; Tsuzuki, Daisuke; Fischl, Bruce; Wells, William; Dan, Ippeita; Boas, David A

    2012-09-01

    We describe the validation of an anatomical brain atlas approach to the analysis of diffuse optical tomography (DOT). Using MRI data from 32 subjects, we compare the diffuse optical images of simulated cortical activation reconstructed using a registered atlas with those obtained using a subject's true anatomy. The error in localization of the simulated cortical activations when using a registered atlas is due to a combination of imperfect registration, anatomical differences between atlas and subject anatomies and the localization error associated with diffuse optical image reconstruction. When using a subject-specific MRI, any localization error is due to diffuse optical image reconstruction only. In this study we determine that using a registered anatomical brain atlas results in an average localization error of approximately 18 mm in Euclidean space. The corresponding error when the subject's own MRI is employed is 9.1 mm. In general, the cost of using atlas-guided DOT in place of subject-specific MRI-guided DOT is a doubling of the localization error. Our results show that despite this increase in error, reasonable anatomical localization is achievable even in cases where the subject-specific anatomy is unavailable. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Computed tomography- and fluoroscopy-guided percutaneous screw fixation of low-grade isthmic spondylolisthesis in adults: a new technique

    Energy Technology Data Exchange (ETDEWEB)

    Amoretti, Nicolas; Huwart, Laurent; Browaeys, Patrick; Nouri, Yasir; Ibba, Caroline [Hopital Archet 2, Centre Hospitalo-Universitaire de Nice, Department of Radiology, Nice (France); Hauger, Olivier [Hopital Pellegrin, Centre Hospitalo-Universitaire de Bordeaux, Department of Radiology, Bordeaux (France); Marcy, Pierre-Yves [Antoine Lacassagne Cancer Research Institute, Department of Radiology, Nice (France); Boileau, Pascal [Hopital Archet 2, Centre Hospitalo-Universitaire de Nice, Department of Orthopedic Surgery, Nice (France)

    2012-12-15

    To evaluate the feasibility of computed tomography (CT)- and fluoroscopy-guided percutaneous screw fixation for the treatment of low-grade isthmic spondylolisthesis in adults. Ten consecutive adult patients (four men and six women; mean age: 57.1 [range, 44-78 years]) were prospectively treated by percutaneous screw fixation for low-grade (six grade 1 and four grade 2) isthmic spondylolisthesis of L5. For each patient, two 4.0-mm Asnis III cannulated screws were placed to fix the pars interarticularis defects. All procedures were performed under local anaesthesia by using CT and fluoroscopy guidance. Post-operative outcome was assessed using the visual analogue scale and Oswestry Disability Index (ODI) scores. The procedure time ranged from 45 to 60 min. The mean screw length was 27 mm (range, 24-32 mm). The VAS and ODI measurements {+-} SD decreased from 7.8 {+-} 0.9 preoperatively to 1.5 {+-} 1.1 at the last 2-year follow-up, and from 62.3 {+-} 17.2 to 15.1 {+-} 6.0, respectively (P < 0.001 in both cases). Neither slip progression nor screw failure was noted. This feasibility study showed that CT- and fluoroscopy-guided percutaneous screw fixation could be a rapid, safe and effective method of treating low-grade isthmic spondylolisthesis. (orig.)

  2. Chest Computed Tomography (CT) Immediately after CT-Guided Transthoracic Needle Aspiration Biopsy as a Predictor of Overt Pneumothorax

    Science.gov (United States)

    Noh, Tae June; Lee, Chang Hoon; Kang, Young Ae; Kwon, Sung-Youn; Yoon, Ho-Il; Kim, Tae Jung; Lee, Kyung Won; Lee, Jae Ho

    2009-01-01

    Background/Aims This study examined the correlation between pneumothorax detected by immediate post-transthoracic needle aspiration-biopsy (TTNB) chest computed tomography (CT) and overt pneumothorax detected by chest PA, and investigated factors that might influence the correlation. Methods Adult patients who had undergone CT-guided TTNB for lung lesions from May 2003 to June 2007 at Seoul National University Bundang Hospital were included. Immediate post-TTNB CT and chest PA follow-up at 4 and 16 hours after CT-guided TTNB were performed in 934 patients. Results Pneumothorax detected by immediate chest CT (CT-pneumothorax) was found in 237 (25%) and overt pneumothorax was detected by chest PA follow-up in 92 (38.8%) of the 237 patients. However, overt pneumothorax was found in 18 (2.6%) of the 697 patients without CT-pneumothorax. The width and depth of CT-pneumothorax were predictive risk factors for overt pneumothorax. Conclusions CT-pneumothorax is very sensitive for predicting overt pneumothorax, and the width and depth on CT-pneumothorax are reliable risk factors for predicting overt pneumothorax. PMID:19949733

  3. A Dual Reporter Iodinated Labeling Reagent for Cancer Positron Emission Tomography Imaging and Fluorescence-Guided Surgery

    Science.gov (United States)

    2018-01-01

    The combination of early diagnosis and complete surgical resection offers the greatest prospect of curative cancer treatment. An iodine-124/fluorescein-based dual-modality labeling reagent, 124I-Green, constitutes a generic tool for one-step installation of a positron emission tomography (PET) and a fluorescent reporter to any cancer-specific antibody. The resulting antibody conjugate would allow both cancer PET imaging and intraoperative fluorescence-guided surgery. 124I-Green was synthesized in excellent radiochemical yields of 92 ± 5% (n = 4) determined by HPLC with an improved one-pot three-component radioiodination reaction. The A5B7 carcinoembryonic antigen (CEA)-specific antibody was conjugated to 124I-Green. High tumor uptake of the dual-labeled A5B7 of 20.21 ± 2.70, 13.31 ± 0.73, and 10.64 ± 1.86%ID/g was observed in CEA-expressing SW1222 xenograft mouse model (n = 3) at 24, 48, and 72 h post intravenous injection, respectively. The xenografts were clearly visualized by both PET/CT and ex vivo fluorescence imaging. These encouraging results warrant the further translational development of 124I-Green for cancer PET imaging and fluorescence-guided surgery. PMID:29388770

  4. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection.

    Science.gov (United States)

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-10-28

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery.

  5. Computed tomography- and fluoroscopy-guided percutaneous screw fixation of low-grade isthmic spondylolisthesis in adults: a new technique

    International Nuclear Information System (INIS)

    Amoretti, Nicolas; Huwart, Laurent; Browaeys, Patrick; Nouri, Yasir; Ibba, Caroline; Hauger, Olivier; Marcy, Pierre-Yves; Boileau, Pascal

    2012-01-01

    To evaluate the feasibility of computed tomography (CT)- and fluoroscopy-guided percutaneous screw fixation for the treatment of low-grade isthmic spondylolisthesis in adults. Ten consecutive adult patients (four men and six women; mean age: 57.1 [range, 44-78 years]) were prospectively treated by percutaneous screw fixation for low-grade (six grade 1 and four grade 2) isthmic spondylolisthesis of L5. For each patient, two 4.0-mm Asnis III cannulated screws were placed to fix the pars interarticularis defects. All procedures were performed under local anaesthesia by using CT and fluoroscopy guidance. Post-operative outcome was assessed using the visual analogue scale and Oswestry Disability Index (ODI) scores. The procedure time ranged from 45 to 60 min. The mean screw length was 27 mm (range, 24-32 mm). The VAS and ODI measurements ± SD decreased from 7.8 ± 0.9 preoperatively to 1.5 ± 1.1 at the last 2-year follow-up, and from 62.3 ± 17.2 to 15.1 ± 6.0, respectively (P < 0.001 in both cases). Neither slip progression nor screw failure was noted. This feasibility study showed that CT- and fluoroscopy-guided percutaneous screw fixation could be a rapid, safe and effective method of treating low-grade isthmic spondylolisthesis. (orig.)

  6. Three-dimensional computed tomography-guided monotherapeutic pararectal brachytherapy of prostate cancer with seminal vesicle invasion

    International Nuclear Information System (INIS)

    Koutrouvelis, Panos; Lailas, Niko; Hendricks, Fred; Gil-Montero, Guillermo; Sehn, James; Katz, Stuart

    2001-01-01

    Purpose: To treat patients with prostate cancer and seminal vesicle invasion with monotherapeutic three dimensional computed tomography (3-DCT)-guided posterior pararectal brachytherapy. Methods and materials: Three hundred and sixty two patients with clinical stage T1 a,b or T2 a,b of prostate cancer were referred for 3-DCT-guided brachytherapy. Each underwent further staging with 3-D CT-guided pararectal biopsy of the seminal vesicles under local anesthesia during the pre-treatment CT-planning. Forty-three patients (12%) were upstaged to T3 cNoMo disease. In the set of 43 patients, Eight had Gleason's score≤6, 24 Gleason's score=7, and 11 patients ≥8. Initial PSA was 20 in 18 patients. Of the 43 patients, 37 patients were treated monotherapeutically with 3-D CT-guided brachytherapy. No patients received hormone therapy after the implant. The prescribed dosage to the seminal vesicles and prostate is 120 Gy with Pd-103 seeds and 144 Gy with 1-125 seeds. Results: The prescribed dosage was achieved in all 37 patient's throughout the seminal vesicles whose range of target radiation extended 5-10 mm outside the target in the adjacent fat as calculated with post-implant CT-dosimetry with Varian Brachy Vision or MMS software. Prostate Specific Antigen (PSA) outcome data were available in 34 patients treated with monotherapy and follow up ranged from 12-56 months (median, 24 months). Decreased PSA levels were stratified into six groups based on the presenting Gleason's score and initial PSA. In the first group (with Gleason's score≤6 and initial PSA 20 ng/ml), PSA decreased to less than 0.5 ng/ml in four out of eight patients (50%). All of the patients in the fourth group (with Gleason's score≥8 and initial PSA 20 ng/ml). There were no patients with Gleason's score of 1-6 and greater than 20 ng/ml initial PSA. Patients, irrespective of the Gleason's score and PSA, had an overall response of decreased PSA (less than 1 ng/ml) of 79%. Conclusion: 3-D CT-guided

  7. Nuclear spectrum analysis by using microcomputer

    International Nuclear Information System (INIS)

    Sanyal, M.K.; Mukhopadhyay, P.K.; Rao, A.D.; Pethe, V.A.

    1984-01-01

    A method is presented for analysis of nuclear spectra by using microcomputer. A nonlinear least square fit of a mathematical model with observed spectrum is performed with variable metric method. The linear search procedure of the variable metric method has been modified so that the algorithm needs less program space and computational time both of which are important for microcomputer implementation. This widely used peak analysis method can now be made available in microcomputer based multichannel analysers. (author)

  8. A microcomputer for a packet switched network

    International Nuclear Information System (INIS)

    Seller, P.; Bairstow, R.; Barlow, J.; Waters, M.

    1982-12-01

    The Bubble Chamber Research Group of the Rutherford and Appleton Laboratory has a large film analysis facility. This comprises 16 digitising tables used for the measurement of bubble chamber film. Each of these tables has an associated microcomputer. These microcomputers are linked by a star structured packet switched local area network (LAN) to a VAX 11/780. The LAN, and in particular a microcomputer of novel architecture designed to act as the central switch of the network, is described. (author)

  9. Handheld single photon emission computed tomography (handheld SPECT) navigated video-assisted thoracoscopic surgery of computer tomography-guided radioactively marked pulmonary lesions.

    Science.gov (United States)

    Müller, Joachim; Putora, Paul Martin; Schneider, Tino; Zeisel, Christoph; Brutsche, Martin; Baty, Florent; Markus, Alexander; Kick, Jochen

    2016-09-01

    Radioactive marking can be a valuable extension to minimally invasive surgery. The technique has been clinically applied in procedures involving sentinel lymph nodes, parathyroidectomy as well as interventions in thoracic surgery. Improvements in equipment and techniques allow one to improve the limits. Pulmonary nodules are frequently surgically removed for diagnostic or therapeutic reasons; here video-assisted thoracoscopic surgery (VATS) is the preferred technique. VATS might be impossible with nodules that are small or located deep in the lung. In this study, we examined the clinical application and safety of employing the newly developed handheld single photon emission tomography (handheld SPECT) device in combination with CT-guided radioactive marking of pulmonary nodules. In this pilot study, 10 subjects requiring surgical resection of a pulmonary nodule were included. The technique involved CT-guided marking of the target nodule with a 20-G needle, with subsequent injection of 25-30 MBq (effective: 7-14 MBq) Tc-99m MAA (Macro Albumin Aggregate). Quality control was made with conventional SPECT-CT to confirm the correct localization and exclude possible complications related to the puncture procedure. VATS was subsequently carried out using the handheld SPECT to localize the radioactivity intraoperatively and therefore the target nodule. A 3D virtual image was superimposed on the intraoperative visual image for surgical guidance. In 9 of the 10 subjects, the radioactive application was successfully placed directly in or in the immediate vicinity of the target nodule. The average size of the involved nodules was 9 mm (range 4-15). All successfully marked nodules were subsequently completely excised (R0) using VATS. The procedure was well tolerated. An asymptomatic clinically insignificant pneumothorax occurred in 5 subjects. Two subjects were found to have non-significant discrete haemorrhage in the infiltration canal of the needle. In a single subject, the

  10. Magnetic resonance imaging-guided attenuation correction of positron emission tomography data in PET/MRI

    Science.gov (United States)

    Izquierdo-Garcia, David; Catana, Ciprian

    2018-01-01

    Synopsis Attenuation correction (AC) is one of the most important challenges in the recently introduced combined positron emission tomography/magnetic resonance imaging (PET/MR) scanners. PET/MR AC (MR-AC) approaches aim to develop methods that allow accurate estimation of the linear attenuation coefficients (LACs) of the tissues and other components located in the PET field of view (FoV). MR-AC methods can be divided into three main categories: segmentation-, atlas- and PET-based. This review aims to provide a comprehensive list of the state of the art MR-AC approaches as well as their pros and cons. The main sources of artifacts such as body-truncation, metallic implants and hardware correction will be presented. Finally, this review will discuss the current status of MR-AC approaches for clinical applications. PMID:26952727

  11. Computed tomography-guided cryoablation of local recurrence after primary resection of pancreatic adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Claudio Pusceddu

    2015-06-01

    Full Text Available The optimal management of local recurrences after primary resection of pancreatic cancer still remains to be clarified. A 58-yearold woman developed an isolated recurrence of pancreatic cancer six year after distal pancreatectomy. Re-resection was attempted but the lesion was deemed unresectable at surgery. Then chemotherapy was administrated without obtaining a reduction of the tumor size nor an improvement of the patient’s symptoms. Thus the patient underwent percutaneous cryoablation under computed tomography (CT-guidance obtaining tumor necrosis and a significant improvement in the quality of life. A CT scan one month later showed a stable lesion with no contrast enhancement. While the use of percutaneous cryoblation has widened its applications in patients with unresectable pancreatic cancer, it has never been described for the treatment of local pancreatic cancer recurrence after primary resection. Percutaneous cryoablation deserves further studies in the multimodality treatment of local recurrence after primary pancreatic surgery.

  12. High frame-rate MR-guided near-infrared tomography system to monitor breast hemodynamics

    Science.gov (United States)

    Li, Zhiqiu; Jiang, Shudong; Krishnaswamy, Venkataramanan; Davis, Scott C.; Srinivasan, Subhadra; Paulsen, Keith D.; Pogue, Brian W.

    2011-02-01

    A near-infrared (NIR) tomography system with spectral-encoded sources at two wavelength bands was built to quantify the temporal contrast at 20 Hz bandwidth, while imaging breast tissue. The NIR system was integrated with a magnetic resonance (MR) machine through a custom breast coil interface, and both NIR data and MR images were acquired simultaneously. MR images provided breast tissue structural information for NIR reconstruction. Acquisition of finger pulse oximeter (PO) plethysmogram was synchronized with the NIR system in the experiment to offer a frequency-locked reference. The recovered absorption coefficients of the breast at two wavelengths showed identical temporal frequency as the PO output, proving this multi-modality design can recover the small pulsatile variation of absorption property in breast tissue related to the heartbeat. And it also showed the system's ability on novel contrast imaging of fast flow signals in deep tissue.

  13. Fatal paradoxical pulmonary air embolism complicating percutaneous computed tomography-guided needle biopsy of the lung

    International Nuclear Information System (INIS)

    Chakravarti, Rajesh; Singh, Virendra; Isaac, Rethish; John, Joseph

    2004-01-01

    A 63-year-old man with left upper zone haziness on chest X-ray and an infiltrative lesion with a pleural mass in the left upper lobe on CT scan was scheduled for CT-guided percutaneous trans-thoracic needle biopsy. During the procedure, the patient had massive haemoptysis and cardiorespiratory arrest and could not be revived. Post-mortem CT showed air in the right atrium, right ventricle, pulmonary artery and also in the left atrium and aorta. A discussion on paradoxical air embolism following percutaneous trans-thoracic needle biopsy is presented Copyright (2004) Blackwell Publishing Asia Pty Ltd

  14. Bladder cancer diagnosis with fluorescence-image-guided optical coherence tomography

    Science.gov (United States)

    Wang, Z. G.; Durand, D. B.; Adler, H.; Pan, Y. T.

    2006-02-01

    A fluorescence-image-guided OCT (FIG-OCT) system is described, and its ability to enhance the sensitivity and specificity is examined in an animal bladder cancer model. Total 97 specimens were examined by fluorescence imaging, OCT and histological microscopy. The sensitivity and specificity of FIG-OCT is 100% and 93% respectively, compared to 79% and 53% for fluorescence imaging, while the OCT examination time has been dramatically decreased by 3~4 times. In combination of endoscopic OCT, FIG-OCT is a promising technique for effective early bladder cancer diagnosis.

  15. Optical coherence tomography-guided laser microsurgery for blood coagulation with continuous-wave laser diode.

    Science.gov (United States)

    Chang, Feng-Yu; Tsai, Meng-Tsan; Wang, Zu-Yi; Chi, Chun-Kai; Lee, Cheng-Kuang; Yang, Chih-Hsun; Chan, Ming-Che; Lee, Ya-Ju

    2015-11-16

    Blood coagulation is the clotting and subsequent dissolution of the clot following repair to the damaged tissue. However, inducing blood coagulation is difficult for some patients with homeostasis dysfunction or during surgery. In this study, we proposed a method to develop an integrated system that combines optical coherence tomography (OCT) and laser microsurgery for blood coagulation. Also, an algorithm for positioning of the treatment location from OCT images was developed. With OCT scanning, 2D/3D OCT images and angiography of tissue can be obtained simultaneously, enabling to noninvasively reconstruct the morphological and microvascular structures for real-time monitoring of changes in biological tissues during laser microsurgery. Instead of high-cost pulsed lasers, continuous-wave laser diodes (CW-LDs) with the central wavelengths of 450 nm and 532 nm are used for blood coagulation, corresponding to higher absorption coefficients of oxyhemoglobin and deoxyhemoglobin. Experimental results showed that the location of laser exposure can be accurately controlled with the proposed approach of imaging-based feedback positioning. Moreover, blood coagulation can be efficiently induced by CW-LDs and the coagulation process can be monitored in real-time with OCT. This technology enables to potentially provide accurate positioning for laser microsurgery and control the laser exposure to avoid extra damage by real-time OCT imaging.

  16. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method

    Science.gov (United States)

    Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing

    2017-01-01

    Abstract. Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach’s feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method. PMID:28464120

  17. Probabilistic safety analysis using microcomputer

    International Nuclear Information System (INIS)

    Futuro Filho, F.L.F.; Mendes, J.E.S.; Santos, M.J.P. dos

    1990-01-01

    The main steps of execution of a Probabilistic Safety Assessment (PSA) are presented in this report, as the study of the system description, construction of event trees and fault trees, and the calculation of overall unavailability of the systems. It is also presented the use of microcomputer in performing some tasks, highlightning the main characteristics of a software to perform adequately the job. A sample case of fault tree construction and calculation is presented, using the PSAPACK software, distributed by the IAEA (International Atomic Energy Agency) for training purpose. (author)

  18. Diagnostic yield and complications of transthoracic computed tomography-guided biopsies

    DEFF Research Database (Denmark)

    Vagn-Hansen, Chris Aksel; Pedersen, Malene Roland Vils; Rafaelsen, Søren Rafael

    2016-01-01

    , the tissue material was found to be sufficient. In 32% of the biopsies, a complication arose, mostly pneumothorax (30%), but chest drainage was needed in only 15% of the 520 cases. Patients with more than ten cigarette pack-years had a complication risk that was twice as high at that of patients with fewer...... packyears. We found that the risk of pneumothorax increased the further the lesion was from the skin surface, the smaller the lesions were and when the patient was biopsied in a lateral position. We also found a higher risk of complications in females than in males. CONCLUSIONS: CT-guided biopsy...... is an excellent tool for analysing pulmonary lesions. The present study clearly shows that the risk of developing a pneumothorax is significantly increased among smokers and former smokers with more than ten pack-years....

  19. Positron emission tomography radiopharmaceutical studies in humans: a guide to regulations for academic researchers.

    Science.gov (United States)

    Fleming, Ian N; Whelan, Mark; Baxendale, Roy; Gilbert, Fiona J; Matthews, Paul P; Aigbirhio, Franklin I

    2012-09-01

    All clinical trials are covered by a series of regulations that seek to protect the rights, safety and welfare of participating patients. The regulations covering PET studies are especially complex to interpret because of the specialized nature of the language of the regulations and of PET studies themselves. It is often unclear whether the application demands that the radiotracer used be treated as an investigational medical product. This paper is intended to act as a general guide for UK researchers planning to perform PET research in humans by clarifying key aspects of the regulations that may affect the study and/or the radiopharmaceutical manufacturing process, providing links to useful information sources, introducing the concept of a UK Medicines and Healthcare products Regulatory Agency (MHRA) PET expert panel and outlining the value of sharing investigational medical product dossiers.

  20. Microcomputer Database Management Systems for Bibliographic Data.

    Science.gov (United States)

    Pollard, Richard

    1986-01-01

    Discusses criteria for evaluating microcomputer database management systems (DBMS) used for storage and retrieval of bibliographic data. Two popular types of microcomputer DBMS--file management systems and relational database management systems--are evaluated with respect to these criteria. (Author/MBR)

  1. Automating Relational Database Design for Microcomputer Users.

    Science.gov (United States)

    Pu, Hao-Che

    1991-01-01

    Discusses issues involved in automating the relational database design process for microcomputer users and presents a prototype of a microcomputer-based system (RA, Relation Assistant) that is based on expert systems technology and helps avoid database maintenance problems. Relational database design is explained and the importance of easy input…

  2. Microcomputer-based stepping-motor controller

    International Nuclear Information System (INIS)

    Johnson, K.

    1983-04-01

    A microcomputer-controlled stepping motor is described. A Motorola MC68701 microcomputer unit is interfaced to a Cybernetic CY500 stored-program controller that outputs through Motorola input/output isolation modules to the stepping motor. A complex multifunction controller with enhanced capabilities is thus available with a minimum number of parts

  3. Integrating Mainframe Data Bases on a Microcomputer

    OpenAIRE

    Marciniak, Thomas A.

    1985-01-01

    Microcomputers support user-friendly software for interrogating their resident data bases. Many medical data bases currently consist of files on less accessible mainframe computers with more limited inquiry capabilities. We discuss the transferring and integrating of mainframe data into microcomputer data base systems in one medical environment.

  4. Microcomputers in Education. Report No. 4798.

    Science.gov (United States)

    Feurzeig, W.; And Others

    A brief review of the history of computer-assisted instruction and discussion of the current and potential roles of microcomputers in education introduce this review of the capabilities of state-of-the-art microcomputers and currently available software for them, and some speculations about future trends and developments. A survey of current…

  5. Five Basic Microcomputer Applications for Marketing Educators.

    Science.gov (United States)

    James, Richard F.

    The microcomputer has five basic applications in marketing education--a remedial/tutorial application, instructional purposes, simulation, the project data base, and classroom management. Examples of word processing applications of a microcomputer are updating annual training plans and producing letters to advisory committee members, parents, and…

  6. Computed-tomography-guided high-dose-rate brachytherapy (CT-HDRBT) ablation of metastases adjacent to the liver hilum

    Energy Technology Data Exchange (ETDEWEB)

    Collettini, Federico, E-mail: federico.collettini@charite.de [Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin (Germany); Department of Radiation Oncology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Singh, Anju [Department of Medical Oncology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Schnapauff, Dirk [Department of Radiology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Department of Radiation Oncology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); Powerski, Maciej Janusz [Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin (Germany); Department of Radiation Oncology, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin (Germany); and others

    2013-10-01

    Purpose: To evaluate technical feasibility and clinical outcome of computed tomography-guided high-dose-rate-brachytherapy (CT-HDRBT) ablation of metastases adjacent to the liver hilum. Materials and methods: Between November 2007 and May 2012, 32 consecutive patients with 34 metastases adjacent to the liver hilum (common bile duct or hepatic bifurcation ≤5 mm distance) were treated with CT-HDRBT. Treatment was performed by CT-guided applicator placement and high-dose-rate brachytherapy with an iridium-192 source. MRI follow-up was performed 6 weeks and every 3 months post intervention. The primary endpoint was local tumor control (LTC); secondary endpoints included time to progression (TTP) and overall survival (OS). Results: Patients were available for MRI evaluation for a mean follow-up time of 18.75 months (range: 3–56 months). Mean tumor diameter was 4.3 cm (range: 1.3–10.7 cm). One major complication was observed. Four (11.8%) local recurrences were observed after a local tumor control of 5, 8, 9 and 10 months, respectively. Twenty-two patients (68.75%) experienced a systemic tumor progression during the follow up period. Mean TTP was 12.9 months (range: 2–56 months). Nine patients died during the follow-up period. Median OS was 20.24 months. Conclusion: Minimally invasive CT-HDRBT is a safe and effective option also for unresectable liver metastases adjacent to the liver hilum that would have been untreatable by thermal ablation.

  7. Individualized treatment of craniovertebral junction malformation guided by intraoperative computed tomography.

    Science.gov (United States)

    Li, Lianfeng; Wang, Peng; Chen, LiFeng; Ma, Xiaodong; Bu, Bo; Yu, Xinguang

    2012-04-01

    This study was designed to report our preliminary experience of intraoperative computed tomography (iCT) using a mobile scanner with integrated neuronavigation system (NNS). The objective of this study was to assess the feasibility and potential utility of iCT with integrated NNS in individualized treatment of craniovertebral junction malformation (CVJM). The surgical management of congenital craniovertebral anomalies is complex due to the relative difficulty in accessing the region, critical relationships of neurovascular structures, and the intricate biomechanical issues involved. We reported our first 19 complex CVJM cases including 11 male and 8 female patients from January, 2009 to June, 2009 (mean age, 33.9 y; age range, 13 to 58 y). A sliding gantry 40-slice CT scanner was installed in a preexisting operating room. Image data was transferred directly from the scanner into the NNS using an automated registration system. We applied this technology to transoral odontoidectomy in 17 patients. Moreover, with the extra help of iCT integrated with NNS, odontoidectomy through posterior midline approach, and transoral atlantal lateral mass resection were, for the first time, performed for treatment of complex CVJM. NNS was found to correlate well with the intraoperative findings, and the recalibration was uneven in all cases with an accuracy of 1.6 mm (1.6: 1.2 to 2.0). All patients were clinically evaluated by Nurick grade criteria, and neurological deficits were monitored after 3 months of surgery. Fifteen patients (79%) were improved by at least 1 Nurick grade, whereas the grade did not change in 4 patients (21%). iCT scanning with integrated NNS was both feasible and beneficial for the surgical management of complex CVJM. In this unusual patient population, the technique seemed to be valuable in negotiating complex anatomy and achieving a safe and predictable decompression.

  8. Prosthesis-guided implant restoration of an auricular defect using computed tomography and 3-dimensional photographic imaging technologies: a clinical report.

    Science.gov (United States)

    Wang, Shuming; Leng, Xu; Zheng, Yaqi; Zhang, Dapeng; Wu, Guofeng

    2015-02-01

    The concept of prosthesis-guided implantation has been widely accepted for intraoral implant placement, although clinicians do not fully appreciate its use for facial defect restoration. In this clinical report, multiple digital technologies were used to restore a facial defect with prosthesis-guided implantation. A simulation surgery was performed to remove the residual auricular tissue and to ensure the correct position of the mirrored contralateral ear model. The combined application of computed tomography and 3-dimensional photography preserved the position of the mirrored model and facilitated the definitive implant-retained auricular prosthesis. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery.

    Science.gov (United States)

    Carrasco-Zevallos, Oscar M; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Seider, Michael I; Izatt, Joseph A; Toth, Cynthia A

    2016-07-01

    Magnification of the surgical field using the operating microscope facilitated profound innovations in retinal surgery in the 1970s, such as pars plana vitrectomy. Although surgical instrumentation and illumination techniques are continually developing, the operating microscope for vitreoretinal procedures has remained essentially unchanged and currently limits the surgeon's depth perception and assessment of subtle microanatomy. Optical coherence tomography (OCT) has revolutionized clinical management of retinal pathology, and its introduction into the operating suite may have a similar impact on surgical visualization and treatment. In this article, we review the evolution of OCT for retinal surgery, from perioperative analysis to live volumetric (four-dimensional, 4D) image-guided surgery. We begin by briefly addressing the benefits and limitations of the operating microscope, the progression of OCT technology, and OCT applications in clinical/perioperative retinal imaging. Next, we review intraoperative OCT (iOCT) applications using handheld probes during surgical pauses, two-dimensional (2D) microscope-integrated OCT (MIOCT) of live surgery, and volumetric MIOCT of live surgery. The iOCT discussion focuses on technological advancements, applications during human retinal surgery, translational difficulties and limitations, and future directions.

  10. Image Guided Virtual Autopsy: An Adjunct with Radiographic and Computed Tomography Modalities - An Important Tool in Forensic Identification

    Directory of Open Access Journals (Sweden)

    Shalu Rai

    2017-01-01

    Full Text Available The forensic examination of dead bodies is very helpful in order to identify the person, cause of death, gender, and solving the mysterious cases. It includes a number of techniques, out of which autopsy is the primary investigation that is performed in every medicolegal case. Because of mutilation technologies, traditional autopsy technique is most disturbing in terms of emotions and rituals of relatives. The use of radiology in forensic science comprises performance, interpretation, and reporting of radiographs that is helpful in detecting those changes that are not clinically visible. Forensic radiology plays an important role for identification of humans in mass disasters, criminal investigations, and evaluation of cause of death. The introduction of radiological modalities in autopsy techniques is a complementary tool for forensic identification and is known as virtual autopsy. The advance imaging techniques such as computed tomography (CT and magnetic resonance imaging (MRI is used in virtual autopsy in order to visualize and reconstruct the internal organs to know the site, type, and depth of injury. This review elaborates the role of maxillofacial imaging in image-guided virtual autopsy.

  11. Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography.

    Science.gov (United States)

    Tavakoli, Behnoosh; Zhu, Quing

    2013-01-01

    Ultrasound-guided diffuse optical tomography (DOT) is a promising method for characterizing malignant and benign lesions in the female breast. We introduce a new two-step algorithm for DOT inversion in which the optical parameters are estimated with the global optimization method, genetic algorithm. The estimation result is applied as an initial guess to the conjugate gradient (CG) optimization method to obtain the absorption and scattering distributions simultaneously. Simulations and phantom experiments have shown that the maximum absorption and reduced scattering coefficients are reconstructed with less than 10% and 25% errors, respectively. This is in contrast with the CG method alone, which generates about 20% error for the absorption coefficient and does not accurately recover the scattering distribution. A new measure of scattering contrast has been introduced to characterize benign and malignant breast lesions. The results of 16 clinical cases reconstructed with the two-step method demonstrates that, on average, the absorption coefficient and scattering contrast of malignant lesions are about 1.8 and 3.32 times higher than the benign cases, respectively.

  12. The use of computerised tomography guided percutaneous fine needle aspiration in the evaluation of solitary pulmonary nodules.

    LENUS (Irish Health Repository)

    Khan, K A

    2012-02-01

    The evaluation of a solitary pulmonary nodule (SPN) has changed over the years with increased access to percutaneous computerised tomography (CT) guided fine needle aspiration (FNA), where bronchoscopy is unhelpful. The aim of our study was to evaluate the sample adequacy, diagnostic and complication rate of CT-FNA of a SPN at our academic teaching hospital over an 18 month period. CT-FNA was performed by a radiologist, with a cytopathologist in attendance to confirm the adequacy of the sample obtained. The size of the nodule, sample material and adequacy, diagnosis and complications were recorded. A total of 101 patients were included, 54 male and the mean age was 68 +\\/- 11 years. The mean size of the SPN was 2.3 cm (range 1-11 cm). 56 (56%) patients had a right SPN, 45 (45%) had a left SPN. CT-FNA was diagnostic in 80 (80%) patients and non-diagnostic in 21 (20%) patients. The sample was insufficient for immunocytochemistry, although the morphological appearance was diagnostic in 20 (25%) of the 80 patients. Pneumothorax occurred in 26\\/101 (26%) patients post CT-FNA, of these 7 (27%) required chest drain insertion, while 19 (73%) were managed conservatively. CT FNA is a useful tool for the diagnosis of a SPN, with our diagnostic accuracy comparable to that reported in the literature. However, CT-FNA may not provide adequate sample volume to perform ancillary testing and has a moderate complication rate.

  13. Microcomputer generated pipe support calculations

    International Nuclear Information System (INIS)

    Hankinson, R.F.; Czarnowski, P.; Roemer, R.E.

    1991-01-01

    The cost and complexity of pipe support design has been a continuing challenge to the construction and modification of commercial nuclear facilities. Typically, pipe support design or qualification projects have required large numbers of engineers centrally located with access to mainframe computer facilities. Much engineering time has been spent repetitively performing a sequence of tasks to address complex design criteria and consolidating the results of calculations into documentation packages in accordance with strict quality requirements. The continuing challenges of cost and quality, the need for support engineering services at operating plant sites, and the substantial recent advances in microcomputer systems suggested that a stand-alone microcomputer pipe support calculation generator was feasible and had become a necessity for providing cost-effective and high quality pipe support engineering services to the industry. This paper outlines the preparation for, and the development of, an integrated pipe support design/evaluation software system which maintains all computer programs in the same environment, minimizes manual performance of standard or repetitive tasks, and generates a high quality calculation which is consistent and easily followed

  14. Computed tomography-guided needle aspiration and biopsy of pulmonary lesions - A single-center experience in 1000 patients

    Energy Technology Data Exchange (ETDEWEB)

    Poulou, Loukia S.; Tsagouli, Paraskevi; Thanos, Loukas [Dept. of Medical Imaging and Interventional Radiology, General Hospital of Chest Diseases ' Sotiria' , Athens (Greece)], e-mail: ploukia@hotmail.com; Ziakas, Panayiotis D. [Program of Outcomes Research, Div. of Infectious Diseases, Warren Alpert Medical School, Brown Univ., RI, and Div. of Infectious Diseases, Rhode Island Hospital, Rhode Island (United States); Politi, Dimitra [Dept. of Cythopathology, General Hospital of Chest Diseases ' Sotiria' Athens (Greece); Trigidou, Rodoula [Dept. of Pathology, General Hospital of Chest Diseases ' Sotiria' Athens (Greece)

    2013-07-15

    Background: Computed tomography (CT)-guided fine needle aspiration (FNA) and biopsies are well-established, minimally invasive diagnostic tools for pulmonary lesions. Purpose: To analyze retrospectively the results of 1000 consecutive lung CT-guided FNA and/or core needle biopsies (CNB), the main outcome measures being diagnostic yield, and complication rates. Material and Methods: Patients considered eligible were those referred to our department for lung lesions. The choice of FNA, CNB, or both was based upon the radiologist's judgment. Diagnostic yield was defined as the probability of having a definite result by cytology/histology. Results: The study included 733 male patients and 267 female patients, with a mean (SD) age of 66.4 (11.4) years. The mean (SD) lesion size was 3.7 (2.4) cm in maximal diameter. Six hundred and forty-one (64%) patients underwent an FNA procedure, 245 (25%) a CNB, and 114 (11%) had been subjected to both. The diagnostic yield was 960/994 (96.6%); this decreased significantly with the use of CNB only (odds ratio [OR] 0.32; 95% CI 0.12 - 0.88; P = 0.03), while it increased with lesion size (OR 1.35; 95% CI 1.03 - 1.79; P = 0.03 per cm increase). In 506 patients (52.7%), a malignant process was diagnosed by cytopathology/histology. The complication rate reached 97/1000 (9.7%); complications included: hemorrhage, 62 (6.2%); pneumothorax, 28 (2.8%); hemorrhage and pneumothorax, 5 (0.5%); and hemoptysis, 2 (0.2%). It was not significantly affected by the type of procedure or localization of the lesion. The overall risk for complications was three times higher for lesions <4 cm (OR 3.26; 95% CI 1.96 - 5.42; P < 0.001). Conclusion: CT-guided lung biopsy has a high diagnostic yield using FNA, CNB, or both. The CNB procedure alone will not suffice. Complication rates were acceptable and correlated inversely with lesion size, not localization or type of procedure.

  15. The Use of Cone Beam Computed Tomography for Image Guided Gamma Knife Stereotactic Radiosurgery: Initial Clinical Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Winnie; Cho, Young-Bin [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Ansell, Steve [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Laperriere, Normand; Ménard, Cynthia; Millar, Barbara-Ann [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Zadeh, Gelareh [Division of Neurosurgery, University of Toronto University Health Network, Toronto Western Hospital, Toronto, Ontario (Canada); Macfeeters-Hamilton Centre for Neuro-oncology, Ontario Cancer Institute, Toronto, Ontario (Canada); Kongkham, Paul; Bernstein, Mark [Division of Neurosurgery, University of Toronto University Health Network, Toronto Western Hospital, Toronto, Ontario (Canada); Jaffray, David A. [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chung, Caroline, E-mail: caroline.chung.md@gmail.com [Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada)

    2016-09-01

    Purpose: The present study used cone beam computed tomography (CBCT) to measure the inter- and intrafraction uncertainties for intracranial stereotactic radiosurgery (SRS) using the Leksell Gamma Knife (GK). Methods and Materials: Using a novel CBCT system adapted to the GK radiosurgery treatment unit, CBCT images were acquired immediately before and after treatment for each treatment session within the context of a research ethics board–approved prospective clinical trial. Patients were immobilized in the Leksell coordinate frame (LCF) for both volumetric CBCT imaging and GK-SRS delivery. The relative displacement of the patient's skull to the stereotactic reference (interfraction motion) was measured for each CBCT scan. Differences between the pre- and post-treatment CBCT scans were used to determine the intrafraction motion. Results: We analyzed 20 pre- and 17 post-treatment CBCT scans in 20 LCF patients treated with SRS. The mean translational pretreatment setup error ± standard deviation in the left-right, anteroposterior, and craniocaudal directions was −0.19 ± 0.32, 0.06 ± 0.27, and −0.23 ± 0.2 mm, with a maximum of −0.74, −0.53, and −0.68 mm, respectively. After an average time between the pre- and post-treatment CBCT scans of 82 minutes (range 27-170), the mean intrafraction error ± standard deviation for the LCF was −0.03 ± 0.05, −0.03 ± 0.18, and −0.03 ± 0.12 mm in the left-right, anteroposterior, and craniocaudual direction, respectively. Conclusions: Using CBCT on a prototype image guided GK Perfexion unit, we were able to measure the inter- and intrafraction positional changes for GK-SRS using the invasive frame. In the era of image guided radiation therapy, the use of CBCT image guidance for both frame- and non–frame-based immobilization systems could serve as a useful quality assurance tool. Our preliminary measurements can guide the application of achievable thresholds for inter- and intrafraction

  16. The Use of Cone Beam Computed Tomography for Image Guided Gamma Knife Stereotactic Radiosurgery: Initial Clinical Evaluation

    International Nuclear Information System (INIS)

    Li, Winnie; Cho, Young-Bin; Ansell, Steve; Laperriere, Normand; Ménard, Cynthia; Millar, Barbara-Ann; Zadeh, Gelareh; Kongkham, Paul; Bernstein, Mark; Jaffray, David A.; Chung, Caroline

    2016-01-01

    Purpose: The present study used cone beam computed tomography (CBCT) to measure the inter- and intrafraction uncertainties for intracranial stereotactic radiosurgery (SRS) using the Leksell Gamma Knife (GK). Methods and Materials: Using a novel CBCT system adapted to the GK radiosurgery treatment unit, CBCT images were acquired immediately before and after treatment for each treatment session within the context of a research ethics board–approved prospective clinical trial. Patients were immobilized in the Leksell coordinate frame (LCF) for both volumetric CBCT imaging and GK-SRS delivery. The relative displacement of the patient's skull to the stereotactic reference (interfraction motion) was measured for each CBCT scan. Differences between the pre- and post-treatment CBCT scans were used to determine the intrafraction motion. Results: We analyzed 20 pre- and 17 post-treatment CBCT scans in 20 LCF patients treated with SRS. The mean translational pretreatment setup error ± standard deviation in the left-right, anteroposterior, and craniocaudal directions was −0.19 ± 0.32, 0.06 ± 0.27, and −0.23 ± 0.2 mm, with a maximum of −0.74, −0.53, and −0.68 mm, respectively. After an average time between the pre- and post-treatment CBCT scans of 82 minutes (range 27-170), the mean intrafraction error ± standard deviation for the LCF was −0.03 ± 0.05, −0.03 ± 0.18, and −0.03 ± 0.12 mm in the left-right, anteroposterior, and craniocaudual direction, respectively. Conclusions: Using CBCT on a prototype image guided GK Perfexion unit, we were able to measure the inter- and intrafraction positional changes for GK-SRS using the invasive frame. In the era of image guided radiation therapy, the use of CBCT image guidance for both frame- and non–frame-based immobilization systems could serve as a useful quality assurance tool. Our preliminary measurements can guide the application of achievable thresholds for inter- and intrafraction

  17. WE-FG-BRA-06: Systematic Study of Target Localization for Bioluminescence Tomography Guided Radiation Therapy for Preclinical Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B; Reyes, J; Wong, J; Wang, K [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD (United States); Yu, J [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD (United States); School of Physics and Information Technology, Shaanxi Normal University, Shaanxi (China); Iordachita, I [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD (United States); Liu, Z [Department of Oncology, Department of Surgery, Johns Hopkins University, Baltimore, MD (United States); Department of GI Oncology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing (China); Brock, M [Department of Oncology, Department of Surgery, Johns Hopkins University, Baltimore, MD (United States); Patterson, M [McMaster University, Hamilton, Ontario, CA (Canada)

    2016-06-15

    Purpose: To overcome the limitation of CT/CBCT in guiding radiation for soft tissue targets, we developed a bioluminescence tomography(BLT) system for preclinical radiation research. We systematically assessed the system performance in target localization and the ability of resolving two sources in simulations, phantom and in vivo environments. Methods: Multispectral images acquired in single projection were used for the BLT reconstruction. Simulation studies were conducted for single spherical source radius from 0.5 to 3 mm at depth of 3 to 12 mm. The same configuration was also applied for the double sources simulation with source separations varying from 3 to 9 mm. Experiments were performed in a standalone BLT/CBCT system. Two sources with 3 and 4.7 mm separations placed inside a tissue-mimicking phantom were chosen as the test cases. Live mice implanted with single source at 6 and 9 mm depth, 2 sources with 3 and 5 mm separation at depth of 5 mm or 3 sources in the abdomen were also used to illustrate the in vivo localization capability of the BLT system. Results: Simulation and phantom results illustrate that our BLT can provide 3D source localization with approximately 1 mm accuracy. The in vivo results are encouraging that 1 and 1.7 mm accuracy can be attained for the single source case at 6 and 9 mm depth, respectively. For the 2 sources study, both sources can be distinguished at 3 and 5 mm separations at approximately 1 mm accuracy using 3D BLT but not 2D bioluminescence image. Conclusion: Our BLT/CBCT system can be potentially applied to localize and resolve targets at a wide range of target sizes, depths and separations. The information provided in this study can be instructive to devise margins for BLT-guided irradiation and suggests that the BLT could guide radiation for multiple targets, such as metastasis. Drs. John W. Wong and Iulian I. Iordachita receive royalty payment from a licensing agreement between Xstrahl Ltd and Johns Hopkins University.

  18. Optical coherence tomography image-guided smart laser knife for surgery.

    Science.gov (United States)

    Katta, Nitesh; McElroy, Austin B; Estrada, Arnold D; Milner, Thomas E

    2018-03-01

    Surgical oncology can benefit from specialized tools that enhance imaging and enable precise cutting and removal of tissue without damage to adjacent structures. The combination of high-resolution, fast optical coherence tomography (OCT) co-aligned with a nanosecond pulsed thulium (Tm) laser offers advantages over conventional surgical laser systems. Tm lasers provide superior beam quality, high volumetric tissue removal rates with minimal residual thermal footprint in tissue, enabling a reduction in unwanted damage to delicate adjacent sub-surface structures such as nerves or micro-vessels. We investigated such a combined Tm/OCT system with co-aligned imaging and cutting beams-a configuration we call a "smart laser knife." A blow-off model that considers absorption coefficients and beam delivery systems was utilized to predict Tm cut depth, tissue removal rate and spatial distribution of residual thermal injury. Experiments were performed to verify the volumetric removal rate predicted by the model as a function of average power. A bench-top, combined Tm/OCT system was constructed using a 15W 1940 nm nanosecond pulsed Tm fiber laser (500 μJ pulse energy, 100 ns pulse duration, 30 kHz repetition rate) for removing tissue and a swept source laser (1310 ± 70 nm, 100 kHz sweep rate) for OCT imaging. Tissue phantoms were used to demonstrate precise surgery with blood vessel avoidance. Depth imaging informed cutting/removal of targeted tissue structures by the Tm laser was performed. Laser cutting was accomplished around and above phantom blood vessels while avoiding damage to vessel walls. A tissue removal rate of 5.5 mm 3 /sec was achieved experimentally, in comparison to the model prediction of approximately 6 mm 3 /sec. We describe a system that combines OCT and laser tissue modification with a Tm laser. Simulation results of the tissue removal rate using a simple model, as a function of average power, are in good agreement with experimental

  19. Macular laser photocoagulation guided by spectral-domain optical coherence tomography versus fluorescein angiography for diabetic macular edema

    Directory of Open Access Journals (Sweden)

    Gallego-Pinazo R

    2011-05-01

    Full Text Available Roberto Gallego-Pinazo1,2, Ana Marina Suelves-Cogollos1, Rosa Dolz-Marco1, J Fernando Arevalo3, Salvador García-Delpech1, J Luis Mullor4, Manuel Díaz-Llopis1,2,51Department of Ophthalmology, Hospital Universitario La Fe, Valencia, Spain; 2Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain; 3Retina and Vitreous Service, Clinical Ophthalmology Center, Caracas, Venezuela; 4Unit of Experimental Ophthalmology, Hospital Universitario La Fe, Valencia, Spain; 5University of Valencia, Faculty of Medicine, Valencia, SpainBackground: The aim of this study was to compare the efficacy of spectral-domain optical coherence tomography (SD-OCT and fluorescein angiography (FA in the guidance of macular laser photocoagulation for diabetic macular edema.Methods: This was a prospective interventional clinical comparative pilot study. Forty eyes from 24 consecutive patients with diabetic macular edema were allocated to receive laser photocoagulation guided by SD-OCT or FA. Best-corrected visual acuity (BCVA, central macular thickness, and retinal volume were assessed at baseline and two months after treatment.Results: Subjects treated using FA-guided laser improved BCVA from the logarithm of the minimum angle of resolution (logMAR 0.52 ± 0.2 to 0.37 ± 0.2 (P < 0.001, and decreased mean central macular thickness from 397.25 ± 139.1 to 333.50 ± 105.7 µm (P < 0.001 and retinal volume from 12.61 ± 1.6 to 10.94 ± 1.4 mm3 (P < 0.001. Subjects treated using SD-OCT guided laser had improved BCVA from 0.48 ± 0.2 to 0.33 ± 0.2 logMAR (P < 0.001, and decreased mean central macular thickness from 425.90 ± 149.6 to 353.4 ± 140 µm (P < 0.001 and retinal volume from 12.38 ± 2.1 to 11.53 ± 1.1 mm3 (P < 0.001. No significant differences between the groups were found in two-month BCVA (P = 0.505, two-month central macular thickness (P = 0.660, or two-month retinal volume (P = 0.582.Conclusion: The short-term results of this pilot study

  20. Biocompatibility property of 100% strontium-substituted SiO2 -Al2 O3 -P2 O5 -CaO-CaF2 glass ceramics over 26 weeks implantation in rabbit model: Histology and micro-Computed Tomography analysis.

    Science.gov (United States)

    Basu, Bikramjit; Sabareeswaran, A; Shenoy, S J

    2015-08-01

    One of the desired properties for any new biomaterial composition is its long-term stability in a suitable animal model and such property cannot be appropriately assessed by performing short-term implantation studies. While hydroxyapatite (HA) or bioglass coated metallic biomaterials are being investigated for in vivo biocompatibility properties, such study is not extensively being pursued for bulk glass ceramics. In view of their inherent brittle nature, the implant stability as well as impact of long-term release of metallic ions on bone regeneration have been a major concern. In this perspective, the present article reports the results of the in vivo implantation experiments carried out using 100% strontium (Sr)-substituted glass ceramics with the nominal composition of 4.5 SiO2 -3Al2 O3 -1.5P2 O5 -3SrO-2SrF2 for 26 weeks in cylindrical bone defects in rabbit model. The combination of histological and micro-computed tomography analysis provided a qualitative and quantitative understanding of the bone regeneration around the glass ceramic implants in comparison to the highly bioactive HA bioglass implants (control). The sequential polychrome labeling of bone during in vivo osseointegration using three fluorochromes followed by fluorescence microscopy observation confirmed homogeneous bone formation around the test implants. The results of the present study unequivocally confirm the long-term implant stability as well as osteoconductive property of 100% Sr-substituted glass ceramics, which is comparable to that of a known bioactive implant, that is, HA-based bioglass. © 2014 Wiley Periodicals, Inc.

  1. Positron emission tomography-guided magnetic resonance spectroscopy in Alzheimer disease.

    Science.gov (United States)

    Sheikh-Bahaei, Nasim; Sajjadi, S Ahmad; Manavaki, Roido; McLean, Mary; O'Brien, John T; Gillard, Jonathan H

    2018-04-01

    To determine whether the level of metabolites in magnetic resonance spectroscopy (MRS) is a representative marker of underlying pathological changes identified in positron emission tomographic (PET) images in Alzheimer disease (AD). We performed PET-guided MRS in cases of probable AD, mild cognitive impairment (MCI), and healthy controls (HC). All participants were imaged by 11 C-Pittsburgh compound B ( 11 C-PiB) and 18 F-fluorodeoxyglucose ( 18 F-FDG) PET followed by 3T MRS. PET images were assessed both visually and using standardized uptake value ratios (SUVRs). MRS voxels were placed in regions with maximum abnormality on amyloid (Aβ+) and FDG (hypometabolic) areas on PET scans. Corresponding normal areas were selected in controls. The ratios of total N-acetyl (tNA) group, myoinositol (mI), choline, and glutamate + glutamine over creatine (Cr) were compared between these regions. Aβ + regions had significantly higher (p = 0.02) mI/Cr and lower tNA/Cr (p = 0.02), whereas in hypometabolic areas only tNA/Cr was reduced (p = 0.003). Multiple regression analysis adjusting for sex, age, and education showed mI/Cr was only associated with 11 C-PiB SUVR (p < 0.0001). tNA/Cr, however, was associated with both PiB (p = 0.0003) and 18 F-FDG SUVR (p = 0.006). The level of mI/Cr was not significantly different between MCI and AD (p = 0.28), but tNA/Cr showed significant decline from HC to MCI to AD (p = 0.001, p = 0.04). mI/Cr has significant temporal and spatial associations with Aβ and could potentially be considered as a disease state biomarker. tNA is an indicator of early neurodegenerative changes and might have a role as disease stage biomarker and also as a valuable surrogate marker for treatment response. Ann Neurol 2018;83:771-778. © 2018 American Neurological Association.

  2. Bubble Chamber Research Group Microcomputer Unit

    International Nuclear Information System (INIS)

    Bairstow, R.; Barlow, J.; Mace, P.R.; Seller, P.; Waters, M.; Watson, J.G.

    1982-05-01

    A distributed data acquisition system has been developed by the Bubble Chamber Research Group at the Rutherford Appleton laboratory for use with their film measuring machines. The system is based upon a set of microcomputers linked together with a VAX 11/780 computer, in a local area computer network. This network is of the star type and uses a packet switching technique. Each film measuring machine is equipped with a microcomputer which controls the function of the table, buffers data and enhances the interface between operators and machines. This paper provides a detailed description of each microcomputer and can be used as a reference manual for these computers. (author)

  3. 275 C Downhole Microcomputer System

    Energy Technology Data Exchange (ETDEWEB)

    Chris Hutchens; Hooi Miin Soo

    2008-08-31

    An HC11 controller IC and along with serial SRAM and ROM support ICs chip set were developed to support a data acquisition and control for extreme temperature/harsh environment conditions greater than 275 C. The 68HC11 microprocessor is widely used in well logging tools for control, data acquisition, and signal processing applications and was the logical choice for a downhole controller. This extreme temperature version of the 68HC11 enables new high temperature designs and additionally allows 68HC11-based well logging tools and MWD tools to be upgraded for high temperature operation in deep gas reservoirs, The microcomputer chip consists of the microprocessor ALU, a small boot ROM, 4 kbyte data RAM, counter/timer unit, serial peripheral interface (SPI), asynchronous serial interface (SCI), and the A, B, C, and D parallel ports. The chip is code compatible with the single chip mode commercial 68HC11 except for the absence of the analog to digital converter system. To avoid mask programmed internal ROM, a boot program is used to load the microcomputer program from an external mask SPI ROM. A SPI RAM IC completes the chip set and allows data RAM to be added in 4 kbyte increments. The HC11 controller IC chip set is implemented in the Peregrine Semiconductor 0.5 micron Silicon-on-Sapphire (SOS) process using a custom high temperature cell library developed at Oklahoma State University. Yield data is presented for all, the HC11, SPI-RAM and ROM. The lessons learned in this project were extended to the successful development of two high temperature versions of the LEON3 and a companion 8 Kbyte SRAM, a 200 C version for the Navy and a 275 C version for the gas industry.

  4. 2750 C Downhole Microcomputer System

    International Nuclear Information System (INIS)

    Hutchens, Chris; Soo, Hooi Miin

    2008-01-01

    An HC11 controller IC and along with serial SRAM and ROM support ICs chip set were developed to support a data acquisition and control for extreme temperature/harsh environment conditions greater than 275 C. The 68HC11 microprocessor is widely used in well logging tools for control, data acquisition, and signal processing applications and was the logical choice for a downhole controller. This extreme temperature version of the 68HC11 enables new high temperature designs and additionally allows 68HC11-based well logging tools and MWD tools to be upgraded for high temperature operation in deep gas reservoirs, The microcomputer chip consists of the microprocessor ALU, a small boot ROM, 4 kbyte data RAM, counter/timer unit, serial peripheral interface (SPI), asynchronous serial interface (SCI), and the A, B, C, and D parallel ports. The chip is code compatible with the single chip mode commercial 68HC11 except for the absence of the analog to digital converter system. To avoid mask programmed internal ROM, a boot program is used to load the microcomputer program from an external mask SPI ROM. A SPI RAM IC completes the chip set and allows data RAM to be added in 4 kbyte increments. The HC11 controller IC chip set is implemented in the Peregrine Semiconductor 0.5 micron Silicon-on-Sapphire (SOS) process using a custom high temperature cell library developed at Oklahoma State University. Yield data is presented for all, the HC11, SPI-RAM and ROM. The lessons learned in this project were extended to the successful development of two high temperature versions of the LEON3 and a companion 8 Kbyte SRAM, a 200 C version for the Navy and a 275 C version for the gas industry

  5. Endobronchial ultrasound-guided transbronchial needle aspiration for systematic nodal staging of lung cancer in patients with N0 disease by computed tomography and integrated positron emission tomography-computed tomography.

    Science.gov (United States)

    Ong, Philip; Grosu, Horiana; Eapen, George A; Rodriguez, Macarena; Lazarus, Donald; Ost, David; Jimenez, Carlos A; Morice, Rodolfo; Bandi, Venkata; Tamara, Luis; Cornwell, Lorraine; Green, Linda; Zhu, Angela; Casal, Roberto F

    2015-03-01

    Data regarding the sensitivity of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) for staging of lung cancer in patients with radiographic N0 disease is scant and inconsistent. With increasing use of nonoperative ablative therapies, studies focusing on the performance characteristics of EBUS-TBNA in this population are important. To evaluate the sensitivity and negative predictive value (NPV) of EBUS-TBNA in patients with non-small cell lung cancer and radiographic N0 disease both by computed tomography (CT) and positron emission tomography (PET)-CT. This was a retrospective review of EBUS-TBNA performed for lung cancer staging at two major academic centers from 2009 to 2014. Patients with radiographic N0 disease (lymph nodes [LN]≤1 cm in the short axis and maximum standardized uptake value≤2.5 by PET-CT) were included. Primary outcome was sensitivity and NPV of EBUS-TBNA. Two hundred twenty patients with radiographic N0 disease underwent EBUS-TBNA, and 734 LN were sampled (median 3, range 1-6). Median LN diameter was 0.72 cm. One hundred patients (45.5%) underwent surgery, and 120 patients (54.5%) had nonsurgical therapy. N status was up-staged in 49 patients (22.3%): 18 by EBUS-TBNA (N1=11, N2=6, N3=1), 27 by surgery (N1 intralobar=16, N1 extralobar=3, N2=8 [5 LN in stations 4 and 7, and 3 LN in stations 5-6), and 4 by imaging follow-up (N1=2, N2=2). Overall false-negative rate of EBUS was 14.1% (sensitivity, 36.7%; specificity, 100%; and NPV, 84.7%). False-negative rate was 27 and 3.3% in surgical and nonsurgical populations, respectively. Excluding patients with occult disease "outside" the reach of EBUS, the overall false-negative rate of EBUS-TBNA was 5.5% (sensitivity, 60%; specificity, 100%; and NPV, 93.4%). This is the largest report of EBUS-TBNA in patients with N0 disease by "integrated" PET-CT. The majority of false-negative EBUS results were in LN stations outside its reach. In our study, both sensitivity and NPV of

  6. Dosimetric consequences of the shift towards computed tomography guided target definition and planning for breast conserving radiotherapy

    Directory of Open Access Journals (Sweden)

    Korevaar Erik W

    2008-01-01

    Full Text Available Abstract Background The shift from conventional two-dimensional (2D to three-dimensional (3D-conformal target definition and dose-planning seems to have introduced volumetric as well as geometric changes. The purpose of this study was to compare coverage of computed tomography (CT-based breast and boost planning target volumes (PTV, absolute volumes irradiated, and dose delivered to the organs at risk with conventional 2D and 3D-conformal breast conserving radiotherapy. Methods Twenty-five patients with left-sided breast cancer were subject of CT-guided target definition and 3D-conformal dose-planning, and conventionally defined target volumes and treatment plans were reconstructed on the planning CT. Accumulated dose-distributions were calculated for the conventional and 3D-conformal dose-plans, taking into account a prescribed dose of 50 Gy for the breast plans and 16 Gy for the boost plans. Results With conventional treatment plans, CT-based breast and boost PTVs received the intended dose in 78% and 32% of the patients, respectively, and smaller volumes received the prescribed breast and boost doses compared with 3D-conformal dose-planning. The mean lung dose, the volume of the lungs receiving > 20 Gy, the mean heart dose, and volume of the heart receiving > 30 Gy were significantly less with conventional treatment plans. Specific areas within the breast and boost PTVs systematically received a lower than intended dose with conventional treatment plans. Conclusion The shift towards CT-guided target definition and planning as the golden standard for breast conserving radiotherapy has resulted in improved target coverage at the cost of larger irradiated volumes and an increased dose delivered to organs at risk. Tissue is now included into the breast and boost target volumes that was never explicitly defined or included with conventional treatment. Therefore, a coherent definition of the breast and boost target volumes is needed, based on

  7. Four-dimensional volume-of-interest reconstruction for cone-beam computed tomography-guided radiation therapy.

    Science.gov (United States)

    Ahmad, Moiz; Balter, Peter; Pan, Tinsu

    2011-10-01

    Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4-6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3-8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm

  8. Computed Tomography Number Changes Observed During Computed Tomography–Guided Radiation Therapy for Head and Neck Cancer

    International Nuclear Information System (INIS)

    Feng, Mei; Yang, Cungeng; Chen, Xiaojian; Xu, Shouping; Moraru, Ion; Lang, Jinyi; Schultz, Christopher; Li, X. Allen

    2015-01-01

    Purpose: To investigate CT number (CTN) changes in gross tumor volume (GTV) and organ at risk (OAR) according to daily diagnostic-quality CT acquired during CT-guided intensity modulated radiation therapy for head and neck cancer (HNC) patients. Methods and Materials: Computed tomography scans acquired using a CT-on-rails during daily CT-guided intensity modulated radiation therapy for 15 patients with stage II to IVa squamous cell carcinoma of the head and neck were analyzed. The GTV, parotid glands, spinal cord, and nonspecified tissue were generated on each selected daily CT. The changes in CTN distributions and the mean and mode values were collected. Pearson analysis was used to assess the correlation between the CTN change, organ volume reduction, and delivered radiation dose. Results: Volume and CTN changes for GTV and parotid glands can be observed during radiation therapy delivery for HNC. The mean (±SD) CTNs in GTV and ipsi- and contralateral parotid glands were reduced by 6 ± 10, 8 ± 7, and 11 ± 10 Hounsfield units, respectively, for all patients studied. The mean CTN changes in both spinal cord and nonspecified tissue were almost invisible (<2 Hounsfield units). For 2 patients studied, the absolute mean CTN changes in GTV and parotid glands were strongly correlated with the dose delivered (P<.001 and P<.05, respectively). For the correlation between CTN reductions and delivered isodose bins for parotid glands, the Pearson coefficient varied from −0.98 (P<.001) in regions with low-dose bins to 0.96 (P<.001) in high-dose bins and were patient specific. Conclusions: The CTN can be reduced in tumor and parotid glands during the course of radiation therapy for HNC. There was a fair correlation between CTN reduction and radiation doses for a subset of patients, whereas the correlation between CTN reductions and volume reductions in GTV and parotid glands were weak. More studies are needed to understand the mechanism for the radiation-induced CTN changes

  9. Substantial dose reduction in modern multi-slice spiral computed tomography (MSCT)-guided craniofacial and skull base surgery

    International Nuclear Information System (INIS)

    Widmann, G.; Fasser, M.; Jaschke, W.; Bale, R.; Schullian, P.; Zangerl, A.; Puelacher, W.; Kral, F.; Riechelmann, H.

    2012-01-01

    Purpose: Reduction of the radiation exposure involved in image-guided craniofacial and skull base surgery is an important goal. The purpose was to evaluate the influence of low-dose protocols in modern multi-slice spiral computed tomography (MSCT) on target registration errors (TREs). Materials and Methods: An anthropomorphic skull phantom with target markers at the craniofacial bone and the anterior skull base was scanned in Sensation Open (40-slice), LightSpeed VCT (64-slice) and Definition Flash (128-slice). Identical baseline protocols (BP) at 120 kV/100 mAs were compared to the following low-dose protocols (LD) in care dose/dose modulation: (LD-I) 100 kV/35ref. mAs, (LD-II) 80 kV/40 - 41ref. mAs, and (LD-III) 80 kV/15 - 17ref. mAs. CTDIvol and DLP were obtained. TREs using an optical navigation system were calculated for all scanners and protocols. Results were statistically analyzed in SPSS and compared for significant differences (p ≤ 0.05). Results: CTDIvol for the Sensation Open/LightSpeed VCT/Definition Flash showed: (BP) 22.24 /32.48 /14.32 mGy; (LD-I) 4.61 /3.52 /1,62 mGy; (LD-II) 3.15 /2.01 /0.87 mGy; and (LD-III) na/0.76 /0.76 mGy. Differences between the BfS (Bundesamt fuer Strahlenschutz) reference CTDIvol of 9 mGy and the lowest CTDIvol were approximately 3-fold for Sensation Open, and 12-fold for the LightSpeed VCT and Definition Flash. A total of 33 registrations and 297 TRE measurements were performed. In all MSCT scanners, the TREs did not significantly differ between the low-dose and the baseline protocols. Conclusion: Low-dose protocols in modern MSCT provided substantial dose reductions without significant influence on TRE and should be strongly considered in image-guided surgery. (orig.)

  10. Dosimetric consequences of the shift towards computed tomography guided target definition and planning for breast conserving radiotherapy

    International Nuclear Information System (INIS)

    Laan, Hans Paul van der; Dolsma, Wil V; Maduro, John H; Korevaar, Erik W; Langendijk, Johannes A

    2008-01-01

    The shift from conventional two-dimensional (2D) to three-dimensional (3D)-conformal target definition and dose-planning seems to have introduced volumetric as well as geometric changes. The purpose of this study was to compare coverage of computed tomography (CT)-based breast and boost planning target volumes (PTV), absolute volumes irradiated, and dose delivered to the organs at risk with conventional 2D and 3D-conformal breast conserving radiotherapy. Twenty-five patients with left-sided breast cancer were subject of CT-guided target definition and 3D-conformal dose-planning, and conventionally defined target volumes and treatment plans were reconstructed on the planning CT. Accumulated dose-distributions were calculated for the conventional and 3D-conformal dose-plans, taking into account a prescribed dose of 50 Gy for the breast plans and 16 Gy for the boost plans. With conventional treatment plans, CT-based breast and boost PTVs received the intended dose in 78% and 32% of the patients, respectively, and smaller volumes received the prescribed breast and boost doses compared with 3D-conformal dose-planning. The mean lung dose, the volume of the lungs receiving > 20 Gy, the mean heart dose, and volume of the heart receiving > 30 Gy were significantly less with conventional treatment plans. Specific areas within the breast and boost PTVs systematically received a lower than intended dose with conventional treatment plans. The shift towards CT-guided target definition and planning as the golden standard for breast conserving radiotherapy has resulted in improved target coverage at the cost of larger irradiated volumes and an increased dose delivered to organs at risk. Tissue is now included into the breast and boost target volumes that was never explicitly defined or included with conventional treatment. Therefore, a coherent definition of the breast and boost target volumes is needed, based on clinical data confirming tumour control probability and normal

  11. Proposal of a technical guide for the evaluation and management of the solitary pulmonary nodule in function of the radiological characteristics obtained by computed tomography

    International Nuclear Information System (INIS)

    Clinton Hidalgo, Carolina

    2015-01-01

    A guide is proposed to guide clinical personnel in early diagnosis, assessment and management of the solitary pulmonary nodule, with high potential of to develop lung cancer, in function of the radiological characteristics obtained by computed tomography. The management of patients with diagnosis of solitary pulmonary nodule is standardized with the purpose of to unify diagnostic criteria in a multidisciplinary and institutional environment. Tomographic radiological characteristics are described to allow the suspicion of the solitary pulmonary nodule benignity or malignity. A flow diagram is developed to guide the physician to an adequate monitoring, control and eventual therapeutic treatment. A clear and structured perspective of the diagnostic and therapeutic process is provided to the treating physician and patient [es

  12. Computed tomography-guided percutaneous trephine removal of the nidus in osteoid osteoma patients: experience of a single center in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Petrilli, Marcelo; Senerchia, Andreza Almeida; Petrilli, Antonio Sergio; Lederman, Henrique Manoel; Garcia Filho, Reynaldo Jesus, E-mail: andrezasenerchia@hotmail.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil). Instituto de Oncologia Pediatrica

    2015-07-15

    Objective: to report the results of computed tomography (CT)-guided percutaneous resection of the nidus in 18 cases of osteoid osteoma. Materials and methods: the medical records of 18 cases of osteoid osteoma in children, adolescents and young adults, who underwent CT-guided removal of the nidus between November, 2004 and March, 2009 were reviewed retrospectively for demographic data, lesion site, clinical outcome and complications after procedure. Results: clinical follow-up was available for all cases at a median of 29 months (range 6-60 months). No persistence of pre-procedural pain was noted on 17 patients. Only one patient experienced recurrence of symptoms 12 months after percutaneous resection, and was successfully retreated by the same technique, resulting in a secondary success rate of 18/18 (100%). Conclusion: CT-guided removal or destruction of the nidus is a safe and effective alternative to surgical resection of the osteoid osteoma nidus. (author)

  13. Frequency and Risk Factors of Various Complications After Computed Tomography-Guided Radiofrequency Ablation of Lung Tumors

    International Nuclear Information System (INIS)

    Okuma, Tomohisa; Matsuoka, Toshiyuki; Yamamoto, Akira; Oyama, Yoshimasa; Toyoshima, Masami; Nakamura, Kenji; Inoue, Yuichi

    2008-01-01

    Objective. To retrospectively determine the frequency and risk factors of various side effects and complications after percutaneous computed tomography-guided radiofrequency (RF) ablation of lung tumors. Methods. We reviewed and analyzed records of 112 treatment sessions in 57 of our patients (45 men and 12 women) with unresectable lung tumors treated by ablation. Risk factors, including sex, age, tumor diameter, tumor location, history of surgery, presence of pulmonary emphysema, electrode gauge, array diameter, patient position, maximum power output, ablation time, and minimum impedance during ablation, were analyzed using univariate and multivariate analyses. Results. Total rates of side effects and minor and major complications occurred in 17%, 50%, and 8% of treatment sessions, respectively. Side effects, including pain during ablation (46% of sessions) and pleural effusion (13% of sessions), occurred with RF ablation. Minor complications, including pneumothorax not requiring chest tube drainage (30% of sessions), subcutaneous emphysema (16% of sessions), and hemoptysis (9% of sessions) also occurred after the procedure. Regarding major complications, three patients developed fever >38.5 deg. C; three patients developed abscesses; two patients developed pneumothorax requiring chest tube insertion; and one patient had air embolism and was discharged without neurologic deficit. Univariate and multivariate analyses suggested that a lesion located ≤1 cm of the chest wall was significantly related to pain (p < 0.01, hazard index 5.76). Risk factors for pneumothorax increased significantly with previous pulmonary surgery (p < 0.05, hazard index 6.1) and presence of emphysema (p <0.01, hazard index 13.6). Conclusion. The total complication rate for all treatment sessions was 58%, and 25% of patients did not have any complications after RF ablation. Although major complications can occur, RF ablation of lung tumors can be considered a safe and minimally invasive

  14. Image-guided intraocular injection using multimodality optical coherence tomography and fluorescence confocal scanning laser ophthalmoscopy in rodent ophthalmological models

    Science.gov (United States)

    Terrones, Benjamin D.; Benavides, Oscar R.; Leeburg, Kelsey C.; Mehanathan, Sankarathi B.; Levine, Edward M.; Tao, Yuankai K.

    2018-02-01

    Intraocular injections are routinely performed for delivery of anti-VEGF and anti-inflammatory therapies in humans. While these injections are also performed in mice to develop novel models of ophthalmic diseases and screen novel therapeutics, the injection location and volume are not well-controlled and reproducible. We overcome limitations of conventional injections methods by developing a multimodality, long working distance, non-contact optical coherence tomography (OCT) and fluorescence confocal scanning laser ophthalmoscopy (cSLO) system for retinal imaging before and after injections. Our OCT+cSLO system combines a custom-built spectraldomain OCT engine (875+/-85 nm) with 125 kHz line-rate with a modified commercial cSLO with a maximum frame-rate of 30 fps (512 x 512 pix.). The system was designed for an overlapping OCT+cSLO field-of-view of 1.1 mm with a 7.76 mm working distance to the pupil. cSLO excitation light sources and filters were optimized for simultaneous GFP and tdTomato imaging. Lateral resolution was 3.02 µm for OCT and 2.74 μm for cSLO. Intravitreal injections of 5%, 10%, and 20% intralipid with Alex Fluor 488 were manually injected intraocularly in C57BL/6 mice. Post-injection imaging showed structural changes associated with retinal puncture, including the injection track, a retinal elevation, and detachment of the posterior hyaloid. OCT enables quantitative analysis of injection location and volumes whereas complementary cSLO improves specificity for identifying fluorescently labeled injected compounds and transgenic cells. The long working distance of our non-contact OCT+cSLO system is uniquely-suited for concurrent imaging with intraocular injections and may be applied for imaging of ophthalmic surgical dynamics and real-time image-guided injections.

  15. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    International Nuclear Information System (INIS)

    Morrow, Natalya V.; Lawton, Colleen A.; Qi, X. Sharon; Li, X. Allen

    2012-01-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  16. Prognostic Factors Influencing the Development of an Iatrogenic Pneumothorax for Computed Tomography-Guided Radiofrequency Ablation of Upper Renal Tumor

    International Nuclear Information System (INIS)

    Park, B.K.; Kim, C.K.

    2008-01-01

    Background: Percutaneous radiofrequency (RF) ablation of upper renal tumors is considered a minimally invasive treatment, but this technique may cause pneumothorax. Purpose: To assess retrospectively the prognostic factors influencing the development of iatrogenic pneumothorax for RF ablation of upper renal tumors. Material and Methods: Computed tomography (CT)-guided RF ablation was performed in 24 patients (21 men, three women; age range 31-77 years, mean age 53.3 years) with 28 upper renal tumors. Various factors for pneumothorax-complicated (PC) upper renal tumors and non-pneumothoracic (NP) upper renal tumors were compared during RF ablation to determine which of the factors were involved in the development of pneumothorax. Results: Among 28 upper renal tumors in 24 patients, a pneumothorax occurred accidentally in six patients with eight tumors and intentionally in two patients with two tumors. This complication was treated with conservative management, instead of tube drainage. PC upper renal tumors had shorter distance from the lung or from the costophrenic line to the tumor, a larger angle between the costophrenic line and the tumor, and a higher incidence of intervening lung tissue than NP upper renal tumors (P<0.01). Intervening lung tissue was more frequently detected on CT images obtained with the patient in the prone position than on CT images obtained with the patient in the supine position. Conclusion: The presence of intervening lung tissue and the close proximity between an upper renal tumor and the lung are high risk factors for developing an iatrogenic pneumothorax. Pre-ablation CT scan should be performed in the prone position to exactly evaluate intervening lung tissue

  17. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Natalya V.; Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Qi, X. Sharon [Department of Radiation Oncology, University of Colorado Denver, Denver, Colorado (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2012-04-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  18. Distributed Kalman filtering compared to Fourier domain preconditioned conjugate gradient for laser guide star tomography on extremely large telescopes.

    Science.gov (United States)

    Gilles, Luc; Massioni, Paolo; Kulcsár, Caroline; Raynaud, Henri-François; Ellerbroek, Brent

    2013-05-01

    This paper discusses the performance and cost of two computationally efficient Fourier-based tomographic wavefront reconstruction algorithms for wide-field laser guide star (LGS) adaptive optics (AO). The first algorithm is the iterative Fourier domain preconditioned conjugate gradient (FDPCG) algorithm developed by Yang et al. [Appl. Opt.45, 5281 (2006)], combined with pseudo-open-loop control (POLC). FDPCG's computational cost is proportional to N log(N), where N denotes the dimensionality of the tomography problem. The second algorithm is the distributed Kalman filter (DKF) developed by Massioni et al. [J. Opt. Soc. Am. A28, 2298 (2011)], which is a noniterative spatially invariant controller. When implemented in the Fourier domain, DKF's cost is also proportional to N log(N). Both algorithms are capable of estimating spatial frequency components of the residual phase beyond the wavefront sensor (WFS) cutoff frequency thanks to regularization, thereby reducing WFS spatial aliasing at the expense of more computations. We present performance and cost analyses for the LGS multiconjugate AO system under design for the Thirty Meter Telescope, as well as DKF's sensitivity to uncertainties in wind profile prior information. We found that, provided the wind profile is known to better than 10% wind speed accuracy and 20 deg wind direction accuracy, DKF, despite its spatial invariance assumptions, delivers a significantly reduced wavefront error compared to the static FDPCG minimum variance estimator combined with POLC. Due to its nonsequential nature and high degree of parallelism, DKF is particularly well suited for real-time implementation on inexpensive off-the-shelf graphics processing units.

  19. Reading Diagnosis via the Microcomputer (The Printout).

    Science.gov (United States)

    Weisberg, Renee; Balajthy, Ernest

    1989-01-01

    Examines and evaluates microcomputer software designed to assist in diagnosing students' reading abilities and making instructional decisions. Claims that existing software shows valuable potential when used sensibly and critically by trained reading clinicians. (MM)

  20. Microcomputers in a Beginning Tertiary Physics Course.

    Science.gov (United States)

    Pearce, J. M.; O'Brien, R.

    1986-01-01

    Describes a college-level physics course which focuses on both physics knowledge/skills and use of microcomputers. Types of experiments done with the computers and how students use the computers to treat data are considered. (JN)

  1. Microcomputer Simulated CAD for Engineering Graphics.

    Science.gov (United States)

    Huggins, David L.; Myers, Roy E.

    1983-01-01

    Describes a simulated computer-aided-graphics (CAD) program at The Pennsylvania State University. Rationale for the program, facilities, microcomputer equipment (Apple) used, and development of a software package for simulating applied engineering graphics are considered. (JN)

  2. An analysis of brachytherapy with computed tomography-guided permanent implantation of Iodine-125 seeds for recurrent nonkeratin nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Shen X

    2015-05-01

    Full Text Available Xinying Shen,1,2 Yong Li,2 Yanfang Zhang,2 Jian Kong,2 Yanhao Li1 1Department of Interventional Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, 2Department of Interventional Radiology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, People’s Republic of China Background: 125I seed implantation is a new method in treatment of nasopharyngeal carcinoma (NPC, and it is worthwhile to evaluate its feasibility. In this study, we performed brachytherapy with computed tomography (CT-guided permanent implantation of 125I seeds in the treatment of patients with the recurrence of NPC.Methods: A total 30 patients (20 male and ten female at the median age of 55 (range 25–80 years were diagnosed with recurrent nonkeratin NPC, with a total 38 lesions and a short disease-free interval (median ~11 months after primary radiotherapy alone or combined with chemotherapy. Patients received CT scan, starting from 2 months after the treatment. Follow-up was conducted for ~2–38 months to observe the local control rate and overall survival rate. We also analyzed the possible correlation between survival periods and the status of recurrent tumors.Results: The local control rates at 6, 12, 24, 30, and 36 months after the procedure of 125I seed implantation were 86.8%, 73.7%, 26.3%, 15.8%, and 5.3%, respectively. The overall 1-, 2-, and 3-year survival rates were 80.0% (24/30, 30.0% (9/30, and 6.7% (2/30, respectively, with a median survival period of 18 months (17.6±8.6 months. Interestingly, the survival periods of the patients who had primary radiotherapy with or without chemotherapy were 15.8±7.9 and 24.3±7.9 months, respectively. Kaplan–Meier survival analysis demonstrated that χ2 (log rank was 7.555, with very significant difference (P<0.01. The survival periods of patients in tumor stages I, II, III, and IV were 25.4±8.7, 19.8±9.4, 16.1±4.5, and 12.8±7.8 months, respectively, with

  3. Preoperative Computed Tomography-Guided Percutaneous Hookwire Localization of Metallic Marker Clips in the Breast with a Radial Approach: Initial Experience

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, T.; Kasami, M.; Uchida, Y.; Sanuki, J.; Kimura, K.; Tanaka, K.; Takahashi, K. [Dept. of Diagnostic Radiology, Dept. of Pathology, and Dept. of Breast Surgery, Shizuoka Cancer Center Hospital, Naga-izumi, Shizuoka (Japan)

    2007-07-15

    Background: Hookwire localization is the current standard technique for radiological marking of nonpalpable breast lesions. Stereotactic directional vacuum-assisted breast biopsy (SVAB) is of sufficient sensitivity and specificity to replace surgical biopsy. Wire localization for metallic marker clips placed after SVAB is needed. Purpose: To describe a method for performing computed tomography (CT)-guided hookwire localization using a radial approach for metallic marker clips placed percutaneously after SVAB. Material and Methods: Nineteen women scheduled for SVAB with marker-clip placement, CT-guided wire localization of marker clips, and, eventually, surgical excision were prospectively entered into the study. CT-guided wire localization was performed with a radial approach, followed by placement of a localizing marker-clip surgical excision. Feasibility and reliability of the procedure and the incidence of complications were examined. Results: CT-guided wire localization surgical excision was successfully performed in all 19 women without any complications. The mean total procedure time was 15 min. The median distance on CT image from marker clip to hookwire was 2 mm (range 0-3 mm). Conclusion: CT-guided preoperative hookwire localization with a radial approach for marker clips after SVAB is technically feasible.

  4. Preoperative computed tomography-guided percutaneous hookwire localization of metallic marker clips in the breast with a radial approach: initial experience.

    Science.gov (United States)

    Uematsu, T; Kasami, M; Uchida, Y; Sanuki, J; Kimura, K; Tanaka, K; Takahashi, K

    2007-06-01

    Hookwire localization is the current standard technique for radiological marking of nonpalpable breast lesions. Stereotactic directional vacuum-assisted breast biopsy (SVAB) is of sufficient sensitivity and specificity to replace surgical biopsy. Wire localization for metallic marker clips placed after SVAB is needed. To describe a method for performing computed tomography (CT)-guided hookwire localization using a radial approach for metallic marker clips placed percutaneously after SVAB. Nineteen women scheduled for SVAB with marker-clip placement, CT-guided wire localization of marker clips, and, eventually, surgical excision were prospectively entered into the study. CT-guided wire localization was performed with a radial approach, followed by placement of a localizing marker-clip surgical excision. Feasibility and reliability of the procedure and the incidence of complications were examined. CT-guided wire localization surgical excision was successfully performed in all 19 women without any complications. The mean total procedure time was 15 min. The median distance on CT image from marker clip to hookwire was 2 mm (range 0-3 mm). CT-guided preoperative hookwire localization with a radial approach for marker clips after SVAB is technically feasible.

  5. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shirvani, Shervin M.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Heymach, John V.; Fossella, Frank V. [Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non-small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39-86). The median follow-up duration was 21 months (range, 4-58) in all patients and 26 months (range, 4-58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive intensity

  6. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Shirvani, Shervin M.; Komaki, Ritsuko; Heymach, John V.; Fossella, Frank V.; Chang, Joe Y.

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non–small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39–86). The median follow-up duration was 21 months (range, 4–58) in all patients and 26 months (range, 4–58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive

  7. Evaluation of every other day-cone beam computed tomography in image guided radiation therapy for prostate cancer

    International Nuclear Information System (INIS)

    Park, Byoung Suk; Ahn, Jong Ho; Kim, Jong Sik; Song, Ki Won

    2014-01-01

    Cone Beam Computed Tomography(CBCT) in Image Guided Radiation Therapy(IGRT), Set-up error can be reduced but exposure dose of the patient due to CBCT will increase. Through this study, we are to evaluate by making a scenario with the implementation period of CBCT as every other day. Of prostate cancer patients, 9 patients who got a Intensity Modulated Radiation Therapy(IMRT) with CBCT in IGRT were analyzed. Based on values corrected by analyzing set-up error by using CBCT every day during actual treatment, we created a scenario that conducts CBCT every other day. After applying set-up error values of the day not performing CBCT in the scenario to the treatment planning system(Pinnacle 9.2, Philips, USA) by moving them from the treatment iso-center during actual treatment, we established re-treatment plan under the same conditions as actual treatment. Based on this, the dose distribution of normal organs and Planning Target Volume(PTV) was compared and analyzed. In the scenario that performs CBCT every other day based on set-up error values when conducting CBCT every day, average X-axis : 0.2±0.73 mm , Y-axis : 0.1±0.58 mm , Z-axis : -1.3±1.17 mm difference was shown. This was applied to the treatment planning to establish re-treatment plan and dose distribution was evaluated and as a result, Dmean : -0.17 Gy, D99% : -0.71 Gy of PTV difference was shown in comparison with the result obtained when carrying out CBCT every day. As for normal organs, V66 : 1.55% of rectal wall, V66 : -0.76% of bladder difference was shown. In case of a CBCT perform every other day could reduce exposure dose and additional treatment time. And it is thought to be able to consider the application depending on the condition of the patient because the difference in the dose distribution of normal organs, PTV is not large

  8. The clinical feasibility and effect of online cone beam computer tomography-guided intensity-modulated radiotherapy for nasopharyngeal cancer

    International Nuclear Information System (INIS)

    Wang Jin; Bai Sen; Chen Nianyong; Xu Feng; Jiang Xiaoqin; Li Yan; Xu Qingfeng; Shen Yali; Zhang Hong; Gong Youling; Zhong Renming; Jiang Qingfeng

    2009-01-01

    Background and purpose: Online adaptive correction in image-guided intensity-modulated radiotherapy appeared to be a promising approach for precision radiation treatment in head and neck tumors. This protocol was designed to evaluate the clinical feasibility and effect of online cone beam computed tomography (CBCT) guidance in IMRT of nasopharyngeal cancer (NPC). Methods and materials: The Elekta Synergy system, which integrates an X-ray volumetric imager (XVI), was used to deliver radiation treatment for 22 cases of NPC. The acquired CBCT was registered to the planning CT for online and offline analysis. The systematic and random setup errors, as well as planning target volume (PTV) margin, were calculated at different correction threshold levels. The impact of online setup correction on dosimetry was evaluated by simulation of pre-correction errors. Results: The correction-of-setup-errors frequencies for 1, 2 and 3 mm thresholds were 41.3-53.9%, 12.7-21.2% and 6.3-10.3%, respectively. Online correction was effective at the 2 mm threshold level for all three axes. The pre-correction systematic errors for the whole group ranged 1.1-1.3 mm, and the random errors were also 1.1-1.3 mm. After online correction, the systematic and random errors ranged 0.4-0.5 mm and 0.7-0.8 mm, respectively, in the three directions. The PTV margins for the pre-correction, pretreatment and post-treatment positions were 3.5-4.2 mm, 1.6-1.8 mm and 2.5-3.2 mm, respectively, in three directions. Analysis of hypothetical dosimetric change due to a translational isocenter shift of 3 mm showed that if no correction was applied, the mean maximum dose to both the brain stem and spinal cord would be increased by 10 Gy, the mean dose to the left and right parotids would be increased by 7.8 and 8.5 Gy, respectively, and the dose to target volumes would be decreased: 4 Gy for 95% GTV and 5.6 Gy for 95% CTV 60. Conclusions: CBCT-based online correction increased the accuracy of IMRT for NPC and

  9. Priori mask guided image reconstruction (p-MGIR) for ultra-low dose cone-beam computed tomography

    Science.gov (United States)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Kahler, Darren L.; Liu, Chihray; Lu, Bo

    2015-11-01

    Recently, the compressed sensing (CS) based iterative reconstruction method has received attention because of its ability to reconstruct cone beam computed tomography (CBCT) images with good quality using sparsely sampled or noisy projections, thus enabling dose reduction. However, some challenges remain. In particular, there is always a tradeoff between image resolution and noise/streak artifact reduction based on the amount of regularization weighting that is applied uniformly across the CBCT volume. The purpose of this study is to develop a novel low-dose CBCT reconstruction algorithm framework called priori mask guided image reconstruction (p-MGIR) that allows reconstruction of high-quality low-dose CBCT images while preserving the image resolution. In p-MGIR, the unknown CBCT volume was mathematically modeled as a combination of two regions: (1) where anatomical structures are complex, and (2) where intensities are relatively uniform. The priori mask, which is the key concept of the p-MGIR algorithm, was defined as the matrix that distinguishes between the two separate CBCT regions where the resolution needs to be preserved and where streak or noise needs to be suppressed. We then alternately updated each part of image by solving two sub-minimization problems iteratively, where one minimization was focused on preserving the edge information of the first part while the other concentrated on the removal of noise/artifacts from the latter part. To evaluate the performance of the p-MGIR algorithm, a numerical head-and-neck phantom, a Catphan 600 physical phantom, and a clinical head-and-neck cancer case were used for analysis. The results were compared with the standard Feldkamp-Davis-Kress as well as conventional CS-based algorithms. Examination of the p-MGIR algorithm showed that high-quality low-dose CBCT images can be reconstructed without compromising the image resolution. For both phantom and the patient cases, the p-MGIR is able to achieve a clinically

  10. Computed tomography-guided percutaneous ozone injection of the Gasserian ganglion for the treatment of trigeminal neuralgia

    Directory of Open Access Journals (Sweden)

    An JX

    2018-01-01

    Full Text Available Jian-Xiong An,1,2 Hui Liu,1 Ruo-Wen Chen,1,2 Yong Wang,1 Wen-Xing Zhao,1 Derek Eastwood,3 John P Williams4 1Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, 2Department of Anesthesiology, Weifang Medical University, Beijing, People’s Republic of China; 3Department of Pain Services, Wirral University Teaching Hospital, Wirral, Merseyside, UK; 4Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Objective: The aim of this study was to evaluate the therapeutic effect of computed tomography (CT-guided percutaneous ozone injection for refractory trigeminal neuralgia. Design: A retrospective evaluation was performed in the study. Setting: The study was conducted at a university hospital pain center. Patients and methods: A total of 29 patients with a clinical diagnosis of refractory trigeminal neuralgia were enrolled. All patients were treated with a percutaneous ozone injection and one patient was excluded. There were 21 patients with classical trigeminal neuralgia (group A and seven patients with painful trigeminal neuropathy caused by post-herpetic neuralgia (group B. The percutaneous injection was an oxygen–ozone mixture at an ozone concentration of 30 mg/­mL into the Gasserian ganglion performed under CT guidance. The number of ­procedures performed varied from one to as many as 16. Outcomes were evaluated using visual analog scale (VAS pain scores. Results: The combined VAS scores were 7.11 ± 1.23 pretreatment, 2.86 ± 1.69 posttreatment (P < 0.05 and 3.25 ± 2.01 after 6-month follow-up (P < 0.05. In group A, the VAS scores were 7.10 ± 1.04 pretreatment and 2.90 ± 1.84 posttreatment (P < 0.05. In group B, the VAS scores were 7.14 ± 1.77 pretreatment and 2.71 ± 1.25 posttreatment (P < 0.05. After 6-months follow-up, the VAS score was 3.38

  11. Personalized Assessment of kV Cone Beam Computed Tomography Doses in Image-guided Radiotherapy of Pediatric Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yibao [Beijing Key Lab of Medical Physics and Engineering, Peking University, Beijing (China); Yan Yulong [Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Nath, Ravinder [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States); Bao Shanglian [Beijing Key Lab of Medical Physics and Engineering, Peking University, Beijing (China); Deng Jun, E-mail: jun.deng@yale.edu [Department of Therapeutic Radiology, Yale University, New Haven, Connecticut (United States)

    2012-08-01

    Purpose: To develop a quantitative method for the estimation of kV cone beam computed tomography (kVCBCT) doses in pediatric patients undergoing image-guided radiotherapy. Methods and Materials: Forty-two children were retrospectively analyzed in subgroups of different scanned regions: one group in the head-and-neck and the other group in the pelvis. Critical structures in planning CT images were delineated on an Eclipse treatment planning system before being converted into CT phantoms for Monte Carlo simulations. A benchmarked EGS4 Monte Carlo code was used to calculate three-dimensional dose distributions of kVCBCT scans with full-fan high-quality head or half-fan pelvis protocols predefined by the manufacturer. Based on planning CT images and structures exported in DICOM RT format, occipital-frontal circumferences (OFC) were calculated for head-and-neck patients using DICOMan software. Similarly, hip circumferences (HIP) were acquired for the pelvic group. Correlations between mean organ doses and age, weight, OFC, and HIP values were analyzed with SigmaPlot software suite, where regression performances were analyzed with relative dose differences (RDD) and coefficients of determination (R{sup 2}). Results: kVCBCT-contributed mean doses to all critical structures decreased monotonically with studied parameters, with a steeper decrease in the pelvis than in the head. Empirical functions have been developed for a dose estimation of the major organs at risk in the head and pelvis, respectively. If evaluated with physical parameters other than age, a mean RDD of up to 7.9% was observed for all the structures in our population of 42 patients. Conclusions: kVCBCT doses are highly correlated with patient size. According to this study, weight can be used as a primary index for dose assessment in both head and pelvis scans, while OFC and HIP may serve as secondary indices for dose estimation in corresponding regions. With the proposed empirical functions, it is possible

  12. Computed tomography guided navigation assisted percutaneous ablation of osteoid osteoma in a 7-year-old patient: the low dose approach

    Energy Technology Data Exchange (ETDEWEB)

    Krokidis, Miltiadis; Tappero, Carlo; Bogdanovic, Daniel; Stamm, Anna-Christina [Inselspital, Bern University Hospital, Department of Diagnostic, Interventional and Pediatric Radiology, Bern (Switzerland); Ziebarth, Kai [Inselspital, Bern University Hospital, Department of Pediatric Surgery, Bern (Switzerland)

    2017-07-15

    Osteoid osteoma (OO) is a benign tumour that can cause severe pain and functional limitation to children and young adults; the treatment of choice is image-guided ablation. Due to the very small size of the lesion, detection and accurate needle placement may be challenging. Computed tomography (CT) offers very detailed imaging of the skeleton and is the modality of choice for the detection of small OO and for ablation guidance. Nevertheless, CT-guided positioning of the ablation applicator is linked to significant radiation exposure, particularly for the paediatric population. This case describes the successful use of a novel CT-based navigation system that offers the possibility of accurate ablation with only minimal radiation exposure in a paediatric patient. (orig.)

  13. First-in-Man Computed Tomography-Guided Percutaneous Revascularization of Coronary Chronic Total Occlusion Using a Wearable Computer: Proof of Concept.

    Science.gov (United States)

    Opolski, Maksymilian P; Debski, Artur; Borucki, Bartosz A; Szpak, Marcin; Staruch, Adam D; Kepka, Cezary; Witkowski, Adam

    2016-06-01

    We report a case of successful computed tomography-guided percutaneous revascularization of a chronically occluded right coronary artery using a wearable, hands-free computer with a head-mounted display worn by interventional cardiologists in the catheterization laboratory. The projection of 3-dimensional computed tomographic reconstructions onto the screen of virtual reality glass allowed the operators to clearly visualize the distal coronary vessel, and verify the direction of the guide wire advancement relative to the course of the occluded vessel segment. This case provides proof of concept that wearable computers can improve operator comfort and procedure efficiency in interventional cardiology. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  14. Enlist micros: Training science teachers to use microcomputers

    Science.gov (United States)

    Baird, William E.; Ellis, James D.; Kuerbis, Paul J.

    A National Science Foundation grant to the Biological Sciences Curriculum Study (BSCS) at The Colorado College supported the design and production of training materials to encourage literacy of science teachers in the use of microcomputers. ENLIST Micros is based on results of a national needs assessment that identified 22 compentencies needed by K-12 science teachers to use microcomputers for instruction. A writing team developed the 16-hour training program in the summer of 1985, and field-test coordinators tested it with 18 preservice or in-service groups during the 1985-86 academic year at 15 sites within the United States. The training materials consist of video programs, interactive computer disks for the Apple II series microcomputer, a training manual for participants, and a guide for the group leader. The experimental materials address major areas of educational computing: awareness, applications, implementation, evaluation, and resources. Each chapter contains activities developed for this program, such as viewing video segments of science teachers who are using computers effectively and running commercial science and training courseware. Role playing and small-group interaction help the teachers overcome their reluctance to use computers and plan for effective implementation of microcomputers in the school. This study examines the implementation of educational computing among 47 science teachers who completed the ENLIST Micros training at a southern university. We present results of formative evaluation for that site. Results indicate that both elementary and secondary teachers benefit from the training program and demonstrate gains in attitudes toward computer use. Participating teachers said that the program met its stated objectives and helped them obtain needed skills. Only 33 percent of these teachers, however, reported using computers one year after the training. In June 1986, the BSCS initiated a follow up to the ENLIST Micros curriculum to

  15. Role of [18F]fluorodeoxyglucose positron emission tomography-computed tomography, sonography, and sonographically guided fine-needle aspiration biopsy in the diagnosis of axillary lymph nodes in patients with breast cancer: comparison of diagnostic performance.

    Science.gov (United States)

    Sohn, Yu-Mee; Hong, Il Ki; Han, Kyunghwa

    2014-06-01

    The aim of this study was to compare the diagnostic performance of [(18)F]fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-CT) with that of sonography and sonographically guided fine-needle aspiration (FNA) for determining the preoperative axillary lymph node (ALN) status and to evaluate the factors related to false-negative PET-CT, sonographic, and FNA results in ALN staging of invasive ductal carcinoma. From March 2009 to July 2012, 226 patients had a diagnosis of primary breast cancer. Among these patients, 107 constituted the study population after exclusion of transferred patients and patients with breast cancer other than invasive ductal carcinoma. The diagnostic performance of the modalities was compared with pathologic reports. Univariate and multivariate analyses were used to evaluate the relationship between clinicopathologic factors (symptoms, T stage, hormone receptors, and histologic grade), false-negative results, and true-negative results on PET-CT, sonography, and FNA. Of the 107 patients, 45 (42.1%) had positive results on final pathologic analysis of ALNs. Sonographically guided FNA had a significantly higher specificity, positive predictive value, accuracy, and area under the receiver operating characteristic curve than sonography and PET-CT (P < .01). When sonography and PET-CT were combined, the sensitivity was significantly improved (P = .019) compared with sonography alone. When FNA and PET-CT were combined, the sensitivity and negative predictive value were significantly increased compared with each modality (P < .01). Sonographically guided FNA was found to be an excellent diagnostic tool for preoperative evaluation of the ALN status. To obviate the step of sentinel lymph node biopsy for determining the ALN status, combined evaluation of ALNs by these modalities may be more complementary than the use of a single modality. © 2014 by the American Institute of Ultrasound in Medicine.

  16. Accurate pre-surgical determination for self-drilling miniscrew implant placement using surgical guides and cone-beam computed tomography.

    Science.gov (United States)

    Miyazawa, Ken; Kawaguchi, Misuzu; Tabuchi, Masako; Goto, Shigemi

    2010-12-01

    Miniscrew implants have proven to be effective in providing absolute orthodontic anchorage. However, as self-drilling miniscrew implants have become more popular, a problem has emerged, i.e. root contact, which can lead to perforation and other root injuries. To avoid possible root damage, a surgical guide was fabricated and cone-beam computed tomography (CBCT) was used to incorporate guide tubes drilled in accordance with the planned direction of the implants. Eighteen patients (5 males and 13 females; mean age 23.8 years; minimum 10.7, maximum 45.5) were included in the study. Forty-four self-drilling miniscrew implants (diameter 1.6, and length 8 mm) were placed in interradicular bone using a surgical guide procedure, the majority in the maxillary molar area. To determine the success rates, statistical analysis was undertaken using Fisher's exact probability test. CBCT images of post-surgical self-drilling miniscrew implant placement showed no root contact (0/44). However, based on CBCT evaluation, it was necessary to change the location or angle of 52.3 per cent (23/44) of the guide tubes prior to surgery in order to obtain optimal placement. If orthodontic force could be applied to the screw until completion of orthodontic treatment, screw anchorage was recorded as successful. The total success rate of all miniscrews was 90.9 per cent (40/44). Orthodontic self-drilling miniscrew implants must be inserted carefully, particularly in the case of blind placement, since even guide tubes made on casts frequently require repositioning to avoid the roots of the teeth. The use of surgical guides, fabricated using CBCT images, appears to be a promising technique for placement of orthodontic self-drilling miniscrew implants adjacent to the dental roots and maxillary sinuses.

  17. The single chip microcomputer technique in an intelligent nuclear instrument

    International Nuclear Information System (INIS)

    Wang Tieliu; Sun Punan; Wang Ying

    1995-01-01

    The authors present that how to acquire and process the output signals from the nuclear detector adopting single chip microcomputer technique, including working principles and the designing method of the computer's software and hardware in the single chip microcomputer instrument

  18. Final report : evaluation of microcomputer applications in transportation engineering.

    Science.gov (United States)

    1984-01-01

    This study investigated areas where microcomputers can aid in the effectiveness of transportation engineering at state and local levels. A survey of the microcomputer needs of transportation professionals in state and local agencies in Virginia was c...

  19. A microcomputer controlled thermoluminescence dosimetry system

    International Nuclear Information System (INIS)

    Huyskens, C.J.; Kicken, P.J.H.

    1980-01-01

    Using a microcomputer, an automatic thermoluminescence dosimetry system for personal dosimetry and thermoluminescence detector (TLD) research was developed. Process automation, statistical computation and dose calculation are provided by this microcomputer. Recording of measurement data, as well as dose record keeping for radiological workers is carried out with floppy disk. The microcomputer also provides a human/system interface by means of a video display and a printer. The main features of this dosimetry system are its low cost, high degree of flexibility, high degree of automation and the feasibility for use in routine dosimetry as well as in TLD research. The system is in use for personal dosimetry, environmental dosimetry and for TL-research work. Because of its modular set-up several components of the system are in use for other applications, too. The system seems suited for medium sized health physics groups. (author)

  20. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography

    International Nuclear Information System (INIS)

    Park, Justin C; Li, Jonathan G; Liu, Chihray; Lu, Bo; Zhang, Hao; Chen, Yunmei; Fan, Qiyong

    2015-01-01

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm ‘the common mask guided image reconstruction’ (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and ‘well’ solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the

  1. Common-mask guided image reconstruction (c-MGIR) for enhanced 4D cone-beam computed tomography.

    Science.gov (United States)

    Park, Justin C; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Li, Jonathan G; Liu, Chihray; Lu, Bo

    2015-12-07

    Compared to 3D cone beam computed tomography (3D CBCT), the image quality of commercially available four-dimensional (4D) CBCT is severely impaired due to the insufficient amount of projection data available for each phase. Since the traditional Feldkamp-Davis-Kress (FDK)-based algorithm is infeasible for reconstructing high quality 4D CBCT images with limited projections, investigators had developed several compress-sensing (CS) based algorithms to improve image quality. The aim of this study is to develop a novel algorithm which can provide better image quality than the FDK and other CS based algorithms with limited projections. We named this algorithm 'the common mask guided image reconstruction' (c-MGIR).In c-MGIR, the unknown CBCT volume is mathematically modeled as a combination of phase-specific motion vectors and phase-independent static vectors. The common-mask matrix, which is the key concept behind the c-MGIR algorithm, separates the common static part across all phase images from the possible moving part in each phase image. The moving part and the static part of the volumes were then alternatively updated by solving two sub-minimization problems iteratively. As the novel mathematical transformation allows the static volume and moving volumes to be updated (during each iteration) with global projections and 'well' solved static volume respectively, the algorithm was able to reduce the noise and under-sampling artifact (an issue faced by other algorithms) to the maximum extent. To evaluate the performance of our proposed c-MGIR, we utilized imaging data from both numerical phantoms and a lung cancer patient. The qualities of the images reconstructed with c-MGIR were compared with (1) standard FDK algorithm, (2) conventional total variation (CTV) based algorithm, (3) prior image constrained compressed sensing (PICCS) algorithm, and (4) motion-map constrained image reconstruction (MCIR) algorithm, respectively. To improve the efficiency of the algorithm

  2. Coupling two iteratives algorithms for density measurements by computerized tomography

    International Nuclear Information System (INIS)

    Silva, L.E.M.C.; Santos, C.A.C.; Borges, J.C.; Frenkel, A.D.B.; Rocha, G.M.

    1986-01-01

    This work develops a study for coupling two iteratives algotithms for density measurements by computerized tomography. Tomographies have been obtained with an automatized prototype, controled by a microcomputer, projected and assembled in the Nuclear Instrumentation Laboratory, at COPPE/UFRJ. Results show a good performance of the tomographic system, and demonstrate the validity of the method of calculus adopted. (Author) [pt

  3. Economical motor protection using microcomputer technology

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, N.

    1983-09-01

    A trend to design new motors closer to their design limits and the high cost of plant shutdown has increased the need for better protection of smaller three phase motors. A single chip microcomputer relay can be applied to replace thermal overloads which are of limited effectiveness on low and medium voltage machines with comprehensive, economical motor protection. The requirement for different protection features and how they are achieved is presented. All the protection features discussed are commercially available in a compact unit that uses a single chip microcomputer.

  4. Management of quality assurance in diagnostic radiology by microcomputer

    International Nuclear Information System (INIS)

    Evans, S.H.

    1985-01-01

    Software has been written for the calculation, interpretation and presentation of quality control measurements of X-ray machines. The programs run on a Z80 based microcomputer system comprising a Comart Communicator CP500 interfaced to a Volker Craig 4404 visual display unit (VDU) and an EpsonMX80F/T printer. The software has been written in the dbaseII database language (Ashton Tate 1975) and it runs under the CP/M operating system. The programs guide the user through each routine required and can be operated without knowledge of computers. The programs calculate the results from the raw data obtained from the test equipment and these results are then stored and analysed. (U.K.)

  5. Visibility of solid and liquid fiducial markers used for image-guided radiation therapy on optical coherence tomography: an esophageal phantom study (Conference Presentation)

    Science.gov (United States)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Weda, Jelmer J. A.; de Bruin, Daniel M.; Faber, Dirk J.; Hulshof, Maarten C. C. M.; van Leeuwen, Ton G.; van Herk, Marcel B.; de Boer, Johannes F.

    2017-03-01

    Radiation therapy (RT) is used in operable and inoperable esophageal cancer patients. Endoscopic ultrasound-guided fiducial marker placement allows improved translation of the disease extent on endoscopy to computed tomography (CT) images used for RT planning and enables image-guided RT. However, microscopic tumor extent at the time of RT planning is unknown. Endoscopic optical coherence tomography (OCT) is a high-resolution (10-30µm) imaging modality with the potential for accurately determining the longitudinal disease extent. Visibility of fiducial markers on OCT is crucial for integrating OCT findings with the RT planning CT. We investigated the visibility on OCT (NinePoint Medical, Inc.) of 13 commercially available solid (Visicoil, Gold Anchor, Flexicoil, Polymark, and QLRAD) and liquid (BioXmark, Lipiodol, and Hydrogel) fiducial markers of different diameter. We designed and manufactured a set of dedicated Silicone-based esophageal phantoms to perform imaging in a controlled environment. The esophageal phantoms consist of several layers with different TiO2 concentrations to simulate the scattering properties of a typical healthy human esophagus. Markers were placed at various depths (0.5, 1.1, 2.0, and 3.0mm). OCT imaging allowed detection of all fiducial markers and phantom layers. The signal to background ratio was 6-fold higher for the solid fiducial markers than the liquid fiducial markers, yet OCT was capable of visualizing all 13 fiducial markers at all investigated depths. We conclude that RT fiducial markers can be visualized with OCT. This allows integration of OCT findings with CT for image-guided RT.

  6. Evaluation of a novel Seldinger-needle for computed tomography guided interventions: initial experiences; Evaluierung einer neuen Seldinger-Nadel fuer computertomografisch gesteuerte Interventionen: Erste Erfahrungen

    Energy Technology Data Exchange (ETDEWEB)

    Plumhans, C.; Mahnken, A.; Iwa, R.; Behrendt, F.F.; Sebastian, K.; Guenther, R.W.; Honnef, D. [Universitaetsklinikum RWTH Aachen (Germany). Klinik fuer Radiologische Diagnostik

    2009-02-15

    To evaluate a new Seldinger puncture device for computed tomography-guided interventions under difficult conditions, to analyze applicability, and to investigate assets and drawbacks. From November 2007 to March 2008, we performed CT-guided interventions in 16 patients (7 women, 9 men; mean age 62 years old) using a new 20G-Seldinger needle (Sika-Med, Wiehl, Germany). This novel needle serves as a guide for many different interventional devices due to a guide wire welded on the proximal needle end. It allows continuous application of anesthesia via four tiny holes at the distal needle end until the region of interest is reached. Each intervention was subject to difficult interventional conditions. The indications for intervention were drainage (n = 7), Trucut biopsy of tumor (n = 8) and radiofrequency ablation (n = 1). Handling, success, advantages, drawbacks, complications and patient tolerance were noted after each procedure. A pain scale from 1 - 10 was used to grade the pain level during the intervention. All interventions were performed successfully and no severe complications were observed. Patient tolerance was very good resulting in a mean pain score of 2 {+-} 1. Regions with dangerous and difficult access were successfully reached with the new Seldinger needle in 15 of 16 cases by dilatation of the puncture tract and continuous administration of local anesthesia via the system. Furthermore, different devices such as Trucut systems and a drainage catheter were able to be inserted without complication via the needle. With a proximal removable luer-lock connection, liquid material was able to be aspirated in six cases. Under difficult interventional conditions, the use of a Seldinger needle as a reliable technique for CT-guided interventions can provide a safe and successful procedure. (orig.)

  7. Computed Tomography-Guided Core-Needle Biopsy Specimens Demonstrate Epidermal Growth Factor Receptor Mutations in Patients with Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Chen, C.M.; Chang, J.W.C.; Cheung, Y.C.; Lin, G.; Hsieh, J.J.; Hsu, T.; Huang, S.F.

    2008-01-01

    Background: Target therapy with a new class of epidermal growth factor receptor (EGFR) inhibitors shows improved clinical response in EGFR gene-mutated lung cancers. Purpose: To evaluate the use of computed tomography (CT)-guided core-needle biopsy specimens for the assessment of EGFR gene mutation in non-small-cell lung cancer (NSCLC). Material and Methods: Seventeen (nine males, eight females) patients with advanced NSCLC were enrolled in this study. All patients underwent CT-guided core-needle biopsy of the lung tumor prior to treatment with the EGFR inhibitor gefitinib. There were no life-threatening complications of biopsy. The specimens were sent fresh-frozen for EGFR mutation analysis and histopathological study. Results: There were 12 (70.6%) EGFR gene mutants and five (29.4%) nonmutants. The objective response rate to gefitinib therapy was 73.3% (11 of 15 patients), with 91.7% (11 of 12 mutants) for the mutant group and 0% for the nonmutant group. Conclusion: CT-guided core-needle biopsy of advanced NSCLC enables the acquisition of sufficient tissue for EGFR gene mutation analysis

  8. Short-term outcomes and safety of computed tomography-guided percutaneous microwave ablation of solitary adrenal metastasis from lung cancer: A multi-center retrospective study

    Energy Technology Data Exchange (ETDEWEB)

    Men, Min; Ye, Xin; Yang, Xia; Zheng, Aimin; Huang, Guang Hui; Wei, Zhigang [Dept. of Oncology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan (China); Fan, Wei Jun [Imaging and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou (China); Zhang, Kaixian [Dept. of Oncology, Teng Zhou Central People' s Hospital Affiliated with Jining Medical College, Tengzhou (China); Bi, Jing Wang [Dept. of Oncology, Jinan Military General Hospital of Chinese People' s Liberation Army, Jinan (China)

    2016-11-15

    To retrospectively evaluate the short-term outcomes and safety of computed tomography (CT)-guided percutaneous microwave ablation (MWA) of solitary adrenal metastasis from lung cancer. From May 2010 to April 2014, 31 patients with unilateral adrenal metastasis from lung cancer who were treated with CT-guided percutaneous MWA were enrolled. This study was conducted with approval from local Institutional Review Board. Clinical outcomes and complications of MWA were assessed. Their tumors ranged from 1.5 to 5.4 cm in diameter. After a median follow-up period of 11.1 months, primary efficacy rate was 90.3% (28/31). Local tumor progression was detected in 7 (22.6%) of 31 cases. Their median overall survival time was 12 months. The 1-year overall survival rate was 44.3%. Median local tumor progression-free survival time was 9 months. Local tumor progression-free survival rate was 77.4%. Of 36 MWA sessions, two (5.6%) had major complications (hypertensive crisis). CT-guided percutaneous MWA may be fairly safe and effective for treating solitary adrenal metastasis from lung cancer.

  9. Conventional multi-slice computed tomography (CT) and cone-beam CT (CBCT) for computer-aided implant placement. Part II: reliability of mucosa-supported stereolithographic guides.

    Science.gov (United States)

    Arisan, Volkan; Karabuda, Zihni Cüneyt; Pişkin, Bülent; Özdemir, Tayfun

    2013-12-01

    Deviations of implants that were placed by conventional computed tomography (CT)- or cone beam CT (CBCT)-derived mucosa-supported stereolithographic (SLA) surgical guides were analyzed in this study. Eleven patients were randomly scanned by a multi-slice CT (CT group) or a CBCT scanner (CBCT group). A total of 108 implants were planned on the software and placed using SLA guides. A new CT or CBCT scan was obtained and merged with the planning data to identify the deviations between the planned and placed implants. Results were analyzed by Mann-Whitney U test and multiple regressions (p < .05). Mean angular and linear deviations in the CT group were 3.30° (SD 0.36), and 0.75 (SD 0.32) and 0.80 mm (SD 0.35) at the implant shoulder and tip, respectively. In the CBCT group, mean angular and linear deviations were 3.47° (SD 0.37), and 0.81 (SD 0.32) and 0.87 mm (SD 0.32) at the implant shoulder and tip, respectively. No statistically significant differences were detected between the CT and CBCT groups (p = .169 and p = .551, p = .113 for angular and linear deviations, respectively). Implant placement via CT- or CBCT-derived mucosa-supported SLA guides yielded similar deviation values. Results should be confirmed on alternative CBCT scanners. © 2012 Wiley Periodicals, Inc.

  10. Outcomes of microscope-integrated intraoperative optical coherence tomography-guided center-sparing internal limiting membrane peeling for myopic traction maculopathy: a novel technique.

    Science.gov (United States)

    Kumar, Atul; Ravani, Raghav; Mehta, Aditi; Simakurthy, Sriram; Dhull, Chirakshi

    2017-07-04

    To evaluate the outcomes of pars plana vitrectomy (PPV) with microscope-integrated intraoperative optical coherence tomography (I-OCT)-guided traction removal and center-sparing internal limiting membrane (cs-ILM) peeling. Nine eyes with myopic traction maculopathy as diagnosed on SD-OCT underwent PPV with I-OCT-guided cs-ILM peeling and were evaluated prospectively for resolution of central macular thickness (CMT) and improvement in best-corrected visual acuity (BCVA), and complications, if any, were noted. All patients were followed up for more than 9 months. Resolution of the macular retinoschisis was seen in all nine eyes on SD-OCT. At 36 weeks, there was a significant improvement in mean BCVA from the preoperative BCVA (P = 0.0089) along with a reduction in the CMT from 569.77 ± 263.19 to 166.0 ± 43.91 um (P = 0.0039). None of the eyes showed worsening of BCVA or development of full-thickness macular hole in the intraoperative or follow-up period. PPV with I-OCT-guided cs-ILM peeling helps in complete removal of traction, resolution of retinoschisis and good functional recovery with low intraoperative and postoperative complications.

  11. Dictionary of microelectronics and microcomputer technology

    International Nuclear Information System (INIS)

    Attiyate, Y.H.; Shah, R.R.

    1984-01-01

    This bilingual dictionary (German-English and English-German) is to give the general public a clearer idea of the terminology of microelectronics, microcomputers, data processing, and computer science. Each part contains about 7500 terms frequently encountered in practice, about 2000 of which are supplemented by precise explanations. (orig./HP) [de

  12. Dose calculation in brachytherapy with microcomputers

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1989-01-01

    The computer algorithms, that allow the calculation of brachytherapy doses and its graphic representation for implants, using programs developed for Pc microcomputers are presented. These algorithms allow to localized the sources in space, from their projection in radiographics images and trace isodose counter. (C.G.C.) [pt

  13. Microcomputer Applications in Local Assessment Systems.

    Science.gov (United States)

    Harnisch, Delwyn L.; And Others

    The capabilities and hardware requirements of four microcomputer software packages produced by the Office of Educational Testing, Research and Service at the University of Illinois at Urbana-Champaign are described. These programs are: (1) the Scan-Tron Forms Analysis Package Version 2.0, an interface between an IBM-compatible and a Scan-Tron…

  14. A Laboratory Application of Microcomputer Graphics.

    Science.gov (United States)

    Gehring, Kalle B.; Moore, John W.

    1983-01-01

    A PASCAL graphics and instrument interface program for a Z80/S-100 based microcomputer was developed. The computer interfaces to a stopped-flow spectrophotometer replacing a storage oscilloscope and polaroid camera. Applications of this system are discussed, indicating that graphics and analog-to-digital boards have transformed the computer into…

  15. Microcomputer relay regulator in the CAMAC standard

    International Nuclear Information System (INIS)

    Nikolaev, V.P.

    1984-01-01

    The digital relay regulator is developed on the base of the KM001 microcomputer and KK06 controller for automatic control ob ects with transfer functions describing a broad class of systems using actuating motors (stabilitation, follow-up systems). The CAMAC relay-unit realizes the regulation law and provides the possibility to control analogous values by 8 channels

  16. Micro-Computers in Biology Inquiry.

    Science.gov (United States)

    Barnato, Carolyn; Barrett, Kathy

    1981-01-01

    Describes the modification of computer programs (BISON and POLLUT) to accommodate species and areas indigenous to the Pacific Coast area. Suggests that these programs, suitable for PET microcomputers, may foster a long-term, ongoing, inquiry-directed approach in biology. (DS)

  17. Evaluation of Five Microcomputer CAD Packages.

    Science.gov (United States)

    Leach, James A.

    1987-01-01

    Discusses the similarities, differences, advanced features, applications and number of users of five microcomputer computer-aided design (CAD) packages. Included are: "AutoCAD (V.2.17)"; "CADKEY (V.2.0)"; "CADVANCE (V.1.0)"; "Super MicroCAD"; and "VersaCAD Advanced (V.4.00)." Describes the…

  18. Print Station Operation. Microcomputing Working Paper Series.

    Science.gov (United States)

    Wozny, Lucy Anne

    During the academic year 1983-84, Drexel University instituted a new policy requiring all incoming students to have access to a microcomputer. The computer chosen to fulfill this requirement was the Macintosh from Apple Computer, Inc. Although this requirement put an additional financial burden on the Drexel student, the university administration…

  19. Machine Distribution. Microcomputing Working Papers Series.

    Science.gov (United States)

    Drexel Univ., Philadelphia, PA. Microcomputing Program.

    During the academic year 1983-84, Drexel University instituted a new policy requiring all incoming students to have access to a microcomputer. The computer chosen to fulfill this requirement was the Macintosh from Apple Computer, Inc. This paper provides a brief description of the process undertaken to select the appropriate computer (i.e.,…

  20. Cervical Gross Tumor Volume Dose Predicts Local Control Using Magnetic Resonance Imaging/Diffusion-Weighted Imaging—Guided High-Dose-Rate and Positron Emission Tomography/Computed Tomography—Guided Intensity Modulated Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Dyk, Pawel; Jiang, Naomi; Sun, Baozhou; DeWees, Todd A. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Fowler, Kathryn J.; Narra, Vamsi [Department of Diagnostic Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Garcia-Ramirez, Jose L.; Schwarz, Julie K. [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Grigsby, Perry W., E-mail: pgrigsby@wustl.edu [Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Division of Gynecologic Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri (United States); Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri (United States)

    2014-11-15

    Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodes by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.

  1. Combine TV-L1 model with guided image filtering for wide and faint ring artifacts correction of in-line x-ray phase contrast computed tomography.

    Science.gov (United States)

    Ji, Dongjiang; Qu, Gangrong; Hu, Chunhong; Zhao, Yuqing; Chen, Xiaodong

    2018-01-01

    In practice, mis-calibrated detector pixels give rise to wide and faint ring artifacts in the reconstruction image of the In-line phase-contrast computed tomography (IL-PC-CT). Ring artifacts correction is essential in IL-PC-CT. In this study, a novel method of wide and faint ring artifacts correction was presented based on combining TV-L1 model with guided image filtering (GIF) in the reconstruction image domain. The new correction method includes two main steps namely, the GIF step and the TV-L1 step. To validate the performance of this method, simulation data and real experimental synchrotron data are provided. The results demonstrate that TV-L1 model with GIF step can effectively correct the wide and faint ring artifacts for IL-PC-CT.

  2. Comparisons of Positron Emission Tomography/Computed Tomography and Ultrasound Imaging for Detection of Internal Mammary Lymph Node Metastases in Patients With Breast Cancer and Pathologic Correlation by Ultrasound-Guided Biopsy Procedures.

    Science.gov (United States)

    An, Yeong Yi; Kim, Sung Hun; Kang, Bong Joo; Lee, Ah Won

    2015-08-01

    To compare the diagnostic performance of [(18)F]fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) and ultrasound imaging (US) with pathologic results obtained by US-guided biopsy and to evaluate the role of US in detecting internal mammary lymph node (LN) metastases in patients with breast cancer. Between January 2008 and December 2012, 37 patients with breast cancer (median age, 51.4 years; range, 40-79 years) underwent US-guided biopsy for suspected internal mammary LN metastases. Medical records, radiologic images, and reports were reviewed and correlated with pathologic results. The positive internal mammary LN metastasis rate was 78.4%. All biopsies were performed safely without major complications. Only 8.1% of obtained samples were unsatisfactory. There were statistically significant differences in lesion size (P = .0002), standardized uptake value on PET/CT (P = .0015), biopsy methods (P = .002), and specimen adequacy (P = .007) between metastatic and benign groups. Of the clinical factorsreviewed, only concurrent distant metastasis was correlated with internal mammary LN metastasis (P< .0001). Sensitivities for detecting internal mammary LN metastases were 76.7%, 96.7%, and 92.9% for initial US examinations, initial US combined with second-look US for initially missed cases, and PET/CT, respectively (P= .017). In a subgroup analysis, the only significant difference found was in sensitivities between initial and combined US (P = .019). In a receiver operating characteristic curve analysis, the area under the curve for PET/CT using standardized uptake criteria (0.87) was higher than that for US using size criteria (0.83); however, this difference was not significant. Although PET/CT is the best noninvasive method for evaluating internal mammary LN metastases, US is also useful if internal mammary LN evaluation is routine during standard US surveillance of patients with breast cancer. Additionally, US-guided biopsies could be

  3. Cone beam computed tomography guided treatment delivery and planning verification for magnetic resonance imaging only radiotherapy of the brain

    DEFF Research Database (Denmark)

    Edmund, Jens M.; Andreasen, Daniel; Mahmood, Faisal

    2015-01-01

    CT (CBCT) can be used for MRI-only image-guided radiotherapy (IGRT) and for verifying the correctness of the corresponding pCT. Material and methods. Six patients receiving palliative cranial RT were included in the study. Each patient had three-dimensional (3D) T1W MRI, a CBCT and a CT for reference...

  4. Computed-Tomography-Guided Percutaneous Core Needle Biopsies of Suspected Malignant Lymphomas: Impact of Biopsy, Lesion, and Patient Parameters on Diagnostic Yield

    International Nuclear Information System (INIS)

    Hesselmann, V.; Zaehringer, M.; Krug, B.; Wesselmann, C.; Haferkamp, K.; Wickenhauser, C.; Lackner, K.

    2004-01-01

    Purpose: To investigate the diagnostic yield of core needle biopsy in patients with malignant lymphoma. Material and Methods: Computed-tomography-guided core needle biopsies in patients with malignant lymphoma performed in the period 1996 to 2001 were evaluated retrospectively. A biopsy was considered as 'fully diagnostic' if a histological diagnosis, including the histologic subtype in the event of malignant lymphoma, was achieved and the clinical course and CT follow-up of at least 6 months confirmed the biopsy results. A biopsy was regarded as 'partly diagnostic' if histological work-up defined malignant lymphoma but not the histological subtype, and if histological diagnosis bore therapeutic relevance. Diagnostic yield was correlated with features such as size of specimen, location and depth of the target lesion, and experience of the investigator. Results: 45 biopsies were performed in 40 patients. With respect to definite histopathological diagnosis, 31 biopsies (68.9%) were diagnostic and 14 (31.1%) non-diagnostic. In 4 cases (8.8%), biopsies yielded partly diagnostic results, since therapy could be scheduled after biopsy without final sub-classification. Statistical analysis of biopsy parameters revealed that sample sizes were significantly larger in the diagnostic group. Conclusion: CT-guided biopsy can be considered as an alternative for lymphoma diagnosis and should be the first interventional procedure. The most important parameter for diagnostic success is the size of the specimen

  5. Initial Experience with Computed Tomography and Fluoroscopically Guided Placement of Push-Type Gastrostomy Tubes Using a Rupture-Free Balloon Catheter

    International Nuclear Information System (INIS)

    Fujita, Takeshi; Tanabe, Masahiro; Yamatogi, Shigenari; Shimizu, Kensaku; Matsunaga, Naofumi

    2011-01-01

    The purpose of this study was to evaluate the safety and feasibility of percutaneous radiologic gastrostomy placement of push-type gastrostomy tubes using a rupture-free balloon (RFB) catheter under computed tomography (CT) and fluoroscopic guidance. A total of 35 patients (23 men and 12 women; age range 57–93 years [mean 71.7]) underwent percutaneous CT and fluoroscopically guided gastrostomy placement of a push-type gastrostomy tube using an RFB catheter between April 2005 and July 2008. Technical success, procedure duration, and complications were analyzed. Percutaneous radiologic gastrostomy placement was considered technically successful in all patients. The median procedure time was 39 ± 13 (SD) min (range 24–78). The average follow-up time interval was 103 days (range 7–812). No major complications related to the procedure were encountered. No tubes failed because of blockage, and neither tube dislodgement nor intraperitoneal leakage occurred during the follow-up period. The investigators conclude that percutaneous CT and fluoroscopically guided gastrostomy placement with push-type tubes using an RFB catheter is a safe and effective means of gastric feeding when performed by radiologists.

  6. Radiation Exposure of Interventional Radiologists During Computed Tomography Fluoroscopy-Guided Renal Cryoablation and Lung Radiofrequency Ablation: Direct Measurement in a Clinical Setting

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Yusuke, E-mail: wckyh140@yahoo.co.jp; Hiraki, Takao, E-mail: takaoh@tc4.so-net.ne.jp; Gobara, Hideo, E-mail: gobara@cc.okayama-u.ac.jp; Iguchi, Toshihiro, E-mail: i10476@yahoo.co.jp; Fujiwara, Hiroyasu, E-mail: hirofujiwar@gmail.com; Kawabata, Takahiro, E-mail: tkhr-kwbt@yahoo.co.jp [Okayama University Medical School, Department of Radiology (Japan); Yamauchi, Takatsugu, E-mail: me9248@hp.okayama-u.ac.jp; Yamaguchi, Takuya, E-mail: me8738@hp.okayama-u.ac.jp [Okayama University Hospital, Central Division of Radiology (Japan); Kanazawa, Susumu, E-mail: susumu@cc.okayama-u.ac.jp [Okayama University Medical School, Department of Radiology (Japan)

    2016-06-15

    IntroductionComputed tomography (CT) fluoroscopy-guided renal cryoablation and lung radiofrequency ablation (RFA) have received increasing attention as promising cancer therapies. Although radiation exposure of interventional radiologists during these procedures is an important concern, data on operator exposure are lacking.Materials and MethodsRadiation dose to interventional radiologists during CT fluoroscopy-guided renal cryoablation (n = 20) and lung RFA (n = 20) was measured prospectively in a clinical setting. Effective dose to the operator was calculated from the 1-cm dose equivalent measured on the neck outside the lead apron, and on the left chest inside the lead apron, using electronic dosimeters. Equivalent dose to the operator’s finger skin was measured using thermoluminescent dosimeter rings.ResultsThe mean (median) effective dose to the operator per procedure was 6.05 (4.52) μSv during renal cryoablation and 0.74 (0.55) μSv during lung RFA. The mean (median) equivalent dose to the operator’s finger skin per procedure was 2.1 (2.1) mSv during renal cryoablation, and 0.3 (0.3) mSv during lung RFA.ConclusionRadiation dose to interventional radiologists during renal cryoablation and lung RFA were at an acceptable level, and in line with recommended dose limits for occupational radiation exposure.

  7. Radiation Exposure of Interventional Radiologists During Computed Tomography Fluoroscopy-Guided Renal Cryoablation and Lung Radiofrequency Ablation: Direct Measurement in a Clinical Setting.

    Science.gov (United States)

    Matsui, Yusuke; Hiraki, Takao; Gobara, Hideo; Iguchi, Toshihiro; Fujiwara, Hiroyasu; Kawabata, Takahiro; Yamauchi, Takatsugu; Yamaguchi, Takuya; Kanazawa, Susumu

    2016-06-01

    Computed tomography (CT) fluoroscopy-guided renal cryoablation and lung radiofrequency ablation (RFA) have received increasing attention as promising cancer therapies. Although radiation exposure of interventional radiologists during these procedures is an important concern, data on operator exposure are lacking. Radiation dose to interventional radiologists during CT fluoroscopy-guided renal cryoablation (n = 20) and lung RFA (n = 20) was measured prospectively in a clinical setting. Effective dose to the operator was calculated from the 1-cm dose equivalent measured on the neck outside the lead apron, and on the left chest inside the lead apron, using electronic dosimeters. Equivalent dose to the operator's finger skin was measured using thermoluminescent dosimeter rings. The mean (median) effective dose to the operator per procedure was 6.05 (4.52) μSv during renal cryoablation and 0.74 (0.55) μSv during lung RFA. The mean (median) equivalent dose to the operator's finger skin per procedure was 2.1 (2.1) mSv during renal cryoablation, and 0.3 (0.3) mSv during lung RFA. Radiation dose to interventional radiologists during renal cryoablation and lung RFA were at an acceptable level, and in line with recommended dose limits for occupational radiation exposure.

  8. Versatile microcomputer-based temperature controller

    International Nuclear Information System (INIS)

    Yarberry, V.R.

    1980-09-01

    The wide range of thermal responses required in laboratory and scientific equipment requires a temperature controller with a great deal of flexibility. While a number of analog temperature controllers are commercially available, they have certain limitations, such as inflexible parameter control or insufficient precision. Most lack digital interface capabilities--a necessity when the temperature controller is part of a computer-controlled automatic data acquisition system. We have developed an extremely versatile microcomputer-based temperature controller to fulfill this need in a variety of equipment. The control algorithm used allows optimal tailoring of parameters to control overshoot, response time, and accuracy. This microcomputer-based temperature controller can be used as a standalone instrument (with a teletype used to enter para-meters), or it can be integrated into a data acquisition system

  9. Scheduling nursing personnel on a microcomputer.

    Science.gov (United States)

    Liao, C J; Kao, C Y

    1997-01-01

    Suggests that with the shortage of nursing personnel, hospital administrators have to pay more attention to the needs of nurses to retain and recruit them. Also asserts that improving nurses' schedules is one of the most economic ways for the hospital administration to create a better working environment for nurses. Develops an algorithm for scheduling nursing personnel. Contrary to the current hospital approach, which schedules nurses on a person-by-person basis, the proposed algorithm constructs schedules on a day-by-day basis. The algorithm has inherent flexibility in handling a variety of possible constraints and goals, similar to other non-cyclical approaches. But, unlike most other non-cyclical approaches, it can also generate a quality schedule in a short time on a microcomputer. The algorithm was coded in C language and run on a microcomputer. The developed software is currently implemented at a leading hospital in Taiwan. The response to the initial implementation is quite promising.

  10. Microcomputer system for controlling fuel rod length

    International Nuclear Information System (INIS)

    Meyer, E.R.; Bouldin, D.W.; Bolfing, B.J.

    1979-01-01

    A system is being developed at the Oak Ridge National Laboratory (ORNL) to automatically measure and control the length of fuel rods for use in a high temperature gas-cooled reactor (HTGR). The system utilizes an LSI-11 microcomputer for monitoring fuel rod length and for adjusting the primary factor affecting length. Preliminary results indicate that the automated system can maintain fuel rod length within the specified limits of 1.940 +- 0.040 in. This system provides quality control documentation and eliminates the dependence of the current fuel rod molding process on manual length control. In addition, the microcomputer system is compatible with planned efforts to extend control to fuel rod fissile and fertile material contents

  11. Microcomputer control of automated TLD reader

    International Nuclear Information System (INIS)

    Bjarland, Bert.

    1979-10-01

    The interfacing electronics, the control algorithms and the developed programs of a 6800 microcomputer controlled automated TLD reader are described. The TL reading system is implemented with a photomultiplier tube and a charge-to-pulse converter. The gain of the TL reading system is controlled through the use of a temperature compensated LED reference light source. Automatic compensation of PM tube dark current is optional. The short term stability of TL readings is better than 3 %. (author)

  12. Accessing remote data bases using microcomputers

    OpenAIRE

    Saul, Peter D.

    1985-01-01

    General practitioners' access to remote data bases using microcomputers is increasing, making even the most obscure information readily available. Some of the systems available to general practitioners in the UK are described and the methods of access are outlined. General practitioners should be aware of the advances in technology; data bases are increasing in size, the cost of access is falling and their use is becoming easier.

  13. Multiprogrammation fast branch driver for microcomputer MICRAL

    International Nuclear Information System (INIS)

    Kaiser, Josef; Lacroix, Jean.

    1975-01-01

    This branch driver allows in association with the FIFO memories of the microcomputer Micral, very fast exchanges with the 7 crates of a CAMAC branch. A CAMAC programm (command, test, read, write) is loaded in the 1K FIFO buffer of the Micral before execution time and executed in sequence at a rate of 1,5μs per CAMAC command. After programm execution, data may be transferred directly on a magnetic tape [fr

  14. ULTRASONOGRAPHY AND COMPUTED TOMOGRAPHY GUIDED FINE NEEDLE ASPIRATION CYTOLOGY IN DIAGNOSING INTRA-ABDOMINAL LESIONS- A 6-YEAR RETROSPECTIVE STUDY IN A TERTIARY CARE HOSPITAL IN MANIPUR

    Directory of Open Access Journals (Sweden)

    Ratan Konjengbam

    2017-07-01

    Full Text Available BACKGROUND Fine-Needle Aspiration Cytology (FNAC is a widely used method, which is accurate and safe in a readily palpable masses. But, in those inaccessible lesions and deeper organs are safely aspirated using fine needle radiological procedure like ultrasound or computed tomography guided. The aim of the study is to assess the utility of FNAC in the diagnosis of intra-abdominal lesions and different pattern of lesions in particular to the sites. MATERIALS AND METHODS This retrospective study was done in the Department of Pathology, Regional Institute of Medical Sciences (RIMS, Imphal, between June 2010 and June 2016. The study included 128 intra-abdominal masses. Giemsa and Papanicolaou’s stains were used. The cytological diagnosis was correlated with clinical and radiological data to arrive at a final diagnosis. RESULTS Reports on FNAC smears were retrospectively analysed, which had been done in various anatomic sites- liver (70 cases, colon (19 cases, gallbladder (17 cases, mesenteric lymph nodes (12 cases, ovary (3 cases, adrenals (2 cases and 1 case each of pancreas, peritoneal wall, pelvic, suprapubic and flank masses. The mean age was 42.16 years with M:F of 1.3:1. The diagnostic yield was 85.2% in combination for Ultrasound Guided (USG and Computed Tomography (CT guided aspiration. The smears were classified as benign neoplastic, malignant neoplastic, non-neoplastic, inconclusive and unsatisfactory for interpretation. There were 79 (61.7% malignant neoplastic lesion, 5 (3.9% benign neoplastic lesion, 25 (19.5% non-neoplastic lesion, one (0.7% inconclusive lesions and 18 (14.1% unsatisfactory smears. The liver and the colon were the most common sites. Adenocarcinomas and Hepatocellular Carcinoma (HCC were the most common malignant lesions comprising of 35 (44.3% and 25 (31.6% of the total malignant lesions diagnosed. CONCLUSION Intra-abdominal FNA is a simple, economical and a safe procedure with high sensitivity, specificity and

  15. Prostate contouring uncertainty in megavoltage computed tomography images acquired with a helical tomotherapy unit during image-guided radiation therapy

    International Nuclear Information System (INIS)

    Song, William Y.; Chiu, Bernard; Bauman, Glenn S.; Lock, Michael; Rodrigues, George; Ash, Robert; Lewis, Craig; Fenster, Aaron; Battista, Jerry J.; Van Dyk, Jake

    2006-01-01

    Purpose: To evaluate the image-guidance capabilities of megavoltage computed tomography (MVCT), this article compares the interobserver and intraobserver contouring uncertainty in kilovoltage computed tomography (KVCT) used for radiotherapy planning with MVCT acquired with helical tomotherapy. Methods and Materials: Five prostate-cancer patients were evaluated. Each patient underwent a KVCT and an MVCT study, a total of 10 CT studies. For interobserver variability analysis, four radiation oncologists, one physicist, and two radiation therapists (seven observers in total) contoured the prostate and seminal vesicles (SV) in the 10 studies. The intraobserver variability was assessed by asking all observers to repeat the contouring of 1 patient's KVCT and MVCT studies. Quantitative analysis of contour variations was performed by use of volumes and radial distances. Results: The interobserver and intraobserver contouring uncertainty was larger in MVCT compared with KVCT. Observers consistently segmented larger volumes on MVCT where the ratio of average prostate and SV volumes was 1.1 and 1.2, respectively. On average (interobserver and intraobserver), the local delineation variability, in terms of standard deviations [Δσ = √(σ 2 MVCT - σ 2 KVCT )], increased by 0.32 cm from KVCT to MVCT. Conclusions: Although MVCT was inferior to KVCT for prostate delineation, the application of MVCT in prostate radiotherapy remains useful

  16. Microcomputer-based monitoring and control system

    International Nuclear Information System (INIS)

    Talaska, D.

    1979-03-01

    This report describes a microcomputer-based monitoring and control system devised within, and used by, the Cryogenic Operations group at SLAC. Presently, a version of it is operating at the one meter liquid hydrogen bubble chamber augmenting the conventional pneumatic and human feedback system. Its use has greatly improved the controlled tolerances of temperature and pulse shape, and it has nearly eliminated the need for operating personnel to adjust the conventional pneumatic control system. The latter is most important since the rapid cycling machine can demand attentions beyond the operator's skill. Similar microcomputer systems are being prepared to monitor and control cryogenic devices situated in regions of radiation which preclude human entry and at diverse locations which defy the dexterity of the few operators assigned to maintain them. An IMSAI 8080 microcomputer is basic to the system. The key to the use of the IMSAI 8080 in this system was in the development of unique interface circuitry, and the report is mostly concerned with this

  17. Immediate and intermediate-term results of optical coherence tomography guided atherectomy in the treatment of peripheral arterial disease: Initial results from the VISION trial

    International Nuclear Information System (INIS)

    Cawich, Ian; Paixao, Andre R.M.; Marmagkiolis, Konstantinos; Lendel, Vasili; Rodriguez-Araujo, Gerardo; Rollefson, William A.; Mego, David M.; Cilingiroglu, Mehmet

    2016-01-01

    Background: Long-term patency rates for percutaneous peripheral arterial interventions are suboptimal. Optical coherence tomography (OCT) guided atherectomy may yield superior patency by optimizing plaque removal while preserving the tunica media and adventitia. Methods: The VISION study is a multicenter prospective study of patients with peripheral arterial disease undergoing OCT guided atherectomy with the Pantheris™ device. In 11 patients enrolled in a single center, we report procedural and clinical outcomes, at 30 days and 6 months. Results: The mean age was 63 ± 11 years and 73% (n = 8) were men. The target lesion was in the superficial femoral artery in 82% (n = 9) of the patients. Mean stenosis severity was 87% ± 10% and mean lesion length was 39 ± 31 mm. Procedural success was observed in all patients with no device related complications. Mean post-atherectomy stenosis was 18% ± 15%. Almost all excised tissue consisted of intimal plaque (94%). At 30 days, significant improvements in Rutherford class, VascuQoL scores and ABI were observed, 0.9 ± 0.8 vs. 3.1 ± 0.7 (p = 0.01), 4.9 ± 1.9 vs. 3.6 ± 1.5 (p = 0.03) and 1.04 ± 0.19 vs. 0.80 ± 0.19 (p < 0.01) respectively. At 6 months, there were significant improvements in Rutherford class (1.0 ± 1.0 vs. 3.1 ± 0.7, p = 0.01) and ABI (0.93 ± 0.19 versus 0.80 ± 0.19, p = 0.02) but not in VascuQoL scores (3.7 ± 1.4 versus 3.6 ± 1.5, p = 0.48). Target lesion revascularization occurred in 18% (n = 2) of the patients. Conclusion: OCT guided atherectomy resulted in high procedural success, no device related complications and encouraging results up to 6 months. Histological analysis suggested little injury to the media and adventitia. Larger studies are needed to confirm the efficacy of this approach. - Highlights: • OCT- guided atherectomy may yield superior patency by optimizing plaque removal and preserving the tunica media and adventitia. • OCT guided atherectomy resulted in high procedural

  18. Immediate and intermediate-term results of optical coherence tomography guided atherectomy in the treatment of peripheral arterial disease: Initial results from the VISION trial

    Energy Technology Data Exchange (ETDEWEB)

    Cawich, Ian; Paixao, Andre R.M. [Arkansas Heart Hospital, Peripheral Vascular Institute, Little Rock, AR (United States); Marmagkiolis, Konstantinos [Citizens Memorial Heart and Vascular Institute, Bolivar, MO (United States); University of Missouri, Columbia, MO (United States); Lendel, Vasili; Rodriguez-Araujo, Gerardo; Rollefson, William A.; Mego, David M. [Arkansas Heart Hospital, Peripheral Vascular Institute, Little Rock, AR (United States); Cilingiroglu, Mehmet, E-mail: Cilingiroglumehmet@gmail.com [Arkansas Heart Hospital, Peripheral Vascular Institute, Little Rock, AR (United States); Koc University, School of Medicine, Istanbul (Turkey)

    2016-10-15

    Background: Long-term patency rates for percutaneous peripheral arterial interventions are suboptimal. Optical coherence tomography (OCT) guided atherectomy may yield superior patency by optimizing plaque removal while preserving the tunica media and adventitia. Methods: The VISION study is a multicenter prospective study of patients with peripheral arterial disease undergoing OCT guided atherectomy with the Pantheris™ device. In 11 patients enrolled in a single center, we report procedural and clinical outcomes, at 30 days and 6 months. Results: The mean age was 63 ± 11 years and 73% (n = 8) were men. The target lesion was in the superficial femoral artery in 82% (n = 9) of the patients. Mean stenosis severity was 87% ± 10% and mean lesion length was 39 ± 31 mm. Procedural success was observed in all patients with no device related complications. Mean post-atherectomy stenosis was 18% ± 15%. Almost all excised tissue consisted of intimal plaque (94%). At 30 days, significant improvements in Rutherford class, VascuQoL scores and ABI were observed, 0.9 ± 0.8 vs. 3.1 ± 0.7 (p = 0.01), 4.9 ± 1.9 vs. 3.6 ± 1.5 (p = 0.03) and 1.04 ± 0.19 vs. 0.80 ± 0.19 (p < 0.01) respectively. At 6 months, there were significant improvements in Rutherford class (1.0 ± 1.0 vs. 3.1 ± 0.7, p = 0.01) and ABI (0.93 ± 0.19 versus 0.80 ± 0.19, p = 0.02) but not in VascuQoL scores (3.7 ± 1.4 versus 3.6 ± 1.5, p = 0.48). Target lesion revascularization occurred in 18% (n = 2) of the patients. Conclusion: OCT guided atherectomy resulted in high procedural success, no device related complications and encouraging results up to 6 months. Histological analysis suggested little injury to the media and adventitia. Larger studies are needed to confirm the efficacy of this approach. - Highlights: • OCT- guided atherectomy may yield superior patency by optimizing plaque removal and preserving the tunica media and adventitia. • OCT guided atherectomy resulted in high procedural

  19. Developing an automated database for monitoring ultrasound- and computed tomography-guided procedure complications and diagnostic yield.

    Science.gov (United States)

    Itri, Jason N; Jones, Lisa P; Kim, Woojin; Boonn, William W; Kolansky, Ana S; Hilton, Susan; Zafar, Hanna M

    2014-04-01

    Monitoring complications and diagnostic yield for image-guided procedures is an important component of maintaining high quality patient care promoted by professional societies in radiology and accreditation organizations such as the American College of Radiology (ACR) and Joint Commission. These outcome metrics can be used as part of a comprehensive quality assurance/quality improvement program to reduce variation in clinical practice, provide opportunities to engage in practice quality improvement, and contribute to developing national benchmarks and standards. The purpose of this article is to describe the development and successful implementation of an automated web-based software application to monitor procedural outcomes for US- and CT-guided procedures in an academic radiology department. The open source tools PHP: Hypertext Preprocessor (PHP) and MySQL were used to extract relevant procedural information from the Radiology Information System (RIS), auto-populate the procedure log database, and develop a user interface that generates real-time reports of complication rates and diagnostic yield by site and by operator. Utilizing structured radiology report templates resulted in significantly improved accuracy of information auto-populated from radiology reports, as well as greater compliance with manual data entry. An automated web-based procedure log database is an effective tool to reliably track complication rates and diagnostic yield for US- and CT-guided procedures performed in a radiology department.

  20. Microcomputer control of a residential photovoltaic power conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, B.K.; Steigerwald, R.L.; Szczesny, P.M.

    1984-01-01

    Microcomputer-based control of a residential photovoltaic power conditioning system is described. The microcomputer is responsible for array current feedback control, maximum power tracking control, array safe zone steering control, phase-locked reference wave synthesis, sequencing control, and some diagnostics. The control functions are implemented using Intel 8751 single-chip microcomputer-based hardware and software. The controller has been tested in the laboratory with the prototype power conditioner and shows excellent performance.

  1. Microcomputer control of a residential photovoltaic power conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bose, B.K.; Steigerwald, R.L.; Szczesny, P.M.

    1985-09-01

    Microcomputer-based control of a residential photovoltaic power conditioning system is described. The microcomputer is responsible for array current feedback control, maximum power tracking control, array safe zone steering control, phase-locked reference wave synthesis, sequencing control, and some diagnostics. The control functions are implemented using Intel 8751 single-chip microcomputer-based hardware and software. The controller has been tested in the laboratory with the prototype power conditioner and shows excellent performance.

  2. Setting ventilation parameters guided by electrical impedance tomography in an animal trial of acute respiratory distress syndrome

    Science.gov (United States)

    Czaplik, Michael; Biener, Ingeborg; Leonhardt, Steffen; Rossaint, Rolf

    2014-03-01

    Since mechanical ventilation can cause harm to lung tissue it should be as protective as possible. Whereas numerous options exist to set ventilator parameters, an adequate monitoring is lacking up to date. The Electrical Impedance Tomography (EIT) provides a non-invasive visualization of ventilation which is relatively easy to apply and commercially available. Although there are a number of published measures and parameters derived from EIT, it is not clear how to use EIT to improve clinical outcome of e.g. patients suffering from acute respiratory distress syndrome (ARDS), a severe disease with a high mortality rate. On the one hand, parameters should be easy to obtain, on the other hand clinical algorithms should consider them to optimize ventilator settings. The so called Global inhomogeneity (GI) index bases on the fact that ARDS is characterized by an inhomogeneous injury pattern. By applying positive endexpiratory pressures (PEEP), homogeneity should be attained. In this study, ARDS was induced by a double hit procedure in six pigs. They were randomly assigned to either the EIT or the control group. Whereas in the control group the ARDS network table was used to set the PEEP according to the current inspiratory oxygen fraction, in the EIT group the GI index was calculated during a decremental PEEP trial. PEEP was kept when GI index was lowest. Interestingly, PEEP was significantly higher in the EIT group. Additionally, two of these animals died ahead of the schedule. Obviously, not only homogeneity of ventilation distribution matters but also limitation of over-distension.

  3. Absolute electrical impedance tomography (aEIT) guided ventilation therapy in critical care patients: simulations and future trends.

    Science.gov (United States)

    Denaï, Mouloud A; Mahfouf, Mahdi; Mohamad-Samuri, Suzani; Panoutsos, George; Brown, Brian H; Mills, Gary H

    2010-05-01

    Thoracic electrical impedance tomography (EIT) is a noninvasive, radiation-free monitoring technique whose aim is to reconstruct a cross-sectional image of the internal spatial distribution of conductivity from electrical measurements made by injecting small alternating currents via an electrode array placed on the surface of the thorax. The purpose of this paper is to discuss the fundamentals of EIT and demonstrate the principles of mechanical ventilation, lung recruitment, and EIT imaging on a comprehensive physiological model, which combines a model of respiratory mechanics, a model of the human lung absolute resistivity as a function of air content, and a 2-D finite-element mesh of the thorax to simulate EIT image reconstruction during mechanical ventilation. The overall model gives a good understanding of respiratory physiology and EIT monitoring techniques in mechanically ventilated patients. The model proposed here was able to reproduce consistent images of ventilation distribution in simulated acutely injured and collapsed lung conditions. A new advisory system architecture integrating a previously developed data-driven physiological model for continuous and noninvasive predictions of blood gas parameters with the regional lung function data/information generated from absolute EIT (aEIT) is proposed for monitoring and ventilator therapy management of critical care patients.

  4. Non-real-time computed tomography-guided percutaneous ethanol injection therapy for heapocellular carcinoma undetectable by ultrasonography

    International Nuclear Information System (INIS)

    Ueda, Kazushige; Ohkawara, Tohru; Minami, Masahito; Sawa, Yoshihiko; Morinaga, Osamu; Kohli, Yoshihiro; Ohkawara, Yasuo

    1998-01-01

    The purpose of this study was to evaluate the feasibility of non-real-time CT-guided percutaneous ethanol injection therapy (PEIT) for hepatocellular carcinoma (HCC, 37 lesions) untreatable by ultrasonography-guided (US)-PEIT. The HCC lesion was localized on the lipiodol CT image with a graduated grid system. We advanced a 21 G or 22 G needle in a stepwise fashion with intermittent localization scans using a tandem method to position the tip of the needle in the lesion. Ethanol containing contrast medium was injected with monitoring scans obtained after incremental volumes of injection, until perfusion of the lesion was judged to be complete. A total of 44 CT-PEIT procedures were performed. The average number of needle passes from the skin to the liver in each CT-PEIT procedure was 2.3, the average amount of ethanol injected was 14.4 ml, and the average time required was 49.3 minutes. Complete perfusion of the lesion by ethanol on monitoring CT images was achieved in all lesions with only a single or double CT-PEIT procedure without severe complication. Local recurrence was detected only in 5 lesions. At present, it is more time-consuming to perform CT-PEIT than US-PEIT because conventional CT guidance is not real-time imaging. However, it is expected that this limitation of CT-PEIT will be overcome in the near future with the introduction of CT fluoroscopy. In conclusion, CT-PEIT should prove to be a feasible, acceptable treatment for challenging cases of HCC undetectable by US. (author)

  5. In vivo assessment of the gastric mucosal tolerance dose after single fraction, small volume irradiation of liver malignancies by computed tomography-guided, high-dose-rate brachytherapy

    International Nuclear Information System (INIS)

    Streitparth, Florian; Pech, Maciej; Boehmig, Michael; Ruehl, Ricarda; Peters, Nils; Wieners, Gero; Steinberg, Johannes; Lopez-Haenninen, Enrique; Felix, Roland; Wust, Peter; Ricke, Jens

    2006-01-01

    Purpose: The aim of this study was to assess the tolerance dose of gastric mucosa for single-fraction computed tomography (CT)-guided, high-dose-rate (HDR) brachytherapy of liver malignancies. Methods and Materials: A total of 33 patients treated by CT-guided HDR brachytherapy of liver malignancies in segments II and/or III were included. Dose planning was performed upon a three-dimensional CT data set acquired after percutaneous applicator positioning. All patients received gastric protection post-treatment. For further analysis, the contours of the gastric wall were defined in every CT slice using Brachyvision Software. Dose-volume histograms were calculated for each treatment and correlated with clinical data derived from questionnaires assessing Common Toxicity Criteria (CTC). All patients presenting symptoms of upper GI toxicity were examined endoscopically. Results: Summarizing all patients the minimum dose applied to 1 ml of the gastric wall (D 1ml ) ranged from 6.3 to 34.2 Gy; median, 14.3 Gy. Toxicity was present in 18 patients (55%). We found nausea in 16 (69%), emesis in 9 (27%), cramping in 13 (39%), weight loss in 12 (36%), gastritis in 4 (12%), and ulceration in 5 patients (15%). We found a threshold dose D 1ml of 11 Gy for general gastric toxicity and 15.5 Gy for gastric ulceration verified by an univariate analysis (p = 0.01). Conclusions: For a single fraction, small volume irradiation we found in the upper abdomen a threshold dose D 1ml of 15.5 Gy for the clinical endpoint ulceration of the gastric mucosa. This in vivo assessment is in accordance with previously published tolerance data

  6. Determinants of Local Progression After Computed Tomography-Guided Percutaneous Radiofrequency Ablation for Unresectable Lung Tumors: 9-Year Experience in a Single Institution

    International Nuclear Information System (INIS)

    Okuma, Tomohisa; Matsuoka, Toshiyuki; Yamamoto, Akira; Oyama, Yoshimasa; Hamamoto, Shinichi; Toyoshima, Masami; Nakamura, Kenji; Miki, Yukio

    2010-01-01

    The purpose of this study was to retrospectively determine the local control rate and contributing factors to local progression after computed tomography (CT)-guided radiofrequency ablation (RFA) for unresectable lung tumor. This study included 138 lung tumors in 72 patients (56 men and 16 women; age 70.0 ± 11.6 years (range 31-94); mean tumor size 2.1 ± 1.2 cm [range 0.2-9]) who underwent lung RFA between June 2000 and May 2009. Mean follow-up periods for patients and tumors were 14 and 12 months, respectively. The local progression-free rate and survival rate were calculated to determine the contributing factors to local progression. During follow-up, 44 of 138 (32%) lung tumors showed local progression. The 1-, 2-, 3-, and 5-year overall local control rates were 61, 57, 57, and 38%, respectively. The risk factors for local progression were age (≥70 years), tumor size (≥2 cm), sex (male), and no achievement of roll-off during RFA (P < 0.05). Multivariate analysis identified tumor size ≥2 cm as the only independent factor for local progression (P = 0.003). For tumors <2 cm, 17 of 68 (25%) showed local progression, and the 1-, 2-, and 3-year overall local control rates were 77, 73, and 73%, respectively. Multivariate analysis identified that age ≥70 years was an independent determinant of local progression for tumors <2 cm in diameter (P = 0.011). The present study showed that 32% of lung tumors developed local progression after CT-guided RFA. The significant risk factor for local progression after RFA for lung tumors was tumor size ≥2 cm.

  7. Imaging regional variation of cellular proliferation in gliomas using 3'-deoxy-3'-[18F]fluorothymidine positron-emission tomography: an image-guided biopsy study

    International Nuclear Information System (INIS)

    Price, S.J.; Fryer, T.D.; Cleij, M.C.; Dean, A.F.; Joseph, J.; Salvador, R.; Wang, D.D.; Hutchinson, P.J.; Clark, J.C.; Burnet, N.G.; Pickard, J.D.; Aigbirhio, F.I.

    2009-01-01

    Aim: To compare regional variations in uptake of 3'-deoxy-3'- [ 18 F]-fluorothymidine (FLT) images using positron-emission tomography (PET) with measures of cellular proliferation from biopsy specimens obtained by image-guided brain biopsies. Materials and methods: Fourteen patients with a supratentorial glioma that required an image-guided brain biopsy were imaged preoperatively with dynamic PET after the administration of FLT. Maps of FLT irreversible uptake rate (K i ) and standardized uptake value (SUV) were calculated. These maps were co-registered to a gadolinium-enhanced T1-weighted spoiled gradient echo (SPGR) sequence that was used for biopsy guidance, and the mean and maximum K i and SUV determined for each biopsy site. These values were correlated with the MIB-1 labelling index (a tissue marker of proliferation) from these biopsy sites. Results: A total of 57 biopsy sites were studied. Although all measures correlated with MIB-1 labelling index, K i max provided the best correlation (Pearson coefficient, r = 0.68; p i mean (±SD) was significantly higher than in normal tissue (3.3 ± 1.7 x 10 -3 ml plasma /min/ml tissue versus 1.2 ± 0.7 x 10 -3 ml plasma /min/ml tissue ; p = 0.001). High-grade gliomas showed heterogeneous uptake with a mean K i of 7.7 ± 4 x 10 -3 ml plasma /min/ml tissue . A threshold K i mean of 1.8 x 10 -3 differentiates between normal tissue and tumour (sensitivity 84%, specificity 88%); however, the latter threshold underestimated the extent of tumour in half the cases. SUV closely agreed with K i measurements. Conclusion: FLT PET is a useful marker of cellular proliferation that correlates with regional variation in cellular proliferation; however, it is unable to identify the margin of gliomas

  8. Immediate and intermediate-term results of optical coherence tomography guided atherectomy in the treatment of peripheral arterial disease: Initial results from the VISION trial.

    Science.gov (United States)

    Cawich, Ian; Paixao, Andre R M; Marmagkiolis, Konstantinos; Lendel, Vasili; Rodriguez-Araujo, Gerardo; Rollefson, William A; Mego, David M; Cilingiroglu, Mehmet

    Long-term patency rates for percutaneous peripheral arterial interventions are suboptimal. Optical coherence tomography (OCT) guided atherectomy may yield superior patency by optimizing plaque removal while preserving the tunica media and adventitia. The VISION study is a multicenter prospective study of patients with peripheral arterial disease undergoing OCT guided atherectomy with the Pantheris™ device. In 11 patients enrolled in a single center, we report procedural and clinical outcomes, at 30days and 6months. The mean age was 63±11years and 73% (n=8) were men. The target lesion was in the superficial femoral artery in 82% (n=9) of the patients. Mean stenosis severity was 87%±10% and mean lesion length was 39±31mm. Procedural success was observed in all patients with no device related complications. Mean post-atherectomy stenosis was 18%±15%. Almost all excised tissue consisted of intimal plaque (94%). At 30days, significant improvements in Rutherford class, VascuQoL scores and ABI were observed, 0.9±0.8 vs. 3.1±0.7 (p=0.01), 4.9±1.9 vs. 3.6±1.5 (p=0.03) and 1.04±0.19 vs. 0.80±0.19 (patherectomy resulted in high procedural success, no device related complications and encouraging results up to 6months. Histological analysis suggested little injury to the media and adventitia. Larger studies are needed to confirm the efficacy of this approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The value of ultrasound with ultrasound-guided fine-needle aspiration biopsy compared to computed tomography in the detection of regional metastases in the clinically negative neck

    International Nuclear Information System (INIS)

    Takes, Robert P.; Righi, Paul; Meeuwis, Cees A.; Manni, Johannes J.; Knegt, Paul; Marres, Henri A.M.; Spoelstra, Hubert A.A.; Boer, Maarten F. de; Mey, Andel G.L. van der; Bruaset, I.; Ball, Valerie; Weisberger, Edward; Radpour, Shokri; Kruyt, Rene H.; Joosten, Frank B.M.; Lameris, Johan S.; Oostayen, Jacques A. van; Kopecky, Kenyon; Caldemeyer, Karen; Henzen-Logmans, Sonja C.; Wiersma-van Tilburg, J.M.; Bosman, Fred T.; Krieken, J. Han J.M. van; Hermans, Jo; Baatenburg de Jong, Robert J.

    1998-01-01

    Purpose: Head and neck oncologists have not reached consensus regarding the role of contemporary imaging techniques in the evaluation of the clinically negative neck in patients with head and neck squamous cell carcinoma (HNSCC). The purpose of the present study was to compare the accuracy of ultrasound with guided fine-needle aspiration biopsy (UGFNAB) and computed tomography (CT) in detecting lymph node metastasis in the clinically negative neck. Methods and Materials: Sixty-four neck sides of patients with HNSCC were examined preoperatively by ultrasound/UGFNAB and CT at one of five participating tertiary care medical centers. The findings were correlated with the results of histopathologic examination of the neck specimen. Results: Ultrasound with guided fine-needle aspiration biopsy was characterized by a sensitivity of 48%, specificity of 100%, and overall accuracy of 79%. Three cases had nondiagnostic aspirations using UGFNAB and were excluded. CT demonstrated a sensitivity of 54%, specificity of 92%, and overall accuracy of 77%. UGFNAB detected two additional metastases not visualized on CT, whereas CT detected no metastases not seen on UGFNAB. The results of UGFNAB were similar between the participating centers. Conclusions: Approximately one half of the clinically occult nodal metastases in our patient group were identified by both CT and UGFNAB. Overall, UGFNAB and CT demonstrated comparable accuracy. The sensitivity of CT was slightly better than UGFNAB, but the latter remained characterized by a superior specificity. The results of CT and UGFNAB did not appear to be supplementary. The choice of imaging modality for staging of the clinically negative neck depends on tumor site, T-stage, and experience and preference of the head and neck oncologist. If CT is required for staging of the primary tumor, additional staging of the neck by UGFNAB does not provide significant additional value

  10. Feasibility of computed tomography-guided core needle biopsy in producing state-of-the-art clinical management in Chinese lung cancer.

    Science.gov (United States)

    Chen, Hua-Jun; Yang, Jin-Ji; Fang, Liang-Yi; Huang, Min-Min; Yan, Hong-Hong; Zhang, Xu-Chao; Xu, Chong-Rui; Wu, Yi-Long

    2014-03-01

    A satisfactory biopsy determines the state-of-the-art management of lung cancer in this era of personalized medicine. This study aimed to investigate the suitability and efficacy of computed tomography (CT)-guided core needle biopsy in clinical management. A cohort of 353 patients with clinically suspected lung cancer was enrolled in the study. Patient factors and biopsy variables were recorded. Epidermal growth factor receptor (EGFR) gene mutations and echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) rearrangement were detected in tumor specimens. Adequacy of biopsic obtainment for clinical trial screening and tissue bank establishment were reviewed. Overall diagnostic accuracy of malignancy achieved 98.5%. The median biopsy time of the cohort was 20 minutes. In patients with non-small cell lung cancer (NSCLC), 99.3% (287/289) were diagnosed as specific histologic subtypes, and two patients (0.7%) were determined as NSCLC not otherwise specified (NOS). EGFR mutations were analyzed in 81.7% (236/289) of patients with NSCLC, and 98.7% (233/236) showed conclusive results. EML4-ALK gene fusion was tested in 43.9% (127/289) of NSCLC patients, and 98.4% (125/127) showed conclusive results: 6.4% (8/125) of those had gene fusion. Ninety-six NSCLC patients participated in clinical trial screening and provided mandatory tumor slides for molecular profiling. Pathological evaluation was fulfilled in 90 patients (93.8%); 99.4% (320/322) of patients with malignancy provided extra tissue for the establishment of a tumor bank. CT-guided core needle biopsy provided optimal clinical management in this era of translational medicine. The biopsic modality should be prioritized in selected lung cancer patients.

  11. Evaluation of autoradiograms using a microcomputer

    International Nuclear Information System (INIS)

    Birkholz, W.; Steinert, M.

    1983-01-01

    An equipment AURAS for evalutaion of autoradiograms has been developed. It consists of a digital photometer and the densitron system (television scanner) for digitalisation of pictures and a microprocessor for picture processing and storing of datas. The digital photometer permits a precise but time consuming scanning. The densitron system works quickly with little density classes and pseudocolouring of pictures. For the evaluation of autoradiograms with the microcomputer a programsystem MARAUS was written. It works in a dialogeous regime. The possibilities of using the equipment for evaluation of autoradiograms are demonstrated. (author)

  12. Microcomputer simulation of PWR power plant pressurizer

    International Nuclear Information System (INIS)

    Araujo, L.R.A. de; Calixto Neto, J.; Martinez, A.S.; Schirru, R.

    1990-01-01

    It is presented a method for the simulation of the pressurizer behavior of a PWR power plant. The method was implanted in a microcomputer, and it considers all the devices for the pressure control (spray and relief valves, heaters, controller, etc.). The physical phenomena and the PID (Proportional + Integral + Derivative) controller were mathematically represented by linear relations, uncoupled, discretized in the time. There are three different algorithms which take into account the non-linear effects introduced by the variation of the physical properties due to the temperature and pressure, and also the mutual effects between the physical phenomena and the PID controller. (author)

  13. Microcomputer Network for Computerized Adaptive Testing (CAT)

    Science.gov (United States)

    1984-03-01

    PRDC TR 84-33 \\Q.�d-33- \\ MICROCOMPUTER NETWOJlt FOR COMPUTERIZED ADAPTIVE TESTING ( CAT ) Baldwin Quan Thomas A . Park Gary Sandahl John H...ACCEIIION NO NPRDC TR 84-33 4. TITLE (-d Sul>tlllo) MICROCOMP UTER NETWORK FOR COMPUTERIZED ADA PTIVE TESTING ( CAT ) 1. Q B. uan T. A . Park...adaptive testing ( CAT ) Bayesian sequential testing 20. ABSTitACT (Continuo on ro•••• aide II noco .. _, _., ld-tlly ,.,. t.loclt _._.) DO Computerized

  14. Switching from computer to microcomputer architecture education

    Science.gov (United States)

    Bolanakis, Dimosthenis E.; Kotsis, Konstantinos T.; Laopoulos, Theodore

    2010-03-01

    In the last decades, the technological and scientific evolution of the computing discipline has been widely affecting research in software engineering education, which nowadays advocates more enlightened and liberal ideas. This article reviews cross-disciplinary research on a computer architecture class in consideration of its switching to microcomputer architecture. The authors present their strategies towards a successful crossing of boundaries between engineering disciplines. This communication aims at providing a different aspect on professional courses that are, nowadays, addressed at the expense of traditional courses.

  15. Early Chest Computed Tomography Scan to Assist Diagnosis and Guide Treatment Decision for Suspected Community-acquired Pneumonia.

    Science.gov (United States)

    Claessens, Yann-Erick; Debray, Marie-Pierre; Tubach, Florence; Brun, Anne-Laure; Rammaert, Blandine; Hausfater, Pierre; Naccache, Jean-Marc; Ray, Patrick; Choquet, Christophe; Carette, Marie-France; Mayaud, Charles; Leport, Catherine; Duval, Xavier

    2015-10-15

    Clinical decision making relative to community-acquired pneumonia (CAP) diagnosis is difficult. Chest radiograph is key in establishing parenchymal lung involvement. However, radiologic performance may lead to misdiagnosis, rendering questionable the use of chest computed tomography (CT) scan in patients with clinically suspected CAP. To assess whether early multidetector chest CT scan affects diagnosis and management of patients visiting the emergency department with suspected CAP. A total of 319 prospectively enrolled patients with clinically suspected CAP underwent multidetector chest CT scan within 4 hours. CAP diagnosis probability (definite, probable, possible, or excluded) and therapeutic plans (antibiotic initiation/discontinuation, hospitalization/discharge) were established by emergency physicians before and after CT scan results. The adjudication committee established the final CAP classification on Day 28. Chest radiograph revealed a parenchymal infiltrate in 188 patients. CAP was initially classified as definite in 143 patients (44.8%), probable or possible in 172 (53.8%), and excluded in 4 (1.2%). CT scan revealed a parenchymal infiltrate in 40 (33%) of the patients without infiltrate on chest radiograph and excluded CAP in 56 (29.8%) of the 188 with parenchymal infiltrate on radiograph. CT scan modified classification in 187 (58.6%; 95% confidence interval, 53.2-64.0), leading to 50.8% definite CAP and 28.8% excluded CAP, and 80% of modifications were in accordance with adjudication committee classification. Because of CT scan, antibiotics were initiated in 51 (16%) and discontinued in 29 (9%), and hospitalization was decided in 22 and discharge in 23. In CAP-suspected patients visiting the emergency unit, early CT scan findings complementary to chest radiograph markedly affect both diagnosis and clinical management. Clinical trial registered with www.clinicaltrials.gov (NCT 01574066).

  16. Single-chip microcomputer application in nuclear radiation monitoring instruments

    International Nuclear Information System (INIS)

    Zhang Songshou

    1994-01-01

    The single-chip microcomputer has advantage in many respects i.e. multiple function, small size, low-power consumption,reliability etc. It is widely used now in industry, instrumentation, communication and machinery. The author introduced usage of single-chip microcomputer in nuclear radiation monitoring instruments for control, linear compensation, calculation, changeable parameter presetting and military training

  17. User's manual for levelized power generation cost using a microcomputer

    International Nuclear Information System (INIS)

    Fuller, L.C.

    1984-08-01

    Microcomputer programs for the estimation of levelized electrical power generation costs are described. Procedures for light-water reactor plants and coal-fired plants include capital investment cost, operation and maintenance cost, fuel cycle cost, nuclear decommissioning cost, and levelized total generation cost. Programs are written in Pascal and are run on an Apple II Plus microcomputer

  18. Microcomputers and Informatics Education at the University Level.

    Science.gov (United States)

    Boyanov, Todor

    1984-01-01

    Because of the widespread use of microcomputers in Bulgaria, informatics education for all college students is considered both possible and necessary. Uses of microcomputers in various disciplines are described, including those in mathematics/mechanics, the experimental sciences, and humanities. Brief comments on computer-assisted-learning and…

  19. Microcomputer based test system for charge coupled devices

    International Nuclear Information System (INIS)

    Sidman, S.

    1981-02-01

    A microcomputer based system for testing analog charge coupled integrated circuits has been developed. It measures device performance for three parameters: dynamic range, baseline shift due to leakage current, and transfer efficiency. A companion board tester has also been developed. The software consists of a collection of BASIC and assembly language routines developed on the test system microcomputer

  20. Ultrasound-guided diffuse optical tomography (DOT) of invasive breast carcinoma: Does tumour total haemoglobin concentration contribute to the prediction of axillary lymph node status?

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qingli, E-mail: qinglizhu@gmail.com [Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1, Dongcheng District, Beijing 100730 (China); Xiao, Mengsu, E-mail: xiaomengsu_2000@sina.com [Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1, Dongcheng District, Beijing 100730 (China); You, Shanshan, E-mail: shanshan_0531@sina.com [Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1, Dongcheng District, Beijing 100730 (China); Zhang, Jing, E-mail: zhang.jing1029@163.com [Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1, Dongcheng District, Beijing 100730 (China); Jiang, Yuxin, E-mail: yuxinjiangxh@yahoo.com.cn [Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1, Dongcheng District, Beijing 100730 (China); Lai, Xingjian, E-mail: lxjpumch@yahoo.com.cn [Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1, Dongcheng District, Beijing 100730 (China); Dai, Qing, E-mail: qingdai_2000@yahoo.com [Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan 1, Dongcheng District, Beijing 100730 (China)

    2012-11-15

    Objectives: To prospectively study the ultrasound-guided near-infrared diffuse optical tomography (DOT) findings of the total haemoglobin concentration (THC) detected in invasive breast carcinomas and its contribution to the prediction of axillary lymph node (LN) status. Methods: A total of 195 invasive breast carcinomas were prospectively studied with DOT before surgery. Lumpectomy or mastectomy with full axillary nodal dissection was performed. Tumour size and THC level were correlated with LN status by a logistic regression analysis. Results: One hundred twenty-four patients (63.59%) was LN(-) and 71 (36.41%) was LN(+). The average THC was significantly higher in the LN(+) group than in the LN(-) group (252.94 {+-} 69.19 {mu}mol/L versus 203.86 {+-} 83.13 {mu}mol/L, P = 0.01). A multivariate analysis showed an independent relationship between the probability of axillary metastasis, elevated THC level (P = 0.01), and tumour size (P = 0.001). The odds ratio with THC {>=} 140 {mu}mol/L was 13.651 (1.781-104.560), whereas that of tumour size with a 1 cm increment was only 1.777 (1.283-2.246). Conclusions: The THC level and the tumour size are independent and preoperative predictors of axillary nodal status; these variables may improve the diagnosis of patients with lymph node metastasis.

  1. Comparative Investigation of Guided Fuzzy Clustering and Mean Shift Clustering for Edge Detection in Electrical Resistivity Tomography Images of Mineral Deposits

    Science.gov (United States)

    Ward, Wil; Wilkinson, Paul; Chambers, Jon; Bai, Li

    2014-05-01

    Geophysical surveying using electrical resistivity tomography (ERT) can be used as a rapid non-intrusive method to investigate mineral deposits [1]. One of the key challenges with this approach is to find a robust automated method to assess and characterise deposits on the basis of an ERT image. Recent research applying edge detection techniques has yielded a framework that can successfully locate geological interfaces in ERT images using a minimal assumption data clustering technique, the guided fuzzy clustering method (gfcm) [2]. Non-parametric clustering techniques are statistically grounded methods of image segmentation that do not require any assumptions about the distribution of data under investigation. This study is a comparison of two such methods to assess geological structure based on the resistivity images. In addition to gfcm, a method called mean-shift clustering [3] is investigated with comparisons directed at accuracy, computational expense, and degree of user interaction. Neither approach requires the number of clusters as input (a common parameter and often impractical), rather they are based on a similar theory that data can be clustered based on peaks in the probability density function (pdf) of the data. Each local maximum in these functions represents the modal value of a particular population corresponding to a cluster and as such the data are assigned based on their relationships to these model values. The two methods differ in that gfcm approximates the pdf using kernel density estimation and identifies population means, assigning cluster membership probabilities to each resistivity value in the model based on its distance from the distribution averages. Whereas, in mean-shift clustering, the density function is not calculated, but a gradient ascent method creates a vector that leads each datum towards high density distributions iteratively using weighted kernels to calculate locally dense regions. The only parameter needed in both methods

  2. A microcomputer network for the control of digitising machines

    International Nuclear Information System (INIS)

    Seller, P.

    1981-01-01

    A distributed microcomputing network operates in the Bubble Chamber Research Group Scanning Laboratory at the Rutherford and Appleton Laboratories. A microcomputer at each digitising table buffers information, controls the functioning of the table and enhances the machine/operator interface. The system consists of fourteen microcomputers together with a VAX 11/780 computer used for data analysis. These are inter-connected via a packet switched network. This paper will describe the features of the combined system, including the distributed computing architecture and the packet switched method of communication. This paper will also describe in detail a high speed packet switching controller used as a central node of the network. This controller is a multiprocessor microcomputer system with eighteen central processor units, thirty-four direct memory access channels and thirty-four prioritorised and vectored interrupt channels. This microcomputer is of general interest as a communications controller due to its totally programmable nature. (orig.)

  3. Portable Intraoperative Computed Tomography Scan in Image-Guided Surgery for Brain High-grade Gliomas: Analysis of Technical Feasibility and Impact on Extent of Tumor Resection.

    Science.gov (United States)

    Barbagallo, Giuseppe M V; Palmucci, Stefano; Visocchi, Massimiliano; Paratore, Sabrina; Attinà, Giancarlo; Sortino, Giuseppe; Albanese, Vincenzo; Certo, Francesco

    2016-03-01

    Intraoperative magnetic resonance imaging is the gold standard among image-guided techniques for glioma surgery. Scant data are available on the role of intraoperative computed tomography (i-CT) in high-grade glioma (HGG) surgery. To verify the technical feasibility and usefulness of portable i-CT in image-guided surgical resection of HGGs. This is a retrospective series control analysis of prospectively collected data. Twenty-five patients (Group A) with HGGs underwent surgery using i-CT and 5-aminolevulinic acid (5-ALA) fluorescence. A second cohort of 25 patients (Group B) underwent 5-ALA fluorescence-guided surgery but without i-CT. We used a portable 8-slice CT scanner and, in both groups, neuronavigation. Extent of tumor resection (ETOR) and pre- and postoperative Karnofsky performance status (KPS) scores were measured; the impact of i-CT on overall survival (OS) and progression-free survival (PFS) was also analyzed. In 8 patients (32%) in Group A, i-CT revealed residual tumor, and in 4 of them it helped to also resect pathological tissue detached from the main tumor. EOTR in these 8 patients was 97.3% (96%-98.6%). In Group B, residual tumor was found in 6 patients, whose tumor's mean resection was 98% (93.5-99.7). The Student t test did not show statistically significant differences in EOTR in the 2 groups. The KPS score decreased from 67 to 69 after surgery in Group A and from 74 to 77 in Group B (P = .07 according to the Student t test). Groups A and B did not show statistically significant differences in OS and PFS (P = .61 and .46, respectively, by the log-rank test). No statistically significant differences in EOTR, KPS, PFS, and OS were observed in the 2 groups. However, i-CT helped to verify EOTR and to update the neuronavigator with real-time images, as well as to identify and resect pathological tissue in multifocal tumors. i-CT is a feasible and effective alternative to intraoperative magnetic resonance imaging. Portable i-CT can provide useful

  4. Optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation (ILUMIEN III: OPTIMIZE PCI): a randomised controlled trial.

    Science.gov (United States)

    Ali, Ziad A; Maehara, Akiko; Généreux, Philippe; Shlofmitz, Richard A; Fabbiocchi, Franco; Nazif, Tamim M; Guagliumi, Giulio; Meraj, Perwaiz M; Alfonso, Fernando; Samady, Habib; Akasaka, Takashi; Carlson, Eric B; Leesar, Massoud A; Matsumura, Mitsuaki; Ozan, Melek Ozgu; Mintz, Gary S; Ben-Yehuda, Ori; Stone, Gregg W

    2016-11-26

    Percutaneous coronary intervention (PCI) is most commonly guided by angiography alone. Intravascular ultrasound (IVUS) guidance has been shown to reduce major adverse cardiovascular events (MACE) after PCI, principally by resulting in a larger postprocedure lumen than with angiographic guidance. Optical coherence tomography (OCT) provides higher resolution imaging than does IVUS, although findings from some studies suggest that it might lead to smaller luminal diameters after stent implantation. We sought to establish whether or not a novel OCT-based stent sizing strategy would result in a minimum stent area similar to or better than that achieved with IVUS guidance and better than that achieved with angiography guidance alone. In this randomised controlled trial, we recruited patients aged 18 years or older undergoing PCI from 29 hospitals in eight countries. Eligible patients had one or more target lesions located in a native coronary artery with a visually estimated reference vessel diameter of 2·25-3·50 mm and a length of less than 40 mm. We excluded patients with left main or ostial right coronary artery stenoses, bypass graft stenoses, chronic total occlusions, planned two-stent bifurcations, and in-stent restenosis. Participants were randomly assigned (1:1:1; with use of an interactive web-based system in block sizes of three, stratified by site) to OCT guidance, IVUS guidance, or angiography-guided stent implantation. We did OCT-guided PCI using a specific protocol to establish stent length, diameter, and expansion according to reference segment external elastic lamina measurements. All patients underwent final OCT imaging (operators in the IVUS and angiography groups were masked to the OCT images). The primary efficacy endpoint was post-PCI minimum stent area, measured by OCT at a masked independent core laboratory at completion of enrolment, in all randomly allocated participants who had primary outcome data. The primary safety endpoint was procedural

  5. A collection and information analysis of the experiment with microcomputer

    International Nuclear Information System (INIS)

    Mohd Ariffin bin Aton; Ler Leong Tat

    1985-01-01

    A microcomputer-based system for the continuous collection and analysis of data from a fermentor is described. The system was designed around commercially available hardware and interface and software packages written for microcomputers. Additional programmes were written in BASIC to allow the results to be printed in a specific format. The data read from the fermentor were automatically stored on a floppy disc and analysis on the data can be performed at our convenience. Such method for data collection is not limited to a bioreactor, however, since instruments that require continuous accurate reading, such as GLC, HPLC, etc., could be coupled to a microcomputer system. (author)

  6. Multimodality optical coherence tomography and fluorescence confocal scanning laser ophthalmoscopy for image-guided feedback of intraocular injections in mouse models

    Science.gov (United States)

    Benavides, Oscar R.; Terrones, Benjamin D.; Leeburg, Kelsey C.; Mehanathan, Sankarathi B.; Levine, Edward M.; Tao, Yuankai K.

    2018-02-01

    Rodent models are robust tools for understanding human retinal disease and function because of their similarities with human physiology and anatomy and availability of genetic mutants. Optical coherence tomography (OCT) has been well-established for ophthalmic imaging in rodents and enables depth-resolved visualization of structures and image-based surrogate biomarkers of disease. Similarly, fluorescence confocal scanning laser ophthalmoscopy (cSLO) has demonstrated utility for imaging endogenous and exogenous fluorescence and scattering contrast in the mouse retina. Complementary volumetric scattering and en face fluorescence contrast from OCT and cSLO, respectively, enables cellular-resolution longitudinal imaging of changes in ophthalmic structure and function. We present a non-contact multimodal OCT+cSLO small animal imaging system with extended working distance to the pupil, which enables imaging during and after intraocular injection. While injections are routinely performed in mice to develop novel models of ophthalmic diseases and screen novel therapeutics, the location and volume delivered is not precisely controlled and difficult to reproduce. Animals were imaged using a custom-built OCT engine and scan-head combined with a modified commercial cSLO scan-head. Post-injection imaging showed structural changes associated with retinal puncture, including the injection track, a retinal elevation, and detachment of the posterior hyaloid. When combined with imagesegmentation, we believe OCT can be used to precisely identify injection locations and quantify injection volumes. Fluorescence cSLO can provide complementary contrast for either fluorescently labeled compounds or transgenic cells for improved specificity. Our non-contact OCT+cSLO system is uniquely-suited for concurrent imaging with intraocular injections, which may be used for real-time image-guided injections.

  7. High and intermediate risk prostate cancer treated with three-dimensional computed tomography-guided brachytherapy: 2-8-year follow-up

    International Nuclear Information System (INIS)

    Koutrouvelis, Panos G.; Gillenwater, Jay; Lailas, Niko; Hendricks, Fred; Katz, Stuart; Sehn, James; Gil-Montero, Guillermo; Khawand, Nabil

    2003-01-01

    Purpose: To report post-brachytherapy results in high and intermediate risk patients of prostatic adenocarcinoma. Methods and materials: From June 1994 to June 2000, 356 consecutive high and intermediate risk patients were treated with three-dimensional computed tomography-guided stereotactic pararectal brachytherapy. The age was 42-90 years (median, 68 years), the initial prostate volume was 14-180 cm 3 (median, 59 cm 3 ), and initial PSA was 1.7-143 ng/ml (median, 10.5 ng/ml). Three hundred forty-eight patients were available for follow-up for 2 - 8 years (median, 4.5 years). Two hundred eighty patients had one or more high risk factors (PSA >20 ng/ml, Gleason>7, Stage T2b, T3a, or T3b). Sixty-eight patients had only one intermediate risk factor (PSA 10-20 ng/ml or Gleason=7). Patients with both intermediate risks were considered high risk. The high-risk group was further stratified into subgroups with similar risk profile. A dose of 144 Gy with 125 I or 120 Gy with 103 Pd was achieved in 90-100% of the target. Thirty (30) patients (9%) had prior transurethral resection and 229 (64%) were treated with 3 months neoadjuvant androgen ablation. Results: Biochemical disease-free survival was 92% of 280 high risk patients and 96% of 68 intermediate risk patients. Seven patients (2%) required catheterization during the first year for urinary retention, nine patients (3%) required TUR 1-3 years post-implant, three patients (1%) developed grade 1 or 2 incontinence after a second TUR, and four patients (1%) developed grade 3 rectal complications. Conclusion: This method produces a high level of biochemical control 2-8 years (median 4.5 years). Morbidity is acceptable regardless of risk profile or initial prostate volume

  8. Dosimetric Advantages of Four-Dimensional Adaptive Image-Guided Radiotherapy for Lung Tumors Using Online Cone-Beam Computed Tomography

    International Nuclear Information System (INIS)

    Harsolia, Asif; Hugo, Geoffrey D.; Kestin, Larry L.; Grills, Inga S.; Yan Di

    2008-01-01

    Purpose: This study compares multiple planning techniques designed to improve accuracy while allowing reduced planning target volume (PTV) margins though image-guided radiotherapy (IGRT) with four-dimensional (4D) cone-beam computed tomography (CBCT). Methods and Materials: Free-breathing planning and 4D-CBCT scans were obtained in 8 patients with lung tumors. Four plans were generated for each patient: 3D-conformal, 4D-union, 4D-offline adaptive with a single correction (offline ART), and 4D-online adaptive with daily correction (online ART). For the 4D-union plan, the union of gross tumor volumes from all phases of the 4D-CBCT was created with a 5-mm expansion applied for setup uncertainty. For offline and online ART, the gross tumor volume was delineated at the mean position of tumor motion from the 4D-CBCT. The PTV margins were calculated from the random components of tumor motion and setup uncertainty. Results: Adaptive IGRT techniques provided better PTV coverage with less irradiated normal tissues. Compared with 3D plans, mean relative decreases in PTV volumes were 15%, 39%, and 44% using 4D-union, offline ART, and online ART planning techniques, respectively. This resulted in mean lung volume receiving ≥ 20Gy (V20) relative decreases of 21%, 23%, and 31% and mean lung dose relative decreases of 16%, 26%, and 31% for the 4D-union, 4D-offline ART, and 4D-online ART, respectively. Conclusions: Adaptive IGRT using CBCT is feasible for the treatment of patients with lung tumors and significantly decreases PTV volume and dose to normal tissues, allowing for the possibility of dose escalation. All analyzed 4D planning strategies resulted in improvements over 3D plans, with 4D-online ART appearing optimal

  9. Microcomputer control of automated TL reader

    International Nuclear Information System (INIS)

    Bjarland, B.

    1980-01-01

    An automatic TL reader has been developed for use within a TLD based personal monitoring service. A 6800 based microcomputer is used for system control, operator communication, calibration and checking of reader operation, and for output of data. The dosimeter identity code is printed in human readable characters on the dosimeter card, and is read by using an optical character recognition unit. The code may include individual sensitivity correction coefficients for the TL chips on the card. The chips are heated with hot nitrogen gas and the thermoluminescence is recorded by a photomultiplier tube circuit, the gain and offset of which are continuously monitored and, when necessary, adjusted, to maintain calibration. The reader may operate in any of seven modes, i.e. reading modes for three types of dosimeters, semiautomatic modes for production of the three types of dosimeters, and a monitor mode. (Auth.)

  10. VME bus based microcomputer system boards

    International Nuclear Information System (INIS)

    Chandra, A.K.; Ganesh, G.; Mayya, Anuradha; Chachondia, A.S.; Premraj, M.K.

    1991-01-01

    Several operator information systems for nuclear plants has been developed in the Division and these have involved extensive use of microcomputer boards for achieving various functions. Standard VME bus based boards have been developed to provide the most used functions. These boards have been fabricated and tested and used in several systems including Channel Temperature Monitoring systems, Disturbance Recording Systems etc. and are also proposed to be used in additional systems under developement. The use of standard bus and boards provides considerable savings in engineering time, prototyping, testing and evaluation costs, and maintenance support. This report desribes the various boards developed and the functions available on each. (author). 4 refs., 11 figs., 3 appendixes

  11. 'Micro-8' micro-computer system

    International Nuclear Information System (INIS)

    Yagi, Hideyuki; Nakahara, Yoshinori; Yamada, Takayuki; Takeuchi, Norio; Koyama, Kinji

    1978-08-01

    The micro-computer Micro-8 system has been developed to organize a data exchange network between various instruments and a computer group including a large computer system. Used for packet exchangers and terminal controllers, the system consists of ten kinds of standard boards including a CPU board with INTEL-8080 one-chip-processor. CPU architecture, BUS architecture, interrupt control, and standard-boards function are explained in circuit block diagrams. Operations of the basic I/O device, digital I/O board and communication adapter are described with definitions of the interrupt ramp status, I/O command, I/O mask, data register, etc. In the appendixes are circuit drawings, INTEL-8080 micro-processor specifications, BUS connections, I/O address mappings, jumper connections of address selection, and interface connections. (author)

  12. Microcomputer-controlled ultrasonic data acquisition system

    International Nuclear Information System (INIS)

    Simpson, W.A. Jr.

    1978-11-01

    The large volume of ultrasonic data generated by computer-aided test procedures has necessitated the development of a mobile, high-speed data acquisition and storage system. This approach offers the decided advantage of on-site data collection and remote data processing. It also utilizes standard, commercially available ultrasonic instrumentation. This system is controlled by an Intel 8080A microprocessor. The MCS80-SDK microcomputer board was chosen, and magnetic tape is used as the storage medium. A detailed description is provided of both the hardware and software developed to interface the magnetic tape storage subsystem to Biomation 8100 and Biomation 805 waveform recorders. A boxcar integrator acquisition system is also described for use when signal averaging becomes necessary. Both assembly language and machine language listings are provided for the software

  13. Tractor performance monitor based on a single-chip microcomputer

    Energy Technology Data Exchange (ETDEWEB)

    Bedri, A.R.; Marley, S.J.; Buchelle, W.F.; Smay, T.A.

    1981-01-01

    A tractor performance monitor based on a single-chip microcomputer was developed to measure ground speed, slip, fuel consumption (rate and total), total area, theoretical time, and total time. Transducers used are presented in detail. 5 refs.

  14. The artificial satellite observation chronograph controlled by single chip microcomputer.

    Science.gov (United States)

    Pan, Guangrong; Tan, Jufan; Ding, Yuanjun

    1991-06-01

    The instrument specifications, hardware structure, software design, and other characteristics of the chronograph mounting on a theodolite used for artificial satellite observation are presented. The instrument is a real time control system with a single chip microcomputer.

  15. Laser-based measuring equipment controlled by microcomputer

    International Nuclear Information System (INIS)

    Miron, N.; Sporea, D.; Velculescu, V.G.; Petre, M.

    1988-03-01

    Some laser-based measuring equipment controlled by microcomputer developed for industrial and scientific purposes are described. These equipments are intended for dial indicators verification, graduated rules measurement, and for very accurate measurement of the gravitational constant. (authors)

  16. Investigating Electromagnetic Induction through a Microcomputer-Based Laboratory.

    Science.gov (United States)

    Trumper, Ricardo; Gelbman, Moshe

    2000-01-01

    Describes a microcomputer-based laboratory experiment designed for high school students that very accurately analyzes Faraday's law of electromagnetic induction, addressing each variable separately while the others are kept constant. (Author/CCM)

  17. Application of single-chip microcomputer in radiation detection

    International Nuclear Information System (INIS)

    Zhang Songshou

    1993-01-01

    The single-chip microcomputer has some advantages in many aspects for example the strong function, the small volume, the low-power, firmed and reliable. It is used widely in the control of industry, instrument, communication and machine, etc.. The paper introduces that the single-chip microcomputer is used in radiation detection, mostly including the use of control, linear, compensation, calculation, prefabricated change, improving precision and training

  18. A microcomputer-based waveform generator for Moessbauer spectrometers

    International Nuclear Information System (INIS)

    Huang Jianping; Chen Xiaomei

    1995-01-01

    A waveform generator for Moessbauer spectrometers based on 8751 single chip microcomputer is described. The reference wave form with high linearity is generated with a 12 bit DAC, and its amplitude is controlled with a 8 bit DAC. Because the channel advance and synchronous signals can be delayed arbitrarily, excellent folded spectra can be acquired. This waveform generator can be controlled with DIP switches on faceplate or series interface of the IBM-PC microcomputer

  19. Microcomputer-controlled world time display for public area viewing

    Science.gov (United States)

    Yep, S.; Rashidian, M.

    1982-05-01

    The design, development, and implementation of a microcomputer-controlled world clock is discussed. The system, designated international Time Display System (ITDS), integrates a Geochron Calendar Map and a microcomputer-based digital display to automatically compensate for daylight savings time, leap year, and time zone differences. An in-depth technical description of the design and development of the electronic hardware, firmware, and software systems is provided. Reference material on the time zones, fabrication techniques, and electronic subsystems are also provided.

  20. X-ray diffraction identification of clay minerals by microcomputer

    International Nuclear Information System (INIS)

    Rodrigues, S.; Imasava, F.J.

    1988-01-01

    The identification of clay minerals by X-ray powder diffraction are done by searching an unknown pattern with a file of standard X-ray diffraction patterns. For this searching done by hand is necessary a long time. This paper shows a program in ''Basic'' language to be utilized in microcomputers for the math of the unknown pattern, using the high velocity of comparison of the microcomputer. A few minutes are used for the match. (author) [pt

  1. Lung tumor reproducibility with active breath control (ABC) in image-guided radiotherapy based on cone-beam computed tomography with two registration methods

    International Nuclear Information System (INIS)

    Wang Xin; Zhong Renming; Bai Sen; Xu Qingfeng; Zhao Yaqin; Wang Jin; Jiang Xiaoqin; Shen Yali; Xu Feng; Wei Yuquan

    2011-01-01

    Purpose: To study the inter- and intrafraction tumor reproducibility with active breath control (ABC) utilizing cone-beam computed tomography (CBCT), and compare validity of registration with two different regions of interest (ROI). Methods and materials: Thirty-one lung tumors in 19 patients received conventional or stereotactic body radiotherapy with ABC. During each treatment, patients had three CBCT scanned before and after online position correction and after treatment. These CBCT images were aligned to the planning CT using the gray scale registration of tumor and bony registration of the thorax, and tumor position uncertainties were then determined. Results: The interfraction systematic and random translation errors in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions were 3.6, 4.8, and 2.9 mm; 2.5, 4.5, and 3.5 mm, respectively, with gray scale alignment; 1.9, 4.3, 2.0 mm and 2.5, 4.4, 2.9 mm, respectively, with bony alignment. The interfraction systematic and random rotation errors with gray scale and bony alignment groups ranged from 1.4 o to 3.0 o and 0.8 o to 2.3 o , respectively. The intrafraction systematic and random errors with gray scale registration in LR, SI, AP directions were 0.9, 2.0, 1.8 mm and 1.5, 1.7, 2.9 mm, respectively, for translation; 1.5 o , 0.9 o , 1.0 o and 1.2 o , 2.2 o , 1.8 o , respectively, for rotation. The translational errors in SI direction with bony alignment were significantly larger than that of gray scale (p < 0.05). Conclusions: With CBCT guided online correction the interfraction positioning errors can be markedly reduced. The intrafraction errors were not diminished by the use of ABC. Rotation errors were not very remarkable both inter- and intrafraction. Gray scale alignment of tumor may provide a better registration in SI direction.

  2. Perfusion computed tomography-guided intravenous thrombolysis for acute ischemic stroke beyond 4.5 hours: a case-control study.

    Science.gov (United States)

    García-Bermejo, Pablo; Calleja, Ana I; Pérez-Fernández, Santiago; Cortijo, Elisa; del Monte, José M; García-Porrero, Miguel; Fe Muñoz, M; Fernández-Herranz, Rosario; Arenillas, Juan F

    2012-01-01

    Extending the therapeutic window of intravenous thrombolysis for acute ischemic stroke beyond the established 4.5-hour limit is of critical importance in order to increase the proportion of thrombolysed stroke patients. In this setting, the capacity of MRI to select acute stroke patients for reperfusion therapies in delayed time windows has been and is being tested in clinical trials. However, whether the more available and cost-effective perfusion computed tomography (PCT) may be useful to select candidates for delayed intravenous thrombolysis remains largely unexplored. We aimed to evaluate the safety and efficacy of PCT-guided intravenous thrombolysis beyond 4.5 h after stroke onset. We prospectively studied all consecutive acute ischemic stroke patients treated with intravenous tissue plasminogen activator (tPA) in our stroke unit between January 2008 and December 2010. Patients treated within 0- 4.5 h were treated according to non-contrast CT (NCCT) criteria. Beyond 4.5 h, patients received intravenous tPA according to PCT criteria, i.e. an infarct core on cerebral blood volume (CBV) maps not exceeding one third of the middle cerebral artery (MCA) territory and tissue at risk as defined by mean transit time-CBV mismatch greater than 20%. Predetermined primary endpoints were symptomatic hemorrhagic transformation and favorable long-term outcome, while early neurological improvement and MCA recanalization were considered secondary endpoints. Statistical analysis included bivariate comparisons between the two groups for each endpoint and logistic regression models when significance was found in bivariate analyses. This study was approved by our local ethics committee. A total of 245 patients received intravenous thrombolysis. After the groups were matched by baseline National Institutes of Health Stroke Scale score, 172 patients treated at 4.5 h were finally included. Early and late groups were comparable regarding baseline variables; only cardioembolic etiology

  3. Small, microcomputer-based CAMAC controller

    International Nuclear Information System (INIS)

    Juras, R.C.

    1979-01-01

    The beam buncher necessary to condition the beam from the Oak Ridge National Laboratory 25 MV tandem accelerator for post-acceleration by the Oak Ridge Isochronous Cyclotron is CAMAC-based and will be controlled via one of the serial highways of the accelerator control system. However, prior to integration into the accelerator system, the buncher requires testing, including runs on the model EN tandem at Oak Ridge. In order to facilitate testing and initial operation of the buncher, a microcomputer-based controller was assembled. The controller consists of a CAMAC crate, several CAMAC modules, a touch panel display, a controller box, and software. The controller box contains one shaft encoder and two switches. One of the switches is a coarse/fine selector. The other switch is assignable via the touch panel display and is used, for example, to turn devices on and off. Operation of the controller is described. It can be quickly assembled to control any small CAMAC-based system. 2 figures

  4. Microcomputer applications for NSSS data package review

    International Nuclear Information System (INIS)

    Eng, D.J.; Smith, F.M.

    1984-01-01

    Associated with each component of a Nuclear Steam Supply System are the necessary supporting documents which demonstrate compliance with applicable codes, specifications and design criteria. The documents are grouped into individual data packages, and may exceed 800 in number for a major installation. A complete review, initiated by a utility in response to federal code regulations (10 CFR 50), can involve a tremendous number of review transactions. A data management system to assist the reviewer in the tracking and resolution of discrepancy items is currently under development and use. The system uses microcomputer-based relational database management software and provides complete and flexible capabilities to process database components and attributes based on user specified criteria. The completed database is a ''portable'' system, and can be utilized on an as-needed basis after the review is completed. A discrepancy analysis is performed to identify relations between manufacturer and discrepancy occurrence, part type vs. discrepancy type, etc. These results may prove useful in subsequent reviews or application to existing QA procedures