WorldWideScience

Sample records for microchannel electrophoresis system

  1. Capillary electrophoresis systems and methods

    Science.gov (United States)

    Dorairaj, Rathissh [Hillsboro, OR; Keynton, Robert S [Louisville, KY; Roussel, Thomas J [Louisville, KY; Crain, Mark M [Georgetown, IN; Jackson, Douglas J [New Albany, IN; Walsh, Kevin M [Louisville, KY; Naber, John F [Goshen, KY; Baldwin, Richard P [Louisville, KY; Franco, Danielle B [Mount Washington, KY

    2011-08-02

    An embodiment of the invention is directed to a capillary electrophoresis apparatus comprising a plurality of separation micro-channels. A sample loading channel communicates with each of the plurality of separation channels. A driver circuit comprising a plurality of electrodes is configured to induce an electric field across each of the plurality of separation channels sufficient to cause analytes in the samples to migrate along each of the channels. The system further comprises a plurality of detectors configured to detect the analytes.

  2. Effects of improved microchannel structures on the separation characteristics of microchip capillary electrophoresis

    CERN Document Server

    Utsumi, Y; Ozaki, M; Terabe, S

    2003-01-01

    We fabricated the electrophoresis microchips using the UV polymerization technique. We employed plastic substrates that were suitable for rapid prototyping instead of glass and quartz. A thick UV negative photo resist was used to form molds and poly-dimethylsilozane (PDMS) was polymerized by a thermal curing process on the mold to obtain replica microchips. Electroosmotic flow (EOF) was measured to evaluate the surface. Rhodamine B and sulforhodamine B are successfully separated using the microchip. Characteristic differences between UV-fabricated and SR-fabricated microchips were evaluated by EOF measurement. It was observed that accurately defined microchannels fabricated by synchrotron radiation (SR) lithography show constant peak heights and FWHMs. Thus the advantage of the application of SR lithography to the mold fabrication is also demonstrated. (author)

  3. Separation of three water-soluble vitamins by poly(dimethylsiloxane) microchannel electrophoresis with electrochemical detection.

    Science.gov (United States)

    Li, Xiang-Yun; Zhang, Qian-Li; Lian, Hong-Zhen; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A method for rapid separation and sensitive determination of three water-soluble vitamins, pyridoxine, ascorbic acid (VC), and p-aminobenzoic acid (PABA) has been developed by PDMS microchannel electrophoresis integrated with amperometric detection. After treatment of the microchip with oxygen plasma, the peak shapes of the three analytes were essentially improved. Pyridoxine, VC, and PABA were well separated within only 80 s in a running buffer of 20 mM borate solution (pH 8.5). Good linearity was obtained within the concentration range of 2-200 microM for the three water-soluble vitamins. The detection limits were 1.0 microM for pyridoxine and VC, and 1.5 microM for PABA. The proposed method has been successfully applied to real human urine sample, without solid phase extraction, with recoveries of 80-122% for the three water-soluble vitamins.

  4. The Optimization of Electrophoresis on a Glass Microfluidic Chip and its Application in Forensic Science.

    Science.gov (United States)

    Han, Jun P; Sun, Jing; Wang, Le; Liu, Peng; Zhuang, Bin; Zhao, Lei; Liu, Yao; Li, Cai X

    2017-11-01

    Microfluidic chips offer significant speed, cost, and sensitivity advantages, but numerous parameters must be optimized to provide microchip electrophoresis detection. Experiments were conducted to study the factors, including sieving matrices (the concentration and type), surface modification, analysis temperature, and electric field strengths, which all impact the effectiveness of microchip electrophoresis detection of DNA samples. Our results showed that the best resolution for ssDNA was observed using 4.5% w/v (7 M urea) lab-fabricated LPA gel, dynamic wall coating of the microchannel, electrophoresis temperatures between 55 and 60°C, and electrical fields between 350 and 450 V/cm on the microchip-based capillary electrophoresis (μCE) system. One base-pair resolution could be achieved in the 19-cm-length microchannel. Furthermore, both 9947A standard genomic DNA and DNA extracted from blood spots were demonstrated to be successfully separated with well-resolved DNA peaks in 8 min. Therefore, the microchip electrophoresis system demonstrated good potential for rapid forensic DNA analysis. © 2017 American Academy of Forensic Sciences.

  5. Formation of microchannels from low-temperature plasma-deposited silicon oxynitride

    Science.gov (United States)

    Matzke, Carolyn M.; Ashby, Carol I. H.; Bridges, Monica M.; Manginell, Ronald P.

    2000-01-01

    A process for forming one or more fluid microchannels on a substrate is disclosed that is compatible with the formation of integrated circuitry on the substrate. The microchannels can be formed below an upper surface of the substrate, above the upper surface, or both. The microchannels are formed by depositing a covering layer of silicon oxynitride over a mold formed of a sacrificial material such as photoresist which can later be removed. The silicon oxynitride is deposited at a low temperature (.ltoreq.100.degree. C.) and preferably near room temperature using a high-density plasma (e.g. an electron-cyclotron resonance plasma or an inductively-coupled plasma). In some embodiments of the present invention, the microchannels can be completely lined with silicon oxynitride to present a uniform material composition to a fluid therein. The present invention has applications for forming microchannels for use in chromatography and electrophoresis. Additionally, the microchannels can be used for electrokinetic pumping, or for localized or global substrate cooling.

  6. Surface Charge Measurement of SonoVue, Definity and Optison: A Comparison of Laser Doppler Electrophoresis and Micro-Electrophoresis.

    Science.gov (United States)

    Ja'afar, Fairuzeta; Leow, Chee Hau; Garbin, Valeria; Sennoga, Charles A; Tang, Meng-Xing; Seddon, John M

    2015-11-01

    Microbubble (MB) contrast-enhanced ultrasonography is a promising tool for targeted molecular imaging. It is important to determine the MB surface charge accurately as it affects the MB interactions with cell membranes. In this article, we report the surface charge measurement of SonoVue, Definity and Optison. We compare the performance of the widely used laser Doppler electrophoresis with an in-house micro-electrophoresis system. By optically tracking MB electrophoretic velocity in a microchannel, we determined the zeta potentials of MB samples. Using micro-electrophoresis, we obtained zeta potential values for SonoVue, Definity and Optison of -28.3, -4.2 and -9.5 mV, with relative standard deviations of 5%, 48% and 8%, respectively. In comparison, laser Doppler electrophoresis gave -8.7, +0.7 and +15.8 mV with relative standard deviations of 330%, 29,000% and 130%, respectively. We found that the reliability of laser Doppler electrophoresis is compromised by MB buoyancy. Micro-electrophoresis determined zeta potential values with a 10-fold improvement in relative standard deviation. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  8. Fabrication of polyester microchannel with functional surface for electro-chromatography - Incorporation of detection devices into the microchip -

    International Nuclear Information System (INIS)

    Uchiyama, Katsumi; Qiu, Jing Miao; Hobo, Toshiyuki

    2001-01-01

    In recent years, new analytical techniques using microchip devise have been extensively studied (micro-TAS). One of the most successful examples is capillary electrophoresis (CE) with glass plate fabricated by photolithography followed by the chemical or physical etching process. Micro CE one of the most excellent separation techniques, performs separations in microchannel formed in appreciate substrate material. We developed a fabrication method for polyester micro channels with aikene alcohol inside the wall of the channel and demonstrated the usefulness of the polymer microchip. Although many researchers have been studying microchannel or micro-devices for analytical use, miniaturization of the total system including sample introduction, separation, detection and data treatment is still under development. Especially, the miniaturization of the detection system will be a hard bar to be overcome. Our method, based upon the in situ polymerization of polyester resin on an appreciate template, can be exported to let some parts incorporated directly into the microchip during the polymerization process. In this paper, we will describe the incorporation of detection components (light emitting diode and optical fiber) into polyester microchip and the application of the microchip to the analysis of amino acids separated by electrophoresis.

  9. Polymeric microchip for the simultaneous determination of anions and cations by hydrodynamic injection using a dual-channel sequential injection microchip electrophoresis system.

    Science.gov (United States)

    Gaudry, Adam J; Nai, Yi Heng; Guijt, Rosanne M; Breadmore, Michael C

    2014-04-01

    A dual-channel sequential injection microchip capillary electrophoresis system with pressure-driven injection is demonstrated for simultaneous separations of anions and cations from a single sample. The poly(methyl methacrylate) (PMMA) microchips feature integral in-plane contactless conductivity detection electrodes. A novel, hydrodynamic "split-injection" method utilizes background electrolyte (BGE) sheathing to gate the sample flows, while control over the injection volume is achieved by balancing hydrodynamic resistances using external hydrodynamic resistors. Injection is realized by a unique flow-through interface, allowing for automated, continuous sampling for sequential injection analysis by microchip electrophoresis. The developed system was very robust, with individual microchips used for up to 2000 analyses with lifetimes limited by irreversible blockages of the microchannels. The unique dual-channel geometry was demonstrated by the simultaneous separation of three cations and three anions in individual microchannels in under 40 s with limits of detection (LODs) ranging from 1.5 to 24 μM. From a series of 100 sequential injections the %RSDs were determined for every fifth run, resulting in %RSDs for migration times that ranged from 0.3 to 0.7 (n = 20) and 2.3 to 4.5 for peak area (n = 20). This system offers low LODs and a high degree of reproducibility and robustness while the hydrodynamic injection eliminates electrokinetic bias during injection, making it attractive for a wide range of rapid, sensitive, and quantitative online analytical applications.

  10. Development of a Microchannel In Situ Propellant Production System

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Rassat, Scot D.; TeGrotenhuis, Ward E.

    2005-09-01

    An in situ propellant production (ISPP) plant on future Mars robotic missions can produce oxygen (O2) and methane (CH4) that can be used for propellant for the return voyage. By producing propellants from Mars atmospheric carbon dioxide (CO2) and hydrogen (H2) brought from Earth, the initial mass launched in low Earth orbit can be reduced by 20% to 45%, as compared to carrying all of the propellant for a round-trip mission to the Mars surface from Earth. Pacific Northwest National Laboratory used microchannel architecture to develop a Mars-based In Situ Propellant Production (ISPP) system. This three year research and development effort focused on process intensification and system miniaturization of three primary subsystems: a thermochemical compressor, catalytic reactors, and components for separating gas phases from liquid phases. These systems were designed based on a robotic direct return mission scenario, but can be scaled up to human flight missions by simply numbering up the microchannel devices. The thermochemical compression was developed both using absorption and adsorption. A multichannel adsorption system was designed to meet the full-scale CO2 collection requirements using temperature swing adsorption. Each stage is designed to achieve a 10x compression of CO2. A compression ratio to collect Martian atmospheric CO2 at ~0.8 kPa and compress it to at least 100 kPa can be achieved with two adsorption stages in series. A compressor stage incorporates eight thermally coupled adsorption cells at various stages in the adsorption/desorption cycle to maximize the recuperation of thermal energy and provide a nearly continuous flow of CO2 to the downstream reactors. The thermochemically compressed CO2 is then mixed with hydrogen gas and fed to two reactors: a Sabatier Reaction unit and a Reverse Water/Gas Shift unit. The microchannel architecture allows better heat control than is possible in an adiabatic system, resulting in significantly higher conversion. The

  11. Experimental study on frosting control of mobile air conditioning system with microchannel evaporator

    International Nuclear Information System (INIS)

    Qu Xiaohua; Shi Junye; Qi Zhaogang; Chen Jiangping

    2011-01-01

    In this paper, a newly developed frost control system is proposed. System bench tests and vehicle test in wind tunnel have been carried out to explore the anti-frosting performance of automotive air conditioning system with microchannel evaporator. The experimental results are compared with the baseline conventional laminated evaporator system. The test results show that the installation position of temperature sensor can dramatically affect the anti-frosting performance. The clutch switching on/off temperature range of the microchannel evaporator is also experimentally studied. The test results show that, with a proper installation position and on/off temperature range, the system COP can be improved, and meanwhile the panel vents' air off temperature can be reduced, and temperature swing can be reduced. - Highlights: → The frost control systems were tested with microchannel and laminated evaporators separately. → The installation position of temperature sensor affects the anti-frosting performance. → Temperature control range affects the anti-frosting performance. → The panel vents' air off temperature and swing can be reduced by proper control parameters. → The system COP can be improved by proper control parameters.

  12. Systems and methods of manufacturing microchannel arrays

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Brian K.; Brannon, Samuel T.

    2018-03-20

    The present application relates to apparatus and methods of reducing the cost of microchannel array production and operation. In a representative embodiment, a microchannel array can comprise a first lamina having one or more flanges and a plurality of elongated bosses. The one or more flanges can extend along a perimeter of the first lamina, the plurality of elongated bosses can at least partially define a plurality of first flow paths, and the first lamina can define at least one opening. The microchannel array can also comprise a second lamina having a plurality of second flow paths, and can define at least one opening. The second lamina can be disposed above the first lamina such that the second lamina encloses the first flow paths of the first lamina and the at least one opening of the first lamina is coaxial with the at least one opening of the second lamina.

  13. Condensation in Microchannels

    National Research Council Canada - National Science Library

    Ameel, Timothy

    1999-01-01

    .... Evaporators and condensers for meso-scale energy systems will most likely be constructed of microchannels due to the microfabrication constraints that limit most structures to two-dimensional planar geometries...

  14. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.

    Science.gov (United States)

    Lima, Rui; Wada, Shigeo; Tanaka, Shuji; Takeda, Motohiro; Ishikawa, Takuji; Tsubota, Ken-ichi; Imai, Yohsuke; Yamaguchi, Takami

    2008-04-01

    Progress in microfabricated technologies has attracted the attention of researchers in several areas, including microcirculation. Microfluidic devices are expected to provide powerful tools not only to better understand the biophysical behavior of blood flow in microvessels, but also for disease diagnosis. Such microfluidic devices for biomedical applications must be compatible with state-of-the-art flow measuring techniques, such as confocal microparticle image velocimetry (PIV). This confocal system has the ability to not only quantify flow patterns inside microchannels with high spatial and temporal resolution, but can also be used to obtain velocity measurements for several optically sectioned images along the depth of the microchannel. In this study, we investigated the ability to obtain velocity measurements using physiological saline (PS) and in vitro blood in a rectangular polydimethysiloxane (PDMS) microchannel (300 microm wide, 45 microm deep) using a confocal micro-PIV system. Applying this combination, measurements of trace particles seeded in the flow were performed for both fluids at a constant flow rate (Re = 0.02). Velocity profiles were acquired by successive measurements at different depth positions to obtain three-dimensional (3-D) information on the behavior of both fluid flows. Generally, the velocity profiles were found to be markedly blunt in the central region, mainly due to the low aspect ratio (h/w = 0.15) of the rectangular microchannel. Predictions using a theoretical model for the rectangular microchannel corresponded quite well with the experimental micro-PIV results for the PS fluid. However, for the in vitro blood with 20% hematocrit, small fluctuations were found in the velocity profiles. The present study clearly shows that confocal micro-PIV can be effectively integrated with a PDMS microchannel and used to obtain blood velocity profiles along the full depth of the microchannel because of its unique 3-D optical sectioning ability

  15. Microfabrication of Microchannels for Fuel Cell Plates

    Directory of Open Access Journals (Sweden)

    Ho Su Jang

    2009-12-01

    Full Text Available Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of microchannel technology. In this study, the conventional method of chemical etching and the mechanical machining method of micro end milling were used for the microfabrication of microchannel for fuel cell separators. The two methods were compared in terms of their performance in the fabrication with regards to dimensional errors, flatness, straightness, and surface roughness. Following microchannel fabrication, the powder blasting technique is introduced to improve the coating performance of the catalyst on the surface of the microchannel. Experimental results show that end milling can remarkably increase the fabrication performance and that surface treatment by powder blasting can improve the performance of catalyst coating.

  16. Microchannel electrokinetics of charged analytes in buffered solutions near floating electrodes

    DEFF Research Database (Denmark)

    Andersen, Mathias Bækbo; Wolfcale, Trevor; Gregersen, Misha Marie

    to accurately predict such behavior in these flow regimes. Experimentally, using conventional fluorescence microscopy, we investigated the concentration gradient (as well as the associated electroosmosis, induced-charge electro-osmosis, and electrophoresis) of the charged analyte near the floating electrode......We present both experimental and numerical studies of nonlinear electrokinetic flow of buffered solutions seeded with dilute analytes in a straight microchannel (0.6 μm high, 250 μm wide, and 9000 μm long) with a 0.15 μm high 60 μm wide electrode situated at the bottom center of the channel...... as a function of analyte (1 to 10 μM fluorescein and bodipy) and buffer (1 to 10 mM borate and posphate) concentrations and an externally applied voltage drop (50 to 100 V) along the channel. We have implemented a nonlinear continuum kinetics model of the system involving the electric potential, the buffer flow...

  17. Axisymmetric polydimethysiloxane microchannels for in vitro hemodynamic studies

    International Nuclear Information System (INIS)

    Lima, Rui; Oliveira, Monica S N; Ishikawa, Takuji; Kaji, Hirokazu; Nishizawa, Matsuhiko; Tanaka, Shuji; Yamaguchi, Takami

    2009-01-01

    The current microdevices used for biomedical research are often manufactured using microelectromechanical systems (MEMS) technology. Although it is possible to fabricate precise and reproducible rectangular microchannels using soft lithography techniques, this kind of geometry may not reflect the actual physiology of the microcirculation. Here, we present a simple method to fabricate circular polydimethysiloxane (PDMS) microchannels aiming to mimic an in vivo microvascular environment and suitable for state-of-the-art microscale flow visualization techniques, such as confocal μPIV/PTV. By using a confocal μPTV system individual red blood cells (RBCs) were successfully tracked trough a 75 μm circular PDMS microchannel. The results show that RBC lateral dispersion increases with the volume fraction of RBCs in the solution, i.e. with the hematocrit.

  18. Microchannel neural interface manufacture by stacking silicone and metal foil laminae

    Science.gov (United States)

    Lancashire, Henry T.; Vanhoestenberghe, Anne; Pendegrass, Catherine J.; Ajam, Yazan Al; Magee, Elliot; Donaldson, Nick; Blunn, Gordon W.

    2016-06-01

    Objective. Microchannel neural interfaces (MNIs) overcome problems with recording from peripheral nerves by amplifying signals independent of node of Ranvier position. Selective recording and stimulation using an MNI requires good insulation between microchannels and a high electrode density. We propose that stacking microchannel laminae will improve selectivity over single layer MNI designs due to the increase in electrode number and an improvement in microchannel sealing. Approach. This paper describes a manufacturing method for creating MNIs which overcomes limitations on electrode connectivity and microchannel sealing. Laser cut silicone—metal foil laminae were stacked using plasma bonding to create an array of microchannels containing tripolar electrodes. Electrodes were DC etched and electrode impedance and cyclic voltammetry were tested. Main results. MNIs with 100 μm and 200 μm diameter microchannels were manufactured. High electrode density MNIs are achievable with electrodes present in every microchannel. Electrode impedances of 27.2 ± 19.8 kΩ at 1 kHz were achieved. Following two months of implantation in Lewis rat sciatic nerve, micro-fascicles were observed regenerating through the MNI microchannels. Significance. Selective MNIs with the peripheral nervous system may allow upper limb amputees to control prostheses intuitively.

  19. Non-Newtonian fluid structure interaction in flexible biomimetic microchannels

    Science.gov (United States)

    Kiran, M.; Dasgupta, Sunando; Chakraborty, Suman

    2017-11-01

    To investigate the complex fluid structure interactions in a physiologically relevant microchannel with deformable wall and non-Newtonian fluid that flows within it, we fabricated cylindrical microchannels of various softness out of PDMS. Experiments to measure the transient pressure drop across the channel were carried out with high sampling frequencies to capture the intricate flow physics. In particular, we showed that the waveforms varies greatly for each of the non-Newtonian and Newtonian cases for both non-deformable and deformable microchannels in terms of the peak amplitude, r.m.s amplitude and the crest factor. In addition, we carried out frequency sweep experiments to evaluate the frequency response of the system. We believe that these results will aid in the design of polymer based microfluidic phantoms for arterial FSI studies, and in particular for studying blood analog fluids in cylindrical microchannels as well as developing frequency specific Lab-on-chip systems for medical diagnostics.

  20. Dynamic Modelling of the DEP Controlled Boiling in a Microchannel

    Science.gov (United States)

    Lackowski, Marcin; Kwidzinski, Roman

    2018-04-01

    The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.

  1. Microchannel electron multiplier

    International Nuclear Information System (INIS)

    Beranek, I.; Janousek, L.; Vitovsky, O.

    1981-01-01

    A microchannel electron multiplier is described for detecting low levels of alpha, beta, soft X-ray and UV radiations. It consists of a glass tube or a system of tubes of various shapes made of common technological glass. The inner tube surface is provided with an active coat with photoemitter and secondary emitter properties. (B.S.)

  2. Study of a high gain microchannel plate photomultiplier having low statistical gain fluctuations

    International Nuclear Information System (INIS)

    Audier, M.

    1980-12-01

    A new photomultiplier configuration which synthesizes the performances of several models is proposed. The principles of microchannel plate photomultipliers are reviewed. The physical phenomena which limit the electron multiplication process in a microchannel and the detection efficiency of the microchannel plates are investigated. The operation of a herring-bone pattern device and of a system of two microchannel plate photomultipliers are described and characterized [fr

  3. In-channel electrochemical detection in the middle of microchannel under high electric field.

    Science.gov (United States)

    Kang, Chung Mu; Joo, Segyeong; Bae, Je Hyun; Kim, Yang-Rae; Kim, Yongseong; Chung, Taek Dong

    2012-01-17

    We propose a new method for performing in-channel electrochemical detection under a high electric field using a polyelectrolytic gel salt bridge (PGSB) integrated in the middle of the electrophoretic separation channel. The finely tuned placement of a gold working electrode and the PGSB on an equipotential surface in the microchannel provided highly sensitive electrochemical detection without any deterioration in the separation efficiency or interference of the applied electric field. To assess the working principle, the open circuit potentials between gold working electrodes and the reference electrode at varying distances were measured in the microchannel under electrophoretic fields using an electrically isolated potentiostat. In addition, "in-channel" cyclic voltammetry confirmed the feasibility of electrochemical detection under various strengths of electric fields (∼400 V/cm). Effective separation on a microchip equipped with a PGSB under high electric fields was demonstrated for the electrochemical detection of biological compounds such as dopamine and catechol. The proposed "in-channel" electrochemical detection under a high electric field enables wider electrochemical detection applications in microchip electrophoresis.

  4. Transient response of nonideal ion-selective microchannel-nanochannel devices

    Science.gov (United States)

    Leibowitz, Neta; Schiffbauer, Jarrod; Park, Sinwook; Yossifon, Gilad

    2018-04-01

    We report evidence of variation in ion selectivity of a fabricated microchannel-nanochannel device resulting in the appearance of a distinct local maximum in the overlimiting chronopotentiometric response. In this system consisting of shallow microchannels joined by a nanochannel, viscous shear at the microchannel walls suppresses the electro-osmotic instability and prevents any associated contribution to the nonmonotonic response. Thus, this response is primarily electrodiffusive. Numerical simulations indicate that concentration polarization develops not only within the microchannel but also within the nanochannel itself, with a local voltage maximum in the chronopotentiometric response correlated with interfacial depletion and having the classic i-2 Sands time dependence. Furthermore, the occurrence of the local maxima is correlated with the change in selectivity due to internal concentration polarization. Understanding the transient nonideal permselective response is essential for obtaining fundamental insight and for optimizing efficient operation of practical fabricated nanofluidic and membrane devices.

  5. Material Selection for Microchannel Heatsink: Conjugate Heat Transfer Simulation

    Science.gov (United States)

    Uday Kumar, A.; Javed, Arshad; Dubey, Satish K.

    2018-04-01

    Heat dissipation during the operation of electronic devices causes rise in temperature, which demands an effective thermal management for their performance, life and reliability. Single phase liquid cooling in microchannels is an effective and proven technology for electronics cooling. However, due to the ongoing trends of miniaturization and developments in the microelectronics technology, the future needs of heat flux dissipation rate are expected to rise to 1 kW/cm2. Air cooled systems are unable to meet this demand. Hence, liquid cooled heatsinks are preferred. This paper presents conjugate heat transfer simulation of single phase flow in microchannels with application to electronic cooling. The numerical model is simulated for different materials: copper, aluminium and silicon as solid and water as liquid coolant. The performances of microchannel heatsink are analysed for mass flow rate range of 20-40 ml/min. The investigation has been carried out on same size of electronic chip and heat flux in order to have comparative study of different materials. This paper is divided into two sections: fabrication techniques and numerical simulation for different materials. In the first part, a brief discussion of fabrication techniques of microchannel heatsink have been presented. The second section presents conjugate heat transfer simulation and parametric investigation for different material microchannel heatsink. The presented study and findings are useful for selection of materials for microchannel heatsink.

  6. Separation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Perry, Steven T [Galloway, OH; Arora, Ravi [Dublin, OH; Qiu, Dongming [Bothell, WA; Lamont, Michael Jay [Hilliard, OH; Burwell, Deanna [Cleveland Heights, OH; Dritz, Terence Andrew [Worthington, OH; McDaniel, Jeffrey S [Columbus, OH; Rogers, Jr; William, A [Marysville, OH; Silva, Laura J [Dublin, OH; Weidert, Daniel J [Lewis Center, OH; Simmons, Wayne W [Dublin, OH; Chadwell, G Bradley [Reynoldsburg, OH

    2009-03-24

    The disclosed invention relates to a process and apparatus for separating a first fluid from a fluid mixture comprising the first fluid. The process comprises: (A) flowing the fluid mixture into a microchannel separator in contact with a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the first fluid is sorbed by the sorption medium, removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing first fluid from the sorption medium and removing desorbed first fluid from the microchannel separator. The process and apparatus are suitable for separating nitrogen or methane from a fluid mixture comprising nitrogen and methane. The process and apparatus may be used for rejecting nitrogen in the upgrading of sub-quality methane.

  7. Experimental investigation of heat transfer performance for a novel microchannel heat sink

    International Nuclear Information System (INIS)

    Wang, Y; Ding, G-F

    2008-01-01

    We demonstrated a novel microchannel heat sink with a high local heat transfer efficiency contributed by a complicated microchannel system, which comprises parallel longitudinal microchannels etched in a silicon substrate and transverse microchannels electroplated on a copper heat spreader. The thermal boundary layer develops in transverse microchannels. Meanwhile, the heat transfer area is increased compared with the conventional microchannel heat sink only having parallel longitudinal microchannels. Both benefits yield high local heat transfer efficiency and enhance the overall heat transfer, which is attractive for the cooling of high heat flux electronic devices. Infrared tests show the temperature distribution in the test objects. The effects of flow rate and heat flux levels on heat transfer characteristics are presented. A uniform temperature distribution is obtained through the heating area. The reference temperatures decrease with the increasing flow rate from 0.64 ml min −1 to 6.79 ml min −1 for a constant heat flux of 10.4 W cm −2 . A heat flux of 18.9 W cm −2 is attained at a flow rate of 6.79 ml min −1 for assuring the maximum temperature of the microchannel heat sink less than the maximum working temperature of electronic devices

  8. Performance test of miniature heat exchangers with microchannels

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Koh, Deuk Yong

    2005-01-01

    Etched microchannel heat exchanger, a subfield within MEMS, has high heat flux capability. This capability makes microchannels well-suited for a wide variety of application of cooling and chemical reaction. In this study, counter flow type miniature heat exchangers, which have flat metal plates with chemically etched microchannels, were manufactured by brazing method. Four type of the heat exchangers, which have straight microchannels, wavy shape microchannels, pin-fin channels and serpentine shape microchannels, were investigated to compare their thermal and hydraulic performance. Gas to gas heat exchange experiments were performed to measure the pressure drop and effectiveness of the heat exchangers at given gas flow rates and temperature difference

  9. Field-effect Flow Control in Polymer Microchannel Networks

    Science.gov (United States)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.

    2003-01-01

    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  10. Fabrication of open-top microchannel plate using deep X-ray exposure mask made with silicon on insulator substrate

    CERN Document Server

    Fujimura, T; Etoh, S I; Hattori, R; Kuroki, Y; Chang, S S

    2003-01-01

    We propose a high-aspect-ratio open-top microchannel plate structure. This type of microchannel plate has many advantages in electrophoresis. The plate was fabricated by deep X-ray lithography using synchrotron radiation (SR) light and the chemical wet etching process. A deep X-ray exposure mask was fabricated with a silicon on insulator (SOI) substrate. The patterned Si microstructure was micromachined into a thin Si membrane and a thick Au X-ray absorber was embedded in it by electroplating. A plastic material, polymethylmethacrylate (PMMA) was used for the plate substrate. For reduction of the exposure time and high-aspect-ratio fast wet development, the fabrication condition was optimized with respect to not the exposure dose but to the PMMA mean molecular weight (M.W.) changing after deep X-ray exposure as measured by gel permeation chromatography (GPC). Decrement of the PMMA M.W. and increment of the wet developer temperature accelerated the etching rate. Under optimized fabrication conditions, a microc...

  11. Instability in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of instability in flow boiling in microchannels occurring in high heat flux electronic cooling. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Microchannels,” and "Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,"by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  12. A review of entropy generation in microchannels

    Directory of Open Access Journals (Sweden)

    Mohamed M Awad

    2015-12-01

    Full Text Available In this study, a critical review of thermodynamic optimum of microchannels based on entropy generation analysis is presented. Using entropy generation analysis as evaluation parameter of microchannels has been reported by many studies in the literature. In these studies, different working fluids such as nanofluids, air, water, engine oil, aniline, ethylene glycol, and non-Newtonian fluids have been used. For the case of nanofluids, “nanoparticles” has been used in various kinds such as Al2O3 and Cu, and “base fluid” has been used in various kinds such as water and ethylene glycol. Furthermore, studies on thermodynamic optimum of microchannels based on entropy generation analysis are summarized in a table. At the end, recommendations of future work for thermodynamic optimum of microchannels based on entropy generation analysis are given. As a result, this article can not only be used as the starting point for the researcher interested in entropy generation in microchannels, but it also includes recommendations for future studies on entropy generation in microchannels.

  13. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    Science.gov (United States)

    Balvin, Manuel; Zheng, Yun

    2014-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid

  14. A highly stable microchannel heat sink for convective boiling

    International Nuclear Information System (INIS)

    Lu, Chun Ting; Pan Chin

    2009-01-01

    To develop a highly stable two-phase microchannel heat sink, we experimented with convective boiling in diverging, parallel microchannels with different distributions of laser-etched artificial nucleation sites. Each microchannel had a mean hydraulic diameter of 120 µm. The two-phase flow visualization and the magnitudes of pressure drop and inlet temperature oscillations under boiling conditions demonstrated clearly the merits of using artificial nucleation sites to further stabilize the flow boiling in diverging, parallel microchannels. The stability map showed the plane of subcooling number versus phase change number. It illustrated that diverging, parallel microchannels with artificial nucleation cavities have a much wider stable region than parallel microchannels with uniform cross-sections or diverging, parallel microchannels without artificial nucleation cavities. In addition, the results revealed that the design with cavities distributed uniformly along the downstream half of the channel presented the best stability performance among the three distributions of nucleation sites. This particular design can be regarded as a highly stable microchannel heat sink for convective boiling

  15. Comparison of heat pump performance using fin-and-tube and microchannel heat exchangers under frost conditions

    International Nuclear Information System (INIS)

    Shao, Liang-Liang; Yang, Liang; Zhang, Chun-Lu

    2010-01-01

    Vapor compression heat pumps are drawing more attention in energy saving applications. Microchannel heat exchangers can provide higher performance via less core volume and reduce system refrigerant charge, but little is known about their performance in heat pump systems under frosting conditions. In this study, the system performance of a commercial heat pump using microchannel heat exchangers as evaporator is compared with that using conventional finned-tube heat exchangers numerically and experimentally. The microchannel and finned-tube heat pump system models used for comparison of the microchannel and finned-tube evaporator performance under frosting conditions were developed, considering the effect of maldistribution on both refrigerant and air sides. The quasi-steady-state modeling results are in reasonable agreement with the test data under frost conditions. The refrigerant-side maldistribution is found remarkable impact on the microchannel heat pump system performance under the frost conditions. Parametric study on the fan speed and the fin density under frost conditions are conducted as well to figure out the best trade-off in the design of frost tolerant evaporators. (author)

  16. Gain stabilized microchannel plates and a treatment method for microchannel plates

    International Nuclear Information System (INIS)

    1979-01-01

    Microchannel plates having increased gain and significantly improved aging characteristics are provided by forming a thin film of a cesium compound on the channel walls. In an exemplary embodiment, a suface film of cesium hydroxide is applied to the interior wall surfaces of an MCP by saturating the plate with a solution of the compound, then allowing the solvent to evaporate. The cesium hydroxide residue on the walls subsequently is converted to cesium oxide by a high temperature bake. Microchannel plates are used in image amplifiers, radiation detectors and such like equipment. (Auth.)

  17. Enhanced MicroChannel Heat Transfer in Macro-Geometry using Conventional Fabrication Approach

    Science.gov (United States)

    Ooi, KT; Goh, AL

    2016-09-01

    This paper presents studies on passive, single-phase, enhanced microchannel heat transfer in conventionally sized geometry. The intention is to allow economical, simple and readily available conventional fabrication techniques to be used for fabricating macro-scale heat exchangers with microchannel heat transfer capability. A concentric annular gap between a 20 mm diameter channel and an 19.4 mm diameter insert forms a microchannel where heat transfer occurs. Results show that the heat transfer coefficient of more than 50 kW/m·K can be obtained for Re≈4,000, at hydraulic diameter of 0.6 mm. The pressure drop values of the system are kept below 3.3 bars. The present study re-confirms the feasibility of fabricating macro-heat exchangers with microchannel heat transfer capability.

  18. Automated Lab-on-a-Chip Electrophoresis System

    Science.gov (United States)

    Willis, Peter A.; Mora, Maria; Greer, Harold F.; Fisher, Anita M.; Bryant, Sherrisse

    2012-01-01

    Capillary electrophoresis is an analytical technique that can be used to detect and quantify extremely small amounts of various biological molecules. In the search for biochemical traces of life on other planets, part of this search involves an examination of amino acids, which are the building blocks of life on Earth. The most sensitive method for detecting amino acids is the use of laser induced fluorescence. However, since amino acids do not, in general, fluoresce, they first must be reacted with a fluorescent dye label prior to analysis. After this process is completed, the liquid sample then must be transported into the electrophoresis system. If the system is to be reused multiple times, samples must be added and removed each time. In typical laboratories, this process is performed manually by skilled human operators using standard laboratory equipment. This level of human intervention is not possible if this technology is to be implemented on extraterrestrial targets. Microchip capillary electrophoresis (CE) combined with laser induced fluorescence detection (LIF) was selected as an extremely sensitive method to detect amino acids and other compounds that can be tagged with a fluorescent dye. It is highly desirable to package this technology into an integrated, autonomous, in situ instrument capable of performing CE-LIF on the surface of an extraterrestrial body. However, to be fully autonomous, the CE device must be able to perform a large number of sample preparation and analysis operations without the direct intervention of a human.

  19. Optimization of triangular microchannel heat sinks using constructible theory

    International Nuclear Information System (INIS)

    Mardani, Moloud; Salimpour, Mohammad Reza

    2016-01-01

    The present paper examines the optimization of triangular microchannel heat sinks. The impact of volume fraction of solid material and pressure drop on the maximum temperature of the microchannel heat sinks are investigated and their optimum operating conditions are compared. From the results, it is seen that increasing the side angle of the triangular microchannel, improves its performance. Furthermore, there is an appropriate agreement between the analytical and numerical results. Finally, the effect of degrees of freedom on the performance of microchannels is investigated. To accomplish this end, the triangular microchannels with the side angle of 60 degree have been chosen as it has the best performance compared to other microchannels. It is observed that the minimized maximum temperatures of optimized microchannel heat sinks with three degrees of freedom are 10% lower than the ones with two degrees of freedom

  20. Investigation of Size Effects to the Mixing Performance on the X-shaped Micro-Channels

    Directory of Open Access Journals (Sweden)

    S Tu

    2016-09-01

    Full Text Available Due to the developing of micro-electro-mechanical-system, MEMS, the fabrication of the microminiaturization devices becomes obviously important. The advances in the basic understanding of fluid physics have opened an era of application of fluid dynamics systems using microchannels. The purpose of this study is to research the flow transport phenomenon by employing different kinds of micro-channel sizing in X-shaped micro-channels. As the working fluid, water is injected to microchannel at different mass flow rate. Over a wide range of flow condition, 1.06 < Re < 514, in X-shaped micro-channels, the mixture performances of numerical simulation, flow visualization, and temperature distribution remain the same. At the same mass flow rate as the Reynolds number below 112.53, the biggest channel size had the slowest flow velocity and got the best mixing performance; as the Reynolds number above 112.53, the smaller the channel sizing, the lower the pressure drops and the faster velocity becomes. The transition form early from laminar flow, the unsteady flow is an advantage for mixing in the limited mixing area, therefore 0.7 mm got the best mixing performance. It is clear that the size of the channel plays an important role in the X-shaped micro-channels.

  1. Development of a Microchannel High Temperature Recuperator for Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, Michael [Fuelcell Energy, Inc., Danbury, CT (United States)

    2014-03-24

    This report summarizes the progress made in development of microchannel recuperators for high temperature fuel cell/turbine hybrid systems for generation of clean power at very high efficiencies. Both Solid Oxide Fuel Cell/Turbine (SOFC/T) and Direct FuelCell/Turbine (DFC/T) systems employ an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell’s byproduct heat in a Brayton cycle. Features of the SOFC/T and DFC/T systems include: electrical efficiencies of up to 65% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, and potential cost competitiveness with existing combined cycle power plants. Project work consisted of candidate material selection from FuelCell Energy (FCE) and Pacific Northwest National Laboratory (PNNL) institutional databases as well as from industrial and academic literature. Candidate materials were then downselected and actual samples were tested under representative environmental conditions resulting in further downselection. A microchannel thermal-mechanical model was developed to calculate overall device cost to be later used in developing a final Tier 1 material candidate list. Specifications and operating conditions were developed for both SOFC/T and DFC/T systems. This development included system conceptualization and progression to process flow diagrams (PFD’s) including all major equipment. Material and energy balances were then developed for the two types of systems which were then used for extensive sensitivity studies that used high temperature recuperator (HTR) design parameters (e.g., operating temperature) as inputs and calculated overall system parameters (e.g., system efficiency). The results of the sensitivity studies determined the final HTR design temperatures, pressure drops, and gas compositions. The results also established operating conditions and

  2. Detection system of capillary array electrophoresis microchip based on optical fiber

    Science.gov (United States)

    Yang, Xiaobo; Bai, Haiming; Yan, Weiping

    2009-11-01

    To meet the demands of the post-genomic era study and the large parallel detections of epidemic diseases and drug screening, the high throughput micro-fluidic detection system is needed urgently. A scanning laser induced fluorescence detection system based on optical fiber has been established by using a green laser diode double-pumped solid-state laser as excitation source. It includes laser induced fluorescence detection subsystem, capillary array electrophoresis micro-chip, channel identification unit and fluorescent signal processing subsystem. V-shaped detecting probe composed with two optical fibers for transmitting the excitation light and detecting induced fluorescence were constructed. Parallel four-channel signal analysis of capillary electrophoresis was performed on this system by using Rhodamine B as the sample. The distinction of different samples and separation of samples were achieved with the constructed detection system. The lowest detected concentration is 1×10-5 mol/L for Rhodamine B. The results show that the detection system possesses some advantages, such as compact structure, better stability and higher sensitivity, which are beneficial to the development of microminiaturization and integration of capillary array electrophoresis chip.

  3. Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis.

    Science.gov (United States)

    Sahore, Vishal; Sonker, Mukul; Nielsen, Anna V; Knob, Radim; Kumar, Suresh; Woolley, Adam T

    2018-01-01

    We have developed multichannel integrated microfluidic devices for automated preconcentration, labeling, purification, and separation of preterm birth (PTB) biomarkers. We fabricated multilayer poly(dimethylsiloxane)-cyclic olefin copolymer (PDMS-COC) devices that perform solid-phase extraction (SPE) and microchip electrophoresis (μCE) for automated PTB biomarker analysis. The PDMS control layer had a peristaltic pump and pneumatic valves for flow control, while the PDMS fluidic layer had five input reservoirs connected to microchannels and a μCE system. The COC layers had a reversed-phase octyl methacrylate porous polymer monolith for SPE and fluorescent labeling of PTB biomarkers. We determined μCE conditions for two PTB biomarkers, ferritin (Fer) and corticotropin-releasing factor (CRF). We used these integrated microfluidic devices to preconcentrate and purify off-chip-labeled Fer and CRF in an automated fashion. Finally, we performed a fully automated on-chip analysis of unlabeled PTB biomarkers, involving SPE, labeling, and μCE separation with 1 h total analysis time. These integrated systems have strong potential to be combined with upstream immunoaffinity extraction, offering a compact sample-to-answer biomarker analysis platform. Graphical abstract Pressure-actuated integrated microfluidic devices have been developed for automated solid-phase extraction, fluorescent labeling, and microchip electrophoresis of preterm birth biomarkers.

  4. Micro-channel convective boiling heat transfer with flow instabilities

    International Nuclear Information System (INIS)

    Consolini, L.; Thome, J.R.

    2009-01-01

    Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 μm circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)

  5. Micro-channel convective boiling heat transfer with flow instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Consolini, L.; Thome, J.R. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Transfert de Chaleur et de Masse], e-mail: lorenzo.consolini@epfl.ch, e-mail: john.thome@epfl.ch

    2009-07-01

    Flow boiling heat transfer in micro-channels has attracted much interest in the past decade, and is currently a strong candidate for high performance compact heat sinks, such as those required in electronics systems, automobile air conditioning units, micro-reactors, fuel cells, etc. Currently the literature presents numerous experimental studies on two-phase heat transfer in micro-channels, providing an extensive database that covers many different fluids and operating conditions. Among the noteworthy elements that have been reported in previous studies, is the sensitivity of micro-channel evaporators to oscillatory two-phase instabilities. These periodic fluctuations in flow and pressure drop either result from the presence of upstream compressibility, or are simply due to the interaction among parallel channels in multi-port systems. An oscillating flow presents singular characteristics that are expected to produce an effect on the local heat transfer mechanisms, and thus on the estimation of the two-phase heat transfer coefficients. The present investigation illustrates results for flow boiling of refrigerants R-134a, R-236fa, and R-245fa in a 510 {mu}m circular micro-channel, exposed to various degrees of oscillatory compressible volume instabilities. The data describe the main features of the fluctuations in the temperatures of the heated wall and fluid, and draw attention to the differences in the measured unstable time-averaged heat transfer coefficients with respect to those for stable flow boiling. (author)

  6. VOF Modeling and Analysis of the Segmented Flow in Y-Shaped Microchannels for Microreactor Systems

    Directory of Open Access Journals (Sweden)

    Xian Wang

    2013-01-01

    Full Text Available Microscaled devices receive great attention in microreactor systems for producing high renewable energy due to higher surface-to-volume, higher transport rates (heat or/and mass transfer rates, and other advantages over conventional-size reactors. In this paper, the two-phase liquid-liquid flow in a microchannel with various Y-shaped junctions has been studied numerically. Two kinds of immiscible liquids were injected into a microchannel from the Y-shaped junctions to generate the segment flow mode. The segment length was studied. The volume of fluid (VOF method was used to track the liquid-liquid interface and the piecewise-liner interface construction (PLIC technique was adopted to get a sharp interface. The interfacial tension was simulated with continuum surface force (CSF model and the wall adhesion boundary condition was taken into consideration. The simulated flow pattern presents consistence with our experimental one. The numerical results show that a segmented flow mode appears in the main channel. Under the same inlet velocities of two liquids, the segment lengths of the two liquids are the same and depend on the inclined angles of two lateral channels. The effect of inlet velocity is studied in a typical T-shaped microchannel. It is found that the ratio between the lengths of two liquids is almost equal to the ratio between their inlet velocities.

  7. The parameterization of microchannel-plate-based detection systems

    Science.gov (United States)

    Gershman, Daniel J.; Gliese, Ulrik; Dorelli, John C.; Avanov, Levon A.; Barrie, Alexander C.; Chornay, Dennis J.; MacDonald, Elizabeth A.; Holland, Matthew P.; Giles, Barbara L.; Pollock, Craig J.

    2016-10-01

    The most common instrument for low-energy plasmas consists of a top-hat electrostatic analyzer (ESA) geometry coupled with a microchannel-plate-based (MCP-based) detection system. While the electrostatic optics for such sensors are readily simulated and parameterized during the laboratory calibration process, the detection system is often less well characterized. Here we develop a comprehensive mathematical description of particle detection systems. As a function of instrument azimuthal angle, we parameterize (1) particle scattering within the ESA and at the surface of the MCP, (2) the probability distribution of MCP gain for an incident particle, (3) electron charge cloud spreading between the MCP and anode board, and (4) capacitive coupling between adjacent discrete anodes. Using the Dual Electron Spectrometers on the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission as an example, we demonstrate a method for extracting these fundamental detection system parameters from laboratory calibration. We further show that parameters that will evolve in flight, namely, MCP gain, can be determined through application of this model to specifically tailored in-flight calibration activities. This methodology provides a robust characterization of sensor suite performance throughout mission lifetime. The model developed in this work is not only applicable to existing sensors but also can be used as an analytical design tool for future particle instrumentation.

  8. Micro-channel plates and vacuum detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gys, T., E-mail: Thierry.Gys@cern.ch

    2015-07-01

    A micro-channel plate is an array of miniature electron multipliers that are each acting as a continuous dynode chain. The compact channel structure results in high spatial and time resolutions and robustness to magnetic fields. Micro-channel plates have been originally developed for night vision applications and integrated as an amplification element in image intensifiers. These devices show single-photon sensitivity with very low noise and have been used as such for scintillating fiber tracker readout in high-energy physics experiments. Given their very short transit time spread, micro-channel plate photomultiplier tubes are also being used in time-of-flight and particle identification detectors. The present paper will cover the history of the micro-channel plate development, basic features, and some of their applications. Emphasis will be put on various new manufacturing processes that have been developed over the last few years, and that result in a significant improvement in terms of efficiency, noise, and lifetime performance.

  9. Integration of microplasma and microfluidic technologies for localised microchannel surface modification

    Science.gov (United States)

    Szili, Endre J.; Al-Bataineh, Sameer A.; Priest, Craig; Gruner, Philipp J.; Ruschitzka, Paul; Bradley, James W.; Ralston, John; Steele, David A.; Short, Robert D.

    2011-12-01

    In this paper we describe the spatial surface chemical modification of bonded microchannels through the integration of microplasmas into a microfluidic chip (MMC). The composite MMC comprises an array of precisely aligned electrodes surrounding the gas/fluid microchannel. Pairs of electrodes are used to locally ignite microplasmas inside the microchannel. Microplasmas, comprising geometrically confined microscopic electrically-driven gas discharges, are used to spatially functionalise the walls of the microchannels with proteins and enzymes down to scale lengths of 300 μm inside 50 μm-wide microchannels. Microchannels in poly(dimethylsiloxane) (PDMS) or glass were used in this study. Protein specifically adsorbed on to the regions inside the PDMS microchannel that were directly exposed to the microplasma. Glass microchannels required pre-functionalisation to enable the spatial patterning of protein. Firstly, the microchannel wall was functionalised with a protein adhesion layer, 3-aminopropyl-triethoxysilane (APTES), and secondly, a protein blocking agent (bovine serum albumin, BSA) was adsorbed onto APTES. The functionalised microchannel wall was then treated with an array of spatially localised microplasmas that reduced the blocking capability of the BSA in the region that had been exposed to the plasma. This enabled the functionalisation of the microchannel with an array of spatially separated protein. As an alternative we demonstrated the feasibility of depositing functional thin films inside the MMC by spatially plasma depositing acrylic acid and 1,7-octadiene within the microchannel. This new MMC technology enables the surface chemistry of microchannels to be engineered with precision, which is expected to broaden the scope of lab-on-a-chip type applications.

  10. Boiling in microchannels: a review of experiment and theory

    International Nuclear Information System (INIS)

    Thome, John R.

    2004-01-01

    A summary of recent research on boiling in microchannels is presented. The review addresses the topics of macroscale versus microscale heat transfer, two-phase flow regimes, flow boiling heat transfer results for microchannels, heat transfer mechanisms in microchannels and flow boiling models for microchannels. In microchannels, the most dominant flow regime appears to be the elongated bubble mode that can persist up to vapor qualities as high as 60-70% in microchannels, followed by annular flow. Flow boiling heat transfer coefficients have been shown experimentally to be dependent on heat flux and saturation pressure while only slightly dependent on mass velocity and vapor quality. Hence, these studies have concluded that nucleate boiling controls evaporation in microchannels. Instead, a recent analytical study has shown that transient evaporation of the thin liquid films surrounding elongated bubbles is the dominant heat transfer mechanism as opposed to nucleate boiling and is able to predict these trends in the experimental data. Newer experimental studies have further shown that there is in fact a significant effect of mass velocity and vapor quality on heat transfer when covering a broader range of conditions, including a sharp peak at low vapor qualities at high heat fluxes. Furthermore, it is concluded that macroscale models are not realistic for predicting flowing boiling coefficients in microchannels as the controlling mechanism is not nucleate boiling nor turbulent convection but is transient thin film evaporation (also, microchannel flows are typically laminar and not turbulent as assumed by macroscopic models). A more advanced three-zone flow boiling model for evaporation of elongated bubbles in microchannels is currently under development that so far qualitatively describes all these trends. Numerous fundamental aspects of two-phase flow and evaporation remain to be better understood and some of these aspects are also discussed

  11. Direct measurement of erythrocyte deformability in diabetes mellitus with a transparent microchannel capillary model and high-speed video camera system.

    Science.gov (United States)

    Tsukada, K; Sekizuka, E; Oshio, C; Minamitani, H

    2001-05-01

    To measure erythrocyte deformability in vitro, we made transparent microchannels on a crystal substrate as a capillary model. We observed axisymmetrically deformed erythrocytes and defined a deformation index directly from individual flowing erythrocytes. By appropriate choice of channel width and erythrocyte velocity, we could observe erythrocytes deforming to a parachute-like shape similar to that occurring in capillaries. The flowing erythrocytes magnified 200-fold through microscopy were recorded with an image-intensified high-speed video camera system. The sensitivity of deformability measurement was confirmed by comparing the deformation index in healthy controls with erythrocytes whose membranes were hardened by glutaraldehyde. We confirmed that the crystal microchannel system is a valuable tool for erythrocyte deformability measurement. Microangiopathy is a characteristic complication of diabetes mellitus. A decrease in erythrocyte deformability may be part of the cause of this complication. In order to identify the difference in erythrocyte deformability between control and diabetic erythrocytes, we measured erythrocyte deformability using transparent crystal microchannels and a high-speed video camera system. The deformability of diabetic erythrocytes was indeed measurably lower than that of erythrocytes in healthy controls. This result suggests that impaired deformability in diabetic erythrocytes can cause altered viscosity and increase the shear stress on the microvessel wall. Copyright 2001 Academic Press.

  12. Optimization of porous microchannel heat exchanger

    Science.gov (United States)

    Kozhukhov, N. N.; Konovalov, D. A.

    2017-11-01

    The technical progress in information and communication sphere leads to a sharp increase in the use of radio electronic devices. Functioning of radio electronics is accompanied by release of thermal energy, which must be diverted from the heat-stressed element. Moreover, using of electronics at negative temperatures, on the contrary, requires supply of a certain amount of heat to start the system. There arises the task of creating a system that allows both to supply and to divert the necessary amount of thermal energy. The development of complex thermostabilization systems for radio electronic equipment is due to increasing the efficiency of each of its elements separately. For more efficient operation of a heat exchanger, which directly affects the temperature of the heat-stressed element, it is necessary to calculate the mode characteristics and to take into account the effect of its design parameters. The results of optimizing the microchannel heat exchanger are presented in the article. The target optimization functions are the mass, pressure drop and temperature. The parameters of optimization are the layout of porous fins, their geometric dimensions and coolant flow. For the given conditions, the optimum variant of porous microchannel heat exchanger is selected.

  13. Process for separating nitrogen from methane using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Marysville, OH; Qiu, Dongming [Dublin, OH; Dritz, Terence Andrew [Worthington, OH; Neagle, Paul [Westerville, OH; Litt, Robert Dwayne [Westerville, OH; Arora, Ravi [Dublin, OH; Lamont, Michael Jay [Hilliard, OH; Pagnotto, Kristina M [Cincinnati, OH

    2007-07-31

    The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

  14. Laser beam micro-milling of micro-channels in aerospace alloys

    CERN Document Server

    Ahmed, Naveed; Al-Ahmari, Abdulrahman

    2017-01-01

    This volume is greatly helpful to micro-machining and laser engineers as it offers obliging guidelines about the micro-channel fabrications through Nd:YAG laser beam micro-milling. The book also demonstrates how the laser beam micro-milling behaves when operating under wet conditions (under water), and explores what are the pros and cons of this hybrid technique. From the predictive mathematical models, the readers can easily estimate the resulting micro-channel size against the desired laser parametric combinations. The book considers micro-channels in three highly important research materials commonly used in aerospace industry: titanium alloy Ti-6Al-4V, nickel alloy Inconel 718 and aluminum alloy AA 2024. Therefore, the book is highly practicable in the fields of micro-channel heat exchangers, micro-channel aerospace turbine blades, micro-channel heat pipes, micro-coolers and micro-channel pulsating heat plates. These are frequently used in various industries such as aerospace, automotive, biomedical and m...

  15. Heat transfer and fluid flow in minichannels and microchannels

    CERN Document Server

    Kandlikar, Satish; Li, Dongqing; Colin, Stephane; King, Michael R

    2014-01-01

    Heat exchangers with minichannel and microchannel flow passages are becoming increasingly popular due to their ability to remove large heat fluxes under single-phase and two-phase applications. Heat Transfer and Fluid Flow in Minichannels and Microchannels methodically covers gas, liquid, and electrokinetic flows, as well as flow boiling and condensation, in minichannel and microchannel applications. Examining biomedical applications as well, the book is an ideal reference for anyone involved in the design processes of microchannel flow passages in a heat exchanger. Each chapter is accompan

  16. One-dimensional position readout from microchannel plates

    International Nuclear Information System (INIS)

    Connell, K.A.; Przybylski, M.M.

    1982-01-01

    The development of a one-dimensional position readout system with microchannel plates, is described, for heavy ion detectors for use in a particle time-of-flight telescope and as a position sensitive device in front of an ionisation counter at the Nuclear Structure Facility. (U.K.)

  17. Microchannel boiling mechanisms leading to burnout

    International Nuclear Information System (INIS)

    Landram, C.S.; Riddle, R.A.

    1994-01-01

    The authors are analyzing the thermal performance of microchannel heat sinks to extend their applied heat loads beyond coolant single-phase limits. This is the first investigation of boiling in the narrow (50-μm) microchannels having typically high-aspect-ratio (of order 10/1) flow cross-sections. The prescription of local, wall-coolant, interfacial, two-phase correlations first required development of a validated, approximate, thermal-model accounting for conjugate heat transfer. The strongest mechanism for heat transfer in two-phase microchannel flow was found to be saturated boiling in a channel region near the heated base. When this region dried out, burnout occurred, both in the computations and in the experiment

  18. Development of time-of-flight RBS system using multi microchannel plates

    International Nuclear Information System (INIS)

    Nguyen, N.V.; Abo, S.; Lohner, T.; Sawaragi, H.; Wakaya, F.; Takai, M.

    2007-01-01

    A new time-of-flight Rutherford backscattering spectroscopy (TOF-RBS) system with two circular microchannel plates (MCPs) installed at a distance of 140 mm from a sample holder and a scattering angle of 125 o and a 100 kV focused ion beam column having a liquid metal ion source (LMIS) of AuSiBe alloy has been assembled to obtain high counting rate and enhanced mass resolution. The possible influence of the two MCPs by logical summation of the output signals on the time resolution was investigated by measuring dedicated thin deposited metallic samples. And, the time resolution was found in the range of 1.5-2 ns

  19. Characterization of metal/humic acid systems by Capillary Electrophoresis

    NARCIS (Netherlands)

    Staden JJ van; Hoop MAGT van den; Cleven R; LAC

    2000-01-01

    Metal-humic acid systems have been characterised applying Capillary Electrophoresis (CE). Appropriate experimental conditions with respect to carrier electrolyte, pH range, salt concentration, humic acid concentration and the applied potential, have been optimised. The influence of multivalent metal

  20. Study of condensation of refrigerants in a micro-channel for development of future compact micro-channel condensers

    Science.gov (United States)

    Chowdhury, Sourav

    2009-12-01

    Mini- and micro-channel technology has gained considerable ground in the recent years in industry and is favored due to its several advantages stemming from its high surface to volume ratio and high values of proof pressure it can withstand. Micro-channel technology has paved the way to development of highly compact heat exchangers with low cost and mass penalties. In the present work, the issues related to the sizing of compact micro-channel condensers have been explored. The considered designs encompass both the conventional and MEMS fabrication techniques. In case of MEMS-fabricated micro-channel condenser, wet etching of the micro-channel structures, followed by bonding of two such wafers with silicon nitride layers at the interface was attempted. It was concluded that the silicon nitride bonding requires great care in terms of high degree of surface flatness and absence of roughness and also high degree of surface purity and thus cannot be recommended for mass fabrication. Following this investigation, a carefully prepared experimental setup and test micro-channel with hydraulic diameter 700 mum and aspect ratio 7:1 was fabricated and overall heat transfer and pressure drop aspects of two condensing refrigerants, R134a and R245fa were studied at a variety of test conditions. To the best of author's knowledge, so far no data has been reported in the literature on condensation in such high aspect ratio micro-channels. Most of the published experimental works on condensation of refrigerants are concerning conventional hydraulic diameter channels (> 3mm) and only recently some experimental data has been reported in the sub-millimeter scale channels for which the surface tension and viscosity effects play a dominant role and the effect of gravity is diminished. It is found that both experimental data and empirically-derived correlations tend to under-predict the present data by an average of 25%. The reason for this deviation could be because a high aspect ratio

  1. DNA migration mechanism analyses for applications in capillary and microchip electrophoresis

    Science.gov (United States)

    Forster, Ryan E.; Hert, Daniel G.; Chiesl, Thomas N.; Fredlake, Christopher P.; Barron, Annelise E.

    2009-01-01

    In 2009, electrophoretically driven DNA separations in slab gels and capillaries have the sepia tones of an old-fashioned technology in the eyes of many, even while they remain ubiquitously used, fill a unique niche, and arguably have yet to reach their full potential. For comic relief, what is old becomes new again: agarose slab gel separations are used to prepare DNA samples for “next-gen” sequencing platforms (e.g., the Illumina and 454 machines)—dsDNA molecules within a certain size range are “cut out” of a gel and recovered for subsequent “massively parallel” pyrosequencing. In this review, we give a Barron lab perspective on how our comprehension of DNA migration mechanisms in electrophoresis has evolved, since the first reports of DNA separations by CE (∼1989) until now, 20 years later. Fused silica capillaries, and borosilicate glass and plastic microchips, quietly offer increasing capacities for fast (and even “ultra-fast”), efficient DNA separations. While the channel-by-channel scaling of both old and new electrophoresis platforms provides key flexibility, it requires each unique DNA sample to be prepared in its own micro- or nanovolume. This Achille's heel of electrophoresis technologies left an opening through which pooled-sample, next-gen DNA sequencing technologies rushed. We shall see, over time, whether sharpening understanding of transitions in DNA migration modes in crosslinked gels, nanogel solutions, and uncrosslinked polymer solutions will allow electrophoretic DNA analysis technologies to flower again. Microchannel electrophoresis, after a quiet period of metamorphosis, may emerge sleeker and more powerful, to claim its own important niche applications. PMID:19582705

  2. Study of different cross-shaped microchannels affecting thermal-bubble-actuated microparticle manipulation

    Science.gov (United States)

    Li, Weichen; Tsou, Chingfu

    2015-10-01

    This paper presents a thermal-bubble-actuated microfluidic chip with cross-shaped microchannels for evaluating the effect of different microchannel designs on microparticle manipulation. Four cross-shaped microchannel designs, with orthogonal, misaligned, skewed, and antiskewed types, were proposed in this study. The thermal bubble micropump, which is based on a resistive bulk microheater, was used to drive fluid transportation, and it can be realized using a simple microfabrication process with a silicon-on-isolator wafer. Using commercial COMSOL software, the flow profiles of microfluidics in various cross-shaped microchannels were simulated qualitatively under different pumping pressures. Microbeads, with a diameter of 20 μm, manipulated in four cross-shaped microchannels, were also implemented in this experiment. The results showed that a skewed microchannel design has a higher sorting rate compared with orthogonal, misaligned, and antiskewed microchannels because its flow velocity in the main microchannel is significantly reduced by pumping pressure. Typically, the successful sorting rate for this type of skewed microchannel can reach 30% at a pumping frequency of 100 Hz.

  3. Effect of microchannel structure on the reaction performance of methanol steam reforming

    International Nuclear Information System (INIS)

    Pan, Minqiang; Wu, Qiuyu; Jiang, Lianbo; Zeng, Dehuai

    2015-01-01

    Highlights: • Effect of microchannel cross-section and distribution on MSR are investigated. • Microchannel distribution shows much more influence on reaction performance. • SLDR and ELR with rectangular cross-section present better reaction performance. • DLSR and EUU with tooth cross-section have better reaction performance. • Equal-distribution of microchannels present the best reaction performance. - Abstract: Methanol steam reforming inside microchannel reactors is regarded as one of effective methods for supplying hydrogen for fuel cells. Microchannel structure plays an important role on the reaction performance of methanol steam reforming. Parallel and uniform-distributed microchannels with rectangular cross-section are generally adopted. In this work, two kinds of microchannel cross-sections and four kinds of microchannel distributions are selected to investigate the effect of microchannel structure on the reaction performance of methanol steam reforming. The result indicates that microchannel distribution shows much more influences on the reaction performance of methanol steam reforming than the microchannel cross-section. Sparse-distribution in the Left direction and Dense-distribution in the Right direction (SLDR) as well as Equal-distribution in the Left–Right direction (ELR) with rectangular cross-section present relatively good reaction performances, whereas Dense-distribution in the Left direction and Sparse-distribution in the Right direction (DLSR) as well as Equal-distribution in the Upside–Underside direction (EUU) with tooth cross-section have relatively good performances. ELR presents the best reaction performances of methanol steam reforming among all the investigated microchannel structures, whether rectangular or tooth cross-section

  4. DNA typing by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  5. Cooling high heat flux micro-electronic systems using refrigerants in high aspect ratio multi-microchannel evaporators

    International Nuclear Information System (INIS)

    Costa-Patry, E.

    2011-11-01

    Improving the energy efficiency of cooling systems can contribute to reduce the emission of greenhouse gases. Currently, most microelectronic applications are air-cooled. Switching to two-phase cooling systems would decrease power consumption and allow for the reuse of the extracted heat. For this type of application, multi-microchannel evaporators are thought to be well adapted. However, such devices have not been tested for a wide range of operating conditions, such that their thermal response to the high non-uniform power map typically generated by microelectronics has not been studied. This research project aims at clarifying these gray areas by investigating the behavior of the two-phase flow of different refrigerants in silicon and copper multi-microchannel evaporators under uniform, non-uniform and transient heat fluxes operating conditions. The test elements use as a heat source a pseudo-chip able to mimic the behavior of a CPU. It is formed by 35 independent sub-heaters, each having its own temperature sensor, such that 35 temperature and 35 heat flux measurements can be made simultaneously. Careful measurements of each pressure drop component (inlet, microchannels and outlet) found in the micro-evaporators showed the importance of the inlet and outlet restriction pressure losses. The overall pressure drop levels found in the copper test section were low enough to possibly be driven by a thermosyphon system. The heat transfer coefficients measured for uniform heat flux conditions were very high and typically followed a V-shape curve. The first branch was associated to the slug flow regime and the second to the annular flow regime. By tracking the minimum level of heat transfer, a transition criteria between the regimes was established, which included the effect of heat flux on the transition. Then for each branch, a different prediction method was used to form the first flow pattern-based prediction method for two-phase heat transfer in microchannels. A

  6. Thermal effect of a thermoelectric generator on parallel microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse

    2012-01-01

    Thermoelectric generators (TEG) convert heat energy to electrical power by means of semiconductor charge carriers serving as working fluid. In this work, a TEG is applied to a parallel microchannel heat sink. The effect of the inlet plenum arrangement on the laminar flow distribution...... in the channels is considered at a wide range of the pressure drop along the heat sink. The particular focus of this study is geometrical effect of the TEG on the heat transfer characteristics in the micro-heat sink. The hydraulic diameter of the microchannels is 270 μm, and three heat fluxes are applied...... on the hot surface of the TEG. By considering the maximum temperature limitation for Bi_2 Te_3 material and using the microchannel heat sink for cooling down the TEG system, an optimum pumping power is achieved. The results are in a good agreement with the previous experimental and theoretical studies....

  7. Conducting polymer electrodes for gel electrophoresis.

    Directory of Open Access Journals (Sweden)

    Katarina Bengtsson

    Full Text Available In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene (PEDOT can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  8. Conducting polymer electrodes for gel electrophoresis.

    Science.gov (United States)

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that π-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel electrophoresis, and show that electrodes containing PEDOT can be used with a commercial polyacrylamide gel electrophoresis system with minimal impact to the resulting gel image or the ionic transport measured during a separation.

  9. Static response of deformable microchannels: a comparative modelling study

    Science.gov (United States)

    Shidhore, Tanmay C.; Christov, Ivan C.

    2018-02-01

    We present a comparative modelling study of fluid-structure interactions in microchannels. Through a mathematical analysis based on plate theory and the lubrication approximation for low-Reynolds-number flow, we derive models for the flow rate-pressure drop relation for long shallow microchannels with both thin and thick deformable top walls. These relations are tested against full three-dimensional two-way-coupled fluid-structure interaction simulations. Three types of microchannels, representing different elasticity regimes and having been experimentally characterized previously, are chosen as benchmarks for our theory and simulations. Good agreement is found in most cases for the predicted, simulated and measured flow rate-pressure drop relationships. The numerical simulations performed allow us to also carefully examine the deformation profile of the top wall of the microchannel in any cross section, showing good agreement with the theory. Specifically, the prediction that span-wise displacement in a long shallow microchannel decouples from the flow-wise deformation is confirmed, and the predicted scaling of the maximum displacement with the hydrodynamic pressure and the various material and geometric parameters is validated.

  10. Microchannel plate assembly parameters with micron gaps

    International Nuclear Information System (INIS)

    Demchenkova, A.A.

    1987-01-01

    Performance of chevron microchannel plate assembly with 5 and 15 μm gaps between them has been investigated. The assembly is placed into a vacuum chamber under pressure -6 Torr and irradiated by neutral He and Ar atom beams with 1.5 and 3 keV energies as well as by ultraviolet photons with 147 nm wave length. Dependence of the gain and amplitude resolution on power voltage in plates are measured. The results obtained have shown that microchannel plates permit to obtain the gain up to 3x10 7 and amplitude resolution up to 30% when detecting both atomic particles and ultraviolet photons. The assembly can be effectively used in those cases when it is necessary to use microchannel plates with curved channels

  11. Microchannel plate photodetectors

    International Nuclear Information System (INIS)

    Majka, R.

    1977-01-01

    A review is given the status of development work on photodetectors using microchannel plates (MCP) as the electron gain element. Projections are made and opinions are presented on what might be available in the next few years. Several uses for these devices at ISABELLE are mentioned

  12. Effects of surface roughness and electrokinetic heterogeneity on electroosmotic flow in microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Bartuschat, Dominik; Rüde, Ulrich, E-mail: suva_112@yahoo.co.in [Department of Computer Science 10 University of Erlangen-Nuremberg, Cauerstr.11 91058 Erlangen (Germany)

    2015-06-15

    In this paper, a hybrid lattice-Boltzmann and finite-difference (LB-FD) model is applied to simulate the effects of three-dimensional surface roughness and electrokinetic heterogeneity on electroosmotic flow (EOF) in a microchannel. The lattice-Boltzmann (LB) method has been employed to obtain the flow field and a finite-difference (FD) method is used to solve the Poisson-Boltzmann (PB) equation for the electrostatic potential distribution. Numerical simulation of flow through a square cross-section microchannel with designed roughness is conducted and the results are critically analysed. The effects of surface heterogeneity on the electroosmotic transport are investigated for different roughness height, width, roughness interval spacing, and roughness surface potential. Numerical simulations reveal that the presence of surface roughness changes the nature of electroosmotic transport through the microchannel. It is found that the electroosmotic velocity decreases with the increase in roughness height and the velocity profile becomes asymmetric. For the same height of the roughness elements, the EOF velocity rises with the increase in roughness width. For the heterogeneously charged rough channel, the velocity profile shows a distinct deviation from the conventional plug-like flow pattern. The simulation results also indicate locally induced flow vortices which can be utilized to enhance the flow and mixing within the microchannel. The present study has important implications towards electrokinetic flow control in the microchannel, and can provide an efficient way to design a microfluidic system of practical interest. (paper)

  13. Measuring the local pressure amplitude in microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas

    2010-01-01

    /glass microchannels. The system is actuated by a PZT piezo transducer attached beneath the chip and driven by an applied ac voltage near its eigenfrequency of 2 MHz. For a given frequency a number of particle tracks are recorded by a CCD camera and fitted to a theoretical expression for the acoustophoretic motion...

  14. Electrophoresis technology

    Science.gov (United States)

    Snyder, R. S.

    1985-01-01

    A new high resolution apparatus designed for space was built as a laboratory prototype. Using a moving wall with a low zeta potential coating, the major sources of flow distortion for an electrophoretic sample stream are removed. Highly resolved fractions, however, will only be produced in space because of the sensitivity of this chamber to buoyancy-induced convection in the laboratory. The second and third flights of the McDonnell Douglas Astronautics Corporation continuous flow electrophoresis system carried samples developed at MSFC intended to evaluate the broad capabilities of free flow electrophoresis in a reduced gravity environment. Biological model materials, hemoglobin and polystyrene latex microspheres, were selected because of their past use as electrophoresis standards and as visible markers for fluid flow due to electroosmosis, spacecraft acceleration or other factors. The dependence of the separation resolution on the properties of the sample and its suspension solution was assessed.

  15. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    Science.gov (United States)

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  16. CW-laser induced microchannels in dye-polymethacrylic acid films

    OpenAIRE

    M.A. Camacho-López

    2007-01-01

    In this work we report on the formation of microchannels on dye-polymethacrylic acid films using a cw-laser. A focalized beam of a He-Ne laser (632.8 nm emission line) was used to form microchannels on the films. It was found that there exists a laser power density threshold for a pit formation that depends on the dye concentration. The dimensions of the laser-induced channels are dependent on the laser power density. Microchannel formation in the transparent polymethacrylic acid films was no...

  17. Scanning Microscopes Using X Rays and Microchannels

    Science.gov (United States)

    Wang, Yu

    2003-01-01

    Scanning microscopes that would be based on microchannel filters and advanced electronic image sensors and that utilize x-ray illumination have been proposed. Because the finest resolution attainable in a microscope is determined by the wavelength of the illumination, the xray illumination in the proposed microscopes would make it possible, in principle, to achieve resolutions of the order of nanometers about a thousand times as fine as the resolution of a visible-light microscope. Heretofore, it has been necessary to use scanning electron microscopes to obtain such fine resolution. In comparison with scanning electron microscopes, the proposed microscopes would likely be smaller, less massive, and less expensive. Moreover, unlike in scanning electron microscopes, it would not be necessary to place specimens under vacuum. The proposed microscopes are closely related to the ones described in several prior NASA Tech Briefs articles; namely, Miniature Microscope Without Lenses (NPO-20218), NASA Tech Briefs, Vol. 22, No. 8 (August 1998), page 43; and Reflective Variants of Miniature Microscope Without Lenses (NPO-20610), NASA Tech Briefs, Vol. 26, No. 9 (September 2002) page 6a. In all of these microscopes, the basic principle of design and operation is the same: The focusing optics of a conventional visible-light microscope are replaced by a combination of a microchannel filter and a charge-coupled-device (CCD) image detector. A microchannel plate containing parallel, microscopic-cross-section holes much longer than they are wide is placed between a specimen and an image sensor, which is typically the CCD. The microchannel plate must be made of a material that absorbs the illuminating radiation reflected or scattered from the specimen. The microchannels must be positioned and dimensioned so that each one is registered with a pixel on the image sensor. Because most of the radiation incident on the microchannel walls becomes absorbed, the radiation that reaches the

  18. Study on Boiling Heat Transfer Phenomenon in Micro-channels

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Namgyun [Inha Technical College, Incheon (Korea, Republic of)

    2017-09-15

    Recently, efficient heat dissipation has become necessary because of the miniaturization of devices, and research on boiling on micro-channels has attracted attention. However, in the case of micro-channels, the friction coefficient and heat transfer characteristics are different from those in macro-channels. This leads to large errors in the micro scale results, when compared to correlations derived from the macro scale. In addition, due to the complexity of the mechanism, the boiling phenomenon in micro-channels cannot be approached only by experimental and theoretical methods. Therefore, numerical methods should be utilized as well, to supplement these methods. However, most numerical studies have been conducted on macro-channels. In this study, we applied the lattice Boltzmann method, proposed as an alternative numerical tool to simulate the boiling phenomenon in the micro-channel, and predicted the bubble growth process in the channel.

  19. Supramolecular gel electrophoresis of large DNA fragments.

    Science.gov (United States)

    Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi

    2017-10-01

    Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Giant magnetoimpedance-based microchannel system for quick and parallel genotyping of human papilloma virus type 16/18

    Science.gov (United States)

    Yang, Hao; Chen, Lei; Lei, Chong; Zhang, Ju; Li, Ding; Zhou, Zhi-Min; Bao, Chen-Chen; Hu, Heng-Yao; Chen, Xiang; Cui, Feng; Zhang, Shuang-Xi; Zhou, Yong; Cui, Da-Xiang

    2010-07-01

    Quick and parallel genotyping of human papilloma virus (HPV) type 16/18 is carried out by a specially designed giant magnetoimpedance (GMI) based microchannel system. Micropatterned soft magnetic ribbon exhibiting large GMI ratio serves as the biosensor element. HPV genotyping can be determined by the changes in GMI ratio in corresponding detection region after hybridization. The result shows that this system has great potential in future clinical diagnostics and can be easily extended to other biomedical applications based on molecular recognition.

  1. A review on the analysis and experiment of fluid flow and mixing in micro-channels

    International Nuclear Information System (INIS)

    Kang, Sang Mo; Suh, Yong Kweon; Jayaraj, Simon

    2007-01-01

    The studies with respect to micro-channels and micro-mixers are expanding in many dimensions. Most significant area of micro-mixer study is the flow analysis in various micro-channel configurations. The flow phenomena in microchannel devices are quite different from that of the macro-scale devices. An attempt is made here to review the important recent literature available in the area of micro-channel flow analysis and mixing. The topics covered include the physics of flow in micro-channels and integrated simulation of the micro-channel flow. Also, the flow control models and electro-kinetically driven micro-channel flows are dealt in detail. A survey of important numerical methods, which are currently popular for micro-channel flow analysis, is carried out. Different options for mixing in microchannels are provided, in sufficient detail

  2. EXPERIMENTAL PERFORMANCE OF R134a AND R152a USING MICROCHANNEL CONDENSER

    OpenAIRE

    Bhatkar, V. W.

    2018-01-01

    An experimental performance study on vapour compression refrigeration system with R134a and drop in substitute R152a with aluminium microchannel condenser was carried out for condensation temperature of 48°C while evaporation temperature varied from -10 to 15°C. Refrigerant charge of R152a was reduced by 40% over R134a with the microchannel condenser. Performance parameters like work input to the compressor, coefficient of performance, refrigerating capacity, condenser capacity and the produc...

  3. Production of monodispersed Oil-in Water Emulsion Using Crossflow-Type Silicon Microchannel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Takahiro.; Komori, Hideaki.; Yonemoto, Toshikuni. [Tohoku University, Miyagi (Japan). Chemical Engineering Department; Nakajima, Mitsutoshi.; Kikuchi, Yuji. [National Food Research Institute, Ibaraki (Japan)

    1999-04-01

    A novel method for continuous productin of monodispersed oil-in-water (O/W) emulsion is developed using acrossflow-type silicaon microchannel plate. On the single crystal silicon plate, a liquid flow path for continuous phase was made, and at each side of th wall of the path an array of regular-sized slits was precisely fabricated. A flat glass plate was tightly attached on the microchannel plate to cover the top of the slits to form the array of microchannels. Regular-sized oil (triolein) droplets were generated by squeezing the oil through the microchannels into the continuous-phase water (0.3 wt% sodium lauryl sulfate solutin) flowing in the liquid path. Oil droplet size is significantly dependent on the microchannel structure, which is identified with the microchannel width, height, and the length of the terrace (a flat area at the microchannel outlet). Three types of microchannel plates having different microchannel structures generate monodispersed emulsions of different average droplet sizes, 16,20, and 48 {mu}m at the watr flow rate of 1.4x10{sup -2}mL{center_dot}min{sup -1}. For the microchannel plate which generates large droplets of 48 {mu}m, increasing the flow rate causes decreasing droplet size. However, for the microchannel plate which generates small droplets of 16 or 20 {mu}m, the size is not affected by the flow rate within the range from 1.4x10{sup -2}to 2.4 mL{center_dot}min{sup -1}. In every case, the droplet size distribution is narrow, and the geometric standard deviation is 1.03 or less. (author)

  4. Measuring the 3D motion of particles in microchannel acoustophoresis using astigmatism particle tracking velocimetry

    DEFF Research Database (Denmark)

    Augustsson, P.; Barnkob, Rune; Bruus, Henrik

    2012-01-01

    We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis are exami...... relative to the influence from the acoustic radiation force. The current study opens the route to optimized acoustophoretic system design and operation to enable manipulation of small biological components such as spores, bacteria and viruses.......We introduce full three-dimensional tracking of particles in an acoustophoresis microchannel using Astigmatism Particle Tracking Velocimetry (APTV) [1]. For the first time the interaction between acoustic streaming and the primary acoustic radiation force in microchannel acoustophoresis...... are examined in three dimensions. We have quantified the velocity of particles driven by the primary acoustic radiation force and acoustic streaming, respectively, using 0.5-μm and 5-μm particles. Increased ultrasound frequency and lowered viscosity of the medium reduced the influence of acoustic streaming...

  5. Periodic flow patterns of the magnetic fluid in microchannel

    International Nuclear Information System (INIS)

    Chang, C.-W.; Cheng, Y.-T.; Tsai, C.-Y.; Chien, J.-H.; Wang, P.-Y.; Chen, P.-H.

    2007-01-01

    In this study, of interests are the periodic flow patterns of the oil-based magnetic fluid in microchannels. A microfluidic chip is made of poly-dimethylsiloxane (PDMS) and contains cross-shape microchannels. The microchannels are 1000 μm in width and 200 μm in depth. A syringe pump was used to drive the fluids. Periodic flow patterns were seen and the slugs of magnetic fluid and DI water were generated. The operating factors discussed in the present work are the flow rates and the magnetic field. The frequency of generation of the slugs increases with increase in the flow rates. Besides, by settling the permanent magnet around the microchannel, the periods of the slug generation are changed. Different positions of the magnet lead to different periods for generating the slugs. By adjusting operating conditions, to control the frequency and the volume of the slugs is practical

  6. Flow and heat transfer behaviour of nanofluids in microchannels

    Directory of Open Access Journals (Sweden)

    James Bowers

    2018-04-01

    Full Text Available Flow and heat transfer of aqueous based silica and alumina nanofluids in microchannels were experimentally investigated. The measured friction factors were higher than conventional model predictions at low Reynolds numbers particularly with high nanoparticle concentrations. A decrease in the friction factor was observed with increasing Reynolds number, possibly due to the augmentation of nanoparticle aggregate shape arising from fluid shear and alteration of local nanoparticle concentration and nanofluid viscosity. Augmentation of the silica nanoparticle morphology by fluid shear may also have affected the friction factor due to possible formation of a core/shell structure of the particles. Measured thermal conductivities of the silica nanofluids were in approximate agreement with the Maxwell-Crosser model, whereas the alumina nanofluids only showed slight enhancements. Enhanced convective heat transfer was observed for both nanofluids, relative to their base fluids (water, at low particle concentrations. Heat transfer enhancement increased with increasing Reynolds number and microchannel hydraulic diameter. However, the majority of experiments showed a larger increase in pumping power requirements relative to heat transfer enhancements, which may hinder the industrial uptake of the nanofluids, particularly in confined environments, such as Micro Electro-Mechanical Systems (MEMS. Keywords: Nanofluid, Microchannel, Heat transfer, Pressure drop, Friction factor, Thermal conductivity, Viscosity

  7. Surface roughness influences on the behaviour of flow inside microchannels

    Science.gov (United States)

    Farias, M. H.; Castro, C. S.; Garcia, D. A.; Henrique, J. S.

    2018-03-01

    This work discusses influence of the surface roughness on the behavior of liquids flowing inside microchannels. By measuring the flow profile using the micro-PIV technique, the flow of water inside two rectangular microchannels of different wall roughness and in a circular smooth microchannel was studied. Comparisons were made among the experimental results, showing that a metrological approach concerning surface characteristics of microdevices is required to ensure reliability of the measurements for flow analyses in microfluidic processes.

  8. Numerical Simulation and Analysis of Gas-Liquid Flow in a T-Junction Microchannel

    Directory of Open Access Journals (Sweden)

    Hongtruong Pham

    2012-01-01

    Full Text Available Gas-liquid flow in microchannels is widely used in biomedicine, nanotech, sewage treatment, and so forth. Particularly, owing to the high qualities of the microbubbles and spheres produced in microchannels, it has a great potential to be used in ultrasound imaging and controlled drug release areas; therefore, gas-liquid flow in microchannels has been the focus in recent years. In this paper, numerical simulation of gas-liquid flows in a T-junction microchannel was carried out with computational fluid dynamics (CFD software FLUENT and the Volume-of-Fluid (VOF model. The distribution of velocity, pressure, and phase of fluid in the microchannel was obtained, the pressure distribution along the channel walls was analyzed in order to give a better understanding on the formation of microbubbles in the T-junction microchannel.

  9. Critical heat flux in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2015-01-01

    This Brief concerns the important problem of critical heat flux in flow boiling in microchannels. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,” by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  10. NASA's Platform for Cross-Disciplinary Microchannel Research

    Science.gov (United States)

    Son, Sang Young; Spearing, Scott; Allen, Jeffrey; Monaco, Lisa A.

    2003-01-01

    A team from the Structural Biology group located at the NASA Marshall Space Flight Center in Huntsville, Alabama is developing a platform suitable for cross-disciplinary microchannel research. The original objective of this engineering development effort was to deliver a multi-user flight-certified facility for iterative investigations of protein crystal growth; that is, Iterative Biological Crystallization (IBC). However, the unique capabilities of this facility are not limited to the low-gravity structural biology research community. Microchannel-based research in a number of other areas may be greatly accelerated through use of this facility. In particular, the potential for gas-liquid flow investigations and cellular biological research utilizing the exceptional pressure control and simplified coupling to macroscale diagnostics inherent in the IBC facility will be discussed. In conclusion, the opportunities for research-specific modifications to the microchannel configuration, control, and diagnostics will be discussed.

  11. Integrated microchannel cooling in a three dimensional integrated circuit: A thermal management

    Directory of Open Access Journals (Sweden)

    Wang Kang-Jia

    2016-01-01

    Full Text Available Microchannel cooling is a promising technology for solving the three-dimensional integrated circuit thermal problems. However, the relationship between the microchannel cooling parameters and thermal behavior of the three dimensional integrated circuit is complex and difficult to understand. In this paper, we perform a detailed evaluation of the influence of the microchannel structure and the parameters of the cooling liquid on steady-state temperature profiles. The results presented in this paper are expected to aid in the development of thermal design guidelines for three dimensional integrated circuit with microchannel cooling.

  12. Silicon-micromachined microchannel plates

    CERN Document Server

    Beetz, C P; Steinbeck, J; Lemieux, B; Winn, D R

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of approx 0.5 to approx 25 mu m, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposite...

  13. Light emitting diode, photodiode-based fluorescence detection system for DNA analysis with microchip electrophoresis.

    Science.gov (United States)

    Hall, Gordon H; Glerum, D Moira; Backhouse, Christopher J

    2016-02-01

    Electrophoretic separation of fluorescently end-labeled DNA after a PCR serves as a gold standard in genetic diagnostics. Because of their size and cost, instruments for this type of analysis have had limited market uptake, particularly for point-of-care applications. This might be changed through a higher level of system integration and lower instrument costs that can be realized through the use of LEDs for excitation and photodiodes for detection--if they provide sufficient sensitivity. Here, we demonstrate an optimized microchip electrophoresis instrument using polymeric fluidic chips with fluorescence detection of end-labeled DNA with a LOD of 0.15 nM of Alexa Fluor 532. This represents orders of magnitude improvement over previously reported instruments of this type. We demonstrate the system with an electrophoretic separation of two PCR products and their respective primers. We believe that this is the first LED-induced fluorescence microchip electrophoresis system with photodiode-based detection that could be used for standard applications of PCR and electrophoresis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Thermal performance of nanofluid flow in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Li Jie [Department of Mechanical and Aerospace Engineering, University of North Carolina, Campus Box 7910, Broungton Hall 4160, Raleigh, NC 27695-7910 (United States); Kleinstreuer, Clement [Department of Mechanical and Aerospace Engineering, University of North Carolina, Campus Box 7910, Broungton Hall 4160, Raleigh, NC 27695-7910 (United States)], E-mail: ck@eos.ncsu.edu

    2008-08-15

    Two effective thermal conductivity models for nanofluids were compared in detail, where the new KKL (Koo-Kleinstreuer-Li) model, based on Brownian motion induced micro-mixing, achieved good agreements with the currently available experimental data sets. Employing the commercial Navier-Stokes solver CFX-10 (Ansys Inc., Canonsburg, PA) and user-supplied pre- and post-processing software, the thermal performance of nanofluid flow in a trapezoidal microchannel was analyzed using pure water as well as a nanofluid, i.e., CuO-water, with volume fractions of 1% and 4% CuO-particles with d{sub p} = 28.6 nm. The results show that nanofluids do measurably enhance the thermal performance of microchannel mixture flow with a small increase in pumping power. Specifically, the thermal performance increases with volume fraction; but, the extra pressure drop, or pumping power, will somewhat decrease the beneficial effects. Microchannel heat sinks with nanofluids are expected to be good candidates for the next generation of cooling devices.

  15. Experimental and numerical investigations on spray structure under the effect of cavitation phenomenon in a microchannel

    International Nuclear Information System (INIS)

    Ghorbani, Morteza; Sadaghiani, Abdolali Khalili; Yidiz, Mehmet; Kosar, Ali

    2017-01-01

    In this study, the effect of upstream pressure on cavitation flows inside a microchannel with an inner diameter of 152 μm and resulting spray structure were experimentally and numerically investigated. The effects of bubble number density on two-phase flow hydrodynamics were studied using the numerical approach, where transient model was utilized to obtain the changes in vapor quality inside the microchannel and velocity field near the inlet and outlet of the nozzle. Spray visualization was carried out at a distance of 4.5 mm from the tip of the microchannel using the high speed visualization system. The experimental results showed that the spray cone angle increased with upstream pressure, and beyond the upstream pressure of 50 bar, the liquid jet flow changed to the cloudy spray flow. The bubble collapse was recorded at upstream pressures of 100 and 120 bar, where the cavitation bubbles extended to the outlet of the microchannel, and their collapse took place around the spray

  16. Slip flow through a converging microchannel: experiments and 3D simulations

    International Nuclear Information System (INIS)

    Varade, Vijay; Agrawal, Amit; Pradeep, A M

    2015-01-01

    An experimental and 3D numerical study of gaseous slip flow through a converging microchannel is presented in this paper. The measurements reported are with nitrogen gas flowing through the microchannel with convergence angles (4°, 8° and 12°), hydraulic diameters (118, 147 and 177 µm) and lengths (10, 20 and 30 mm). The measurements cover the entire slip flow regime and a part of the continuum and transition regimes (the Knudsen number is between 0.0004 and 0.14); the flow is laminar (the Reynolds number is between 0.5 and 1015). The static pressure drop is measured for various mass flow rates. The overall pressure drop increases with a decrease in the convergence angle and has a relatively large contribution of the viscous component. The numerical solutions of the Navier–Stokes equations with Maxwell’s slip boundary condition explore two different flow behaviors: uniform centerline velocity with linear pressure variation in the initial and the middle part of the microchannel and flow acceleration with nonlinear pressure variation in the last part of the microchannel. The centerline velocity and the wall shear stress increase with a decrease in the convergence angle. The concept of a characteristic length scale for a converging microchannel is also explored. The location of the characteristic length is a function of the Knudsen number and approaches the microchannel outlet with rarefaction. These results on gaseous slip flow through converging microchannels are observed to be considerably different than continuum flow. (paper)

  17. Acoustophoretic Synchronization of Mammalian Cells in Microchannels

    DEFF Research Database (Denmark)

    Thévoz, P.; Adams, J.D.; Shea, H.

    2010-01-01

    We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel to selec......We report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel...

  18. Biomedical applications of capillary electrophoresis

    International Nuclear Information System (INIS)

    Kartsova, L A; Bessonova, E A

    2015-01-01

    The review deals with modern analytical approaches used in capillary electrophoresis for solving medical and biological problems: search for biomarkers of various diseases and rapid diagnosis based on characteristic profiles of biologically active compounds by capillary electrophoresis with mass spectrometric detection; monitoring of the residual drugs in biological fluids for evaluating the efficiency of drug therapy; testing of the enantiomeric purity of pharmaceutical products; the use of novel materials as components of stationary and pseudo-stationary phases in capillary electrophoresis and capillary electrochromatography to increase the selectivity of separation of components of complex matrices; and identification of various on-line preconcentration techniques to reduce the detection limits of biologically active analytes. A topical trend in capillary electrophoresis required in clinical practice, viz., the design of microfluidic systems, is discussed. The bibliography includes 173 references

  19. Silicon-micromachined microchannel plates

    International Nuclear Information System (INIS)

    Beetz, Charles P.; Boerstler, Robert; Steinbeck, John; Lemieux, Bryan; Winn, David R.

    2000-01-01

    Microchannel plates (MCP) fabricated from standard silicon wafer substrates using a novel silicon micromachining process, together with standard silicon photolithographic process steps, are described. The resulting SiMCP microchannels have dimensions of ∼0.5 to ∼25 μm, with aspect ratios up to 300, and have the dimensional precision and absence of interstitial defects characteristic of photolithographic processing, compatible with positional matching to silicon electronics readouts. The open channel areal fraction and detection efficiency may exceed 90% on plates up to 300 mm in diameter. The resulting silicon substrates can be converted entirely to amorphous quartz (qMCP). The strip resistance and secondary emission are developed by controlled depositions of thin films, at temperatures up to 1200 deg. C, also compatible with high-temperature brazing, and can be essentially hydrogen, water and radionuclide-free. Novel secondary emitters and cesiated photocathodes can be high-temperature deposited or nucleated in the channels or the first strike surface. Results on resistivity, secondary emission and gain are presented

  20. Preliminary studies of microchannel plate photomultiplier tube neutron detectors for flight test applications

    International Nuclear Information System (INIS)

    Dolan, K.W.

    1978-10-01

    Electrical, mechanical, thermal, and neutron response data indicate that microchannel plate photomultiplier tubes are viable candidates as miniature, ruggedized neutron detectors for flight test applications in future weapon systems

  1. Choice of capillary electrophoresis systems for the impurity profiling of drugs

    NARCIS (Netherlands)

    Hilhorst, M.J; Somsen, G.W; de Jong, G.J.

    In order to develop a strategy for the impurity profiling of drugs, the possibilities of some capillary electrophoresis systems were investigated. A mixture containing a drug and some of its possible impurities has been used as a model problem. The test compounds were investigated by capillary zone

  2. Influence of sinusoidal flow on the thermal and hydraulic performance of microchannel heat sink

    International Nuclear Information System (INIS)

    Om, N I; Gunnasegaran, P; Rajasegaran, S

    2013-01-01

    In this paper, the effect of sinusoidal flow on the thermal and hydraulic performance of microchannel heat sink (MCHS) is numerically investigated. This investigation covers Reynolds number in the range of 100 ≤ Re ≤ 1000 and pure water is used as a working fluid. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using finite volume method (FVM). The water flow field and heat transfer performance inside the sinusoidal microchannels is simulated and the results are compared with the straight microchannels. The effect of using sinusoidal microchannels on temperature distribution, Nusselt number, friction factor and thermal resistance is presented in this paper. It is found that with same rectangular cross-section, sinusoidal microchannels have a better heat transfer performance compared to the straight microchannels.

  3. Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study

    International Nuclear Information System (INIS)

    Valeh-e-Sheyda, Peyvand; Rahimi, Masoud; Karimi, Ebrahim; Asadi, Masomeh

    2013-01-01

    Highlights: ► Showing cooling potential of gas–liquid two-phase flow in microchannels for PV cell. ► Introducing the concept of using slug flow in microchannels for cooling of PV cells. ► In single-phase flow, increasing the liquid flow rate enhances the PV power. ► Showing that in two-phase flow the output power related the fluid flow regime. ► By coupling PV and microchannel an increase up to 38% in output power was observed. - Abstract: This paper reports the experimental data from performance of two-phase flows in a small hybrid microchannel solar cell. Using air and water as two-phase fluid, the experiments were conducted at indoor condition in an array of rectangular microchannels with a hydraulic diameter of 0.667 mm. The gas superficial velocity ranges were between 0 and 3.27 m s −1 while liquid flow rate was 0.04 m s −1 . The performance analysis of the PV cell at slug and transitional slug/annular flow regimes are the focus of this study. The influence of two-phase working fluid on PV cell cooling was compared with single-phase. In addition, the great potential of slug flow for heat removal enhancement in PV/T panel was investigated. The obtained data showed the proposed hybrid system could substantially increases the output power of PV solar cells

  4. Characterization of microchannel anechoic corners formed by surface acoustic waves

    Science.gov (United States)

    Destgeer, Ghulam; Alam, Ashar; Ahmed, Husnain; Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Sung, Hyung Jin

    2018-02-01

    Surface acoustic waves (SAWs) generated in a piezoelectric substrate couple with a liquid according to Snell's law such that a compressional acoustic wave propagates obliquely at a Rayleigh angle ( θ t) inside the microchannel to form a region devoid of a direct acoustic field, which is termed a microchannel anechoic corner (MAC). In the present study, we used microchannels with various heights and widths to characterize the width of the MAC region formed by a single travelling SAW. The attenuation of high-frequency SAWs produced a strong acoustic streaming flow that moved the particles in and out of the MAC region, whereas reflections of the acoustic waves within the microchannel resulted in standing acoustic waves that trapped particles at acoustic pressure nodes located within or outside of the MAC region. A range of actuation frequencies and particle diameters were used to investigate the effects of the acoustic streaming flow and the direct acoustic radiation forces by the travelling as well as standing waves on the particle motion with respect to the MAC region. The width of the MAC ( w c), measured experimentally by tracing the particles, increased with the height of the microchannel ( h m) according to a simple trigonometric equation w c = h m × tan ( θ t ).

  5. Electrokinetic microchannel battery by means of electrokinetic and microfluidic phenomena

    Science.gov (United States)

    Yang, Jun; Lu, Fuzhi; Kostiuk, Larry W.; Kwok, Daniel Y.

    2003-11-01

    Pressure-driven flow in a microchannel induces a streaming current due to the presence of an electrical double layer in the interface between the electrolyte solution and channel wall. As the streaming current is of the order of a nano-amphere and is additive, we propose here a method to develop an electrokinetic battery consisting of an array of microchannels that converts the hydrostatic pressure of a liquid into electrical work. We have given oscillating analytical solutions by means of an electrical circuit analysis to model the multi-microchannel battery. Using superposition of the appropriate Fourier series, the derived analytical solutions are useful to predict the current when there is more general time-dependent flow through a microchannel array. To illustrate the idea, we have studied steady-state pressure-driven flow in micropore porous glass filter and compared the results with those predicted from our model. From a 30 cm hydrostatic pressure drop, an external current of 1-2 µA was obtained by means of water passing through the micropore porous glass filter. A larger current can be obtained by simply using a solution with higher salt concentration. This results in a new and potentially useful method of energy conversion by means of an array of microchannels.

  6. Modular and efficient ozone systems based on massively parallel chemical processing in microchannel plasma arrays: performance and commercialization

    Science.gov (United States)

    Kim, M.-H.; Cho, J. H.; Park, S.-J.; Eden, J. G.

    2017-08-01

    Plasmachemical systems based on the production of a specific molecule (O3) in literally thousands of microchannel plasmas simultaneously have been demonstrated, developed and engineered over the past seven years, and commercialized. At the heart of this new plasma technology is the plasma chip, a flat aluminum strip fabricated by photolithographic and wet chemical processes and comprising 24-48 channels, micromachined into nanoporous aluminum oxide, with embedded electrodes. By integrating 4-6 chips into a module, the mass output of an ozone microplasma system is scaled linearly with the number of modules operating in parallel. A 115 g/hr (2.7 kg/day) ozone system, for example, is realized by the combined output of 18 modules comprising 72 chips and 1,800 microchannels. The implications of this plasma processing architecture for scaling ozone production capability, and reducing capital and service costs when introducing redundancy into the system, are profound. In contrast to conventional ozone generator technology, microplasma systems operate reliably (albeit with reduced output) in ambient air and humidity levels up to 90%, a characteristic attributable to the water adsorption/desorption properties and electrical breakdown strength of nanoporous alumina. Extensive testing has documented chip and system lifetimes (MTBF) beyond 5,000 hours, and efficiencies >130 g/kWh when oxygen is the feedstock gas. Furthermore, the weight and volume of microplasma systems are a factor of 3-10 lower than those for conventional ozone systems of comparable output. Massively-parallel plasmachemical processing offers functionality, performance, and commercial value beyond that afforded by conventional technology, and is currently in operation in more than 30 countries worldwide.

  7. Detection of Aeromonas hydrophila Using Fiber Optic Microchannel Sensor

    Directory of Open Access Journals (Sweden)

    Samla Gauri

    2017-01-01

    Full Text Available This research focuses on the detection of Aeromonas hydrophila using fiber optic microchannel biosensor. Microchannel was fabricated by photolithography method. The fiber optic was chosen as signal transmitting medium and light absorption characteristic of different microorganisms was investigated for possible detection. Experimental results showed that Aeromonas hydrophila can be detected at the region of UV-Vis spectra between 352 nm and 354 nm which was comparable to measurement provided by UV spectrophotometer and also theoretical calculation by Beer-Lambert Absorption Law. The entire detection can be done in less than 10 minutes using a total volume of 3 μL only. This result promises good potential of this fiber optic microchannel sensor as a reliable, portable, and disposable sensor.

  8. Interferometric measurement and numerical comparisons of supersonic heat transfer flows in microchannel

    International Nuclear Information System (INIS)

    Takahashi, Yuya; Chen, Lin; Okajima, Junnosuke; Iga, Yuka; Komiya, Atsuki; Maruyama, Shigenao

    2016-01-01

    Highlights: • Effective cooling design by super-/sub-sonic air flow in microchannels is proposed. • Microscale supersonic flows is successfully generated and examined. • Microchannel flow density field were visualized quantitatively by interferometer. • The bump design shows great potential of heat transfer enhancement in microscale. - Abstract: With the fast development of electronic systems and the ever-increasing demand of thermally “smart” design in space and aeronautic engineering, the heat transfer innovations and high heat flux challenges have become a hot topic for decades. This study is aimed at the effective cooling heat transfer design by super-/sub-sonic air flow in microscale channels for high heat flux devices. The design is based on the low temperature flows with supersonic expansion in microscale, which yields a compact and simple design. By careful microelectromechanical process, microscale straight and bumped channels (with simple arc curve) are fabricated and experimentally tested in this study. The microscale flow field and density distributions under new designs are visualized quantitatively by an advanced phase-shifting interferometer system, which results are then compared carefully with numerical simulations. In this study, large differences between the two designs in density distribution and temperature changes (around 50 K) are found. The high heat flux potential for supersonic microchannel flows is realized and discussion into detail. It is confirmed that the bump design contributes significantly to the heat transfer enhancement, which shows potential for future application in novel system designs.

  9. Comparative analyses of amplicon migration behavior in differing denaturing gradient gel electrophoresis (DGGE) systems

    Science.gov (United States)

    Thornhill, D. J.; Kemp, D. W.; Sampayo, E. M.; Schmidt, G. W.

    2010-03-01

    Denaturing gradient gel electrophoresis (DGGE) is commonly utilized to identify and quantify microbial diversity, but the conditions required for different electrophoretic systems to yield equivalent results and optimal resolution have not been assessed. Herein, the influence of different DGGE system configuration parameters on microbial diversity estimates was tested using Symbiodinium, a group of marine eukaryotic microbes that are important constituents of coral reef ecosystems. To accomplish this, bacterial clone libraries were constructed and sequenced from cultured isolates of Symbiodinium for the ribosomal DNA internal transcribed spacer 2 (ITS2) region. From these, 15 clones were subjected to PCR with a GC clamped primer set for DGGE analyses. Migration behaviors of the resulting amplicons were analyzed using a range of conditions, including variation in the composition of the denaturing gradient, electrophoresis time, and applied voltage. All tests were conducted in parallel on two commercial DGGE systems, a C.B.S. Scientific DGGE-2001, and the Bio-Rad DCode system. In this context, identical nucleotide fragments exhibited differing migration behaviors depending on the model of apparatus utilized, with fragments denaturing at a lower gradient concentration and applied voltage on the Bio-Rad DCode system than on the C.B.S. Scientific DGGE-2001 system. Although equivalent PCR-DGGE profiles could be achieved with both brands of DGGE system, the composition of the denaturing gradient and application of electrophoresis time × voltage must be appropriately optimized to achieve congruent results across platforms.

  10. Two-phase flow instabilities in a silicon microchannels heat sink

    International Nuclear Information System (INIS)

    Bogojevic, D.; Sefiane, K.; Walton, A.J.; Lin, H.; Cummins, G.

    2009-01-01

    Two-phase flow instabilities are highly undesirable in microchannels-based heat sinks as they can lead to temperature oscillations with high amplitudes, premature critical heat flux and mechanical vibrations. This work is an experimental study of boiling instabilities in a microchannel silicon heat sink with 40 parallel rectangular microchannels, having a length of 15 mm and a hydraulic diameter of 194 μm. A series of experiments have been carried out to investigate pressure and temperature oscillations during the flow boiling instabilities under uniform heating, using water as a cooling liquid. Thin nickel film thermometers, integrated on the back side of a heat sink with microchannels, were used in order to obtain a better insight related to temperature fluctuations caused by two-phase flow instabilities. Flow regime maps are presented for two inlet water temperatures, showing stable and unstable flow regimes. It was observed that boiling leads to asymmetrical flow distribution within microchannels that result in high temperature non-uniformity and the simultaneously existence of different flow regimes along the transverse direction. Two types of two-phase flow instabilities with appreciable pressure and temperature fluctuations were observed, that depended on the heat to mass flux ratio and inlet water temperature. These were high amplitude/low frequency and low amplitude/high frequency instabilities. High speed camera imaging, performed simultaneously with pressure and temperature measurements, showed that inlet/outlet pressure and the temperature fluctuations existed due to alternation between liquid/two-phase/vapour flows. It was also determined that the inlet water subcooling condition affects the magnitudes of the temperature oscillations in two-phase flow instabilities and flow distribution within the microchannels.

  11. COMPUTER PROGRAM FOR CALCULATION MICROCHANNEL HEAT EXCHANGERS FOR AIR CONDITIONING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Olga V. Olshevska

    2016-08-01

    Full Text Available Creating a computer program to calculate microchannel air condensers to reduce design time and carrying out variant calculations. Software packages for thermophysical properties of the working substance and the coolant, the correlation equation for calculating heat transfer, aerodynamics and hydrodynamics, the thermodynamic equations for the irreversible losses and their minimization in the heat exchanger were used in the process of creating. Borland Delphi 7 is used for creating software package.

  12. Stabilization of two-phase octanol/water flows inside poly(dimethylsiloxane) microchannels using polymer coatings

    NARCIS (Netherlands)

    van der Linden, H. J.; Jellema, L. C.; Holwerda, M.; Verpoorte, E.

    In this paper we present our first results on the realization of stable water/octanol, two-phase flows inside poly(dimethylsiloxane) (PDMS) microchannels. Native PDMS microchannels were coated with high molecular weight polymers to change the surface properties of the microchannels and thus

  13. Cooling Performance of Additively Manufactured Microchannels and Film Cooling Holes

    Science.gov (United States)

    Stimpson, Curtis K.

    Additive manufacturing (AM) enables fabrication of components that cannot be made with any other manufacturing method. Significant advances in metal-based AM systems have made this technology feasible for building production parts to be used use in commercial products. In particular, the gas turbine industry benefits from AM as a manufacturing technique especially for development of components subjected to high heat flux. It has been shown that the use of microchannels in high heat flux components can lead to more efficient cooling designs than those that presently exist. The current manufacturing methods have prevented the use of microchannels in such parts, but AM now makes them manufacturable. However, before such designs can become a reality, much research must be done to characterize impacts on flow and heat transfer of AM parts. The current study considers the effect on flow and heat transfer through turbine cooling features made with AM. Specifically, the performance of microchannels and film cooling holes made with laser powder bed fusion (L-PBF) is assessed. A number of test coupons containing microchannels were built from high temperature alloy powders on a commercially available L-PBF machine. Pressure drop and heat transfer experiments characterized the flow losses and convective heat transfer of air passing through the channels at various Reynolds numbers and Mach numbers. The roughness of the channels' surfaces was characterized in terms of statistical roughness parameters; the morphology of the roughness was examined qualitatively. Magnitude and morphology of surface roughness found on AM parts is unlike any form of roughness seen in the literature. It was found that the high levels of roughness on AM surfaces result in markedly augmented pressure loss and heat transfer at all Reynolds numbers, and conventional flow and heat transfer correlations produce erroneous estimates. The physical roughness measurements made in this study were correlated to

  14. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  15. Evaluation and optimisation of preparative semi-automated electrophoresis systems for Illumina library preparation.

    Science.gov (United States)

    Quail, Michael A; Gu, Yong; Swerdlow, Harold; Mayho, Matthew

    2012-12-01

    Size selection can be a critical step in preparation of next-generation sequencing libraries. Traditional methods employing gel electrophoresis lack reproducibility, are labour intensive, do not scale well and employ hazardous interchelating dyes. In a high-throughput setting, solid-phase reversible immobilisation beads are commonly used for size-selection, but result in quite a broad fragment size range. We have evaluated and optimised the use of two semi-automated preparative DNA electrophoresis systems, the Caliper Labchip XT and the Sage Science Pippin Prep, for size selection of Illumina sequencing libraries. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Forced convection flow boiling and two-phase flow phenomena in a microchannel

    Science.gov (United States)

    Na, Yun Whan

    2008-07-01

    The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid

  17. Electrophoresis in space at zero gravity

    Science.gov (United States)

    Bier, M.; Snyder, R. S.

    1974-01-01

    Early planning for manufacturing operations in space include the use of electrophoresis for purification and separation of biological materials. Greatly simplified electrophoresis apparatus have been flown in the Apollo 14 and 16 missions to test the possibility of stable liquid systems in orbit. Additionally, isoelectric focusing and isotachophoresis are of particular interest as they offer very high resolution and have self-sharpening boundaries. The value of possible space electrophoresis is substantial. For example, present technology permits large fractionation of only a few of blood proteins many fractions, and separated cell populations are needed for research.

  18. Acupuncture Injection Combined with Electrokinetic Injection for Polydimethylsiloxane Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Ji Won Ha

    2017-01-01

    Full Text Available We recently reported acupuncture sample injection that leads to reproducible injection of nL-scale sample segments into a polydimethylsiloxane (PDMS microchannel for microchip capillary electrophoresis. The advantages of the acupuncture injection in microchip capillary electrophoresis include capability of minimizing sample loss and voltage control hardware and capability of introducing sample plugs into any desired position of a microchannel. However, the challenge in the previous study was to achieve reproducible, pL-scale sample injections into PDMS microchannels. In the present study, we introduce an acupuncture injection technique combined with electrokinetic injection (AICEI technique to inject pL-scale sample segments for microchip capillary electrophoresis. We carried out the capillary zone electrophoresis (CZE separation of FITC and fluorescein, and the mixture of 10 μM FITC and 10 μM fluorescein was separated completely by using the AICEI method.

  19. Capillaries for use in a multiplexed capillary electrophoresis system

    Science.gov (United States)

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  20. DNA gel electrophoresis: the reptation model(s).

    Science.gov (United States)

    Slater, Gary W

    2009-06-01

    DNA gel electrophoresis has been the most important experimental tool to separate DNA fragments for several decades. The introduction of PFGE in the 1980s and capillary gel electrophoresis in the 1990s made it possible to study, map and sequence entire genomes. Explaining how very large DNA molecules move in a gel and why PFGE is needed to separate them has been an active field of research ever since the launch of the journal Electrophoresis. This article presents a personal and historical overview of the development of the theory of gel electrophoresis, focusing on the reptation model, the band broadening mechanisms, and finally the factors that limit the read length and the resolution of electrophoresis-based sequencing systems. I conclude with a short discussion of some of the questions that remain unanswered.

  1. Developing a method of fabricating microchannels using plant root structure

    Science.gov (United States)

    Nakashima, Shota; Tokumaru, Kazuki; Tsumori, Fujio

    2018-06-01

    Complicated three-dimensional (3D) microchannels are expected to be applied to a lab-on-a-chip, especially an organ-on-a-chip. There are fine microchannel networks such as blood vessels in a living organ. However, it is difficult to recreate the complicated 3D microchannels of real living structures. Plant roots have a similar structure to blood vessels. They spread radially and three-dimensionally, and become thinner as they branch. In this research, we propose a method of fabricating microchannels using a live plant root as a template to mimic a blood vessel structure. We grew a plant in ceramic slurry instead of soil. The slurry consists of ceramic powder, binder and water, so it plays a similar role to soil consisting of fine particles in water. After growing the plant, the roots inside the slurry were burned and a sintered ceramic body with channel structures was obtained by heating. We used two types of slurry with different composition ratios, and compared the internal channel structures before and after sintering.

  2. Convective boiling in a parallel microchannel heat sink with a diverging cross-section design and artificial nucleation sites

    International Nuclear Information System (INIS)

    Lu, Chun Ting; Pan, Chin

    2009-01-01

    To develop a highly stable boiling heat transfer microchannel heat sink, the three types of diverging microchannels, namely Type-1, Type-2 and Type-3, were designed to explore experimentally the effect of different distribution of artificial nucleation sites on enhancing boiling heat transfer in 10 parallel diverging microchannels with a mean hydraulic diameter of 120 μm. The Type-1 system is with no cavities, Type-2 is with cavities distributed uniformly along the downstream half of the channel, while Type-3 is with cavities distributed uniformly along the whole channel. The artificial nucleation sites are laser-etched pits on the channel bottom wall with a mouth diameter of about 20-22 μm based on the heterogeneous nucleation theory. The results of the present study reveal the presence of the artificial nucleation sites for flow boiling in parallel diverging microchannel significantly reduces the wall superheat and enhances the boiling heat transfer performance. Additionally, the Type-3 design demonstrates the best boiling heat transfer performance. (author)

  3. Entropy generation minimization of a MHD (magnetohydrodynamic) flow in a microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Ibanez, Guillermo [Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutierrez, Chiapas 29000 (Mexico); Cuevas, Sergio [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico A.P. 34, Temixco, Mor. 62580 (Mexico)

    2010-10-15

    The dissipative processes that arise in a microchannel flow subjected to electromagnetic interactions, as occurs in a MHD (magnetohydrodynamic) micropump, are analyzed. The entropy generation rate is used as a tool for the assessment of the intrinsic irreversibilities present in the microchannel owing to viscous friction, heat flow and electric conduction. The flow in a parallel plate microchannel produced by a Lorentz force created by a transverse magnetic field and an injected electric current is considered assuming a thermally fully developed flow and conducting walls of finite thickness. The conjugate heat transfer problem in the fluid and solid walls is solved analytically using thermal boundary conditions of the third kind at the outer surfaces of the walls and continuity of temperature and heat flux across the fluid-wall interfaces. Velocity, temperature and current density fields in the fluid and walls are used to calculate the global entropy generation rate. Conditions under which this quantity is minimized are determined for specific values of the geometrical and physical parameters of the system. The Nusselt number is also calculated and explored for different conditions. Results can be used to determine optimized conditions that lead to a minimum dissipation consistent with the physical constraints demanded by the microdevice. (author)

  4. Disc electrophoresis and related techniques of polyacrylamide gel electrophoresis

    National Research Council Canada - National Science Library

    Maurer, H. R

    1971-01-01

    ..., enzymes, antingens and radioactively labelled materials, and detailed treatments of micro disc electrophoresis, preparative polyacrylamide gel electrophoresis and many other techniques for special problems...

  5. High Flux Microchannel Receiver Development with Adap-tive Flow Control

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States)

    2015-08-15

    This project is focused on the demonstration of a microchannel-based solar receiver (MSR). The MSR concept consists of using a modular arrangement of arrayed microchannels to heat a working fluid in a concentrating solar receiver, allowing a much higher solar flux on the receiver and consequently a significant reduction in thermal losses, size, and cost.

  6. Osmotically driven flows in microchannels separated by a semipermeable membrane

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Lee, J.; Bohr, Tomas

    2009-01-01

    We have fabricated lab-on-a-chip systems with microchannels separated by integrated membranes allowing for osmotically driven microflows. We have investigated these flows experimentally by studying the dynamics and structure of the front of a sugar solution travelling in 200 mu m wide and 50-200 mu...... m deep microchannels. We find that the sugar front travels at a constant speed, and that this speed is proportional to the concentration of the sugar solution and inversely proportional to the depth of the channel. We propose a theoretical model, which, in the limit of low axial flow resistance......, predicts that the sugar front should indeed travel with a constant velocity. The model also predicts an inverse relationship between the depth of the channel and the speed, and a linear relation between the sugar concentration and the speed. We thus find good qualitative agreement between the experimental...

  7. An experimental analysis of process parameters to manufacture micro-channels in AISI H13 tempered steel by laser micro-milling

    Science.gov (United States)

    Teixidor, D.; Ferrer, I.; Ciurana, J.

    2012-04-01

    This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying parameters such as scanning speed (SS), pulse intensity (PI) and pulse frequency (PF). Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.

  8. Thermal mixing of two miscible fluids in a T-shaped microchannel.

    Science.gov (United States)

    Xu, Bin; Wong, Teck Neng; Nguyen, Nam-Trung; Che, Zhizhao; Chai, John Chee Kiong

    2010-10-01

    In this paper, thermal mixing characteristics of two miscible fluids in a T-shaped microchannel are investigated theoretically, experimentally, and numerically. Thermal mixing processes in a T-shaped microchannel are divided into two zones, consisting of a T-junction and a mixing channel. An analytical two-dimensional model was first built to describe the heat transfer processes in the mixing channel. In the experiments, de-ionized water was employed as the working fluid. Laser induced fluorescence method was used to measure the fluid temperature field in the microchannel. Different combinations of flow rate ratios were studied to investigate the thermal mixing characteristics in the microchannel. At the T-junction, thermal diffusion is found to be dominant in this area due to the striation in the temperature contours. In the mixing channel, heat transfer processes are found to be controlled by thermal diffusion and convection. Measured temperature profiles at the T-junction and mixing channel are compared with analytical model and numerical simulation, respectively.

  9. Heater Chip with Different Microchannels Geometries for a Low Pressure Free Molecular Micro-Resistojet

    NARCIS (Netherlands)

    Cordeiro Guerrieri, D.; de Athayde Costa e Silva, M.; Zandbergen, B.T.C.; Cervone, A.

    2016-01-01

    This paper presents a dynamic system approach for the modeling of fluid flow in microchannels to be used in thrust control applications. A micro-resistojet fabricated using MEMS (Microelectromechanical Systems) technology has been selected for the analysis. The device operates by vaporizing a liquid

  10. Experimental and theoretical analysis of defocused CO2 laser microchanneling on PMMA for enhanced surface finish

    Science.gov (United States)

    Prakash, Shashi; Kumar, Subrata

    2017-02-01

    The poor surface finish of CO2 laser-micromachined microchannel walls is a major limitation of its utilization despite several key advantages, like low fabrication cost and low time consumption. Defocused CO2 laser beam machining is an effective solution for fabricating smooth microchannel walls on polymer and glass substrates. In this research work, the CO2 laser microchanneling process on PMMA has been analyzed at different beam defocus positions. Defocused processing has been investigated both theoretically and experimentally, and the depth of focus and beam diameter have been determined experimentally. The effect of beam defocusing on the microchannel width, depth, surface roughness, heat affected zone and microchannel profile were examined. A previously developed analytical model for microchannel depth prediction has been improved by incorporating the threshold energy density factor. A semi-analytical model for predicting the microchannel width at different defocus positions has been developed. A semi-empirical model has also been developed for predicting microchannel widths at different defocusing conditions for lower depth values. The developed models were compared and verified by performing actual experiments. Multi-objective optimization was performed to select the best optimum set of input parameters for achieving the desired surface roughness.

  11. A two-step sealing-and-reinforcement SU8 bonding paradigm for the fabrication of shallow microchannels

    Science.gov (United States)

    Mehboudi, Aryan; Yeom, Junghoon

    2018-03-01

    Adhesive bonding is a key technique to create microfluidic devices when two separate substrates are used to form microchannels. Among many adhesives explored in microchannel fabrication, SU8 has been widely used as an adhesive layer for sealing the microchannel sidewalls. The majority of the available SU8-based bonding methods, however, suffer from the difficulties associated with sealing of two important types of the microchannel architecture: (1) shallow microchannels with small patterns on a large area, and (2) microchannels with ultra-low aspect ratios (e.g. 6 mm in width and 2~μ m in height). In this paper, a new bonding paradigm based upon the low-temperature and low-pressure SU8 bonding, consisting of two steps of sealing using a thin-SU8-coated PET film and bonding reinforcement using a SU8-coated glass slide, is proposed to resolve the aforementioned difficulties. Since it does not need complicated instruments such as a wafer bonding machine and a lamination device, the developed bonding paradigm is convenient and economical. We successfully demonstrate the compatibility of the proposed bonding paradigm with the two microchannel fabrication approaches based on the glass wet etching and the SU8 photo-lithography, where small microchannels with the innermost surfaces fully made of SU8 are obtained. A theoretical model is employed to better investigate the flow characteristics and the structural behavior of the microchannel including the PET film deformation, strain and von Mises stress distributions, bonding strength, etc. Moreover, we demonstrate the fabrication of the multi-height deep-shallow microchannel sidewalls and their sealing using the SU8-coated PET film. Finally, as a proof-of-concept device, a microfluidic filter consisting of the double-height deep-shallow microchannel is fabricated for separation of 3 µm and 10 µm particles.

  12. A new multiphasic buffer system for benzyldimethyl-n-hexadecylammonium chloride polyacrylamide gel electrophoresis of proteins providing efficient stacking.

    Science.gov (United States)

    Kramer, Michael L

    2006-02-01

    Acidic PAGE systems using cationic detergents such as benzyldimethyl-n-hexadecylammonium chloride (16-BAC) or CTAB have proven useful for the detection of methoxy esters sensitive to alkaline pH, resolving basic proteins such as histones and membrane proteins. However, the interesting phosphate-based system suffered from poor stacking, resulting in broadened bands and long running times. Therefore, a new 16-BAC PAGE system based on the theory of moving boundary electrophoresis with properties comparable to the classical SDS-PAGE system was designed. As a result a new multiphasic analytical 16-BAC PAGE system providing efficient stacking and significantly shorter running times is presented here. It is based on acetic acid and methoxyacetic acid as common ion constituents. This PAGE system takes advantage of the additional counter stacking effect due to a cross boundary electrophoresis system resulting from the selected buffer constituents. Furthermore, the concentration of 16-BAC was optimized by determining its previously unknown CMC. Due to efficient focusing of the introduced tracking dye, methyl green, termination of electrophoresis can now be more easily followed as compared to the Schlieren line.

  13. Study of the electric field inside microchannel plate multipliers

    International Nuclear Information System (INIS)

    Gatti, E.; Oba, K.; Rehak, P.

    1982-01-01

    Electric field inside high gain microchannel plate multipliers was studied. The calculations were based directly on the solution of the Maxwell equations applied to the microchannel plate (MCP) rather than on the conventional lumped RC model. The results are important to explain the performance of MCP's, (1) under a pulsed bias tension and, (2) at high rate conditions. The results were tested experimentally and a new method of MCP operation free from the positive ion feedback was demonstrated

  14. Electrophoresis forum '80

    International Nuclear Information System (INIS)

    Radola, B.J.

    1980-01-01

    In this volume the contributions of the electrophoresis meeting are presented in a short term form. The main topics are gel-electrophoresis, ultra thin film isoelectric focusing, one- and two-dimensional electrophoresis, electrophoretical separation techniques, electric focusing (for phorensic studies), substrate free and substrate electrophoresis. In the poster session of this meeting subjects such as (ultra) thin film isoelectric focusing, identification of radioactive proteins, labelling of cell surfaces, autoradiography and 3 H-labelled proteins. Separate abstracts were prepared for 4 papers in this report. (HK) [de

  15. Thermal and hydrodynamic studies for micro-channel cooling for large area silicon sensors in high energy physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Flaschel, Nils; Ariza, Dario; Diez, Sergio; Gregor, Ingrid-Maria; Tackmann, Kerstin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gerboles, Marta; Jorda, Xavier; Mas, Roser; Quirion, David; Ullan, Miguel [Centro Nacional de Microelectronica, Barcelona (Spain)

    2017-01-15

    Micro-channel cooling initially aiming at small-sized high-power integrated circuits is being transferred to the field of high energy physics. Today's prospects of micro-fabricating silicon opens a door to a more direct cooling of detector modules. The challenge in high energy physics is to save material in the detector construction and to cool large areas. In this paper, we are investigating micro-channel cooling as a candidate for a future cooling system for silicon detectors in a generic research and development approach. The work presented in this paper includes the production and the hydrodynamic and thermal testing of a micro-channel equipped prototype optimized to achieve a homogeneous flow distribution. Furthermore, the device was simulated using finite element methods.

  16. Thermal and hydrodynamic studies for micro-channel cooling for large area silicon sensors in high energy physics experiments

    International Nuclear Information System (INIS)

    Flaschel, Nils; Ariza, Dario; Diez, Sergio; Gregor, Ingrid-Maria; Tackmann, Kerstin; Gerboles, Marta; Jorda, Xavier; Mas, Roser; Quirion, David; Ullan, Miguel

    2017-01-01

    Micro-channel cooling initially aiming at small-sized high-power integrated circuits is being transferred to the field of high energy physics. Today's prospects of micro-fabricating silicon opens a door to a more direct cooling of detector modules. The challenge in high energy physics is to save material in the detector construction and to cool large areas. In this paper, we are investigating micro-channel cooling as a candidate for a future cooling system for silicon detectors in a generic research and development approach. The work presented in this paper includes the production and the hydrodynamic and thermal testing of a micro-channel equipped prototype optimized to achieve a homogeneous flow distribution. Furthermore, the device was simulated using finite element methods.

  17. Compact Ceramic Microchannel Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Lewinsohn, Charles [Ceramatec, Inc., Salt Lake City, UT (United States)

    2016-10-31

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe how this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.

  18. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl

    2012-01-01

    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net-power...

  19. Integration of amperometric sensors for microchip capillary electrophoresis application

    International Nuclear Information System (INIS)

    Dicorato, F; Moore, E; Glennon, J

    2011-01-01

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis (μCE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor) using a micro-injection molding machine.

  20. Integration of amperometric sensors for microchip capillary electrophoresis application

    Energy Technology Data Exchange (ETDEWEB)

    Dicorato, F; Moore, E [Life Sciences Interface Group, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork (Ireland); Glennon, J, E-mail: eric.moore@tyndall.ie [Chemistry Department, University College Cork, College Road, Cork (Ireland)

    2011-08-17

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis ({mu}CE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor) using a micro-injection molding machine.

  1. Comparison of non-electrophoresis grade with electrophoresis grade BIS in NIPAM polymer gel preparation

    Science.gov (United States)

    Khodadadi, Roghayeh; Khajeali, Azim; Farajollahi, Ali Reza; Hajalioghli, Parisa; Raeisi, Noorallah

    2015-01-01

    Introduction:The main objective of this study was to investigate the possibility of replacing electrophoresis cross-linker with non-electrophoresis N, N′-methylenebisacrylamide (BIS) in N-isopropyl acrylamide (NIPAM) polymer gel and its possible effect on dose response. Methods: NIPAM polymer gel was prepared from non-electrophoresis grade BIS and the relaxation rate (R2) was measured by MR imaging after exposing the gel to gamma radiation from Co-60 source. To compare the response of this gel with the one that contains electrophoresis grade BIS, two sets of NIPAM gel were prepared using electrophoresis and non-electrophoresis BIS and irradiated to different gamma doses. Results: It was found that the dose–response of NIPAM gel made from the non-electrophoresis grade BIS is coincident with that of electrophoresis grade BIS. Conclusion:Taken all, it can be concluded that the non-electrophoresis grade BIS not only is a suitable alternative for the electrophoresis grade BIS but also reduces the cost of gel due to its lower price. PMID:26457250

  2. Induced- and alternating-current electro-osmotic control of the diffusion layer growth in a microchannel-membrane interface device

    Science.gov (United States)

    Park, Sinwook; Yossifon, Gilad

    2014-11-01

    The passage of an electric current through an ionic permselective medium under an applied electric field is characterized by the formation of ionic concentration gradients, which result in regions of depleted and enriched ionic concentration at opposite ends of the medium. Induced-current electro-osmosis (ICEO) and alternating-current-electro-osmosis (ACEO) are shown to control the growth of the diffusion layer (DL) which, in turn, controls the diffusion limited ion transport through the microchannel-membrane system. We fabricated and tested devices made of a Nafion membrane connecting two opposite PDMS microchannels. An interdigitated electrode array was embedded within the microchannel with various distances from the microchannel-membrane interface. The induced ICEO (floating electrodes) / ACEO (active electrodes) vortices formed at the electrode array stir the fluid and thereby suppress the growth of the DL. The intensity of the ACEO vortices is controlled by either varying the voltage amplitude or the frequency, each having its own unique effect. Enhancement of the limiting current by on-demand control of the diffusion length is of importance in on-chip electro-dialysis, desalination and preconcentration of analytes.

  3. Cavitation in flow through a micro-orifice inside a silicon microchannel

    Science.gov (United States)

    Mishra, Chandan; Peles, Yoav

    2005-01-01

    Hydrodynamic cavitation in flows through a micro-orifice entrenched in a microchannel has been detected and experimentally investigated. Microfabrication techniques have been employed to design and develop a microfluidic device containing an 11.5μm wide micro-orifice inside a 100.2μm wide and 101.3μm deep microchannel. The flow of de-ionized water through the micro-orifice reveals the presence of multifarious cavitating flow regimes. This investigation divulges both similarities and differences between cavitation in micro-orifices and cavitation in their macroscale counterparts. The low incipient cavitation number obtained from the current experiments suggests a dominant size scale effect. Choking cavitation is observed to be independent of any pressure or velocity scale effects. However, choking is significantly influenced by the small stream nuclei residence time at such scales. Flow rate choking leads to the establishment of a stationary cavity. Large flow and cavitation hysteresis have been detected at the microscale leading to very high desinent cavitation numbers. The rapid transition from incipient bubbles to choking cavitation and subsequent supercavitation suggests the presence of radically different flow patterns at the microscale. Supercavitation results in a thick cavity, which extends throughout the microchannel, and is encompassed by the liquid. Cavitation at the microscale is expected to considerably influence the design of innovative high-speed microfluidic systems.

  4. Development in electrophoresis: instrumentation for two-dimensional gel electrophoresis of protein separation and application of capillary electrophoresis in micro-bioanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Aoshuang [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    This dissertation begins with a general introduction of topics related to this work. The following chapters contain three scientific manuscripts, each presented in a separate chapter with accompanying tables, figures, and literature citations. The final chapter summarizes the work and provides some prospective on this work. This introduction starts with a brief treatment of the basic principles of electrophoresis separation, followed by a discussion of gel electrophoresis and particularly polyacrylamide gel electrophoresis for protein separation, a summary of common capillary electrophoresis separation modes, and a brief treatment of micro-bioanalysis application of capillary electrophoresis, and ends with an overview of protein conformation and dynamics.

  5. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.

    Science.gov (United States)

    Melin, Jessica; van der Wijngaart, Wouter; Stemme, Göran

    2005-06-01

    This paper introduces a method of combining open and closed microchannels in a single component in a novel way which couples the benefits of both open and closed microfluidic systems and introduces interesting on-chip microfluidic behaviour. Fluid behaviour in such a component, based on continuous pressure driven flow and surface tension, is discussed in terms of cross sectional flow behaviour, robustness, flow-pressure performance, and its application to microfluidic interfacing. The closed-open-closed microchannel possesses the versatility of upstream and downstream closed microfluidics along with open fluidic direct access. The device has the advantage of eliminating gas bubbles present upstream when these enter the open channel section. The unique behaviour of this device opens the door to applications including direct liquid sample interfacing without the need for additional and bulky sample tubing.

  6. DNA Sequencing by Capillary Electrophoresis

    Science.gov (United States)

    Karger, Barry L.; Guttman, Andras

    2009-01-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496

  7. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Ronán [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland); Bagga, Komal; Groarke, Robert [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); Stalcup, Apryll [Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Vázquez, Mercedes, E-mail: mercedes.vazquez@dcu.ie [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); School of Chemical Sciences, Dublin City University, Dublin 9 (Ireland); Brabazon, Dermot [Advanced Processing Technology Research Centre, Dublin City University, Glasnevin, Dublin 9 (Ireland); School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9 (Ireland); Irish Separation Science Cluster, National Centre for Sensor Research, Dublin City University, Dublin 9 (Ireland); National Centre for Plasma Science and Technology, Dublin City University, Dublin 9 (Ireland)

    2016-11-30

    Highlights: • Rapid single-step microchannel fabrication on optically transparent cyclic olefin polymer using IR Nd:YAG laser. • Ability to tailor channel depth between 12–47 μm demonstrated for single laser pass. • Use of multiple laser passes showed capability for finer depth control. • Potential applications in lab-on-chip and microfluidic devices. - Abstract: This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  8. Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd:YAG laser ablation

    International Nuclear Information System (INIS)

    McCann, Ronán; Bagga, Komal; Groarke, Robert; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot

    2016-01-01

    Highlights: • Rapid single-step microchannel fabrication on optically transparent cyclic olefin polymer using IR Nd:YAG laser. • Ability to tailor channel depth between 12–47 μm demonstrated for single laser pass. • Use of multiple laser passes showed capability for finer depth control. • Potential applications in lab-on-chip and microfluidic devices. - Abstract: This paper presents a method for fabrication of microchannels on cyclic olefin polymer films that have application in the field of microfluidics and chemical sensing. Continuous microchannels were fabricated on 188-μm-thick cyclic olefin polymer substrates using a picosecond pulsed 1064 nm Nd:YAG laser. The effect of laser fluence on the microchannel morphology and dimensions was analysed via scanning electron microscopy and optical profilometry. Single laser passes were found to produce v-shaped microchannels with depths ranging from 12 μm to 47 μm and widths from 44 μm to 154 μm. The ablation rate during processing was lower than predicted theoretically. Multiple laser passes were applied to examine the ability for finer control over microchannel morphology with channel depths ranging from 22 μm to 77 μm and channel widths from 59 μm to 155 μm. For up to five repeat passes, acceptable reproducibility was found in the produced microchannel morphology. Infrared spectroscopy revealed oxidation and dehydrogenation of the polymer surface following laser ablation. These results were compared to other work conducted on cyclic olefin polymers.

  9. Theoretical Study of Molecular Transport Through a Permeabilized Cell Membrane in a Microchannel.

    Science.gov (United States)

    Mahboubi, Masoumeh; Movahed, Saeid; Hosseini Abardeh, Reza; Hoshyargar, Vahid

    2017-06-01

    A two-dimensional model is developed to study the molecular transport into an immersed cell in a microchannel and to investigate the effects of finite boundary (a cell is suspended in a microchannel), amplitude of electric pulse, and geometrical parameter (microchannel height and size of electrodes) on cell uptake. Embedded electrodes on the walls of the microchannel generate the required electric pulse to permeabilize the cell membrane, pass the ions through the membrane, and transport them into the cell. The shape of electric pulses is square with the time span of 6 ms; their intensities are in the range of 2.2, 2.4, 2.6, 3 V. Numerical simulations have been performed to comprehensively investigate the molecular uptake into the cell. The obtained results of the current study demonstrate that calcium ions enter the cell from the anodic side (the side near positive electrode); after a while, the cell faces depletion of the calcium ions on a positive electrode-facing side within the microchannel; the duration of depletion depends on the amplitude of electric pulse and geometry that lasts from microseconds to milliseconds. By keeping geometrical parameters and time span constant, increment of a pulse intensity enhances molecular uptake and rate of propagation inside the cell. If a ratio of electrode size to cell diameter is larger than 1, the transported amount of Ca 2+ into the cell, as well as the rate of propagation, will be significantly increased. By increasing the height of the microchannel, the rate of uptake is decreased. In an infinite domain, the peak concentration becomes constant after reaching the maximum value; this value depends on the intra-extracellular conductivity and diffusion coefficient of interior and exterior domains of the cell. In comparison, the maximum concentration is changed by geometrical parameters in the microchannel. After reaching the maximum value, the peak concentration reduces due to the depletion of Ca 2+ ions within the

  10. Affinity in electrophoresis.

    Science.gov (United States)

    Heegaard, Niels H H

    2009-06-01

    The journal Electrophoresis has greatly influenced my approaches to biomolecular affinity studies. The methods that I have chosen as my main tools to study interacting biomolecules--native gel and later capillary zone electrophoresis--have been the topic of numerous articles in Electrophoresis. Below, the role of the journal in the development and dissemination of these techniques and applications reviewed. Many exhaustive reviews on affinity electrophoresis and affinity CE have been published in the last few years and are not in any way replaced by the present deliberations that are focused on papers published by the journal.

  11. Thalassemia and hemoglobinopathies in Southeast Asian newborns: diagnostic assessment using capillary electrophoresis system.

    Science.gov (United States)

    Srivorakun, Hataichanok; Fucharoen, Goonnapa; Changtrakul, Yossombat; Komwilaisak, Patcharee; Fucharoen, Supan

    2011-04-01

    We have investigated the Capillarys 2 Hemoglobin testing system to assist in presumptive diagnosis of thalassemia and hemoglobinopathies commonly found in Southeast Asia. Study was conducted on 226 newborns. Hematological parameters were recorded and Hb profiles were examined on the Capillarys 2 Hemoglobin analyzer (SEBIA). DNA analyses were used to establish the final diagnoses. Among 226 newborns examined, 122 had thalassemias with 17 different genotypes. The capillary electrophoresis system could provide useful data for presumptive diagnoses of cases, especially those with Hb E and α-thalassemia. Hb E was found to be 2.6-6.2% in heterozygote whereas Hb Bart's were clearly observed in cases with compound heterozygous or homozygous α(+)-thalassemia and heterozygous α(0)-thalassemia. Hb H disease and other forms of α-thalassemia could be differentiated based on the presence of Hb Bart's and its percentage. The capillary electrophoresis system is applicable to newborn screening for common forms of thalassemia in Southeast Asia. Copyright © 2011 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  12. Conducting Polymer Electrodes for Gel Electrophoresis

    OpenAIRE

    Bengtsson, Katarina; Nilsson, Sara; Robinson, Nathaniel D

    2014-01-01

    In nearly all cases, electrophoresis in gels is driven via the electrolysis of water at the electrodes, where the process consumes water and produces electrochemical by-products. We have previously demonstrated that p-conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) can be placed between traditional metal electrodes and an electrolyte to mitigate electrolysis in liquid (capillary electroosmosis/electrophoresis) systems. In this report, we extend our previous result to gel ...

  13. Evaluation of Superficial and Dimensional Quality Features in Metallic Micro-Channels Manufactured by Micro-End-Milling

    Directory of Open Access Journals (Sweden)

    Claudio Giardini

    2013-04-01

    Full Text Available Miniaturization encourages the development of new manufacturing processes capable of fabricating features, like micro-channels, in order to use them for different applications, such as in fuel cells, heat exchangers, microfluidic devices and micro-electromechanical systems (MEMS. Many studies have been conducted on heat and fluid transfer in micro-channels, and they appeared significantly deviated from conventional theory, due to measurement errors and fabrication methods. The present research, in order to deal with this opportunity, is focused on a set of experiments in the micro-milling of channels made of aluminum, titanium alloys and stainless steel, varying parameters, such as spindle speed, depth of cut per pass (ap, channel depth (d, feed per tooth (fz and coolant application. The experimental results were analyzed in terms of dimensional error, channel profile shape deviation from rectangular and surface quality (burr and roughness. The micro-milling process was capable of offering quality features required on the micro-channeled devices. Critical phenomena, like run-out, ploughing, minimum chip thickness and tool wear, were encountered as an explanation for the deviations in shape and for the surface quality of the micro-channels. The application of coolant and a low depth of cut per pass were significant to obtain better superficial quality features and a smaller dimensional error. In conclusion, the integration of superficial and geometrical features on the study of the quality of micro-channeled devices made of different metallic materials contributes to the understanding of the impact of calibrated cutting conditions in MEMS applications.

  14. Optimal Design of Silicon-based Chips for Piezo-induced Ultrasound Resonances in Embedded Microchannels

    DEFF Research Database (Denmark)

    Garofalo, F.; Laurell, T.; Bruus, Henrik

    2015-01-01

    constituting the device (the piezo transducer, the silicon walls, the fluid-filled microchannel, and the glass lid) allows for the introduction of the weak formulation used in the finite element discretization of the equations describing the system in its oscillatory regime. Additionally, the knowledge...... of the Lagrangian density leads to the derivation of the correct structure of the Hamiltonian density, i.e. the energy density, which is important for the quantification of the energy content of the whole system and its individual parts. Specifically, the energy content of the embedded microchannel is quantified...... by means of the acoustofluidic yield η defined as the ratio between the energy in the channel and the total energy. From the standpoint of acoustophoretic application, the introduction of the acoustophoretic mean orientation allows us to identify the frequencies for which an acoustophoretic effect, i...

  15. A neutral polyacrylate copolymer coating for surface modification of thiol-ene microchannels for improved performance of protein separation by microchip electrophoresis

    DEFF Research Database (Denmark)

    Mesbah, Kiarach; Mai, T.D.; Jensen, Thomas Glasdam

    2016-01-01

    We have investigated the behavior of thiol-ene substrates that is a class of promising materials for lab-on-a-chip electrophoresis applications. Two polymeric materials were prepared by copolymerization of N, N-dimethylacrylamide (DMA), (3-(methacryloyl-oxy)propyl)trimethoxysilane (PMA) and 3-tri...

  16. 3D printed microchannel networks to direct vascularisation during endochondral bone repair.

    Science.gov (United States)

    Daly, Andrew C; Pitacco, Pierluca; Nulty, Jessica; Cunniffe, Gráinne M; Kelly, Daniel J

    2018-04-01

    Bone tissue engineering strategies that recapitulate the developmental process of endochondral ossification offer a promising route to bone repair. Clinical translation of such endochondral tissue engineering strategies will require overcoming a number of challenges, including the engineering of large and often anatomically complex cartilage grafts, as well as the persistence of core regions of avascular cartilage following their implantation into large bone defects. Here 3D printing technology is utilized to develop a versatile and scalable approach to guide vascularisation during endochondral bone repair. First, a sacrificial pluronic ink was used to 3D print interconnected microchannel networks in a mesenchymal stem cell (MSC) laden gelatin-methacryloyl (GelMA) hydrogel. These constructs (with and without microchannels) were next chondrogenically primed in vitro and then implanted into critically sized femoral bone defects in rats. The solid and microchanneled cartilage templates enhanced bone repair compared to untreated controls, with the solid cartilage templates (without microchannels) supporting the highest levels of total bone formation. However, the inclusion of 3D printed microchannels was found to promote osteoclast/immune cell invasion, hydrogel degradation, and vascularisation following implantation. In addition, the endochondral bone tissue engineering strategy was found to support comparable levels of bone healing to BMP-2 delivery, whilst promoting lower levels of heterotopic bone formation, with the microchanneled templates supporting the lowest levels of heterotopic bone formation. Taken together, these results demonstrate that 3D printed hypertrophic cartilage grafts represent a promising approach for the repair of complex bone fractures, particularly for larger defects where vascularisation will be a key challenge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Monte Carlo simulations of microchannel plate detectors I: steady-state voltage bias results

    Energy Technology Data Exchange (ETDEWEB)

    Ming Wu, Craig Kruschwitz, Dane Morgan, Jiaming Morgan

    2008-07-01

    X-ray detectors based on straight-channel microchannel plates (MCPs) are a powerful diagnostic tool for two-dimensional, time-resolved imaging and timeresolved x-ray spectroscopy in the fields of laser-driven inertial confinement fusion and fast z-pinch experiments. Understanding the behavior of microchannel plates as used in such detectors is critical to understanding the data obtained. The subject of this paper is a Monte Carlo computer code we have developed to simulate the electron cascade in a microchannel plate under a static applied voltage. Also included in the simulation is elastic reflection of low-energy electrons from the channel wall, which is important at lower voltages. When model results were compared to measured microchannel plate sensitivities, good agreement was found. Spatial resolution simulations of MCP-based detectors were also presented and found to agree with experimental measurements.

  18. Experimental investigation of two-phase gas-liquid flow in microchannel with T-junction

    Science.gov (United States)

    Bartkus, German; Kozulin, Igor; Kuznetsov, Vladimir

    2017-10-01

    Using high-speed video recording and the method of dual laser scanning the gas-liquid flow was investigated in rectangular microchannels with an aspect ratio of 2.35 and 1.26. Experiments were earned out for the vertical flow of ethanol-nitrogen mixture in a microchannel with a cross section of 553×235 µm and for the horizontal flow of water-nitrogen mixture in a microchannel with a cross section of 315×250 µm. The T-mixer was used at the channel's inlet for gas-liquid flow formation. It was observed that elongated bubble, transition, and annular flows are the main regimes for a microchannel with a hydraulic diameter substantially less than the capillary constant. Using laser scanning, the maps of flow regimes for ethanol-nitrogen and water-nitrogen mixtures were obtained and discussed.

  19. Procedures for two-dimensional electrophoresis of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tollaksen, S.L.; Giometti, C.S.

    1996-10-01

    High-resolution two-dimensional gel electrophoresis (2DE) of proteins, using isoelectric focusing in the first dimension and sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE) in the second, was first described in 1975. In the 20 years since those publications, numerous modifications of the original method have evolved. The ISO-DALT system of 2DE is a high-throughput approach that has stood the test of time. The problem of casting many isoelectric focusing gels and SDS-PAGE slab gels (up to 20) in a reproducible manner has been solved by the use of the techniques and equipment described in this manual. The ISO-DALT system of two-dimensional gel electrophoresis originated in the late 1970s and has been modified many times to improve its high-resolution, high-throughput capabilities. This report provides the detailed procedures used with the current ISO-DALT system to prepare, run, stain, and photograph two-dimensional gels for protein analysis.

  20. Micro-PIV/LIF measurements on electrokinetically-driven flow in surface modified microchannels

    International Nuclear Information System (INIS)

    Ichiyanagi, Mitsuhisa; Sasaki, Seiichi; Sato, Yohei; Hishida, Koichi

    2009-01-01

    Effects of surface modification patterning on flow characteristics were investigated experimentally by measuring electroosmotic flow velocities, which were obtained by micron-resolution particle image velocimetry using a confocal microscope. The depth-wise velocity was evaluated by using the continuity equation and the velocity data. The microchannel was composed of a poly(dimethylsiloxane) chip and a borosilicate cover-glass plate. Surface modification patterns were fabricated by modifying octadecyltrichlorosilane (OTS) on the glass surface. OTS can decrease the electroosmotic flow velocity compared to the velocity in the glass microchannel. For the surface charge varying parallel to the electric field, the depth-wise velocity was generated at the boundary area between OTS and the glass surfaces. For the surface charge varying perpendicular to the electric field, the depth-wise velocity did not form because the surface charge did not vary in the stream-wise direction. The surface charge pattern with the oblique stripes yielded a three-dimensional flow in a microchannel. Furthermore, the oblique patterning was applied to a mixing flow field in a T-shaped microchannel, and mixing efficiencies were evaluated from heterogeneity degree of fluorescent dye intensity, which was obtained by laser-induced fluorescence. It was found that the angle of the oblique stripes is an important factor to promote the span-wise and depth-wise momentum transport and contributes to the mixing flow in a microchannel

  1. Design and Fabrication of 3D-Structured Contactless Capacitive-Type Detector for Capillary Electrophoresis Microchip

    International Nuclear Information System (INIS)

    Lee, C-Y; Lin, C-H; Fu, L-M

    2006-01-01

    Using simple and reliable microfabrication techniques, this study develops a capillary electrophoresis (CE) microchip with 3-dimensional-structured (3D-structured) contactless capacitive detector electrodes mounted parallel to the separation channel. The offchannel electrodes are deposited by Au sputtering and patterned using a standard 'lift-off' process. A vacuum fusion bonding process is employed to seal the lower substrate containing the microchannels and electrodes to an upper glass cover plate. The variation in the capacitance between the electrodes in the side channels is measured as different samples and ions pass through the detection region of the CE separation channel. Samples of Rhodamine B and a commercial sports drink are mixed in different buffer solutions and successfully separated and detected using the developed device. The 3D-structured contactless capacitive-type detection device has microscale dimensions and provides a valuable contribution to the realization of the lab-on-a-chip concept

  2. 3D simulation of Heat transfer in MEMS-based microchannel

    International Nuclear Information System (INIS)

    Choi, Chi Woong; Huh, Cheol; Kim, Dong Eok; Kim, Moo Hwan

    2007-01-01

    The microchannel heat sink is promising heat dissipation method for high heat flux source. Contrary to conventional circular channel, MEMS based microchannel had rectangular or trapezoidal cross-sectional shape. In our study, we conducted three dimensional conjugate heat transfer calculation for rectangular shape microchannel. First, we simulated that channel was completely drained with known heating power. As a result we obtained calibration line, which indicates heat loss was function of temperature. Second, we simulated single phase heat transfer with various mass flux, 100-400 kg/m 2 s. In conclusion, the single phase test verified that the present heat loss evaluation method is applicable to micro scale heat transfer devices. Heat fluxes from each side wall shows difference due to non-uniform heating. However those ratios were correlated with supplied total heat. Finally, we proposed effective area correction factor to evaluate appropriate heat flux

  3. Flow analysis for efficient design of wavy structured microchannel mixing devices

    Science.gov (United States)

    Kanchan, Mithun; Maniyeri, Ranjith

    2018-04-01

    Microfluidics is a rapidly growing field of applied research which is strongly driven by demands of bio-technology and medical innovation. Lab-on-chip (LOC) is one such application which deals with integrating bio-laboratory on micro-channel based single fluidic chip. Since fluid flow in such devices is restricted to laminar regime, designing an efficient passive modulator to induce chaotic mixing for such diffusion based flow is a major challenge. In the present work two-dimensional numerical simulation of viscous incompressible flow is carried out using immersed boundary method (IBM) to obtain an efficient design for wavy structured micro-channel mixing devices. The continuity and Navier-Stokes equations governing the flow are solved by fractional step based finite volume method on a staggered Cartesian grid system. IBM uses Eulerian co-ordinates to describe fluid flow and Lagrangian co-ordinates to describe solid boundary. Dirac delta function is used to couple both these co-ordinate variables. A tether forcing term is used to impose the no-slip boundary condition on the wavy structure and fluid interface. Fluid flow analysis by varying Reynolds number is carried out for four wavy structure models and one straight line model. By analyzing fluid accumulation zones and flow velocities, it can be concluded that straight line structure performs better mixing for low Reynolds number and Model 2 for higher Reynolds number. Thus wavy structures can be incorporated in micro-channels to improve mixing efficiency.

  4. Evaporative CO$_2$ microchannel cooling for the LHCb VELO pixel upgrade

    CERN Document Server

    de Aguiar Francisco, Oscar A; Collins, Paula; Dumps, Raphael; John, Malcolm; Mapelli, Alessandro; Romagnoli, Giulia

    2015-01-01

    The LHCb Vertex Detector (VELO) will be upgraded in 2018 to a lightweight pixel detector capable of 40 MHz readout and operation in very close proximity to the LHC beams. The thermal management of the system will be provided by evaporative CO$_2$ circulating in microchannels embedded within thin silicon plates. This solution has been selected due to the excellent thermal efficiency, the absence of thermal expansion mismatch with silicon ASICs and sensors, the radiation hardness of CO$_2$, and very low contribution to the material budget. Although microchannel cooling is gaining considerable attention for applications related to microelectronics, it is still a novel technology for particle physics experiments, in particular when combined with evaporative CO$_2$ cooling. The R&D effort for LHCb is focused on the design and layout of the channels together with a fluidic connector and its attachment which must withstand pressures up to 170 bar. Even distribution of the coolant is ensured by means of the use o...

  5. A new miniature microchannel plate X-ray detector for synchrotron radiation

    International Nuclear Information System (INIS)

    Rosemeier, R.G.; Green, R.E. Jr.

    1982-01-01

    A state-of-the-art microchannel plate detector has been developed which allows real time X-ray imaging of X-ray diffraction as well as radiographic phenomenon. Advantages of the device include a 50 mm X-ray input, length less than 4'', and a weight of less than 1 lb. Since the use of synchrotron radiation is greatly facilitated by the capability of remote viewing of X-ray diffraction or radiographic images in real time, a prototype electro-optical system has been designed which couples the X-ray microchannel plate detector with a solid state television camera. Advantages of the miniature, lightweight, X-ray synchrotron camera include a large 50 mm X-ray input window, an output signal that is available in both analog format for display on a television monitor and in digital format for computer processing, and a completely modular design which allows all the components to be exchanged for other components optimally suited for the desired applications. (orig.)

  6. Stability Analysis of Reactive Multiphase Slug Flows in Microchannels

    Directory of Open Access Journals (Sweden)

    Alejandro A. Munera Parra

    2014-05-01

    Full Text Available Conducting multiphase reactions in micro-reactors is a promising strategy for intensifying chemical and biochemical processes. A major unresolved challenge is to exploit the considerable benefits offered by micro-scale operation for industrial scale throughputs by numbering-up whilst retaining the underlying advantageous flow characteristics of the single channel system in multiple parallel channels. Fabrication and installation tolerances in the individual micro-channels result in different pressure losses and, thus, a fluid maldistribution. In this work, an additional source of maldistribution, namely the flow multiplicities, which can arise in a multiphase reactive or extractive flow in otherwise identical micro-channels, was investigated. A detailed experimental and theoretical analysis of the flow stability with and without reaction for both gas-liquid and liquid-liquid slug flow has been developed. The model has been validated using the extraction of acetic acid from n-heptane with the ionic liquid 1-Ethyl-3-methylimidazolium ethyl sulfate. The results clearly demonstrate that the coupling between flow structure, the extent of reaction/extraction and pressure drop can result in multiple operating states, thus, necessitating an active measurement and control concept to ensure uniform behavior and optimal performance.

  7. Microchannel plates as detectors and amplifiers of x-ray images

    International Nuclear Information System (INIS)

    Wiedwald, J.D.

    1992-08-01

    Two decades of development driven largely by military night vision applications has led to the availability of a wide selection of microchannel plates for use by the scientific community. Microchannel plates (MCPs) are electron multipliers which retain a high degree of spatial resolution making it possible to amplify electron images by factors of 1,000 or more. Plates having 40 mm diameter and intrinsic spatial resolution of 8 μm are readily available. By coating the front surface of a microchannel plate with an x-ray sensitive photocathode material, x-ray images can be detected and amplified. While the detective quantum efficiency is relatively low, the low noise of the MCP (including the ability to construct images by single photon detection) and its high dynamic range make it suitable for some x-ray microscopy applications. The principles of MCP operation and typical performance are discussed. Examples of related applications and commercial capabilities are also presented

  8. Implementation of 40-ps high-speed gated-microchannel-plate based x-ray framing cameras on reentrant SIM's for Nova

    International Nuclear Information System (INIS)

    Bell, P.M.; Kilkenny, J.D.; Landen, O.; Bradley, D.K.

    1994-01-01

    Gated framing cameras used in diagnosing laser produced plasmas have been used on the Nova laser system since 1987. There have been many variations of these systems implemented. All of these cameras have been ultimately limited in response time for two reasons. One being the electrical gating amplitude verses the gate width, this has always limited the detectable gain in the system. The second being the length to diameter (l/d) ratio of standard off the shelf microchannel plates (MCP). This sets the minimum electrical gate pulse that will give detectable gain from a given microchannel plate. The authors have implemented two different types of 40 ps framing camera configurations on the Nova laser system. They will describe the configurations of both systems as well as discuss the advantages of each

  9. Microchannel Methanation Reactors Using Nanofabricated Catalysts, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and the Pennsylvania State University (Penn State) propose to develop and demonstrate a microchannel methanation reactor based on...

  10. Mathematical modelling of liquid meniscus shape in cylindrical micro-channel for normal and micro gravity conditions

    Science.gov (United States)

    Marchuk, Igor; Lyulin, Yuriy

    2017-10-01

    Mathematical model of liquid meniscus shape in cylindrical micro-channel of the separator unit of condensing/separating system is presented. Moving liquid meniscus in the 10 μm cylindrical microchannel is used as a liquid lock to recover the liquid obtained by condensation from the separators. The main goal of the liquid locks to prevent penetration of a gas phase in the liquid line at the small flow rate of the condensate and because of pressure fluctuations in the vapor-gas-liquid loop. Calculation of the meniscus shape has been performed for liquid FC-72 at different values of pressure difference gas - liquid and under normal and micro gravity conditions.

  11. Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor

    International Nuclear Information System (INIS)

    Na, Jonggeol; Jung, Ikhwan; Kshetrimayum, Krishnadash S.; Park, Seongho; Park, Chansaem; Han, Chonghun

    2014-01-01

    Driven by both environmental and economic reasons, the development of small to medium scale GTL(gas-to-liquid) process for offshore applications and for utilizing other stranded or associated gas has recently been studied increasingly. Microchannel GTL reactors have been preferred over the conventional GTL reactors for such applications, due to its compactness, and additional advantages of small heat and mass transfer distance desired for high heat transfer performance and reactor conversion. In this work, multi-microchannel reactor was simulated by using commercial CFD code, ANSYS FLUENT, to study the geometric effect of the microchannels on the heat transfer phenomena. A heat generation curve was first calculated by modeling a Fischer-Tropsch reaction in a single-microchannel reactor model using Matlab-ASPEN integration platform. The calculated heat generation curve was implemented to the CFD model. Four design variables based on the microchannel geometry namely coolant channel width, coolant channel height, coolant channel to process channel distance, and coolant channel to coolant channel distance, were selected for calculating three dependent variables namely, heat flux, maximum temperature of coolant channel, and maximum temperature of process channel. The simulation results were visualized to understand the effects of the design variables on the dependent variables. Heat flux and maximum temperature of cooling channel and process channel were found to be increasing when coolant channel width and height were decreased. Coolant channel to process channel distance was found to have no effect on the heat transfer phenomena. Finally, total heat flux was found to be increasing and maximum coolant channel temperature to be decreasing when coolant channel to coolant channel distance was decreased. Using the qualitative trend revealed from the present study, an appropriate process channel and coolant channel geometry along with the distance between the adjacent

  12. Silicon monolithic microchannel-cooled laser diode array

    International Nuclear Information System (INIS)

    Skidmore, J. A.; Freitas, B. L.; Crawford, J.; Satariano, J.; Utterback, E.; DiMercurio, L.; Cutter, K.; Sutton, S.

    2000-01-01

    A monolithic microchannel-cooled laser diode array is demonstrated that allows multiple diode-bar mounting with negligible thermal cross talk. The heat sink comprises two main components: a wet-etched Si layer that is anodically bonded to a machined glass block. The continuous wave (cw) thermal resistance of the 10 bar diode array is 0.032 degree sign C/W, which matches the performance of discrete microchannel-cooled arrays. Up to 1.5 kW/cm 2 is achieved cw at an emission wavelength of ∼808 nm. Collimation of a diode array using a monolithic lens frame produced a 7.5 mrad divergence angle by a single active alignment. This diode array offers high average power/brightness in a simple, rugged, scalable architecture that is suitable for large two-dimensional areas. (c) 2000 American Institute of Physics

  13. Coordinate sensitive detectors based on microchannel plates

    International Nuclear Information System (INIS)

    Gruntman, M.A.

    1984-01-01

    Coordinate-sensitive detectors (CSD) on the basis of microchannel plates permit to determine in a digital form the coordinates of every recorded particle and they are used in different fields of physical experiment. The sensitive surface diameter of such detectors can reach 10 cm, and spatial resolution - 10 μm. In the review provided CSD with microchannel plates are classified according to the ways of coordinate determination, different types of the detectors, pecUliarities of their design and electron flowsheet are described. It is pointed out that there are reasons for introduction of CSD into practice of laboratory physical investigations in various fields, where the particle recorded is electron or is able to form a secondary electron. It is attributed to nuclear physics, physics of electron and atom collisions, optics, mass-spectrometry, electron microscopy, X-ray analysis, investigation of surfaces

  14. Design and characterization of poly(dimethylsiloxane)-based valves for interfacing continuous-flow sampling to microchip electrophoresis.

    Science.gov (United States)

    Li, Michelle W; Huynh, Bryan H; Hulvey, Matthew K; Lunte, Susan M; Martin, R Scott

    2006-02-15

    This work describes the fabrication and evaluation of a poly(dimethyl)siloxane (PDMS)-based device that enables the discrete injection of a sample plug from a continuous-flow stream into a microchannel for subsequent analysis by electrophoresis. Devices were fabricated by aligning valving and flow channel layers followed by plasma sealing the combined layers onto a glass plate that contained fittings for the introduction of liquid sample and nitrogen gas. The design incorporates a reduced-volume pneumatic valve that actuates (on the order of hundreds of milliseconds) to allow analyte from a continuously flowing sampling channel to be injected into a separation channel for electrophoresis. The injector design was optimized to include a pushback channel to flush away stagnant sample associated with the injector dead volume. The effect of the valve actuation time, the pushback voltage, and the sampling stream flow rate on the performance of the device was characterized. Using the optimized design and an injection frequency of 0.64 Hz showed that the injection process is reproducible (RSD of 1.77%, n = 15). Concentration change experiments using fluorescein as the analyte showed that the device could achieve a lag time as small as 14 s. Finally, to demonstrate the potential uses of this device, the microchip was coupled to a microdialysis probe to monitor a concentration change and sample a fluorescein dye mixture.

  15. Micro-Channel Embedded Pulsating Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As the need for thermal control technology becomes more demanding Micro-Channel Embedded Pulsating Heat Pipes (ME-PHPs) represents a sophisticated and enabling...

  16. Distillation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Simmons, Wayne W [Dublin, OH; Silva, Laura J [Dublin, OH; Qiu, Dongming [Carbondale, IL; Perry, Steven T [Galloway, OH; Yuschak, Thomas [Dublin, OH; Hickey, Thomas P [Dublin, OH; Arora, Ravi [Dublin, OH; Smith, Amanda [Galloway, OH; Litt, Robert Dwayne [Westerville, OH; Neagle, Paul [Westerville, OH

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  17. Numerical study on boiling heat transfer enhancement in a microchannel heat exchanger

    International Nuclear Information System (INIS)

    Jeon, Jin Ho; Suh, Young Ho; Son, Gi Hun

    2008-01-01

    Flow boiling in a microchannel heat exchanger has received attention as an effective heat removal mechanism for high power-density microelectronics. Despite extensive experimental studied, the bubble dynamics coupled with boiling heat transfer in a microchannel heat exchanger is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulations are performed to further clarify the dynamics of flow boiling in a microchannel heat exchanger. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle and to treat an immersed solid surface. Based on the numerical results, the effects of modified channel shape on the bubble growth and heat transfer are quantified

  18. An experimental study on flow friction and heat transfer of water in sinusoidal wavy silicon microchannels

    Science.gov (United States)

    Huang, Houxue; Wu, Huiying; Zhang, Chi

    2018-05-01

    Sinusoidal wavy microchannels have been known as a more heat transfer efficient heat sink for the cooling of electronics than normal straight microchannels. However, the existing experimental study on wavy silicon microchannels with different phase differences are few. As a result of this, in this paper an experimental study has been conducted to investigate the single phase flow friction and heat transfer of de-ionized water in eight different sinusoidal wavy silicon microchannels (SWSMCs) and one straight silicon microchannel (SMC). The SWSMCs feature different phase differences (α  =  0 to π) and different relative wavy amplitudes (β  =  A/l  =  0.05 to 0.4), but the same average hydraulic diameters (D h  =  160 µm). It is found that both flow friction constant fRe and the Nusselt number depend on the phase difference and relative wavy amplitude. For sinusoidal wavy microchannels with a relative wavy amplitude (β  =  0.05), the Nusselt number increased noticeably with the phase difference for Re  >  250, but the effect was insignificant for Re  reducing the wavy wave length induced higher pressure drop and apparent friction constant fRe, while the Nusselt number increased with relative wavy amplitude for Re  >  300. The results indicate that the thermal resistances of sinusoidal wavy silicon microchannels were generally lower than that of straight silicon microchannels, and the thermal resistance decreased with the increase in relative wavy amplitude. The enhancement of thermal performance is attributed to the flow re-circulation occurring in the corrugation troughs and the secondary flows or Dean vortices introduced by curved channels. It is concluded that silicon sinusoidal wavy microchannels provide higher heat transfer rate albeit with a higher flow friction, making it a better choice for the cooling of high heat flux electronics.

  19. System zones in capillary zone electrophoresis: Moving boundaries caused by freely migrating hydroxide ions

    Czech Academy of Sciences Publication Activity Database

    Beckers, J. L.; Urbánek, Marek; Boček, Petr

    2005-01-01

    Roč. 26, č. 10 (2005), s. 1869-1873 ISSN 0173-0835 R&D Projects: GA AV ČR IAA4031103 Institutional research plan: CEZ:AV0Z40310501 Keywords : background electrolyte * capillary electrophoresis * system zone s Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.850, year: 2005

  20. Use of the μPIV technique for an indirect determination of the microchannel cross-section passage geometry

    International Nuclear Information System (INIS)

    Puccetti, G; Pulvirenti, B; Morini, G L

    2014-01-01

    In this work the possible use of the μPIV technique for the experimental determination of the microchannel cross-section geometry has been investigated by means of a blind test in which a series of experimental measurements obtained using glass microchannels having a declared rectangular cross-section with a depth of 100 μm and width of 300 μm and a square microchannel with a 300 μm side have been compared with the direct SEM visualisation of the real cross section of the microchannels. For the (oPIV measurements water is used as working fluid. The laminar fully developed 2D velocity profile has been reconstructed by moving the focal plane of the microscope objective from the bottom to the top of the microchannel. The results shown in this paper demonstrate that the real cross section geometry of the microchannel can be predicted by minimizing the difference between the theoretical and the experimental 2D velocity profiles. When the right passage geometry is determined, the average difference between the theoretical and the experimental velocity is within 4-6%.

  1. Imaging microchannel plate detectors for XUV sky survey experiments

    International Nuclear Information System (INIS)

    Barstow, M.A.; Fraser, G.W.; Milward, S.R.

    1986-01-01

    Attention is given to the development of microchannel plate detectors for the Wide Field Camera (WFC) XUV (50-300 A) sky survey experiment on Rosat. A novel feature of the detector design is that the microchannel plates and their resistive anode readout are curved to the same radius as the WFC telescope focal surface. It is shown that curving the channel plates is not detrimental to gain uniformity. The paper describes the design of a curved resistive anode readout element and contrasts the present measurements of spatial resolution, global and local uniformity and temperature coefficient of resistance with the poor performance recently ascribed to resistive anodes in the literature. 18 references

  2. The Effect of the Rolling Direction, Temperature, and Etching Time on the Photochemical Machining of Monel 400 Microchannels

    Directory of Open Access Journals (Sweden)

    Deepakkumar H. Patil

    2016-01-01

    Full Text Available The present paper describes the effect of the rolling direction on the quality of microchannels manufactured using photochemical machining (PCM of Monel 400. Experiments were carried out to fabricate microchannels along and across the rolling direction to investigate the effect of the grain orientation on microchannel etching. The input parameters considered were channel width and rolling direction, whereas the depth of etch was the response parameters. Different channels of widths of 60, 100, 150, 200, and 250 μm were etched. The effects of the etching time and temperature of the etchant solution on the undercut and depth of the microchannels were studied. For good quality microchannels, the effects of spinning time, spinning speed, exposure time, and photoresist film strength were also taken into consideration. Optimized values of the above were used for the experimentation. The results show that the depth of etch of the microchannel increases more along the rolling direction than across the rolling direction. The channel width and depth are significantly affected by the etching time and temperature. The proposed study reports an improvement in the quality of microchannels produced using PCM.

  3. Concentration polarization in nanochannel DNA electrophoresis

    NARCIS (Netherlands)

    Dubsky, P.; Das, Siddhartha; van den Berg, Albert; Eijkel, Jan C.T.

    2011-01-01

    We demonstrate that the large field electrophoresis of a single DNA molecule in nanofluidic systems is accompanied by concentration polarization. We illustrate this phenomena by utilizing our electrophoretic simulation tool SIMUL. First we in-vestigate a simple system with univalent strong

  4. Glucose Fuel Cells with a MicroChannel Fabricated on Flexible Polyimide Film

    Science.gov (United States)

    Sano, Ryohei; Fukushi, Yudai; Sasaki, Tsubasa; Mogi, Hiroshi; Koide, Syohei; Ikoma, Ryuta; Akatsuka, Wataru; Tsujimura, Seiya; Nishioka, Yasushiro

    2013-12-01

    In this work, a glucose fuel cell was fabricated using microfabrication processes assigned for microelectromechanical systems. The fuel cell was equipped with a microchannel to flow an aqueous solution of glucose. The cell was fabricated on a flexible polyimide substrate, and its porous carbon-coated aluminum (Al) electrodes of 2.8 mm in width and 11 mm in length were formed using photolithography and screen printing techniques. Porous carbon was deposited by screen printing of carbon black ink on the Al electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the electrode surfaces. The microchannel with a depth of 200 μm was fabricated using a hot embossing technique. A maximum power of 0.45 μW at 0.5 V that corresponds to a power density of 1.45 μW/cm2 was realized by introducing a 200 mM concentrated glucose solution at room temperature.

  5. Glucose Fuel Cells with a MicroChannel Fabricated on Flexible Polyimide Film

    International Nuclear Information System (INIS)

    Sano, Ryohei; Fukushi, Yudai; Sasaki, Tsubasa; Mogi, Hiroshi; Koide, Syohei; Ikoma, Ryuta; Nishioka, Yasushiro; Akatsuka, Wataru; Tsujimura, Seiya

    2013-01-01

    In this work, a glucose fuel cell was fabricated using microfabrication processes assigned for microelectromechanical systems. The fuel cell was equipped with a microchannel to flow an aqueous solution of glucose. The cell was fabricated on a flexible polyimide substrate, and its porous carbon-coated aluminum (Al) electrodes of 2.8 mm in width and 11 mm in length were formed using photolithography and screen printing techniques. Porous carbon was deposited by screen printing of carbon black ink on the Al electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the electrode surfaces. The microchannel with a depth of 200 μm was fabricated using a hot embossing technique. A maximum power of 0.45 μW at 0.5 V that corresponds to a power density of 1.45 μW/cm 2 was realized by introducing a 200 mM concentrated glucose solution at room temperature

  6. Flow friction and heat transfer of ethanol–water solutions through silicon microchannels

    International Nuclear Information System (INIS)

    Wu Huiying; Wu Xinyu; Wei Zhen

    2009-01-01

    An experimental investigation was performed on the flow friction and convective heat transfer characteristics of the ethanol–water solutions flowing through five sets of trapezoidal silicon microchannels having hydraulic diameters ranging from 141.7 µm to 268.6 µm. Four kinds of ethanol–water solutions with the ethanol volume concentrations ranging from 0 to 0.8 were tested under different flow and heating conditions. It was found that the cross-sectional geometric parameters had great effect on the flow friction and heat transfer, and the microchannels with a larger W b /W t (bottom width-to-top width ratio) and a smaller H/W t (depth-to-top width ratio) usually had a larger friction constant and a higher Nusselt number. Entrance effects were significant for the flow friction and heat transfer in silicon microchannels, and decreased with the increase of dimensionless hydrodynamic length L and dimensionless thermal length L + h . When L > 1.0, the hydrodynamic entrance effect on the flow friction was ignorable. For the developed laminar flow in silicon microchannels, the Navier–Stokes equation was applicable. It was also found that the volume concentrations had different effects on the flow friction and heat transfer. Within the experimental range, the effect of volume concentrations on the flow friction was ignorable, and the friction constants of the ethanol–water solutions having different concentrations were the same as those of the pure water. However, volume concentrations had great effect on the convection heat transfer in silicon microchannels. With the increase of the volume concentrations, the Nusselt number of the ethanol–water solutions increased obviously, which was attributed to the combination effect of the increase in the Prantdtl number as well as the volatilization effect of the ethanol. Based on the experimental data, the dimensionless correlations for the flow friction and heat transfer of the ethanol–water solutions in the silicon

  7. Electro-osmotic flows inside triangular microchannels

    International Nuclear Information System (INIS)

    Vocale, P; Spiga, M; Geri, M; Morini, G L

    2014-01-01

    This work presents a numerical investigation of both pure electro-osmotic and combined electro-osmotic/pressure-driven flows inside triangular microchannels. A finite element analysis has been adopted to solve the governing equations for the electric potential and the velocity field, accounting for a finite thickness of the electric double layer. The influence of non-dimensional parameters such as the aspect ratio of the cross-section, the electrokinetic diameter and the ratio of the pressure force to the electric force on the flow behavior has been investigated. Numerical results point out that the velocity field is significantly influenced by the aspect ratio of the cross section and the electrokinetic diameter. More specifically, the aspect ratio plays an important role in determining the maximum volumetric flow rate, while the electrokinetic diameter is crucial to establishing the range of pressures that may be sustained by the electro-osmotic flow. Numerical results are also compared with two correlations available in the literature which enable to assess the volumetric flow rate and the pressure head for microchannels featuring a rectangular, a trapezoidal or an elliptical cross-section.

  8. Evaluation of a capillary zone electrophoresis system versus a conventional agarose gel system for routine serum protein separation and monoclonal component typing.

    Science.gov (United States)

    Roudiere, L; Boularan, A M; Bonardet, A; Vallat, C; Cristol, J P; Dupuy, A M

    2006-01-01

    Capillary zone electrophoresis of serum proteins is increasingly gaining impact in clinical laboratories. During 2003, we compared the fully automated capillary electrophoresis (CE) system from Beckman (Paragon CZE 2000) with the method agarose gel electrophoresis Sebia (Hydrasis-Hyris, AGE). This new study focused on the evaluation of analytical performance and a comparison including 115 fresh routine samples (group A) and a series of 97 frozen pathologic sera with suspicion of monoclonal protein (group B). Coefficients of variation (CVs %) for the five classical protein fractions have been reported to be consistenly serum samples (group B), there were 90 in which we detected a monoclonal protein by immunofixation (IF) (immunosubtraction (IS) was not used). AGE and Paragon 2000 failed to detect 7 and 12 monoclonal proteins, respectively, leading to a concordance to 92% for AGE and 87% for Paragon 2000 for identifying electrophoretic abnormalities in this group. Beta-globulin abnormalities and M paraprotein were well detected with Paragon 2000. Only 81% (21 vs 26) of the gammopathies were immunotyped with IS by two readers blinded to the IF immunotype. The Paragon 2000 is a reliable alternative to conventional agarose gel electrophoresis combining the advantages of full automation (rapidity, ease of use and cost) with high analytical performance. Qualified interpretation of results requires an adaptation period which could further improve concordance between the methods. Recently, this CE system has been improved by the manufacturer (Beckman) concerning the migration buffer and detection of beta-globulin abnormalities.

  9. Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels

    KAUST Repository

    Mansoor, Mohammad M.

    2012-02-01

    A 3D-conjugate numerical investigation was conducted to predict heat transfer characteristics in a rectangular cross-sectional micro-channel employing simultaneously developing single-phase flows. The numerical code was validated by comparison with previous experimental and numerical results for the same micro-channel dimensions and classical correlations based on conventional sized channels. High heat fluxes up to 130W/cm 2 were applied to investigate micro-channel thermal characteristics. The entire computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro-channel substrate used was made of copper. Validation results were found to be in good agreement with previous experimental and numerical data [1] with an average deviation of less than 4.2%. As the applied heat flux increased, an increase in heat transfer coefficient values was observed. Also, the Reynolds number required for transition from single-phase fluid to two-phase was found to increase. A correlation is proposed for the results of average Nusselt numbers for the heat transfer characteristics in micro-channels with simultaneously developing, single-phase flows. © 2011 Elsevier Ltd.

  10. Experimental and numerical investigations of ionic liquid-aqueous flow in microchannel

    Science.gov (United States)

    Li, Qi; Tsaoulidis, Dimitrios; Angeli, Panagiota

    2015-11-01

    The hydrodynamic characteristics of plug flow of an ionic liquid-aqueous two-phase system in a microchannel were studied experimentally and numerically. A mixture of 0.2M N-octyl(plenyl)-N,N-diisobutylcarbamoylmethyphosphine oxide (CMOP)- 1.2 M Tri-n-butylphosphate (TBP) in room temperature ionic liquid 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide ([C4min][NTf2]), and a nitric acid solution of 1M were chosen. These fluids are relevant Eu(III) separation by extraction from nitric acid solutions. The two liquid phases were introduced into microchannels of 0.2 and 0.5mm internal diameter through a T-junction inlet. The flow pattern was visualized during plug formation at the inlet section and further downstream by means by bright field planar micro-Particle Image Velocimetry. Key features of plug flow, such as plug velocity, film thickness, plug length and recirculation intensity were measured under various experimental conditions. To gain further understanding of the 3-D flow field, Computation Fluid Dynamics (CFD) simulations approach were also conducted.

  11. Technology Development of an Advanced Small-scale Microchannel-type Process Heat Exchanger (PHE) for Hydrogen Production in Iodine-sulfur Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Injin; Kim, Chan Soo; Kim, Yong Wan; Park, Jae-Won; Kim, Eung-Seon; Kim, Min-Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, ongoing manufacturing processes of the components employed in an advanced small-scale microchannel-type PHE are presented. The components, such as mechanically machined microchannels and a diffusion-bonded stack are introduced. Also, preliminary studies on surface treatment techniques for improving corrosion resistance from the corrosive sulfuric environment will be covered. Ongoing manufacturing process for an advanced small-size microchannel-type PHE in KAERI is presented. Through the preliminary studies for optimizing diffusion bonding condition of Hastelloy-X, a diffusion-bonded stack, consisting of primary and secondary side layer by layer, is scheduled to be fabricated in a few months. Also, surface treatment for enhancing the corrosion resistance from the sulfuric acid environment is in progress for the plates with microchannels. A massive production of hydrogen with electricity generation is expected in a Process Heat Exchanger (PHE) in a Very High Temperature gas-cooled Reactor (VHTR) system. For the application of hydrogen production, a small-scale gas loop for feasibility testing of a laboratory-scale has constructed and operated in Korea Atomic Energy Research Institute (KAERI) as a precursor to an experimental- and a pilot-scale gas loops.

  12. Ionizing device comprising a microchannel electron multiplier with secondary electron emission

    International Nuclear Information System (INIS)

    Chalmeton, Vincent.

    1974-01-01

    The present invention relates to a ionizing device comprising a microchannel electron multiplier involving secondary electron emission as a means of ionization. A system of electrodes is used to accelerate said electrons, ionize the gas and extract the ions from thus created plasma. Said ionizer is suitable for bombarding the target in neutron sources (target of the type of nickel molybdenum coated with tritiated titanium or with a tritium deuterium mixture) [fr

  13. Thermal analysis of a multi-layer microchannel heat sink for cooling concentrator photovoltaic (CPV) cells

    Science.gov (United States)

    Siyabi, Idris Al; Shanks, Katie; Mallick, Tapas; Sundaram, Senthilarasu

    2017-09-01

    Concentrator Photovoltaic (CPV) technology is increasingly being considered as an alternative option for solar electricity generation. However, increasing the light concentration ratio could decrease the system output power due to the increase in the temperature of the cells. The performance of a multi-layer microchannel heat sink configuration was evaluated using numerical analysis. In this analysis, three dimensional incompressible laminar steady flow model was solved numerically. An electrical and thermal solar cell model was coupled for solar cell temperature and efficiency calculations. Thermal resistance, solar cell temperature and pumping power were used for the system efficiency evaluation. An increase in the number of microchannel layers exhibited the best overall performance in terms of the thermal resistance, solar cell temperature uniformity and pressure drop. The channel height and width has no effect on the solar cell maximum temperature. However, increasing channel height leads to a reduction in the pressure drop and hence less fluid pumping power.

  14. Numerical study of the bubbly flow regime in micro-channel flow boiling

    Science.gov (United States)

    Bhuvankar, Pramod; Dabiri, Sadegh

    2017-11-01

    Two-phase flow accompanied by boiling in micro-channel heat sinks is an effective means for heat removal from computer chips. We present a numerical study of flow boiling in micro-channels with conjugate heat transfer with a focus on the bubbly flow regime. The bubbles are assumed to nucleate at a pre-determined location and frequency. The Navier Stokes equations are solved using a single fluid formulation with the Front tracking method. Phase change is implemented using the deficit in heat flux across the bubble interface. The analytical solution for bubble growth in a superheated liquid is used as a benchmark to validate the mentioned numerical method. Water and FC-72 are studied as the operating fluids in a micro-channel made of Copper with a focus on hotspot mitigation. The micro-channel of cross-section 231 μm × 1000 μm , is used to study the effects of vertical up-flow, vertical down-flow and horizontal flow of the mentioned fluids on the heat transfer coefficients. A simple film model accounting for mass and energy conservation is applied wherever the bubble approaches closer than a cell width to the wall. The results of the simulation are compared with existing experimental data for bubble growth rates and heat transfer coefficients.

  15. Effect of supersaturation on L-glutamic acid polymorphs under droplet-based microchannels

    Science.gov (United States)

    Jiang, Nan; Wang, Zhanzhong; Dang, Leping; Wei, Hongyuan

    2016-07-01

    Supersaturation is an important controlling factor for crystallization process and polymorphism. Droplet-based microchannels and conventional crystallization were used to investigate polymorphs of L-gluatamic acid in this work. The results illustrate that it is easy to realize the accurate and rapid control of the crystallization temperature in the droplets, which is especially beneficial to heat and mass transfer during crystallization. It is also noted that higher degree of supersaturation favors the nucleation of α crystal form, while lower degree of supersaturation favors the nucleation of β crystal form under droplet-based microchannels for L-gluatamic acid. In addition, there is a different nucleation behavior to be found under droplet-based microchannels both for the β form and α form of L-glutamic acid. This new finding can provide important insight into the development and design of investigation meanings for drug polymorph.

  16. Agarose electrophoresis of DNA in discontinuous buffers, using a horizontal slab apparatus and a buffer system with improved properties.

    Science.gov (United States)

    Zsolnai, A; Orbán, L; Chrambach, A

    1993-03-01

    Using a horizontal slab apparatus with a buffer in the reservoirs at the level of the gel ("sea-level electrophoresis"), the retrograde discontinuous buffer system reported by Wiltfang et al. for sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of proteins was applied to DNA electrophoresis. This application yielded the advantages of an increased displacement rate of the moving boundary front and a decrease in the concentration of the counterion base in the resolving phase, which yielded reduced relative mobility values at equivalent gel concentrations and practicable low buffer concentrations. The change of relative mobilities (Rf) with a variation of field strength is decreased compared to that of the migration rate in the continuous Tris-boric-acid-EDTA (TBE) buffer and thus the robustness of the system is improved, as well as the efficiency of separation. The system of Wiltfang et al. has in common with previously described discontinuous DNA system, that it is able to stack DNA from dilute samples and is insensitive to sample components with lower net mobilities than DNA, such as acetate. However, the variance of Rf at constant current density in the discontinuous buffer system is not improved over that of the migration rate at constant field strength in the continuous TBE buffer.

  17. Lectin affinity electrophoresis.

    Science.gov (United States)

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  18. Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence.

    Science.gov (United States)

    Ishikawa, Takuji; Fujiwara, Hiroki; Matsuki, Noriaki; Yoshimoto, Takefumi; Imai, Yohsuke; Ueno, Hironori; Yamaguchi, Takami

    2011-02-01

    Bifurcations and confluences are very common geometries in biomedical microdevices. Blood flow at microchannel bifurcations has different characteristics from that at confluences because of the multiphase properties of blood. Using a confocal micro-PIV system, we investigated the behaviour of red blood cells (RBCs) and cancer cells in microchannels with geometrically symmetric bifurcations and confluences. The behaviour of RBCs and cancer cells was strongly asymmetric at bifurcations and confluences whilst the trajectories of tracer particles in pure water were almost symmetric. The cell-free layer disappeared on the inner wall of the bifurcation but increased in size on the inner wall of the confluence. Cancer cells frequently adhered to the inner wall of the bifurcation but rarely to other locations. Because the wall surface coating and the wall shear stress were almost symmetric for the bifurcation and the confluence, the result indicates that not only chemical mediation and wall shear stress but also microscale haemodynamics play important roles in the adhesion of cancer cells to the microchannel walls. These results provide the fundamental basis for a better understanding of blood flow and cell adhesion in biomedical microdevices.

  19. Transition from annular flow to plug/slug flow in condensation of steam in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Xiaojun; Cheng, Ping; Wu, Huiying [School of Mechanical and Power Engineering, Shanghai Jiaotong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2008-02-15

    A visualization study has been conducted to investigate the transition from annular flow to plug/slug flow in the condensation of steam in two different sets of parallel microchannels, having hydraulic diameters of 90 {mu}m and 136 {mu}m, respectively. The steam in the parallel microchannels was cooled on the bottom by forced convection of water and by natural convection of air from the top. It is found that the location, where the transition from annular flow to plug/slug flow takes place, depends on mass flux and cooling rate of steam. The effects of mass flux and cooling rate on the occurrence frequency of the injection flow in a single microchannel, having a hydraulic diameter of 120 {mu}m and 128 {mu}m, respectively, are investigated. It is found that two different shapes of injection flow occur in the smooth annular flow in microchannels: injection flow with unsteady vapor ligament occurring at low mass flux (or high cooling rate) and injection flow with steady vapor ligament occurring at high mass flux (or low cooling rate). It is also found that increase of steam mass flux, decrease of cooling rate, or decrease of the microchannel diameter tends to enhance instability of the condensate film on the wall, resulting in occurrence of the injection flow further toward the outlet with an increase in occurrence frequency. (author)

  20. A Flexible Ascorbic Acid Fuel Cell with a Microchannel Fabricated using MEMS Techniques

    Science.gov (United States)

    Mogi, Hiroshi; Fukushi, Yudai; Koide, Syohei; Sano, Ryohei; Sasaki, Tsubasa; Nishioka, Yasushiro

    2013-12-01

    We fabricated a miniature ascorbic acid fuel cells equipped with a microchannel for the circulation of ascorbic acid (AA) solution using micro electronic mechanical system techniques. The fuel cell was fabricated on a flexible polyimide substrate, and its porous carbon-coated aluminium (Al) electrodes of 2.8 mm in width and 11 mm in length were formed using photolithography and screen-printing techniques. The porous carbon was deposited by screen-printing of carbon-black ink on the Al electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the cathode surface. The microchannel with a depth of 200 μm was fabricated using a hot-embossing technique. A maximum power of 0.60 μW at 0.58 V that corresponds to a power density of 1.83 μW/cm2 was realized by introducing a 200 mM concentrated AA solution at room temperature.

  1. Oscillatory electroosmotic flow in a parallel-plate microchannel under asymmetric zeta potentials

    Science.gov (United States)

    Peralta, M.; Arcos, J.; Méndez, F.; Bautista, O.

    2017-06-01

    In this work, we conduct a theoretical analysis of the start-up of an oscillatory electroosmotic flow (EOF) in a parallel-plate microchannel under asymmetric zeta potentials. It is found that the transient evolution of the flow field is controlled by the parameters {R}ω , {R}\\zeta , and \\bar{κ }, which represent the dimensionless frequency, the ratio of the zeta potentials of the microchannel walls, and the electrokinetic parameter, which is defined as the ratio of the microchannel height to the Debye length. The analysis is performed for both low and high zeta potentials; in the former case, an analytical solution is derived, whereas in the latter, a numerical solution is obtained. These solutions provide the fundamental characteristics of the oscillatory EOFs for which, with suitable adjustment of the zeta potential and the dimensionless frequency, the velocity profiles of the fluid flow exhibit symmetric or asymmetric shapes.

  2. Novel dense CO2 technique for beta-galactosidase immobilization in polystyrene microchannels.

    Science.gov (United States)

    Leclair Ellis, Jeffrey; Tomasko, David L; Dehghani, Fariba

    2008-03-01

    In this study we design new fabrication techniques and demonstrate the potential of using dense CO2 for facilitating crucial steps in the fabrication of polymeric lab-on-a-chip microdevices by embedding biomolecules at temperatures well below the polymer's glass transition temperature (T(g)). These new techniques are environmentally friendly and done without the use of a clean room. Carbon dioxide at 40 degrees C and between 4.48 and 6.89 MPa was used to immobilize the biologically active molecule, beta-galactosidase (beta-gal), on the surface of polystyrene microchannels. To our knowledge, this is the first time dense CO2 has been used to directly immobilize an enzyme in a microchannel. beta-gal activity was maintained and shown via a fluorescent reaction product, after enzyme immobilization and microchannel capping by the designed fabrication steps at 40 degrees C and pressures up to 6.89 MPa.

  3. Flow and Heat Transfer in Cooling Microchannels with Phase-Change

    Energy Technology Data Exchange (ETDEWEB)

    Peles, Y P; Yarin, L P; Hetsroni, G [Technion, Israel Institute of Technology, Haifa (Israel) Faculty of Engineering

    1998-05-19

    The subject of the present work is the parametrical investigation of hydrodynamic and thermal characteristics of laminar flow with phase-change in a heating microchannels. The study is based on the quasi-one-dimensional model of non-isothermal capillary flow. This model takes into account the evolution of flow, heating and evaporation of the liquid, as well as the influence of capillary, inertia, friction and gravity forces. The effect of various parameters (sizes of microchannel, initial temperature of cooling liquid, wall heat flux etc.) on hydrodynamic and thermal structures of the flow, the length of heating, evaporation and superheat regions is studied. Thc specific features of the phenomena is discussed.

  4. Flow and Heat Transfer in Cooling Microchannels with Phase-Change

    International Nuclear Information System (INIS)

    Peles, Y.P.; Yarin, L.P.; Hetsroni, G.

    1998-01-01

    The subject of the present work is the parametrical investigation of hydrodynamic and thermal characteristics of laminar flow with phase-change in a heating microchannels. The study is based on the quasi-one-dimensional model of non-isothermal capillary flow. This model takes into account the evolution of flow, heating and evaporation of the liquid, as well as the influence of capillary, inertia, friction and gravity forces. The effect of various parameters (sizes of microchannel, initial temperature of cooling liquid, wall heat flux etc.) on hydrodynamic and thermal structures of the flow, the length of heating, evaporation and superheat regions is studied. Thc specific features of the phenomena is discussed

  5. Western blotting using capillary electrophoresis.

    Science.gov (United States)

    Anderson, Gwendolyn J; M Cipolla, Cynthia; Kennedy, Robert T

    2011-02-15

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein adsorption. Although discrete protein zones could be detected, bands were broadened by ∼1.7-fold by transfer to membrane. A complete Western blot for lysozyme was completed in about one hour with 50 pg mass detection limit from low microgram per milliliter samples. These results demonstrate substantial reduction in time requirements and improvement in mass sensitivity compared to conventional Western blots. Western blotting using capillary electrophoresis shows promise to analyze low volume samples with reduced reagents and time, while retaining the information content of a typical Western blot.

  6. Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis

    KAUST Repository

    Li, Ming

    2012-07-26

    We present a waved microchannel for continuous focusing of microparticles and cells using negative direct current (dc) dielectrophoresis. The waved channel is composed of consecutive s-shaped curved channels in series to generate an electric field gradient required for the dielectrophoretic effect. When particles move electrokinetically through the channel, the experienced negative dielectrophoretic forces alternate directions within two adjacent semicircular microchannels, leading to a focused continuous-flow stream along the channel centerline. Both the experimentally observed and numerically simulated results of the focusing performance are reported, which coincide acceptably in proportion to the specified dimensions (i.e. inlet and outlet of the waved channel). How the applied electric field, particle size and medium concentration affect the performance was studied by focusing polystyrene microparticles of varying sizes. As an application in the field of biology, the focusing of yeast cells in the waved mcirochannel was tested. This waved microchannel shows a great potential for microflow cytometry applications and is expected to be widely used before different processing steps in lab-on-A-chip devices with integrated functions. © 2012 IOP Publishing Ltd.

  7. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.

    Science.gov (United States)

    Lee, Min Kyung; Rich, Max H; Lee, Jonghwi; Kong, Hyunjoon

    2015-07-01

    Bioactive hydrogels have been extensively studied as a platform for 3D cell culture and tissue regeneration. One of the key desired design parameters is the ability to control spatial organization of biomolecules and cells and subsequent tissue in a 3D matrix. To this end, this study presents a simple but advanced method to spatially organize microchanneled, cell adherent gel blocks and non-adherent ones in a single construct. This hydrogel system was prepared by first fabricating a bimodal hydrogel in which the microscale, alginate gel blocks modified with cell adhesion peptides containing Arg-Gly-Asp sequence (RGD peptides), and those free of RGD peptides, were alternatingly presented. Then, anisotropically aligned microchannels were introduced by uniaxial freeze-drying of the bimodal hydrogel. The resulting gel system could drive bone marrow stromal cells to adhere to and differentiate into neuron and glial cells exclusively in microchannels of the alginate gel blocks modified with RGD peptides. Separately, the bimodal gel loaded with microparticles releasing vascular endothelial growth factor stimulated vascular growth solely into microchannels of the RGD-alginate gel blocks in vivo. These results were not attained by the bimodal hydrogel fabricated to present randomly oriented micropores. Overall, the bimodal gel system could regulate spatial organization of nerve-like tissue or blood vessels at sub-micrometer length scale. We believe that the hydrogel assembly demonstrated in this study will be highly useful in developing a better understanding of diverse cellular behaviors in 3D tissue and further improve quality of a wide array of engineered tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Capillary electrophoresis: principles and applications in illicit drug analysis.

    Science.gov (United States)

    Tagliaro, F; Turrina, S; Smith, F P

    1996-02-09

    Capillary electrophoresis, which appeared in the early 1980s, is now rapidly expanding into many scientific disciplines, including analytical chemistry, biotechnology and biomedical and pharmaceutical sciences. In capillary electrophoresis,electrokinetic separations are carried out in tiny capillaries at high voltages (10-30 kV), thus obtaining high efficiencies (N > 10(5)) and excellent mass sensitivities (down to 10(-18)-10(-20) moles). The main features of capillary electrophoresis are: versatility of application (from inorganic ions to large DNA fragments), use of different separation modes with different selectivity, extremely low demands on sample volume, negligible running costs, possibility of interfacing with different detection systems, ruggedness and simplicity of instrumentation. Capillary electrophoresis applications in forensic sciences have appeared only recently, but are now rapidly growing, particularly in forensic toxicology. The present paper briefly describes the basic principles of capillary electrophoresis, from both the instrumental and analytical points of view. Furthermore, the main applications in the analysis of illicit/controlled drugs in both illicit preparations and biological samples are presented and discussed (43 references). It is concluded that the particular separation mechanism and the high complementarity of this technique to chromatography makes capillary electrophoresis a new powerful tool of investigation in the hands of forensic toxicologists.

  9. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask

    Science.gov (United States)

    Prakash, Shashi; Kumar, Subrata

    2017-09-01

    CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.

  10. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications.

    Science.gov (United States)

    Chabinyc, M L; Chiu, D T; McDonald, J C; Stroock, A D; Christian, J F; Karger, A M; Whitesides, G M

    2001-09-15

    This paper describes a prototype of an integrated fluorescence detection system that uses a microavalanche photodiode (microAPD) as the photodetector for microfluidic devices fabricated in poly(dimethylsiloxane) (PDMS). The prototype device consisted of a reusable detection system and a disposable microfluidic system that was fabricated using rapid prototyping. The first step of the procedure was the fabrication of microfluidic channels in PDMS and the encapsulation of a multimode optical fiber (100-microm core diameter) in the PDMS; the tip of the fiber was placed next to the side wall of one of the channels. The optical fiber was used to couple light into the microchannel for the excitation of fluorescent analytes. The photodetector, a prototype solid-state microAPD array, was embedded in a thick slab (1 cm) of PDMS. A thin (80 microm) colored polycarbonate filter was placed on the top of the embedded microAPD to absorb scattered excitation light before it reached the detector. The microAPD was placed below the microchannel and orthogonal to the axis of the optical fiber. The close proximity (approximately 200 microm) of the microAPD to the microchannel made it unnecessary to incorporate transfer optics; the pixel size of the microAPD (30 microm) matched the dimensions of the channels (50 microm). A blue light-emitting diode was used for fluorescence excitation. The microAPD was operated in Geiger mode to detect the fluorescence. The detection limit of the prototype (approximately 25 nM) was determined by finding the minimum detectable concentration of a solution of fluorescein. The device was used to detect the separation of a mixture of proteins and small molecules by capillary electrophoresis; the separation illustrated the suitability of this integrated fluorescence detection system for bioanalytical applications.

  11. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    Science.gov (United States)

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  12. Developments in coupled solid-phase extraction-capillary electrophoresis 2013-2015.

    Science.gov (United States)

    Ramautar, Rawi; Somsen, Govert W; de Jong, Gerhardus J

    2016-01-01

    An overview of the design and application of coupled solid-phase extraction-capillary electrophoresis (SPE-CE) systems reported in the literature between July 2013 and June 2015 is provided in this paper. The present article is a continuation of our previous review papers on this topic which covered the time period 2000-2013 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54; Electrophoresis 2012, 33, 243-250; Electrophoresis 2014, 35, 128-137). The use of in-line and on-line SPE-CE approaches is treated and outlined in this review. Recent advancements, such as, for example, the use of aptamers as affinity material for in-line SPE-CE, the use of a bead string design for in-line fritless SPE-CE, and new interfacing techniques for the on-line coupling of SPE to CE, are outlined. Selected examples demonstrate the applicability of the coupled SPE-CE systems for biomedical, pharmaceutical, environmental, and food studies. A complete overview of the recent SPE-CE studies is given in table format, providing information on sample type, SPE sorbent, coupling mode, detection mode, and LOD. Finally, some general conclusions and perspectives are provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Non-Photolithographic Manufacturing Processes for Micro-Channels Functioned by Micro-Contact-Printed SAMs

    Science.gov (United States)

    Saigusa, Hiroki; Suga, Yasuo; Miki, Norihisa

    In this paper we propose non-photolithographic fabrication processes of micro-fluid channels with patterned SAMs (Self-Assembled-Monolayers). SAMs with a thiol group are micro-contact printed on a patterned Au/Ti layer, which is vapor-deposited through a shadow mask. Ti is an adhesion layer. Subsequently, the micro-channels are formed by bonding surface-activated PDMS onto the silicon substrate via a silanol group, producing a SAMs-functioned bottom wall of the micro-channel. No photolithographic processes are necessary and thus, the proposed processes are very simple, quick and low cost. The micro-reactors can have various functions associated with the micro-contact-printed SAMs. We demonstrate successful manufacturing of micro-reactors with two types of SAMs. The micro-reactor with patterned AUT (11-amino-1-undecanethiol) successfully trapped nano-particles with a carboxylic acid group, indicating that micro-contact-printed SAMs remain active after the manufacturing processes of the micro-reactor. AUT -functioned micro-channels are applicable to bioassay and to immobilize proteins for DNA arrays. ODT (1-octadecanethiol) makes surfaces hydrophobic with the methyl terminal group. When water was introduced into the micro-reactor with ODT-patterned surfaces, water droplets remained only in the hydrophilic areas where ODT was not patterned. ODT -functioned micro-channels are applicable to fluid handling.

  14. X-ray radiation channeling in micro-channel plates: Spectroscopy with a synchrotron radiation beam

    International Nuclear Information System (INIS)

    Mazuritskiy, M.I.; Dabagov, S.B.; Marcelli, A.; Dziedzic-Kocurek, K.; Lerer, A.M.

    2015-01-01

    We present here the angular distribution of the radiation propagated inside MultiChannel Plates with micro-channels of ∼3 μm diameter. The spectra collected at the exit of the channels present a complex distribution with contributions that can be assigned to the fluorescence radiation, originated from the excitation of the micro-channel walls. For radiation above the absorption edge, when the monochromatic energy in the region of the Si L-edge hits the micro-channel walls with a grazing angle θ ⩾ 5°, or at the O K-edge when θ ⩾ 2° a fluorescence radiation is detected. Additional information associated to the fine structures of the XANES spectra detected at the exit of MCPs are also presented and discussed

  15. Micro-channel plate photon detector studies for the TORCH detector

    Energy Technology Data Exchange (ETDEWEB)

    Castillo García, L., E-mail: lucia.castillo.garcia@cern.ch [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Laboratory for High Energy Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Brook, N.; Cowie, E.N.; Cussans, D. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Forty, R.; Frei, C. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Gao, R. [Department of Physics, University of Oxford, Oxford OXI 3RH (United Kingdom); Gys, T. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Harnew, N. [Department of Physics, University of Oxford, Oxford OXI 3RH (United Kingdom); Piedigrossi, D. [CERN, PH Department, CH-1211, Geneva 23 (Switzerland); Van Dijk, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2015-07-01

    The Time Of internally Reflected Cherenkov light (TORCH) detector is under development. Charged particle tracks passing through a 1 cm plate of quartz will generate the Cherenkov photons, and their arrival will be timed by an array of micro-channel plate photon detectors. As part of the TORCH R&D studies, commercial and custom-made micro-channel plate detectors are being characterized. The final photon detectors for this application are being produced in a three-phase program in collaboration with industry. Custom-made single-channel devices with extended lifetime have been manufactured and their performance is being systematically investigated in the laboratory. Optical studies for the preparation of beam and laboratory tests of a TORCH prototype are also underway.

  16. Experimental investigation of Cu-based, double-layered, microchannel heat exchangers

    International Nuclear Information System (INIS)

    Lu, Bin; Meng, W J; Mei, Fanghua

    2013-01-01

    Cu-based, single- and double-layered, microchannel heat exchangers (MHEs) were fabricated and assembled. Comparative measurements on liquid flow characteristics and heat transfer performance were conducted on these devices. Results were compared at the individual microchannel level as well as at the device level. The present results demonstrate that double-layered MHEs exhibit similar heat transfer performance while suffering a much lower pressure drop penalty compared to single-layered MHEs. Another Cu-based, double-layered, liquid–liquid counter-flow MHE was fabricated, assembled and tested. Results show that a low-volume, multilayered, high-performance, liquid-to-liquid MHE is achievable following the manufacturing protocols of the present double-layered, liquid–liquid counter-flow MHE. (paper)

  17. Use of Large Surface MicroChannel Plates for the Tagging of Intermediate Energy Exotic Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, I., E-mail: ilombardo@lns.infn.it [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN Laboratori Nazionali del Sud, Catania (Italy); Amorini, F. [INFN Laboratori Nazionali del Sud, Catania (Italy); Cardella, G. [INFN, Sezione di Catania, Catania (Italy); Cavallaro, S. [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN Laboratori Nazionali del Sud, Catania (Italy); De Filippo, E. [INFN, Sezione di Catania, Catania (Italy); Geraci, E.; Grassi, L. [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN, Sezione di Catania, Catania (Italy); La Guidara, E. [INFN, Sezione di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Lanzalone, G. [INFN Laboratori Nazionali del Sud, Catania (Italy); Libera Universita Kore, Enna (Italy); Pagano, A.; Papa, M.; Pirrone, S. [INFN, Sezione di Catania, Catania (Italy); Politi, G. [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN, Sezione di Catania, Catania (Italy); Porto, F.; Rizzo, F.; Russotto, P. [Dipartimento di Fisica, Universita di Catania, Catania (Italy); INFN Laboratori Nazionali del Sud, Catania (Italy); Verde, G. [INFN, Sezione di Catania, Catania (Italy); Vigilante, M. [INFN, Sezione di Napoli and Dipartimento di Fisica, Universita Federico II di Napoli (Italy)

    2011-06-15

    We show the properties of the tagging system for exotic beams coupled to the CHIMERA detector. In particular, the characteristics of a newly developed large surface MicroChannel Plate will be discussed. Timing and efficiency of this instrument have been investigated. Preliminary results of tests performed with radioactive beams and alpha sources are presented.

  18. System zones in capillary zone electrophoresis: Moving boundaries caused by freely migrating hydrogen ions

    Czech Academy of Sciences Publication Activity Database

    Beckers, J. L.; Boček, Petr

    2005-01-01

    Roč. 26, č. 2 (2005), s. 446-452 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA203/02/0023; GA AV ČR(CZ) IAA4031401; GA AV ČR(CZ) IAA4031103 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary zone electrophoresis * system zone s Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.850, year: 2005

  19. Microchip analysis of lithium in blood using moving boundary electrophoresis and zone electrophoresis

    NARCIS (Netherlands)

    Vrouwe, E.X.; Lüttge, Regina; Olthuis, Wouter; van den Berg, Albert

    The determination of inorganic cations in blood plasma is demonstrated using a combination of moving boundary electrophoresis (MBE) and zone electrophoresis. The sample loading performed under MBE conditions is studied with the focus on the quantitative analysis of lithium. A concentration

  20. Microchip analysis of lithium in blood using moving boundary electrophoresis and zone electrophoresis

    NARCIS (Netherlands)

    Vrouwe, E.X.; Luttge, R.; Olthuis, W.; Berg, van den A.

    2005-01-01

    The determination of inorganic cations in blood plasma is demonstrated using a combination of moving boundary electrophoresis (MBE) and zone electrophoresis. The sample loading performed under MBE conditions is studied with the focus on the quantitative analysis of lithium. A concentration

  1. Direct simulation Monte Carlo method for gas flows in micro-channels with bends with added curvature

    Directory of Open Access Journals (Sweden)

    Tisovský Tomáš

    2017-01-01

    Full Text Available Gas flows in micro-channels are simulated using an open source Direct Simulation Monte Carlo (DSMC code dsmcFOAM for general application to rarefied gas flow written within the framework of the open source C++ toolbox called OpenFOAM. Aim of this paper is to investigate the flow in micro-channel with bend with added curvature. Results are compared with flows in channel without added curvature and equivalent straight channel. Effects of micro-channel bend was already thoroughly investigated by White et al. Geometry proposed by White is also used here for refference.

  2. Microchannel Reactors for ISRU Applications Using Nanofabricated Catalysts, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and USRA propose to develop microchannel reactors for In-Situ Resources Utilization (ISRU) using nanofabricated catalysts. The proposed...

  3. Field-portable Capillary Electrophoresis Instrument with Conductivity Detection

    International Nuclear Information System (INIS)

    Zhang, H F; Liu, X W; Wang, W; Wang, X L; Tian, L

    2006-01-01

    In this paper a novel capillary electrophoresis chip (CEC) is presented with integrated platinum electrodes and simplified conductivity detector. CEC is fabricated by the method of mechanical modification with probe on organic glass. Capillary electrophoresis chip can rapidly completed ion separation by simulation of concentration distribution and zone-broadening. Detection circuit is simple which can detect pA order current. This system has those advantages such as small volume, low power consumption and linearity, and well suit for field analysis

  4. Micro-injector for capillary electrophoresis.

    Science.gov (United States)

    Sáiz, Jorge; Koenka, Israel Joel; García-Ruiz, Carmen; Müller, Beat; Chwalek, Thomas; Hauser, Peter C

    2015-08-01

    A novel micro-injector for capillary electrophoresis for the handling of samples with volumes down to as little as 300 nL was designed and built in our laboratory for analyses in which the available volume is a limitation. The sample is placed into a small cavity located directly in front of the separation capillary, and the injection is then carried out automatically by controlled pressurization of the chamber with compressed air. The system also allows automated flushing of the injection chamber as well as of the capillary. In a trial with a capillary electrophoresis system with contactless conductivity detector, employing a capillary of 25 μm diameter, the results showed good stability of migration times and peak areas. To illustrate the technique, the fast separation of five inorganic cations (Na(+) , K(+) , NH4 (+) , Ca(2+) , and Mg(2+) ) was set up. This could be achieved in less than 3 min, with good limits of detection (10 μM) and linear ranges (between about 10 and 1000 μM). The system was demonstrated for the determination of the inorganic cations in porewater samples of a lake sediment core. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A simple process to achieve microchannels geometries able to produce hydrodynamic cavitation

    Science.gov (United States)

    Qiu, X.; Cherief, W.; Colombet, D.; Ayela, F.

    2017-04-01

    We present a simple process to perform microchannels in which cavitating two phase flows are easily producible. Up to now, hydrodynamic cavitation ‘on a chip’ was reached with small flow rates inside microchannels whose micromachining had involved a deep reactive ion etching (D-RIE). The process we present here does not require a D-RIE reactor, as it is only funded on a wet etching of silicon. It leads to a so-called microstep profile, and large cavitating flow rates become possible together with moderate pressure drops.

  6. A simple process to achieve microchannels geometries able to produce hydrodynamic cavitation

    International Nuclear Information System (INIS)

    Qiu, X; Cherief, W; Colombet, D; Ayela, F

    2017-01-01

    We present a simple process to perform microchannels in which cavitating two phase flows are easily producible. Up to now, hydrodynamic cavitation ‘on a chip’ was reached with small flow rates inside microchannels whose micromachining had involved a deep reactive ion etching (D-RIE). The process we present here does not require a D-RIE reactor, as it is only funded on a wet etching of silicon. It leads to a so-called microstep profile, and large cavitating flow rates become possible together with moderate pressure drops. (technical note)

  7. CFD Analysis for Optimum Thermal Design of Carbon Nanotube Based Micro-Channel Heatsink

    Directory of Open Access Journals (Sweden)

    M. Mahbub

    2011-10-01

    Full Text Available Carbon nanotube (CNT is considered as an ideal material for thermal management in electronic packaging because of its extraordinary high thermal conductivity. Fabricated onto a silicon substrate to form micro-channels, the CNT based cooling fins show high heat dissipation efficiency. A series of 2D and 3D CFD simulations have been carried out for CNT based micro-channel cooling architectures based on one and two dimensional fin array in this paper using COMSOL 4.0a software. Micro-channels are generally regarded as an effective method for the heat transfer in electronic products. The influence of various fluids, micro-fin structures, fluid velocity and heating powers on cooling effects have been simulated and compared in this study. Steady-state thermal stress analyses for the forced convection heat transfer are also performed to determine maximum allowable stress and deflections for the different types of cooling assembly.

  8. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  9. Flow boiling in expanding microchannels

    CERN Document Server

    Alam, Tamanna

    2017-01-01

    This Brief presents an up to date summary of details of the flow boiling heat transfer, pressure drop and instability characteristics; two phase flow patterns of expanding microchannels. Results obtained from the different expanding microscale geometries are presented for comparison and addition to that, comparison with literatures is also performed. Finally, parametric studies are performed and presented in the brief. The findings from this study could help in understanding the complex microscale flow boiling behavior and aid in the design and implementation of reliable compact heat sinks for practical applications.

  10. Photon counting with small pore microchannel plates

    International Nuclear Information System (INIS)

    Martindale, A.; Lapington, J.S.; Fraser, G.W.

    2007-01-01

    We describe the operation of microchannel plates (MCPs) with 3.2μm diameter channels as photon counting detectors of soft X-rays. Gain and temporal resolution measurements are compared with theoretical scaling laws for channel diameter. A minimum pulse width of 264ps is observed for a two stage multiplier at a total bias voltage of ∼1930V

  11. Western Blotting using Capillary Electrophoresis

    OpenAIRE

    Anderson, Gwendolyn J.; Cipolla, Cynthia; Kennedy, Robert T.

    2011-01-01

    A microscale Western blotting system based on separating sodium-dodecyl sulfate protein complexes by capillary gel electrophoresis followed by deposition onto a blotting membrane for immunoassay is described. In the system, the separation capillary is grounded through a sheath capillary to a mobile X-Y translation stage which moves a blotting membrane past the capillary outlet for protein deposition. The blotting membrane is moistened with a methanol and buffer mixture to facilitate protein a...

  12. Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage

    International Nuclear Information System (INIS)

    Singh, N.P.; Stephens, R.E.; Schneider, E.L.

    1994-01-01

    The alkaline microgel electrophoresis technique was modified to achieve a substantial increase in sensitivity for the detection of radiation-induced DNA damage in human lymphocytes. This increased sensitivity was achieved through: (1) the addition of free radical scavengers to the electrophoresis solution to reduce DNA damage generated during alkaline unwinding and electrophoresis; (2) the modification of the electrophoresis unit to achieve a more uniform electric field; (3) the use of YOYO-1, a DNA dye, producing fluorescence 500-fold more intense than ethidium bromide; and (4) the introduction of an image analysis system for the quantitation of DNA migration. In human lymphocytes, these modifications have resulted in an increased sensitivity of several fold, allowing the detection of DNA damage in the range of 50 mGy. (author)

  13. Self-separation of blood plasma from whole blood during the capillary flow in microchannel

    Science.gov (United States)

    Nunna, Bharath Babu; Zhuang, Shiqiang; Lee, Eon Soo

    2017-11-01

    Self-separation of blood plasma from whole blood in microchannels is of great importance due to the enormous range of applications in healthcare and diagnostics. Blood is a multiphase complex fluid, composed of cells suspended in blood plasma. RBCs are the suspended particles whose shape changes during the flow of blood. The primary constituents of blood are erythrocytes or red blood cells (RBCs), leukocytes or white blood cells (WBCs), thrombocytes or platelets and blood plasma. The existence of RBCs in blood makes the blood a non-Newtonian fluid. The current study of separation of blood plasma from whole blood during self-driven flows in a single microchannel without bifurcation, by enhancing the capillary effects. The change in the capillary effect results in a change in contact angle which directly influences the capillary flow. The flow velocity directly influences the net force acting on the RBCs and influence the separation process. The experiments are performed on the PDMS microchannels with different contact angles by altering the surface characteristics using plasma treatment. The change in the separation length is studied during the capillary flow of blood in microchannel. Bharath Babu Nunna is a researcher in mechanical engineering and implementing the novel and innovative technologies in the biomedical devices to enhance the sensitivity of the disease diagnosis.

  14. Magnetic Control of Fe3O4 Nanomaterial for Fat Ablation in Microchannel

    Directory of Open Access Journals (Sweden)

    Ming Chang

    2015-11-01

    Full Text Available In this study, surface modification of iron (II, III oxide Fe3O4 nanoparticles by oleic acid (OA coating is investigated for the microablation of fat in a microchannel. The nanoparticles are synthesized by the co-precipitation method and then dispersed in organic solvent prior to mixing with the OA. The magnetization, agglomeration, and particle size distribution properties of the OA-coated Fe3O4 nanoparticles are characterized. The surface modification of the Fe3O4 nanoparticles reveals that upon injection into a microchannel, the lipophilicity of the OA coating influences the movement of the nanoparticles across an oil-phase barrier. The motion of the nanoparticles is controlled using an AC magnetic field to induce magnetic torque and a static gradient field to control linear translation. The fat microablation process in a microchannel is demonstrated using an oscillating driving field of less than 1200 Am−1.

  15. Two-fluid mixing in a microchannel

    International Nuclear Information System (INIS)

    Liu Yingzheng; Kim, Byoung Jae; Sung, Hyung Jin

    2004-01-01

    A numerical study of the mixing of two fluids (pure water and a solution of glycerol in water) in a microchannel was carried out. By varying the glycerol content of the glycerol/water solution, the variation in mixing behavior with changes in the difference in the properties of the two fluids (e.g., viscosity, density and diffusivity) was investigated. The mixing phenomena were tested for three micromixers: a squarewave mixer, a three-dimensional serpentine mixer and a staggered herringbone mixer. The governing equations of continuity, momentum and solute mass fraction were solved numerically. To evaluate mixing performance, a criterion index of mixing uniformity was proposed. In the systems considered, the Reynolds number based on averaged properties was Re=1 and 10. For low Reynolds number (Re=1), the mixing performance varied inversely with mass fraction of glycerol due to the dominance of molecular diffusion. The mixing performance deteriorated due to a significant reduction in the residence time of the fluid inside the mixers

  16. 'Zero-time' detectors using microchannel plates for charged particle detection

    International Nuclear Information System (INIS)

    Girard, J.

    1977-01-01

    The mass identification of the reaction products detected in heavy ion nuclear reactions is generally obtained by the time-of-flight method. This method requires a device giving first the 'start' signal (zero time at the passage of the particle) and then the stop 'signal'. The interest lying in 'zero-time' detectors using a secondary electron emission has been considerably increased with using microchannel electron multipliers. Nevertheless such a device was shown to induce either fluctuations in the distance of flight or the use of detectors of different type in the 'start' and 'stop' channels respectively. In both cases, it remains an ambiguity as the access to time resolution, in the channel including the electron multiplier, is not direct and the effect of the different parameters on this resolution are masked. To palliate this drawback and study the qualities of microchannel plate multipliers in time measurement field, some devices mechanically and electronically symmetric have been developed. The resolution measurement in time of flight is obtained for electrons generated by the same particle and emitted from either side of a thin film. The distances of flight of the electrons on each side of the film are same, and so are the accelerating potentials. The microchannel electron multipliers and the processing electronic units are the same in each channel [fr

  17. Thermal Analysis of Hybrid Thermal Control System and Experimental Investigation of Flow Boiling in Micro-channel Heat Exchangers

    Science.gov (United States)

    Lee, Seunghyun

    Future manned space endeavors will require a new class of vehicles, capable of conducting different types of missions and enduring varying gravitational and temperature environments. Thermal management will play a vital role in these new vehicles, and is complicated by the need to tackle both low and high heat sink temperatures. The present study assesses the feasibility of hybrid thermal control system by thermodynamic analysis and investigates the heat transfer mechanisms in two large micro-channel heat exchangers in vapor compression mode and two-phase mode. Unlike prior published two-phase micro-channel studies that concern mostly miniature heat sinks, this study addresses transport characteristics of a heat sink containing large length-to-diameter ratio, up to 609.6 to 1,micro-channels. In the thermodynamic analysis, four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the H-TCS. The experimental flow boiling investigation consists of exploring the steady-state and the transient two-phase heat transfer characteristics of two large micro-channel heat exchangers that serve as evaporators in the vapor compression loop using R134a as

  18. Lattice Boltzmann Simulation of the Hydrodynamic Entrance Region of Rectangular Microchannels in the Slip Regime

    Directory of Open Access Journals (Sweden)

    Niya Ma

    2018-02-01

    Full Text Available Developing a three-dimensional laminar flow in the entrance region of rectangular microchannels has been investigated in this paper. When the hydrodynamic development length is the same magnitude as the microchannel length, entrance effects have to be taken into account, especially in relatively short ducts. Simultaneously, there are a variety of non-continuum or rarefaction effects, such as velocity slip and temperature jump. The available data in the literature appearing on this issue is quite limited, the available study is the semi-theoretical approximate model to predict pressure drop of developing slip flow in rectangular microchannels with different aspect ratios. In this paper, we apply the lattice Boltzmann equation method (LBE to investigate the developing slip flow through a rectangular microchannel. The effects of the Reynolds number (1 < Re < 1000, channel aspect ratio (0 < ε < 1, and Knudsen number (0.001 < Kn < 0.1 on the dimensionless hydrodynamic entrance length, and the apparent friction factor, and Reynolds number product, are examined in detail. The numerical solution of LBM can recover excellent agreement with the available data in the literature, which proves its accuracy in capturing fundamental fluid characteristics in the slip-flow regime.

  19. Numerical study on fabricating rectangle microchannel in microfluidic chips by glass molding process

    Science.gov (United States)

    Wang, Tao; Chen, Jing; Zhou, Tianfeng

    2017-09-01

    This paper studied the glass molding process (GMP) for fabricating a typical microstructure of glass microfluidic chips, i. e., rectangle microchannel, on soda-lime glass by finite element method. More than 100 models were established on the platform of Abaqus/Standard. The influence of parameters, i. e., temperature, aspect ratio, side wall angle and friction coefficient on deformation were studied, and the predicted morphology of the molded microchannel were presented as well. The research could provide fundamental experience for optimizing GMP process in the future.

  20. The Cutting Edge of Affinity Electrophoresis Technology.

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-03-18

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years.

  1. Photochemical immobilization of protein on the inner wall of a microchannel and Its application in a glucose sensor

    International Nuclear Information System (INIS)

    Nakajima, Hizuru; Ishino, Satomi; Masuda, Hironori; Nakagama, Tatsuro; Shimosaka, Takuya; Uchiyama, Katsumi

    2006-01-01

    A new protein immobilization technique has been developed for patterning enzymes in a specific position inside a microchannel. First, bovine serum albumin (BSA) was adsorbed onto the internal surface of a polydimethylsiloxane microchannel. The microchannel was then filled with the conjugate solution of a photoreactive cross-linker, 4-azido-2,3,5,6-tetrafluorobenzoic acid succinimidyl ester (ATFB-SE), and an enzyme, horseradish peroxidase (HRP). An irradiation by a He-Cd laser activated the azido group of the conjugates and these conjugates became covalently attached to the adsorbed BSA on the microchannel. The enzyme turnover was observed from only the HRP zone. This technique was successfully applied to the enzymatic glucose sensor. Glucose oxidase (GOD) and HRP were sequentially patterned in a single microchannel, i.e., the HRP zone was located downstream from the GOD zone. The calibration curve of a glucose standard solution was linear over the range of 0-128 μM with a correlation coefficient of 0.993. Compared to the traditional method using a 96-well microtiter plate, the present technique on the microchip shortened the reaction time from 30 min to 4.8 s, i.e., to 1/375

  2. Research on pre-staining gel electrophoresis

    International Nuclear Information System (INIS)

    Zhong Ruibo; Liu Yushuang; Zhang Ping; Liu Jingran; Zhao Guofen; Zhang Feng

    2014-01-01

    Background: Gel electrophoresis is a powerful biochemical separation technique. Most biological molecules are completely transparent in the visible region of light, so it is necessary to use staining to show the results after gel electrophoresis, and the general steps of conventional staining methods are time-consuming. Purpose: We try to develop a novel approach to simplify the gel electrophoresis: Pre-Staining Gel Electrophoresis (PSGE), which can make the gel electrophoresis results monitored in real time. Methods: Pre-stain the protein samples with Coomassie Brilliant Blue (CBB) for 30 min before loading the sample into the gel well. Results and Conclusion: PSGE can be successfully used to analyze the binding efficiency of Bovine Serum Albumin (BSA) and amphiphilic polymer via chemical coupling and physical absorption, and the double PSGE also shows a great potential in bio-analytical chemistry. (authors)

  3. An adhesive bonding method with microfabricating micro pillars to prevent clogging in a microchannel

    International Nuclear Information System (INIS)

    Chen, Pin-Chuan; Liu, Yu-Min; Chou, Huang-Chieh

    2016-01-01

    Thermoplastics are widely used in the fabrication of microfluidic chips, due to their low cost, flexibility in manufacturing, and applicability in large-scale production. This paper presents a novel bonding method for the assembly of thermoplastic microfluidic chips, with the aim of preventing the flow of UV adhesive into microchannels during the bonding process. The proposed bonding methodology depends primarily on controlling the thickness of the UV adhesive, which is achieved by using spin-coating for the uniform UV adhesive in conjunction with the microfabrication of short pillars for keeping a uniform gap between the two bonded surfaces. In this study, two devices with serpentine microchannels (cross-sectional area of 500 μm  ×  500 μm and 200 μm  ×  200 μm) were fabricated on PMMA substrates using a micromilling machine, whereupon a hydrophobic coating was applied to the walls of 200 μm  ×  200 μm microchannels in order to prevent clogging, which might otherwise be caused by the seepage of UV adhesive into the channels. A variety of experiments were used to characterize the quality of bonding, the results of which reveal the following: (1) no leakage was observed in either of the microfluidic chips; (2) the hydrophobic coating proved highly effective in preventing the flow of UV adhesive into the smaller microchannels; (3) the average amount of clogging inside 500 μm  ×  500 μm microchannels was 1.13% with standard deviation of 0.55%, while the average amount of clogging inside 200 μm  ×  200 μm microchannels was 1.65% with standard deviation of 0.92%; (4) the average thickness of the UV adhesive in a 500 μm  ×  500 μm microfluidic chip was 32 μm with standard deviation of 2 μm, whereas the average thickness of the UV adhesive in a 200 μm  ×  200 μm microfluidic chip was 31 μm with standard deviation of 1.2 μm; (5) the two chips possess sufficient bonding strength to withstand

  4. Hydrophilic Surface Modification of PDMS Microchannel for O/W and W/O/W Emulsions

    Directory of Open Access Journals (Sweden)

    Shazia Bashir

    2015-09-01

    Full Text Available A surface modification method for bonded polydimethylsiloxane (PDMS microchannels is presented herein. Polymerization of acrylic acid was performed on the surface of a microchannel using an inline atmospheric pressure dielectric barrier microplasma technique. The surface treatment changes the wettability of the microchannel from hydrophobic to hydrophilic. This is a challenging task due to the fast hydrophobic recovery of the PDMS surface after modification. This modification allows the formation of highly monodisperse oil-in-water (O/W droplets. The generation of water-in-oil-in-water (W/O/W double emulsions was successfully achieved by connecting in series a hydrophobic microchip with a modified hydrophilic microchip. An original channel blocking technique to pattern the surface wettability of a specific section of a microchip using a viscous liquid comprising a mixture of honey and glycerol, is also presented for generating W/O/W emulsions on a single chip.

  5. Two-phase pressure drop and flow visualization of FC-72 in a silicon microchannel heat sink

    International Nuclear Information System (INIS)

    Megahed, Ayman; Hassan, Ibrahim

    2009-01-01

    The rapid development of two-phase microfluidic devices has triggered the demand for a detailed understanding of the flow characteristics inside microchannel heat sinks to advance the cooling process of micro-electronics. The present study focuses on the experimental investigation of pressure drop characteristics and flow visualization of a two-phase flow in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 276 μm, width of 225 μm, and a length of 16 mm. Experiments are carried out for mass fluxes ranging from 341 to 531 kg/m 2 s and heat fluxes from 60.4 to 130.6 kW/m 2 using FC-72 as the working fluid. Bubble growth and flow regimes are observed using high speed visualization. Three major flow regimes are identified: bubbly, slug, and annular. The frictional two-phase pressure drop increases with exit quality for a constant mass flux. An assessment of various pressure drop correlations reported in the literature is conducted for validation. A new general correlation is developed to predict the two-phase pressure drop in microchannel heat sinks for five different refrigerants. The experimental pressure drops for laminar-liquid laminar-vapor and laminar-liquid turbulent-vapor flow conditions are predicted by the new correlation with mean absolute errors of 10.4% and 14.5%, respectively.

  6. The Cutting Edge of Affinity Electrophoresis Technology

    Science.gov (United States)

    Kinoshita, Eiji; Kinoshita-Kikuta, Emiko; Koike, Tohru

    2015-01-01

    Affinity electrophoresis is an important technique that is widely used to separate and analyze biomolecules in the fields of biology and medicine. Both quantitative and qualitative information can be gained through affinity electrophoresis. Affinity electrophoresis can be applied through a variety of strategies, such as mobility shift electrophoresis, charge shift electrophoresis or capillary affinity electrophoresis. These strategies are based on changes in the electrophoretic patterns of biological macromolecules that result from interactions or complex-formation processes that induce changes in the size or total charge of the molecules. Nucleic acid fragments can be characterized through their affinity to other molecules, for example transcriptional factor proteins. Hydrophobic membrane proteins can be identified by means of a shift in the mobility induced by a charged detergent. The various strategies have also been used in the estimation of association/disassociation constants. Some of these strategies have similarities to affinity chromatography, in that they use a probe or ligand immobilized on a supported matrix for electrophoresis. Such methods have recently contributed to profiling of major posttranslational modifications of proteins, such as glycosylation or phosphorylation. Here, we describe advances in analytical techniques involving affinity electrophoresis that have appeared during the last five years. PMID:28248262

  7. Dynamic computer simulations of electrophoresis: three decades of active research.

    Science.gov (United States)

    Thormann, Wolfgang; Caslavska, Jitka; Breadmore, Michael C; Mosher, Richard A

    2009-06-01

    Dynamic models for electrophoresis are based upon model equations derived from the transport concepts in solution together with user-inputted conditions. They are able to predict theoretically the movement of ions and are as such the most versatile tool to explore the fundamentals of electrokinetic separations. Since its inception three decades ago, the state of dynamic computer simulation software and its use has progressed significantly and Electrophoresis played a pivotal role in that endeavor as a large proportion of the fundamental and application papers were published in this periodical. Software is available that simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. This has been employed to show the detailed mechanisms of many of the fundamental phenomena that occur in electrophoretic separations. Dynamic electrophoretic simulations are relevant for separations on any scale and instrumental format, including free-fluid preparative, gel, capillary and chip electrophoresis. This review includes a historical overview, a survey of current simulators, simulation examples and a discussion of the applications and achievements of dynamic simulation.

  8. The new horizon in 2D electrophoresis: new technology to increase resolution and sensitivity.

    Science.gov (United States)

    Moche, Martin; Albrecht, Dirk; Maaß, Sandra; Hecker, Michael; Westermeier, Reiner; Büttner, Knut

    2013-06-01

    A principally new type of an electrophoresis setup for the second dimension of 2DE named HPE (high performance electrophoresis) has recently become available that provides excellent reproducibility much superior to traditional 2DE. It takes up ideas from early beginnings of 2DE which could not be satisfactory realized at that time. The new HPE system is in contrast to all other established systems a horizontal electrophoresis that employs a new type of precast polyacrylamide gels on film-backing and runs on a multilevel flatbed electrophoresis apparatus. In a systematic approach we compared its features to traditional 2DE for the cytosolic proteome of Bacillus subtilis. Not only the reproducibility is enhanced, but also nearly all qualitative parameters as resolution, sensitivity, the number of protein spots (25% more), and the number of different proteins (also additional 25%) are markedly increased. More than 200 proteins were exclusively found in HPE. This new electrophoresis system does not use buffer tanks. No glass plates are needed. Therefore handling of gels is greatly facilitated and very simple to use even for personnel with low technical skills. The new HPE system is technically at the beginnings and further development with increased performance can be expected. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effect of junction configurations on microdroplet formation in a T-junction microchannel

    Science.gov (United States)

    Lih, F. L.; Miao, J. M.

    2015-03-01

    This study investigates the dynamic formation process of water microdroplets in a silicon oil flow in a T-junction microchannel. Segmented water microdroplets are formed at the junction when the water flow is perpendicularly injected into the silicon oil flow in a straight rectangular microchannel. This study further presents the effects of the water flow inlet geometry on hydrodynamic characteristics of water microdroplet formation. A numerical multiphase volume of fluid (VOF) scheme is coupled to solve the unsteady three-dimensional laminar Navier-Stokes equations to depict the droplet formation phenomena at the junction. Predicted results on the length and generated frequency of the microdroplets agree well with experimental results in a T-junction microchannel with straight and flat inlets (the base model) for both fluid flows. Empirical correlations are reported between the volumetric flow ratio and the dimensionless microdroplet length or dimensionless frequency of droplet generation at a fixed capillary number of 4.7 · 10-3. The results of this study indicate a reduction in the droplet length of approximately 21% if the straight inlet for the water flow is modified to a downstream sudden contraction inlet for the water flow.

  10. The measurements of water flow rates in the straight microchannel based on the scanning micro-PIV technique

    Science.gov (United States)

    Wang, H. L.; Han, W.; Xu, M.

    2011-12-01

    Measurement of the water flow rate in microchannel has been one of the hottest points in the applications of microfluidics, medical, biological, chemical analyses and so on. In this study, the scanning microscale particle image velocimetry (scanning micro-PIV) technique is used for the measurements of water flow rates in a straight microchannel of 200μm width and 60μm depth under the standard flow rates ranging from 2.481μL/min to 8.269μL/min. The main effort of this measurement technique is to obtain three-dimensional velocity distribution on the cross sections of microchannel by measuring velocities of the different fluid layers along the out-of-plane direction in the microchannel, so the water flow rates can be evaluated from the discrete surface integral of velocities on the cross section. At the same time, the three-dimensional velocity fields in the measured microchannel are simulated numerically using the FLUENT software in order to verify the velocity accuracy of measurement results. The results show that the experimental values of flow rates are well consistent to the standard flow rates input by the syringe pump and the compared results between numerical simulation and experiment are consistent fundamentally. This study indicates that the micro-flow rate evaluated from three-dimensional velocity by the scanning micro-PIV technique is a promising method for the micro-flow rate research.

  11. Entropy generation of nanofluid flow in a microchannel heat sink

    Science.gov (United States)

    Manay, Eyuphan; Akyürek, Eda Feyza; Sahin, Bayram

    2018-06-01

    Present study aims to investigate the effects of the presence of nano sized TiO2 particles in the base fluid on entropy generation rate in a microchannel heat sink. Pure water was chosen as base fluid, and TiO2 particles were suspended into the pure water in five different particle volume fractions of 0.25%, 0.5%, 1.0%, 1.5% and 2.0%. Under laminar, steady state flow and constant heat flux boundary conditions, thermal, frictional, total entropy generation rates and entropy generation number ratios of nanofluids were experimentally analyzed in microchannel flow for different channel heights of 200 μm, 300 μm, 400 μm and 500 μm. It was observed that frictional and total entropy generation rates increased as thermal entropy generation rate were decreasing with an increase in particle volume fraction. In microchannel flows, thermal entropy generation could be neglected due to its too low rate smaller than 1.10e-07 in total entropy generation. Higher channel heights caused higher thermal entropy generation rates, and increasing channel height yielded an increase from 30% to 52% in thermal entropy generation. When channel height decreased, an increase of 66%-98% in frictional entropy generation was obtained. Adding TiO2 nanoparticles into the base fluid caused thermal entropy generation to decrease about 1.8%-32.4%, frictional entropy generation to increase about 3.3%-21.6%.

  12. A new electrophoresis technique to separate microsatellite alleles ...

    African Journals Online (AJOL)

    A new electrophoresis technique to separate microsatellite alleles* ... African Journal of Biotechnology ... with the CEQTM 8000 Genetic Analysis System and ABI 3130xl DNA Sequencer easily separated products and determined allelic size, ...

  13. Effect of patterned micro-magnets on superparamagnetic beads in microchannels

    International Nuclear Information System (INIS)

    Guo, S S; Deng, Y L; Zhao, L B; Zhao, X-Z; Chan, H L W

    2008-01-01

    The trapping response of patterned micro-magnets (PMMs) was studied based on the parameters affecting superparamagnetic beads in microfluidic channels. Using replica moulding and electroplating technologies, the PMMs were fabricated on the microchannel bottom, which generated sufficient magnetic forces to bias the moments of magnetic particles in a flowing stream. A simplified physical principle was used to analyse the relative velocity of the magnetic particle in the confined space of a microchannel. The results revealed that the magnetic force contributed to the fluidic flow rate as well as to the hydrodynamic drag force. The relative velocity of magnetic particles was dependent on the frequency under an external magnetic field driven by an alternate current (ac) source. It showed that the magnetic gradient induced hysteresis characteristics of the transmission spectrum, associated with the interaction of superparamagnetic beads and magnetic field

  14. The flow field around a micropillar confined in a microchannel

    International Nuclear Information System (INIS)

    Jung, Junkyu; Kuo, C.-J.; Peles, Yoav; Amitay, Michael

    2012-01-01

    The flow field over a low aspect ratio (AR) circular pillar (L/D = 1.5) in a microchannel was studied experimentally. Microparticle image velocimetry (μPIV) was employed to quantify flow parameters such as flow field, spanwise vorticity, and turbulent kinetic energy (TKE) in the microchannel. Flow regimes of cylinder-diameter-based Reynolds number at 100 ⩽ Re D ⩽ 700 (i.e., steady, transition from quasi-steady to unsteady, and unsteady flow) were elucidated at the microscale. In addition, active flow control (AFC), via a steady control jet (issued from the pillar itself in the downstream direction), was implemented to induce favorable disturbances to the flow in order to alter the flow field, promote turbulence, and increase mixing. Together with passive flow control (i.e., a circular pillar), turbulent kinetic energy was significantly increased in a controllable manner throughout the flow field.

  15. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery.

    Science.gov (United States)

    Gao, Qing; He, Yong; Fu, Jian-zhong; Liu, An; Ma, Liang

    2015-08-01

    This study offers a novel 3D bioprinting method based on hollow calcium alginate filaments by using a coaxial nozzle, in which high strength cell-laden hydrogel 3D structures with built-in microchannels can be fabricated by controlling the crosslinking time to realize fusion of adjacent hollow filaments. A 3D bioprinting system with a Z-shape platform was used to realize layer-by-layer fabrication of cell-laden hydrogel structures. Curving, straight, stretched or fractured filaments can be formed by changes to the filament extrusion speed or the platform movement speed. To print a 3D structure, we first adjusted the concentration and flow rate of the sodium alginate and calcium chloride solution in the crosslinking process to get partially crosslinked filaments. Next, a motorized XY stages with the coaxial nozzle attached was used to control adjacent hollow filament deposition in the precise location for fusion. Then the Z stage attached with a Z-shape platform moved down sequentially to print layers of structure. And the printing process always kept the top two layers fusing and the below layers solidifying. Finally, the Z stage moved down to keep the printed structure immersed in the CaCl2 solution for complete crosslinking. The mechanical properties of the resulting fused structures were investigated. High-strength structures can be formed using higher concentrations of sodium alginate solution with smaller distance between adjacent hollow filaments. In addition, cell viability of this method was investigated, and the findings show that the viability of L929 mouse fibroblasts in the hollow constructs was higher than that in alginate structures without built-in microchannels. Compared with other bioprinting methods, this study is an important technique to allow easy fabrication of lager-scale organs with built-in microchannels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Custom ceramic microchannel-cooled array for high-power fiber-coupled application

    Science.gov (United States)

    Junghans, Jeremy; Feeler, Ryan; Stephens, Ed

    2018-03-01

    A low-SWaP (Size, Weight and Power) diode array has been developed for a high-power fiber-coupled application. High efficiency ( 65%) diodes enable high optical powers while minimizing thermal losses. A large amount of waste heat is still generated and must be extracted. Custom ceramic microchannel-coolers (MCCs) are used to dissipate the waste heat. The custom ceramic MCC was designed to accommodate long cavity length diodes and micro-lenses. The coolers provide similar thermal performance as copper MCCs however they are not susceptible to erosion and can be cooled with standard filtered water. The custom ceramic micro-channel cooled array was designed to be a form/fit replacement for an existing copperbased solution. Each array consisted of three-vertically stacked MCCs with 4 mm CL, 976 nm diodes and beamshaping micro-optics. The erosion and corrosion resistance of ceramic array is intended to mitigate the risk of copperbased MCC corrosion failures. Elimination of the water delivery requirements (pH, resistivity and dissolved oxygen control) further reduces the system SWaP while maintaining reliability. The arrays were fabricated and fully characterized. This work discusses the advantages of the ceramic MCC technology and describes the design parameters that were tailored for the fiber-coupled application. Additional configuration options (form/fit, micro-lensing, alternate coolants, etc.) and on-going design improvements are also discussed.

  17. Batch production of microchannel plate photo-multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Henry J.; Wetstein, Matthew; Elagin, Andrey

    2018-03-06

    In-situ methods for the batch fabrication of flat-panel micro-channel plate (MCP) photomultiplier tube (PMT) detectors (MCP-PMTs), without transporting either the window or the detector assembly inside a vacuum vessel are provided. The method allows for the synthesis of a reflection-mode photocathode on the entrance to the pores of a first MCP or the synthesis of a transmission-mode photocathode on the vacuum side of a photodetector entrance window.

  18. Diamond Microchannel Heat Sink Designs For High Heat Flux Thermal Control

    National Research Council Canada - National Science Library

    Corbin, Michael

    2002-01-01

    .... Many investigators have suggested the use of diamond heat spreaders to reduce flux levels at or near to its source, and some have suggested that diamond microchannel heat sinks ultimately may play...

  19. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis.

    Science.gov (United States)

    Scherer, James R; Liu, Peng; Mathies, Richard A

    2010-11-01

    We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.

  20. Pressure and partial wetting effects on superhydrophobic friction reduction in microchannel flow

    Science.gov (United States)

    Kim, Tae Jin; Hidrovo, Carlos

    2012-11-01

    Friction reduction in microchannel flows can help alleviate the inherently taxing pumping power requirements associated with the dimensions involved. One possible way of achieving friction reduction is through the introduction of surface microtexturing that can lead to a superhydrophobic Cassie-Baxter state. The Cassie-Baxter state is characterized by the presence of air pockets within the surface microtexturing believed to act as an effective "shear free" (or at least shear reduced) layer, decreasing the overall friction characteristics of the surface. Most work in this area has concentrated on optimizing the surface microtexturing geometry to maximize the friction reduction effects and overall stability of the Cassie-Baxter state. However, less attention has been paid to the effects of partially wetted conditions induced by pressure and the correlation between the liquid-gas interface location within the surface microtexturing and the microchannel flow characteristics. This is mainly attributed to the difficulty in tracking the interface shape and location within the microtexturing in the typical top-down view arrangements used in most studies. In this paper, a rectangular microchannel with regular microtexturing on the sidewalls is used to visualize and track the location of the air-water interface within the roughness elements. While visually tracking the wetting conditions in the microtextures, pressure drops versus flow rates for each microchannel are measured and analyzed in terms of the non-dimensional friction coefficient. The frictional behavior of the Poiseuille flow suggests that (1) the air-water interface more closely resembles a no-slip boundary rather than a shear-free one, (2) the friction is rather insensitive to the degree of microtexturing wetting, and (3) the fully wetted (Wenzel state) microtexturing provides lower friction than the non-wetted one (Cassie state), in corroboration with observations (1) and (2).

  1. The application of μPIV technique in the study of magnetic flows in a micro-channel

    International Nuclear Information System (INIS)

    Nguyen, N.T.; Wu, Z.G.; Huang, X.Y.; Wen, C.-Y..

    2005-01-01

    In this preliminary experimental study, micro-scale particle image velocimetry (μPIV) was adopted for the first time to get the quantitative information of magnetic flows in a micro-channel. The μPIV consists of an inverted florescent microscope, a Q-switch Nd:YAG laser and a CCD camera. The florescent liquid with particles of 3 μm diameter was blended homogeneously with the prepared magnetic fluid. A permanent magnet approached and left one end of the micro-channel. The response of the magnetic fluid was recorded with the μPIV simultaneously. The flow features validate the feasibility of using μPIV technique in the study of magnetic flows in a micro-channel. μPIV provides a promising experimental tool for visualization and quantitative measurement of magnetic micro-flows

  2. An interlaboratory comparison of ITS2-PCR for the identification of yeasts, using the ABI Prism 310 and CEQ8000 capillary electrophoresis systems

    Directory of Open Access Journals (Sweden)

    Verschraegen Gerda

    2005-03-01

    Full Text Available Abstract Background Currently, most laboratories identify yeasts routinely on the basis of morphology and biochemical reactivity. This approach has quite often limited discriminatory power and may require long incubation periods. Due to the increase of fungal infections and due to specific antifungal resistence patterns for different species, accurate and rapid identification has become more important. Several molecular techniques have been described for fast and reliable identification of yeast isolates, but interlaboratory exchangeability of identification schemes of molecular techniques has hardly been studied. Here, we compared amplified ITS2 fragment length determination by an ABI Prism 310 (Applied Biosystems, Foster City, Ca. capillary electrophoresis system with that obtained by a CEQ8000 (Beckman Coulter, Fullerton, Ca. capillary electrophoresis system. Results Although ITS2 size estimations on both systems differed and separate libraries had to be constructed for each system, both approaches had the same discriminatory power with regard to the 44 reference strains, identical identifications were obtained for 39/ 40 clinical isolates in both laboratories and strains from 51 samples were correctly identified using CEQ8000, when compared to phenotypic identification. Conclusion Identification of yeasts with ITS2-PCR followed by fragment analysis can be carried out on different capillary electrophoresis systems with comparable discriminatory power.

  3. Pattern analysis of aligned nanowires in a microchannel

    International Nuclear Information System (INIS)

    Jeon, Young Jin; Kang, Hyun Wook; Ko, Seung Hwan; Sung, Hyung Jin

    2013-01-01

    An image processing method for evaluating the quality of nanowire alignment in a microchannel is described. A solution containing nanowires flowing into a microchannel will tend to deposit the nanowires on the bottom surface of the channel via near-wall shear flows. The deposited nanowires generally form complex directional structures along the direction of flow, and the physical properties of these structures depend on the structural morphology, including the alignment quality. A quantitative analysis approach to characterizing the nanowire alignment is needed to estimate the useful features of the nanowire structures. This analysis consists of several image processing methods, including ridge detection, texton analysis and autocorrelation function (ACF) calculation. The ridge detection method improved the ACF by extracting nanowire frames 1–2 pixels in width. Dilation filters were introduced to permit a comparison of the ACF results calculated from different images, regardless of the nanowire orientation. An ACF based on the FFT was then calculated over a square interrogation window. The alignment angle probability distribution was obtained using texton analysis. Monte Carlo simulations of artificially generated images were carried out, and the new algorithm was applied to images collected using two types of microscopy. (paper)

  4. Electrophoresis test prevalence, requesting patterns, yield and ...

    African Journals Online (AJOL)

    Most of the appropriate SPE test requests were from clinical haematology, renal ... implementation of principles of demand management and the ... electrophoresis (IFE)) in a South African (SA) pathology laboratory setting are limited. Objectives. ... (NHLS) hospital information system database from 1 July 2010 to. 30 June ...

  5. Pulsed-field gel electrophoresis of bacterial chromosomes.

    Science.gov (United States)

    Mawer, Julia S P; Leach, David R F

    2013-01-01

    The separation of fragments of DNA by agarose gel electrophoresis is integral to laboratory life. Nevertheless, standard agarose gel electrophoresis cannot resolve fragments bigger than 50 kb. Pulsed-field gel electrophoresis is a technique that has been developed to overcome the limitations of standard agarose gel electrophoresis. Entire linear eukaryotic chromosomes, or large fragments of a chromosome that have been generated by the action of rare-cutting restriction endonucleases, can be separated using this technique. As a result, pulsed-field gel electrophoresis has many applications, from karyotype analysis of microbial genomes, to the analysis of chromosomal strand breaks and their repair intermediates, to the study of DNA replication and the identification of origins of replication. This chapter presents a detailed protocol for the preparation of Escherichia coli chromosomal DNA that has been embedded in agarose plugs, digested with the rare-cutting endonuclease NotI, and separated by contour-clamped homogeneous field electrophoresis. The principles in this protocol can be applied to the separation of all fragments of DNA whose size range is between 40 kb and 1 Mb.

  6. Nonradioactive telomerase activity assay by microchip electrophoresis: privileges to the classical gel electrophoresis assay.

    Science.gov (United States)

    Zhelev, Zhivko; Bakalova, Rumiana; Ewis, Ashraf; Ohba, Hideki; Ishikawa, Mitsuru; Baba, Yoshinobu

    2005-08-01

    The present study accents on the privileges of microchip-based electrophoresis to the conventional gel electrophoresis in separation of telomerase repeat amplification protocol/polymerase chain reaction (PCR) ladder products obtained in telomerase-catalyzed reaction in cancer cells. We try to clarify the interpretation of the results obtained by both electrophoretic procedures and to avoid misinterpretation as a result of PCR-dependent artefacts.

  7. Heat transfer and pressure drop in microchannels with random roughness

    NARCIS (Netherlands)

    Pelevic, N.; van der Meer, Theodorus H.

    2016-01-01

    The effect of surface roughness on heat transfer and fluid flow phenomena within a microchannel has been investigated by using the lattice Boltzmann method. The surface roughness has been generated by using Gaussian function. Gaussian function is an efficient and convenient method to create surface

  8. Variation of microchannel plate resistance with temperature and applied voltage

    International Nuclear Information System (INIS)

    Pearson, J.F.; Fraser, G.W.; Whiteley, M.J.

    1987-01-01

    The resistance of microchannel plate electron multiplier is well known to be a function of both applied voltage and detector temperature. We show that the apparent variation of resistance with bias voltage is simply due to plate temperature increases resulting from resistive heating. (orig.)

  9. Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis

    KAUST Repository

    Li, Ming; Li, Shunbo; Cao, Wenbin; Li, Weihua; Wen, Weijia; Alici, Gursel

    2012-01-01

    We present a waved microchannel for continuous focusing of microparticles and cells using negative direct current (dc) dielectrophoresis. The waved channel is composed of consecutive s-shaped curved channels in series to generate an electric field

  10. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  11. Gel electrophoresis of inorganic cations

    International Nuclear Information System (INIS)

    Schoenhofer, F.; Grass, F.

    1978-01-01

    In order to be able to separate the largest possible amounts of substance, polyacryl amide gel (PAA) and silica gel are used as carrier for the electrophoresis. Milligramme quantities can easily be separated on PAA gel plates. Electrophoretic ion focussing considerably improves it. Separations of Sr/Y and lanthanoids were carried out. The behaviour of the readily soluble complexing agent acids on silica gel thin layers was minutely investigated and an interpretation of the focussing effect was derived. The conditions for separating radionuclides were optimized. A further improved separation can be achieved by a time sequence combination of normal electrophoresis and ion focussing. Selective isolation methods are advantageous to determine radionuclide traces in environmental samples. The selective adsorption on preformed deposits was transferred to electrophoresis. After pre-investigations on silica gel layers, strontium and barium could also be retained on PAA gel and radium on strontium sulphate in PAA, whereas the disturbing calcium can easily pass through. Cesium can also be retained by prussian blue in the electrophoresis. (orig.) [de

  12. Bioprocessing: Prospects for space electrophoresis

    Science.gov (United States)

    Bier, M.

    1977-01-01

    The basic principles of electrophoresis are reviewed in light of its past contributions to biology and medicine. The near-zero gravity environment of orbiting spacecraft may present some unique advantages for a variety of processes, by abolishing the major source of convection in fluids. As the ground-based development of electrophoresis was heavily influenced by the need to circumvent the effects of gravity, this process should be a prime candidate for space operation. Nevertheless, while a space facility for electrophoresis may overcome the limitations imposed by gravity, it will not necessarily overcome all problems inherent in electrophoresis. These are, mainly, electroosmosis and the dissipation of the heat generated by the electric field. The NASA program has already led to excellent coatings to prevent electroosmosis, while the need for heat dissipation will continue to impose limits on the actual size of equipment. It is also not excluded that, once the dominant force of gravity is eliminated, disturbances in fluid stability may originate from weaker forces, such as surface tension.

  13. Development of New Correlation and Assessment of Correlations for Two-Phase Pressure Drop in Rectangular Microchannels

    International Nuclear Information System (INIS)

    Choi, Chi Woong; Yu, Dong In; Kim, Moo Hwan

    2010-01-01

    There are two kinds of models in two-phase pressured drop; homogeneous flow model and separated flow model. Many previous researchers have developed correlations for two-phase pressure drop in a microchannel. Most correlations were modified Lockhart and Martinelli's correlation, which was based on the separated flow model. In this study, experiments for adiabatic liquid water and nitrogen gas flow in rectangular microchannels were conducted to investigate two-phase pressure drop in the rectangular microchannels. Two-phase frictional pressure drop in the rectangular microchannels is highly related with flow regime. Homogeneous model with six two-phase viscosity models: Owen(21)'s, MacAdams(22)'s, Cicchitti et al.(23)'s, Dukler et al.(24)'s, Beattie and Whalley(25)'s, Lin et al.(26)'s models and six separated flow models: Lockhart and Martinelli(27)'s, Chisholm(31)'s, Zhang et al.(15)'s, Lee and Lee(5)'s, Moriyama and Inue(4)'s, Qu and Mudawar(8)'s models were assessed with our experimental data. The best two-phase viscosity model is Beattie and Whalley's model. The best separated flow model is Qu and Mudawar's correlation. Flow regime dependency in both homogeneous and separated flow models was observed. Therefore, new flow pattern based correlations for both homogeneous and separated flow models were individually proposed

  14. Theoretical modeling of electroosmotic flow in soft microchannels: A variational approach applied to the rectangular geometry

    Science.gov (United States)

    Sadeghi, Arman

    2018-03-01

    Modeling of fluid flow in polyelectrolyte layer (PEL)-grafted microchannels is challenging due to their two-layer nature. Hence, the pertinent studies are limited only to circular and slit geometries for which matching the solutions for inside and outside the PEL is simple. In this paper, a simple variational-based approach is presented for the modeling of fully developed electroosmotic flow in PEL-grafted microchannels by which the whole fluidic area is considered as a single porous medium of variable properties. The model is capable of being applied to microchannels of a complex cross-sectional area. As an application of the method, it is applied to a rectangular microchannel of uniform PEL properties. It is shown that modeling a rectangular channel as a slit may lead to considerable overestimation of the mean velocity especially when both the PEL and electric double layer (EDL) are thick. It is also demonstrated that the mean velocity is an increasing function of the fixed charge density and PEL thickness and a decreasing function of the EDL thickness and PEL friction coefficient. The influence of the PEL thickness on the mean velocity, however, vanishes when both the PEL thickness and friction coefficient are sufficiently high.

  15. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets

    Science.gov (United States)

    Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.

    2017-02-01

    Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.

  16. An analytical model for annular flow boiling heat transfer in microchannel heat sinks

    International Nuclear Information System (INIS)

    Megahed, A.; Hassan, I.

    2009-01-01

    An analytical model has been developed to predict flow boiling heat transfer coefficient in microchannel heat sinks. The new analytical model is proposed to predict the two-phase heat transfer coefficient during annular flow regime based on the separated model. Opposing to the majority of annular flow heat transfer models, the model is based on fundamental conservation principles. The model considers the characteristics of microchannel heat sink during annular flow and eliminates using any empirical closure relations. Comparison with limited experimental data was found to validate the usefulness of this analytical model. The model predicts the experimental data with a mean absolute error 8%. (author)

  17. Enhancement of the conductivity detection signal in capillary electrophoresis systems using neutral cyclodextrins as sweeping agents.

    Science.gov (United States)

    Boublík, Milan; Riesová, Martina; Dubský, Pavel; Gaš, Bohuslav

    2018-06-01

    Conductivity detection is a universal detection technique often encountered in electrophoretic separation systems, especially in modern chip-electrophoresis based devices. On the other hand, it is sparsely combined with another contemporary trend of enhancing limits of detection by means of various preconcentration strategies. This can be attributed to the fact that a preconcentration experimental setup usually brings about disturbances in a conductivity baseline. Sweeping with a neutral sweeping agent seems a good candidate for overcoming this problem. A neutral sweeping agent does not hinder the conductivity detection while a charged analyte may preconcentrate on its boundary due to a decrease in its effective mobility. This study investigates such sweeping systems theoretically, by means of computer simulations, and experimentally. A formula is provided for the reliable estimation of the preconcentration factor. Additionally, it is demonstrated that the conductivity signal can significantly benefit from slowing down the analyte and thus the overall signal enhancement can easily overweight amplification caused solely by the sweeping process. The overall enhancement factor can be deduced a priori from the linearized theory of electrophoresis implemented in the PeakMaster freeware. Sweeping by neutral cyclodextrin is demonstrated on an amplification of a conductivity signal of flurbiprofen in a real drug sample. Finally, a possible formation of unexpected system peaks in systems with a neutral sweeping agent is revealed by the computer simulation and confirmed experimentally. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Surface Modification of SiO2 Microchannels with Biocompatible Polymer Using Supercritical Carbon Dioxide

    Science.gov (United States)

    Saito, Tatsuro; Momose, Takeshi; Hoshi, Toru; Takai, Madoka; Ishihara, Kazuhiko; Shimogaki, Yukihiro

    2010-11-01

    The surface of 500-mm-long microchannels in SiO2 microchips was modified using supercritical CO2 (scCO2) and a biocompatible polymer was coated on it to confer biocompatibility to the SiO2 surface. In this method, the SiO2 surface of a microchannel was coated with poly(ethylene glycol monomethacrylate) (PEGMA) as the biocompatible polymer using allyltriethoxysilane (ATES) as the anchor material in scCO2 as the reactive medium. Results were compared with those using the conventional wet method. The surface of a microchannel could not be modified by the wet method owing to the surface tension and viscosity of the liquid, but it was modified uniformly by the scCO2 method probably owing to the near-zero surface tension, low viscosity, and high diffusivity of scCO2. The effect of the surface modification by the scCO2 method to prevent the adsorption of protein was as high as that of the modification by the wet method. Modified microchips can be used in biochemical and medical analyses.

  19. A Neutron Sensitive Microchannel Plate Detector with Cross Delay Line Readout

    International Nuclear Information System (INIS)

    Berry, Kevin D.; Bilheux, Hassina Z.; Crow, Lowell; Diawara, Yacouba; Feller, W. Bruce; Iverson, Erik B.; Martin, Adrian; Robertson, J. Lee

    2012-01-01

    Microchannel plates containing neutron absorbing elements such as boron and gadolinium in the bulk glass are used as the sensing element in high spatial resolution, high rate neutron imaging systems. In this paper we describe one such device, using both 10 B and natural Gd, which employs cross delay line signal readout, with time-of-flight capability. This detector has a measured spatial resolution under 40 m FWHM, thermal neutron efficiency of 19%, and has recorded rates in excess of 500 kHz. A physical and functional description is presented, followed by a discussion of measurements of detector performance and a brief survey of some practical applications.

  20. Pressure Drop and Catalytic Dehydrogenation of NaBH{sub 4} Solution Across Pin Fin Structures in a Microchannel Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Moon [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of); Choi, Seok Hyun [Key Valve Technologies Ltd., Siheung (Korea, Republic of); Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of)

    2017-06-15

    Dehydrogenation from the hydrolysis of a sodium borohydride (NaBH{sub 4}) solution has been of interest owing to its high theoretical hydrogen storage capacity (10.8 wt.%) and potentially safe operation. An experimental study has been performed on the catalytic reaction rate and pressure drop of a NaBH4 solution over both a single microchannel with a hydraulic diameter of 300 μm and a staggered array of micro pin fins in the microchannel with hydraulic diameter of 50 μm. The catalytic reaction rates and pressure drops were obtained under Reynolds numbers from 1 to 60 and solution concentrations from 5 to 20 wt.%. Moreover, reacting flows were visualized using a high-speed camera with a macro zoom lens. As a result, both the amount of hydrogenation and pressure drop are 2.45 times and 1.5 times larger in a pin fin microchannel array than in a single microchannel, respectively.

  1. Self-Sealed Bionic Long Microchannels with Thin Walls and Designable Nanoholes Prepared by Line-Contact Capillary-Force Assembly.

    Science.gov (United States)

    Lao, Zhao-Xin; Hu, Yan-Lei; Pan, Deng; Wang, Ren-Yan; Zhang, Chen-Chu; Ni, Jin-Cheng; Xu, Bing; Li, Jia-Wen; Wu, Dong; Chu, Jia-Ru

    2017-06-01

    Long microchannels with thin walls, small width, and nanoholes or irregular shaped microgaps, which are similar to capillaries or cancerous vessels, are urgently needed to simulate the physiological activities in human body. However, the fabrication of such channels remains challenging. Here, microchannels with designable holes are manufactured by combining laser printing with line-contact capillary-force assembly. Two microwalls are first printed by femtosecond laser direct-writing, and subsequently driven to collapse into a channel by the capillary force that arises in the evaporation of developer. The channel can remain stable in solvent due to the enhanced Van der Waals' force caused by the line-contact of microwalls. Microchannels with controllable nanoholes and almost arbitrary patterns can be fabricated without any bonding or multistep processes. As-prepared microchannels, with wall thicknesses less than 1 µm, widths less than 3 µm, lengths more than 1 mm, are comparable with human capillaries. In addition, the prepared channels also exhibit the ability to steer the flow of liquid without any external pump. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantifying the role of noise on droplet decisions in bifurcating microchannels

    Science.gov (United States)

    Norouzi Darabad, Masoud; Vaughn, Mark; Vanapalli, Siva

    2017-11-01

    While many aspects of path selection of droplets flowing through a bifurcating microchannel have been studied, there are still unaddressed issues in predicting and controlling droplet traffic. One of the more important is understanding origin of aperiodic patterns. As a new tool to investigate this phenomena we propose monitoring the continuous time response of pressure fluctuations at different locations. Then we use time-series analysis to investigate the dynamics of the system. We suggest that natural system noise is the cause of irregularity in the traffic patterns. Using a mathematical model, we investigate the effect of noise on droplet decisions at the junction. Noise can be derived from different sources including droplet size variation, droplet spacing, and pump induced velocity fluctuation. By analyzing different situations we explain system behavior. We also investigate the ``memory'' of a microfluidic system in terms of the resistance to perturbations that quantify the allowable deviation in operating condition before the system changes state.

  3. Crossflow type silicon microchannel substrate monodispersion oil-in-water emulsion manufacture; Kurosufuro gata shirikon maikuro chaneru kiban wo mochiita tanbunsan suchuyu emarushon no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Takahiro [Tohoku University, Miyagi (Japan). Graduate School; Komori, Hideai; Najima, Mitsutashi; Kikuchi, Yuji; Yonemoto, Toshikuni

    1999-05-05

    The new technique, which continuously produced the monodispersion oil-in-water (0/W) emulsion using the crossflow type silicon microchannel substrate, was developed. On the silicon monocrystal substrate, the watercourse as the liquid of the continuous phase flowed was produced, and the column of the equal slit of the size in both walls of the watercourse was precisely processed. By closing the upper part in the slit by the clamp of the flat glass board in the microchannel substrate, the microchannel column was formed. Through the microchannel, the oil droplet in which the size was even was formed by sending out the oil (triolein) in the water (0.3wt% sodium lauryl sulfate aqueous solution) of continuous phase which is flowing in respect of the watercourse. The size of the oil droplet is greatly dependent on the structure of the microchannel regulated by microchannel width, microchannel height and terrace length (the even part of which the microchannel exit was equipped). Monodispersion emulsion of 16,20 and 48 {mu}m at the average droplet diameter was formed by using microchannel substrate of the three types of which the structure differs. Droplet diameter decreased, when the substrate which formed large droplet of 48 {mu}m in which the water current quantity is 1.4x10{sup -2}mLmin{sup -1} was used, when the flow rate increased. However, there was no a flow rate at droplet diameter, even if it was made to change from 1.4x10{sup -2} to 2.4mLmin{sup -1}, 16 {mu}m 20 {mu}m small change. In all cases, the droplet size distribution was narrow, and the geometry standard deviation was under 1.03. (translated by NEDO)

  4. A dimensional comparison between embedded 3D-printed and silicon microchannels

    International Nuclear Information System (INIS)

    O'Connor, J; Punch, J; Jeffers, N; Stafford, J

    2014-01-01

    The subject of this paper is the dimensional characterization of embedded microchannel arrays created using contemporary 3D-printing fabrication techniques. Conventional microchannel arrays, fabricated using deep reactive ion etching techniques (DRIE) and wet-etching (KOH), are used as a benchmark for comparison. Rectangular and trapezoidal cross-sectional shapes were investigated. The channel arrays were 3D-printed in vertical and horizontal directions, to examine the influence of print orientation on channel characteristics. The 3D-printed channels were benchmarked against Silicon channels in terms of the following dimensional characteristics: cross-sectional area (CSA), perimeter, and surface profiles. The 3D-printed microchannel arrays demonstrated variances in CSA of 6.6-20% with the vertical printing approach yielding greater dimensional conformity than the horizontal approach. The measured CSA and perimeter of the vertical channels were smaller than the nominal dimensions, while the horizontal channels were larger in both CSA and perimeter due to additional side-wall roughness present throughout the channel length. This side-wall roughness caused significant shape distortion. Surface profile measurements revealed that the base wall roughness was approximately the resolution of current 3D-printers. A spatial periodicity was found along the channel length which appeared at different frequencies for each channel array. This paper concludes that vertical 3D-printing is superior to the horizontal printing approach, in terms of both dimensional fidelity and shape conformity and can be applied in microfluidic device applications.

  5. A dimensional comparison between embedded 3D-printed and silicon microchannels

    Science.gov (United States)

    O'Connor, J.; Punch, J.; Jeffers, N.; Stafford, J.

    2014-07-01

    The subject of this paper is the dimensional characterization of embedded microchannel arrays created using contemporary 3D-printing fabrication techniques. Conventional microchannel arrays, fabricated using deep reactive ion etching techniques (DRIE) and wet-etching (KOH), are used as a benchmark for comparison. Rectangular and trapezoidal cross-sectional shapes were investigated. The channel arrays were 3D-printed in vertical and horizontal directions, to examine the influence of print orientation on channel characteristics. The 3D-printed channels were benchmarked against Silicon channels in terms of the following dimensional characteristics: cross-sectional area (CSA), perimeter, and surface profiles. The 3D-printed microchannel arrays demonstrated variances in CSA of 6.6-20% with the vertical printing approach yielding greater dimensional conformity than the horizontal approach. The measured CSA and perimeter of the vertical channels were smaller than the nominal dimensions, while the horizontal channels were larger in both CSA and perimeter due to additional side-wall roughness present throughout the channel length. This side-wall roughness caused significant shape distortion. Surface profile measurements revealed that the base wall roughness was approximately the resolution of current 3D-printers. A spatial periodicity was found along the channel length which appeared at different frequencies for each channel array. This paper concludes that vertical 3D-printing is superior to the horizontal printing approach, in terms of both dimensional fidelity and shape conformity and can be applied in microfluidic device applications.

  6. Pool boiling visualization on open microchannel surfaces

    Directory of Open Access Journals (Sweden)

    Kaniowski Robert

    2017-01-01

    Full Text Available The paper presents visualization investigations into pool boiling heat transfer for open minichannel surfaces. The experiments were carried out wih saturated water at atmospheric pressure. Parallel microchannels fabricated by machining were about 0.3 mm wide and 0.2 to 0.4 mm deep. High-speed videos were used as an aid to understanding the heat transfer mechanism. The visualization study aimed at identifying nucleation sites of the departing bubbles and determining their diameters and frequency at various superheats.

  7. Attempt to run urinary protein electrophoresis using capillary technique.

    Science.gov (United States)

    Falcone, Michele

    2014-10-01

    The study of urinary protein has a predominant place in the diagnosis of kidney disease. The most common technique is agarose gel electrophoresis (AGE). For several years, the technique of choice applied to the analysis of serum proteins has been CE, a system that uses capillary fused silica, subjected to high voltage to separate and measure serum proteins. The purpose of this paper was to perform capillary electrophoresis on urinary proteins which, at present, are not interpretable due to the many nonspecific peaks visible when using gel electrophoresis. In order to carry out our research, we used a capillary V8 analyzer together with an agarose gel system from the same company. AGE was taken as the reference method, for which urine was used without any pretreatment. For the V8 system, urine was subjected to purification on granular-activated carbon and then inserted into the V8 analyzer, selecting a program suitable for liquids with low protein content. We examined 19 urine samples collected over 24 hrs from both hospitalized and external patients with different types of proteinuria plus a serum diluted 1/61 considered as a control to recognize the bands. Both methods showed the same protein fractions and classified the proteinuria in a similar way. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electronic imaging systems for quantitative electrophoresis of DNA

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1989-01-01

    Gel electrophoresis is one of the most powerful and widely used methods for the separation of DNA. During the last decade, instruments have been developed that accurately quantitate in digital form the distribution of materials in a gel or on a blot prepared from a gel. In this paper, I review the various physical properties that can be used to quantitate the distribution of DNA on gels or blots and the instrumentation that has been developed to perform these tasks. The emphasis here is on DNA, but much of what is said also applies to RNA, proteins and other molecules. 36 refs

  9. Flame dynamics in a micro-channeled combustor

    International Nuclear Information System (INIS)

    Hussain, Taaha; Balachandran, Ramanarayanan; Markides, Christos N.

    2015-01-01

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  10. Flame dynamics in a micro-channeled combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Taaha; Balachandran, Ramanarayanan, E-mail: r.balachandran@ucl.ac.uk [Department of Mechanical Engineering, University College London, London (United Kingdom); Markides, Christos N. [Clean Energy Processes Laboratory, Department of Chemical Engineering, Imperial College London, London (United Kingdom)

    2015-01-22

    The increasing use of Micro-Electro-Mechanical Systems (MEMS) has generated a significant interest in combustion-based power generation technologies, as a replacement of traditional electrochemical batteries which are plagued by low energy densities, short operational lives and low power-to-size and power-to-weight ratios. Moreover, the versatility of integrated combustion-based systems provides added scope for combined heat and power generation. This paper describes a study into the dynamics of premixed flames in a micro-channeled combustor. The details of the design and the geometry of the combustor are presented in the work by Kariuki and Balachandran [1]. This work showed that there were different modes of operation (periodic, a-periodic and stable), and that in the periodic mode the flame accelerated towards the injection manifold after entering the channels. The current study investigates these flames further. We will show that the flame enters the channel and propagates towards the injection manifold as a planar flame for a short distance, after which the flame shape and propagation is found to be chaotic in the middle section of the channel. Finally, the flame quenches when it reaches the injector slots. The glow plug position in the exhaust side ignites another flame, and the process repeats. It is found that an increase in air flow rate results in a considerable increase in the length (and associated time) over which the planar flame travels once it has entered a micro-channel, and a significant decrease in the time between its conversion into a chaotic flame and its extinction. It is well known from the literature that inside small channels the flame propagation is strongly influenced by the flow conditions and thermal management. An increase of the combustor block temperature at high flow rates has little effect on the flame lengths and times, whereas at low flow rates the time over which the planar flame front can be observed decreases and the time of

  11. Comparative Studies of Two-Dimensional Electrophoresis on Galactosidase Relating to Bombyx Lectin Activity

    OpenAIRE

    加藤, 靖夫; カトウ, ヤスオ; Yasuo, Kato

    2005-01-01

    "Comparative two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) analysis on the haemolymph of the domesticated silkworm, Bombyx mori and Fraction II obtained by gel filtration from the haemolymph of B. mori was performed using the 2-D mini-slab system (Atto Co.) (the first method of 2-D PAGE) and the Mini-PROTEAN mini tube gel 2-D PAGE system (Bio-Rad Laboratories, Inc.) (the second method). Moreover, two-dimensionnal electrophoresis analysis on standard β-galactosidase, grade III ...

  12. Two-phase flow regimes in a horizontal microchannel with the height of 50 μm and width of 10 mm

    Science.gov (United States)

    Fina, V. P.; Ronshin, F. V.

    2017-11-01

    Two-phase flows of distilled deionized nanofiltered water and nitrogen gas in a microchannel with a height of 50 μm and a width of 10 mm have been investigated experimentally. The schlieren method has been used to determine main features of the two-phase flow in the microchannel. This method allows detecting the liquid film on the lower and upper walls of the microchannel as well as droplets of various shapes and sizes or vertical liquid bridges. Two-phase flow regimes have been observed, and their boundaries precisely determined using post-processing of the recordings. The following flow regimes have been distinguished: bubble, churn, jet, stratified and annular. Comparison of regime maps for channels of different widths has been carried out, and this parameter showed to have a significant impact on the boundaries between the regimes in microchannels of a height of less than 100 μm.

  13. Synthesis of hydrogel via click chemistry for DNA electrophoresis.

    Science.gov (United States)

    Finetti, Chiara; Sola, Laura; Elliott, Jim; Chiari, Marcella

    2017-09-01

    This work introduces a novel sieving gel for DNA electrophoresis using a classical click chemistry reaction, the copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC), to cross-link functional polymer chains. The efficiency of this reaction provides, under mild conditions, hydrogels with near-ideal network connectivity and improved physical properties. Hydrogel formation via click chemistry condensation of functional polymers does not involve the use of toxic monomers and UV initiation. The performance of the new hydrogel in the separation of double stranded DNA fragments was evaluated in the 2200 TapeStation system, an analytical platform, recently introduced by Agilent that combines the advantages of CE in terms of miniaturization and automation with the simplicity of use of slab gel electrophoresis. The click gel enables addition of florescent dyes prior to electrophoresis with considerable improvement of resolution and separation efficiency over conventional cross-linked polyacrylamide gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch.

    Science.gov (United States)

    Chakraborty, Anirban; Xiang, Mingming; Luo, Cheng

    2013-08-19

    In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles) on the inner surfaces of polystyrene (PS) microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE). Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  15. Fabrication of Super-Hydrophobic Microchannels via Strain-Recovery Deformations of Polystyrene and Oxygen Reactive Ion Etch

    Directory of Open Access Journals (Sweden)

    Anirban Chakraborty

    2013-08-01

    Full Text Available In this article, we report a simple approach to generate micropillars (whose top portions are covered by sub-micron wrinkles on the inner surfaces of polystyrene (PS microchannels, as well as on the top surface of the PS substrate, based on strain-recovery deformations of the PS and oxygen reactive ion etch (ORIE. Using this approach, two types of micropillar-covered microchannels are fabricated. Their widths range from 118 μm to 132 μm, depths vary from 40 μm to 44 μm, and the inclined angles of their sidewalls are from 53° to 64°. The micropillars enable these microchannels to have super-hydrophobic properties. The contact angles observed on the channel-structured surfaces are above 162°, and the tilt angles to make water drops roll off from these channel-structured substrates can be as small as 1°.

  16. Micro-channel plate detector for ultra-fast relativistic electron diffraction

    International Nuclear Information System (INIS)

    Musumeci, P.; Moody, J.T.; Scoby, C.M.; Gutierrez, M.S.; Bender, H.A.; Hilko, B.; Kruschwitz, C.A.; Wilcox, N.S.

    2011-01-01

    Using relativistic ultra-short electron beams to obtain single-shot diffraction patterns holds the promise to yield real-time resolution of atomic motion in an easily accessible environment, such as a university laboratory, at a fraction of the cost of fourth-generation X-ray sources. One of the main issues in bringing this technique to full maturity is the development of efficient detector systems to record the diffraction pattern using a few MeV electron beams. Low noise, high spatial resolution, and single-electron detection capability are all characteristics of an ideal detector. In this paper, we compare the performances of a traditional fluorescent phosphor screen with a detection system based on the micro-channel plate (MCP). Since MCPs are typically used with lower energy electron beams, these tests constitute one of the few experimental data points available on the use of these devices with MeV energy beams.

  17. Micro-channel plate detector for ultra-fast relativistic electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Musumeci, P., E-mail: musumeci@physics.ucla.edu [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA, 90095-1547 (United States); Moody, J.T.; Scoby, C.M.; Gutierrez, M.S. [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA, 90095-1547 (United States); Bender, H.A.; Hilko, B.; Kruschwitz, C.A.; Wilcox, N.S. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, NM (United States)

    2011-05-01

    Using relativistic ultra-short electron beams to obtain single-shot diffraction patterns holds the promise to yield real-time resolution of atomic motion in an easily accessible environment, such as a university laboratory, at a fraction of the cost of fourth-generation X-ray sources. One of the main issues in bringing this technique to full maturity is the development of efficient detector systems to record the diffraction pattern using a few MeV electron beams. Low noise, high spatial resolution, and single-electron detection capability are all characteristics of an ideal detector. In this paper, we compare the performances of a traditional fluorescent phosphor screen with a detection system based on the micro-channel plate (MCP). Since MCPs are typically used with lower energy electron beams, these tests constitute one of the few experimental data points available on the use of these devices with MeV energy beams.

  18. Numerical simulation of the droplet formation in a cross-junction microchannel using the Lattice Boltzmann Method

    International Nuclear Information System (INIS)

    Li, Zilu; Kang, Jinfen; Park, Jae Hyun; Suh, Yong Kweon

    2007-01-01

    This study describes the numerical simulation of two-dimensional droplet formation and the following motion by using the Lattice Boltzmann Method (LBM) with the phase field equation. The free energy model is used to treat the interfacial force and the deformation of a binary fluid system, drawn into a cross-junction microchannel. While one fluid is introduced through the central inlet channel, the other fluid is drawn into the main channel through the two vertical inlet channels. Due to the effect of surface tension on the interface between the two fluids, the droplets of the first fluid are formed near the cross-junction. The aim in this investigation is to examine the applicability of LBM to the numerical analysis of the droplet formation and its motion in the microchannel. It was found from comparison with the experimentally visualized patterns that LBM with the free energy model can reproduce the droplet formation successfully. However because of the stability problem which is intrinsic for high surface-tension cases, it requires a very long computational time. This issue is to be resolved in the future.

  19. Numerical simulation of the droplet formation in a cross-junction microchannel using the Lattice Boltzmann Method

    International Nuclear Information System (INIS)

    Li, Zi Lu; Kang, Jin Fen; Park, Jae Hyun; Suh, Yong Kweon

    2007-01-01

    This study describes the numerical simulation of two-dimensional droplet formation and the following motion by using the Lattice Boltzmann Method (LBM) with the phase field equation. The free energy model is used to treat the interfacial force and the deformation of a binary fluid system, drawn into a cross-junction microchannel. While one fluid is introduced through the central inlet channel, the other fluid is drawn into the main channel through the two vertical inlet channels. Due to the effect of surface tension on the interface between the two fluids, the droplets of the first fluid are formed near the cross-junction. The aim in this investigation is to examine the applicability of LBM to the numerical analysis of the droplet formation and its motion in the microchannel. It was found from comparison with the experimentally visualized patterns that LBM with the free energy model can reproduce the droplet formation successfully. However because of the stability problem which is intrinsic for high surface-tension cases, it requires a very long computational time. This issue is to be resolved in the future

  20. Neural growth into a microchannel network: towards a regenerative neural interface

    NARCIS (Netherlands)

    Wieringa, P.A.; Wiertz, Remy; le Feber, Jakob; Rutten, Wim

    2009-01-01

    We propose and validated a design for a highly selective 'endcap' regenerative neural interface towards a neuroprosthesis. In vitro studies using rat cortical neurons determine if a branching microchannel structure can counter fasciculated growth and cause neurites to separte from one another,

  1. Electrophoresis in strong electric fields.

    Science.gov (United States)

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  2. Numerical study on drag reduction and heat transfer enhancement in microchannels with superhydrophobic surfaces for electronic cooling

    International Nuclear Information System (INIS)

    Cheng, Yongpan; Xu, Jinliang; Sui, Yi

    2015-01-01

    Microchannels with superhydrophobic surfaces are a promising candidate for electric cooling with mild frictional penalty. Frictional and thermal performance of laminar liquid-water flow in such microchannels is numerically investigated for various shear-free fractions and Reynolds numbers. The structures on superhydrophobic surfaces include square posts and holes, transverse and longitudinal grooves. Combined frictional and thermal performance of microchannels is evaluated by a goodness factor, and is compared with that of smooth plain channels. It is found that with increasing shear-free fractions, both friction factor and average Nusselt number deteriorate for four surface patterns; however, goodness factor is improved significantly over smooth plain channels. In general, superhydrophobic surfaces containing longitudinal and transverse grooves exhibit the lowest and highest frictional and thermal performance, respectively; however, combined performance of these two are on opposite. Among four surface patterns, longitudinal grooves have the highest goodness factors, except at high shear-free fractions or high Reynolds numbers where overall performance is surpassed by square posts. At very low or high shear-free fractions, frictional and thermal performance of two-dimensional square posts and holes approaches that of one-dimensional longitudinal or transverse grooves. Our study suggests microchannels with superhydrophobic surfaces as promising candidates for efficient cooling devices.

  3. A CCD-based system for the detection of DNA in electrophoresis gels by UV absorption

    International Nuclear Information System (INIS)

    Mahon, A.R.; MacDonald, J.H.; Mainwood, A.; Ott, R.J.

    1999-01-01

    A method and apparatus for the detection and quantification of large fragments of unlabelled nucleic acids in agarose gels is presented. The technique is based on ultraviolet (UV) absorption by nucleotides. A deuterium source illuminates individual sample lanes of an electrophoresis gel via an array of optical fibres. As DNA bands pass through the illuminated region of the gel the amount of UV light transmitted is reduced because of absorption by the DNA. During electrophoresis the regions of DNA are detected on-line using a UV-sensitive charge coupled device (CCD). As the absorption coefficient is proportional to the mass of DNA the technique is inherently quantitative. The mass of DNA in a region of the gel is approximately proportional to the integrated signal in the corresponding section of the CCD image. This system currently has a detection limit of less than 1.25 ng compared with 2-10 ng for the most popular conventional technique, ethidium bromide (EtBr) staining. In addition the DNA sample remains in its native state. The removal of the carcinogenic dye from the detection procedure greatly reduces associated biological hazards. (author)

  4. Evaluation of a X-ray imaging method in micro-fluidics: the case of T-shaped micro-channels filling up

    International Nuclear Information System (INIS)

    Vabre, A.; Legoupil, S.; Manach, E.; Gal, O.; Colin, St.; Geoffroy, S.; Gue, A.M.

    2006-01-01

    X-rays methods assessment in micro-fluidics: case of 'T' shaped microchannels filling. Fluid flows within 'T' or 'Y' shaped microchannels are deeply studied in order to develop adapted modeling approaches and experimental techniques. Our technological choice lies on the attenuation measurement of X-ray in matter. The main advantage of this non-intrusive technique is to be implemented on media opaque to visible light. Moreover, X-rays methods may achieve better spatial resolutions as compared to optical methods because of their much lower wavelength. In order to validate this X-ray method, measurements obtained by this technique are compared with direct measurements carried out on similar microchannels. Finally, experimental results are compared with a theoretical model. (author)

  5. Surface cell immobilization within perfluoroalkoxy microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Stojkovič, Gorazd; Krivec, Matic [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Vesel, Alenka [Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Marinšek, Marjan [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia); Žnidaršič-Plazl, Polona, E-mail: polona.znidarsic@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana (Slovenia)

    2014-11-30

    Graphical abstract: - Highlights: • A very efficient approach for immobilization of cells into microreactors is presented. • It is applicable to various materials, including PFA and cyclic olefin (co)polymers. • It was used to immobilize different prokaryotic and eukaryotic microbes. • Cells were immobilized on the surface in high density and showed good stability. • Mechanisms of APTES interactions with target materials are proposed. - Abstract: Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor{sup ®} and Topas{sup ®}.

  6. Microchannel-connected SU-8 honeycombs by single-step projection photolithography for positioning cells on silicon oxide nanopillar arrays

    International Nuclear Information System (INIS)

    Larramendy, Florian; Paul, Oliver; Blatche, Marie Charline; Mazenq, Laurent; Laborde, Adrian; Temple-Boyer, Pierre

    2015-01-01

    We report on the fabrication, functionalization and testing of SU-8 microstructures for cell culture and positioning over large areas. The microstructure consists of a honeycomb arrangement of cell containers interconnected by microchannels and centered on nanopillar arrays designed for promoting cell positioning. The containers have been dimensioned to trap single cells and, with a height of 50 µm, prevent cells from escaping. The structures are fabricated using a single ultraviolet photolithography exposure with focus depth in the lower part of the SU-8 resist. With optimized process parameters, microchannels of various aspect ratios are thus produced. The cell containers and microchannels serve for the organization of axonal growth between neurons. The roughly 2 µm-high and 500 nm-wide nanopillars are made of silicon oxide structured by deep reactive ion etching. In future work, beyond their cell positioning purpose, the nanopillars could be functionalized as sensors. The proof of concept of the novel microstructure for organized cell culture is given by the successful growth of interconnected PC12 cells. Promoted by the honeycomb geometry, a dense network of interconnections between the cells has formed and the intended intimate contact of cells with the nanopillar arrays was observed by scanning electron microscopy. This proves the potential of these new devices as tools for the controlled cell growth in an interconnected container system with well-defined 3D geometry. (paper)

  7. A novel functionalisation process for glucose oxidase immobilisation in poly(methyl methacrylate) microchannels in a flow system for amperometric determinations.

    Science.gov (United States)

    Cerqueira, Marcos Rodrigues Facchini; Grasseschi, Daniel; Matos, Renato Camargo; Angnes, Lucio

    2014-08-01

    Different materials like glass, silicon and poly(methyl methacrylate) (PMMA) are being used to immobilise enzymes in microchannels. PMMA shows advantages such as its low price, biocompatibility and attractive mechanical and chemical properties. Despite this, the introduction of reactive functional groups on PMMA is still problematic, either because of the complex chemistry or extended reaction time involved. In this paper, a new methodology was developed to immobilise glucose oxidase (GOx) in PMMA microchannels, with the benefit of a rapid immobilisation process and a very simple route. The new procedure involves only two steps, based on the reaction of 5.0% (w/w) polyethyleneimine (PEI) with PMMA in a dimethyl sulphoxide medium, followed by the immobilisation of glucose oxidase using a solution containing 100U enzymes and 1.0% (v/v) glutaraldehyde. The reactors prepared in this way were evaluated by a flowing system with amperometric detection (+0.60V) based on the oxidation of the H2O2 produced by the reactor. The microreactor proposed here was able to work with high bioconversion and a frequency of 60 samples h(-1), with detection and quantification limits of 0.50 and 1.66µmol L(-1), respectively. Michaelis-Menten parameters (Vmax and KM) were calculated as 449±47.7nmol min(-1) and 7.79±0.98mmol. Statistical evaluations were done to validate the proposed methodology. The content of glucose in natural and commercial coconut water samples was evaluated using the developed method. Comparison with spectrophotometric measurements showed that both methodologies have a very good correlation (tcalculated, 0.05, 4=1.35

  8. Analytical biotechnology: Capillary electrophoresis and chromatography

    International Nuclear Information System (INIS)

    Horvath, C.; Nikelly, J.G.

    1990-01-01

    The papers describe the separation, characterization, and equipment required for the electrophoresis or chromatography of cyclic nucleotides, pharmaceuticals, therapeutic proteins, recombinant DNA products, pheromones, peptides, and other biological materials. One paper, On-column radioisotope detection for capillary electrophoresis, has been indexed separately for inclusion on the data base

  9. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels

    DEFF Research Database (Denmark)

    Muller, Peter Barkholt; Bruus, Henrik

    2015-01-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic...

  10. Optical fibre cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser

    Science.gov (United States)

    Zhou, Kaiming; Webb, David; Mou, Chengbo; Farries, Mark; Hayes, Neil; Bennion, Ian

    2009-10-01

    μA microchannel was inscribed in the fibre of a ring cavity which was constructed from two 0.1%:99.9% couplers and a 10m fibre loop. Cavity ring down spectroscopy (CRDS) was used to measure the refractive index (RI) of gels infused into the microchannel with high resolution. The ring down time discloses a nonlinear increase with respect to the RI of the gel and sensitivity up to 300μs/RI unit (RIU) and resolution of 5×10-4 were obtained.

  11. Flow Investigation in a Microchannel with a Flow Disturbing Rib

    Czech Academy of Sciences Publication Activity Database

    Stogiannis, I.A.; Passos, A.D.; Mouza, A.A.; Paras, S.V.; Pěnkavová, Věra; Tihon, Jaroslav

    2014-01-01

    Roč. 119, NOV 8 (2014), s. 65-76 ISSN 0009-2509 R&D Projects: GA ČR(CZ) GAP101/12/0585; GA MŠk 7AMB12GR018 Institutional support: RVO:67985858 Keywords : microchannel * wall shear stress * micro-PIV Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.337, year: 2014

  12. Numerical study on the heat transfer performance of non-Newtonian fluid flow in a manifold microchannel heat sink

    International Nuclear Information System (INIS)

    Li, Si-Ning; Zhang, Hong-Na; Li, Xiao-Bin; Li, Qian; Li, Feng-Chen; Qian, Shizhi; Joo, Sang Woo

    2017-01-01

    Highlights: • Heat transfer performance of non-Newtonian fluid flow in a MHS is studied. • Pseudo-plastic fluid flow can clearly promote the heat transfer efficiency in MMC. • Heat transfer enhancement is attributed to the emergence of secondary flow. • The heat transfer uniformity can also be improved by pseudo-plastic fluid flow. - Abstract: As the miniaturization and integration become the leading trend of the micro-electro-mechanical systems, it is of great significance to improve the microscaled heat transfer performance. This paper presents a three-dimensional (3D) numerical simulation on the flow characteristics and heat transfer performance of non-Newtonian fluid flow in a manifold microchannel (MMC) heat sink and traditional microchannel (TMC) heat sink. The non-Newtonian fluid was described by the power-law model. The analyses concentrated on the non-Newtonian fluid effect on the heat transfer performance, including the heat transfer efficiency and uniformity of temperature distribution, as well as the influence of inlet/outlet configurations on fluid flow and heat transfer. Comparing with Newtonian fluid flow, pseudo-plastic fluid could reduce the drag resistance in both MMC and TMC, while the dilatant fluid brought in quite larger drag resistance. For the heat transfer performance, the introduction of pseudo-plastic fluid flow greatly improved the heat transfer efficiency owing to the generation of secondary flow due to the shear-thinning property. Besides, the temperature distribution in MMC was more uniform by using pseudo-plastic fluid. Moreover, the inlet/outlet configuration was also important for the design and arrangement of microchannel heat sinks, since the present work showed that the maximum temperature was prone to locating in the corners near the inlet and outlet. This work provides guidance for optimal design of small-scale heat transfer devices in many cooling applications, such as biomedical chips, electronic systems, and

  13. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.

    Science.gov (United States)

    Anderson, James; Wright, Drew; Meksem, Khalid

    2013-01-01

    In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

  14. Evaluation of denaturing gradient gel electrophoresis (DGGE) used ...

    African Journals Online (AJOL)

    Denaturing gradient gel electrophoresis (DGGE) is a powerful method used to study structure of bacterial communities, without cultivation, based on the diversity of the genes coding for ribosomal RNA. However, the results are strongly dependent on the respective target region of the used primer systems. Therefore, three ...

  15. Determination of the Navier slip coefficient of microchannels exploiting the streaming potential.

    Science.gov (United States)

    Park, Hung Mok

    2012-03-01

    For most microchannels made of hydrophobic materials such as polymers, velocity slip occurs at the wall, affecting volumetric flow rate of electroosmotic flow Q(eof) and streaming potential (∂ϕ(str)/∂z). Since most techniques exploit Q(eof) or (∂ϕ(str)/∂z) to determine the zeta potential, ζ, it is very difficult to measure ζ of hydrophobic walls, if the slip coefficient b is not found a priori. Until now, Q(eof) and (∂ϕ(str)/∂z) are known to depend on ζ and b in a same functional form, which makes it impossible to estimate ζ or b separately using measurements of Q(eof) and (∂ϕ(str)/∂z). However, exploiting the analytic formula for Q(eof) and (∂ϕ(str)/∂z) derived in the present work, it is found that the effect of ζ and that of b on Q(eof) and (∂ϕ(str)/∂z) can be separated from each other by varying the bulk ionic concentration. Thus, the slip coefficient as well as the zeta potential of hydrophobic microchannels can be found with reasonable accuracy by means of a nonlinear curve fitting method using measured data of Q(eof) and (∂ϕ(str)/∂z) at various bulk ionic concentrations. The present method allows an accurate estimation of slip coefficient of hydrophobic microchannels, which is quite simple and cheap compared with methods employing microparticle velocimetry. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Tunable hydrodynamic characteristics in microchannels with biomimetic superhydrophobic (lotus leaf replica) walls.

    Science.gov (United States)

    Dey, Ranabir; Raj M, Kiran; Bhandaru, Nandini; Mukherjee, Rabibrata; Chakraborty, Suman

    2014-05-21

    The present work comprehensively addresses the hydrodynamic characteristics through microchannels with lotus leaf replica (exhibiting low adhesion and superhydrophobic properties) walls. The lotus leaf replica is fabricated following an efficient, two-step, soft-molding process and is then integrated with rectangular microchannels. The inherent biomimetic, superhydrophobic surface-liquid interfacial hydrodynamics, and the consequential bulk flow characteristics, are critically analyzed by the micro-particle image velocimetry technique. It is observed that the lotus leaf replica mediated microscale hydrodynamics comprise of two distinct flow regimes even within the low Reynolds number paradigm, unlike the commonly perceived solely apparent slip-stick dominated flows over superhydrophobic surfaces. While the first flow regime is characterized by an apparent slip-stick flow culminating in an enhanced bulk throughput rate, the second flow regime exhibits a complete breakdown of the aforementioned laminar and uni-axial flow model, leading to a predominantly no-slip flow. Interestingly, the critical flow condition dictating the transition between the two hydrodynamic regimes is intrinsically dependent on the micro-confinement effect. In this regard, an energetically consistent theoretical model is also proposed to predict the alterations in the critical flow condition with varying microchannel configurations, by addressing the underlying biomimetic surface-liquid interfacial conditions. Hence, the present research endeavour provides a new design-guiding paradigm for developing multi-functional microfluidic devices involving biomimetic, superhydrophobic surfaces, by judicious exploitation of the tunable hydrodynamic characteristics in the two regimes.

  17. Ferrofluid-in-oil two-phase flow patterns in a flow-focusing microchannel

    Science.gov (United States)

    Sheu, T. S.; Chen, Y. T.; Lih, F. L.; Miao, J. M.

    This study investigates the two-phase flow formation process of water-based Fe3O4 ferrofluid (dispersed phase) in a silicon oil (continuous phase) flow in the microfluidic flow-focusing microchannel under various operational conditions. With transparent PDMS chip and optical microscope, four main two-phase flow patterns as droplet flow, slug flow, ring flow and churn flow are observed. The droplet shape, size, and formation mechanism were also investigated under different Ca numbers and intended to find out the empirical relations. The paper marks an original flow pattern map of the ferrofluid-in-oil flows in the microfluidic flow-focusing microchannels. The flow pattern transiting from droplet flow to slug flow appears for an operational conditions of QR < 1 and Lf / W < 1. The power law index that related Lf / W to QR was 0.36 in present device.

  18. 3D tomography of cells in micro-channels

    Science.gov (United States)

    Quint, S.; Christ, A. F.; Guckenberger, A.; Himbert, S.; Kaestner, L.; Gekle, S.; Wagner, C.

    2017-09-01

    We combine confocal imaging, microfluidics, and image analysis to record 3D-images of cells in flow. This enables us to recover the full 3D representation of several hundred living cells per minute. Whereas 3D confocal imaging has thus far been limited to steady specimens, we overcome this restriction and present a method to access the 3D shape of moving objects. The key of our principle is a tilted arrangement of the micro-channel with respect to the focal plane of the microscope. This forces cells to traverse the focal plane in an inclined manner. As a consequence, individual layers of passing cells are recorded, which can then be assembled to obtain the volumetric representation. The full 3D information allows for a detailed comparison with theoretical and numerical predictions unfeasible with, e.g., 2D imaging. Our technique is exemplified by studying flowing red blood cells in a micro-channel reflecting the conditions prevailing in the microvasculature. We observe two very different types of shapes: "croissants" and "slippers." Additionally, we perform 3D numerical simulations of our experiment to confirm the observations. Since 3D confocal imaging of cells in flow has not yet been realized, we see high potential in the field of flow cytometry where cell classification thus far mostly relies on 1D scattering and fluorescence signals.

  19. Protein electrophoresis - serum

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003540.htm Protein electrophoresis - serum To use the sharing features on ... JavaScript. This lab test measures the types of protein in the fluid (serum) part of a blood ...

  20. Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

    2008-01-01

    Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ìm to 110 ìm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

  1. Variations of plasma protein electrophoresis in healthy captive Green Iguanas (Iguana iguana).

    Science.gov (United States)

    Musilová, Anna; Knotková, Zora; Pinterová, Kateřina; Knotek, Zdeněk

    2015-06-01

    Serum or plasma protein electrophoresis is used as a routine test for health assessment in veterinary medicine, but there are only a limited number of studies regarding clinical use of electrophoresis in reptile species. The goals of this study were to establish reference intervals for plasma protein electrophoresis in the Green Iguana (Iguana iguana), compare values between males and females, and to identify season-related changes. Plasma samples were obtained from 21 healthy captive male and female Green Iguanas. Agarose gel electrophoresis was performed using an automated Hydrasys system. Four main protein fractions were observed: albumin, α globulins, β globulins, and γ globulins. Bisalbuminemia was observed in 4 of 21 healthy iguanas. Minimum and maximum values were reported for healthy Green Iguanas in March, June, September, and December. Seasonal changes in albumin were determined between March and December, and in γ globulins between June and September. Differences between males and females were seen in albumin concentration in September. Reference intervals of the plasma protein fractions according to electrophoresis in the Green Iguana can be affected by seasonal changes and sex of animals. It should be taken into account when clinical evaluation is performed. © 2015 American Society for Veterinary Clinical Pathology.

  2. High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels

    Science.gov (United States)

    Rao, Xi; Guyon, Cédric; Ognier, Stephanie; Da Silva, Bradley; Chu, Chenglin; Tatoulian, Michaël; Hassan, Ali Abou

    2018-05-01

    Immobilization of colloidal particles (e.g. gold nanoparticles (AuNps)) on the inner surface of micro-/nano- channels has received a great interest for catalysis. A novel catalytic ozonation setup using a gold-immobilized microchannel reactor was developed in this work. To anchor AuNps, (3-aminopropyl) triethoxysilane (APTES) with functional amine groups was deposited using plasma enhanced chemical vapor deposition (PECVD) process. The results clearly evidenced that PECVD processing exhibited relatively high efficiency for grafting amine groups and further immobilizing AuNPs. The catalytic activity of gold immobilized microchannel was evaluated by pyruvic acid ozonation. The decomposition rate calculated from High Performance Liquid Chromatography (HPLC) indicated a much better catalytic performance of gold in microchannel than that in batch. The results confirmed immobilizing gold nanoparticles on plasma deposited APTES for preparing catalytic microreactors is promising for the wastewater treatment in the future.

  3. Capillary electrophoresis microchip coupled with on-line chemiluminescence detection

    International Nuclear Information System (INIS)

    Su Rongguo; Lin Jinming; Qu Feng; Chen Zhifeng; Gao Yunhua; Yamada, Masaaki

    2004-01-01

    In the present work, chemiluminescence detection was integrated with capillary electrophoresis microchip. The microchip was designed on the principle of flow-injection chemiluminescence system and capillary electrophoresis. It has three main channels, five reservoirs and a detection cell. As model samples, dopamine and catechol were separated and detected using a permanganate chemiluminescent system on the prepared microchip. The samples were electrokinetically injected into the double-T cross section, separated in the separation channel, and then oxidized by chemiluminescent reagent delivered by a home-made micropump to produce light in the detection cell. The electroosmotic flow could be smoothly coupled with the micropump flow. The detection limits for dopamine and catechol were 20.0 and 10.0 μM, respectively. Successful separation and detection of dopamine and catechol demonstrated the distinct advantages of integration of chemiluminescent detection on a microchip for rapid and sensitive analysis

  4. Shock wave attenuation in a micro-channel

    Science.gov (United States)

    Giordano, J.; Perrier, P.; Meister, L.; Brouillette, M.

    2018-05-01

    This work presents optical measurements of shock wave attenuation in a glass micro-channel. This transparent facility, with a cross section ranging from 1 mm× 150 μm to 1 mm× 500 μm, allowed for the use of high-speed schlieren videography to visualize the propagation of a shock wave within the entire micro-channel and to quantify velocity attenuation of the wave due to wall effects. In this paper, we present the experimental technique and the relevant data treatment we have used to increase the sensitivity of shock wave detection. Then, we compared our experimental results for different channel widths, lengths, and shock wave velocities with the analytical model for shock attenuation proposed by Russell (J Fluid Mech 27(2):305-314, 1967), which assumes laminar flow, and by Mirels (Attenuation in a shock tube due to unsteady-boundary-layer action, NACA Report 1333, 1957) for turbulent flow. We found that these models are inadequate to predict the observed data, owing to the presence of fully developed flow which violates the basic assumption of these models. The data are also compared with the empirical shock attenuation models proposed by Zeitoun (Phys Fluids 27(1):011701, 2015) and Deshpande and Puranik (Shock Waves 26(4):465-475, 2016), where better agreement is observed. Finally, we presented experimental data for the flow field behind the shock wave from measurements of the Mach wave angle which shows globally decreasing flow Mach numbers due to viscous wall effects.

  5. Electrophoresis gel image processing and analysis using the KODAK 1D software.

    Science.gov (United States)

    Pizzonia, J

    2001-06-01

    The present article reports on the performance of the KODAK 1D Image Analysis Software for the acquisition of information from electrophoresis experiments and highlights the utility of several mathematical functions for subsequent image processing, analysis, and presentation. Digital images of Coomassie-stained polyacrylamide protein gels containing molecular weight standards and ethidium bromide stained agarose gels containing DNA mass standards are acquired using the KODAK Electrophoresis Documentation and Analysis System 290 (EDAS 290). The KODAK 1D software is used to optimize lane and band identification using features such as isomolecular weight lines. Mathematical functions for mass standard representation are presented, and two methods for estimation of unknown band mass are compared. Given the progressive transition of electrophoresis data acquisition and daily reporting in peer-reviewed journals to digital formats ranging from 8-bit systems such as EDAS 290 to more expensive 16-bit systems, the utility of algorithms such as Gaussian modeling, which can correct geometric aberrations such as clipping due to signal saturation common at lower bit depth levels, is discussed. Finally, image-processing tools that can facilitate image preparation for presentation are demonstrated.

  6. 21 CFR 862.2485 - Electrophoresis apparatus for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrophoresis apparatus for clinical use. 862.2485 Section 862.2485 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Instruments § 862.2485 Electrophoresis apparatus for clinical use. (a) Identification. An electrophoresis...

  7. Variability of microchip capillary electrophoresis with conductivity detection.

    Science.gov (United States)

    Tantra, Ratna; Robinson, Kenneth; Sikora, Aneta

    2014-02-01

    Microfluidic CE with conductivity detection platforms could have an impact on the future development of smaller, faster and portable devices. However, for the purpose of reliable identification and quantification, there is a need to understand the degree of irreproducibility associated with the analytical technique. In this study, a protocol was developed to remove baseline drift problems sometimes observed in such devices. The protocol, which consisted of pre-conditioning steps prior to analysis, was used to further assess measurement variability from 24 individual microchips fabricated from six separate batches of glass substrate. Results show acceptable RSD percentage for retention time measurements but large variability in their corresponding peak areas (with some microchips having variability of ∼50%). Sources of variability were not related to substrate batch but possibly to a number of factors such as applied voltage fluctuations or variations in microchannel quality, for example surface roughness that will subsequently affect microchannel dimensions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Resolving Overlimiting Current Mechanisms in Microchannel-Nanochannel Interface Devices

    Science.gov (United States)

    Yossifon, Gilad; Leibowitz, Neta; Liel, Uri; Schiffbauer, Jarrod; Park, Sinwook

    2015-11-01

    We present results demonstrating the space charge-mediated transition between classical, diffusion-limited current and surface-conduction dominant over-limiting currents in a shallow micro-nanochannel device. The extended space charge layer develops at the depleted micro-nanochannel entrance at high current and is correlated with a distinctive maximum in the dc resistance. Experimental results for a shallow surface-conduction dominated system are compared with theoretical models, allowing estimates of the effective surface charge at high voltage to be obtained. Further, we extend the study to microchannels of moderate to large depths where the role of various electro-convection mechanisms becomes dominant. In particular, electro-osmotic of the second kind and electro-osmotic instability (EOI) which competes each other at geometrically heterogeneous (e.g. undulated nanoslot interface, array of nanoslots) nanoslot devices. Also, these effects are also shown to be strongly modulated by the non-ideal permselectivity of the nanochannel.

  9. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    and are fairly expensive. One means of increasing the hydrogen yield to cost ratio of such systems, is to increase the operating current density. However, at high current densities, management of heat and mass transfer in the anode current collector and channel becomes crucial. This entails that further...... understanding of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the patterns of vertical upward gas-liquid flow in a 5×1×94 mm micro-channel are experimentally analysed. A sheet of titanium...... felt is used as a permeable wall for permeation of air through a column of water similar to the phenomenon encountered at the anode. The transparent setup is operated ex-situ and the gas-liquid flow regimes are identified using a camera....

  10. Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Karimipour, Arash; Taghipour, Abdolmajid [Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Malvandi, Amir, E-mail: amirmalvandi@aut.ac.ir [Department of Mechanical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of)

    2016-12-01

    This paper aims to investigate magnetic field and slip effects on developing laminar forced convection of nanofluids in the microchannels. A novel mixture of water and FMWNT carbon nanotubes is used as the working fluid. To do this, fluid flow and heat transfer through a microchannel is simulated by a computer code in FORTRAN language. The mixture of FMWNT carbon nanotubes suspended in water is considered as the nanofluid. Slip velocity is supposed as the hydrodynamic boundary condition while the microchannel's lower wall is insulated and the top wall is under the effect of a constant heat flux. Moreover, the flow field is subjected to a magnetic field with a constant strength. The results are presented as the velocity, temperature and Nusselt number profiles. It is observed that nanofluid composed of water and carbon nanotubes (FMWNT) can work well to increase the heat transfer rate along the microchannel walls. Furthermore, it is indicated that imposing the magnetic field is very effective at the thermally developing region. In contrast, the magnetic field effect at fully developed region is insignificant, especially at low values of Reynolds number. - Highlights: • Simulation of water/FMWNT carbon nanotubes flow in a microchannel. • The effects of magnetic field strength on nanofluid's slip velocity. • The effects of Ha, Re, ϕ and slip coefficient on averaged Nusselt number. • Magnetic field effect at developing flow region is significant.

  11. Fast microchannel plate detector for particles

    International Nuclear Information System (INIS)

    Wurz, P.; Gubler, L.

    1996-01-01

    In this article we report on the timing capabilities of a new microchannel plate detector we designed and built. The detector assembly has an impedance-matched transition line (50 Ω line resistance) from anode to cable connector which is considerably smaller than other, commercially available solutions and at the same time has about four times the active area. The detector was tested with an alpha particle source and excellent time response was achieved. Using 10 μm pore size channel plates, a rise time of 300 ps and a pulse width of 520 ps are obtained. The details of the signal analysis are also given in the article. copyright 1996 American Institute of Physics

  12. Investigating performance of microchannel evaporators for automobile air conditioning with different port structures

    Directory of Open Access Journals (Sweden)

    Guoliang Zhou

    2017-08-01

    Full Text Available Microchannel evaporator has been widely applied in automobile air conditioning, while it faces the problem of refrigerant maldistribution which deteriorates the thermal performance of evaporator. In this study, the performances of microchannel evaporators with different port structures are experimentally investigated for purpose of reducing evaporator pressure drop. Four evaporator samples with different port number and hydraulic diameter are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant R-134A at a real automobile air conditioning. The results on the variations of the evaporator pressure drop and evaporator surface temperature distribution are presented and analyzed. By studying the performance of an evaporator, seeking proper port structure is an approach to reduce refrigerant pressure drop as well as improve refrigerant distribution.

  13. Activity and lifetime of urease immobilized using layer-by-layer nano self-assembly on silicon microchannels.

    Science.gov (United States)

    Forrest, Scott R; Elmore, Bill B; Palmer, James D

    2005-01-01

    Urease has been immobilized and layered onto the walls of manufactured silicon microchannels. Enzyme immobilization was performed using layer-by-layer nano self-assembly. Alternating layers of oppositely charged polyelectrolytes, with enzyme layers "encased" between them, were deposited onto the walls of the silicon microchannels. The polycations used were polyethylenimine (PEI), polydiallyldimethylammonium (PDDA), and polyallylamine (PAH). The polyanions used were polystyrenesulfonate (PSS) and polyvinylsulfate (PVS). The activity of the immobilized enzyme was tested by pumping a 1 g/L urea solution through the microchannels at various flow rates. Effluent concentration was measured using an ultraviolet/visible spectrometer by monitoring the absorbance of a pH sensitive dye. The architecture of PEI/PSS/PEI/urease/PEI with single and multiple layers of enzyme demonstrated superior performance over the PDDA and PAH architectures. The precursor layer of PEI/PSS demonstrably improved the performance of the reactor. Conversion rates of 70% were achieved at a residence time of 26 s, on d 1 of operation, and >50% at 51 s, on d 15 with a six-layer PEI/urease architecture.

  14. Time resolution of Burle 85001 micro-channel plate photo-multipliers in comparison with Hamamatsu R2083

    Energy Technology Data Exchange (ETDEWEB)

    V. Baturin; V. Burkert; W. Kim; S. Majewsky; D. Nekrasov; K. Park; V. Popov; E. S. Smith; D. Son; S. S. Stepanyan; C. Zorn

    2005-06-01

    The CLAS detector will require improvements in its particle identification system to take advantage of the higher energies provided by the Jefferson Laboratory accelerator upgrade to 12 GeV. To this end, we have studied the timing characteristics of the micro-channel plate photo-multiplier 85001 from Burle, which can be operated in a high magnetic field environment. For reference and comparison, measurements were also made using the standard PMT R2083 from Hamamatsu using two timing methods. The cosmic ray method, which utilizes three identical scintillating counters 2cm x 3cm x 50cm with PMs at the ends, yields 59.1(0.7)ps. The location method of particles from radiative source with known coordinates has been used to compare timing resolutions of R2083 and Burle-85001. This ''coordinate method'' requires only one counter instrumented with two PMs and it yields 59.5(0.7)ps. For the micro-channel plate photomultiplier from Burle with an external amplification of 10 to the signals, the co ordinate method yields 130(4)ps. This method also makes it possible to estimate the number of primary photo-electrons.

  15. A PLIC-VOF-Based Simulation of Water-Organic Slug Flow Characteristics in a T-Shaped Microchannel

    Directory of Open Access Journals (Sweden)

    Xian Wang

    2013-01-01

    Full Text Available A water-organic slug flow in a T-shaped microchannel was numerically studied due to its importance in the microreactor system. Various factors affecting the flow mode were studied, for example, channel width, fluid viscosity, interfacial tension, and inlet velocity. The volume of fluid (VOF method was used to track the liquid-liquid interface, and the piecewise-liner interface construction (PLIC technique was adopted to get a sharp interface. The interfacial tension was simulated with continuum surface force (CSF, model and the wall adhesion boundary condition was taken into consideration. The results show that strong vortexes appear in both phases at the meeting sites of main and lateral channels where an organic slug is producing. Inlet velocity influences the slug length and flow mode greatly. The ratio between the slug lengths of two phases in the main channel is almost equal to the ratio between their inlet velocities. If the slug is produced, the interfacial tension and organic viscosity have less effect on the slug length for 200 μm microchannel. The slug producing rate is much higher in a narrow channel than that in a wide channel.

  16. Review on the development of truly portable and in-situ capillary electrophoresis systems

    International Nuclear Information System (INIS)

    Lewis, A P; Cranny, A; Harris, N R; Green, N G; Wharton, J A; Wood, R J K; Stokes, K R

    2013-01-01

    Capillary electrophoresis (CE) is a technique which uses an electric field to separate a mixed sample into its constituents. Portable CE systems enable this powerful analysis technique to be used in the field. Many of the challenges for portable systems are similar to those of autonomous in-situ analysis and therefore portable systems may be considered a stepping stone towards autonomous in-situ analysis. CE is widely used for biological and chemical analysis and example applications include: water quality analysis; drug development and quality control; proteomics and DNA analysis; counter-terrorism (explosive material identification) and corrosion monitoring. The technique is often limited to laboratory use, since it requires large electric fields, sensitive detection systems and fluidic control systems. All of these place restrictions in terms of: size, weight, cost, choice of operating solutions, choice of fabrication materials, electrical power and lifetime. In this review we bring together and critique the work by researchers addressing these issues. We emphasize the importance of a holistic approach for portable and in-situ CE systems and discuss all the aspects of the design. We identify gaps in the literature which require attention for the realization of both truly portable and in-situ CE systems. (topical review)

  17. Review on the development of truly portable and in-situ capillary electrophoresis systems

    Science.gov (United States)

    Lewis, A. P.; Cranny, A.; Harris, N. R.; Green, N. G.; Wharton, J. A.; Wood, R. J. K.; Stokes, K. R.

    2013-04-01

    Capillary electrophoresis (CE) is a technique which uses an electric field to separate a mixed sample into its constituents. Portable CE systems enable this powerful analysis technique to be used in the field. Many of the challenges for portable systems are similar to those of autonomous in-situ analysis and therefore portable systems may be considered a stepping stone towards autonomous in-situ analysis. CE is widely used for biological and chemical analysis and example applications include: water quality analysis; drug development and quality control; proteomics and DNA analysis; counter-terrorism (explosive material identification) and corrosion monitoring. The technique is often limited to laboratory use, since it requires large electric fields, sensitive detection systems and fluidic control systems. All of these place restrictions in terms of: size, weight, cost, choice of operating solutions, choice of fabrication materials, electrical power and lifetime. In this review we bring together and critique the work by researchers addressing these issues. We emphasize the importance of a holistic approach for portable and in-situ CE systems and discuss all the aspects of the design. We identify gaps in the literature which require attention for the realization of both truly portable and in-situ CE systems.

  18. New analytical portable instrument for microchip electrophoresis with electrochemical detection.

    Science.gov (United States)

    Fernández-la-Villa, Ana; Pozo-Ayuso, Diego F; Castaño-Alvarez, Mario

    2010-08-01

    A new portable instrument that includes a high voltage power supply, a bipotentiostat, and a chip holder has been especially developed for using microchips electrophoresis with electrochemical detection. The main unit of the instrument has dimensions of 150 x 165 x 70 mm (wxdxh) and consists of a four-outputs high voltage power supply with a maximum voltage of +/-3 KV and an acquisition system with two channels for dual amperometric (DC or pulsed amperometric detection) detection. Electrochemical detection has been selected as signal transduction method because it is relatively easily implemented, since nonoptical elements are required. The system uses a lithium-ion polymer battery and it is controlled from a desktop or laptop PC with a graphical user interface based on LabVIEW connected by serial RS232 or Bluetooth. The last part of the system consists of a reusable chip holder for housing the microchips, which contain all the electrical connections and reservoirs for making the work with microchips easy. The performance of the new instrument has been evaluated and compared with other commercially available apparatus using single- and dual-channel pyrex microchips for the separation of the neurotransmitters dopamine, epinephrine, and 3,4-dihydroxy-L-phenyl-alanine. The reduction of the size of the instrument has not affected the good performance of the separation and detection using microchips electrophoresis with electrochemical detection. Moreover, the new portable instrument paves the way for in situ analysis making the use of microchips electrophoresis easier.

  19. Modeling of low-capillary number segmented flows in microchannels using OpenFOAM

    NARCIS (Netherlands)

    Hoang, D.A.; Van Steijn, V.; Portela, L.M.; Kreutzer, M.T.; Kleijn, C.R.

    2012-01-01

    Modeling of low-Capillary number segmented flows in microchannels is important for the design of microfluidic devices. We present numerical validations of microfluidic flow simulations using the volume-of-fluid (VOF) method as implemented in OpenFOAM. Two benchmark cases were investigated to ensure

  20. Blood grouping based on PCR methods and agarose gel electrophoresis.

    Science.gov (United States)

    Sell, Ana Maria; Visentainer, Jeane Eliete Laguila

    2015-01-01

    The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.

  1. Hydrogen production through aqueous-phase reforming of ethylene glycol in a washcoated microchannel

    NARCIS (Netherlands)

    Neira d'Angelo, M.F.; Ordomskiy, V.; Paunovic, V.; Schaaf, van der J.; Schouten, J.C.; Nijhuis, T.A.

    2013-01-01

    Aqueous-phase reforming (APR) of biocarbohydrates is conducted in a catalytically stable washcoated microreactor where multiphase hydrogen removal enhances hydrogen efficiency. Single microchannel experiments are conducted following a simplified model based on the microreactor concept. A coating

  2. Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms

    International Nuclear Information System (INIS)

    Amanifard, N.; Nariman-Zadeh, N.; Borji, M.; Khalkhali, A.; Habibdoust, A.

    2008-01-01

    Three-dimensional heat transfer characteristics and pressure drop of water flow in a set of rectangular microchannels are numerically investigated using Fluent and compared with those of experimental results. Two metamodels based on the evolved group method of data handling (GMDH) type neural networks are then obtained for modelling of both pressure drop (ΔP) and Nusselt number (Nu) with respect to design variables such as geometrical parameters of microchannels, the amount of heat flux and the Reynolds number. Using such obtained polynomial neural networks, multi-objective genetic algorithms (GAs) (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism is then used for Pareto based optimization of microchannels considering two conflicting objectives such as (ΔP) and (Nu). It is shown that some interesting and important relationships as useful optimal design principles involved in the performance of microchannels can be discovered by Pareto based multi-objective optimization of the obtained polynomial metamodels representing their heat transfer and flow characteristics. Such important optimal principles would not have been obtained without the use of both GMDH type neural network modelling and the Pareto optimization approach

  3. Practical capillary electrophoresis

    CERN Document Server

    Weinberger, Robert

    2000-01-01

    In the 1980s, capillary electrophoresis (CE) joined high-performance liquid chromatography (HPLC) as the most powerful separation technique available to analytical chemists and biochemists. Published research using CE grew from 48 papers in the year of commercial introduction (1988) to 1200 in 1997. While only a dozen major pharmaceutical and biotech companies have reduced CE to routine practice, the applications market is showing real or potential growth in key areas, particularly in the DNA marketplace for genomic mapping and forensic identification. For drug development involving small molecules (including chiral separations), one CE instrument can replace 10 liquid chromatographs in terms of speed of analysis. CE also uses aqueous rather than organic solvents and is thus environmentally friendlier than HPLC. The second edition of Practical Capillary Electrophoresis has been extensively reorganized and rewritten to reflect modern usage in the field, with an emphasis on commercially available apparatus and ...

  4. Misleading presentation of haemoglobin electrophoresis data | Adu ...

    African Journals Online (AJOL)

    Haemoglobinopathies are common in sub-Saharan Africa. As such haemoglobin electrophoresis are required to inform clinical decision making. However, haemoglobin electrophoresis is an assay that detects protein at either alkaline or acidic pH. Such assays do not interrogate gene sequences but rather the product of a ...

  5. The Viability of Single Cancer Cells after Exposure to Hydrodynamic Shear Stresses in a Spiral Microchannel: A Canine Cutaneous Mast Cell Tumor Model

    Directory of Open Access Journals (Sweden)

    Dettachai Ketpun

    2017-12-01

    Full Text Available Our laboratory has the fundamental responsibility to study cancer stem cells (CSC in various models of human and animal neoplasms. However, the major impediments that spike our accomplishment are the lack of universal biomarkers and cellular heterogeneity. To cope with these restrictions, we have tried to apply the concept of single cell analysis, which has hitherto been recommended throughout the world as an imperative solution pack for resolving such dilemmas. Accordingly, our first step was to utilize a predesigned spiral microchannel fabricated by our laboratory to perform size-based single cell separation using mast cell tumor (MCT cells as a model. However, the impact of hydrodynamic shear stresses (HSS on mechanical cell injury and viability in a spiral microchannel has not been fully investigated so far. Intuitively, our computational fluid dynamics (CFD simulation has strongly revealed the formations of fluid shear stress (FSS and extensional fluid stress (EFS in the sorting system. The panel of biomedical assays has also disclosed cell degeneration and necrosis in the model. Therefore, we have herein reported the combinatorically detrimental effect of FSS and EFS on the viability of MCT cells after sorting in our spiral microchannel, with discussion on the possibly pathogenic mechanisms of HSS-induced cell injury in the study model.

  6. Comparison of lipoprotein electrophoresis and apolipoprotein e genotyping in investigating dysbetalipoproteinemia

    International Nuclear Information System (INIS)

    Ahmed, F.; Kadiki, A.E.

    2017-01-01

    Dysbetalipoproteinemia is often associated with apolipoprotein E2E2 homozygosity; however, lipoprotein electrophoresis may also be used to assist in the diagnosis. The aim of this study was to compare apolipoprotein E (apo E) genotyping and lipoprotein electrophoresis in investigating dysbetalipoproteinemia. Data were collected over a three-year period from a lipid clinic in a tertiary referral centre and reviewed for apo E genotyping and lipoprotein electrophoresis. Sixty-two patients had both apo E genotyping and lipoprotein electrophoresis. Of these, 16 patients showed broad beta band on electrophoresis. However, only 3 of them had apo E2E2 homozygosity on genotyping. Lipoprotein electrophoresis and apo E genotyping results showed poor concordance. This was primarily due to visual interpretation error of lipoprotein electrophoresis which may over diagnose dysbetalipoproteinemia. (author)

  7. Comparison of Lipoprotein Electrophoresis and Apolipoprotein E Genotyping in Investigating Dysbetalipoproteinemia.

    Science.gov (United States)

    Ahmed, Farhan; El-Kadiki, Alia; Gibbons, Stephen

    2017-06-01

    Dysbetalipoproteinemia is often associated with apolipoprotein E2E2 homozygosity; however, lipoprotein electrophoresis may also be used to assist in the diagnosis. The aim of this study was to compare apolipoprotein E (apo E) genotyping and lipoprotein electrophoresis in investigating dysbetalipoproteinemia. Data were collected over a three-year period from a lipid clinic in a tertiary referral centre and reviewed for apo E genotyping and lipoprotein electrophoresis. Sixty-two patients had both apo E genotyping and lipoprotein electrophoresis. Of these, 16 patients showed broad beta band on electrophoresis. However, only 3 of them had apo E2E2 homozygosity on genotyping. Lipoprotein electrophoresis and apo E genotyping results showed poor concordance. This was primarily due to visual interpretation error of lipoprotein electrophoresis which may over diagnose dysbetalipoproteinemia.

  8. Effects of microchannel confinement on acoustic vaporisation of ultrasound phase change contrast agents

    Science.gov (United States)

    Lin, Shengtao; Zhang, Ge; Hau Leow, Chee; Tang, Meng-Xing

    2017-09-01

    The sub-micron phase change contrast agent (PCCA) composed of a perfluorocarbon liquid core can be activated into gaseous state and form stable echogenic microbubbles for contrast-enhanced ultrasound imaging. It has shown great promise in imaging microvasculature, tumour microenvironment, and cancer cells. Although PCCAs have been extensively studied for different diagnostic and therapeutic applications, the effect of biologically geometrical confinement on the acoustic vaporisation of PCCAs is still not clear. We have investigated the difference in PCCA-produced ultrasound contrast enhancement after acoustic activation with and without a microvessel confinement on a microchannel phantom. The experimental results indicated more than one-order of magnitude less acoustic vaporisation in a microchannel than that in a free environment taking into account the attenuation effect of the vessel on the microbubble scattering. This may provide an improved understanding in the applications of PCCAs in vivo.

  9. Numerical simulation of electroosmotic flow in rough microchannels using the lattice Poisson-Nernst-Planck methods

    Science.gov (United States)

    Kamali, Reza; Soloklou, Mohsen Nasiri; Hadidi, Hooman

    2018-05-01

    In this study, coupled Lattice Boltzmann method is applied to solve the dynamic model for an electroosmotic flow and investigate the effects of roughness in a 2-D flat microchannel. In the present model, the Poisson equation is solved for the electrical potential, the Nernst- Planck equation is solved for the ion concentration. In the analysis of electroosmotic flows, when the electric double layers fully overlap or the convective effects are not negligible, the Nernst-Planck equation must be used to find the ionic distribution throughout the microchannel. The effects of surface roughness height, roughness interval spacing and roughness surface potential on flow conditions are investigated for two different configurations of the roughness, when the EDL layers fully overlap through the microchannel. The results show that in both arrangements of roughness in homogeneously charged rough channels, the flow rate decreases by increasing the roughness height. A discrepancy in the mass flow rate is observed when the roughness height is about 0.15 of the channel width, which its average is higher for the asymmetric configuration and this difference grows by increasing the roughness height. In the symmetric roughness arrangement, the mass flow rate increases until the roughness interval space is almost 1.5 times the roughness width and it decreases for higher values of the roughness interval space. For the heterogeneously charged rough channel, when the roughness surface potential ψr is less than channel surface potential ψs , the net charge density increases by getting far from the roughness surface, while in the opposite situation, when ψs is more than ψr , the net charge density decreases from roughness surface to the microchannel middle center. Increasing the roughness surface potential induces stronger electric driving force on the fluid which results in larger velocities in the flow.

  10. Success and failure with phthalate buffers in capillary zone electrophoresis

    NARCIS (Netherlands)

    Bocek, P.; Gebauer, P.; Beckers, J.L.

    2001-01-01

    Phthalate buffers are currently used in capillary electrophoresis as robust electrolyte systems for indirect detection. This contribution demonstrates that these buffers show regularly not only successful regions of mobilities of analytes (sample window) but also regions of failure where the

  11. Flow near the meniscus of a pressure-driven water slug in microchannels

    International Nuclear Information System (INIS)

    Kim, Sung Wook; Jin, Song Wan; Yoo, Jung Yul

    2006-01-01

    Micro-PIV system with a high speed CCD camera is used to measure the flow field near the advancing meniscus of a water slug in microchannels. Image shifting technique combined with meniscus detecting technique is proposed to measure the relative velocity of the liquid near the meniscus in a moving reference frame. The proposed method is applied to an advancing front of a slug in microchannels with rectangular cross section. In the case of hydrophilic channel, strong flow from the center to the side wall along the meniscus occurs, while in the case of the hydrophobic channel, the fluid flows in the opposite direction. Further, the velocity near the side wall is higher than the center region velocity, exhibiting the characteristics of a strong shear-driven flow. This phenomenon is explained to be due to the existence of small gaps between the slug and the channel wall at each capillary corner so that the gas flows through the gaps inducing high shear on the slug surface. Simulation of the shape of a static droplet inside a cubic cell obtained by using the Surface Evolver program is supportive of the existence of the gap at the rectangular capillary corners. The flow fields in the circular capillary, in which no such gap exists, are also measured. The results show that a similar flow pattern to that of the hydrophilic rectangular capillary (i.e., center-to-wall flow) is always exhibited regardless of the wettability of the channel wall, which is also indicative of the validity of the above-mentioned assertion

  12. The selective flow of volatile organic compounds in conductive polymer-coated microchannels

    Science.gov (United States)

    Hossein-Babaei, Faramarz; Hooshyar Zare, Ali

    2017-02-01

    Many gaseous markers of critical biological, physicochemical, or industrial occurrences are masked by the cross-sensitivity of the sensors to the other active components present at higher concentrations. Here, we report the strongly selective diffusion and drift of contaminant molecules in air-filled conductive polymer-coated microfluidic channels for the first time. Monitoring the passage of different target molecules through microchannels coated with Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) revealed that contaminants such as hexane, benzene, and CO pass through the channel unaffected by the coating while methanol, ethanol, and partly acetone are blocked. The observations are explained with reference to the selective interactions between the conductive polymer surface and target gas molecules amplified by the large wall/volume ratio in microchannels. The accumulated quantitative data point at the hydrogen bonding as the mechanism of wall adsorption; dipole-dipole interactions are relatively insignificant. The presented model facilitates a better understanding of how the conductive polymer-based chemical sensors operate.

  13. Calculating and optimizing inter-electrode capacitances of charge division microchannel plate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yan [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Bo, E-mail: chenb@ciomp.ac.cn [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Zhang, Hong-Ji; Wang, Hai-Feng; He, Ling-Ping [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Jin, Fang-Yuan [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-04-01

    Based on the principle of charge division microchannel plate detectors, the inter-electrode capacitances of charge division anodes which are related to electronic noise of the charge sensitive amplifier and crosstalk effect of the anode are presented. Under all the requirements of charge division microchannel plate detectors such as the imaging linearity and spatial resolution, decreasing the inter-electrode capacitances is one way to improve the imaging performance. In this paper, we illustrate the simulation process of calculating the inter-electrode capacitances. Moreover, a Wedge and Strip (WSZ) anode is fabricated with the picosecond laser micromachining process. Comparing the simulated capacitances and measured capacitances, the three-dimensional finite element method is proved to be valid. Furthermore, by adjusting the design parameters of the anode, the effects of the substrate permittivity, insulation width and the size of pitch on the inter-electrode capacitances have been analysed. The structure of the charge division anode has been optimized based on the simulation data.

  14. In situ photo-immobilised pH gradient isoelectric focusing and zone electrophoresis integrated two-dimensional microfluidic chip electrophoresis for protein separation

    International Nuclear Information System (INIS)

    Lin, Fengmin; Yu, Shiyong; Gu, Le; Zhu, Xuetao; Wang, Jianshe; Zhu, Han; Lu, Yi; Wang, Yihua; Deng, Yulin; Geng, Lina

    2015-01-01

    A method is introduced for open-column photo-induced site-selective immobilization of pH gradients in a layer of PEG-methacrylate in a multi-dimensional microfluidic chip for use in electrophoresis. It has several attractive features: (a) mixtures of fluorescently labelled proteins carbonic anhydrase, catalase and myoglobin in their native state can be separated by pH-gradient isoelectric focusing (IEF) and zone electrophoresis (CZE) using integrated 2D chip electrophoresis; (b) compared to strip packing or monolithic photo-immobilization, it overcomes the shortcomings of free carrier ampholyte-based 2D chip electrophoresis in an easy way; (c) larger amount of sample can be loaded into the open column-mode electrophoresis (d) immobilized pH gradients can be re-used and the chip can be recycled; (e) a multilayer 3D pH gradient is established by a layer-by-layer assembly technique to further increase the separation capacity. In our perception, this strategy has a large potential in microfluidic chip-based separation schemes because of its simplicity, separation power, re-usability, and separation capacity. (author)

  15. Distribution of Evaporating CO2 in Parallel Microchannels

    DEFF Research Database (Denmark)

    Brix, Wiebke; Elmegaard, Brian

    2008-01-01

    The impact on the heat exchanger performance due to maldistribution of evaporating CO2 in parallel channels is investigated numerically. A 1D steady state simulation model of a microchannel evaporator is built using correlations from the literature to calculate frictional pressure drop and heat...... transfer coefficients. For two channels in parallel two different cases of maldistribution are studied. Firstly, the impact of a non-uniform air flow is considered, and secondly the impact of maldistribution of the two phases in the inlet manifold is investigated. The results for both cases are compared...

  16. High lane density slab-gel electrophoresis using micromachined instrumentation.

    Science.gov (United States)

    Papautsky, I; Mohanty, S; Weiss, R; Frazier, A B

    2001-10-01

    In this paper, micromachined pipette arrays (MPAs) and microcombs were studied as a means of enabling high lane density gel electrophoresis. The MPA provide a miniaturized format to interface sub-microliter volumes of samples between macroscale sample preparation formats and microscale biochemical analysis systems. The microcombs provide a means of creating sample loading wells in the gel material on the same center-to-center spacing as the MPAs. Together, the two micromachined instruments provide an alternative to current combs and pipetting technologies used for creating sample loading wells and sample delivery in gel electrophoresis systems. Using three designs for the microcomb-MPA pair, center-to-center spacings of 1.0 mm, 500 microm, and 250 microm are studied. The results demonstrate an approximate 10-fold increase in lane density and a 10-fold reduction in sample size from 5 microL to 500 pL. As a result, the number of theoretical plates has increased 2.5-fold, while system resolution has increased 1.5-fold over the conventional agarose gel systems. An examination of changes in resolution across the width of individual separation lanes in both systems revealed dependence in the case of the conventional gels and no dependence for the gels loaded with the micromachined instrumentation.

  17. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man

    2012-02-22

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  18. Single-phase liquid flow forced convection under a nearly uniform heat flux boundary condition in microchannels

    KAUST Repository

    Lee, Man; Lee, Yi-Kuen; Zohar, Yitshak

    2012-01-01

    A microchannel heat sink, integrated with pressure and temperature microsensors, is utilized to study single-phase liquid flow forced convection under a uniform heat flux boundary condition. Utilizing a waferbond-and-etch- back technology, the heat source, temperature and pressure sensors are encapsulated in a thin composite membrane capping the microchannels, thus allowing experimentally good control of the thermal boundary conditions. A three-dimensional physical model has been constructed to facilitate numerical simulations of the heat flux distribution. The results indicate that upstream the cold working fluid absorbs heat, while, within the current operating conditions, downstream the warmer working fluid releases heat. The Nusselt number is computed numerically and compared with experimental and analytical results. The wall Nusselt number in a microchannel can be estimated using classical analytical solutions only over a limited range of the Reynolds number, Re: both the top and bottom Nusselt numbers approach 4 for Re < 1, while the top and bottom Nusselt numbers approach 0 and 5.3, respectively, for Re > 100. The experimentally estimated Nusselt number for forced convection is highly sensitive to the location of the temperature measurements used in calculating the Nusselt number. © 2012 IOP Publishing Ltd.

  19. Urine protein electrophoresis test

    Science.gov (United States)

    Urine protein electrophoresis; UPEP; Multiple myeloma - UPEP; Waldenström macroglobulinemia - UPEP; Amyloidosis - UPEP ... special paper and apply an electric current. The proteins move and form visible bands. These reveal the ...

  20. Amorphous silicon-based microchannel plates

    International Nuclear Information System (INIS)

    Franco, Andrea; Riesen, Yannick; Wyrsch, Nicolas; Dunand, Sylvain; Powolny, François; Jarron, Pierre; Ballif, Christophe

    2012-01-01

    Microchannel plates (MCP) based on hydrogenated amorphous silicon (a-Si:H) were recently introduced to overcome some of the limitations of crystalline silicon and glass MCP. The typical thickness of a-Si:H based MCPs (AMCP) ranges between 80 and 100 μm and the micromachining of the channels is realized by deep reactive ion etching (DRIE). Advantages and issues regarding the fabrication process are presented and discussed. Electron amplification is demonstrated and analyzed using Electron Beam Induced Current (EBIC) technique. The gain increases as a function of the bias voltage, limited to −340 V on account of high leakage currents across the structure. EBIC maps on 10° tilted samples confirm that the device active area extend to the entire channel opening. AMCP characterization with the electron beam shows gain saturation and signal quenching which depends on the effectiveness of the charge replenishment in the channel walls.

  1. Success and failure with phthalate buffers in capillary zone electrophoresis.

    Science.gov (United States)

    Bocek, P; Gebauer, P; Beckers, J L

    2001-04-01

    Phthalate buffers are currently used in capillary electrophoresis as robust electrolyte systems for indirect detection. This contribution demonstrates that these buffers show regularly not only successful regions of mobilities of analytes (sample window) but also regions of failure where the migration of analytes is strongly deteriorated due to the presence of a system zone. System zones in phthalate buffers may be easily detected by UV detection and manifest themselves as peaks or dips. Peak shape diagrams are advantageously used for the prediction of the migration behavior of system zones in phthalate background electrolyte (BGE) systems at various pH. It is shown that the mobility of the system zone varies strongly with pH, is practically zero at pH values below 4 and above 7, and shows a maximum at pH 5. Thus, the system peak may coincide either with the peaks of various analytes or with the electroosmotic flow (EOF) peak. Experiments are given showing the effects of such coincidences as, e.g., zigzag detection patterns, double EOF peaks, and/or unusually broad peaks/dips. The message of this contribution is to show how to understand the electrophoretic properties of phthalate BGEs that, regardless of possible failure regions, may be successfully used in the analytical practice of capillary zone electrophoresis (CZE).

  2. Single-cell microgel electrophoresis: an in vitro assay of radiosensitivity

    International Nuclear Information System (INIS)

    Deeley, J.O.T.; Moore, J.L.

    1993-01-01

    The results obtained by a microgel electrophoresis are comparable to conventional gel electrophoresis and elution techniques (Singh et al, 1989), DNA precipitation, alkali unwinding and cell clonogenicity assays (Olive et al, 1990). Since single cells are assessed, microgel electrophoresis is particularly appropriate for end-points such as the intercell variation in response. The simplicity, low cost and rapidity of microgel electrophoresis compared with other assays makes it particularly attractive for assessing the effects on DNA of radiation and other genotoxic agents on the general population. (Author)

  3. Laser heating of aqueous samples on a micro-optical-electro-mechanical system

    Science.gov (United States)

    Beer, Neil Reginald; Kennedy, Ian

    2013-02-05

    A system of heating a sample on a microchip includes the steps of providing a microchannel flow channel in the microchip; positioning the sample within the microchannel flow channel, providing a laser that directs a laser beam onto the sample for heating the sample; providing the microchannel flow channel with a wall section that receives the laser beam and enables the laser beam to pass through wall section of the microchannel flow channel without being appreciably heated by the laser beam; and providing a carrier fluid in the microchannel flow channel that moves the sample in the microchannel flow channel wherein the carrier fluid is not appreciably heated by the laser beam.

  4. An integrated multiple capillary array electrophoresis system for high-throughput DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X.

    1998-03-27

    A capillary array electrophoresis system was chosen to perform DNA sequencing because of several advantages such as rapid heat dissipation, multiplexing capabilities, gel matrix filling simplicity, and the mature nature of the associated manufacturing technologies. There are two major concerns for the multiple capillary systems. One concern is inter-capillary cross-talk, and the other concern is excitation and detection efficiency. Cross-talk is eliminated through proper optical coupling, good focusing and immersing capillary array into index matching fluid. A side-entry excitation scheme with orthogonal detection was established for large capillary array. Two 100 capillary array formats were used for DNA sequencing. One format is cylindrical capillary with 150 {micro}m o.d., 75 {micro}m i.d and the other format is square capillary with 300 {micro}m out edge and 75 {micro}m inner edge. This project is focused on the development of excitation and detection of DNA as well as performing DNA sequencing. The DNA injection schemes are discussed for the cases of single and bundled capillaries. An individual sampling device was designed. The base-calling was performed for a capillary from the capillary array with the accuracy of 98%.

  5. Parametric Study on the Characteristics of Multiphase Laminar Flow with Density Difference in Various Microchannels

    International Nuclear Information System (INIS)

    Paek, Seung Ho; Kim, Dong Sung; Choi, Young Ki

    2009-01-01

    In this paper, we have performed a parametric study on the characteristics of multiphase laminar flow with density difference in various microchannels. The interface between multiphase fluids is rotated by the gravitational forces induced by density difference. The numerical simulations were carried out via commercial CFD package to study the characteristics of multiphase laminar flow. The results of the numerical simulations in this study were verified by comparing with the previously reported experimental results in the literature. We have also proposed a new dimensionless relationship between dimensionless rotation angle of interface and dimensionless parameters are proposed for square microchannels with various aspect ratios. The dimensionless relationship could be widely applied to the reliable design of various microfluidic devices dealing with multiphase laminar flow

  6. Electrophoresis in the analysis of natural and industrial ob ects

    International Nuclear Information System (INIS)

    Stepanov, A.V.; Korchemnaya, E.K.

    1979-01-01

    Given is a brief review on practical application of electrophoresis in the analysis of natural and industrial objects. Suggested are expressiVe methods of thorium, uranium and rare earth elements separation in minerals by electrophoresis. The possibility of quantitative determination of rare earth elements in meteorites by the method of electromigration is shown. By means of electrophoresis identified are forms of radioruthenium in a sea water. Shown is the electrophoresis application for reactor loop water analysis, for environment contamination study, for determination of some rare earth yield in reactions of uranium fission by heavy ions

  7. A microchannel plate X-ray multiplier with rising-time less than 170 ps

    International Nuclear Information System (INIS)

    Zhao Shicheng; Ouyang Bin

    1987-01-01

    The time reponse of a microchannel plate X-ray multiplier has been improved considerably by using a coupling construction of coaxial tapers. The experimental calibration results with laser plasma X-ray source show that the rising-time of the multiplier is less than 170 ps

  8. Evaluation of a commercial electro-kinetically pumped sheath-flow nanospray interface coupled to an automated capillary zone electrophoresis system.

    Science.gov (United States)

    Peuchen, Elizabeth H; Zhu, Guije; Sun, Liangliang; Dovichi, Norman J

    2017-03-01

    Capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) is attracting renewed attention for proteomic and metabolomic analysis. An important reason for this interest is the maturation and commercialization of interfaces for coupling CZE with ESI-MS. One of these interfaces is an electro-kinetically pumped sheath flow nanospray interface developed by the Dovichi group, in which a very low sheath flow is generated based on electroosmosis within a glass emitter. CMP Scientific has commercialized this interface as the EMASS-II ion source. In this work, we compared the performance of the EMASS-II ion source with our in-house system. The performance of the systems is equivalent. We also coupled the EMASS-II ion source with a PrinCE Next|480 capillary electrophoresis autosampler and an Orbitrap mass spectrometer, and analyzed this system's performance in terms of sensitivity, reproducibility, and separation performance for separation of tryptic digests, intact proteins, and amino acids. The system produced reproducible analysis of BSA digest; the RSDs of peptide intensity and migration time across 24 runs were less than 20 and 6%, respectively. The system produced a linear calibration curve of intensity across a 30-fold range of tryptic digest concentration. The combination of a commercial autosampler and electrospray interface efficiently separated amino acids, peptides, and intact proteins, and only required 5 μL of sample for analysis. Graphical Abstract The commercial and locally constructed versions of the interface provide similar numbers of protein identifications from a Xenopus laevis fertilized egg digest.

  9. Serum protein concentrations from clinically healthy horses determined by agarose gel electrophoresis.

    Science.gov (United States)

    Riond, Barbara; Wenger-Riggenbach, Bettina; Hofmann-Lehmann, Regina; Lutz, Hans

    2009-03-01

    Serum protein electrophoresis is a useful screening test in equine laboratory medicine. The method can provide valuable information about changes in the concentrations of albumin and alpha-, beta-, and gamma-globulins and thereby help characterize dysproteinemias in equine patients. Reference values for horses using agarose gel as a support medium have not been reported. The purpose of this study was to establish reference intervals for serum protein concentrations in adult horses using agarose gel electrophoresis and to assess differences between warm-blooded and heavy draught horses. In addition, the precision of electrophoresis for determining fraction percentages and the detection limit were determined. Blood samples were obtained from 126 clinically healthy horses, including 105 Thoroughbreds and 21 heavy draught horses of both sexes and ranging from 2 to 20 years of age. The total protein concentration was determined by an automated biuret method. Serum protein electrophoresis was performed using a semi-automated agarose gel electrophoresis system. Coefficients of variation (CVs) were calculated for within-run and within-assay precision. Data from warm-blooded and draught horses were compared using the Mann-Whitney U test. Within-run and within-assay CVs were draught horses and so combined reference intervals (2.5-97.5%) were calculated for total protein (51.0-72.0 g/L), albumin (29.6-38.5 g/L), alpha(1)-globulin (1.9-3.1 g/L), alpha(2)-globulin (5.3-8.7 g/L), beta(1)-globulin (2.8-7.3g/L), beta(2)-globulin (2.2-6.0 g/L), and gamma-globulin (5.8-12.7 g/L) concentrations, and albumin/globulin ratio (0.93-1.65). Using agarose gel as the supporting matrix for serum protein electrophoresis in horses resulted in excellent resolution and accurate results that facilitated standardization into 6 protein fractions.

  10. Improved lifetime of microchannel-plate PMTs

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, A., E-mail: lehmann@physik.uni-erlangen.de [Physikalisches Institut IV, Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); Britting, A.; Eyrich, W.; Uhlig, F. [Physikalisches Institut IV, Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Höhler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); and others

    2014-12-01

    The charged particle identification at the PANDA experiment will be mainly performed with DIRC detectors. Because of their advantageous properties the preferred photon sensors are MCP-PMTs. However, until recently these devices showed serious aging problems which resulted in a diminishing quantum efficiency (QE) of the photo cathode. By applying innovative countermeasures against the aging causes, the manufacturers recently succeeded in drastically improving the lifetime of MCP-PMTs. Especially the application of an ALD coating technique to seal the material of the micro-channels proves very powerful and results in a lifetime of ≈6C/cm{sup 2} integrated anode charge without a substantial QE degradation for the latest PHOTONIS XP85112. This paper will present a comparative measurement of the lifetime of several older and recent MCP-PMTs demonstrating this progress.

  11. Localized electric field induced transition and miniaturization of two-phase flow patterns inside microchannels.

    Science.gov (United States)

    Sharma, Abhinav; Tiwari, Vijeet; Kumar, Vineet; Mandal, Tapas Kumar; Bandyopadhyay, Dipankar

    2014-10-01

    Strategic application of external electrostatic field on a pressure-driven two-phase flow inside a microchannel can transform the stratified or slug flow patterns into droplets. The localized electrohydrodynamic stress at the interface of the immiscible liquids can engender a liquid-dielectrophoretic deformation, which disrupts the balance of the viscous, capillary, and inertial forces of a pressure-driven flow to engender such flow morphologies. Interestingly, the size, shape, and frequency of the droplets can be tuned by varying the field intensity, location of the electric field, surface properties of the channel or fluids, viscosity ratio of the fluids, and the flow ratio of the phases. Higher field intensity with lower interfacial tension is found to facilitate the oil droplet formation with a higher throughput inside the hydrophilic microchannels. The method is successful in breaking down the regular pressure-driven flow patterns even when the fluid inlets are exchanged in the microchannel. The simulations identify the conditions to develop interesting flow morphologies, such as (i) an array of miniaturized spherical or hemispherical or elongated oil drops in continuous water phase, (ii) "oil-in-water" microemulsion with varying size and shape of oil droplets. The results reported can be of significance in improving the efficiency of multiphase microreactors where the flow patterns composed of droplets are preferred because of the availability of higher interfacial area for reactions or heat and mass exchange. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Flow Boiling in a Micro-Channel Coated With Carbon Nanotubes

    OpenAIRE

    Khanikar, Vikash; Mudawar, Issam; Fisher, Timothy

    2009-01-01

    This study examines the heat transfer enhancement attributes of carbon nanotubes (CNTs) applied to the bottom wall of a shallow rectangular micro-channel. Using deionized water as working fluid, experiments were performed with both a bare copper bottom wall and a CNT-coated copper wall. Boiling curves were generated for both walls, aided by high-speed video analysis of interfacial features. CNT arrays promoted earlier, abundant and intense bubble nucleation at low mass velocities, consistent ...

  13. Hydrodynamic dispersion in a combined magnetohydrodynamic- electroosmotic-driven flow through a microchannel with slowly varying wall zeta potentials

    Science.gov (United States)

    Vargas, C.; Arcos, J.; Bautista, O.; Méndez, F.

    2017-09-01

    The effective dispersion coefficient of a neutral solute in the combined electroosmotic (EO) and magnetohydrodynamic (MHD)-driven flow of a Newtonian fluid through a parallel flat plate microchannel is studied. The walls of the microchannel are assumed to have modulated and low zeta potentials that vary slowly in the axial direction in a sinusoidal manner. The flow field required to obtain the dispersion coefficient is solved using the lubrication approximation theory. The solution of the electrical potential is based on the Debye-Hückel approximation for a symmetric (Z :Z ) electrolyte solution. The EO and MHD effects, together with the variations in the zeta potentials of the walls, are observed to notably modify the axial distribution of the effective dispersion coefficient. The problem is formulated for two cases of the zeta potential function. Note that the dispersion coefficient primarily depends on the Hartmann number, on the ratio of the half height of the microchannel to the Debye length, and on the assumed variation in the zeta potentials of the walls.

  14. Synthesis of Rh/Macro-Porous Alumina Over Micro-Channel Plate and Its Catalytic Activity Tests for Diesel Reforming.

    Science.gov (United States)

    Seong, Yeon Baek; Kim, Yong Sul; Park, No-Kuk; Lee, Tae Jin

    2015-11-01

    Macro-porous Al2O3 as the catalytic support material was synthesized using colloidal polystyrene spheres over a micro-channel plate. The colloidal polystyrene spheres were used as a template for the production of an ordered macro porous material using an alumina nitrate solution as the precursor for Al2O3. The close-packed colloidal crystal array template method was applied to the formulation of ordered macro-porous Al2O3 used as a catalytic support material over a micro-channel plate. The solvent in the mixture solution, which also contained the colloidal polystyrene solution, aluminum nitrate solution and the precursor of the catalytic active materials (Rh), was evaporated in a vacuum oven at 50 degrees C. The ordered polystyrene spheres and aluminum salt of the solid state were deposited over a micro channel plate, and macro-porous Al2O3 was formed after calcination at 600 degrees C to remove the polystyrene spheres. The catalytic activity of the Rh/macro-porous alumina supported over the micro-channel plate was tested for diesel reforming.

  15. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  16. Continuous particle separation in a serpentine microchannel via negative and positive dielectrophoretic focusing

    International Nuclear Information System (INIS)

    Church, Christopher; Zhu, Junjie; Nieto, Juan; Keten, Gyunay; Ibarra, Erl; Xuan, Xiangchun

    2010-01-01

    Dielectrophoresis (DEP) has been widely used to focus and separate cells and particles in microfluidic devices. This work first demonstrates negative and positive dielectrophoretic focusing of particles in a serpentine microchannel by changing only the electric conductivity of the suspending fluid. Due to the channel turn-induced dielectrophoretic force, particles are focused to either the centerline or the sidewalls of the channel when their electric conductivity is lower (i.e. negative DEP) or higher (i.e. positive DEP) than that of the fluid. These distinctive dielectrophoretic focusing phenomena in a serpentine microchannel are then combined to implement a continuous separation between particles of different sizes and electric conductivities. Such separation eliminates the fabrication of in-channel microelectrodes or micro-insulators that are typically required in DEP-based separation techniques. A numerical model is also developed to predict the particle motion, and the simulation results agree reasonably with the observed particle focusing and separation behaviors.

  17. Three-dimensional particle-in-cell simulation on gain saturation effect of microchannel plate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiangqiang; Yuan, Zheng; Cao, Zhurong, E-mail: cao33jin@aliyun.com; Deng, Bo; Chen, Tao; Deng, Keli [Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang, Sichuan 621900 (China)

    2016-07-15

    We present here the results of the simulation work, using the three-dimensional particle-in-cell method, on the performance of the lead glass microchannel plate under saturated state. We calculated the electron cascade process with different DC bias voltages under both self-consistent condition and non-self-consistent condition. The comparative results have demonstrated that the strong self-consistent field can suppress the cascade process and make the microchannel plate saturated. The simulation results were also compared to the experimental data and good agreement was obtained. The simulation results also show that the electron multiplication process in the channel is accompanied by the buildup process of positive charges in the channel wall. Though the interactions among the secondary electron cloud in the channel, the positive charges in the channel wall, and the external acceleration field can make the electron-surface collision more frequent, the collision energy will be inevitably reduced, thus the electron gain will also be reduced.

  18. Numerical Study of Surfactant Dynamics during Emulsification in a T-Junction Microchannel.

    Science.gov (United States)

    Riaud, Antoine; Zhang, Hao; Wang, Xueying; Wang, Kai; Luo, Guangsheng

    2018-04-18

    Microchannel emulsification requires large amounts of surfactant to prevent coalescence and improve emulsions lifetime. However, most numerical studies have considered surfactant-free mixtures as models for droplet formation in microchannels, without taking into account the distribution of surfactant on the droplet surface. In this paper, we investigate the effects of nonuniform surfactant coverage on the microfluidic flow pattern using an extended lattice-Boltzmann model. This numerical study, supported by micro-particle image velocimetry experiments, reveals the likelihood of uneven distribution of surfactant during the droplet formation and the appearance of a stagnant cap. The Marangoni effect affects the droplet breakup by increasing the shear rate. According to our results, surfactant-free and surfactant-rich droplet formation processes are qualitatively different, such that both the capillary number and the Damköhler number should be considered when modeling the droplet generation in microfluidic devices. The limitations of traditional volume and pressure estimation methods for determining the dynamic interfacial tension are also discussed on the basis of the simulation results.

  19. Automated DNA electrophoresis, hybridization and detection

    International Nuclear Information System (INIS)

    Zapolski, E.J.; Gersten, D.M.; Golab, T.J.; Ledley, R.S.

    1986-01-01

    A fully automated, computer controlled system for nucleic acid hybridization analysis has been devised and constructed. In practice, DNA is digested with restriction endonuclease enzyme(s) and loaded into the system by pipette; 32 P-labelled nucleic acid probe(s) is loaded into the nine hybridization chambers. Instructions for all the steps in the automated process are specified by answering questions that appear on the computer screen at the start of the experiment. Subsequent steps are performed automatically. The system performs horizontal electrophoresis in agarose gel, fixed the fragments to a solid phase matrix, denatures, neutralizes, prehybridizes, hybridizes, washes, dries and detects the radioactivity according to the specifications given by the operator. The results, printed out at the end, give the positions on the matrix to which radioactivity remains hybridized following stringent washing

  20. Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jørgensen, L V; Kerrigan, S J; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; van der Werf, D P; Yamazaki, Y

    2009-01-01

    A microchannel plate (MCP)/phosphor screen assembly has been used to destructively measure the radial profile of cold, confined antiprotons, electrons, and positrons in the ALPHA experiment, with the goal of using these trapped particles for antihydrogen creation and confinement. The response of the MCP to low energy (10-200 eV, <1 eV spread) antiproton extractions is compared to that of electrons and positrons.

  1. Coupling between electroosmotically driven flow and bipolar faradaic depolarization processes in electron-conducting microchannels

    NARCIS (Netherlands)

    Qian, S.Z.; Duval, J.F.L.

    2006-01-01

    A quantitative theory is proposed for the analysis of steady electroosmotically driven flows within conducting cylindrical microchannels. Beyond a threshold value of the electric field applied in the electrolyte Solution and parallel to the conducting surface, electrochemical oxidation and reduction

  2. Analysis of electrophoresis performance

    Science.gov (United States)

    Roberts, G. O.

    1984-01-01

    The SAMPLE computer code models electrophoresis separation in a wide range of conditions. Results are included for steady three dimensional continuous flow electrophoresis (CFE), time dependent gel and acetate film experiments in one or two dimensions and isoelectric focusing in one dimension. The code evolves N two dimensional radical concentration distributions in time, or distance down a CFE chamber. For each time or distance increment, there are six stages, successively obtaining the pH distribution, the corresponding degrees of ionization for each radical, the conductivity, the electric field and current distribution, and the flux components in each direction for each separate radical. The final stage is to update the radical concentrations. The model formulation for ion motion in an electric field ignores activity effects, and is valid only for low concentrations; for larger concentrations the conductivity is, therefore, also invalid.

  3. Preparative electrophoresis of industrial fission product solutions

    International Nuclear Information System (INIS)

    Tret, Joel

    1971-07-01

    The aim of this work is to contribute to the development of the continuous electrophoresis technique while studying its application in the preparative electrophoresis of industrial fission product solutions. The apparatus described is original. It was built for the purposes of the investigation and proved very reliable in operation. The experimental conditions necessary to maintain and supervise the apparatus in a state of equilibrium are examined in detail; their stability is an important factor, indispensable to the correct performance of an experiment. By subjecting an industrial solution of fission products to preparative electrophoresis it is possible, according to the experimental conditions, to prepare carrier-free radioelements of radiochemical purity (from 5 to 7 radioelements): 137 Cs, 90 Sr, 141+144 Ce, 91 Y, 95 Nb, 95 Zr, 103+106 Ru. (author) [fr

  4. Images of gel electrophoresis - RGP caps | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us RGP caps Images of gel electrophoresis Data detail Data name Images of gel electrophoresis D...OI 10.18908/lsdba.nbdc00318-05-002 Description of data contents Detailed information and images of gel electrophoresis... of each marker. Data file File name: rgp_caps_electrophoresis_image.zip File URL: ftp://ftp.biosc...iencedbc.jp/archive/rgp-caps/LATEST/rgp_caps_electrophoresis_image.zip File size:... 28.7 MB Simple search URL - Data acquisition method Gel electrophoresis Data analysis method STS markers :

  5. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles.

    Science.gov (United States)

    Lima, Rui; Wada, Shigeo; Takeda, Motohiro; Tsubota, Ken-ichi; Yamaguchi, Takami

    2007-01-01

    A confocal microparticle image velocimetry (micro-PIV) system was used to obtain detailed information on the velocity profiles for the flow of pure water (PW) and in vitro blood (haematocrit up to 17%) in a 100-microm-square microchannel. All the measurements were made in the middle plane of the microchannel at a constant flow rate and low Reynolds number (Re=0.025). The averaged ensemble velocity profiles were found to be markedly parabolic for all the working fluids studied. When comparing the instantaneous velocity profiles of the three fluids, our results indicated that the profile shape depended on the haematocrit. Our confocal micro-PIV measurements demonstrate that the root mean square (RMS) values increase with the haematocrit implying that it is important to consider the information provided by the instantaneous velocity fields, even at low Re. The present study also examines the potential effect of the RBCs on the accuracy of the instantaneous velocity measurements.

  6. Applications of space-electrophoresis in medicine. [for cellular separations in molecular biology

    Science.gov (United States)

    Bier, M.

    1976-01-01

    The nature of electrophoresis is reviewed and potential advances realizable in the field of biology and medicine from a space electrophoresis facility are examined. The ground-based applications of electrophoresis: (1) characterization of an ionized species; (2) determination of the quantitative composition of a complex mixture; and (3) isolation of the components of a mixture, separation achieved on the basis of the difference in transport rates is reviewed. The electrophoresis of living cells is considered, touching upon the following areas: the separation of T and B lymphocytes; the genetic influence on mouse lymphocyte mobilities; the abnormal production of specific and monoclonal immunoproteins; and the study of cancer. Schematic diagrams are presented of three types of electrophoresis apparatus: the column assembly for the static electrophoresis experiment on the Apollo-Soyuz mission, the continuous flow apparatus used in the same mission and a miniaturized electrophoresis apparatus.

  7. Modelling refrigerant distribution in microchannel evaporators

    DEFF Research Database (Denmark)

    Brix, Wiebke; Kærn, Martin Ryhl; Elmegaard, Brian

    2009-01-01

    of the refrigerant distribution is carried out for two channels in parallel and for two different cases. In the first case maldistribution of the inlet quality into the channels is considered, and in the second case a non-uniform airflow on the secondary side is considered. In both cases the total mixed superheat...... out of the evaporator is kept constant. It is shown that the cooling capacity of the evaporator is reduced significantly, both in the case of unevenly distributed inlet quality and for the case of non-uniform airflow on the outside of the channels.......The effects of refrigerant maldistribution in parallel evaporator channels on the heat exchanger performance are investigated numerically. For this purpose a 1D steady state model of refrigerant R134a evaporating in a microchannel tube is built and validated against other evaporator models. A study...

  8. Gel Electrophoresis on a Budget to Dye for

    Science.gov (United States)

    Yu, Julie H.

    2010-01-01

    Gel electrophoresis is one of the most important tools used in molecular biology and has facilitated the entire field of genetic engineering by enabling the separation of nucleic acids and proteins. However, commercial electrophoresis kits can cost up to $800 for each setup, which is cost prohibitive for most classroom budgets. This article…

  9. Eulerian-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel

    International Nuclear Information System (INIS)

    Kalteh, Mohammad; Abbassi, Abbas; Saffar-Avval, Majid; Harting, Jens

    2011-01-01

    In this paper, laminar forced convection heat transfer of a copper-water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. For the first time, the detailed study of the relative velocity and temperature of the phases are presented and it has been observed that the relative velocity and temperature between the phases is very small and negligible and the nanoparticle concentration distribution is uniform. However, the two-phase modeling results show higher heat transfer enhancement in comparison to the homogeneous single-phase model. Also, the heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration as well as with decrease in the nanoparticle diameter, while the pressure drop increases only slightly.

  10. Research Article. The Influence of Some Parameters on Chiral Separation of Ibuprofen by High-Performance Liquid Chromatography and Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Balint Alina

    2017-03-01

    Full Text Available Objective: The aim of the study was to compare the influence of mobile phase composition and temperature on chiral separation of racemic ibuprofen by capillary electrophoresis and high performance liquid chromatography with UV detection. Materials and methods: Racemic ibuprofen was analysed on a chiral OVM column with an HPLC system 1100 Agilent Technologies, under isocratic elution, by using potassium dihydrogen phosphate 20 mM and ethanol in mobile phase. The flow rate was set at 1 mL/min, UV detector at 220 nm and different column temperatures were tested. For electrophoresis separation an Agilent CE G1600AX Capillary Electrophoresis System system, with UV detection, was used. The electrophoresis analysis was performed at different pH values and temperatures, with phosphate buffer 25 mM and methyl-β-cyclodextrin as chiral selector. Results: The chromatograhic analysis reveals a high influence of mobile phase pH on ibuprofen enantiomers separation. An elution with a mixture of potassium dihydrogen phosphate 20 mM pH=3 and ethanol, at 25°C, allowed enantiomers separation with good resolution in less than 8 min. Conclusions: The proposed HPLC method proved suitable for the separation of ibuprofen enantiomers with a good resolution, but the capillary electrophoresis tested parameters did not allow chiral discrimination.

  11. An analytical model for enantioseparation process in capillary electrophoresis

    Science.gov (United States)

    Ranzuglia, G. A.; Manzi, S. J.; Gomez, M. R.; Belardinelli, R. E.; Pereyra, V. D.

    2017-12-01

    An analytical model to explain the mobilities of enantiomer binary mixture in capillary electrophoresis experiment is proposed. The model consists in a set of kinetic equations describing the evolution of the populations of molecules involved in the enantioseparation process in capillary electrophoresis (CE) is proposed. These equations take into account the asymmetric driven migration of enantiomer molecules, chiral selector and the temporary diastomeric complexes, which are the products of the reversible reaction between the enantiomers and the chiral selector. The solution of these equations gives the spatial and temporal distribution of each species in the capillary, reproducing a typical signal of the electropherogram. The mobility, μ, of each specie is obtained by the position of the maximum (main peak) of their respective distributions. Thereby, the apparent electrophoretic mobility difference, Δμ, as a function of chiral selector concentration, [ C ] , can be measured. The behaviour of Δμ versus [ C ] is compared with the phenomenological model introduced by Wren and Rowe in J. Chromatography 1992, 603, 235. To test the analytical model, a capillary electrophoresis experiment for the enantiomeric separation of the (±)-chlorpheniramine β-cyclodextrin (β-CD) system is used. These data, as well as, other obtained from literature are in closed agreement with those obtained by the model. All these results are also corroborate by kinetic Monte Carlo simulation.

  12. Method for producing components with internal architectures, such as micro-channel reactors, via diffusion bonding sheets

    Science.gov (United States)

    Alman, David E [Corvallis, OR; Wilson, Rick D [Corvallis, OR; Davis, Daniel L [Albany, OR

    2011-03-08

    This invention relates to a method for producing components with internal architectures, and more particularly, this invention relates to a method for producing structures with microchannels via the use of diffusion bonding of stacked laminates. Specifically, the method involves weakly bonding a stack of laminates forming internal voids and channels with a first generally low uniaxial pressure and first temperature such that bonding at least between the asperites of opposing laminates occurs and pores are isolated in interfacial contact areas, followed by a second generally higher isostatic pressure and second temperature for final bonding. The method thereby allows fabrication of micro-channel devices such as heat exchangers, recuperators, heat-pumps, chemical separators, chemical reactors, fuel processing units, and combustors without limitation on the fin aspect ratio.

  13. A broad-application microchannel-plate detector system for advanced particle or photon detection tasks large area imaging, precise multi-hit timing information and high detection rate

    CERN Document Server

    Jagutzki, O; Mergel, V; Schmidt-Böcking, H; Spielberger, L; Spillmann, U; Ullmann-Pfleger, K

    2002-01-01

    New applications for single particle and photon detection in many fields require both large area imaging performance and precise time information on each detected particle. Moreover, a very high data acquisition rate is desirable for most applications and eventually the detection and imaging of more than one particle arriving within a microsecond is required. Commercial CCD systems lack the timing information whereas other electronic microchannel plate (MCP) read-out schemes usually suffer from a low acquisition rate and complicated and sometimes costly read-out electronics. We have designed and tested a complete imaging system consisting of an MCP position readout with helical wire delay-lines, single-unit amplifier box and PC-controlled time-to-digital converter (TDC) readout. The system is very flexible and can detect and analyse position and timing information at single particle rates beyond 1 MHz. Alternatively, multi-hit events can be collected and analysed at about 20 kHz rate. We discuss the advantage...

  14. Study of Streptavidin-Modified Quantum Dots by Capillary Electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Stanisavljevic, M.; Janů, L.; Šmerková, K.; Křížková, S.; Pizúrová, Naděžda; Ryvolová, M.; Adam, V.; Hubálek, J.; Kizek, R.

    2013-01-01

    Roč. 76, 7-8 (2013), s. 335-343 ISSN 0009-5893 Institutional support: RVO:68081723 Keywords : Capillary electrophoresis * Gel electrophoresis * Avidin-biotin technology * Oligonucleotide * Nanoparticle * quantum dots Subject RIV: CE - Biochemistry Impact factor: 1.370, year: 2013

  15. X-ray focusing with Wolter microchannel plate optics

    CERN Document Server

    Price, G J; Beijersbergen, M W; Fraser, G W; Bavdaz, M; Boutot, J P; Fairbend, R; Flyckt, S O; Peacock, A; Tomaselli, E

    2002-01-01

    Square-pore microchannel plate (MCP) X-ray optics of the 'lobster-eye' geometry have frequently been described in the literature. We have now investigated the use of a radial channel packing geometry which, in the context of an MCP pair slumped to the correct radii of curvature, can form a conic approximation to the Wolter Type I grazing incidence X-ray optic. Such an optic can provide a large effective area with very low mass and may be ideally suited for use in applications such as planetary imaging X-ray fluorescence. We present here the results of X-ray illumination of the first such optic, fabricated by Photonis SAS, France.

  16. Ceramic protective coatings applied by sol-gel or electrophoresis

    International Nuclear Information System (INIS)

    Stoch, A.

    1993-01-01

    Sol-gel and electrophoresis are the complementary techniques which may be used for obtaining the ceramic coatings. The composition of such a coatings depends on the composition of electrophoresis bath or sol solution. Thermal treatment is used for densifying the coating and promoting the adherence of coating to the substrate. In presented work silica, silica-alumina or alumina coatings are applied by sol-gel dip coating procedure on steel, aluminium or ceramic substrates. Electrophoresis is employed for obtaining zirconia, alumina or hydroxyapatite coatings on stainless steel. (author). 7 refs

  17. A review on recent developments for biomolecule separation at analytical scale using microfluidic devices.

    Science.gov (United States)

    Tetala, Kishore K R; Vijayalakshmi, M A

    2016-02-04

    Microfluidic devices with their inherent advantages like the ability to handle 10(-9) to 10(-18) L volume, multiplexing of microchannels, rapid analysis and on-chip detection are proving to be efficient systems in various fields of life sciences. This review highlights articles published since 2010 that reports the use of microfluidic devices to separate biomolecules (DNA, RNA and proteins) using chromatography principles (size, charge, hydrophobicity and affinity) along with microchip capillary electrophoresis, isotachophoresis etc. A detailed overview of stationary phase materials and the approaches to incorporate them within the microchannels of microchips is provided as well as a brief overview of chemical methods to immobilize ligand(s). Furthermore, we review research articles that deal with microfluidic devices as analytical tools for biomolecule (DNA, RNA and protein) separation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Recent progress in preparation and application of microfluidic chip electrophoresis

    International Nuclear Information System (INIS)

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yuan, Hua; Peng, Qiaohong; Tian, Chao

    2015-01-01

    Since its discovery in 1990, microfluidic chip electrophoresis (MCE) has allowed the development of applications with small size, fast analysis, low cost, high integration density and automatic level, which are easy to carry and have made commercialization efficient. MCE has been widely used in the areas of environmental protection, biochemistry, medicine and health, clinical testing, judicial expertise, food sanitation, pharmaceutical checking, drug testing, agrochemistry, biomedical engineering and life science. As one of the foremost fields in the research of capillary electrophoresis, MCE is the ultimate frontier to develop the miniaturized, integrated, automated all-in-one instruments needed in modern analytical chemistry. By adopting the advanced technologies of micro-machining, lasers and microelectronics, and the latest research achievements in analytical chemistry and biochemistry, the sampling, separation and detection systems of commonly used capillary electrophoresis are integrated with high densities onto glass, quartz, silicon or polymer wafers to form the MCE, which can finish the analysis of multi-step operations such as injection, enrichment, reaction, derivatization, separation, and collection of samples in a portable, efficient and super high speed manner. With reference to the different technological achievements in this area, the latest developments in MCE are reviewed in this article. The preparation mechanisms, surface modifications, and properties of different materials in MCE are compared, and the different sampling, separation and detection systems in MCE are summarized. The performance of MCE in analysis of fluorescent substance, metallic ion, sugar, medicine, nucleic acid, DNA, amino acid, polypeptide and protein is discussed, and the future direction of development is forecast. (topical review)

  19. Recent progress in preparation and application of microfluidic chip electrophoresis

    Science.gov (United States)

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Yuan, Hua; Peng, Qiaohong; Tian, Chao

    2015-05-01

    Since its discovery in 1990, microfluidic chip electrophoresis (MCE) has allowed the development of applications with small size, fast analysis, low cost, high integration density and automatic level, which are easy to carry and have made commercialization efficient. MCE has been widely used in the areas of environmental protection, biochemistry, medicine and health, clinical testing, judicial expertise, food sanitation, pharmaceutical checking, drug testing, agrochemistry, biomedical engineering and life science. As one of the foremost fields in the research of capillary electrophoresis, MCE is the ultimate frontier to develop the miniaturized, integrated, automated all-in-one instruments needed in modern analytical chemistry. By adopting the advanced technologies of micro-machining, lasers and microelectronics, and the latest research achievements in analytical chemistry and biochemistry, the sampling, separation and detection systems of commonly used capillary electrophoresis are integrated with high densities onto glass, quartz, silicon or polymer wafers to form the MCE, which can finish the analysis of multi-step operations such as injection, enrichment, reaction, derivatization, separation, and collection of samples in a portable, efficient and super high speed manner. With reference to the different technological achievements in this area, the latest developments in MCE are reviewed in this article. The preparation mechanisms, surface modifications, and properties of different materials in MCE are compared, and the different sampling, separation and detection systems in MCE are summarized. The performance of MCE in analysis of fluorescent substance, metallic ion, sugar, medicine, nucleic acid, DNA, amino acid, polypeptide and protein is discussed, and the future direction of development is forecast.

  20. Measurement of liquid film in microchannels using a laser focus displacement meter

    Science.gov (United States)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji; Hibiki, Takashi; Ishii, Mamoru

    2005-06-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in microchannels and minichannels. To prevent the tube wall signal from disturbing that of the gas liquid interface, a fluorocarbon tube with a water box was used; the refraction index of this device is the same as that for water. With this method, accurate instantaneous measurements of the interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement by using the measured displacement in a fluorocarbon tube of 25 μm to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 mm and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with the real displacement to within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 μm at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 mm and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film of less than 1 μm in thickness in the slug and annular flow regimes.

  1. Measurement of liquid film in microchannels using a laser focus displacement meter

    Energy Technology Data Exchange (ETDEWEB)

    Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji [Tokyo University of Marine Science and Technology, Faculty of Marine Technology, Etchujima, Koto, Tokyo (Japan); Hibiki, Takashi [Kyoto University, Research Reactor Institute, Kumatori, Sennan, Osaka (Japan); Ishii, Mamoru [Purdue University, School of Nuclear Engineering, West Lafayette, IN (United States)

    2005-06-01

    This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in microchannels and minichannels. To prevent the tube wall signal from disturbing that of the gas-liquid interface, a fluorocarbon tube with a water box was used; the refraction index of this device is the same as that for water. With this method, accurate instantaneous measurements of the interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement by using the measured displacement in a fluorocarbon tube of 25 {mu}m to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 mm and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with the real displacement to within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 {mu}m at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 mm and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film of less than 1 {mu}m in thickness in the slug and annular flow regimes. (orig.)

  2. Enhancing heat transfer in microchannel heat sinks using converging flow passages

    International Nuclear Information System (INIS)

    Dehghan, Maziar; Daneshipour, Mahdi; Valipour, Mohammad Sadegh; Rafee, Roohollah; Saedodin, Seyfolah

    2015-01-01

    Highlights: • The fluid flow and conjugate heat transfer in microchannel heat sinks are studied. • The Poiseuille and Nusselt numbers are presented for width-tapered MCHS. • Converging walls are found to enhance the thermal performance of MCHS. • The optimum performance of MCHS for fixed inlet and outlet pressures is discussed. • For the optimum configuration, the pumping power is reduced up to 75%. - Abstract: Constrained fluid flow and conjugate heat transfer in microchannel heat sinks (MCHS) with converging channels are investigated using the finite volume method (FVM) in the laminar regime. The maximum pressure of the MCHS loop is assumed to be limited due to constructional or operational conditions. Results show that the Poiseuille number increases with increased tapering, while the required pumping power decreases. Meanwhile, the Nusselt number increases with tapering as well as the convection heat transfer coefficient. The MCHS having the optimum heat transfer performance is found to have a width-tapered ratio equal to 0.5. For this tapering configuration and at the maximum pressure constraint of 3000 Pa, the pumping power reduces by a factor of 4 while the overall heat removal rate is kept fixed in comparison with a straight channel

  3. Slow waves in microchannel metal waveguides and application to particle acceleration

    Directory of Open Access Journals (Sweden)

    L. C. Steinhauer

    2003-06-01

    Full Text Available Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO_{2} lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ∼0.6  mm. The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  4. Slow waves in microchannel metal waveguides and application to particle acceleration

    Science.gov (United States)

    Steinhauer, L. C.; Kimura, W. D.

    2003-06-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong exchange of energy can occur between a beam of charged particles and this slow-waveguide mode. Moreover, the energy exchange can be sustained over a distance limited only by the natural damping of the wave. This makes the microchannel metal waveguide an attractive possibility for high-gradient electron laser acceleration because the wave can be directly energized by a long-wavelength laser. Indeed the frequency of CO2 lasers lies at a fortuitous wavelength that produces a strong laser-particle interaction in a channel of reasonable macroscopic size (e.g., ˜0.6 mm). The dispersion properties including phase velocity and damping for the slow wave are developed. The performance and other issues related to laser accelerator applications are discussed.

  5. Optimum thermal design of microchannel heat sink with triangular reentrant cavities

    International Nuclear Information System (INIS)

    Xia Guodong; Chai Lei; Wang Haiyan; Zhou Mingzheng; Cui Zhenzhen

    2011-01-01

    The effect of geometric parameters on water flow and heat transfer characteristics in microchannel heat sink with triangular reentrant cavities is numerically investigated. A three-dimensional laminar flow model, consisting of Navier-Stokes equations and energy conservation equation, with the conjugate heat transfer between the silicon base and water taken into consideration is solved numerically. In order to find the optimum geometric parameters, four variables, representing the distance and geometry of the triangular reentrant cavity, are designed. It is found that the vortices in the triangular reentrant cavities lead to chaotic advection and can greatly enhance the convective fluid mixing. The thermal and hydraulic boundary layers are interrupted and the repeated developing flow enhances heat transfer in the constant cross-section segment. Furthermore, the effects of the four design variables on heat transfer augmentation and pressure drop penalty are investigated depending on different Reynolds numbers by using the simulated annealing method. Based on the thermal enhancement factor performance maps, the optimal geometric parameters are obtained in principle. - Research highlights: → The microchannels with different triangular reentrant cavities are numerically investigated. → The heat transfer enhancement attributes to fluid mixing and redeveloped thermal boundary layers. → The optimal distance and geometry of the triangular reentrant cavity are obtained in principle.

  6. Investigation of high frequency external perturbation effects on flow in a T-shape microchannel by μLIF technique

    Science.gov (United States)

    Kravtsova, A. Yu; Meshalkin, Yu E.; Bilsky, A. V.

    2017-11-01

    Investigation of high frequency external perturbation effect on flow inside T-shape microchannel was examined. In-phase pulsations of different frequencies were added to both inlets of the T-shaped microchannel to study mixing by means of Micro Laser Induced Fluorescence (μLIF) technique. For all flow regimes studied, mixing enhancement was obtained. Significant enhancement can be achieved at the beginning of the outlet channel operating in steady asymmetric regime (Re=186) by forcing at certain frequency ranges (f = 500Hz, f = 800Hz). Mixing suppression was also observed for two flow regimes (Re = 400, f = 1000Hz) and (Re = 120, f = 700Hz).

  7. Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Jang-Won Seo

    2015-05-01

    Full Text Available Performance tests were carried out for a microchannel printed circuit heat exchanger (PCHE, which was fabricated with micro photo-etching and diffusion bonding technologies. The microchannel PCHE was tested for Reynolds numbers in the range of 100‒850 varying the hot-side inlet temperature between 40 °C–50 °C while keeping the cold-side temperature fixed at 20 °C. It was found that the average heat transfer rate and heat transfer performance of the countercurrrent configuration were 6.8% and 10%‒15% higher, respectively, than those of the parallel flow. The average heat transfer rate, heat transfer performance and pressure drop increased with increasing Reynolds number in all experiments. Increasing inlet temperature did not affect the heat transfer performance while it slightly decreased the pressure drop in the experimental range considered. Empirical correlations have been developed for the heat transfer coefficient and pressure drop factor as functions of the Reynolds number.

  8. Performance enhancement of PV cells through micro-channel cooling

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2015-11-01

    Full Text Available Efficiency of a PV cell is strongly dependent on its surface temperature. The current study is focused to achieve maximum efficiency of PV cells even in scorching temperatures in hot climates like Pakistan where the cell surface temperatures can even rise up to around 80 ℃. The study includes both the CFD and real time experimental investigations of a solar panel using micro channel cooling. Initially, CFD analysis is performed by developing a 3D model of a Mono-Crystalline cell with micro-channels to analyze cell surface temperature distribution at different irradiance and water flow rates. Afterwards, an experimental setup is developed for performance investigations under the real conditions of an open climate of a Pakistan's city, Taxila. Two 35W panels are manufactured for the experiments; one is based on the standard manufacturing procedure while other cell is developed with 4mm thick aluminum sheet having micro-channels of cross-section of 1mm by 1mm. The whole setup also includes different sensors for the measurement of solar irradiance, cell power, surface temperature and water flow rates. The experimental results show that PV cell surface temperature drop of around 15 ℃ is achieved with power increment of around 14% at maximum applied water flow rate of 3 LPM. Additionally, a good agreement is also found between CFD and experimental results. Therefore, that study clearly shows that a significant performance improvement of PV cells can be achieved through the proposed cell cooling technique.

  9. The fluid mechanics of continuous flow electrophoresis

    Science.gov (United States)

    Saville, D. A.

    1990-01-01

    The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.

  10. Potential of capillary electrophoresis for the profiling of propolis

    NARCIS (Netherlands)

    Hilhorst, M.J; Somsen, G.W; de Jong, G.J.

    1998-01-01

    The usefulness of capillary electrophoresis (CE) with diode array detection for the profiling of Propolis, a hive product, is investigated. Water extracts of Propolis were analyzed with both capillary zone electrophoresis (CZE) at pH 7.0 and 9.3, and micellar electrokinetic chromatography (MEKC)

  11. Experimental study on flame pattern formation and combustion completeness in a radial microchannel

    Science.gov (United States)

    Fan, Aiwu; Minaev, Sergey; Kumar, Sudarshan; Liu, Wei; Maruta, Kaoru

    2007-12-01

    Combustion behavior in a radial microchannel with a gap of 2.0 mm and a diameter of 50 mm was experimentally investigated. In order to simulate the heat recirculation, which is an essential strategy in microscale combustion devices, positive temperature gradients along the radial flow direction were given to the microchannel by an external heat source. A methane-air mixture was supplied from the center of the top plate through a 4.0 mm diameter delivery tube. A variety of flame patterns, including a stable circular flame and several unstable flame patterns termed unstable circular flame, single and double pelton-like flames, traveling flame and triple flame, were observed in the experiments. The regime diagram of all these flame patterns is presented in this paper. Some characteristics of the various flame patterns, such as the radii of stable and unstable circular flames, major combustion products and combustion efficiencies of all these flame patterns, were also investigated. Furthermore, the effect of the heat recirculation on combustion stability was studied by changing the wall temperature levels.

  12. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    International Nuclear Information System (INIS)

    Pei, Chengquan; Tian, Jinshou; Liu, Zhen; Qin, Hong; Wu, Shengli

    2017-01-01

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  13. A novel ZVS high voltage power supply for micro-channel plate photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Chengquan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Tian, Jinshou [Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Liu, Zhen [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China); Qin, Hong [School of Computer Science and Technology, Xi' an University of Science and Technology, Xi' an 710054 (China); Wu, Shengli, E-mail: slwu@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi’an 710049 (China)

    2017-04-11

    A novel resonant high voltage power supply (HVPS) with zero voltage switching (ZVS), to reduce the voltage stress on switching devices and improve conversion efficiency, is proposed. The proposed HVPS includes a drive circuit, a transformer, several voltage multiplying circuits, and a regulator circuit. The HVPS contains several secondary windings that can be precisely regulated. The proposed HVPS performed better than the traditional resistor voltage divider, which requires replacing matching resistors resulting in resistor dispersibility in the Micro-Channel Plate (MCP). The equivalent circuit of the proposed HVPS was established and the operational principle analyzed. The entire switching element can achieve ZVS, which was validated by a simulation and experiments. The properties of this HVPS were tested including minimum power loss (240 mW), maximum power loss (1 W) and conversion efficiency (85%). The results of this research are that the proposed HVPS was suitable for driving the micro-channel plate photomultiplier tube (MCP-PMT). It was therefore adopted to test the MCP-PMT, which will be used in Daya Bay reactor neutrino experiment II in China.

  14. Effect of Induced Magnetic Field on MHD Mixed Convection Flow in Vertical Microchannel

    Science.gov (United States)

    Jha, B. K.; Aina, B.

    2017-08-01

    The present work presents a theoretical investigation of an MHD mixed convection flow in a vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates. The influence of an induced magnetic field arising due to motion of an electrically conducting fluid is taken into consideration. The governing equations of the motion are a set of simultaneous ordinary differential equations and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expressions for the induced current density and skin friction have also been obtained. The effects of various non-dimensional parameters such as rarefaction, fluid wall interaction, the Hartmann number and the magnetic Prandtl number on the velocity, the induced magnetic field, the temperature, the induced current density, and skin friction have been presented in a graphical form. It is found that the effect of the Hartmann number and magnetic Prandtl number on the induced current density is found to have a decreasing nature at the central region of the microchannel.

  15. Static response of deformable microchannels

    Science.gov (United States)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  16. Simulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model

    Directory of Open Access Journals (Sweden)

    A. R. Rahmati

    2016-12-01

    Full Text Available Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the accommodation coefficient significantly, but there is not an explicitly relationship between properties at wall and accommodation coefficient. In the present wok, Langmuir slip model is used beside LBM to simulate micro-channel and micro-orifice flows. Slip velocity and nonlinear pressure drop profiles are presented as two major effects in such flows. The results are in good agreement with existing results in the literature.

  17. Process for making unsaturated hydrocarbons using microchannel process technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Yuschak, Thomas [Lewis Center, OH; LaPlante, Timothy J [Columbus, OH; Rankin, Scott [Columbus, OH; Perry, Steven T [Galloway, OH; Fitzgerald, Sean Patrick [Columbus, OH; Simmons, Wayne W [Dublin, OH; Mazanec, Terry Daymo, Eric

    2011-04-12

    The disclosed invention relates to a process for converting a feed composition comprising one or more hydrocarbons to a product comprising one or more unsaturated hydrocarbons, the process comprising: flowing the feed composition and steam in contact with each other in a microchannel reactor at a temperature in the range from about 200.degree. C. to about 1200.degree. C. to convert the feed composition to the product, the process being characterized by the absence of catalyst for converting the one or more hydrocarbons to one or more unsaturated hydrocarbons. Hydrogen and/or oxygen may be combined with the feed composition and steam.

  18. Regulating the Emission Spectrum of CsPbBr₃ from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor.

    Science.gov (United States)

    Tang, Yong; Lu, Hanguang; Rao, Longshi; Li, Zongtao; Ding, Xinrui; Yan, Caiman; Yu, Binhai

    2018-03-02

    The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs) is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr₃ QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr₃ QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing halide component. The mechanism of photoluminescence (PL) spectral shift of CsPbBr₃ QDs was investigated, the result shows that the supersaturation control enabled by the superior mass and heat transfer performance in the microchannel is the key to achieve the wide range of PL spectrum, with only a change in the setting of the temperature controller required. The wide spectrum of CsPbBr₃ QDs can be applied to light-emitting diodes (LEDs), photoelectric sensors, lasers, etc.

  19. Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization

    DEFF Research Database (Denmark)

    Augustsson, Per; Barnkob, Rune; Wereley, Steven T.

    2011-01-01

    We present a platform for micro particle image velocimetry (μPIV), capable of carrying out full-channel, temperature-controlled, long-term-stable, and automated μPIV-measurement of microchannel acoustophoresis with uncertainties below 5% and a spatial resolution in the order of 20 μm. A method to...

  20. Serum protein fractionation using supported molecular matrix electrophoresis.

    Science.gov (United States)

    Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko

    2013-08-01

    Supported molecular matrix electrophoresis (SMME), in which a hydrophilic polymer such as PVA serves as a support within a porous PVDF membrane, was recently developed. This method is similar to cellulose acetate membrane electrophoresis but differs in the compatibility to glycan analysis of the separated bands. In this report, we describe the first instance of the application of SMME to human serum fractionation, and demonstrate the differences with serum fractionation by cellulose acetate membrane electrophoresis. The SMME membrane exhibited almost no EOF during electrophoresis, unlike the cellulose acetate membrane, but afforded comparative results for serum fractionation. The visualization of each fraction was achieved by conventional staining with dye such as Direct Blue-71, and objective quantification was obtained by densitometry after inducing membrane transparency with 1-nonene. Immunostaining was also achieved. Moreover, mass spectrometric analysis of both N-linked and O-linked glycans from the separated bands was demonstrated. Serum fractionation and glycan profiling of each fraction using SMME will enable novel insights into the relationships between various glycosylation profiles and disease states. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Hydrodynamic shrinkage of liquid CO2 Taylor drops in a straight microchannel

    Science.gov (United States)

    Qin, Ning; Wen, John Z.; Ren, Carolyn L.

    2018-03-01

    Hydrodynamic shrinkage of liquid CO2 drops in water under a Taylor flow regime is studied using a straight microchannel (length/width ~100). A general form of a mathematical model of the solvent-side mass transfer coefficient (k s) is developed first. Based on formulations of the surface area (A) and the volume (V) of a general Taylor drop in a rectangular microchannel, a specific form of k s is derived. Drop length and speed are experimentally measured at three specified positions of the straight channel, namely, immediately after drop generation (position 1), the midpoint of the channel (position 2) and the end of the channel (position 3). The reductions of drop length (L x , x  =  1, 2, 3) from position 1 to 2 and down to 3 are used to quantify the drop shrinkage. Using the specific model, k s is calculated mainly based on L x and drop flowing time (t). Results show that smaller CO2 drops produced by lower flow rate ratios ({{Q}LC{{O2}}}/{{Q}{{H2}O}} ) are generally characterized by higher (nearly three times) k s and Sherwood numbers than those produced by higher {{Q}LC{{O2}}}/{{Q}{{H2}O}} , which is essentially attributed to the larger effective portion of the smaller drop contributing in the mass transfer under same levels of the flowing time and the surface-to-volume ratio (~104 m-1) of all drops. Based on calculated pressure drops of the segmented flow in microchannel, the Peng-Robinson equation of state and initial pressures of drops at the T-junction in experiments, overall pressure drop (ΔP t) in the straight channel as well as the resulted drop volume change are quantified. ΔP t from position 1-3 is by average 3.175 kPa with a ~1.6% standard error, which only leads to relative drop volume changes of 0.3‰ to 0.52‰.

  2. Hydrodynamic shrinkage of liquid CO2 Taylor drops in a straight microchannel.

    Science.gov (United States)

    Qin, Ning; Wen, John; Ren, Carolyn L

    2018-01-16

    Hydrodynamic shrinkage of liquid CO2 drops in water under a Taylor flow regime is studied using a straight microchannel (length/width ~ 100). A general form of a mathematical model of the solvent-side mass transfer coefficient (ks) is developed first. Based on formulations of the surface area (A) and the volume (V) of a general Taylor drop in a rectangular microchannel, a specific form of ks is derived. Drop length and speed are experimentally measured at three specified positions of the straight channel, namely, immediately after drop generation (position 1), the midpoint of the channel (position 2) and the end of the channel (position 3). The reductions of drop length (Lx, x = 1, 2, 3) from position 1 to 2 and down to 3 are used to quantify the drop shrinkage. Using the specific model, ks is calculated mainly based on Lx and drop flowing time (t). Results show that smaller CO2 drops produced by lower flow rate ratios (QLCO2/QH2O) are generally characterized by higher (nearly three times) ks and Sherwood numbers than those produced by higher QLCO2/QH2O, which is essentially attributed to the larger effective portion of the smaller drop contributing in the mass transfer under same levels of the flowing time and the surface-to-volume ratio (~ 104 m-1) of all drops. Based on calculated pressure drops of the segmented flow in microchannel, the Peng-Robinson equation of state (EOS) and initial pressures of drops at the T-junction in experiments, overall pressure drop (ΔPt) in the straight channel as well as the resulted drop volume change are quantified. ΔPt from position 1 to 3 is by average 3.175 kPa with a ~1.6% standard error, which only leads to relative drop volume changes of 0.3‰ to 0.52‰. © 2018 IOP Publishing Ltd.

  3. Detection of telomerase activity using microchip electrophoresis.

    Science.gov (United States)

    Karasawa, Koji; Arakawa, Hidetoshi

    2015-07-01

    Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making these TRAP methods time consuming and technically demanding. In this study we developed a novel telomerase assay using microchip electrophoresis for rapid and highly sensitive detection of telomerase activity in cancer cells. The mixed gel of 0.8% hydroxypropyl methylcellulose (HPMC) and 0.3% polyethylene oxide (PEO) with SYBR Gold (fluorescent reagent) was used for microchip electrophoresis. As a result, the product amplified by a telomerase-positive cell could be measured in one cell per assay and detected with high reproducibility (CV=0.67%) in the short time of 100s. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Measuring density and compressibility of white blood cells and prostate cancer cells by microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Magnusson, Cecilia

    2011-01-01

    We present a novel method for the determination of density and compressibility of individual particles and cells undergoing microchannel acoustophoresis in an arbitrary 2D acoustic field. Our method is a critical advancement within acoustophoretic separation of biological cells, as the ability to...

  5. Microchannel laminated mass exchanger and method of making

    Science.gov (United States)

    Martin, Peter M.; Bennett, Wendy D.; Matson, Dean W.; Stewart, Donald C.; Drost, Monte K.; Wegeng, Robert S.; Perez, Joseph M.; Feng, Xiangdong; Liu, Jun

    2000-01-01

    The present invention is a microchannel mass exchanger having a first plurality of inner thin sheets and a second plurality of outer thin sheets. The inner thin sheets each have a solid margin around a circumference, the solid margin defining a slot through the inner thin sheet thickness. The outer thin sheets each have at least two header holes on opposite ends and when sandwiching an inner thin sheet. The outer thin sheets further have a mass exchange medium. The assembly forms a closed flow channel assembly wherein fluid enters through one of the header holes into the slot and exits through another of the header holes after contacting the mass exchange medium.

  6. Detailed measurements and shaping of gate profiles for microchannel-plate-based X-ray framing cameras

    International Nuclear Information System (INIS)

    Landen, O.L.; Hammel, B.A.; Bell, P.M.; Abare, A.; Bradley, D.K.; Univ. of Rochester, NY

    1994-01-01

    Gated, microchannel-plate-based (MCP) framing cameras are increasingly used worldwide for x-ray imaging of subnanosecond laser-plasma phenomena. Large dynamic range (> 1,000) measurements of gain profiles for gated microchannel plates (MCP) are presented. Temporal profiles are reconstructed for any point on the microstrip transmission line from data acquired over many shots with variable delay. No evidence for significant pulse distortion by voltage reflections at the ends of the microstrip is observed. The measured profiles compare well to predictions by a time-dependent discrete dynode model down to the 1% level. The calculations do overestimate the contrast further into the temporal wings. The role of electron transit time dispersion in limiting the minimum achievable gate duration is then investigated by using variable duration flattop gating pulses. A minimum gate duration of 50 ps is achieved with flattop gating, consistent with a fractional transit time spread of ∼ 15%

  7. Usage of Capillary Electrophoresis for screening common Hemoglobinopathies

    Directory of Open Access Journals (Sweden)

    2016-06-01

    Full Text Available Hemoglobinopathies are most common inherited disorders in the world approximately 7 percent of the worldwide population and 5-6 percent of population of Iran are carriers. For control of this inherited hemoglobin disorders need to accurate screening by more advanced and more accurate methods. This study explains features of current Iran hemoglobin disorders, nominates the accessible methods for screening them and introduces the capillary zone electrophoresis as a rapid & more accurate method. The required data were extracted of various articles and then for good explanation, current Iran hemoglobinopathies properties were showed in the tables and electropherograms of important hemoglobin disorders in Iran population were provided for help to interpretation results of blood tests by capillary zone electrophoresis method. Hemoglobin disorders are including thalassemias & hemoglobin variants Disruption in the production and malfunction of globin chains cause types of hemoglobin disorders. We cannot introduce one of clinical laboratory tests as critical and basic method for screening and distinguishing types of inherited hemoglobin disorders as alone. For distinguishing the types of them must be prepared enough information and data of the hemoglobin disorders and for more accurate analysis must be used simultaneously different methods as Gel electrophoresis, High performance liquid chromatography, Isoelectric focusing, Capillary zone electrophoresis or molecular tests. The capillary electrophoresis is an accurate and rapid method for screening types of the hemoglobin disorders. Other side this method cannot analyze all of them, so must be used biochemical, biophysical and molecular methods for confirmation the results. This review showed we can use the capillary electrophoresis and HPLC as two complementary methods for hemoglobinopathies screening. We can analyze by the methods more hemoglobin disorders and decrease more laboratory errors. Moreover

  8. Basic study for gas cleaning using discharge and electrophoresis

    International Nuclear Information System (INIS)

    Su, Zhen-Zhou; Sawada, Jun; Takashima, Kazunori; Katsura, Shinji; Mizuno, Akira

    2004-01-01

    A NO x removal method using discharge plasma and electrophoresis for exhaust control was studied. The 65-50% of NO was oxidized to NO 2 or HNO 3 by the discharge plasma with specific input energy of 45J/l. The electrophoresis was carried out to concentrate the NO 2 or HNO 3 adsorbed on the adsorbents. As a result, 80% of the adsorbed nitrate ions were found in the anode region. A combination of molecular sieve pellets of 13X and glass fiber cloth was tested for the collection of nitrate ions. The ability of simultaneous concentration of nitrate ions and sulfate ions using electrophoresis was examined

  9. Proposal of New Rewritable Printing Media Using Electrophoresis and Confirmation of Its Mechanism

    Science.gov (United States)

    Hoshino, Yasushi; Ogura, Masahiro; Sano, Takayuki

    2004-10-01

    A new rewritable printing media using electrophoresis and selective heating is proposed to contribute to the reduction in paper consumption by printers. The mechanism is that when a heated part of the rewritable media is melted, white particles in that part of the media are able to move by electrophoresis. The media is initialized by heating its entire surface under the condition of voltage application and imaging is carried out by selective heating under the condition of an applied reversed-polarity voltage. Using a mixture system of carnauba wax and particles coated with titanium oxide (TiO2), the feasibility of the mechanism is confirmed.

  10. Using Gel Electrophoresis To Illustrate Protein Diversity and Isoelectric Point.

    Science.gov (United States)

    Browning, Mark; Vanable, Joseph

    2002-01-01

    Demonstrates the differences in protein structures by focusing on isoelectric point with an experiment that is observable under certain pH levels in gel electrophoresis. Explains the electrophoresis procedure and reports results of the experiments. (YDS)

  11. Experimental investigation of the liquid volumetric mass transfer coefficient for upward gas-liquid two-phase flow in rectangular microchannels

    Directory of Open Access Journals (Sweden)

    X. Y. Ji

    2010-12-01

    Full Text Available The gas-liquid two-phase mass transfer process in microchannels is complicated due to the special dynamical characteristics. In this work, a novel method was explored to measure the liquid side volumetric mass transfer coefficient kLa. Pressure transducers were utilized to measure the pressure variation of upward gas-liquid two-phase flow in three vertical rectangular microchannels and the liquid side volumetric mass transfer coefficient kLa was calculated through the Pressure-Volume-Temperature correlation of the gas phase. Carbon dioxide-water, carbon dioxide-ethanol and carbon dioxide-n-propanol were used as working fluids, respectively. The dimensions of the microchannels were 40 µm×240 µm (depth×width, 100 µm×800 µm and 100 µm×2000 µm, respectively. Results showed that the channel diameter and the capillary number influence kLa remarkably and that the maximum value of kLa occurs in the annular flow regime. A new correlation of kLa was proposed based on the Sherwood number, Schmidt number and the capillary number. The predicted values of kLa agreed well with the experimental data.

  12. Large abnormal peak on capillary zone electrophoresis due to contrast agent.

    Science.gov (United States)

    Wheeler, Rachel D; Zhang, Liqun; Sheldon, Joanna

    2017-01-01

    Background Some iodinated radio-contrast media absorb ultraviolet light and can therefore be detected by capillary zone electrophoresis. If seen, these peaks are typically small with 'quantifications' of below 5 g/L. Here, we describe the detection of a large peak on capillary zone electrophoresis that was due to the radio-contrast agent, Omnipaque™. Methods Serum from a patient was analysed by capillary zone electrophoresis, and the IgG, IgA, IgM and total protein concentrations were measured. The serum sample was further analysed by gel electrophoresis and immunofixation. Results Capillary zone electrophoresis results for the serum sample showed a large peak with a concentration high enough to warrant urgent investigation. However, careful interpretation alongside the serum immunoglobulin concentrations and total protein concentration showed that the abnormal peak was a pseudoparaprotein rather than a monoclonal immunoglobulin. This was confirmed by analysis with gel electrophoresis and also serum immunofixation. The patient had had a CT angiogram with the radio-contrast agent Omnipaque™; addition of Omnipaque™ to a normal serum sample gave a peak with comparable mobility to the pseudoparaprotein in the patient's serum. Conclusions Pseudoparaproteins can appear as a large band on capillary zone electrophoresis. This case highlights the importance of a laboratory process that detects significant electrophoretic abnormalities promptly and interprets them in the context of the immunoglobulin concentrations. This should avoid incorrect reporting of pseudoparaproteins which could result in the patient having unnecessary investigations.

  13. Low temperature catalytic combustion of propane over Pt-based catalyst with inverse opal microstructure in microchannel reactor

    NARCIS (Netherlands)

    Guan, G.; Zapf, R.; Kolb, G.A.; Men, Y.; Hessel, V.; Löwe, H.; Ye, J.; Zentel, R.

    2007-01-01

    novel Pt-based catalyst with highly regular, periodic inverse opal microstructure was fabricated in a microchannel reactor, and catalytic testing revealed excellent conversion and stable activity for propane combustion at low temperatures

  14. Simulation, Fabrication and Analysis of Silver Based Ascending Sinusoidal Microchannel (ASMC for Implant of Varicose Veins

    Directory of Open Access Journals (Sweden)

    Muhammad Javaid Afzal

    2017-09-01

    Full Text Available Bioengineered veins can benefit humans needing bypass surgery, dialysis, and now, in the treatment of varicose veins. The implant of this vein in varicose veins has significant advantages over the conventional treatment methods. Deep vein thrombosis (DVT, vein patch repair, pulmonary embolus, and tissue-damaging problems can be solved with this implant. Here, the authors have proposed biomedical microdevices as an alternative for varicose veins. MATLAB and ANSYS Fluent have been used for simulations of blood flow for bioengineered veins. The silver based microchannel has been fabricated by using a micromachining process. The dimensions of the silver substrates are 51 mm, 25 mm, and 1.1 mm, in length, width, and depth respectively. The dimensions of microchannels grooved in the substrates are 0.9 mm in width and depth. The boundary conditions for pressure and velocity were considered, from 1.0 kPa to 1.50 kPa, and 0.02 m/s to 0.07 m/s, respectively. These are the actual values of pressure and velocity in varicose veins. The flow rate of 5.843 (0.1 nL/s and velocity of 5.843 cm/s were determined at Reynolds number 164.88 in experimental testing. The graphs and results from simulations and experiments are in close agreement. These microchannels can be inserted into varicose veins as a replacement to maintain the excellent blood flow in human legs.

  15. Quantitative analysis by microchip capillary electrophoresis – current limitations and problem-solving strategies

    NARCIS (Netherlands)

    Revermann, T.; Götz, S.; Künnemeyer, Jens; Karst, U.

    2008-01-01

    Obstacles and possible solutions for the application of microchip capillary electrophoresis in quantitative analysis are described and critically discussed. Differences between the phenomena occurring during conventional capillary electrophoresis and microchip-based capillary electrophoresis are

  16. Inexpensive and Safe DNA Gel Electrophoresis Using Household Materials

    Science.gov (United States)

    Ens, S.; Olson, A. B.; Dudley, C.; Ross, N. D., III; Siddiqi, A. A.; Umoh, K. M.; Schneegurt, M. A.

    2012-01-01

    Gel electrophoresis is the single most important molecular biology technique and it is central to life sciences research, but it is often too expensive for the secondary science classroom or homeschoolers. A simple safe low-cost procedure is described here that uses household materials to construct and run DNA gel electrophoresis. Plastic…

  17. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    Science.gov (United States)

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  18. Interaction of albumins and heparinoids investigated by affinity capillary electrophoresis and free flow electrophoresis.

    Science.gov (United States)

    Mozafari, Mona; El Deeb, Sami; Krull, Friederike; Wildgruber, Robert; Weber, Gerhard; Reiter, Christian G; Wätzig, Hermann

    2018-02-01

    A fast and precise affinity capillary electrophoresis (ACE) method has been applied to investigate the interactions between two serum albumins (HSA and BSA) and heparinoids. Furthermore, different free flow electrophoresis methods were developed to separate the species which appears owing to interaction of albumins with pentosan polysulfate sodium (PPS) under different experimental conditions. For ACE experiments, the normalized mobility ratios (∆R/R f ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. ACE experiments were performed at two different temperatures (23 and 37°C). Both BSA and HSA interact more strongly with PPS than with unfractionated and low molecular weight heparins. For PPS, the interactions can already be observed at low mg/L concentrations (3 mg/L), and saturation is already obtained at approximately 20 mg/L. Unfractionated heparin showed almost no interactions with BSA at 23°C, but weak interactions at 37°C at higher heparin concentrations. The additional signals also appeared at higher concentrations at 37°C. Nevertheless, in most cases the binding data were similar at both temperatures. Furthermore, HSA showed a characteristic splitting in two peaks especially after interacting with PPS, which is probably attributable to the formation of two species or conformational change of HSA after interacting with PPS. The free flow electrophoresis methods have confirmed and completed the ACE experiments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High spatial and temporal resolution cell manipulation techniques in microchannels.

    Science.gov (United States)

    Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P

    2016-03-21

    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

  20. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  1. Pressure loss in two-phase flow through a microchannel rod bundle

    International Nuclear Information System (INIS)

    Smith, A.C.; Hamm, L.L.; Qureshi, Z.; Steeper, T.J.

    1998-01-01

    The purpose of the microchannel rod bundle two-phase flow test described here was to provide data for benchmarking safety analyses for the accelerator production of tritium (APT). The objective was to obtain pressure loss data for a typical accelerator target rod bundle over a wide range of two-phase flow conditions. The test rod bundle assembly was fabricated for single-phase pressure drop tests conducted at Los Alamos National Laboratory (LANL) and subsequently used for the two-phase flow testing described here. The results for a typical case are given. These results fall generally in the slug flow regime for the horizontal flow results of Fukano and Kariyasaki for a 1.0-mm circular channel. Fukano and Kariyasaki found that surface tension effects were dominant in the 1-mm channel and report no churn regime. The results were also compared with the flow regime maps given by Triplett et al. for flow in discrete microchannels. Triplett employed both circular and trapezoidal channels, the latter to approximate the rod bundle interstitial flow channel shape. It was found that the rod bundle flow fell across the slug-to-churn flow regime transition reported by Triplett. This is consistent with the expectation that cross flow among channels would result in turbulent mixing and would suppress the formation of large discrete bubbles

  2. Continuous Size-Dependent Sorting of Ferromagnetic Nanoparticles in Laser-Ablated Microchannel

    Directory of Open Access Journals (Sweden)

    Yiqiang Fan

    2016-01-01

    Full Text Available This paper reports a low-cost method of continuous size-dependent sorting of magnetic nanoparticles in polymer-based microfluidic devices by magnetic force. A neodymium permanent magnet was used to generate a magnetic field perpendicular to the fluid flow direction. Firstly, FeNi3 magnetic nanoparticles were chemically synthesized with diameter ranges from 80 nm to 200 nm; then, the solution of magnetic nanoparticles and a buffer were passed through the microchannel in laminar flow; the magnetic nanoparticles were deflected from the flow direction under the applied magnetic field. Nanoparticles in the microchannel will move towards the direction of high-gradient magnetic fields, and the degree of deflection depends on their sizes; therefore, magnetic nanoparticles of different sizes can be separated and finally collected from different output ports. The proposed method offers a rapid and continuous approach of preparing magnetic nanoparticles with a narrow size distribution from an arbitrary particle size distribution. The proposed new method has many potential applications in bioanalysis field since magnetic nanoparticles are commonly used as solid support for biological entities such as DNA, RNA, virus, and protein. Other than the size sorting application of magnetic nanoparticles, this approach could also be used for the size sorting and separation of naturally magnetic cells, including blood cells and magnetotactic bacteria.

  3. Sample Stacking in capillary zone electrophoresis : Principles, advantages and limitations

    NARCIS (Netherlands)

    Beckers, J.L.; Bocek, P.

    2000-01-01

    The principles of stacking procedures are described and their properties are discussed, including the fundamentals of the behavior of zone boundaries and the consequences of the self-correcting properties of boundaries in moving boundary electrophoresis, isotachophoresis, and zone electrophoresis.

  4. Continuous Fractionation of a two-component mixture by zone electrophoresis

    NARCIS (Netherlands)

    Zalewski, D.R.; Gardeniers, Johannes G.E.

    2009-01-01

    Synchronized continuous-flow zone electrophoresis is a recently demonstrated tool for performing electrophoretic fractionation of a complex sample. The method resembles free flow electrophoresis, but unlike in that technique, no mechanical fluid pumping is required. Instead, fast electrokinetic flow

  5. Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Shaw, A.; Larsen, M.; Roepstorff, P.

    1999-01-01

    magnitude of IFN-gamma responsive genes has been reported previously. Our goal is to identify and map IFN-gamma-regulated HeLa cell proteins to the two-dimensional polyacrylamide gel electrophoresis with the immobilized pH gradient (IPG) two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) system...

  6. Regulating the Emission Spectrum of CsPbBr3 from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor

    Science.gov (United States)

    Tang, Yong; Lu, Hanguang; Rao, Longshi; Ding, Xinrui; Yan, Caiman; Yu, Binhai

    2018-01-01

    The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs) is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr3 QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr3 QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing halide component. The mechanism of photoluminescence (PL) spectral shift of CsPbBr3 QDs was investigated, the result shows that the supersaturation control enabled by the superior mass and heat transfer performance in the microchannel is the key to achieve the wide range of PL spectrum, with only a change in the setting of the temperature controller required. The wide spectrum of CsPbBr3 QDs can be applied to light-emitting diodes (LEDs), photoelectric sensors, lasers, etc. PMID:29498710

  7. Time response of fast-gated microchannel plates used as x-ray detectors

    International Nuclear Information System (INIS)

    Turner, R.E.; Bell, P.; Hanks, R.; Kilkenny, J.D.; Landen, N.; Power, G.; Wiedwald, J.; Meier, M.

    1990-01-01

    We report measurements of the time response of fast-gated, micro- channel plate (MCP) detectors, using a <10 ps pulsewidth ultra-violet laser and an electronic sampling system to measure time resolutions to better than 25 ps. The results show that framing times of less than 100 ps are attainable with high gain. The data is compared to a Monte Carlo calculation, which shows good agreement. We also measured the relative sensitivity as a function of DC bias, and saturation effects for large signal inputs. In part B, we briefly describe an electrical ''time-of-flight'' technique, which we have used to measure the response time of a fast-gated microchannel plate (MCP). Thinner MCP's than previously used have been tested, and, as expected, show fast gating times and smaller electron multiplication. A preliminary design for an x-ray pinhole camera, using a thin MCP, is presented. 7 refs., 6 figs

  8. Slow waves in microchannel metal waveguides and application to particle acceleration

    OpenAIRE

    L. C. Steinhauer; W. D. Kimura

    2003-01-01

    Conventional metal-wall waveguides support waveguide modes with phase velocities exceeding the speed of light. However, for infrared frequencies and guide dimensions of a fraction of a millimeter, one of the waveguide modes can have a phase velocity equal to or less than the speed of light. Such a metal microchannel then acts as a slow-wave structure. Furthermore, if it is a transverse magnetic mode, the electric field has a component along the direction of propagation. Therefore, a strong ex...

  9. Systematic studies of micro-channel plate PMTs

    International Nuclear Information System (INIS)

    Lehmann, A.; Britting, A.; Cowie, E.; Dodokhof, V.Kh.; Dueren, M.; Dutta, D.; Eyrich, W.; Foehl, K.; Glazier, D.I.; Hayrapetyan, A.; Hoek, M.; Hohler, R.; Kaiser, R.; Keri, T.; Koch, P.; Kroeck, B.; Lehmann, D.; Marton, J.; Merle, O.; Montgomery, R.

    2011-01-01

    DIRC Cherenkov detectors will be the main devices for π/K separation at the PANDA experiment at FAIR. Due to their advantageous properties in terms of time resolution and especially inside magnetic fields micro-channel plate photo multipliers (MCP-PMTs) are very attractive sensor candidates. In this paper we present the investigation of several types of multi-anode MCP-PMTs. The darkcount rate, the behavior inside a magnetic field of up to 2 T, the time resolution, the gain homogeneity and crosstalk of multi-pixel MCP-PMTs were found to be well suitable for the PANDA requirements. Even the rate capability of the latest models from Burle-Photonis and Hamamatsu is satisfactory. Although a big step forward was accomplished with these recently available MCP-PMTs, the lifetime is still not sufficient for the photon densities expected for the PANDA DIRCs.

  10. Speciation of protein-bound trace elements by gel electrophoresis and atomic spectrometry.

    Science.gov (United States)

    Ma, Renli; McLeod, Cameron W; Tomlinson, Kerry; Poole, Robert K

    2004-08-01

    The metabolism of trace elements, in particular their binding to proteins in biological systems is of great importance in biochemical, toxicological, and pharmacological studies. As a result there has been a sustained interest over the last two decades in the speciation of protein-bound metals. Various analytical approaches have been employed, combining efficient separation of metalloproteins by liquid chromatography or electrophoresis with high-sensitivity elemental detection. Slab-gel electrophoresis (GE) is a key platform for high-resolution protein separation, and has been combined with autoradiography and various atomic spectrometric techniques for in-gel determination of protein-bound metals. Recently, the combination of GE with state-of-the-art inductively coupled plasma-mass spectrometry (ICP-MS), particularly when linked to laser ablation (LA) for direct gel interrogation, has opened up new opportunities for rapid characterization of metalloproteins. The use of GE and atomic spectrometry for the speciation of protein-bound trace elements is reviewed in this paper. Technical requirements for gel electrophoresis/atomic spectrometric measurement are considered in terms of method compatibilities, detection capability and potential usefulness. The literature is also surveyed to illustrate current status and future trends. Copyright 2004 Wiley-VCH Verlag GmbH and Co.

  11. Regulating the Emission Spectrum of CsPbBr3 from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor

    OpenAIRE

    Yong Tang; Hanguang Lu; Longshi Rao; Zongtao Li; Xinrui Ding; Caiman Yan; Binhai Yu

    2018-01-01

    The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs) is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr3 QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr3 QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing hal...

  12. Speciation of organotin compounds by capillary electrophoresis: comparison of aqueous and mixed organic-aqueous systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei; Matysik, Frank-Michael; Glaeser, Petra [Universitaet Leipzig, Institut fuer Analytische Chemie, Leipzig (Germany)

    2004-10-01

    A capillary electrophoresis method with direct ultraviolet detection was developed for the analysis of organotin species. Despite the fact that direct detection of organotin compounds by ultraviolet absorption is difficult because most organotins possess poor chromophoric properties, the application of low wavelength ({lambda}=200 nm) and mixed organic-aqueous media enabled a significant enhancement in sensitivity. A mixed organic-aqueous system (10% methanol/40% acetonitrile/50% H{sub 2}O) containing acetic acid and tetrabutylammonium perchlorate formed the basis for rapid, efficient and sensitive determinations of organotin cations such as tripropyltin, tributyltin, triphenyltin and diphenyltin. The concentration limits of detection (LOD) for the four organotin compounds were in the range of 0.4-14 {mu}M, comparable to that obtained with the most sensitive indirect UV method reported until now, and took advantage of a stable baseline, a symmetric peak shape and an absence of disturbing system peaks. The relative standard deviations (n=7) for the relative peak time and peak area were 0.44-0.77 and 4.8-5.8%, respectively. In addition to sensitivity enhancements, the use of organic-aqueous systems instead of pure aqueous media resulted in improved selectivity and efficiency of separations. (orig.)

  13. A Comprehensive Quality Evaluation System for Complex Herbal Medicine Using PacBio Sequencing, PCR-Denaturing Gradient Gel Electrophoresis, and Several Chemical Approaches

    Directory of Open Access Journals (Sweden)

    Xiasheng Zheng

    2017-09-01

    Full Text Available Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis, to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control.Highlight: We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis with analytical chemistry approaches to achieve the authentication and quality connotation of the samples.

  14. A Comprehensive Quality Evaluation System for Complex Herbal Medicine Using PacBio Sequencing, PCR-Denaturing Gradient Gel Electrophoresis, and Several Chemical Approaches.

    Science.gov (United States)

    Zheng, Xiasheng; Zhang, Peng; Liao, Baosheng; Li, Jing; Liu, Xingyun; Shi, Yuhua; Cheng, Jinle; Lai, Zhitian; Xu, Jiang; Chen, Shilin

    2017-01-01

    Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis), to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control. Highlight : We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis) with analytical chemistry approaches to achieve the authentication and quality connotation of the samples.

  15. A Comprehensive Quality Evaluation System for Complex Herbal Medicine Using PacBio Sequencing, PCR-Denaturing Gradient Gel Electrophoresis, and Several Chemical Approaches

    Science.gov (United States)

    Zheng, Xiasheng; Zhang, Peng; Liao, Baosheng; Li, Jing; Liu, Xingyun; Shi, Yuhua; Cheng, Jinle; Lai, Zhitian; Xu, Jiang; Chen, Shilin

    2017-01-01

    Herbal medicine is a major component of complementary and alternative medicine, contributing significantly to the health of many people and communities. Quality control of herbal medicine is crucial to ensure that it is safe and sound for use. Here, we investigated a comprehensive quality evaluation system for a classic herbal medicine, Danggui Buxue Formula, by applying genetic-based and analytical chemistry approaches to authenticate and evaluate the quality of its samples. For authenticity, we successfully applied two novel technologies, third-generation sequencing and PCR-DGGE (denaturing gradient gel electrophoresis), to analyze the ingredient composition of the tested samples. For quality evaluation, we used high performance liquid chromatography assays to determine the content of chemical markers to help estimate the dosage relationship between its two raw materials, plant roots of Huangqi and Danggui. A series of surveys were then conducted against several exogenous contaminations, aiming to further access the efficacy and safety of the samples. In conclusion, the quality evaluation system demonstrated here can potentially address the authenticity, quality, and safety of herbal medicines, thus providing novel insight for enhancing their overall quality control. Highlight: We established a comprehensive quality evaluation system for herbal medicine, by combining two genetic-based approaches third-generation sequencing and DGGE (denaturing gradient gel electrophoresis) with analytical chemistry approaches to achieve the authentication and quality connotation of the samples. PMID:28955365

  16. Optimization of Dimples in Microchannel Heat Sink with Impinging Jets — Part A: Mathematical Model and the Influence of Dimple Radius

    Science.gov (United States)

    Ming, Tingzhen; Cai, Cunjin; Yang, Wei; Shen, Wenqing; Gan, Ting

    2018-06-01

    With increasing heat fluxes caused by electronic components, dimples have attracted wide attention by researchers and have been applied to microchannel heat sink in modern advanced cooling technologies. In this work, the combination of dimples, impinging jets and microchannel heat sink was proposed to improve the heat transfer performance on a cooling surface with a constant heat flux 500 W/cm2. A mathematical model was advanced for numerically analyzing the fluid flow and heat transfer characteristics of a microchannel heat sink with impinging jets and dimples (MHSIJD), and the velocity distribution, pressure drop, and thermal performance of MHSIJD were analyzed by varying the radii of dimples. The results showed that the combination of dimples and MHSIJ can achieve excellent heat transfer performance; for the MHSIJD model in this work, the maximum and average temperatures can be as low as 320 K and 305 K, respectively when mass flow rate is 30 g/s; when dimple radius is larger than 0.195 mm, both the heat transfer coefficient and the overall performance h/ΔP of MHSIJD are higher than those of MHSIJ.

  17. Effect of microculture on cell metabolism and biochemistry: do cells get stressed in microchannels?

    Science.gov (United States)

    Su, Xiaojing; Theberge, Ashleigh B; January, Craig T; Beebe, David J

    2013-02-05

    Microfluidics is emerging as a promising platform for cell culture, enabling increased microenvironment control and potential for integrated analysis compared to conventional macroculture systems such as well plates and Petri dishes. To advance the use of microfluidic devices for cell culture, it is necessary to better understand how miniaturization affects cell behavior. In particular, microfluidic devices have significantly higher surface-area-to-volume ratios than conventional platforms, resulting in lower volumes of media per cell, which can lead to cell stress. We investigated cell stress under a variety of culture conditions using three cell lines: parental HEK (human embryonic kidney) cells and transfected HEK cells that stably express wild-type (WT) and mutant (G601S) human ether-a-go-go related gene (hERG) potassium channel protein. These three cell lines provide a unique model system through which to study cell-type-specific responses in microculture because mutant hERG is known to be sensitive to environmental conditions, making its expression a particularly sensitive readout through which to compare macro- and microculture. While expression of WT-hERG was similar in microchannel and well culture, the expression of mutant G601S-hERG was reduced in microchannels. Expression of the endoplasmic reticulum (ER) stress marker immunoglobulin binding protein (BiP) was upregulated in all three cell lines in microculture. Using BiP expression, glucose consumption, and lactate accumulation as readouts we developed methods for reducing ER stress including properly increasing the frequency of media replacement, reducing cell seeding density, and adjusting the serum concentration and buffering capacity of culture medium. Indeed, increasing the buffering capacity of culture medium or frequency of media replacement partially restored the expression of the G601S-hERG in microculture. This work illuminates how biochemical properties of cells differ in macro- and

  18. Usage of capillary electrophoresis for common hemoglobinopathies screening

    Directory of Open Access Journals (Sweden)

    Alireza Ebrahimi

    2016-06-01

    Full Text Available Hemoglobinopathies are most common inherited disorders in the world; approximately 7 percent of the worldwide population and 5-6 percent of population of Iran are carriers. The hemoglobin disorders inherit as autosomal recessive and are very common in the Mediterranean area and much of the Asia and Africa. The control of this inherited disorders need to genetic counseling and accurate screening by more advanced and more accurate methods. This study explains features of current Iran hemoglobin disorders, nominates the accessible methods for screening them and introduces the capillary zone electrophoresis as a rapid and more accurate method. The required data were extracted of various articles and then for good explanation, current Iran hemoglobinopathies properties were showed in the tables and electropherograms of important hemoglobin disorders in Iran population were provided for help to interpretation results of blood tests by capillary zone electrophoresis method. Hemoglobin disorders are including thalassemias and hemoglobin variants; Disruption in the production and malfunction of globin chains cause types of hemoglobin disorders. We cannot introduce one of clinical laboratory tests as critical and basic method for screening and distinguishing types of inherited hemoglobin disorders as alone. For distinguishing the types of them must be prepared enough information and data of the hemoglobin disorders and for more accurate analysis must be used simultaneously different methods as gel electrophoresis, high performance liquid chromatography, isoelectric focusing, capillary zone electrophoresis or molecular tests. The capillary electrophoresis is an accurate and rapid method for screening types of the hemoglobin disorders. Other side this method cannot analyze all of them, so must be used biochemical, biophysical and molecular methods for confirmation the results. This review showed we can use the capillary electrophoresis and HPLC as two

  19. Single-phase flow and flow boiling of water in horizontal rectangular microchannels

    OpenAIRE

    Mirmanto

    2013-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University The current study is part of a long term experimental project devoted to investigating single-phase flow pressure drop and heat transfer, flow boiling pressure drop and heat transfer, flow boiling instability and flow visualization of de-ionized water flow in microchannels. The experimental facility was first designed and constructed by S. Gedupudi (2009) and in the present study; ...

  20. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng

    2015-01-01

    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences. The book gives an overview of the development of MC and CE technology as well as technology that now allows for the fabrication of MC-CE devices. It describes the operating principles that make integration possible and illustrates some achievements already made by the application of MC-CE devices in hospitals, clinics, food safety, and environmental research. The authors envision further applications for private and public use once the proof-of-concept stage has been passed and obstacles to increased commercialization are ad...

  1. On-line detection of small radioactive ions by capillary electrophoresis

    International Nuclear Information System (INIS)

    Klunder, G.L.; Andrews, J.E. Jr.; Russo, R.E.

    1994-01-01

    Worldwide environmental interests have placed a great demand on developing techniques for rapid characterization of contaminated soil and groundwater. Detection of radioactive contaminants is necessary for monitoring effluents from nuclear processes or to assure proper long term storage of radioactive waste. The authors have been investigating the chemistry required to separate representative radioactive small cations and anions by capillary electrophoresis. In order to evaluate the separation chemistry, detection of stable isotopes of the representative ions was achieved by indirect absorption for cations and direct absorption for anions. Several buffer systems which have been considered in the optimization of the separations will be discussed. The authors have designed and tested two on-line radioactivity detectors for capillary electrophoresis. An on-line solid state CdTe detector was constructed for this study and a scintillation detector has been designed using a high gain photodiode light sensor. Different scintillation materials have been tested. Comparison of the detectors, design considerations, efficiency and limits of detection will be presented

  2. Features of two-phase flow in a microchannel of 0.05×20 mm

    Science.gov (United States)

    Ronshin, Fedor

    2017-10-01

    We have studied the two-phase flow in a microchannel with cross-section of 0.05×20 mm2. The following two-phase flow regimes have been registered: jet, bubble, stratified, annular, and churn ones. The main features of flow regimes in this channel such as formation of liquid droplets in all two-phase flows have been distinguished.

  3. Capillary array electrophoresis using laser-excited confocal fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.C.; Quesada, M.A.; Mathies, R.A. [Univ. of California, Berkeley, CA (United States)

    1992-04-15

    Capillary electrophoresis (CE) has found widespread application in analytical and biomedical research, and the scope and sophistication of CE is still rapidly advancing. Gel-filled capillaries have been employed for the rapid separation and analysis of synthetic polynucleotides, DNA sequencing fragments, and DNA restriction fragments. Open-tube capillary electrophoresis has attained subattomole detection levels in amino acid separations 14 and proven its utility for the separation of proteins, viruses, and bacteria. Separation of the optical isomers of dansyl amino acids has also been successfully demonstrated. Micellar electrokinetic capillary chromatography, isoelectric focusing, and on-column derivatization can all be performed on CE columns, demonstrating the utility of capillary electrophoresis as an analytical and micropreparative tool. 29 refs., 6 figs., 1 tab.

  4. Design of micro distribution systems consisting of long channels with arbitrary cross sections

    International Nuclear Information System (INIS)

    Misdanitis, S; Valougeorgis, D

    2012-01-01

    Gas flows through long micro-channels of various cross sections have been extensively investigated over the years both numerically and experimentally. In various technological applications including microfluidics, these micro-channels are combined together in order to form a micro-channel network. Computational algorithms for solving gas pipe networks in the hydrodynamic regime are well developed. However, corresponding tools for solving networks consisting of micro-channels under any degree of gas rarefaction is very limited. Recently a kinetic algorithm has been developed to simulate gas distribution systems consisting of long circular channels under any vacuum conditions. In the present work this algorithm is generalized and extended into micro-channels of arbitrary cross-section etched by KOH in silicon (triangular and trapezoidal channels with acute angle of 54.74°). Since a kinetic approach is implemented, the analysis is valid and the results are accurate in the whole range of the Knudsen number, while the involved computational effort is very small. This is achieved by successfully integrating the kinetic results for the corresponding single channels into the general solver for designing the gas pipe network. To demonstrate the feasibility of the approach two typical systems consisting of long rectangular and trapezoidal micro-channels are solved.

  5. Numerical and experimental study of the slug-flow regime in a mixture of castor and paraffin oils in a T-type microchannel

    Science.gov (United States)

    Minakov, A. V.; Shebeleva, A. A.; Yagodnitsyna, A. A.; Kovalev, A. V.; Bilsky, A. V.

    2017-09-01

    The slow-flug regime in a mixture of castor and paraffin oils in a T-type microchannel with crosssectional dimensions of 200 × 400 μm has been studied by numerical and experimental methods. The domain of existence of the slow-flug regime in this system has been determined. Dependence of the paraffin-oil slug length on the ratio of flow rates of the mixture components is established. Comparison of the calculated and experimental data shows their good agreement.

  6. Bubble splitting under gas–liquid–liquid three-phase flow in a double T-junction microchannel

    NARCIS (Netherlands)

    Liu, Yanyan; Yue, Jun; Zhao, Shuainan; Yao, Chaoqun; Chen, Guangwen

    Gas–aqueous liquid–oil three-phase flow was generated in a microchannel with a double T-junction. Under the squeezing of the dispersed aqueous phase at the second T-junction (T2), the splitting of bubbles generated from the first T-junction (T1) was investigated. During the bubble splitting process,

  7. Laser-Induced Motion of a Nanofluid in a Micro-Channel

    OpenAIRE

    Tran X. Phuoc; Mehrdad Massoudi; Ping Wang

    2016-01-01

    Since a photon carries both energy and momentum, when it interacts with a particle, photon-particle energy and momentum transfer occur, resulting in mechanical forces acting on the particle. In this paper we report our theoretical study on the use of a laser beam to manipulate and control the flow of nanofluids in a micro-channel. We calculate the velocity induced by a laser beam for TiO2, Fe2O3, Al2O3 MgO, and SiO2 nanoparticles with water as the base fluid. The particle diameter is 50 nm an...

  8. Developments in microchannel plate detectors for imaging x-ray astronomy

    International Nuclear Information System (INIS)

    Fraser, G.W.; Whiteley, M.J.; Pearson, J.F.

    1985-01-01

    The authors present new results in four areas of microchannel plate (MCP) X-ray detector operation. The performance in pulse counting mode of MCPs with 8 micron channel diameters is reported. The effects on MCP quantum detection efficiency and energy discrimination of multiple CsI coatings are described. A new mode of operation of two-stage multipliers is evaluated. Replacing the conventional electron-accelerating inter-plate potential difference by a retarding field is shown to result in definite advantages with regard to X-ray energy discrimination and detector lifetime. The source of the MCP internal background is discussed

  9. Capillary electrophoresis-MALDI interface based on inkjet technology

    Science.gov (United States)

    Vannatta, Michael W.; Whitmore, Colin D.; Dovichi, Norman J.

    2010-01-01

    An ink jet printer valve and nozzle were used to deliver matrix and sample from an electrophoresis capillary onto a MALDI plate. The system was evaluated by separation of a set of standard peptides. That separation generated up to 40,000 theoretical plates in less than three minutes. Detection limits were 500 amol using an ABI TOF-TOF instrument and 2 fmol for an ABI Q-TOF instrument. Over 70% coverage was obtained for the tryptic digest of α-lactalbumin in less than 2.5 minutes. PMID:19960472

  10. Effects of carbon nanotube coating on flow boiling in a micro-channel

    OpenAIRE

    Khanikar, Vikash; Mudawar, Issam; Fisher, Timothy

    2009-01-01

    Experiments were performed to assess the heat transfer enhancement benefits of coating the bottom wall of a shallow rectangular micro-channel with carbon nanotubes (CNTs). Using water as working fluid, tests were performed with a bare copper surface and three separate, yet identical CNT-coated surfaces. Each of the CNT-coated surfaces was tested repeatedly at the same mass velocity to explore any time dependence of heat transfer performance parameters, especially critical heat flux (CHIF). Ap...

  11. Measurements of tangential momentum accommodation coefficient for various gases in plane microchannel

    OpenAIRE

    Graur , I; Perrier , Pierre; Ghozlani , W ,; Méolans , J.Gilbert

    2009-01-01

    International audience; Mass flow rate measurements in a single silicon microchannel were carried out for various gases in isothermal steady flows. The results obtained from hydrodynamic to near free molecular regime by using a powerful experimental platform allowed us to deduce interesting information, notably about the reflection/accommodation process at the wall. In the 0–0.3 Knudsen range, a continuum analytic approach was derived from the NS equations, associated with first or second ord...

  12. Mixing in wicking structures and the use of enhanced mixing within wicks in microchannel devices

    Science.gov (United States)

    Stenkamp, Victoria S [Richland, WA; TeGrotenhuis, Ward E [Kennewick, WA; Wegeng, Robert S [Alexandria, VA

    2009-06-02

    Advanced wicking structures and methods utilizing these structures are described. The use of advanced wicking structures can promote rapid mass transfer while maintaining high capillary pressure through the use of small pores. Particularly improved results in fluid contacting processes can be achieved by enhanced mixing within a wicking layer within a microchannel.

  13. Magneto-paper electrophoresis in the separation of inorganic ions

    International Nuclear Information System (INIS)

    Mukherjee, H.G.; Datta, S.K.

    1983-01-01

    A comparative study of the separation of lanthanide ions by paper electrophoresis and magneto-paper electrophoresis is reported. The separation of La(III)-Gd(III), La(III)-Dy(III), Lu(III)-Gd(III), Lu(III)-Ho(III) etc. was achieved by magneto paper electrophoresis using 0.1M KCl as carrier electrolyte. Separation of different oxidation states of the same element like Cu(I)-Cu(II), Ce(III)-Ce(IV), Mn(CN) 6 3 - -Mn(CN) 6 4 - , Co(C 2 O 4 ) 2 2 - -Co(C 2 O 4 ) 3 3 - , V(CN) 6 3 - -VO(CN) 5 3 - , W(CN) 8 4 - -W(CN) 8 3 - and Ru(CN) 6 3 - Ru(CN) 6 4 - was also achieved by magneto paper electrophoretic technique using different carrier electrolytes. (Author)

  14. The gel electrophoresis markup language (GelML) from the Proteomics Standards Initiative.

    Science.gov (United States)

    Gibson, Frank; Hoogland, Christine; Martinez-Bartolomé, Salvador; Medina-Aunon, J Alberto; Albar, Juan Pablo; Babnigg, Gyorgy; Wipat, Anil; Hermjakob, Henning; Almeida, Jonas S; Stanislaus, Romesh; Paton, Norman W; Jones, Andrew R

    2010-09-01

    The Human Proteome Organisation's Proteomics Standards Initiative has developed the GelML (gel electrophoresis markup language) data exchange format for representing gel electrophoresis experiments performed in proteomics investigations. The format closely follows the reporting guidelines for gel electrophoresis, which are part of the Minimum Information About a Proteomics Experiment (MIAPE) set of modules. GelML supports the capture of metadata (such as experimental protocols) and data (such as gel images) resulting from gel electrophoresis so that laboratories can be compliant with the MIAPE Gel Electrophoresis guidelines, while allowing such data sets to be exchanged or downloaded from public repositories. The format is sufficiently flexible to capture data from a broad range of experimental processes, and complements other PSI formats for MS data and the results of protein and peptide identifications to capture entire gel-based proteome workflows. GelML has resulted from the open standardisation process of PSI consisting of both public consultation and anonymous review of the specifications.

  15. Fluorescence monitoring of capillary electrophoresis separation of biomolecules with monolithically integrated optical waveguides

    NARCIS (Netherlands)

    Dongre, C.; Dekker, R.; Hoekstra, Hugo; Martinez-Vazquez, R.; Osellame, R.; Ramponi, R.; Cerullo, G.; van Weeghel, R.; Besselink, G.A.J.; van den Vlekkert, H.H.; Pollnau, Markus

    2009-01-01

    Monolithic integration of optical waveguides in a commercial lab-on-a-chip by femtosecond-laser material processing enables arbitrary 3D geometries of optical sensing structures in combination with fluidic microchannels. Integrated fluorescence monitoring of molecular separation, as applicable in

  16. Regulating the Emission Spectrum of CsPbBr3 from Green to Blue via Controlling the Temperature and Velocity of Microchannel Reactor

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2018-03-01

    Full Text Available The ability to precisely obtain tunable spectrum of lead halide perovskite quantum dots (QDs is very important for applications, such as in lighting and display. Herein, we report a microchannel reactor method for synthesis of CsPbBr3 QDs with tunable spectrum. By adjusting the temperature and velocity of the microchannel reactor, the emission peaks of CsPbBr3 QDs ranging from 520 nm to 430 nm were obtained, which is wider than that of QDs obtained in a traditional flask without changing halide component. The mechanism of photoluminescence (PL spectral shift of CsPbBr3 QDs was investigated, the result shows that the supersaturation control enabled by the superior mass and heat transfer performance in the microchannel is the key to achieve the wide range of PL spectrum, with only a change in the setting of the temperature controller required. The wide spectrum of CsPbBr3 QDs can be applied to light-emitting diodes (LEDs, photoelectric sensors, lasers, etc.

  17. Streamlined sign-out of capillary protein electrophoresis using middleware and an open-source macro application.

    Science.gov (United States)

    Mathur, Gagan; Haugen, Thomas H; Davis, Scott L; Krasowski, Matthew D

    2014-01-01

    Interfacing of clinical laboratory instruments with the laboratory information system (LIS) via "middleware" software is increasingly common. Our clinical laboratory implemented capillary electrophoresis using a Sebia(®) Capillarys-2™ (Norcross, GA, USA) instrument for serum and urine protein electrophoresis. Using Data Innovations Instrument Manager, an interface was established with the LIS (Cerner) that allowed for bi-directional transmission of numeric data. However, the text of the interpretive pathology report was not properly transferred. To reduce manual effort and possibility for error in text data transfer, we developed scripts in AutoHotkey, a free, open-source macro-creation and automation software utility. Scripts were written to create macros that automated mouse and key strokes. The scripts retrieve the specimen accession number, capture user input text, and insert the text interpretation in the correct patient record in the desired format. The scripts accurately and precisely transfer narrative interpretation into the LIS. Combined with bar-code reading by the electrophoresis instrument, the scripts transfer data efficiently to the correct patient record. In addition, the AutoHotKey script automated repetitive key strokes required for manual entry into the LIS, making protein electrophoresis sign-out easier to learn and faster to use by the pathology residents. Scripts allow for either preliminary verification by residents or final sign-out by the attending pathologist. Using the open-source AutoHotKey software, we successfully improved the transfer of text data between capillary electrophoresis software and the LIS. The use of open-source software tools should not be overlooked as tools to improve interfacing of laboratory instruments.

  18. Detection, Quantification, and Microlocalisation of Targets of Pesticides Using Microchannel Plate Autoradiographic Imagers

    Directory of Open Access Journals (Sweden)

    Mabruka H. Tarhoni

    2011-10-01

    Full Text Available Organophosphorus (OP compounds are a diverse chemical group that includes nerve agents and pesticides. They share a common chemical signature that facilitates their binding and adduction of acetylcholinesterase (AChE within nerve synapses to induce cholinergic toxicity. However, this group diversity results in non-uniform binding and inactivation of other secondary protein targets, some of which may be adducted and protein activity influenced, even when only a relatively minor portion of tissue AChE is inhibited. The determination of individual OP protein binding targets has been hampered by the sensitivity of methods of detection and quantification of protein-pesticide adducts. We have overcome this limitation by the employment of a microchannel plate (MCP autoradiographic detector to monitor a radiolabelled OP tracer compound. We preincubated rat thymus tissue in vitro with the OP pesticides, azamethiphos-oxon, chlorfenvinphos-oxon, chlorpyrifos-oxon, diazinon-oxon, and malaoxon, and then subsequently radiolabelled the free OP binding sites remaining with 3H-diisopropylfluorophosphate (3H-DFP. Proteins adducted by OP pesticides were detected as a reduction in 3H-DFP radiolabelling after protein separation by one dimensional polyacrylamide gel electrophoresis and quantitative digital autoradiography using the MCP imager. Thymus tissue proteins of molecular weights ~28 kDa, 59 kDa, 66 kDa, and 82 kDa displayed responsiveness to adduction by this panel of pesticides. The 59 kDa protein target (previously putatively identified as carboxylesterase I was only significantly adducted by chlorfenvinphos-oxon (p < 0.001, chlorpyrifos-oxon (p < 0.0001, and diazinon-oxon (p < 0.01, the 66 kDa protein target (previously identified as serum albumin similarly only adducted by the same three pesticides (p < 0.0001, (p < 0.001, and (p < 0.01, and the 82 kDa protein target (previously identified as acyl peptide hydrolase only adducted by chlorpyrifos-oxon (p

  19. Features of two-phase flow in a microchannel of 0.05×20 mm

    Directory of Open Access Journals (Sweden)

    Ronshin Fedor

    2017-01-01

    Full Text Available We have studied the two-phase flow in a microchannel with cross-section of 0.05×20 mm2. The following two-phase flow regimes have been registered: jet, bubble, stratified, annular, and churn ones. The main features of flow regimes in this channel such as formation of liquid droplets in all two-phase flows have been distinguished.

  20. Undergraduate physics laboratory: Electrophoresis in chromatography paper

    Science.gov (United States)

    Hyde, Alexander; Batishchev, Oleg

    2015-12-01

    An experiment studying the physical principles of electrophoresis in liquids was developed for an undergraduate laboratory. We have improved upon the standard agarose gel electrophoresis experimental regime with a straightforward and cost-effective procedure, in which drops of widely available black food coloring were separated by electric field into their dye components on strips of chromatography paper soaked in a baking soda/water solution. Terminal velocities of seven student-safe dyes were measured as a function of the electric potential applied along the strips. The molecular mobility was introduced and calculated by analyzing data for a single dye. Sources of systematic and random errors were investigated.

  1. Speciation and solubility of neptunium in underground environments by paper electrophoresis

    International Nuclear Information System (INIS)

    Nagasaki, S.; Tanaka, Satoru; Takahashi, Yoichi

    1988-01-01

    Speciation and solubility of neptunium were studied using paper electrophoresis, ion exchange and ultrafiltration. Among these methods, the paper electrophoresis was found to be suitable for measuring speciation and solubility of neptunium of low concentration, if chemical species had opposite charge to each other or dissolved species had a charge. Using paper electrophoresis, hydrolysis constants of NpO 2 OH 0 and NpO 2 - (OH) 2 - and solubility product of NpO 2 were obtained and ionic-strength dependence of speciation was observed. (author) 9 refs.; 3 figs.; 2 tabs

  2. High performance electrophoresis system for site-specific entrapment of nanoparticles in a nanoarray

    Science.gov (United States)

    Han, Jin-Hee; Lakshmana, Sudheendra; Kim, Hee-Joo; Hass, Elizabeth A.; Gee, Shirley; Hammock, Bruce D.; Kennedy, Ian

    2010-02-01

    A nanoarray, integrated with an electrophoretic system, was developed to trap nanoparticles into their corresponding nanowells. This nanoarray overcomes the complications of losing the function and activity of the protein binding to the surface in conventional microarrays by using minimum amounts of sample. The nanoarray is also superior to other biosensors that use immunoassays in terms of lowering the limit of detection to the femto- or atto-molar level. In addition, our electrophoretic particle entrapment system (EPES) is able to effectively trap the nanoparticles using a low trapping force for a short duration. Therefore, good conditions for biological samples conjugated with particles can be maintained. The channels were patterned onto a bi-layer consisting of a PMMA and LOL coating on conductive indium tin oxide (ITO)-coated glass slide by using e-beam lithography. The suspensions of 170 nm-nanoparticles then were added to the chip that was connected to a positive voltage. On top of the droplet, another ITO-coated-glass slide was covered and connected to a ground terminal. Negatively charged fluorescent nanoparticles (blue emission) were selectively trapped onto the ITO surface at the bottom of the wells by following electric field lines. Numerical modeling was performed by using commercially available software, COMSOL Multiphysics to provide better understanding about the phenomenon of electrophoresis in a nanoarray. Simulation results are also useful for optimally designing a nanoarray for practical applications.

  3. Continuous protein concentration via free-flow moving reaction boundary electrophoresis.

    Science.gov (United States)

    Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi

    2017-07-28

    In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    International Nuclear Information System (INIS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Zenhausern, Frederic; Rivera, Andrew; Birdsell, Dawn N; Wagner, David M

    2015-01-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30–100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis. (paper)

  5. Numerical investigation of fluid flow and heat transfer under high heat flux using rectangular micro-channels

    KAUST Repository

    Mansoor, Mohammad M.; Wong, Kokcheong; Siddique, Mansoor M.

    2012-01-01

    computational domain was discretized using a 120×160×100 grid for the micro-channel with an aspect ratio of (α=4.56) and examined for Reynolds numbers in the laminar range (Re 500-2000) using FLUENT. De-ionized water served as the cooling fluid while the micro

  6. A microfluidic platform for generating large-scale nearly identical human microphysiological system arrays

    Science.gov (United States)

    Hsu, Yu-Hsiang; Moya, Monica L.; Hughes, Christopher C.W.; Georgea, Steven C.; Lee, Abraham P.

    2013-01-01

    This paper reports a polydimethylsiloxane microfluidic model system that can develop an array of nearly identical human microtissues with interconnected vascular networks. The microfluidic system design is based on an analogy with an electric circuit, applying resistive circuit concepts to design pressure dividers in serially-connected microtissue chambers. A long microchannel (550, 620 and 775 mm) creates a resistive circuit with a large hydraulic resistance. Two media reservoirs with a large cross-sectional area and of different heights are connected to the entrance and exit of the long microchannel to serve as a pressure source, and create a near constant pressure drop along the long microchannel. Microtissue chambers (0.12 μl) serve as a two-terminal resistive component with an input impedance > 50-fold larger than the long microchannel. Connecting each microtissue chamber to two different positions along the long microchannel creates a series of pressure dividers. Each microtissue chamber enables a controlled pressure drop of a segment of the microchannel without altering the hydrodynamic behaviour of the microchannel. The result is a controlled and predictable microphysiological environment within the microchamber. Interstitial flow, a mechanical cue for stimulating vasculogenesis, was verified by finite element simulation and experiments. The simplicity of this design enabled the development of multiple microtissue arrays (5, 12, and 30 microtissues) by co-culturing endothelial cells, stromal cells, and fibrin within the microchambers over two and three week periods. This methodology enables the culturing of a large array of microtissues with interconnected vascular networks for biological studies and applications such as drug development. PMID:23723013

  7. Experimental demonstration of a tailored-width microchannel heat exchanger configuration for uniform wall temperature

    International Nuclear Information System (INIS)

    Riera, S; Barrau, J; Rosell, J I; Omri, M; Fréchette, L G

    2013-01-01

    In this work, an experimental study of a novel microfabricated heat sink configuration that tends to uniform the wall temperature, even with increasing flow temperature, is presented. The design consists of a series of microchannel sections with stepwise varying width. This scheme counteracts the flow temperature increase by reducing the local thermal resistance along the flow path. A test apparatus with uniform heat flux and distributed wall temperature measurements was developed for microchannel heat exchanger characterisation. The energy balance is checked and the temperature distribution is analysed for each test. The results show that the wall temperature decreases slightly along the flow path while the fluid temperature increases, highlighting the strong impact of this approach. For a flow rate of 16 ml/s, the mean thermal resistance of the heat sink is 2,35·10 −5 m 2 ·K/W which enhances the results compared to the millimeter scale channels nearly three-fold. For the same flow rate and a heat flux of 50 W/cm 2 , the temperature uniformity, expressed as the standard deviation of the wall temperature, is around 6 °C

  8. Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls.

    Science.gov (United States)

    Alizadeh, A; Zhang, L; Wang, M

    2014-10-01

    Mixing becomes challenging in microchannels because of the low Reynolds number. This study aims to present a mixing enhancement method for electro-osmotic flows in microchannels using vortices caused by temperature-patterned walls. Since the fluid is non-isothermal, the conventional form of Nernst-Planck equation is modified by adding a new migration term which is dependent on both temperature and internal electric potential gradient. This term results in the so-called thermo-electrochemical migration phenomenon. The coupled Navier-Stokes, Poisson, modified Nernst-Planck, energy and advection-diffusion equations are iteratively solved by multiple lattice Boltzmann methods to obtain the velocity, internal electric potential, ion distribution, temperature and species concentration fields, respectively. To enhance the mixing, three schemes of temperature-patterned walls have been considered with symmetrical or asymmetrical arrangements of blocks with surface charge and temperature. Modeling results show that the asymmetric arrangement scheme is the most efficient scheme and enhances the mixing of species by 39% when the Reynolds number is on the order of 10(-3). Current results may help improve the design of micro-mixers at low Reynolds number. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Instrumental development of novel detection and separation methods for capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Garner, Tommy [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    After a general introduction, this thesis is divided into 3 parts: indirect fluorescence detection of sugars separated by capillary zone electrophoresis with visible laser excitation, absorption detection in capillary electrophoresis by fluorescence energy transfer, and increased selectivity for electrochromatography by dynamic ion exchange.

  10. Establishment of the optimum two-dimensional electrophoresis system of ovine ovarian tissue.

    Science.gov (United States)

    Jia, J L; Zhang, L P; Wu, J P; Wang, J; Ding, Q

    2014-08-26

    Lambing performance of sheep is the most important economic trait and is regarded as a critic factoring affecting the productivity in sheep industry. Ovary plays the most roles in lambing trait. To establish the optimum two-dimensional electrophoresis system (2-DE) of ovine ovarian tissue, the common protein extraction methods of animal tissue (trichloroacetic acid/acetone precipitation and direct schizolysis methods) were used to extract ovine ovarian protein, and 17-cm nonlinear immobilized PH 3-10 gradient strips were used for 2-DE. The sample handling, loading quantity of the protein sample, and isoelectric focusing (IEF) steps were manipulated and optimized in this study. The results indicate that the direct schizolysis III method, a 200-μg loading quantity of the protein sample, and IEF steps II (20°C active hydration, 14 h→500 V, 1 h→1000 V 1 h→1000-9000 V, 6 h→80,000 VH→500 V 24 h) are optimal for 2-DE analysis of ovine ovarian tissue. Therefore, ovine ovarian tissue proteomics 2-DE was preliminarily established by the optimized conditions in this study; meanwhile, the conditions identified herein could provide a reference for ovarian sample preparation and 2-DE using tissues from other animals.

  11. Streaming potential of superhydrophobic microchannels.

    Science.gov (United States)

    Park, Hung Mok; Kim, Damoa; Kim, Se Young

    2017-03-01

    For the purpose of gaining larger streaming potential, it has been suggested to employ superhydrophobic microchannels with a large velocity slip. There are two kinds of superhydrophobic surfaces, one having a smooth wall with a large Navier slip coefficient caused by the hydrophobicity of the wall material, and the other having a periodic array of no- shear slots of air pockets embedded in a nonslip wall. The electrokinetic flows over these two superhydrophobic surfaces are modelled using the Navier-Stokes equation and convection-diffusion equations of the ionic species. The Navier slip coefficient of the first kind surfaces and the no-shear slot ratio of the second kind surfaces are similar in the sense that the volumetric flow rate increases as these parameter values increase. However, although the streaming potential increases monotonically with respect to the Navier slip coefficient, it reaches a maximum and afterward decreases as the no-shear ratio increases. The results of the present investigation imply that the characterization of superhydrophobic surfaces employing only the measurement of volumetric flow rate against pressure drop is not appropriate and the fine structure of the superhydrophobic surfaces must be verified before predicting the streaming potential and electrokinetic flows accurately. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spinning and tumbling of micron-sized triangles in a micro-channel shear flow

    Science.gov (United States)

    Fries, J.; Kumar, M. Vijay; Mihiretie, B. Mekonnen; Hanstorp, D.; Mehlig, B.

    2018-03-01

    We report on measurements of the angular dynamics of micron-sized equilaterally triangular platelets suspended in a micro-channel shear flow. Our measurements confirm that such particles spin and tumble like a spheroid in a simple shear. Since the triangle has corners, we can observe the spinning directly. In general, the spinning frequency is different from the tumbling frequency and the spinning is affected by tumbling. This gives rise to doubly periodic angular dynamics.

  13. Varying the agglomeration position of particles in a micro-channel using Acoustic Radiation Force beyond the resonance condition.

    Science.gov (United States)

    Dron, Olivier; Aider, Jean-Luc

    2013-09-01

    It is well-known that particles can be focused at mid-height of a micro-channel using Acoustic Radiation Force (ARF) tuned at the resonance frequency (h=λ/2). The resonance condition is a strong limitation to the use of acoustophoresis (particles manipulation using acoustic force) in many applications. In this study we show that it is possible to focus the particles anywhere along the height of a micro-channel just by varying the acoustic frequency, in contradiction with the resonance condition. This result has been thoroughly checked experimentally. The different physical properties as well as wall materials have been changed. The wall materials is finally the only critical parameters. One of the specificity of the micro-channel is the thickness of the carrier and reflector layer. A preliminary analysis of the experimental results suggests that the acoustic focusing beyond the classic resonance condition can be explained in the framework of the multilayered resonator proposed by Hill [1]. Nevertheless, further numerical studies are needed in order to confirm and fully understand how the acoustic pressure node can be moved over the entire height of the micro channel by varying the acoustic frequency. Despite some uncertainties about the origin of the phenomenon, it is robust and can be used for improved acoustic sorting or manipulation of particles or biological cells in confined set-ups. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Versatile electrophoresis-based self-test platform.

    Science.gov (United States)

    Guijt, Rosanne M

    2015-03-01

    Lab on a Chip technology offers the possibility to extract chemical information from a complex sample in a simple, automated way without the need for a laboratory setting. In the health care sector, this chemical information could be used as a diagnostic tool for example to inform dosing. In this issue, the research underpinning a family of electrophoresis-based point-of-care devices for self-testing of ionic analytes in various sample matrices is described [Electrophoresis 2015, 36, 712-721.]. Hardware, software, and methodological chances made to improve the overall analytical performance in terms of accuracy, precision, detection limit, and reliability are discussed. In addition to the main focus of lithium monitoring, new applications including the use of the platform for veterinary purposes, sodium, and for creatinine measurements are included. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. AN IMAGE-ANALYSIS TECHNIQUE FOR DETECTION OF RADIATION-INDUCED DNA FRAGMENTATION AFTER CHEF ELECTROPHORESIS

    NARCIS (Netherlands)

    ROSEMANN, M; KANON, B; KONINGS, AWT; KAMPINGA, HH

    CHEF-electrophoresis was used as a technique to detect radiation-induced DNA breakage with special emphasis to biological relevant X-ray doses (0-10 Gy). Fluorescence detection of DNA-fragments using a sensitive image analysis system was directly compared with conventional scintillation counting of

  16. Agarose gel electrophoresis for the separation of DNA fragments.

    Science.gov (United States)

    Lee, Pei Yun; Costumbrado, John; Hsu, Chih-Yuan; Kim, Yong Hoon

    2012-04-20

    Agarose gel electrophoresis is the most effective way of separating DNA fragments of varying sizes ranging from 100 bp to 25 kb(1). Agarose is isolated from the seaweed genera Gelidium and Gracilaria, and consists of repeated agarobiose (L- and D-galactose) subunits(2). During gelation, agarose polymers associate non-covalently and form a network of bundles whose pore sizes determine a gel's molecular sieving properties. The use of agarose gel electrophoresis revolutionized the separation of DNA. Prior to the adoption of agarose gels, DNA was primarily separated using sucrose density gradient centrifugation, which only provided an approximation of size. To separate DNA using agarose gel electrophoresis, the DNA is loaded into pre-cast wells in the gel and a current applied. The phosphate backbone of the DNA (and RNA) molecule is negatively charged, therefore when placed in an electric field, DNA fragments will migrate to the positively charged anode. Because DNA has a uniform mass/charge ratio, DNA molecules are separated by size within an agarose gel in a pattern such that the distance traveled is inversely proportional to the log of its molecular weight(3). The leading model for DNA movement through an agarose gel is "biased reptation", whereby the leading edge moves forward and pulls the rest of the molecule along(4). The rate of migration of a DNA molecule through a gel is determined by the following: 1) size of DNA molecule; 2) agarose concentration; 3) DNA conformation(5); 4) voltage applied, 5) presence of ethidium bromide, 6) type of agarose and 7) electrophoresis buffer. After separation, the DNA molecules can be visualized under uv light after staining with an appropriate dye. By following this protocol, students should be able to: Understand the mechanism by which DNA fragments are separated within a gel matrix Understand how conformation of the DNA molecule will determine its mobility through a gel matrix Identify an agarose solution of appropriate

  17. Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications. Part 1: Micro-Channel Heat Sink for Direct Refrigeration Cooling

    Science.gov (United States)

    2008-09-01

    the two-phase mixture exiting the condenser. Throttling from high to low pressure was achieved by a manual metering valve situated upstream of the micro...channel et al. htp N4hsP) correlation (2002) kh sp = Nu kf dh’ Nuta, = const (Refer to Eqs. (1.4.6) and (1.4.7)), = 0.023Re" Prf4 f f E=1.0+6Bol6 +f(Bo)x...12.26% (318 data points) 0Id" +30%OND A ~’AAK - -30%",A- / A’ A* 10 " , , , htp ,&xp [W/M 2 K] Figure 1.4.8 Comparison of heat transfer coefficient

  18. Streamlined sign-out of capillary protein electrophoresis using middleware and an open-source macro application

    Directory of Open Access Journals (Sweden)

    Gagan Mathur

    2014-01-01

    Full Text Available Background: Interfacing of clinical laboratory instruments with the laboratory information system (LIS via "middleware" software is increasingly common. Our clinical laboratory implemented capillary electrophoresis using a Sebia; Capillarys-2™ (Norcross, GA, USA instrument for serum and urine protein electrophoresis. Using Data Innovations Instrument Manager, an interface was established with the LIS (Cerner that allowed for bi-directional transmission of numeric data. However, the text of the interpretive pathology report was not properly transferred. To reduce manual effort and possibility for error in text data transfer, we developed scripts in AutoHotkey, a free, open-source macro-creation and automation software utility. Materials and Methods: Scripts were written to create macros that automated mouse and key strokes. The scripts retrieve the specimen accession number, capture user input text, and insert the text interpretation in the correct patient record in the desired format. Results: The scripts accurately and precisely transfer narrative interpretation into the LIS. Combined with bar-code reading by the electrophoresis instrument, the scripts transfer data efficiently to the correct patient record. In addition, the AutoHotKey script automated repetitive key strokes required for manual entry into the LIS, making protein electrophoresis sign-out easier to learn and faster to use by the pathology residents. Scripts allow for either preliminary verification by residents or final sign-out by the attending pathologist. Conclusions: Using the open-source AutoHotKey software, we successfully improved the transfer of text data between capillary electrophoresis software and the LIS. The use of open-source software tools should not be overlooked as tools to improve interfacing of laboratory instruments.

  19. Joachim kohn (1912-1987) and the origin of cellulose acetate electrophoresis.

    Science.gov (United States)

    Rocco, Richard M

    2005-10-01

    The year 2006 marks the 50th anniversary of the discovery of cellulose acetate (CA) electrophoresis by Joachim Kohn, a pathologist at Queen Mary's Hospital in Roehampton, London. During a career in pathology that began in 1950 and spanned 37 years, Kohn published more than 50 papers in clinical laboratory medicine. He was the first to report the use of CA microbiology filters as solid supports for zone electrophoresis and the separation of hemoglobin phenotypes on CA membranes. Kohn also invented a new electrophoresis chamber and an 8-position stamp applicator especially for use with CA membranes. Beginning in 1957, Kohn pioneered the development of CA techniques for immunoelectrophoresis, counter immunoelectrophoresis, radial immunodiffusion, protein blotting, and immunofixation. He also designed a transport dressing for burn patients and was the first person to describe the use of an enzyme-based dipstick for measuring fingerstick blood glucose concentrations. This short review highlights Kohn's discovery of CA electrophoresis and his contributions to the development of this procedure.

  20. Applications of on-line weak affinity interactions in free solution capillary electrophoresis

    DEFF Research Database (Denmark)

    Heegaard, Niels H H; Nissen, Mogens H; Chen, David D Y

    2002-01-01

    The impressive selectivity offered by capillary electrophoresis can in some cases be further increased when ligands or additives that engage in weak affinity interactions with one or more of the separated analytes are added to the electrophoresis buffer. This on-line affinity capillary...... electrophoresis approach is feasible when the migration of complexed molecules is different from the migration of free molecules and when separation conditions are nondenaturing. In this review, we focus on applying weak interactions as tools to enhance the separation of closely related molecules, e.g., drug...... enantiomers and on using capillary electrophoresis to characterize such interactions quantitatively. We describe the equations for binding isotherms, illustrate how selectivity can be manipulated by varying the additive concentrations, and show how the methods may be used to estimate binding constants. On...