WorldWideScience

Sample records for microbiome hinder genome

  1. Human genome-microbiome interaction: metagenomics frontiers for the aetiopathology of autoimmune diseases.

    Science.gov (United States)

    Gundogdu, Aycan; Nalbantoglu, Ufuk

    2017-04-01

    A short while ago, the human genome and microbiome were analysed simultaneously for the first time as a multi-omic approach. The analyses of heterogeneous population cohorts showed that microbiome components were associated with human genome variations. In-depth analysis of these results reveals that the majority of those relationships are between immune pathways and autoimmune disease-associated microbiome components. Thus, it can be hypothesized that autoimmunity may be associated with homeostatic disequilibrium of the human-microbiome interactome. Further analysis of human genome-human microbiome relationships in disease contexts with tailored systems biology approaches may yield insights into disease pathogenesis and prognosis.

  2. Exploring relationships between host genome and microbiome: new insights from genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Muslihudeen Abdul-Razaq Abdul-Aziz

    2016-10-01

    Full Text Available As our understanding of the human microbiome expands, impacts on health and disease continue to be revealed. Alterations in the microbiome can result in dysbiosis, which has now been linked to subsequent autoimmune and metabolic diseases, highlighting the need to identify factors that shape the microbiome. Research has identified that the composition and functions of the human microbiome can be influenced by diet, age, gender, and environment. More recently, studies have explored how human genetic variation may also influence the microbiome. Here, we review several recent analytical advances in this new research area, including those that use genome-wide association studies to examine host genome-microbiome interactions, while controlling for the influence of other factors. We find that current research is limited by small sample sizes, lack of cohort replication, and insufficient confirmatory mechanistic studies. In addition, we discuss the importance of understanding long-term interactions between the host genome and microbiome, as well as the potential impacts of disrupting this relationship, and explore new research avenues that may provide information about the co-evolutionary history of humans and their microorganisms.

  3. Human genome-microbiome interaction: metagenomics frontiers for the aetiopathology of autoimmune diseases

    Science.gov (United States)

    Nalbantoglu, Ufuk

    2017-01-01

    A short while ago, the human genome and microbiome were analysed simultaneously for the first time as a multi-omic approach. The analyses of heterogeneous population cohorts showed that microbiome components were associated with human genome variations. In-depth analysis of these results reveals that the majority of those relationships are between immune pathways and autoimmune disease-associated microbiome components. Thus, it can be hypothesized that autoimmunity may be associated with homeostatic disequilibrium of the human-microbiome interactome. Further analysis of human genome–human microbiome relationships in disease contexts with tailored systems biology approaches may yield insights into disease pathogenesis and prognosis. PMID:28785422

  4. Personal microbiome analysis improves student engagement and interest in Immunology, Molecular Biology, and Genomics undergraduate courses

    Science.gov (United States)

    Bridgewater, Laura C.; Jensen, Jamie L.; Breakwell, Donald P.; Nielsen, Brent L.; Johnson, Steven M.

    2018-01-01

    A critical area of emphasis for science educators is the identification of effective means of teaching and engaging undergraduate students. Personal microbiome analysis is a means of identifying the microbial communities found on or in our body. We hypothesized the use of personal microbiome analysis in the classroom could improve science education by making courses more applied and engaging for undergraduate students. We determined to test this prediction in three Brigham Young University undergraduate courses: Immunology, Advanced Molecular Biology Laboratory, and Genomics. These three courses have a two-week microbiome unit and students during the 2016 semester students could submit their own personal microbiome kit or use the demo data, whereas during the 2017 semester students were given access to microbiome data from an anonymous individual. The students were surveyed before, during, and after the human microbiome unit to determine whether analyzing their own personal microbiome data, compared to analyzing demo microbiome data, impacted student engagement and interest. We found that personal microbiome analysis significantly enhanced the engagement and interest of students while completing microbiome assignments, the self-reported time students spent researching the microbiome during the two week microbiome unit, and the attitudes of students regarding the course overall. Thus, we found that integrating personal microbiome analysis in the classroom was a powerful means of improving student engagement and interest in undergraduate science courses. PMID:29641525

  5. Genomic variation landscape of the human gut microbiome

    DEFF Research Database (Denmark)

    Schloissnig, Siegfried; Arumugam, Manimozhiyan; Sunagawa, Shinichi

    2013-01-01

    Whereas large-scale efforts have rapidly advanced the understanding and practical impact of human genomic variation, the practical impact of variation is largely unexplored in the human microbiome. We therefore developed a framework for metagenomic variation analysis and applied it to 252 faecal...... polymorphism rates of 0.11 was more variable between gut microbial species than across human hosts. Subjects sampled at varying time intervals exhibited individuality and temporal stability of SNP variation patterns, despite considerable composition changes of their gut microbiota. This indicates...

  6. Impact of Sample Type and DNA Isolation Procedure on Genomic Inference of Microbiome Composition

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær; Bergmark, Lasse; Munk, Patrick

    2016-01-01

    that in standard protocols. Based on this insight, we designed an improved DNA isolation procedure optimized for microbiome genomics that can be used for the three examined specimen types and potentially also for other biological specimens. A standard operating procedure is available from https://dx.doi.org/10......Explorations of complex microbiomes using genomics greatly enhance our understanding about their diversity, biogeography, and function. The isolation of DNA from microbiome specimens is a key prerequisite for such examinations, but challenges remain in obtaining sufficient DNA quantities required...... for certain sequencing approaches, achieving accurate genomic inference of microbiome composition, and facilitating comparability of findings across specimen types and sequencing projects. These aspects are particularly relevant for the genomics-based global surveillance of infectious agents and antimicrobial...

  7. The "most wanted" taxa from the human microbiome for whole genome sequencing.

    Directory of Open Access Journals (Sweden)

    Anthony A Fodor

    Full Text Available The goal of the Human Microbiome Project (HMP is to generate a comprehensive catalog of human-associated microorganisms including reference genomes representing the most common species. Toward this goal, the HMP has characterized the microbial communities at 18 body habitats in a cohort of over 200 healthy volunteers using 16S rRNA gene (16S sequencing and has generated nearly 1,000 reference genomes from human-associated microorganisms. To determine how well current reference genome collections capture the diversity observed among the healthy microbiome and to guide isolation and future sequencing of microbiome members, we compared the HMP's 16S data sets to several reference 16S collections to create a 'most wanted' list of taxa for sequencing. Our analysis revealed that the diversity of commonly occurring taxa within the HMP cohort microbiome is relatively modest, few novel taxa are represented by these OTUs and many common taxa among HMP volunteers recur across different populations of healthy humans. Taken together, these results suggest that it should be possible to perform whole-genome sequencing on a large fraction of the human microbiome, including the 'most wanted', and that these sequences should serve to support microbiome studies across multiple cohorts. Also, in stark contrast to other taxa, the 'most wanted' organisms are poorly represented among culture collections suggesting that novel culture- and single-cell-based methods will be required to isolate these organisms for sequencing.

  8. Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes.

    Science.gov (United States)

    Adu-Oppong, Boahemaa; Gasparrini, Andrew J; Dantas, Gautam

    2017-01-01

    Microbial communities contain diverse bacteria that play important roles in every environment. Advances in sequencing and computational methodologies over the past decades have illuminated the phylogenetic and functional diversity of microbial communities from diverse habitats. Among the activities encoded in microbiomes are the abilities to synthesize and resist small molecules, yielding antimicrobial activity. These functions are of particular interest when viewed in light of the public health emergency posed by the increase in clinical antimicrobial resistance and the dwindling antimicrobial discovery and approval pipeline, and given the intimate ecological and evolutionary relationship between antimicrobial biosynthesis and resistance. Here, we review genomic and functional methods that have been developed for accessing the antimicrobial biosynthesis and resistance capacity of microbiomes and highlight outstanding examples of their applications. © 2016 New York Academy of Sciences.

  9. A geographically-diverse collection of 418 human gut microbiome pathway genome databases

    KAUST Repository

    Hahn, Aria S.

    2017-04-11

    Advances in high-throughput sequencing are reshaping how we perceive microbial communities inhabiting the human body, with implications for therapeutic interventions. Several large-scale datasets derived from hundreds of human microbiome samples sourced from multiple studies are now publicly available. However, idiosyncratic data processing methods between studies introduce systematic differences that confound comparative analyses. To overcome these challenges, we developed GutCyc, a compendium of environmental pathway genome databases (ePGDBs) constructed from 418 assembled human microbiome datasets using MetaPathways, enabling reproducible functional metagenomic annotation. We also generated metabolic network reconstructions for each metagenome using the Pathway Tools software, empowering researchers and clinicians interested in visualizing and interpreting metabolic pathways encoded by the human gut microbiome. For the first time, GutCyc provides consistent annotations and metabolic pathway predictions, making possible comparative community analyses between health and disease states in inflammatory bowel disease, Crohn’s disease, and type 2 diabetes. GutCyc data products are searchable online, or may be downloaded and explored locally using MetaPathways and Pathway Tools.

  10. Machine Learning Leveraging Genomes from Metagenomes Identifies Influential Antibiotic Resistance Genes in the Infant Gut Microbiome

    Science.gov (United States)

    Olm, Matthew R.; Morowitz, Michael J.

    2018-01-01

    ABSTRACT Antibiotic resistance in pathogens is extensively studied, and yet little is known about how antibiotic resistance genes of typical gut bacteria influence microbiome dynamics. Here, we leveraged genomes from metagenomes to investigate how genes of the premature infant gut resistome correspond to the ability of bacteria to survive under certain environmental and clinical conditions. We found that formula feeding impacts the resistome. Random forest models corroborated by statistical tests revealed that the gut resistome of formula-fed infants is enriched in class D beta-lactamase genes. Interestingly, Clostridium difficile strains harboring this gene are at higher abundance in formula-fed infants than C. difficile strains lacking this gene. Organisms with genes for major facilitator superfamily drug efflux pumps have higher replication rates under all conditions, even in the absence of antibiotic therapy. Using a machine learning approach, we identified genes that are predictive of an organism’s direction of change in relative abundance after administration of vancomycin and cephalosporin antibiotics. The most accurate results were obtained by reducing annotated genomic data to five principal components classified by boosted decision trees. Among the genes involved in predicting whether an organism increased in relative abundance after treatment are those that encode subclass B2 beta-lactamases and transcriptional regulators of vancomycin resistance. This demonstrates that machine learning applied to genome-resolved metagenomics data can identify key genes for survival after antibiotics treatment and predict how organisms in the gut microbiome will respond to antibiotic administration. IMPORTANCE The process of reconstructing genomes from environmental sequence data (genome-resolved metagenomics) allows unique insight into microbial systems. We apply this technique to investigate how the antibiotic resistance genes of bacteria affect their ability to

  11. Adaptive evolution to a high purine and fat diet of carnivorans revealed by gut microbiomes and host genomes.

    Science.gov (United States)

    Zhu, Lifeng; Wu, Qi; Deng, Cao; Zhang, Mengjie; Zhang, Chenglin; Chen, Hua; Lu, Guoqing; Wei, Fuwen

    2018-05-01

    Carnivorous members of the Carnivora reside at the apex of food chains and consume meat-only diets, rich in purine, fats and protein. Here, we aimed to identify potential adaptive evolutionary signatures compatible with high purine and fat metabolism based on analysis of host genomes and symbiotic gut microbial metagenomes. We found that the gut microbiomes of carnivorous Carnivora (e.g., Felidae, Canidae) clustered in the same clade, and other clades comprised omnivorous and herbivorous Carnivora (e.g., badgers, bears and pandas). The relative proportions of genes encoding enzymes involved in uric acid degradation were higher in the gut microbiomes of meat-eating carnivorans than plant-eating species. Adaptive amino acid substitutions in two enzymes, carnitine O-palmitoyltransferase 1 (CPT1A) and lipase F (LIPF), which play a role in fat digestion, were identified in Felidae-Candidae species. Carnivorous carnivorans appear to endure diets high in purines and fats via gut microbiomic and genomic adaptations. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. A geographically-diverse collection of 418 human gut microbiome pathway genome databases

    KAUST Repository

    Hahn, Aria S.; Altman, Tomer; Konwar, Kishori M.; Hanson, Niels W.; Kim, Dongjae; Relman, David A.; Dill, David L.; Hallam, Steven J.

    2017-01-01

    the Pathway Tools software, empowering researchers and clinicians interested in visualizing and interpreting metabolic pathways encoded by the human gut microbiome. For the first time, GutCyc provides consistent annotations and metabolic pathway predictions

  13. Meta-analysis of human genome-microbiome association studies: the MiBioGen consortium initiative.

    Science.gov (United States)

    Wang, Jun; Kurilshikov, Alexander; Radjabzadeh, Djawad; Turpin, Williams; Croitoru, Kenneth; Bonder, Marc Jan; Jackson, Matthew A; Medina-Gomez, Carolina; Frost, Fabian; Homuth, Georg; Rühlemann, Malte; Hughes, David; Kim, Han-Na; Spector, Tim D; Bell, Jordana T; Steves, Claire J; Timpson, Nicolas; Franke, Andre; Wijmenga, Cisca; Meyer, Katie; Kacprowski, Tim; Franke, Lude; Paterson, Andrew D; Raes, Jeroen; Kraaij, Robert; Zhernakova, Alexandra

    2018-06-08

    In recent years, human microbiota, especially gut microbiota, have emerged as an important yet complex trait influencing human metabolism, immunology, and diseases. Many studies are investigating the forces underlying the observed variation, including the human genetic variants that shape human microbiota. Several preliminary genome-wide association studies (GWAS) have been completed, but more are necessary to achieve a fuller picture. Here, we announce the MiBioGen consortium initiative, which has assembled 18 population-level cohorts and some 19,000 participants. Its aim is to generate new knowledge for the rapidly developing field of microbiota research. Each cohort has surveyed the gut microbiome via 16S rRNA sequencing and genotyped their participants with full-genome SNP arrays. We have standardized the analytical pipelines for both the microbiota phenotypes and genotypes, and all the data have been processed using identical approaches. Our analysis of microbiome composition shows that we can reduce the potential artifacts introduced by technical differences in generating microbiota data. We are now in the process of benchmarking the association tests and performing meta-analyses of genome-wide associations. All pipeline and summary statistics results will be shared using public data repositories. We present the largest consortium to date devoted to microbiota-GWAS. We have adapted our analytical pipelines to suit multi-cohort analyses and expect to gain insight into host-microbiota cross-talk at the genome-wide level. And, as an open consortium, we invite more cohorts to join us (by contacting one of the corresponding authors) and to follow the analytical pipeline we have developed.

  14. Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes

    DEFF Research Database (Denmark)

    Treu, Laura; Kougias, Panagiotis; Campanaro, Stefano

    2016-01-01

    strategy resulted in the highest, up to now, extraction of microbial genomes involved in biogas producing systems. From the 236 extracted genome bins, it was remarkably found that the vast majority of them could only be characterized at high taxonomic levels. This result confirms that the biogas microbiome......This research aimed to better characterize the biogas microbiome by means of high throughput metagenomic sequencing and to elucidate the core microbial consortium existing in biogas reactors independently from the operational conditions. Assembly of shotgun reads followed by an established binning...... is comprised by a consortium of unknown species. A comparative analysis between the genome bins of the current study and those extracted from a previous metagenomic assembly demonstrated a similar phylogenetic distribution of the main taxa. Finally, this analysis led to the identification of a subset of common...

  15. Deeper insight into the structure of the anaerobic digestion microbial community; the biogas microbiome database is expanded with 157 new genomes.

    Science.gov (United States)

    Treu, Laura; Kougias, Panagiotis G; Campanaro, Stefano; Bassani, Ilaria; Angelidaki, Irini

    2016-09-01

    This research aimed to better characterize the biogas microbiome by means of high throughput metagenomic sequencing and to elucidate the core microbial consortium existing in biogas reactors independently from the operational conditions. Assembly of shotgun reads followed by an established binning strategy resulted in the highest, up to now, extraction of microbial genomes involved in biogas producing systems. From the 236 extracted genome bins, it was remarkably found that the vast majority of them could only be characterized at high taxonomic levels. This result confirms that the biogas microbiome is comprised by a consortium of unknown species. A comparative analysis between the genome bins of the current study and those extracted from a previous metagenomic assembly demonstrated a similar phylogenetic distribution of the main taxa. Finally, this analysis led to the identification of a subset of common microbes that could be considered as the core essential group in biogas production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation

    Science.gov (United States)

    Svartström, Olov; Alneberg, Johannes; Terrapon, Nicolas; Lombard, Vincent; de Bruijn, Ino; Malmsten, Jonas; Dalin, Ann-Marie; Muller, Emilie E.L.; Shah, Pranjul; Wilmes, Paul; Henrissat, Bernard; Aspeborg, Henrik; Andersson, Anders F.

    2017-01-01

    The moose (Alces alces) is a ruminant that harvests energy from fiber-rich lignocellulose material through carbohydrate-active enzymes (CAZymes) produced by its rumen microbes. We applied shotgun metagenomics to rumen contents from six moose to obtain insights into this microbiome. Following binning, 99 metagenome-assembled genomes (MAGs) belonging to eleven prokaryotic phyla were reconstructed and characterized based on phylogeny and CAZyme profile. The taxonomy of these MAGs reflected the overall composition of the metagenome, with dominance of the phyla Bacteroidetes and Firmicutes. Unlike in other ruminants, Spirochaetes constituted a significant proportion of the community and our analyses indicate that the corresponding strains are primarily pectin digesters. Pectin-degrading genes were also common in MAGs of Ruminococcus, Fibrobacteres and Bacteroidetes, and were overall overrepresented in the moose microbiome compared to other ruminants. Phylogenomic analyses revealed several clades within the Bacteriodetes without previously characterized genomes. Several of these MAGs encoded a large numbers of dockerins, a module usually associated with cellulosomes. The Bacteroidetes dockerins were often linked to CAZymes and sometimes encoded inside polysaccharide utilization loci (PULs), which has never been reported before. The almost one hundred CAZyme-annotated genomes reconstructed in this study provides an in-depth view of an efficient lignocellulose-degrading microbiome and prospects for developing enzyme technology for biorefineries. PMID:28731473

  17. Microbiome Data Science: Understanding Our Microbial Planet.

    Science.gov (United States)

    Kyrpides, Nikos C; Eloe-Fadrosh, Emiley A; Ivanova, Natalia N

    2016-06-01

    Microbiology is experiencing a revolution brought on by recent developments in sequencing technology. The unprecedented volume of microbiome data being generated poses significant challenges that are currently hindering progress in the field. Here, we outline the major bottlenecks and propose a vision to advance microbiome research as a data-driven science. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Gene and genome-centric analyses of koala and wombat fecal microbiomes point to metabolic specialization for Eucalyptus digestion

    Directory of Open Access Journals (Sweden)

    Miriam E. Shiffman

    2017-11-01

    Full Text Available The koala has evolved to become a specialist Eucalyptus herbivore since diverging from its closest relative, the wombat, a generalist herbivore. This niche adaptation involves, in part, changes in the gut microbiota. The goal of this study was to compare koala and wombat fecal microbiomes using metagenomics to identify potential differences attributable to dietary specialization. Several populations discriminated between the koala and wombat fecal communities, most notably S24-7 and Synergistaceae in the koala, and Christensenellaceae and RF39 in the wombat. As expected for herbivores, both communities contained the genes necessary for lignocellulose degradation and urea recycling partitioned and redundantly encoded across multiple populations. Secondary metabolism was overrepresented in the koala fecal samples, consistent with the need to process Eucalyptus secondary metabolites. The Synergistaceae population encodes multiple pathways potentially relevant to Eucalyptus compound metabolism, and is predicted to be a key player in detoxification of the koala’s diet. Notably, characterized microbial isolates from the koala gut appear to be minor constituents of this habitat, and the metagenomes provide the opportunity for genome-directed isolation of more representative populations. Metagenomic analysis of other obligate and facultative Eucalyptus folivores will reveal whether putatively detoxifying bacteria identified in the koala are shared across these marsupials.

  19. Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors

    NARCIS (Netherlands)

    Kelly, L.W.; Williams, G.J.; Barott, K.L.; Carlson, C.A.; Dinsdale, E.A.; Edwards, R.A.; Haas, A.F.; Haynes, M.; Lim, Y.W.; McDole, T.; Nelson, C.E.; Sala, E.; Sandin, S.A.; Smith, J.E.; Vermeij, M.J.A.; Youle, M.; Rohwer, F.

    2014-01-01

    Holobionts are species-specific associations between macro- and microorganisms. On coral reefs, the benthic coverage of coral and algal holobionts varies due to natural and anthropogenic forcings. Different benthic macroorganisms are predicted to have specific microbiomes. In contrast, local

  20. Metagenomic Analysis of the Human Gut Microbiome

    DEFF Research Database (Denmark)

    dos Santos, Marcelo Bertalan Quintanilha

    Understanding the link between the human gut microbiome and human health is one of the biggest scientific challenges in our decade. Because 90% of our cells are bacteria, and the microbial genome contains 200 times more genes than the human genome, the study of the human microbiome has...... the potential to impact many areas of our health. This PhD thesis is the first study to generate a large amount of experimental data on the DNA and RNA of the human gut microbiome. This was made possible by our development of a human gut microbiome array capable of profiling any human gut microbiome. Analysis...... of our results changes the way we link the gut microbiome with diseases. Our results indicate that inflammatory diseases will affect the ecological system of the human gut microbiome, reducing its diversity. Classification analysis of healthy and unhealthy individuals demonstrates that unhealthy...

  1. Sphagnum physiology in the context of changing climate: emergent influences of genomics, modelling and host-microbiome interactions on understanding ecosystem function.

    Science.gov (United States)

    Weston, David J; Timm, Collin M; Walker, Anthony P; Gu, Lianhong; Muchero, Wellington; Schmutz, Jeremy; Shaw, A Jonathan; Tuskan, Gerald A; Warren, Jeffrey M; Wullschleger, Stan D

    2015-09-01

    Peatlands harbour more than one-third of terrestrial carbon leading to the argument that the bryophytes, as major components of peatland ecosystems, store more organic carbon in soils than any other collective plant taxa. Plants of the genus Sphagnum are important components of peatland ecosystems and are potentially vulnerable to changing climatic conditions. However, the response of Sphagnum to rising temperatures, elevated CO2 and shifts in local hydrology have yet to be fully characterized. In this review, we examine Sphagnum biology and ecology and explore the role of this group of keystone species and its associated microbiome in carbon and nitrogen cycling using literature review and model simulations. Several issues are highlighted including the consequences of a variable environment on plant-microbiome interactions, uncertainty associated with CO2 diffusion resistances and the relationship between fixed N and that partitioned to the photosynthetic apparatus. We note that the Sphagnum fallax genome is currently being sequenced and outline potential applications of population-level genomics and corresponding plant photosynthesis and microbial metabolic modelling techniques. We highlight Sphagnum as a model organism to explore ecosystem response to a changing climate and to define the role that Sphagnum can play at the intersection of physiology, genetics and functional genomics. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  2. The Perinatal Microbiome and Pregnancy: Moving Beyond the Vaginal Microbiome

    Science.gov (United States)

    Prince, Amanda L.; Chu, Derrick M.; Seferovic, Maxim D.; Antony, Kathleen M.; Ma, Jun; Aagaard, Kjersti M.

    2015-01-01

    The human microbiome, the collective genome of the microbial community that is on and within us, has recently been mapped. The initial characterization of healthy subjects has provided investigators with a reference population for interrogating the microbiome in metabolic, intestinal, and reproductive health and disease states. Although it is known that bacteria can colonize the vagina, recent metagenomic studies have shown that the vaginal microbiome varies among reproductive age women. Similarly, the richness and diversity of intestinal microbiota also naturally fluctuate among gravidae in both human and nonhuman primates, as well as mice. Moreover, recent evidence suggests that microbiome niches in pregnancy are not limited to maternal body sites, as the placenta appears to harbor a low biomass microbiome that is presumptively established in early pregnancy and varies in association with a remote history of maternal antenatal infection as well as preterm birth. In this article, we will provide a brief overview on metagenomics science as a means to investigate the microbiome, observations pertaining to both variation and the presumptive potential role of a varied microbiome during pregnancy, and how future studies of the microbiome in pregnancy may lend to a better understanding of human biology, reproductive health, and parturition. PMID:25775922

  3. Comparative genomic analysis of oil spill impacts on deep water shipwreck microbiomes in the northern Gulf of Mexico

    Science.gov (United States)

    Hamdan, L. J.; Damour, M.; McGown, C.; Figan, C.; Kassahun, Z.; Blackwell, K.; Horrell, C.; Gillevet, P.

    2014-12-01

    Shipwrecks serve as artificial reefs in the deep ocean. Because of their inherent diversity compared to their surrounding environment and their random distribution, shipwrecks are ideal ecosystems to study pollution impacts and microbial distribution patterns in the deep biosphere. This study provides a comparative assessment of Deepwater Horizon spill impacts on shipwreck and local sedimentary microbiomes and the synergistic effects of contaminants on these communities and the physical structures that support them. For this study, microbiomes associated with wooden 19th century shipwrecks and World War II era steel shipwrecks in the northern Gulf of Mexico were investigated using next generation sequencing. Samples derived from in situ biofilm monitoring platforms deployed adjacent to 5 shipwrecks for 4 months, and sediment collected from distances ranging from 2-200m from each shipwreck were evaluated for shifts in microbiome structure and gene function relative to proximity to the spill, and oil spill related contaminants in the local environment. The goals of the investigation are to determine impacts to recruitment and community structure at sites located within and outside of areas impacted by the spill. Taxonomic classification of dominant and rare members of shipwreck microbiomes and metabolic information extracted from sequence data yield new understanding of microbial processes associated with site formation. The study provides information on the identity of microbial inhabitants of shipwrecks, their role in site preservation, and impacts of the Deepwater Horizon spill on the primary colonizers of artificial reefs in the deep ocean. This approach could inform about the role of microorganisms in establishment and maintenance of the artificial reef environment, while providing information about ecosystem feedbacks resulting from spills.

  4. Comparative genomic analysis of the microbiome [corrected] of herbivorous insects reveals eco-environmental adaptations: biotechnology applications.

    Directory of Open Access Journals (Sweden)

    Weibing Shi

    Full Text Available Metagenome analysis of the gut symbionts of three different insects was conducted as a means of comparing taxonomic and metabolic diversity of gut microbiomes to diet and life history of the insect hosts. A second goal was the discovery of novel biocatalysts for biorefinery applications. Grasshopper and cutworm gut symbionts were sequenced and compared with the previously identified metagenome of termite gut microbiota. These insect hosts represent three different insect orders and specialize on different food types. The comparative analysis revealed dramatic differences among the three insect species in the abundance and taxonomic composition of the symbiont populations present in the gut. The composition and abundance of symbionts was correlated with their previously identified capacity to degrade and utilize the different types of food consumed by their hosts. The metabolic reconstruction revealed that the gut metabolome of cutworms and grasshoppers was more enriched for genes involved in carbohydrate metabolism and transport than wood-feeding termite, whereas the termite gut metabolome was enriched for glycosyl hydrolase (GH enzymes relevant to lignocellulosic biomass degradation. Moreover, termite gut metabolome was more enriched with nitrogen fixation genes than those of grasshopper and cutworm gut, presumably due to the termite's adaptation to the high fiber and less nutritious food types. In order to evaluate and exploit the insect symbionts for biotechnology applications, we cloned and further characterized four biomass-degrading enzymes including one endoglucanase and one xylanase from both the grasshopper and cutworm gut symbionts. The results indicated that the grasshopper symbiont enzymes were generally more efficient in biomass degradation than the homologous enzymes from cutworm symbionts. Together, these results demonstrated a correlation between the composition and putative metabolic functionality of the gut microbiome and host

  5. The Plastisphere "Microbiome"

    Science.gov (United States)

    Amaral-Zettler, L. A.; Dupont, C. L.; Zettler, E. R.; Slikas, B.; Kaul, D.; Mincer, T. J.

    2016-02-01

    Alongside other ocean stressors, plastic marine debris (PMD) is now considered a major source of marine pollution and potential source of invasive alien species, two important ocean health index criteria. While macroplastics are recognized as a visible problem in coastal environments, the less conspicuous microplastics (impact is much less understood. Central to biological interactions with plastic is the almost instant colonization upon entry into the sea by a thin film of microorganisms, the Plastisphere microbiome. While the phylogenetic diversity of the Plastisphere is now recognized to be highly variable and diverse in nature, less is known about its metabolic potential. Using shotgun metagenomics techniques, we characterized the metabolic potential of Plastisphere microbiomes from ocean gyre-collected microplastics and contrasted it with those of known biotic substrates such as macroalgae. Our data reveal that microbial eukaryotic assemblages dominate some Plastisphere communities, and bacteria dominate others, while archaea appear to be consistently rare inhabitants. We have successfully recovered dozens of draft bacterial genomes and several partial eukaryotic genomes from our libraries. Our data allow us to conduct comparative genomics on commonly occurring Plastisphere residents, further gaining insights into their physiology, ecology, pathogenicity, and substrate transformation potential.

  6. Celiac Disease Genomic, Environmental, Microbiome, and Metabolomic (CDGEMM Study Design: Approach to the Future of Personalized Prevention of Celiac Disease

    Directory of Open Access Journals (Sweden)

    Maureen M. Leonard

    2015-11-01

    Full Text Available In the past it was believed that genetic predisposition and exposure to gluten were necessary and sufficient to develop celiac disease (CD. Recent studies however suggest that loss of gluten tolerance can occur at any time in life as a consequence of other environmental stimuli. Many environmental factors known to influence the composition of the intestinal microbiota are also suggested to play a role in the development of CD. These include birthing delivery mode, infant feeding, and antibiotic use. To date no large-scale longitudinal studies have defined if and how gut microbiota composition and metabolomic profiles may influence the loss of gluten tolerance and subsequent onset of CD in genetically-susceptible individuals. Here we describe a prospective, multicenter, longitudinal study of infants at risk for CD which will employ a blend of basic and applied studies to yield fundamental insights into the role of the gut microbiome as an additional factor that may play a key role in early steps involved in the onset of autoimmune disease.

  7. Methodology and Ontology in Microbiome Research

    OpenAIRE

    Huss, John

    2014-01-01

    Research on the human microbiome has generated a staggering amount of sequence data, revealing variation in microbial diversity at the community, species (or phylotype), and genomic levels. In order to make this complexity more manageable and easier to interpret, new units—the metagenome, core microbiome, and enterotype—have been introduced in the scientific literature. Here, I argue that analytical tools and exploratory statistical methods, coupled with a translational imperative, are the pr...

  8. Possible role of the microbiome in the development of acute malnutrition and implications for food-based strategies to prevent and treat acute malnutrition

    International Nuclear Information System (INIS)

    Manary, Mark

    2014-01-01

    Full text: The microbiome is the ecological community of commensal, symbiotic, and pathogenic microorganisms within our bodies. Housed primarily in the small intestine, it contains over 100 trillion microorganisms, 100-fold more genes than the human genome. The microbiome facilitates the absorption of food and plays a role in homeostasis, micronutrient synthesis, detoxification and immune function. The microbiome has adapted to diet and environments to help the host best utilize dietary intakes where dietary intake affects the species and relative abundance of bacteria and genes in the microbiome. In young children, malnutrition hinders the co-evolution of the microbiome and immune system, often impairing the function of the small intestine mucosal lining, which can cause enteropathogen infection and impede nutrient absorption. The core microbiota is made up of a broad spectrum of bacterial species that vary from person-to-person based on age and environment. This finding was observed in a comparative metagenomic study of the gut microbiomes of 531 healthy infants, children, and adults living in the USA, Venezuela, and Malawi which found that the representation of genes related to micro- and macronutrient biosynthesis and metabolism changed during development and based on environment. In a study examining 317 Malawian twin pairs during the first three years of life, 50% remained well nourished, 43% became discordant and 7% manifested concordance for acute malnutrition. Fecal samples were taken from each twin over time, and those samples were transferred into germ-free mice where meaningful changes in the fecal taxonomic, genetic, and metabolic content accompanied the transplantations. Specifically in kwashiorkor mice, a rapid weight loss was experienced when initially fed a Malawian diet followed by a rapid weight gain with the introduction of therapeutic food and subsequent weight loss after return to the Malawian diet. These data provide evidence that food

  9. Possible role of the microbiome in the development of acute malnutrition and implications for food-based strategies to prevent and treat acute malnutrition

    Energy Technology Data Exchange (ETDEWEB)

    Manary, Mark [Washington University, School of Medicine (United States)

    2014-07-01

    Full text: The microbiome is the ecological community of commensal, symbiotic, and pathogenic microorganisms within our bodies. Housed primarily in the small intestine, it contains over 100 trillion microorganisms, 100-fold more genes than the human genome. The microbiome facilitates the absorption of food and plays a role in homeostasis, micronutrient synthesis, detoxification and immune function. The microbiome has adapted to diet and environments to help the host best utilize dietary intakes where dietary intake affects the species and relative abundance of bacteria and genes in the microbiome. In young children, malnutrition hinders the co-evolution of the microbiome and immune system, often impairing the function of the small intestine mucosal lining, which can cause enteropathogen infection and impede nutrient absorption. The core microbiota is made up of a broad spectrum of bacterial species that vary from person-to-person based on age and environment. This finding was observed in a comparative metagenomic study of the gut microbiomes of 531 healthy infants, children, and adults living in the USA, Venezuela, and Malawi which found that the representation of genes related to micro- and macronutrient biosynthesis and metabolism changed during development and based on environment. In a study examining 317 Malawian twin pairs during the first three years of life, 50% remained well nourished, 43% became discordant and 7% manifested concordance for acute malnutrition. Fecal samples were taken from each twin over time, and those samples were transferred into germ-free mice where meaningful changes in the fecal taxonomic, genetic, and metabolic content accompanied the transplantations. Specifically in kwashiorkor mice, a rapid weight loss was experienced when initially fed a Malawian diet followed by a rapid weight gain with the introduction of therapeutic food and subsequent weight loss after return to the Malawian diet. These data provide evidence that food

  10. The role of microbiome in central nervous system disorders

    Science.gov (United States)

    Wang, Yan; Kasper, Lloyd H.

    2014-01-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders. PMID:24370461

  11. Methodology and Ontology in Microbiome Research.

    Science.gov (United States)

    Huss, John

    2014-01-01

    Research on the human microbiome has generated a staggering amount of sequence data, revealing variation in microbial diversity at the community, species (or phylotype), and genomic levels. In order to make this complexity more manageable and easier to interpret, new units-the metagenome, core microbiome, and enterotype-have been introduced in the scientific literature. Here, I argue that analytical tools and exploratory statistical methods, coupled with a translational imperative, are the primary drivers of this new ontology. By reducing the dimensionality of variation in the human microbiome, these new units render it more tractable and easier to interpret, and hence serve an important heuristic role. Nonetheless, there are several reasons to be cautious about these new categories prematurely "hardening" into natural units: a lack of constraints on what can be sequenced metagenomically, freedom of choice in taxonomic level in defining a "core microbiome," typological framing of some of the concepts, and possible reification of statistical constructs. Finally, lessons from the Human Genome Project have led to a translational imperative: a drive to derive results from the exploration of microbiome variation that can help to articulate the emerging paradigm of personalized genomic medicine (PGM). There is a tension between the typologizing inherent in much of this research and the personal in PGM.

  12. Host genetic variation impacts microbiome composition across human body sites.

    Science.gov (United States)

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T; Spector, Timothy D; Keinan, Alon; Ley, Ruth E; Gevers, Dirk; Clark, Andrew G

    2015-09-15

    The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale. Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes. Our results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

  13. Microbiome-wide association studies link dynamic microbial consortia to disease

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Jack A.; Quinn, Robert A.; Debelius, Justine; Xu, Zhenjiang Z.; Morton, James; Garg, Neha; Jansson, Janet K.; Dorrestein, Pieter C.; Knight, Rob

    2016-07-06

    Rapid advances in DNA sequencing, metabolomics, proteomics and computation dramatically increase accessibility of microbiome studies and identify links between the microbiome and disease. Microbial time-series and multiple molecular perspectives enable Microbiome-Wide Association Studies (MWAS), analogous to Genome-Wide Association Studies (GWAS). Rapid research advances point towards actionable results, although approved clinical tests based on MWAS are still in the future. Appreciating the complexity of interactions between diet, chemistry, health and the microbiome, and determining the frequency of observations needed to capture and integrate this dynamic interface, is paramount for addressing the need for personalized and precision microbiome-based diagnostics and therapies.

  14. Current understanding of the human microbiome

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Jack A.; Blaser, Martin J.; Caporaso, J. Gregory; Jansson, Janet K.; Lynch, Susan V.; Knight, Rob

    2018-04-10

    Our understanding of the link between the human microbiome and disease, including obesity, inflammatory bowel disease, arthritis and autism, is rapidly expanding. Improvements in the throughput and accuracy of DNA sequencing of the genomes of microbial communities associated with human samples, complemented by analysis of transcriptomes, proteomes, metabolomes and immunomes, and mechanistic experiments in model systems, have vastly improved our ability to understand the structure and function of the microbiome in both diseased and healthy states. However, many challenges remain. In this Review we focus on studies in humans to describe these challenges, and propose strategies that leverage existing knowledge to move rapidly from correlation to causation, and ultimately to translation.

  15. Microbiome/microbiota and allergies.

    Science.gov (United States)

    Inoue, Yuzaburo; Shimojo, Naoki

    2015-01-01

    Allergies are characterized by a hypersensitive immune reaction to originally harmless antigens. In recent decades, the incidence of allergic diseases has markedly increased, especially in developed countries. The increase in the frequency of allergic diseases is thought to be primarily due to environmental changes related to a westernized lifestyle, which affects the commensal microbes in the human body. The human gut is the largest organ colonized by bacteria and contains more than 1000 bacterial species, called the "gut microbiota." The recent development of sequencing technology has enabled researchers to genetically investigate and clarify the diversity of all species of commensal microbes. The collective genomes of commensal microbes are together called the "microbiome." Although the detailed mechanisms remain unclear, it has been proposed that the microbiota/microbiome, especially that in the gut, impacts the systemic immunity and metabolism, thus affecting the development of various immunological diseases, including allergies. In this review, we summarize the recent findings regarding the importance of the microbiome/microbiota in the development of allergic diseases and also the results of interventional studies using probiotics or prebiotics to prevent allergies.

  16. Metatranscriptomics of the human gut microbiome

    DEFF Research Database (Denmark)

    Sicheritz-Pontén, Thomas

    2011-01-01

    Our ‘other’ genome is the collective genetic information in all of the microorganisms that are living on and within us. Collectively known as the microbiome, these microbial cells outnumber human cells in the body by more than 10 to 1, and the genes carried by these organisms outnumber the genes ...... that there is a division of labor between the bacterial species in the human gut microbiome.......Our ‘other’ genome is the collective genetic information in all of the microorganisms that are living on and within us. Collectively known as the microbiome, these microbial cells outnumber human cells in the body by more than 10 to 1, and the genes carried by these organisms outnumber the genes...... in the human genome by more than 100 to 1. How these organisms contribute to and affect human health is poorly understood, but the emerging field of metagenomics promises a more comprehensive and complete understanding of the human microbiome. In the European-funded Metagenomics of the Human Intestinal Tract...

  17. Translating the human microbiome

    NARCIS (Netherlands)

    Brown, J.; Vos, de W.M.; Distefano, P.S.; Doré, J.; Huttenhower, C.; Knight, R.; Lawley, T.D.; Raes, J.; Turnbaugh, P.

    2013-01-01

    Over the past decade, an explosion of descriptive analyses from initiatives, such as the Human Microbiome Project (HMP) and the MetaHIT project, have begun to delineate the human microbiome. Inhabitants of the intestinal tract, nasal passages, oral cavities, skin, gastrointestinal tract and

  18. Gut microbiome and bone.

    Science.gov (United States)

    Ibáñez, Lidia; Rouleau, Matthieu; Wakkach, Abdelilah; Blin-Wakkach, Claudine

    2018-04-11

    The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4 + T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  19. You Are What You Eat: A Genomic Analysis of the Gut Microbiome of Captive and Wild Octopus vulgaris Paralarvae and Their Zooplankton Prey

    Directory of Open Access Journals (Sweden)

    Álvaro Roura

    2017-05-01

    Full Text Available The common octopus (Octopus vulgaris is an attractive species for aquaculture, however, several challenges inhibit sustainable commercial production. Little is known about the early paralarval stages in the wild, including diet and intestinal microbiota, which likely play a significant role in development and vitality of this important life stage. High throughput sequencing was used to characterize the gastrointestinal microbiome of wild O. vulgaris paralarvae collected from two different upwelling regions off the coast of North West Spain (n = 41 and Morocco (n = 35. These were compared to that of paralarvae reared with Artemia for up to 25 days in captivity (n = 29. In addition, the gastrointestinal microbiome of zooplankton prey (crabs, copepod and krill was also analyzed to determine if the microbial communities present in wild paralarvae are derived from their diet. Paralarvae reared in captivity with Artemia showed a depletion of bacterial diversity, particularly after day 5, when almost half the bacterial species present on day 0 were lost and two bacterial families (Mycoplasmataceae and Vibrionaceae dominated the microbial community. In contrast, bacterial diversity increased in wild paralarvae as they developed in the oceanic realm of both upwelling systems, likely due to the exposure of new bacterial communities via ingestion of a wide diversity of prey. Remarkably, the bacterial diversity of recently hatched paralarvae in captivity was similar to that of wild paralarvae and zooplankton, thus suggesting a marked effect of the diet in both the microbial community species diversity and evenness. This study provides a comprehensive overview of the bacterial communities inhabiting the gastrointestinal tract of O. vulgaris paralarvae, and reveals new research lines to challenge the current bottlenecks preventing sustainable octopus aquaculture.

  20. USGS microbiome research

    Science.gov (United States)

    Kellogg, Christina A.; Hopkins, M. Camille

    2017-09-26

    Microbiomes are the communities of microorganisms (for example, bacteria, viruses, and fungi) that live on, in, and around people, plants, animals, soil, water, and the atmosphere. Microbiomes are active in the functioning of diverse ecosystems, for instance, by influencing water quality, nutrient acquisition 
and stress tolerance in plants, and stability of soil and aquatic environments. Microbiome research conducted by the U.S. Geological Survey spans many of our mission areas. Key research areas include water quality, understanding climate effects on soil and permafrost, ecosystem and wildlife health, invasive species, contaminated environments to improve bioremediation, and enhancing energy production. Microbiome research will fundamentally strengthen the ability to address the global challenges of maintaining clean water, ensuring adequate food supply, meeting energy needs, and preserving human and ecosystem health.

  1. Perturbation of the Human Microbiome as a Contributor to Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Bayan Missaghi

    2014-06-01

    Full Text Available The human microbiome consist of the composite genome of native flora that have evolved with humanity over millennia and which contains 150-fold more genes than the human genome. A “healthy” microbiome plays an important role in the maintenance of health and prevention of illness, inclusive of autoimmune disease such as inflammatory bowel disease (IBD. IBD is a prevalent spectrum of disorders, most notably defined by Crohn’s disease (CD and ulcerative colitis (UC, which are associated with considerable suffering, morbidity, and cost. This review presents an outline of the loss of a normal microbiome as an etiology of immune dysregulation and IBD pathogenesis initiation. We, furthermore, summarize the knowledge on the role of a healthy microbiome in terms of its diversity and important functional elements and, lastly, conclude with some of the therapeutic interventions and modalities that are now being explored as potential applications of microbiome-host interactions.

  2. The Airplane Cabin Microbiome.

    Science.gov (United States)

    Weiss, Howard; Hertzberg, Vicki Stover; Dupont, Chris; Espinoza, Josh L; Levy, Shawn; Nelson, Karen; Norris, Sharon

    2018-06-06

    Serving over three billion passengers annually, air travel serves as a conduit for infectious disease spread, including emerging infections and pandemics. Over two dozen cases of in-flight transmissions have been documented. To understand these risks, a characterization of the airplane cabin microbiome is necessary. Our study team collected 229 environmental samples on ten transcontinental US flights with subsequent 16S rRNA sequencing. We found that bacterial communities were largely derived from human skin and oral commensals, as well as environmental generalist bacteria. We identified clear signatures for air versus touch surface microbiome, but not for individual types of touch surfaces. We also found large flight-to-flight beta diversity variations with no distinguishing signatures of individual flights, rather a high between-flight diversity for all touch surfaces and particularly for air samples. There was no systematic pattern of microbial community change from pre- to post-flight. Our findings are similar to those of other recent studies of the microbiome of built environments. In summary, the airplane cabin microbiome has immense airplane to airplane variability. The vast majority of airplane-associated microbes are human commensals or non-pathogenic, and the results provide a baseline for non-crisis-level airplane microbiome conditions.

  3. Advancing gut microbiome research using cultivation

    DEFF Research Database (Denmark)

    Sommer, Morten OA

    2015-01-01

    Culture-independent approaches have driven the field of microbiome research and illuminated intricate relationships between the gut microbiota and human health. However, definitively associating phenotypes to specific strains or elucidating physiological interactions is challenging for metagenomic...... approaches. Recently a number of new approaches to gut microbiota cultivation have emerged through the integration of high-throughput phylogenetic mapping and new simplified cultivation methods. These methodologies are described along with their potential use within microbiome research. Deployment of novel...... cultivation approaches should enable improved studies of xenobiotic tolerance and modification phenotypes and allow a drastic expansion of the gut microbiota reference genome catalogues. Furthermore, the new cultivation methods should facilitate systematic studies of the causal relationship between...

  4. Core microbiomes for sustainable agroecosystems.

    Science.gov (United States)

    Toju, Hirokazu; Peay, Kabir G; Yamamichi, Masato; Narisawa, Kazuhiko; Hiruma, Kei; Naito, Ken; Fukuda, Shinji; Ushio, Masayuki; Nakaoka, Shinji; Onoda, Yusuke; Yoshida, Kentaro; Schlaeppi, Klaus; Bai, Yang; Sugiura, Ryo; Ichihashi, Yasunori; Minamisawa, Kiwamu; Kiers, E Toby

    2018-05-01

    In an era of ecosystem degradation and climate change, maximizing microbial functions in agroecosystems has become a prerequisite for the future of global agriculture. However, managing species-rich communities of plant-associated microbiomes remains a major challenge. Here, we propose interdisciplinary research strategies to optimize microbiome functions in agroecosystems. Informatics now allows us to identify members and characteristics of 'core microbiomes', which may be deployed to organize otherwise uncontrollable dynamics of resident microbiomes. Integration of microfluidics, robotics and machine learning provides novel ways to capitalize on core microbiomes for increasing resource-efficiency and stress-resistance of agroecosystems.

  5. The Human Microbiome and the Missing Heritability Problem

    Directory of Open Access Journals (Sweden)

    Santiago Sandoval-Motta

    2017-06-01

    Full Text Available The “missing heritability” problem states that genetic variants in Genome-Wide Association Studies (GWAS cannot completely explain the heritability of complex traits. Traditionally, the heritability of a phenotype is measured through familial studies using twins, siblings and other close relatives, making assumptions on the genetic similarities between them. When this heritability is compared to the one obtained through GWAS for the same traits, a substantial gap between both measurements arise with genome wide studies reporting significantly smaller values. Several mechanisms for this “missing heritability” have been proposed, such as epigenetics, epistasis, and sequencing depth. However, none of them are able to fully account for this gap in heritability. In this paper we provide evidence that suggests that in order for the phenotypic heritability of human traits to be broadly understood and accounted for, the compositional and functional diversity of the human microbiome must be taken into account. This hypothesis is based on several observations: (A The composition of the human microbiome is associated with many important traits, including obesity, cancer, and neurological disorders. (B Our microbiome encodes a second genome with nearly a 100 times more genes than the human genome, and this second genome may act as a rich source of genetic variation and phenotypic plasticity. (C Human genotypes interact with the composition and structure of our microbiome, but cannot by themselves explain microbial variation. (D Microbial genetic composition can be strongly influenced by the host's behavior, its environment or by vertical and horizontal transmissions from other hosts. Therefore, genetic similarities assumed in familial studies may cause overestimations of heritability values. We also propose a method that allows the compositional and functional diversity of our microbiome to be incorporated to genome wide association studies.

  6. The fish egg microbiome

    NARCIS (Netherlands)

    Liu, Y.

    2016-01-01

    Y. Liu

    Prof. dr. F. Govers (promotor); Prof. dr. J.M. Raaijmakers (promotor); Dr. I. de Bruijn (co-promotor); Wageningen University, 13 June 2016, 170 pp.

    The fish egg microbiome: diversity and activity against the oomycete pathogen

  7. Survivors of Downsizing: Helpful and Hindering Experiences

    Science.gov (United States)

    Amundson, Norman E.; Borgen, William A.; Jordan, Sharalyn; Erlebach, Anne C.

    2004-01-01

    Thirty-one downsizing survivors from both the private and public sector were interviewed to determine incidents that either helped or hindered their transition through 1 or more organizational downsizings. A critical incident technique was used to analyze and organize the data around themes that emerged, themes were represented by both positive…

  8. When Higher Working Memory Capacity Hinders Insight

    Science.gov (United States)

    DeCaro, Marci S.; Van Stockum, Charles A., Jr.; Wieth, Mareike B.

    2016-01-01

    Higher working memory capacity (WMC) improves performance on a range of cognitive and academic tasks. However, a greater ability to control attention sometimes leads individuals with higher WMC to persist in using complex, attention-demanding approaches that are suboptimal for a given task. We examined whether higher WMC would hinder insight…

  9. The Human Neonatal Gut Microbiome: A Brief Review

    Directory of Open Access Journals (Sweden)

    Emily C. Gritz

    2015-03-01

    Full Text Available The field of genomics has expanded into subspecialties such as metagenomics over the course of the last decade and a half. The development of massively parallel sequencing capabilities has allowed for increasingly detailed study of the genome of the human microbiome, the microbial super organ that resides symbiotically within the mucosal tissues and integumentary system of the human host. The gut microbiome, and particularly the study of its origins in neonates, have become subtopics of great interest within the field of genomics. This brief review seeks to summarize recent literature regarding the origins and establishment of the neonatal gut microbiome, beginning in utero, and how it is affected by neonatal nutritional status (breastfed versus formula fed and gestational age (term versus preterm. We also explore the role of dysbiosis, a perturbation within the fragile ecosystem of the microbiome, and its role in the origin of select pathologic states, specifically, obesity and necrotizing enterocolitis in preterm infants. We discuss the evidence supporting enteral pre- and probiotic supplementation of commensal organisms such as Bifidobacterium and Lactobacillus in the neonatal period, and their role in the prevention and amelioration of necrotizing enterocolitis in premature infants. Finally, we review directions to consider for further research to promote human health within this field.

  10. Microbiome-wide association studies link dynamic microbial consortia to disease

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Jack A.; Quinn, Robert A.; Debelius, Justine; Xu, Zhenjiang Z.; Morton, James; Garg, Neha; Jansson, Janet K.; Dorrestein, Pieter C.; Knight, Rob

    2016-07-06

    Rapid advances in DNA sequencing, metabolomics, proteomics and computational tools are dramatically increasing access to the microbiome and identification of its links with disease. In particular, time-series studies and multiple molecular perspectives are facilitating microbiome-wide association studies, which are analogous to genome-wide association studies. Early findings point to actionable outcomes of microbiome-wide association studies, although their clinical application has yet to be approved. An appreciation of the complexity of interactions among the microbiome and the host's diet, chemistry and health, as well as determining the frequency of observations that are needed to capture and integrate this dynamic interface, is paramount for developing precision diagnostics and therapies that are based on the microbiome.

  11. Antibiotics and the resistant microbiome

    DEFF Research Database (Denmark)

    Sommer, Morten; Dantas, Gautam

    2011-01-01

    . Less appreciated are the concomitant changes in the human microbiome in response to these assaults and their contribution to clinical resistance problems. Studies have shown that pervasive changes to the human microbiota result from antibiotic treatment and that resistant strains can persist for years....... Additionally, culture-independent functional characterization of the resistance genes from the microbiome has demonstrated a close evolutionary relationship between resistance genes in the microbiome and in pathogens. Application of these techniques and novel cultivation methods are expected to significantly...... expand our understanding of the interplay between antibiotics and the microbiome....

  12. The human gut microbiome: current knowledge, challenges, and future directions.

    Science.gov (United States)

    Dave, Maneesh; Higgins, Peter D; Middha, Sumit; Rioux, Kevin P

    2012-10-01

    The Human Genome Project was completed a decade ago, leaving a legacy of process, tools, and infrastructure now being turned to the study of the microbes that reside in and on the human body as determinants of health and disease, and has been branded "The Human Microbiome Project." Of the various niches under investigation, the human gut houses the most complex and abundant microbial community and is an arena for important host-microbial interactions that have both local and systemic impact. Initial studies of the human microbiome have been largely descriptive, a testing ground for innovative molecular techniques and new hypotheses. Methods for studying the microbiome have quickly evolved from low-resolution surveys of microbial community structure to high-definition description of composition, function, and ecology. Next-generation sequencing technologies combined with advanced bioinformatics place us at the doorstep of revolutionary insight into the composition, capability, and activity of the human intestinal microbiome. Renewed efforts to cultivate previously "uncultivable" microbes will be important to the overall understanding of gut ecology. There remain numerous methodological challenges to the effective study and understanding of the gut microbiome, largely relating to study design, sample collection, and the number of predictor variables. Strategic collaboration of clinicians, microbiologists, molecular biologists, computational scientists, and bioinformaticians is the ideal paradigm for success in this field. Meaningful interpretation of the gut microbiome requires that host genetic and environmental influences be controlled or accounted for. Understanding the gut microbiome in healthy humans is a foundation for discovering its influence in various important gastrointestinal and nutritional diseases (eg, inflammatory bowel disease, diabetes, and obesity), and for rational translation to human health gains. Copyright © 2012 Mosby, Inc. All rights

  13. Surface Topography Hinders Bacterial Surface Motility.

    Science.gov (United States)

    Chang, Yow-Ren; Weeks, Eric R; Ducker, William A

    2018-03-21

    We demonstrate that the surface motility of the bacterium, Pseudomonas aeruginosa, is hindered by a crystalline hemispherical topography with wavelength in the range of 2-8 μm. The motility was determined by the analysis of time-lapse microscopy images of cells in a flowing growth medium maintained at 37 °C. The net displacement of bacteria over 5 min is much lower on surfaces containing 2-8 μm hemispheres than on flat topography, but displacement on the 1 μm hemispheres is not lower. That is, there is a threshold between 1 and 2 μm for response to the topography. Cells on the 4 μm hemispheres were more likely to travel parallel to the local crystal axis than in other directions. Cells on the 8 μm topography were less likely to travel across the crowns of the hemispheres and were also more likely to make 30°-50° turns than on flat surfaces. These results show that surface topography can act as a significant barrier to surface motility and may therefore hinder surface exploration by bacteria. Because surface exploration can be a part of the process whereby bacteria form colonies and seek nutrients, these results help to elucidate the mechanism by which surface topography hinders biofilm formation.

  14. Impacts of the Human Gut Microbiome on Therapeutics.

    Science.gov (United States)

    Vázquez-Baeza, Yoshiki; Callewaert, Chris; Debelius, Justine; Hyde, Embriette; Marotz, Clarisse; Morton, James T; Swafford, Austin; Vrbanac, Alison; Dorrestein, Pieter C; Knight, Rob

    2018-01-06

    The human microbiome contains a vast source of genetic and biochemical variation, and its impacts on therapeutic responses are just beginning to be understood. This expanded understanding is especially important because the human microbiome differs far more among different people than does the human genome, and it is also dramatically easier to change. Here, we describe some of the major factors driving differences in the human microbiome among individuals and populations. We then describe some of the many ways in which gut microbes modify the action of specific chemotherapeutic agents, including nonsteroidal anti-inflammatory drugs and cardiac glycosides, and outline the potential of fecal microbiota transplant as a therapeutic. Intriguingly, microbes also alter how hosts respond to therapeutic agents through various pathways acting at distal sites. Finally, we discuss some of the computational and practical issues surrounding use of the microbiome to stratify individuals for drug response, and we envision a future where the microbiome will be modified to increase everyone's potential to benefit from therapy.

  15. Non-Markovianity hinders Quantum Darwinism

    Science.gov (United States)

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  16. Using a combination of binning strategies and taxonomic approaches to unravel the anaerobic digestion microbiome

    DEFF Research Database (Denmark)

    Campanaro, Stefano; Treu, Laura; Kougias, Panagiotis

    of scaffolds comprehensive of thousands genome sequences, but the binning of these scaffolds into OTUs representative of microbial genomes is still challenging. In the attempt to obtain a deep characterization of the anaerobic digestion microbiome, different metagenomic binning approaches were integrated...

  17. Rapidly expanding knowledge on the role of the gut microbiome in health and disease

    NARCIS (Netherlands)

    Cenit, M. C.; Matzaraki, V.; Tigchelaar-Feenstra, E. F.; Zhernakova, A.

    2014-01-01

    The human gut is colonized by a wide diversity of micro-organisms, which are now known to play a key role in the human host by regulating metabolic functions and immune homeostasis. Many studies have indicated that the genomes of our gut microbiota, known as the gut microbiome or our "other genome"

  18. Genomes

    National Research Council Canada - National Science Library

    Brown, T. A. (Terence A.)

    2002-01-01

    ... of genome expression and replication processes, and transcriptomics and proteomics. This text is richly illustrated with clear, easy-to-follow, full color diagrams, which are downloadable from the book's website...

  19. The functional microbiome of arthropods.

    Science.gov (United States)

    Degli Esposti, Mauro; Martinez Romero, Esperanza

    2017-01-01

    Many studies on the microbiome of animals have been reported but a comprehensive analysis is lacking. Here we present a meta-analysis on the microbiomes of arthropods and their terrestrial habitat, focusing on the functional profile of bacterial communities derived from metabolic traits that are essential for microbial life. We report a detailed analysis of probably the largest set of biochemically defined functional traits ever examined in microbiome studies. This work deals with the phylum proteobacteria, which is usually dominant in marine and terrestrial environments and covers all functions associated with microbiomes. The considerable variation in the distribution and abundance of proteobacteria in microbiomes has remained fundamentally unexplained. This analysis reveals discrete functional groups characteristic for adaptation to anaerobic conditions, which appear to be defined by environmental filtering of taxonomically related taxa. The biochemical diversification of the functional groups suggests an evolutionary trajectory in the structure of arthropods' microbiome, from metabolically versatile to specialized proteobacterial organisms that are adapted to complex environments such as the gut of social insects. Bacterial distribution in arthropods' microbiomes also shows taxonomic clusters that do not correspond to functional groups and may derive from other factors, including common contaminants of soil and reagents.

  20. Captivity humanizes the primate microbiome.

    Science.gov (United States)

    Clayton, Jonathan B; Vangay, Pajau; Huang, Hu; Ward, Tonya; Hillmann, Benjamin M; Al-Ghalith, Gabriel A; Travis, Dominic A; Long, Ha Thang; Tuan, Bui Van; Minh, Vo Van; Cabana, Francis; Nadler, Tilo; Toddes, Barbara; Murphy, Tami; Glander, Kenneth E; Johnson, Timothy J; Knights, Dan

    2016-09-13

    The primate gastrointestinal tract is home to trillions of bacteria, whose composition is associated with numerous metabolic, autoimmune, and infectious human diseases. Although there is increasing evidence that modern and Westernized societies are associated with dramatic loss of natural human gut microbiome diversity, the causes and consequences of such loss are challenging to study. Here we use nonhuman primates (NHPs) as a model system for studying the effects of emigration and lifestyle disruption on the human gut microbiome. Using 16S rRNA gene sequencing in two model NHP species, we show that although different primate species have distinctive signature microbiota in the wild, in captivity they lose their native microbes and become colonized with Prevotella and Bacteroides, the dominant genera in the modern human gut microbiome. We confirm that captive individuals from eight other NHP species in a different zoo show the same pattern of convergence, and that semicaptive primates housed in a sanctuary represent an intermediate microbiome state between wild and captive. Using deep shotgun sequencing, chemical dietary analysis, and chloroplast relative abundance, we show that decreasing dietary fiber and plant content are associated with the captive primate microbiome. Finally, in a meta-analysis including published human data, we show that captivity has a parallel effect on the NHP gut microbiome to that of Westernization in humans. These results demonstrate that captivity and lifestyle disruption cause primates to lose native microbiota and converge along an axis toward the modern human microbiome.

  1. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    Science.gov (United States)

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of

  2. Melting Can Hinder Impact-Induced Adhesion

    Science.gov (United States)

    Hassani-Gangaraj, Mostafa; Veysset, David; Nelson, Keith A.; Schuh, Christopher A.

    2017-10-01

    Melting has long been used to join metallic materials, from welding to selective laser melting in additive manufacturing. In the same school of thought, localized melting has been generally perceived as an advantage, if not the main mechanism, for the adhesion of metallic microparticles to substrates during a supersonic impact. Here, we conduct the first in situ supersonic impact observations of individual metallic microparticles aimed at the explicit study of melting effects. Counterintuitively, we find that under at least some conditions melting is disadvantageous and hinders impact-induced adhesion. In the parameter space explored, i.e., ˜10 μ m particle size and ˜1 km /s particle velocity, we argue that the solidification time is much longer than the residence time of the particle on the substrate, so that resolidification cannot be a significant factor in adhesion.

  3. Diverse CRISPRs evolving in human microbiomes.

    Directory of Open Access Journals (Sweden)

    Mina Rho

    Full Text Available CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats loci, together with cas (CRISPR-associated genes, form the CRISPR/Cas adaptive immune system, a primary defense strategy that eubacteria and archaea mobilize against foreign nucleic acids, including phages and conjugative plasmids. Short spacer sequences separated by the repeats are derived from foreign DNA and direct interference to future infections. The availability of hundreds of shotgun metagenomic datasets from the Human Microbiome Project (HMP enables us to explore the distribution and diversity of known CRISPRs in human-associated microbial communities and to discover new CRISPRs. We propose a targeted assembly strategy to reconstruct CRISPR arrays, which whole-metagenome assemblies fail to identify. For each known CRISPR type (identified from reference genomes, we use its direct repeat consensus sequence to recruit reads from each HMP dataset and then assemble the recruited reads into CRISPR loci; the unique spacer sequences can then be extracted for analysis. We also identified novel CRISPRs or new CRISPR variants in contigs from whole-metagenome assemblies and used targeted assembly to more comprehensively identify these CRISPRs across samples. We observed that the distributions of CRISPRs (including 64 known and 86 novel ones are largely body-site specific. We provide detailed analysis of several CRISPR loci, including novel CRISPRs. For example, known streptococcal CRISPRs were identified in most oral microbiomes, totaling ∼8,000 unique spacers: samples resampled from the same individual and oral site shared the most spacers; different oral sites from the same individual shared significantly fewer, while different individuals had almost no common spacers, indicating the impact of subtle niche differences on the evolution of CRISPR defenses. We further demonstrate potential applications of CRISPRs to the tracing of rare species and the virus exposure of individuals

  4. Human Microbiome and Learning Healthcare Systems: Integrating Research and Precision Medicine for Inflammatory Bowel Disease.

    Science.gov (United States)

    Chuong, Kim H; Mack, David R; Stintzi, Alain; O'Doherty, Kieran C

    2018-02-01

    Healthcare institutions face widespread challenges of delivering high-quality and cost-effective care, while keeping up with rapid advances in biomedical knowledge and technologies. Moreover, there is increased emphasis on developing personalized or precision medicine targeted to individuals or groups of patients who share a certain biomarker signature. Learning healthcare systems (LHS) have been proposed for integration of research and clinical practice to fill major knowledge gaps, improve care, reduce healthcare costs, and provide precision care. To date, much discussion in this context has focused on the potential of human genomic data, and not yet on human microbiome data. Rapid advances in human microbiome research suggest that profiling of, and interventions on, the human microbiome can provide substantial opportunity for improved diagnosis, therapeutics, risk management, and risk stratification. In this study, we discuss a potential role for microbiome science in LHSs. We first review the key elements of LHSs, and discuss possibilities of Big Data and patient engagement. We then consider potentials and challenges of integrating human microbiome research into clinical practice as part of an LHS. With rapid growth in human microbiome research, patient-specific microbial data will begin to contribute in important ways to precision medicine. Hence, we discuss how patient-specific microbial data can help guide therapeutic decisions and identify novel effective approaches for precision care of inflammatory bowel disease. To the best of our knowledge, this expert analysis makes an original contribution with new insights poised at the emerging intersection of LHSs, microbiome science, and postgenomics medicine.

  5. High-throughput Methods Redefine the Rumen Microbiome and Its Relationship with Nutrition and Metabolism

    Science.gov (United States)

    McCann, Joshua C.; Wickersham, Tryon A.; Loor, Juan J.

    2014-01-01

    Diversity in the forestomach microbiome is one of the key features of ruminant animals. The diverse microbial community adapts to a wide array of dietary feedstuffs and management strategies. Understanding rumen microbiome composition, adaptation, and function has global implications ranging from climatology to applied animal production. Classical knowledge of rumen microbiology was based on anaerobic, culture-dependent methods. Next-generation sequencing and other molecular techniques have uncovered novel features of the rumen microbiome. For instance, pyrosequencing of the 16S ribosomal RNA gene has revealed the taxonomic identity of bacteria and archaea to the genus level, and when complemented with barcoding adds multiple samples to a single run. Whole genome shotgun sequencing generates true metagenomic sequences to predict the functional capability of a microbiome, and can also be used to construct genomes of isolated organisms. Integration of high-throughput data describing the rumen microbiome with classic fermentation and animal performance parameters has produced meaningful advances and opened additional areas for study. In this review, we highlight recent studies of the rumen microbiome in the context of cattle production focusing on nutrition, rumen development, animal efficiency, and microbial function. PMID:24940050

  6. Short Course in the Microbiome

    Directory of Open Access Journals (Sweden)

    Kimberly Falana

    2015-07-01

    Full Text Available Over the past decade, it has become evident that the microbiome is an important environmental factor that affects many physiological processes, such as cell proliferation and differentiation, behaviour, immune function and metabolism. More importantly, it may contribute to a wide variety of diseases, including cancer, inflammatory diseases, metabolic diseases and responses to pathogens. We expect that international, integrative and interdisciplinary translational research teams, along with the emergence of FDA-approved platforms, will set the framework for microbiome-based therapeutics and diagnostics. We recognize that the microbiome ecosystem offers new promise for personalized/precision medicine and targeted treatment for a variety of diseases. The short course was held as a four-session webinar series in April 2015, taught by pioneers and experts in the microbiome ecosystem, covering a broad range of topics from the healthy microbiome to the effects of an altered microbiome from neonates to adults and the long term effects as it is related to disease, from asthma to cancer. We have learned to appreciate how beneficial our microbes are in breaking down our food, fighting off infections and nurturing our immune system, and this information provides us with ideas as to how we can manipulate our microbiome to prevent certain diseases. However, given the variety of applications, there are scientific challenges, though there are very promising areas in reference to the clinical benefits of understanding more about our microbiome, whether in our gut or on our skin: the outlook is bright. A summary of the short course is presented as a meeting dispatch.

  7. Bacterial microbiome of lungs in COPD

    Directory of Open Access Journals (Sweden)

    Sze MA

    2014-02-01

    Full Text Available Marc A Sze,1 James C Hogg,2 Don D Sin1 1Department of Medicine, 2Department of Pathology and Laboratory Medicine, The James Hogg Research Centre, Providence Heart-Lung Institute, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada Abstract: Chronic obstructive pulmonary disease (COPD is currently the third leading cause of death in the world. Although smoking is the main risk factor for this disease, only a minority of smokers develop COPD. Why this happens is largely unknown. Recent discoveries by the human microbiome project have shed new light on the importance and richness of the bacterial microbiota at different body sites in human beings. The microbiota plays a particularly important role in the development and functional integrity of the immune system. Shifts or perturbations in the microbiota can lead to disease. COPD is in part mediated by dysregulated immune responses to cigarette smoke and other environmental insults. Although traditionally the lung has been viewed as a sterile organ, by using highly sensitive genomic techniques, recent reports have identified diverse bacterial communities in the human lung that may change in COPD. This review summarizes the current knowledge concerning the lung microbiota in COPD and its potential implications for pathogenesis of the disease. Keywords: chronic obstructive pulmonary disease, bacterial microbiome, lungs

  8. An integrated catalog of reference genes in the human gut microbiome

    DEFF Research Database (Denmark)

    Li, Junhua; Jia, Huijue; Cai, Xianghang

    2014-01-01

    Many analyses of the human gut microbiome depend on a catalog of reference genes. Existing catalogs for the human gut microbiome are based on samples from single cohorts or on reference genomes or protein sequences, which limits coverage of global microbiome diversity. Here we combined 249 newly...... signatures. This expanded catalog should facilitate quantitative characterization of metagenomic, metatranscriptomic and metaproteomic data from the gut microbiome to understand its variation across populations in human health and disease.......) comprising 9,879,896 genes. The catalog includes close-to-complete sets of genes for most gut microbes, which are also of considerably higher quality than in previous catalogs. Analyses of a group of samples from Chinese and Danish individuals using the catalog revealed country-specific gut microbial...

  9. [Methods, challenges and opportunities for big data analyses of microbiome].

    Science.gov (United States)

    Sheng, Hua-Fang; Zhou, Hong-Wei

    2015-07-01

    Microbiome is a novel research field related with a variety of chronic inflamatory diseases. Technically, there are two major approaches to analysis of microbiome: metataxonome by sequencing the 16S rRNA variable tags, and metagenome by shot-gun sequencing of the total microbial (mainly bacterial) genome mixture. The 16S rRNA sequencing analyses pipeline includes sequence quality control, diversity analyses, taxonomy and statistics; metagenome analyses further includes gene annotation and functional analyses. With the development of the sequencing techniques, the cost of sequencing will decrease, and big data analyses will become the central task. Data standardization, accumulation, modeling and disease prediction are crucial for future exploit of these data. Meanwhile, the information property in these data, and the functional verification with culture-dependent and culture-independent experiments remain the focus in future research. Studies of human microbiome will bring a better understanding of the relations between the human body and the microbiome, especially in the context of disease diagnosis and therapy, which promise rich research opportunities.

  10. The microbiome of uncontacted Amerindians.

    Science.gov (United States)

    Clemente, Jose C; Pehrsson, Erica C; Blaser, Martin J; Sandhu, Kuldip; Gao, Zhan; Wang, Bin; Magris, Magda; Hidalgo, Glida; Contreras, Monica; Noya-Alarcón, Óscar; Lander, Orlana; McDonald, Jeremy; Cox, Mike; Walter, Jens; Oh, Phaik Lyn; Ruiz, Jean F; Rodriguez, Selena; Shen, Nan; Song, Se Jin; Metcalf, Jessica; Knight, Rob; Dantas, Gautam; Dominguez-Bello, M Gloria

    2015-04-03

    Most studies of the human microbiome have focused on westernized people with life-style practices that decrease microbial survival and transmission, or on traditional societies that are currently in transition to westernization. We characterize the fecal, oral, and skin bacterial microbiome and resistome of members of an isolated Yanomami Amerindian village with no documented previous contact with Western people. These Yanomami harbor a microbiome with the highest diversity of bacteria and genetic functions ever reported in a human group. Despite their isolation, presumably for >11,000 years since their ancestors arrived in South America, and no known exposure to antibiotics, they harbor bacteria that carry functional antibiotic resistance (AR) genes, including those that confer resistance to synthetic antibiotics and are syntenic with mobilization elements. These results suggest that westernization significantly affects human microbiome diversity and that functional AR genes appear to be a feature of the human microbiome even in the absence of exposure to commercial antibiotics. AR genes are likely poised for mobilization and enrichment upon exposure to pharmacological levels of antibiotics. Our findings emphasize the need for extensive characterization of the function of the microbiome and resistome in remote nonwesternized populations before globalization of modern practices affects potentially beneficial bacteria harbored in the human body.

  11. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria

    Science.gov (United States)

    Abdelmaksoud, Abdallah A.; Koparde, Vishal N.; Sheth, Nihar U.; Serrano, Myrna G.; Glascock, Abigail L.; Fettweis, Jennifer M.; Strauss, Jerome F.; Buck, Gregory A.

    2016-01-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( bacteria (>12 % 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively. PMID:26747455

  12. Overlearned responses hinder S-R binding.

    Science.gov (United States)

    Moeller, Birte; Frings, Christian

    2017-01-01

    Two mechanisms that are important for human action control are the integration of individual action plans (see Hommel, Müsseler, Aschersleben, & Prinz, 2001) and the automatization of overlearned actions to familiar stimuli (see Logan, 1988). In the present study, we analyzed the influence of automatization on action plan integration. Integration with pronunciation responses were compared for response incompatible word and nonword stimuli. Stimulus-response binding effects were observed for nonwords. In contrast, words that automatically triggered an overlearned pronunciation response were not integrated with pronunciation of a different word. That is, automatized response retrieval hindered binding effects regarding the retrieving stimulus and a new response. The results are a first indication of the way that binding and learning processes interact, and might also be a first step to understanding the more complex interdependency of the processes responsible for stimulus-response binding in action control and stimulus-response associations in learning research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. The sponge microbiome project.

    Science.gov (United States)

    Moitinho-Silva, Lucas; Nielsen, Shaun; Amir, Amnon; Gonzalez, Antonio; Ackermann, Gail L; Cerrano, Carlo; Astudillo-Garcia, Carmen; Easson, Cole; Sipkema, Detmer; Liu, Fang; Steinert, Georg; Kotoulas, Giorgos; McCormack, Grace P; Feng, Guofang; Bell, James J; Vicente, Jan; Björk, Johannes R; Montoya, Jose M; Olson, Julie B; Reveillaud, Julie; Steindler, Laura; Pineda, Mari-Carmen; Marra, Maria V; Ilan, Micha; Taylor, Michael W; Polymenakou, Paraskevi; Erwin, Patrick M; Schupp, Peter J; Simister, Rachel L; Knight, Rob; Thacker, Robert W; Costa, Rodrigo; Hill, Russell T; Lopez-Legentil, Susanna; Dailianis, Thanos; Ravasi, Timothy; Hentschel, Ute; Li, Zhiyong; Webster, Nicole S; Thomas, Torsten

    2017-10-01

    Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere. © The Authors 2017. Published by Oxford University Press.

  14. The sponge microbiome project

    KAUST Repository

    Moitinho-Silva, Lucas

    2017-08-16

    Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere.

  15. The Role of the Gut Microbiome in Multiple Sclerosis Risk and Progression: Towards Characterization of the "MS Microbiome".

    Science.gov (United States)

    Pröbstel, Anne-Katrin; Baranzini, Sergio E

    2018-01-01

    Multiple sclerosis (MS) is the prototypic complex disease, in which both genes and the environment contribute to its pathogenesis. To date, > 200 independent loci across the genome have been associated with MS risk. However, these only explain a fraction of the total phenotypic variance, suggesting the possible presence of additional genetic factors, and, most likely, also environmental factors. New DNA sequencing technologies have enabled the sequencing of all kinds of microorganisms, including those living in and around humans (i.e., microbiomes). The study of bacterial populations inhabiting the gut is of particular interest in autoimmune diseases owing to their key role in shaping immune responses. In this review, we address the potential crosstalk between B cells and the gut microbiota, a relevant scenario in light of recently approved anti-B-cell therapies for MS. In addition, we review recent efforts to characterize the gut microbiome in patients with MS and discuss potential challenges and future opportunities. Finally, we describe the international MS microbiome study, a multicenter effort to study a large population of patients with MS and their healthy household partners to define the core MS microbiome, how it is shaped by disease-modifying therapies, and to explore potential therapeutic interventions.

  16. Cross-kingdom similarities in microbiome functions

    NARCIS (Netherlands)

    Mendes, R.; Raaijmakers, J.M.

    2015-01-01

    Recent advances in medical research have revealed how humans rely on their microbiome for diverse traits and functions. Similarly, microbiomes of other higher organisms play key roles in disease, health, growth and development of their host. Exploring microbiome functions across kingdoms holds

  17. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes

    OpenAIRE

    Hehemann, Jan-Hendrik; Kelly, Amelia G.; Pudlo, Nicholas A.; Martens, Eric C.; Boraston, Alisdair B.

    2012-01-01

    Humans host an intestinal population of microbes—collectively referred to as the gut microbiome—which encode the carbohydrate active enzymes, or CAZymes, that are absent from the human genome. These CAZymes help to extract energy from recalcitrant polysaccharides. The question then arises as to if and how the microbiome adapts to new carbohydrate sources when modern humans change eating habits. Recent metagenome analysis of microbiomes from healthy American, Japanese, and Spanish populations ...

  18. The Microbiome and Sustainable Healthcare

    Science.gov (United States)

    Dietert, Rodney R.; Dietert, Janice M.

    2015-01-01

    Increasing prevalences, morbidity, premature mortality and medical needs associated with non-communicable diseases and conditions (NCDs) have reached epidemic proportions and placed a major drain on healthcare systems and global economies. Added to this are the challenges presented by overuse of antibiotics and increased antibiotic resistance. Solutions are needed that can address the challenges of NCDs and increasing antibiotic resistance, maximize preventative measures, and balance healthcare needs with available services and economic realities. Microbiome management including microbiota seeding, feeding, and rebiosis appears likely to be a core component of a path toward sustainable healthcare. Recent findings indicate that: (1) humans are mostly microbial (in terms of numbers of cells and genes); (2) immune dysfunction and misregulated inflammation are pivotal in the majority of NCDs; (3) microbiome status affects early immune education and risk of NCDs, and (4) microbiome status affects the risk of certain infections. Management of the microbiome to reduce later-life health risk and/or to treat emerging NCDs, to spare antibiotic use and to reduce the risk of recurrent infections may provide a more effective healthcare strategy across the life course particularly when a personalized medicine approach is considered. This review will examine the potential for microbiome management to contribute to sustainable healthcare. PMID:27417751

  19. Photosynthetic functions of Synechococcus in the ocean microbiomes of diverse salinity and seasons.

    Science.gov (United States)

    Kim, Yihwan; Jeon, Jehyun; Kwak, Min Seok; Kim, Gwang Hoon; Koh, InSong; Rho, Mina

    2018-01-01

    Synechococcus is an important photosynthetic picoplankton in the temperate to tropical oceans. As a photosynthetic bacterium, Synechococcus has an efficient mechanism to adapt to the changes in salinity and light intensity. The analysis of the distributions and functions of such microorganisms in the ever changing river mouth environment, where freshwater and seawater mix, should help better understand their roles in the ecosystem. Toward this objective, we have collected and sequenced the ocean microbiome in the river mouth of Kwangyang Bay, Korea, as a function of salinity and temperature. In conjunction with comparative genomics approaches using the sequenced genomes of a wide phylogeny of Synechococcus, the ocean microbiome was analyzed in terms of their composition and clade-specific functions. The results showed significant differences in the compositions of Synechococcus sampled in different seasons. The photosynthetic functions in such enhanced Synechococcus strains were also observed in the microbiomes in summer, which is significantly different from those in other seasons.

  20. Microbiome Selection Could Spur Next-Generation Plant Breeding Strategies.

    Science.gov (United States)

    Gopal, Murali; Gupta, Alka

    2016-01-01

    " No plant is an island too …" Plants, though sessile, have developed a unique strategy to counter biotic and abiotic stresses by symbiotically co-evolving with microorganisms and tapping into their genome for this purpose. Soil is the bank of microbial diversity from which a plant selectively sources its microbiome to suit its needs. Besides soil, seeds, which carry the genetic blueprint of plants during trans-generational propagation, are home to diverse microbiota that acts as the principal source of microbial inoculum in crop cultivation. Overall, a plant is ensconced both on the outside and inside with a diverse assemblage of microbiota. Together, the plant genome and the genes of the microbiota that the plant harbors in different plant tissues, i.e., the 'plant microbiome,' form the holobiome which is now considered as unit of selection: 'the holobiont.' The 'plant microbiome' not only helps plants to remain fit but also offers critical genetic variability, hitherto, not employed in the breeding strategy by plant breeders, who traditionally have exploited the genetic variability of the host for developing high yielding or disease tolerant or drought resistant varieties. This fresh knowledge of the microbiome, particularly of the rhizosphere, offering genetic variability to plants, opens up new horizons for breeding that could usher in cultivation of next-generation crops depending less on inorganic inputs, resistant to insect pest and diseases and resilient to climatic perturbations. We surmise, from ever increasing evidences, that plants and their microbial symbionts need to be co-propagated as life-long partners in future strategies for plant breeding. In this perspective, we propose bottom-up approach to co-propagate the co-evolved, the plant along with the target microbiome, through - (i) reciprocal soil transplantation method, or (ii) artificial ecosystem selection method of synthetic microbiome inocula, or (iii) by exploration of microRNA transfer

  1. Factors influencing the grass carp gut microbiome and its effect on metabolism.

    Science.gov (United States)

    Ni, Jiajia; Yan, Qingyun; Yu, Yuhe; Zhang, Tanglin

    2014-03-01

    Gut microbiota have attracted extensive attention recently because of their important role in host metabolism, immunity and health maintenance. The present study focused on factors affecting the gut microbiome of grass carp (Ctenopharyngodon idella) and further explored the potential effect of the gut microbiome on metabolism. Totally, 43.39 Gb of screened metagenomic sequences obtained from 24 gut samples were fully analysed. We detected 1228 phylotypes (116 Archaea and 1112 Bacteria), most of which belonged to the phyla Firmicutes, Proteobacteria and Fusobacteria. Totally, 41335 of the detected open reading frames (ORFs) were matched to Kyoto Encyclopedia of Genes and Genomes pathways, and carbohydrate and amino acid metabolism was the main matched pathway deduced from the annotated ORFs. Redundancy analysis based on the phylogenetic composition and gene composition of the gut microbiome indicated that gut fullness and feeding (i.e. ryegrass vs. commercial feed, and pond-cultured vs. wild) were significantly related to the gut microbiome. Moreover, many biosynthesis and metabolism pathways of carbohydrates, amino acids and lipids were significantly enhanced by the gut microbiome in ryegrass-fed grass carp. These findings suggest that the metabolic role played by the gut microbiome in grass carp can be affected by feeding. These findings contribute to the field of fish gut microbial ecology and also provide a basis for follow-up functional studies. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Beyond the human genome: Microbes, methaphors and what it means to be human in an interconnected post-genomic world

    NARCIS (Netherlands)

    Nerlich, B.; Hellsten, I.R.

    2009-01-01

    Four years after the completion of the Human Genome Project, the US National Institutes for Health launched the Human Microbiome Project on 19 December 2007. Using metaphor analysis, this article investigates reporting in English-language newspapers on advances in microbiomics from 2003 onwards,

  3. The Serpentinite Subsurface Microbiome

    Science.gov (United States)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  4. Hologenome analysis of two marine sponges with different microbiomes

    KAUST Repository

    Ryu, Tae Woo

    2016-02-29

    Background Sponges (Porifera) harbor distinct microbial consortia within their mesohyl interior. We herein analysed the hologenomes of Stylissa carteri and Xestospongia testudinaria, which notably differ in their microbiome content. Results Our analysis revealed that S. carteri has an expanded repertoire of immunological domains, specifically Scavenger Receptor Cysteine-Rich (SRCR)-like domains, compared to X. testudinaria. On the microbial side, metatranscriptome analyses revealed an overrepresentation of potential symbiosis-related domains in X. testudinaria. Conclusions Our findings provide genomic insights into the molecular mechanisms underlying host-symbiont coevolution and may serve as a roadmap for future hologenome analyses.

  5. Review: Maternal health and the placental microbiome.

    Science.gov (United States)

    Pelzer, Elise; Gomez-Arango, Luisa F; Barrett, Helen L; Nitert, Marloes Dekker

    2017-06-01

    Over the past decade, the role of the microbiome in regulating metabolism, immune function and behavior in humans has become apparent. It has become clear that the placenta is not a sterile organ, but rather has its own endogenous microbiome. The composition of the placental microbiome is distinct from that of the vagina and has been reported to resemble the oral microbiome. Compared to the gut microbiome, the placental microbiome exhibits limited microbial diversity. This review will focus on the current understanding of the placental microbiota in normal healthy pregnancy and also in disease states including preterm birth, chorioamnionitis and maternal conditions such as obesity, gestational diabetes mellitus and preeclampsia. Factors known to alter the composition of the placental microbiota will be discussed in the final part of this review. Copyright © 2016. Published by Elsevier Ltd.

  6. Microbiome in parturition and preterm birth.

    Science.gov (United States)

    Mysorekar, Indira U; Cao, Bin

    2014-01-01

    Preterm parturition is a one of the most significant global maternal-child health problem. In recent years, there has been an explosion in reports on a role for microbiomes (i.e., a microbial biomass) on a plethora of physiologic and pathologic human conditions. This review aims to describe our current understanding of the microbiome and its impact on parturition, with particular emphasis on preterm birth. We will focus on the roles of vaginal and oral mucosal microbiomes in premature parturition and describe the state-of-the-art methodologies used in microbiome studies. Next, we will present new studies on a potential microbiome in the placenta and how it may affect pregnancy outcomes. Finally, we will propose that host genetic factors can perturb the normal "pregnancy microbiome" and trigger adverse pregnancy outcomes. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Applying the design-build-test paradigm in microbiome engineering.

    Science.gov (United States)

    Pham, Hoang Long; Ho, Chun Loong; Wong, Adison; Lee, Yung Seng; Chang, Matthew Wook

    2017-12-01

    The recently discovered roles of human microbiome in health and diseases have inspired research efforts across many disciplines to engineer microbiome for health benefits. In this review, we highlight recent progress in human microbiome research and how modifications to the microbiome could result in implications to human health. Furthermore, we discuss the application of a 'design-build-test' framework to expedite microbiome engineering efforts by reviewing current literature on three key aspects: design principles to engineer the human microbiome, methods to engineer microbiome with desired functions, and analytical techniques to examine complex microbiome samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Childhood Malnutrition and the Intestinal Microbiome Malnutrition and the microbiome

    OpenAIRE

    Kane, Anne V.; Dinh, Duy M.; Ward, Honorine D.

    2014-01-01

    Malnutrition contributes to almost half of all deaths in children under the age of 5 years, particularly those who live in resource-constrained areas. Those who survive frequently suffer from long-term sequelae including growth failure and neurodevelopmental impairment. Malnutrition is part of a vicious cycle of impaired immunity, recurrent infections and worsening malnutrition. Recently, alterations in the gut microbiome have also been strongly implicated in childhood malnutrition. It has be...

  9. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies

    Directory of Open Access Journals (Sweden)

    Yu Cao

    2017-09-01

    Full Text Available The development of next generation sequencing (NGS techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents or a food manufacturing facility econiche (e.g., floor drain. To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods.

  10. A Review on the Applications of Next Generation Sequencing Technologies as Applied to Food-Related Microbiome Studies

    Science.gov (United States)

    Cao, Yu; Fanning, Séamus; Proos, Sinéad; Jordan, Kieran; Srikumar, Shabarinath

    2017-01-01

    The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods. PMID:29033905

  11. Novel Insights into The Human Microbiome

    Indian Academy of Sciences (India)

    PPM

    Microbiome. Individual genetic background. What we eat. (diet). Homeostasis. Health. Perturbation. Diseases. Low risk of allergies. Infection resistance. Allergies. Metabolic syndrome. Obesity. Infections ...

  12. Associations of Nasopharyngeal Metabolome and Microbiome with Severity among Infants with Bronchiolitis. A Multiomic Analysis.

    Science.gov (United States)

    Stewart, Christopher J; Mansbach, Jonathan M; Wong, Matthew C; Ajami, Nadim J; Petrosino, Joseph F; Camargo, Carlos A; Hasegawa, Kohei

    2017-10-01

    Bronchiolitis is the most common lower respiratory infection in infants; however, it remains unclear which infants with bronchiolitis will develop severe illness. In addition, although emerging evidence indicates associations of the upper-airway microbiome with bronchiolitis severity, little is known about the mechanisms linking airway microbes and host response to disease severity. To determine the relations among the nasopharyngeal airway metabolome profiles, microbiome profiles, and severity in infants with bronchiolitis. We conducted a multicenter prospective cohort study of infants (age metabolomic and metagenomic (16S ribosomal RNA gene and whole-genome shotgun sequencing) approaches to 144 nasopharyngeal airway samples collected within 24 hours of hospitalization, we determined metabolome and microbiome profiles and their association with higher severity, defined by the use of positive pressure ventilation (i.e., continuous positive airway pressure and/or intubation). Nasopharyngeal airway metabolome profiles significantly differed by bronchiolitis severity (P metabolomics to predict bronchiolitis severity and better understand microbe-host interaction.

  13. Human Microbiome and Learning Healthcare Systems: Integrating Research and Precision Medicine for Inflammatory Bowel Disease

    Science.gov (United States)

    Chuong, Kim H.; Mack, David R.; Stintzi, Alain

    2018-01-01

    Abstract Healthcare institutions face widespread challenges of delivering high-quality and cost-effective care, while keeping up with rapid advances in biomedical knowledge and technologies. Moreover, there is increased emphasis on developing personalized or precision medicine targeted to individuals or groups of patients who share a certain biomarker signature. Learning healthcare systems (LHS) have been proposed for integration of research and clinical practice to fill major knowledge gaps, improve care, reduce healthcare costs, and provide precision care. To date, much discussion in this context has focused on the potential of human genomic data, and not yet on human microbiome data. Rapid advances in human microbiome research suggest that profiling of, and interventions on, the human microbiome can provide substantial opportunity for improved diagnosis, therapeutics, risk management, and risk stratification. In this study, we discuss a potential role for microbiome science in LHSs. We first review the key elements of LHSs, and discuss possibilities of Big Data and patient engagement. We then consider potentials and challenges of integrating human microbiome research into clinical practice as part of an LHS. With rapid growth in human microbiome research, patient-specific microbial data will begin to contribute in important ways to precision medicine. Hence, we discuss how patient-specific microbial data can help guide therapeutic decisions and identify novel effective approaches for precision care of inflammatory bowel disease. To the best of our knowledge, this expert analysis makes an original contribution with new insights poised at the emerging intersection of LHSs, microbiome science, and postgenomics medicine. PMID:28282257

  14. Microbiome Tools for Forensic Science.

    Science.gov (United States)

    Metcalf, Jessica L; Xu, Zhenjiang Z; Bouslimani, Amina; Dorrestein, Pieter; Carter, David O; Knight, Rob

    2017-09-01

    Microbes are present at every crime scene and have been used as physical evidence for over a century. Advances in DNA sequencing and computational approaches have led to recent breakthroughs in the use of microbiome approaches for forensic science, particularly in the areas of estimating postmortem intervals (PMIs), locating clandestine graves, and obtaining soil and skin trace evidence. Low-cost, high-throughput technologies allow us to accumulate molecular data quickly and to apply sophisticated machine-learning algorithms, building generalizable predictive models that will be useful in the criminal justice system. In particular, integrating microbiome and metabolomic data has excellent potential to advance microbial forensics. Copyright © 2017. Published by Elsevier Ltd.

  15. Menopause and the vaginal microbiome.

    Science.gov (United States)

    Muhleisen, Alicia L; Herbst-Kralovetz, Melissa M

    2016-09-01

    For over a century it has been well documented that bacteria in the vagina maintain vaginal homeostasis, and that an imbalance or dysbiosis may be associated with poor reproductive and gynecologic health outcomes. Vaginal microbiota are of particular significance to postmenopausal women and may have a profound effect on vulvovaginal atrophy, vaginal dryness, sexual health and overall quality of life. As molecular-based techniques have evolved, our understanding of the diversity and complexity of this bacterial community has expanded. The objective of this review is to compare the changes that have been identified in the vaginal microbiota of menopausal women, outline alterations in the microbiome associated with specific menopausal symptoms, and define how hormone replacement therapy impacts the vaginal microbiome and menopausal symptoms; it concludes by considering the potential of probiotics to reinstate vaginal homeostasis following menopause. This review details the studies that support the role of Lactobacillus species in maintaining vaginal homeostasis and how the vaginal microbiome structure in postmenopausal women changes with decreasing levels of circulating estrogen. In addition, the associated transformations in the microanatomical features of the vaginal epithelium that can lead to vaginal symptoms associated with menopause are described. Furthermore, hormone replacement therapy directly influences the dominance of Lactobacillus in the microbiota and can resolve vaginal symptoms. Oral and vaginal probiotics hold great promise and initial studies complement the findings of previous research efforts concerning menopause and the vaginal microbiome; however, additional trials are required to determine the efficacy of bacterial therapeutics to modulate or restore vaginal homeostasis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Exploring the Cultivable Ectocarpus Microbiome

    OpenAIRE

    KleinJan, Hetty; Jeanthon, Christian; Boyen, Catherine; Dittami, Simon M.

    2017-01-01

    Coastal areas form the major habitat of brown macroalgae, photosynthetic multicellular eukaryotes that have great ecological value and industrial potential. Macroalgal growth, development, and physiology are influenced by the microbial community they accommodate. Studying the algal microbiome should thus increase our fundamental understanding of algal biology and may help to improve culturing efforts. Currently, a freshwater strain of the brown macroalga Ectocarpus subulatus is being develope...

  17. Esophageal microbiome in eosinophilic esophagitis.

    Directory of Open Access Journals (Sweden)

    J Kirk Harris

    Full Text Available The microbiome has been implicated in the pathogenesis of a number of allergic and inflammatory diseases. The mucosa affected by eosinophilic esophagitis (EoE is composed of a stratified squamous epithelia and contains intraepithelial eosinophils. To date, no studies have identified the esophageal microbiome in patients with EoE or the impact of treatment on these organisms. The aim of this study was to identify the esophageal microbiome in EoE and determine whether treatments change this profile. We hypothesized that clinically relevant alterations in bacterial populations are present in different forms of esophagitis.In this prospective study, secretions from the esophageal mucosa were collected from children and adults with EoE, Gastroesophageal Reflux Disease (GERD and normal mucosa using the Esophageal String Test (EST. Bacterial load was determined using quantitative PCR. Bacterial communities, determined by 16S rRNA gene amplification and 454 pyrosequencing, were compared between health and disease.Samples from a total of 70 children and adult subjects were examined. Bacterial load was increased in both EoE and GERD relative to normal subjects. In subjects with EoE, load was increased regardless of treatment status or degree of mucosal eosinophilia compared with normal. Haemophilus was significantly increased in untreated EoE subjects as compared with normal subjects. Streptococcus was decreased in GERD subjects on proton pump inhibition as compared with normal subjects.Diseases associated with mucosal eosinophilia are characterized by a different microbiome from that found in the normal mucosa. Microbiota may contribute to esophageal inflammation in EoE and GERD.

  18. Understanding the microbiome: Emerging biomarkers for exploiting the microbiota for personalized medicine against cancer.

    Science.gov (United States)

    Rajpoot, Meenakshi; Sharma, Anil K; Sharma, Anil; Gupta, Girish Kumar

    2018-02-06

    The human body is a home to more than 1 trillion microbes with a diverse variety of commensal microbes that play a crucial role towards the health of the individual. These microbes occupy different habitats such as gut, skin, vagina, oral etc. Not only the types and abundance of microbes are different in different organs, but also these may differ in different individuals. The genome of these microbiota and their ecosystem constitute to form a microbiome. Factors such as diet, environment, host genetics etc. may be the reason behind the wide microbial diversity. A number of studies performed on human microbiome have revealed that microbiota present in healthy and diseased individuals are distinct. Altered microbiome is many a times the reason behind the overexpression of genes which may cause complex diseases including cancer. Manipulation of the human microbiome can be done by microbial supplements such as probiotics or synbiotics, diet or prebiotics and microbial suppression strategies using antibiotics. Recent advances in genome sequencing technologies and metagenomic analysis provide us the broader understanding of these commensal microbes and highlighting the distinctive features of microbiome during healthy and disease states. Molecular pathological epidemiology (MPE) studies have been very helpful in providing insights into the pathological process behind disease evolution and progression by determining the specific etiological factors. New emerging field of research targets the microbiome for therapeutic purposes by which personalized medicines can be made for treating various types of tumors. Screening programmes might be helpful in identifying patients who are at the verge of developing cancer and in delivering appropriate approaches according to individual risk modes so that disease could be prevented. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Xenobiotic Metabolism and Gut Microbiomes.

    Directory of Open Access Journals (Sweden)

    Anubhav Das

    Full Text Available Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs also indicate geographic as well as age specific trends.

  20. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome.

    Science.gov (United States)

    Beckers, Bram; Op De Beeck, Michiel; Weyens, Nele; Van Acker, Rebecca; Van Montagu, Marc; Boerjan, Wout; Vangronsveld, Jaco

    2016-02-23

    Cinnamoyl-CoA reductase (CCR), an enzyme central to the lignin biosynthetic pathway, represents a promising biotechnological target to reduce lignin levels and to improve the commercial viability of lignocellulosic biomass. However, silencing of the CCR gene results in considerable flux changes of the general and monolignol-specific lignin pathways, ultimately leading to the accumulation of various extractable phenolic compounds in the xylem. Here, we evaluated host genotype-dependent effects of field-grown, CCR-down-regulated poplar trees (Populus tremula × Populus alba) on the bacterial rhizosphere microbiome and the endosphere microbiome, namely the microbiota present in roots, stems, and leaves. Plant-associated bacteria were isolated from all plant compartments by selective isolation and enrichment techniques with specific phenolic carbon sources (such as ferulic acid) that are up-regulated in CCR-deficient poplar trees. The bacterial microbiomes present in the endosphere were highly responsive to the CCR-deficient poplar genotype with remarkably different metabolic capacities and associated community structures compared with the WT trees. In contrast, the rhizosphere microbiome of CCR-deficient and WT poplar trees featured highly overlapping bacterial community structures and metabolic capacities. We demonstrate the host genotype modulation of the plant microbiome by minute genetic variations in the plant genome. Hence, these interactions need to be taken into consideration to understand the full consequences of plant metabolic pathway engineering and its relation with the environment and the intended genetic improvement.

  1. Gut microbiome and the risk factors in central nervous system autoimmunity.

    Science.gov (United States)

    Ochoa-Repáraz, Javier; Kasper, Lloyd H

    2014-11-17

    Humans are colonized after birth by microbial organisms that form a heterogeneous community, collectively termed microbiota. The genomic pool of this macro-community is named microbiome. The gut microbiota is essential for the complete development of the immune system, representing a binary network in which the microbiota interact with the host providing important immune and physiologic function and conversely the bacteria protect themselves from host immune defense. Alterations in the balance of the gut microbiome due to a combination of environmental and genetic factors can now be associated with detrimental or protective effects in experimental autoimmune diseases. These gut microbiome alterations can unbalance the gastrointestinal immune responses and influence distal effector sites leading to CNS disease including both demyelination and affective disorders. The current range of risk factors for MS includes genetic makeup and environmental elements. Of interest to this review is the consistency between this range of MS risk factors and the gut microbiome. We postulate that the gut microbiome serves as the niche where different MS risk factors merge, thereby influencing the disease process. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Evaluating the impact of domestication and captivity on the horse gut microbiome.

    Science.gov (United States)

    Metcalf, Jessica L; Song, Se Jin; Morton, James T; Weiss, Sophie; Seguin-Orlando, Andaine; Joly, Frédéric; Feh, Claudia; Taberlet, Pierre; Coissac, Eric; Amir, Amnon; Willerslev, Eske; Knight, Rob; McKenzie, Valerie; Orlando, Ludovic

    2017-11-14

    The mammal gut microbiome, which includes host microbes and their respective genes, is now recognized as an essential second genome that provides critical functions to the host. In humans, studies have revealed that lifestyle strongly influences the composition and diversity of the gastrointestinal microbiome. We hypothesized that these trends in humans may be paralleled in mammals subjected to anthropogenic forces such as domestication and captivity, in which diets and natural life histories are often greatly modified. We investigated fecal microbiomes of Przewalski's horse (PH; Equus ferus przewalskii), the only horses alive today not successfully domesticated by humans, and herded, domestic horse (E. f. caballus) living in adjacent natural grasslands. We discovered PH fecal microbiomes hosted a distinct and more diverse community of bacteria compared to domestic horses, which is likely partly explained by different plant diets as revealed by trnL maker data. Within the PH population, four individuals were born in captivity in European zoos and hosted a strikingly low diversity of fecal microbiota compared to individuals born in natural reserves in France and Mongolia. These results suggest that anthropogenic forces can dramatically reshape equid gastrointestinal microbiomes, which has broader implications for the conservation management of endangered mammals.

  3. Enteric microbiome metabolites correlate with response to simvastatin treatment.

    Directory of Open Access Journals (Sweden)

    Rima Kaddurah-Daouk

    Full Text Available Although statins are widely prescribed medications, there remains considerable variability in therapeutic response. Genetics can explain only part of this variability. Metabolomics is a global biochemical approach that provides powerful tools for mapping pathways implicated in disease and in response to treatment. Metabolomics captures net interactions between genome, microbiome and the environment. In this study, we used a targeted GC-MS metabolomics platform to measure a panel of metabolites within cholesterol synthesis, dietary sterol absorption, and bile acid formation to determine metabolite signatures that may predict variation in statin LDL-C lowering efficacy. Measurements were performed in two subsets of the total study population in the Cholesterol and Pharmacogenetics (CAP study: Full Range of Response (FR, and Good and Poor Responders (GPR were 100 individuals randomly selected from across the entire range of LDL-C responses in CAP. GPR were 48 individuals, 24 each from the top and bottom 10% of the LDL-C response distribution matched for body mass index, race, and gender. We identified three secondary, bacterial-derived bile acids that contribute to predicting the magnitude of statin-induced LDL-C lowering in good responders. Bile acids and statins share transporters in the liver and intestine; we observed that increased plasma concentration of simvastatin positively correlates with higher levels of several secondary bile acids. Genetic analysis of these subjects identified associations between levels of seven bile acids and a single nucleotide polymorphism (SNP, rs4149056, in the gene encoding the organic anion transporter SLCO1B1. These findings, along with recently published results that the gut microbiome plays an important role in cardiovascular disease, indicate that interactions between genome, gut microbiome and environmental influences should be considered in the study and management of cardiovascular disease. Metabolic

  4. Emerging roles of the microbiome in cancer

    Science.gov (United States)

    Bultman, Scott J.

    2014-01-01

    Gene–environment interactions underlie cancer susceptibility and progression. Yet, we still have limited knowledge of which environmental factors are important and how they function during tumorigenesis. In this respect, the microbial communities that inhabit our gastrointestinal tract and other body sites have been unappreciated until recently. However, our microbiota are environmental factors that we are exposed to continuously, and human microbiome studies have revealed significant differences in the relative abundance of certain microbes in cancer cases compared with controls. To characterize the function of microbiota in carcinogenesis, mouse models of cancer have been treated with antibiotics. They have also been maintained in a germfree state or have been colonized with specific bacteria in specialized (gnotobiotic) facilities. These studies demonstrate that microbiota can increase or decrease cancer susceptibility and progression by diverse mechanisms such as by modulating inflammation, influencing the genomic stability of host cells and producing metabolites that function as histone deacetylase inhibitors to epigenetically regulate host gene expression. One might consider microbiota as tractable environmental factors because they are highly quantifiable and relatively stable within an individual compared with our exposures to external agents. At the same time, however, diet can modulate the composition of microbial communities within our gut, and this supports the idea that probiotics and prebiotics can be effective chemoprevention strategies. The trajectory of where the current work is headed suggests that microbiota will continue to provide insight into the basic mechanisms of carcinogenesis and that microbiota will also become targets for therapeutic intervention. PMID:24302613

  5. The microbiome-systemic diseases connection

    NARCIS (Netherlands)

    van der Meulen, T. A.; Harmsen, H. J. M.; Bootsma, H.; Spijkervet, F. K. L.; Kroese, F. G. M.; Vissink, A.

    2016-01-01

    The human microbiome consists of all microorganisms occupying the skin, mucous membranes and intestinal tract of the human body. The contact of the mucosal immune system with the human microbiome is a balanced interplay between defence mechanisms of the immune system and symbiotic or pathogenic

  6. Road MAPs to engineer host microbiomes

    NARCIS (Netherlands)

    Oyserman, B. O.; Medema, Marnix H; Raaijmakers, J.M.

    2018-01-01

    Microbiomes contribute directly or indirectly to host health and fitness. Thus far, investigations into these emergent traits, referred to here as microbiome-associated phenotypes (MAPs), have been primarily qualitative and taxonomy-driven rather than quantitative and trait-based. We present the

  7. An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Suen, Garret; Barry, Kerrie; Goodwin, Lynne; Scott, Jarrod; Aylward, Frank; Adams, Sandra; Pinto-Tomas, Adrian; Foster, Clifton; Pauly, Markus; Weimer, Paul; Bouffard, Pascal; Li, Lewyn; Osterberger, Jolene; Harkins, Timothy; Slater, Steven; Donohue, Timothy; Currie, Cameron; Tringe, Susannah G.

    2010-09-23

    Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini), which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome?s predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  8. The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists

    Directory of Open Access Journals (Sweden)

    Aaron Lerner

    2017-10-01

    Full Text Available Objectives: To comprehensively review the scientific knowledge on the gut–brain axis. Methods: Various publications on the gut–brain axis, until 31 July 2017, were screened using the Medline, Google, and Cochrane Library databases. The search was performed using the following keywords: “gut-brain axis”, “gut-microbiota-brain axis”, “nutrition microbiome/microbiota”, “enteric nervous system”, “enteric glial cells/network”, “gut-brain pathways”, “microbiome immune system”, “microbiome neuroendocrine system” and “intestinal/gut/enteric neuropeptides”. Relevant articles were selected and reviewed. Results: Tremendous progress has been made in exploring the interactions between nutrients, the microbiome, and the intestinal, epithelium–enteric nervous, endocrine and immune systems and the brain. The basis of the gut–brain axis comprises of an array of multichannel sensing and trafficking pathways that are suggested to convey the enteric signals to the brain. These are mediated by neuroanatomy (represented by the vagal and spinal afferent neurons, the neuroendocrine–hypothalamic–pituitary–adrenal (HPA axis (represented by the gut hormones, immune routes (represented by multiple cytokines, microbially-derived neurotransmitters, and finally the gate keepers of the intestinal and brain barriers. Their mutual and harmonious but intricate interaction is essential for human life and brain performance. However, a failure in the interaction leads to a number of inflammatory-, autoimmune-, neurodegenerative-, metabolic-, mood-, behavioral-, cognitive-, autism-spectrum-, stress- and pain-related disorders. The limited availability of information on the mechanisms, pathways and cause-and-effect relationships hinders us from translating and implementing the knowledge from the bench to the clinic. Implications: Further understanding of this intricate field might potentially shed light on novel preventive and

  9. Emerging Technologies for Gut Microbiome Research

    Science.gov (United States)

    Arnold, Jason W.; Roach, Jeffrey; Azcarate-Peril, M. Andrea

    2016-01-01

    Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches will improve the efficiency and quality of microbiome research. Here, we will discuss emerging technologies and their potential impact on gut microbiome studies. PMID:27426971

  10. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Almeida, Mathieu; Juncker, Agnieszka

    2014-01-01

    of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify...

  11. Exploring the Cultivable Ectocarpus Microbiome.

    Science.gov (United States)

    KleinJan, Hetty; Jeanthon, Christian; Boyen, Catherine; Dittami, Simon M

    2017-01-01

    Coastal areas form the major habitat of brown macroalgae, photosynthetic multicellular eukaryotes that have great ecological value and industrial potential. Macroalgal growth, development, and physiology are influenced by the microbial community they accommodate. Studying the algal microbiome should thus increase our fundamental understanding of algal biology and may help to improve culturing efforts. Currently, a freshwater strain of the brown macroalga Ectocarpus subulatus is being developed as a model organism for brown macroalgal physiology and algal microbiome studies. It can grow in high and low salinities depending on which microbes it hosts. However, the molecular mechanisms involved in this process are still unclear. Cultivation of Ectocarpus -associated bacteria is the first step toward the development of a model system for in vitro functional studies of brown macroalgal-bacterial interactions during abiotic stress. The main aim of the present study is thus to provide an extensive collection of cultivable E . subulatus -associated bacteria. To meet the variety of metabolic demands of Ectocarpus -associated bacteria, several isolation techniques were applied, i.e., direct plating and dilution-to-extinction cultivation techniques, each with chemically defined and undefined bacterial growth media. Algal tissue and algal growth media were directly used as inoculum, or they were pretreated with antibiotics, by filtration, or by digestion of algal cell walls. In total, 388 isolates were identified falling into 33 genera (46 distinct strains), of which Halomonas ( Gammaproteobacteria ), Bosea ( Alphaproteobacteria ), and Limnobacter ( Betaproteobacteria ) were the most abundant. Comparisons with 16S rRNA gene metabarcoding data showed that culturability in this study was remarkably high (∼50%), although several cultivable strains were not detected or only present in extremely low abundance in the libraries. These undetected bacteria could be considered as part

  12. Exploring the Cultivable Ectocarpus Microbiome

    Directory of Open Access Journals (Sweden)

    Hetty KleinJan

    2017-12-01

    Full Text Available Coastal areas form the major habitat of brown macroalgae, photosynthetic multicellular eukaryotes that have great ecological value and industrial potential. Macroalgal growth, development, and physiology are influenced by the microbial community they accommodate. Studying the algal microbiome should thus increase our fundamental understanding of algal biology and may help to improve culturing efforts. Currently, a freshwater strain of the brown macroalga Ectocarpus subulatus is being developed as a model organism for brown macroalgal physiology and algal microbiome studies. It can grow in high and low salinities depending on which microbes it hosts. However, the molecular mechanisms involved in this process are still unclear. Cultivation of Ectocarpus-associated bacteria is the first step toward the development of a model system for in vitro functional studies of brown macroalgal–bacterial interactions during abiotic stress. The main aim of the present study is thus to provide an extensive collection of cultivable E. subulatus-associated bacteria. To meet the variety of metabolic demands of Ectocarpus-associated bacteria, several isolation techniques were applied, i.e., direct plating and dilution-to-extinction cultivation techniques, each with chemically defined and undefined bacterial growth media. Algal tissue and algal growth media were directly used as inoculum, or they were pretreated with antibiotics, by filtration, or by digestion of algal cell walls. In total, 388 isolates were identified falling into 33 genera (46 distinct strains, of which Halomonas (Gammaproteobacteria, Bosea (Alphaproteobacteria, and Limnobacter (Betaproteobacteria were the most abundant. Comparisons with 16S rRNA gene metabarcoding data showed that culturability in this study was remarkably high (∼50%, although several cultivable strains were not detected or only present in extremely low abundance in the libraries. These undetected bacteria could be considered

  13. Intrinsic association between diet and the gut microbiome: current evidence

    Directory of Open Access Journals (Sweden)

    Winglee K

    2015-10-01

    Full Text Available Kathryn Winglee, Anthony A Fodor Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA Abstract: The gut microbiome performs many crucial functions for the human host, but the molecular mechanisms by which host, microbe, and diet interact to mediate health and disease are only starting to be revealed. Here, we review the literature on how changes in the diet affect the microbiome. A number of studies have shown that within a geographic region, different diets (such as vegan vs omnivore are associated with differences in a modest number of taxa, but do not reliably produce radical differences within the gut microbial community. In contrast, studies that look across continents consistently find profoundly different microbial communities between Westernized and traditional populations, although it remains unclear to what extent diet or other differences in lifestyle drive these distinct microbial community structures. Furthermore, studies that place subjects on controlled short-term experimental diets have found the resulting alterations to the gut microbial community to generally be small in scope, with changes that do not overcome initial individual differences in microbial community structure. These results emphasize that the human gut microbial community is relatively stable over time. In contrast, short-term changes in diet can cause large changes in metabolite profiles, including metabolites processed by the gut microbial community. These results suggest that commensal gut microbes have a great deal of genetic plasticity and can activate different metabolic pathways independent of changes to microbial community composition. Thus, future studies of how the diet impacts host health via the microbiome may wish to focus on functional assays such as transcriptomics and metabolomics, in addition to 16S rRNA and whole-genome metagenome shotgun analyses of DNA. Taken together, the literature is most

  14. Facilitating or hindering social cohesion? The impact of the ...

    African Journals Online (AJOL)

    However, we show in this article that that the impact of the CWP is not always positive and that the CWP may in some cases result in tensions and contradictions that hinder social cohesion and even cause violence. If not implemented in a consultative participatory manner, the CWP may be a source of conflict rather than of ...

  15. Challenges hindering female participation in politics as expressed ...

    African Journals Online (AJOL)

    The study challenges hindering female participation in politics as expressed by female politicians in the federal capital territory, Abuja, Nigeria. The research design adopted for this study was descriptive survey. The respondents were 210 female politicians selected from six Area Councils of the FCT using a proportionate ...

  16. The lung microbiome in health and disease.

    Science.gov (United States)

    Moffatt, Miriam F; Cookson, William Ocm

    2017-12-01

    The Human Microbiome Project began 10 years ago, leading to a significant growth in understanding of the role the human microbiome plays in health and disease. In this article, we explain with an emphasis on the lung, the origins of microbiome research. We discuss how 16S rRNA gene sequencing became the first major molecular tool to examine the bacterial communities present within the human body. We highlight the pitfalls of molecular-based studies, such as false findings resulting from contamination, and the limitations of 16S rRNA gene sequencing. Knowledge about the lung microbiome has evolved from initial scepticism to the realisation that it might have a significant influence on many illnesses. We also discuss the lung microbiome in the context of disease by giving examples of important respiratory conditions. In addition, we draw attention to the challenges for metagenomic studies of respiratory samples and the importance of systematic bacterial isolation to enable host-microbiome interactions to be understood. We conclude by discussing how knowledge of the lung microbiome impacts current clinical diagnostics. © Royal College of Physicians 2017. All rights reserved.

  17. Modeling the Dynamic Digestive System Microbiome

    Directory of Open Access Journals (Sweden)

    Anne M. Estes

    2015-08-01

    Full Text Available “Modeling the Dynamic Digestive System Microbiome” is a hands-on activity designed to demonstrate the dynamics of microbiome ecology using dried pasta and beans to model disturbance events in the human digestive system microbiome. This exercise demonstrates how microbiome diversity is influenced by: 1 niche availability and habitat space and 2 a major disturbance event, such as antibiotic use. Students use a pictorial key to examine prepared models of digestive system microbiomes to determine what the person with the microbiome “ate.” Students then model the effect of taking antibiotics by removing certain “antibiotic sensitive” pasta. Finally, they add in “environmental microbes” or “native microbes” to recolonize the digestive system, determine how resilient their model microbome community is to disturbance, and discuss the implications. Throughout the exercise, students discuss differences in the habitat space available and microbiome community diversity. This exercise can be modified to discuss changes in the microbiome due to diet shifts and the emergence of antibiotic resistance in more depth.

  18. Deep sequencing of the oral microbiome reveals signatures of periodontal disease.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available The oral microbiome, the complex ecosystem of microbes inhabiting the human mouth, harbors several thousands of bacterial types. The proliferation of pathogenic bacteria within the mouth gives rise to periodontitis, an inflammatory disease known to also constitute a risk factor for cardiovascular disease. While much is known about individual species associated with pathogenesis, the system-level mechanisms underlying the transition from health to disease are still poorly understood. Through the sequencing of the 16S rRNA gene and of whole community DNA we provide a glimpse at the global genetic, metabolic, and ecological changes associated with periodontitis in 15 subgingival plaque samples, four from each of two periodontitis patients, and the remaining samples from three healthy individuals. We also demonstrate the power of whole-metagenome sequencing approaches in characterizing the genomes of key players in the oral microbiome, including an unculturable TM7 organism. We reveal the disease microbiome to be enriched in virulence factors, and adapted to a parasitic lifestyle that takes advantage of the disrupted host homeostasis. Furthermore, diseased samples share a common structure that was not found in completely healthy samples, suggesting that the disease state may occupy a narrow region within the space of possible configurations of the oral microbiome. Our pilot study demonstrates the power of high-throughput sequencing as a tool for understanding the role of the oral microbiome in periodontal disease. Despite a modest level of sequencing (~2 lanes Illumina 76 bp PE and high human DNA contamination (up to ~90% we were able to partially reconstruct several oral microbes and to preliminarily characterize some systems-level differences between the healthy and diseased oral microbiomes.

  19. Antibiotic use and microbiome function.

    Science.gov (United States)

    Ferrer, Manuel; Méndez-García, Celia; Rojo, David; Barbas, Coral; Moya, Andrés

    2017-06-15

    Our microbiome should be understood as one of the most complex components of the human body. The use of β-lactam antibiotics is one of the microbiome covariates that influence its composition. The extent to which our microbiota changes after an antibiotic intervention depends not only on the chemical nature of the antibiotic or cocktail of antibiotics used to treat specific infections, but also on the type of administration, duration and dose, as well as the level of resistance that each microbiota develops. We have begun to appreciate that not all bacteria within our microbiota are vulnerable or reactive to different antibiotic interventions, and that their influence on both microbial composition and metabolism may differ. Antibiotics are being used worldwide on a huge scale and the prescription of antibiotics is continuing to rise; however, their effects on our microbiota have been reported for only a limited number of them. This article presents a critical review of the antibiotics or antibiotic cocktails whose use in humans has been linked to changes in the composition of our microbial communities, with a particular focus on the gut, oral, respiratory, skin and vaginal microbiota, and on their molecular agents (genes, proteins and metabolites). We review the state of the art as of June 2016, and cover a total of circa 68 different antibiotics. The data herein are the first to compile information about the bacteria, fungi, archaea and viruses most influenced by the main antibiotic treatments prescribed nowadays. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Shared strategies for β-lactam catabolism in the soil microbiome

    DEFF Research Database (Denmark)

    Crofts, Terence S.; Wang, Bin; Spivak, Aaron

    2018-01-01

    The soil microbiome can produce, resist, or degrade antibiotics and even catabolize them. While resistance genes are widely distributed in the soil, there is a dearth of knowledge concerning antibiotic catabolism. Here we describe a pathway for penicillin catabolism in four isolates. Genomic......, respectively. Elucidation of additional pathways may allow bioremediation of antibiotic-contaminated soils and discovery of antibiotic-remodeling enzymes with industrial utility....

  1. Hindered bacterial mobility in porous media flow enhances dispersion

    Science.gov (United States)

    Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey

    2017-11-01

    Swimming bacteria live in porous environments characterized by dynamic fluid flows, where they play a crucial role in processes ranging from the bioremediation to the spread of infections. We study bacterial transport in a quasi-two-dimensional porous microfluidic device, which is complemented by Langevin simulations. The cell trajectories reveal filamentous patterns of high cell concentration, which result from the accumulation of bacteria in the high-shear regions of the flow and their subsequent advection. Moreover, the effective diffusion coefficient of the motile bacteria is severely hindered in the transverse direction to the flow due to decorrelation of the cells' persistent random walk by shear-induced rotation. The hindered lateral diffusion has the surprising consequence of strongly enhancing the longitudinal bacterial transport through a dispersion effect. These results demonstrate the significant role of the flow and geometry in bacterial transport through porous media with potential implications for understanding ecosystem dynamics and engineering bioreactors. NSF CBET-1511340, NSF CAREER-1554095.

  2. Synthesis and Properties of New Polymer Having Hindered Phenol Antioxidants

    International Nuclear Information System (INIS)

    Kim, Taek Hyeon; Song, Yi Rang; Kim, Jae Nyoung

    2003-01-01

    Polymeric antioxidants was successfully prepared by the copolymerization of monomeric maleimide with MMA. The copolymers possess some stabilizing effect against thermal oxidation with oven aging in air at 120 .deg. C for 5 days and also have the some resistance to water extraction. It is well known that the addition of antioxidants is the most convenient and effective way to block the thermal oxidation of polyolefins. Hindered phenol antioxidants, which contain the 2,6-di-tert-butylphenol functional group, are very effective primary antioxidants. However, low molecular weight (MW) antioxidants are easily lost from the polymers by the physical loss such as migration, evaporation, and extraction by liquid. The effectiveness of low MW antioxidants is limited. Therefore a new trend for antioxidant development is to prepare antioxidant with higher MW. The copolymerization or homopolymerization of the functional monomer bearing hindered phenol antioxidants is a conventional method for preparing polymeric antioxidants

  3. Embracing community ecology in plant microbiome research

    NARCIS (Netherlands)

    Dini-Andreote, F.; Raaijmakers, J.M.

    2018-01-01

    Community assembly is mediated by selection, dispersal, drift, and speciation. Environmental selection is mostly used to date to explain patterns in plant microbiome assembly, whereas the influence of the other processes remains largely elusive. Recent studies highlight that adopting community

  4. Road MAPs to engineer host microbiomes.

    Science.gov (United States)

    Oyserman, Ben O; Medema, Marnix H; Raaijmakers, Jos M

    2017-12-02

    Microbiomes contribute directly or indirectly to host health and fitness. Thus far, investigations into these emergent traits, referred to here as microbiome-associated phenotypes (MAPs), have been primarily qualitative and taxonomy-driven rather than quantitative and trait-based. We present the MAPs-first approach, a theoretical and experimental roadmap that involves quantitative profiling of MAPs across genetically variable hosts and subsequent identification of the underlying mechanisms. We outline strategies for developing 'modular microbiomes'-synthetic microbial consortia that are engineered in concert with the host genotype to confer different but mutually compatible MAPs to a single host or host population. By integrating host and microbial traits, these strategies will facilitate targeted engineering of microbiomes to the benefit of agriculture, human/animal health and biotechnology. Copyright © 2017. Published by Elsevier Ltd.

  5. Teamwork in a coronary care unit: facilitating and hindering aspects

    Directory of Open Access Journals (Sweden)

    Bethania Ferreira Goulart

    2016-06-01

    Full Text Available Abstract OBJECTIVE To identify, within a multidisciplinary team, the facilitating and hindering aspects for teamwork in a coronary care unit. METHOD A descriptive study, with qualitative and quantitative data, was carried out in the coronary care unit of a public hospital. The study population consisted of professionals working in the unit for at least one year. Those who were on leave or who were not located were excluded. The critical incident technique was used for data collection, by means of semi-structured interviews. For data analysis, content analysis and the critical incident technique were applied. RESULTS Participants were 45 professionals: 29 nursing professionals; 11 physicians; 4 physical therapists; and 1 psychologist. A total of 49 situations (77.6% with negative references; 385 behaviors (54.2% with positive references; and 182 consequences emerged (71.9% with negative references. Positive references facilitate teamwork, whereas negative references hinder it. A collaborative/communicative interprofessional relationship was evidenced as a facilitator; whereas poor collaboration among agents/inadequate management was a hindering aspect. CONCLUSION Despite the prevalence of negative situations and consequences, the emphasis on positive behaviors reveals the efforts the agents make in order to overcome obstacles and carry out teamwork.

  6. Factors Motivating and Hindering Information and Communication Technologies Action Competence

    Directory of Open Access Journals (Sweden)

    Adile Aşkım Kurt

    2013-01-01

    Full Text Available Information and Communication Technologies Action Competence (ICTAC can be defined as “individuals’ motivation and capacity to voluntarily employ their ICT skills for initiating or taking part in civic actions”. Since academic staff and teachers in ICT related fields have crucial roles in training action-competent individuals, this study aimed to determine the views of preservice teachers and instructors in Computer Education and Instructional Technology (CEIT departments about the motivating and hindering factors regarding ICTAC. Researchers used purposeful sampling technique and identified seven instructors and 16 students attending outlier CEIT departments from four different Turkish state universities. Since there is no contemporary framework on factors motivating or hindering ICTAC, the study was conducted with a qualitative approach and the data were collected through semi-structured interviews. Factors motivating and hindering ICTAC were identified through a content analysis. Findings of the study are believed to guide ICT and ICT education professionals in training students with higher levels of ICTAC and guide the course developers to focus on relevant social responsibility issues

  7. The Placenta Harbors a Unique Microbiome

    OpenAIRE

    Aagaard, Kjersti; Ma, Jun; Antony, Kathleen M.; Ganu, Radhika; Petrosino, Joseph; Versalovic, James

    2014-01-01

    Humans and their microbiomes have coevolved as a physiologic community composed of distinct body site niches with metabolic and antigenic diversity. The placental microbiome has not been robustly interrogated, despite recent demonstrations of intracellular bacteria with diverse metabolic and immune regulatory functions. A population-based cohort of placental specimens collected under sterile conditions from 320 subjects with extensive clinical data was established for comparative 16S ribosoma...

  8. The intestinal microbiome of fish under starvation

    OpenAIRE

    Xia, Jun Hong; Lin, Grace; Fu, Gui Hong; Wan, Zi Yi; Lee, May; Wang, Le; Liu, Xiao Jun; Yue, Gen Hua

    2014-01-01

    Background Starvation not only affects the nutritional and health status of the animals, but also the microbial composition in the host’s intestine. Next-generation sequencing provides a unique opportunity to explore gut microbial communities and their interactions with hosts. However, studies on gut microbiomes have been conducted predominantly in humans and land animals. Not much is known on gut microbiomes of aquatic animals and their changes under changing environmental conditions. To add...

  9. Microbiomics of Oral Biofilms: Driving The Future of Dental Research

    Directory of Open Access Journals (Sweden)

    Chaminda Jayampath Seneviratne

    2017-09-01

    Full Text Available Oral infectious diseases such as dental caries, periodontal disease, endodontic infections, oral candidiasis and peri-implantitis cause major health problems worldwide. All of these infectious diseases are associated with the biofilm growth mode of the oral pathogens. In the past, researchers often attempted to examine the association of single pathogens with particular dental diseases such as in the case of Streptococcus mutans acting as an aetiological agent for dental caries and the so-called “red-complex” bacteria for periodontal disease. However, with the recent advent of OMICS biology techniques such as genomics, transcriptomics, proteomics, it is possible to gain new insights into the host-microbial interaction, microbial community structure and composition in the oral cavity. The new studies on oral microbiomics can unravel the facets of the aetiopathology of oral diseases as never seen before. This mini-review will provide an history and overview of some of the existing DNA sequencing platforms employed to study the microbiomics of oral biofilms and the exciting future ahead for dental research.

  10. Metabolome of human gut microbiome is predictive of host dysbiosis.

    Science.gov (United States)

    Larsen, Peter E; Dai, Yang

    2015-01-01

    Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome's interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome-host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

  11. Elevated temperature drives kelp microbiome dysbiosis, while elevated carbon dioxide induces water microbiome disruption.

    Directory of Open Access Journals (Sweden)

    Jeremiah J Minich

    Full Text Available Global climate change includes rising temperatures and increased pCO2 concentrations in the ocean, with potential deleterious impacts on marine organisms. In this case study we conducted a four-week climate change incubation experiment, and tested the independent and combined effects of increased temperature and partial pressure of carbon dioxide (pCO2, on the microbiomes of a foundation species, the giant kelp Macrocystis pyrifera, and the surrounding water column. The water and kelp microbiome responded differently to each of the climate stressors. In the water microbiome, each condition caused an increase in a distinct microbial order, whereas the kelp microbiome exhibited a reduction in the dominant kelp-associated order, Alteromondales. The water column microbiomes were most disrupted by elevated pCO2, with a 7.3 fold increase in Rhizobiales. The kelp microbiome was most influenced by elevated temperature and elevated temperature in combination with elevated pCO2. Kelp growth was negatively associated with elevated temperature, and the kelp microbiome showed a 5.3 fold increase Flavobacteriales and a 2.2 fold increase alginate degrading enzymes and sulfated polysaccharides. In contrast, kelp growth was positively associated with the combination of high temperature and high pCO2 'future conditions', with a 12.5 fold increase in Planctomycetales and 4.8 fold increase in Rhodobacteriales. Therefore, the water and kelp microbiomes acted as distinct communities, where the kelp was stabilizing the microbiome under changing pCO2 conditions, but lost control at high temperature. Under future conditions, a new equilibrium between the kelp and the microbiome was potentially reached, where the kelp grew rapidly and the commensal microbes responded to an increase in mucus production.

  12. Unraveling the plant microbiome: looking back and future perspectives

    Directory of Open Access Journals (Sweden)

    Gabriele eBerg

    2014-06-01

    Full Text Available Most eukaryotes develop close interactions with microorganisms that are essential for their performance and survival. Thus, eukaryotes and prokaryotes in nature can be considered as meta-organisms or holobionts. Consequently, microorganisms that colonize different plant compartments contain the plant’s second genome. In this respect, many studies in the last decades have shown that plant-microbe interactions are not only crucial in understanding plant growth and health, but also for sustainable crop production in a changing world. This mini-review acting as editorial presents retrospectives and future perspectives for plant microbiome studies as well as information gaps in this emerging research field. In addition, the contribution of this research topic to the solution of various issues is discussed.

  13. Urban search mobile platform modeling in hindered access conditions

    Science.gov (United States)

    Barankova, I. I.; Mikhailova, U. V.; Kalugina, O. B.; Barankov, V. V.

    2018-05-01

    The article explores the control system simulation and the design of the experimental model of the rescue robot mobile platform. The functional interface, a structural functional diagram of the mobile platform control unit, and a functional control scheme for the mobile platform of secure robot were modeled. The task of design a mobile platform for urban searching in hindered access conditions is realized through the use of a mechanical basis with a chassis and crawler drive, a warning device, human heat sensors and a microcontroller based on Arduino platforms.

  14. Complex carbohydrate utilization by the healthy human microbiome.

    Directory of Open Access Journals (Sweden)

    Brandi L Cantarel

    Full Text Available The various ecological habitats in the human body provide microbes a wide array of nutrient sources and survival challenges. Advances in technology such as DNA sequencing have allowed a deeper perspective into the molecular function of the human microbiota than has been achievable in the past. Here we aimed to examine the enzymes that cleave complex carbohydrates (CAZymes in the human microbiome in order to determine (i whether the CAZyme profiles of bacterial genomes are more similar within body sites or bacterial families and (ii the sugar degradation and utilization capabilities of microbial communities inhabiting various human habitats. Upon examination of 493 bacterial references genomes from 12 human habitats, we found that sugar degradation capabilities of taxa are more similar to others in the same bacterial family than to those inhabiting the same habitat. Yet, the analysis of 520 metagenomic samples from five major body sites show that even when the community composition varies the CAZyme profiles are very similar within a body site, suggesting that the observed functional profile and microbial habitation have adapted to the local carbohydrate composition. When broad sugar utilization was compared within the five major body sites, the gastrointestinal track contained the highest potential for total sugar degradation, while dextran and peptidoglycan degradation were highest in oral and vaginal sites respectively. Our analysis suggests that the carbohydrate composition of each body site has a profound influence and probably constitutes one of the major driving forces that shapes the community composition and therefore the CAZyme profile of the local microbial communities, which in turn reflects the microbiome fitness to a body site.

  15. Microbiome selection could spur next-generation plant breeding strategies

    Directory of Open Access Journals (Sweden)

    Murali Gopal

    2016-12-01

    Full Text Available Plants, though sessile, have developed a unique strategy to counter biotic and abiotic stresses by symbiotically co-evolving with microorganisms and tapping into their genome for this purpose. Soil is the bank of microbial diversity from which a plant selectively sources its microbiome to suit its needs. Besides soil, seeds, which carry the genetic blueprint of plants during trans-generational propagation, are home to diverse microbiota that acts as the principal source of microbial inoculum in crop cultivation. Overall, a plant is ensconced both on the outside and inside with a diverse assemblage of microbiota. Together, the plant genome and the genes of the microbiota that the plant harbours in different plant tissues i.e the ‘plant microbiome’, form the holobiome which is now considered as unit of selection: ‘the holobiont’. The ‘plant microbiome’ not only helps plants to remain fit but also offers critical genetic variability, hitherto, not employed in the breeding strategy by plant breeders, who traditionally have exploited the genetic variability of the host for developing high yielding or disease tolerant or drought resistant varieties. This fresh knowledge of the microbiome, particularly of the rhizosphere, offering genetic variability to plants, opens up new horizons for breeding that could usher in cultivation of next-generation crops depending less on inorganic inputs, resistant to insect pest and diseases and resilient to climatic perturbations. We surmise, from ever increasing evidences, that plants and their microbial symbionts need to be co-propagated as life-long partners in future strategies for plant breeding.

  16. Final Report: The Human Microbiome as a Multipurpose Biomarker

    Science.gov (United States)

    2015-11-23

    Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 microbiome, biomarker, microbial forensics, microbial ecology , identifiability REPORT...temporal variation in the ecology of the human microbiome, this work demonstrated the feasibility of microbiome-based identifiability for the first time...a result with important ethical implications for microbiome study design. In order to construct metagenomic codes that are stable over time, we

  17. Novel Syntrophic Populations Dominate an Ammonia-Tolerant Methanogenic Microbiome.

    Science.gov (United States)

    Frank, J A; Arntzen, M Ø; Sun, L; Hagen, L H; McHardy, A C; Horn, S J; Eijsink, V G H; Schnürer, A; Pope, P B

    2016-01-01

    Biogas reactors operating with protein-rich substrates have high methane potential and industrial value; however, they are highly susceptible to process failure because of the accumulation of ammonia. High ammonia levels cause a decline in acetate-utilizing methanogens and instead promote the conversion of acetate via a two-step mechanism involving syntrophic acetate oxidation (SAO) to H 2 and CO 2 , followed by hydrogenotrophic methanogenesis. Despite the key role of syntrophic acetate-oxidizing bacteria (SAOB), only a few culturable representatives have been characterized. Here we show that the microbiome of a commercial, ammonia-tolerant biogas reactor harbors a deeply branched, uncultured phylotype (unFirm_1) accounting for approximately 5% of the 16S rRNA gene inventory and sharing 88% 16S rRNA gene identity with its closest characterized relative. Reconstructed genome and quantitative metaproteomic analyses imply unFirm_1's metabolic dominance and SAO capabilities, whereby the key enzymes required for acetate oxidation are among the most highly detected in the reactor microbiome. While culturable SAOB were identified in genomic analyses of the reactor, their limited proteomic representation suggests that unFirm_1 plays an important role in channeling acetate toward methane. Notably, unFirm_1-like populations were found in other high-ammonia biogas installations, conjecturing a broader importance for this novel clade of SAOB in anaerobic fermentations. IMPORTANCE The microbial production of methane or "biogas" is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in metaproteomic data

  18. An insect herbivore microbiome with high plant biomass-degrading capacity.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    2010-09-01

    Full Text Available Herbivores can gain indirect access to recalcitrant carbon present in plant cell walls through symbiotic associations with lignocellulolytic microbes. A paradigmatic example is the leaf-cutter ant (Tribe: Attini, which uses fresh leaves to cultivate a fungus for food in specialized gardens. Using a combination of sugar composition analyses, metagenomics, and whole-genome sequencing, we reveal that the fungus garden microbiome of leaf-cutter ants is composed of a diverse community of bacteria with high plant biomass-degrading capacity. Comparison of this microbiome's predicted carbohydrate-degrading enzyme profile with other metagenomes shows closest similarity to the bovine rumen, indicating evolutionary convergence of plant biomass degrading potential between two important herbivorous animals. Genomic and physiological characterization of two dominant bacteria in the fungus garden microbiome provides evidence of their capacity to degrade cellulose. Given the recent interest in cellulosic biofuels, understanding how large-scale and rapid plant biomass degradation occurs in a highly evolved insect herbivore is of particular relevance for bioenergy.

  19. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches.

    Science.gov (United States)

    Belizário, José E; Napolitano, Mauro

    2015-01-01

    The human body is the residence of a large number of commensal (non-pathogenic) and pathogenic microbial species that have co-evolved with the human genome, adaptive immune system, and diet. With recent advances in DNA-based technologies, we initiated the exploration of bacterial gene functions and their role in human health. The main goal of the human microbiome project is to characterize the abundance, diversity and functionality of the genes present in all microorganisms that permanently live in different sites of the human body. The gut microbiota expresses over 3.3 million bacterial genes, while the human genome expresses only 20 thousand genes. Microbe gene-products exert pivotal functions via the regulation of food digestion and immune system development. Studies are confirming that manipulation of non-pathogenic bacterial strains in the host can stimulate the recovery of the immune response to pathogenic bacteria causing diseases. Different approaches, including the use of nutraceutics (prebiotics and probiotics) as well as phages engineered with CRISPR/Cas systems and quorum sensing systems have been developed as new therapies for controlling dysbiosis (alterations in microbial community) and common diseases (e.g., diabetes and obesity). The designing and production of pharmaceuticals based on our own body's microbiome is an emerging field and is rapidly growing to be fully explored in the near future. This review provides an outlook on recent findings on the human microbiomes, their impact on health and diseases, and on the development of targeted therapies.

  20. HUMAN MICROBIOMES AND THEIR ROLES IN DYSBIOSIS, COMMON DISEASES AND NOVEL THERAPEUTIC APPROACHES

    Directory of Open Access Journals (Sweden)

    Jose Ernesto Belizario

    2015-10-01

    Full Text Available The human body is the residence of a large number of commensal (non-pathogenic and pathogenic microbial species that have co-evolved with the human genome, adaptive immune system and diet. With recent advances in DNA-based technologies, we initiated the exploration of bacterial gene functions and their role in human health. The main goal of the human microbiome project is to characterize the abundance, diversity and functionality of the genes present in all microorganisms that permanently live in different sites of the human body. The gut microbiota expresses over 3.3 million bacterial genes, while the human genome expresses only 20 thousand genes. Microbe gene-products exert pivotal functions via the regulation of food digestion and immune system development. Studies are confirming that manipulation of non-pathogenic bacterial strains in the host can stimulate the recovery of the immune response to pathogenic bacteria causing diseases. Different approaches, including the use of nutraceutics (prebiotics and probiotics as well as phages engineered with CRISPR/cas systems and quorum sensing systems have been developed as new therapies for controlling dysbiosis (alterations in microbial community and common diseases (e.g. diabetes and obesity. The designing and production of pharmaceuticals based on our own body’s microbiome is an emerging field and is rapidly growing to be fully explored in the near future. This review provides an outlook on recent findings on the human microbiomes, their impact on health and diseases, and on the development of targeted therapies.

  1. Factors Hindering the Integration of CALL in a Tertiary Institution

    Directory of Open Access Journals (Sweden)

    Izaham Shah Ismail

    2008-12-01

    Full Text Available The field of Computer Assisted Language Learning (CALL is a field that is constantly evolving as it is very much dependent on the advancement of computer technologies. With new technologies being invented almost every day, experts in the field are looking for ways to apply these new technologies in the language classroom. Despite that, teachers are said to be slow at adopting technology in their classrooms and language teachers, whether at schools or tertiary institutions, are no exception. This study attempts to investigate the factors that hinder ESL instructors at an institution of higher learning from integrating CALL in their lessons. Interviews were conducted with five ESL instructors and results revealed that factors which hinder them from integrating CALL in their teaching are universal factors such as knowledge in technology and pedagogy, computer facilities and resources, absence of exemplary integration of CALL, personal beliefs on language teaching, views on the role of a computers as teacher, and evaluation of learning outcomes.

  2. Gut Microbiome of the Canadian Arctic Inuit

    Science.gov (United States)

    Tromas, Nicolas; Amyot, Marc

    2017-01-01

    ABSTRACT Diet is a major determinant of community composition in the human gut microbiome, and “traditional” diets have been associated with distinct and highly diverse communities, compared to Western diets. However, most traditional diets studied have been those of agrarians and hunter-gatherers consuming fiber-rich diets. In contrast, the Inuit of the Canadian Arctic have been consuming a traditional diet low in carbohydrates and rich in animal fats and protein for thousands of years. We hypothesized that the Inuit diet and lifestyle would be associated with a distinct microbiome. We used deep sequencing of the 16S rRNA gene to compare the gut microbiomes of Montrealers with a Western diet to those of the Inuit consuming a range of traditional and Western diets. At the overall microbial community level, the gut microbiomes of Montrealers and Inuit were indistinguishable and contained similar levels of microbial diversity. However, we observed significant differences in the relative abundances of certain microbial taxa down to the subgenus level using oligotyping. For example, Prevotella spp., which have been previously associated with high-fiber diets, were enriched in Montrealers and among the Inuit consuming a Western diet. The gut microbiomes of Inuit consuming a traditional diet also had significantly less genetic diversity within the Prevotella genus, suggesting that a low-fiber diet might not only select against Prevotella but also reduce its diversity. Other microbes, such as Akkermansia, were associated with geography as well as diet, suggesting limited dispersal to the Arctic. Our report provides a snapshot of the Inuit microbiome as Western-like in overall community structure but distinct in the relative abundances and diversity of certain genera and strains. IMPORTANCE Non-Western populations have been shown to have distinct gut microbial communities shaped by traditional diets. The hitherto-uncharacterized microbiome of the Inuit may help us to

  3. Evaluation of the microbiome in children's appendicitis.

    Science.gov (United States)

    Salö, Martin; Marungruang, Nittaya; Roth, Bodil; Sundberg, Tiia; Stenström, Pernilla; Arnbjörnsson, Einar; Fåk, Frida; Ohlsson, Bodil

    2017-01-01

    The role of the microbiome has been widely discussed in the etiology of appendicitis. The primary aim was to evaluate the microbiome in the normal appendix and in appendicitis specifically divided into the three clinically and histopathologically defined grades of inflammation. Secondary aims were to examine whether there were any microbiome differences between proximal and distal appendices, and relate the microbiome with histopathological findings. A prospective pilot study was conducted of children undergoing appendectomy for appendicitis. The diagnosis was based on histopathological analysis. Children with incidental appendectomy were used as controls. The proximal and distal mucosa from the appendices were analyzed with 16S rRNA gene sequencing. A total of 22 children, 3 controls and 19 appendicitis patients; 11 phlegmonous, 4 gangrenous, and 4 perforated appendices, were prospectively included. The amount of Fusobacterium increased and Bacteroides decreased in phlegmonous and perforated appendicitis compared to controls, but statistical significance was not reached, and this pattern was not seen in gangrenous appendicitis. No relation could be seen between different bacteria and the grade of inflammation, and there was a wide variation of abundances at phylum, genus, and species level within every specific group of patients. Further, no significant differences could be detected when comparing the microbiome in proximal and distal mucosa, which may be because the study was underpowered. A trend with more abundance of Fusobacteria in the distal mucosa was seen in appendicitis patients with obstruction (25 and 13 %, respectively, p = 0.06). The pattern of microbiome differed not only between groups, but also within groups. However, no statistically significant differences could be found in the microbiome between groups or clinical conditions. No correlation between a specific bacteria and grade of inflammation was found. In the vast majority of cases of

  4. Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome

    DEFF Research Database (Denmark)

    Shoaie, Saeed; Ghaffari, Pouyan; Kovatcheva-Datchary, Petia

    2015-01-01

    The human gut microbiome is known to be associated with various human disorders, but a major challenge is to go beyond association studies and elucidate causalities. Mathematical modeling of the human gut microbiome at a genome scale is a useful tool to decipher microbe-microbe, diet...... of single bacteria and whole communities in vitro. Focusing on metabolic interactions between the diet, gut microbiota, and host metabolism, we demonstrated the predictive power of the toolbox in a diet-intervention study of 45 obese and overweight individuals and validated our predictions by fecal...... and blood metabolomics data. Thus, modeling could quantitatively describe altered fecal and serum amino acid levels in response to diet intervention....

  5. The gut microbiome in atherosclerotic cardiovascular disease

    DEFF Research Database (Denmark)

    Jie, Zhuye; Xia, Huihua; Zhong, Shi-Long

    2017-01-01

    The gut microbiota has been linked to cardiovascular diseases. However, the composition and functional capacity of the gut microbiome in relation to cardiovascular diseases have not been systematically examined. Here, we perform a metagenome-wide association study on stools from 218 individuals...... with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls. The ACVD gut microbiome deviates from the healthy status by increased abundance of Enterobacteriaceae and Streptococcus spp. and, functionally, in the potential for metabolism or transport of several molecules important for cardiovascular......), with liver cirrhosis, and rheumatoid arthritis. Our data represent a comprehensive resource for further investigations on the role of the gut microbiome in promoting or preventing ACVD as well as other related diseases.The gut microbiota may play a role in cardiovascular diseases. Here, the authors perform...

  6. The gut microbiome in atherosclerotic cardiovascular disease

    DEFF Research Database (Denmark)

    Jie, Zhuye; Xia, Huihua; Zhong, Shi-Long

    2017-01-01

    The gut microbiota has been linked to cardiovascular diseases. However, the composition and functional capacity of the gut microbiome in relation to cardiovascular diseases have not been systematically examined. Here, we perform a metagenome-wide association study on stools from 218 individuals...... with atherosclerotic cardiovascular disease (ACVD) and 187 healthy controls. The ACVD gut microbiome deviates from the healthy status by increased abundance of Enterobacteriaceae and Streptococcus spp. and, functionally, in the potential for metabolism or transport of several molecules important for cardiovascular...... health. Although drug treatment represents a confounding factor, ACVD status, and not current drug use, is the major distinguishing feature in this cohort. We identify common themes by comparison with gut microbiome data associated with other cardiometabolic diseases (obesity and type 2 diabetes...

  7. Deciphering conjugative plasmid permissiveness in wastewater microbiomes

    DEFF Research Database (Denmark)

    Jacquiod, Samuel Jehan Auguste; Brejnrod, Asker Daniel; Milani, Stefan Morberg

    2017-01-01

    Wastewater treatment plants (WWTPs) are designed to robustly treat polluted water. They are characterized by ceaseless flows of organic, chemical and microbial matter, followed by treatment steps before environmental release. WWTPs are hotspots of horizontal gene transfer between bacteria via...... still remains largely uncharted. Furthermore, current in vitro methods used to assess conjugation in complex microbiomes do not include in situ behaviours of recipient cells, resulting in partial understanding of transfers. We investigated the in vitro conjugation capacities of WWTP microbiomes from...... inlet sewage and outlet treated water using the broad-host range IncP-1 conjugative plasmid, pKJK5. A thorough molecular approach coupling metagenomes to 16S rRNA DNA/cDNA amplicon sequencing was established to characterize microbiomes using the ecological concept of functional response groups. A broad...

  8. Social prejudice hindering proper use of car safety seats.

    Science.gov (United States)

    Kanburoglu, Mehmet Kenan; Cizmeci, Mehmet Nevzat; Akelma, Ahmet Zulfikar; Orun, Emel; Yesilyurt, Kubra; Tatli, Mustafa Mansur

    2013-12-01

    The compliance of parents with child passenger safety (CPS) has been mainly explained by their level of knowledge. Social, ethnic and cultural factors have not been investigated in detail. This study investigated the rate of compliance of parents with CPS guidelines, as well as the factors hindering it. Parents of infants aged 2-10 days were enrolled. The proportions of families obtaining a car safety seat (CSS; 57%) and complying with CPS recommendations (2%) were very low. Most of the parents thought CSS were harmful for infants (mother, 57%; father, 63%), despite having already purchased one. Parents believed their children to be too small to use CSS and cannot sit in CSS because they should lie flat on their backs at all times. These prejudices may be due to the social and cultural circumstances specific to Turkey, or corresponding findings may be found in countries with similar socioeconomic status. © 2013 The Authors. Pediatrics International © 2013 Japan Pediatric Society.

  9. Endangered river fish: factors hindering conservation and restoration

    Science.gov (United States)

    Cooke, Steven J.; Paukert, Craig P.; Hogan, Zeb

    2012-01-01

    Globally, riverine fish face many anthropogenic threats including riparian and flood plain habitat degradation, altered hydrology, migration barriers, fisheries exploitation, environmental (climate) change, and introduction of invasive species. Collectively, these threats have made riverine fishes some of the most threatened taxa on the planet. Although much effort has been devoted to identifying the threats faced by river fish, there has been less effort devoted to identifying the factors that may hinder our ability to conserve and restore river fish populations and their watersheds. Therefore, we focus our efforts on identifying and discussing 10 general factors (can also be viewed as research and implementation needs) that constrain or hinder effective conservation action for endangered river fish: (1) limited basic natural history information; (2) limited appreciation for the scale/extent of migrations and the level of connectivity needed to sustain populations; (3) limited understanding of fish/river-flow relationships; (4) limited understanding of the seasonal aspects of river fish biology, particularly during winter and/or wet seasons; (5) challenges in predicting the response of river fish and river ecosystems to both environmental change and various restoration or management actions; (6) limited understanding of the ecosystem services provided by river fish; (7) the inherent difficulty in studying river fish; (8) limited understanding of the human dimension of river fish conservation and management; (9) limitations of single species approaches that often fail to address the broader-scale problems; and (10) limited effectiveness of governance structures that address endangered river fish populations and rivers that cross multiple jurisdictions. We suggest that these issues may need to be addressed to help protect, restore, or conserve river fish globally, particularly those that are endangered.

  10. Metabolome of human gut microbiome is predictive of host dysbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Peter E.; Dai, Yang

    2015-09-14

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

  11. Rapid changes in the gut microbiome during human evolution.

    Science.gov (United States)

    Moeller, Andrew H; Li, Yingying; Mpoudi Ngole, Eitel; Ahuka-Mundeke, Steve; Lonsdorf, Elizabeth V; Pusey, Anne E; Peeters, Martine; Hahn, Beatrice H; Ochman, Howard

    2014-11-18

    Humans are ecosystems containing trillions of microorganisms, but the evolutionary history of this microbiome is obscured by a lack of knowledge about microbiomes of African apes. We sequenced the gut communities of hundreds of chimpanzees, bonobos, and gorillas and developed a phylogenetic approach to reconstruct how present-day human microbiomes have diverged from those of ancestral populations. Compositional change in the microbiome was slow and clock-like during African ape diversification, but human microbiomes have deviated from the ancestral state at an accelerated rate. Relative to the microbiomes of wild apes, human microbiomes have lost ancestral microbial diversity while becoming specialized for animal-based diets. Individual wild apes cultivate more phyla, classes, orders, families, genera, and species of bacteria than do individual humans across a range of societies. These results indicate that humanity has experienced a depletion of the gut flora since diverging from Pan.

  12. Genomics-assisted breeding in fruit trees

    OpenAIRE

    Iwata, Hiroyoshi; Minamikawa, Mai F.; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the pl...

  13. Viewing the human microbiome through three-dimensional glasses: integrating structural and functional studies to better define the properties of myriad carbohydrate-active enzymes

    International Nuclear Information System (INIS)

    Turnbaugh, Peter J.; Henrissat, Bernard; Gordon, Jeffrey I.

    2010-01-01

    Metagenomics has unleashed a deluge of sequencing data describing the organismal, genetic, and transcriptional diversity of the human microbiome. To better understand the precise functions of the myriad proteins encoded by the microbiome, including carbohydrate-active enzymes, it will be critical to combine structural studies with functional analyses. Recent studies have provided an unprecedented view of the trillions of microbes associated with the human body. The human microbiome harbors tremendous diversity at multiple levels: the species that colonize each individual and each body habitat; the genes that are found in each organism’s genome; the expression of these genes and the interactions and activities of their protein products. The sources of this diversity are wide-ranging and reflect both environmental and host factors. A major challenge moving forward is defining the precise functions of members of various families of proteins represented in our microbiomes, including the highly diverse carbohydrate-active enzymes (CAZymes) involved in numerous biologically important chemical transformations, such as the degradation of complex dietary polysaccharides. Coupling metagenomic analyses to structural genomics initiatives and to biochemical and other functional assays of CAZymes will be essential for determining how these as well as other microbiome-encoded proteins operate to shape the properties of microbial communities and their human hosts

  14. The placental microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis

    Science.gov (United States)

    Kannan, Paranthaman S.; Alvarez, Manuel; Gisslen, Tate; Harris, R. Alan; Sweeney, Emma L.; Knox, Christine L.; Lambers, Donna S.; Jobe, Alan H.; Chougnet, Claire A.; Kallapur, Suhas G.; Aagaard, Kjersti M.

    2016-01-01

    BACKGROUND Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality and is not uncommonly associated with chorioamnionitis. We recently have demonstrated that the placenta harbors a unique microbiome with similar flora to the oral community. We also have shown an association of these placental microbiota with PTB, history of antenatal infection, and excess maternal weight gain. On the basis of these previous observations, we hypothesized that the placental membranes would retain a microbiome community that would vary in association with preterm birth and chorioamnionitis. OBJECTIVE In the current study, we aimed to examine the differences in the placental membrane microbiome in association with PTB in both the presence and absence of chorioamnionitis and/ or funisitis using state-of-the-science whole-genome shotgun metagenomics. STUDY DESIGN This was a cross-sectional analysis with 6 nested spontaneous birth cohorts (n = 9–15 subjects/cohort): Term gestations without chorioamnionitis, term with chorioamnionitis, preterm without chorioamnionitis, preterm with mild chorioamnionitis, preterm with severe chorioamnionitis, and preterm with chorioamnionitis and funisitis. Histologic analysis was performed with Redline's criteria, and inflammatory cytokines were analyzed in the cord blood. DNA from placental membranes was extracted from sterile swabs collected at delivery, and whole-genome shotgun sequencing was performed on the Illumina HiSeq platform. Filtered microbial DNA sequences were annotated and analyzed with MG-RAST (ie, Metagenomic Rapid Annotations using Subsystems Technology) and R. RESULTS Subjects were assigned to cohorts on the basis of gestational age at delivery and independent scoring of histologic chorioamnionitis. We found that preterm subjects with severe chorioamnionitis and funisitis had increases in cord blood inflammatory cytokines. Of interest, although the placental membrane microbiome was altered in association with

  15. The Human Salivary Microbiome Is Shaped by Shared Environment Rather than Genetics: Evidence from a Large Family of Closely Related Individuals.

    Science.gov (United States)

    Shaw, Liam; Ribeiro, Andre L R; Levine, Adam P; Pontikos, Nikolas; Balloux, Francois; Segal, Anthony W; Roberts, Adam P; Smith, Andrew M

    2017-09-12

    The human microbiome is affected by multiple factors, including the environment and host genetics. In this study, we analyzed the salivary microbiomes of an extended family of Ashkenazi Jewish individuals living in several cities and investigated associations with both shared household and host genetic similarities. We found that environmental effects dominated over genetic effects. While there was weak evidence of geographical structuring at the level of cities, we observed a large and significant effect of shared household on microbiome composition, supporting the role of the immediate shared environment in dictating the presence or absence of taxa. This effect was also seen when including adults who had grown up in the same household but moved out prior to the time of sampling, suggesting that the establishment of the salivary microbiome earlier in life may affect its long-term composition. We found weak associations between host genetic relatedness and microbiome dissimilarity when using family pedigrees as proxies for genetic similarity. However, this association disappeared when using more-accurate measures of kinship based on genome-wide genetic markers, indicating that the environment rather than host genetics is the dominant factor affecting the composition of the salivary microbiome in closely related individuals. Our results support the concept that there is a consistent core microbiome conserved across global scales but that small-scale effects due to a shared living environment significantly affect microbial community composition. IMPORTANCE Previous research shows that the salivary microbiomes of relatives are more similar than those of nonrelatives, but it remains difficult to distinguish the effects of relatedness and shared household environment. Furthermore, pedigree measures may not accurately measure host genetic similarity. In this study, we include genetic relatedness based on genome-wide single nucleotide polymorphisms (SNPs) (rather than

  16. Metagenomic Systems Biology of the Human Microbiome

    DEFF Research Database (Denmark)

    Bonde, Ida

    The human microbiome is an integrated part of the human body, outnumbering the human cells by approximately a factor 10. These microorganisms are very important for human health, hence knowledge about this, ”our other genome”, has been growing rapidly in recent years. This is manly due to the adv...

  17. Phenylketonuria: central nervous system and microbiome interaction

    Directory of Open Access Journals (Sweden)

    Demian Arturo Herrera Morban

    2017-06-01

    Full Text Available Phenylketonuria (PKU is an autosomal recessive inborn error of metabolism characterized by increased phenylalanine (Phe levels causing an inadequate neurodevelopment; the treatment of PKU is a Phe-restricting diet, and as such it can modulate the intestinal microbiome of the individual, generating central nervous system secondary disturbances that, added to the baseline disturbance, can influence the outcome of the disease.

  18. Childhood malnutrition and the intestinal microbiome.

    Science.gov (United States)

    Kane, Anne V; Dinh, Duy M; Ward, Honorine D

    2015-01-01

    Malnutrition contributes to almost half of all deaths in children under the age of 5 y, particularly those who live in resource-constrained areas. Those who survive frequently suffer from long-term sequelae including growth failure and neurodevelopmental impairment. Malnutrition is part of a vicious cycle of impaired immunity, recurrent infections, and worsening malnutrition. Recently, alterations in the gut microbiome have also been strongly implicated in childhood malnutrition. It has been suggested that malnutrition may delay the normal development of the gut microbiota in early childhood or force it toward an altered composition that lacks the required functions for healthy growth and/or increases the risk for intestinal inflammation. This review addresses our current understanding of the beneficial contributions of gut microbiota to human nutrition (and conversely the potential role of changes in that community to malnutrition), the process of acquiring an intestinal microbiome, potential influences of malnutrition on the developing microbiota, and the evidence directly linking alterations in the intestinal microbiome to childhood malnutrition. We review recent studies on the association between alterations in the intestinal microbiome and early childhood malnutrition and discuss them in the context of implications for intervention or prevention of the devastation caused by malnutrition.

  19. Social attraction mediated by fruit flies' microbiome.

    Science.gov (United States)

    Venu, Isvarya; Durisko, Zachary; Xu, Jianping; Dukas, Reuven

    2014-04-15

    Larval and adult fruit flies are attracted to volatiles emanating from food substrates that have been occupied by larvae. We tested whether such volatiles are emitted by the larval gut bacteria by conducting tests under bacteria-free (axenic) conditions. We also tested attraction to two bacteria species, Lactobacillus brevis, which we cultured from larvae in our lab, and L. plantarum, a common constituent of fruit flies' microbiome in other laboratory populations and in wild fruit flies. Neither larvae nor adults showed attraction to axenic food that had been occupied by axenic larvae, but both showed the previously reported attraction to standard food that had been occupied by larvae with an intact microbiome. Larvae also showed significant attraction to volatiles from axenic food and larvae to which we added only either L. brevis or L. plantarum, and volatiles from L. brevis reared on its optimal growth medium. Controlled learning experiments indicated that larvae experienced with both standard and axenic used food do not perceive either as superior, while focal larvae experienced with simulated used food, which contains burrows, perceive it as superior to unused food. Our results suggest that flies rely on microbiome-derived volatiles for long-distance attraction to suitable food patches. Under natural settings, fruits often contain harmful fungi and bacteria, and both L. brevis and L. plantarum produce compounds that suppress the growth of some antagonistic fungi and bacteria. The larval microbiome volatiles may therefore lead prospective fruit flies towards substrates with a hospitable microbial environment.

  20. Proton pump inhibitors affect the gut microbiome

    NARCIS (Netherlands)

    Imhann, Floris; Bonder, Marc Jan; Vich Vila, Arnau; Fu, Jingyuan; Mujagic, Zlatan; Vork, Lisa; Feenstra, Ettje T.; Jankipersadsing, Soesma A; Cenit, Maria Carmen; Harmsen, Hermie J M; Dijkstra, Gerard; Franke, Lude; Xavier, Ramnik J; Jonkers, Daisy; Wijmenga, Cisca; Weersma, Rinse K; Zhernakova, Alexandra

    BACKGROUND AND AIMS: Proton pump inhibitors (PPIs) are among the top 10 most widely used drugs in the world. PPI use has been associated with an increased risk of enteric infections, most notably Clostridium difficile. The gut microbiome plays an important role in enteric infections, by resisting or

  1. UNRAVELING THE FUNCTIONS OF THE MACROALGAL MICROBIOME

    Directory of Open Access Journals (Sweden)

    Ravindra Pal Singh

    2016-01-01

    Full Text Available Macroalgae are a diverse group of photosynthetic eukaryotic lower organisms and offer indispensable ecosystem services towards sustainable productivity of rocky coastal areas. The earlier studies have mainly focused on elucidation of the roles of the epiphytic bacterial communities in the ecophysiology of the host macroalga. However, mutualistic interactions have become topic of current interest. It is evident from recent studies that a fraction of epiphytic bacterial communities can be categorized as core microbial species, suggesting an obligate association. Epiphytic bacterial communities have also been reported to protect macroalgal surfaces from biofouling microorganisms through production of biologically active metabolites. Because of their intrinsic roles in the host life cycle, the host in turn may provide necessary organic nutrients in order to woo pelagic microbial communities to settle on the host surfaces. However, the precise composition of microbiomes and their functional partnership with hosts are hardly understood. In contrast, the microbial studies associated with human skin and gut and plants have significantly advanced our knowledge on microbiome and their functional interactions with the host. This has led to manipulation of the microbial flora of the human gut and of agricultural plants for improving health and performance. Therefore, it is highly imperative to investigate the functional microbiome that is closely involved in the life cycles of the host macroalgae using high-throughput techniques (metagenomics and metatranscriptomics. The findings from such investigations would help in promoting health and productivity in macroalgal species through regulation of functionally active microbiome.

  2. The Microbiome in Skin Health and Disease

    Indian Academy of Sciences (India)

    Souvik Mukherjee

    Differential Skin Microbiome profile in Caesarean babies is associated with risk of immune/metabolic .... Indicator. Genus. Cheek Sebum. (μg/cm2) p-value. Forehead Hydration. [Age adjusted] (a.u.) p-value .... Key Inferences. The Healthy Skin ...

  3. Pregnancy's stronghold on the vaginal microbiome.

    Directory of Open Access Journals (Sweden)

    Marina R S Walther-António

    Full Text Available To assess the vaginal microbiome throughout full-term uncomplicated pregnancy.Vaginal swabs were obtained from twelve pregnant women at 8-week intervals throughout their uncomplicated pregnancies. Patients with symptoms of vaginal infection or with recent antibiotic use were excluded. Swabs were obtained from the posterior fornix and cervix at 8-12, 17-21, 27-31, and 36-38 weeks of gestation. The microbial community was profiled using hypervariable tag sequencing of the V3-V5 region of the 16S rRNA gene, producing approximately 8 million reads on the Illumina MiSeq.Samples were dominated by a single genus, Lactobacillus, and exhibited low species diversity. For a majority of the patients (n = 8, the vaginal microbiome was dominated by Lactobacillus crispatus throughout pregnancy. Two patients showed Lactobacillus iners dominance during the course of pregnancy, and two showed a shift between the first and second trimester from L. crispatus to L. iners dominance. In all of the samples only these two species were identified, and were found at an abundance of higher than 1% in this study. Comparative analyses also showed that the vaginal microbiome during pregnancy is characterized by a marked dominance of Lactobacillus species in both Caucasian and African-American subjects. In addition, our Caucasian subject population clustered by trimester and progressed towards a common attractor while African-American women clustered by subject instead and did not progress towards a common attractor.Our analyses indicate normal pregnancy is characterized by a microbiome that has low diversity and high stability. While Lactobacillus species strongly dominate the vaginal environment during pregnancy across the two studied ethnicities, observed differences between the longitudinal dynamics of the analyzed populations may contribute to divergent risk for pregnancy complications. This helps establish a baseline for investigating the role of the microbiome in

  4. Does Teaching Grammar Really Hinder Students' Speaking Abilities?

    Institute of Scientific and Technical Information of China (English)

    Kazumi Araki

    2015-01-01

    In the history of formal English education in Japan, grammar used to be the mainstream. In the secondary education system, teachers used to spend many hours teaching grammar to the students. However, it has been replaced by the aural/oral method of teaching a foreign language. There was even a remark that teaching grammar hinders students from communicating fluently. Literally, there was a time when grammar was set aside in formal English education. However, the author noticed that in grammar classes, the students speak English more loudly and confidently without much hesitation than in other types of English classes. One of the reasons is that they are not worried about the contents of the speeches. They are simply concentrating on the forms. They are not afraid of making major mistakes, and the errors they make are minor so they do not feel embarrassed in public. The atmosphere of the grammar classes is very positive and the students enjoy speaking English. In this paper, the author shows how grammar classes can contribute to the acquisition of the students' speaking abilities and manners. "Learning grammar was a precious experience", one student reported after the course.

  5. Is Urban Planning in Australia Hindered by Poor Metropolitan Governance?

    Directory of Open Access Journals (Sweden)

    Paul Burton

    2017-11-01

    Full Text Available There are many calls for urban planning in Australia to be reformed, although often in contradictory ways. For example, some argue it should be capable of delivering greater certainty to developers while others call for more flexibility in processes of urban development regulation; some would like to roll back its regulatory impact while others argue for a renewal of planning’s commitment to promoting social and spatial justice. The Australian planning system is also held to be hindered by a comparative lack of planning at and for the metropolitan scale. This is connected to the absence of well-developed structures of metropolitan governance in what is a three-tier federal system, with most power over planning concentrated at the State and Territory government scale. The paper explores this putative hindrance by considering three important issues in Australian urban policy debates about the efficacy of contemporary multi-level governance arrangements: spatial scale; identity and legitimacy; and efficiency and effectiveness. It includes some analysis of the case made for a more explicit and rigorous national urban policy and how this might relate to lower level planning regimes. The paper focuses on recent urban policy and planning initiatives in South East Queensland, one of Australia’s fastest growing metropolitan regions, and concludes that while incremental but nonetheless significant improvements in planning policy and practice are possible, these are unlikely to satisfy those calling for more radical changes to improve the Australian planning system.

  6. Of genes and microbes: solving the intricacies in host genomes.

    Science.gov (United States)

    Wang, Jun; Chen, Liang; Zhao, Na; Xu, Xizhan; Xu, Yakun; Zhu, Baoli

    2018-05-01

    Microbiome research is a quickly developing field in biomedical research, and we have witnessed its potential in understanding the physiology, metabolism and immunology, its critical role in understanding the health and disease of the host, and its vast capacity in disease prediction, intervention and treatment. However, many of the fundamental questions still need to be addressed, including the shaping forces of microbial diversity between individuals and across time. Microbiome research falls into the classical nature vs. nurture scenario, such that host genetics shape part of the microbiome, while environmental influences change the original course of microbiome development. In this review, we focus on the nature, i.e., the genetic part of the equation, and summarize the recent efforts in understanding which parts of the genome, especially the human and mouse genome, play important roles in determining the composition and functions of microbial communities, primarily in the gut but also on the skin. We aim to present an overview of different approaches in studying the intricate relationships between host genetic variations and microbes, its underlying philosophy and methodology, and we aim to highlight a few key discoveries along this exploration, as well as current pitfalls. More evidence and results will surely appear in upcoming studies, and the accumulating knowledge will lead to a deeper understanding of what we could finally term a "hologenome", that is, the organized, closely interacting genome of the host and the microbiome.

  7. Deterministic influences exceed dispersal effects on hydrologically-connected microbiomes: Deterministic assembly of hyporheic microbiomes

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Emily B. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Crump, Alex R. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Resch, Charles T. [Geochemistry Department, Pacific Northwest National Laboratory, Richland WA USA; Fansler, Sarah [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Arntzen, Evan [Environmental Compliance and Emergency Preparation, Pacific Northwest National Laboratory, Richland WA USA; Kennedy, David W. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Fredrickson, Jim K. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA; Stegen, James C. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-03-28

    Subsurface zones of groundwater and surface water mixing (hyporheic zones) are regions of enhanced rates of biogeochemical cycling, yet ecological processes governing hyporheic microbiome composition and function through space and time remain unknown. We sampled attached and planktonic microbiomes in the Columbia River hyporheic zone across seasonal hydrologic change, and employed statistical null models to infer mechanisms generating temporal changes in microbiomes within three hydrologically-connected, physicochemically-distinct geographic zones (inland, nearshore, river). We reveal that microbiomes remain dissimilar through time across all zones and habitat types (attached vs. planktonic) and that deterministic assembly processes regulate microbiome composition in all data subsets. The consistent presence of heterotrophic taxa and members of the Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) superphylum nonetheless suggests common selective pressures for physiologies represented in these groups. Further, co-occurrence networks were used to provide insight into taxa most affected by deterministic assembly processes. We identified network clusters to represent groups of organisms that correlated with seasonal and physicochemical change. Extended network analyses identified keystone taxa within each cluster that we propose are central in microbiome composition and function. Finally, the abundance of one network cluster of nearshore organisms exhibited a seasonal shift from heterotrophic to autotrophic metabolisms and correlated with microbial metabolism, possibly indicating an ecological role for these organisms as foundational species in driving biogeochemical reactions within the hyporheic zone. Taken together, our research demonstrates a predominant role for deterministic assembly across highly-connected environments and provides insight into niche dynamics associated with seasonal changes in hyporheic microbiome composition and metabolism.

  8. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides.

    Science.gov (United States)

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn M; Johnson, Courtney M; Martin, Stanton L; Land, Miriam L; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A

    2012-11-01

    To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated.

  9. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Utturkar, Sagar M [ORNL; Klingeman, Dawn Marie [ORNL; Johnson, Courtney M [ORNL; Martin, Stanton [ORNL; Land, Miriam L [ORNL; Lu, Tse-Yuan [ORNL; Schadt, Christopher Warren [ORNL; Doktycz, Mitchel John [ORNL; Pelletier, Dale A [ORNL

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  10. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation

    Energy Technology Data Exchange (ETDEWEB)

    Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha; Theriot, Casey M.; Young, Vincent B.; Jansson, Janet K.; Fredricks, David N.; Borenstein, Elhanan; Sanchez, Laura M.

    2015-12-22

    ABSTRACT

    Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites’ abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in

  11. Metal-Free Approaches to Sterically-Hindered Bonds

    Science.gov (United States)

    Dunham, Veronica Vin-yi

    Developing methods to perform cross coupling reactions by means of catalysis is highly desirable in chemistry. Many industries in today's society, such as the petroleum, agriculture, pharmaceutical, electronics, and polymer industry, use catalysis to some extent whether it is to make molecules that offer crop protection or toward the synthesis of the active ingredient of a medication. It is noteworthy that over 90% of chemicals are made through catalytic processes and that the catalyst market reached $17 billion in 2014, which demonstrates the demand for such methods. While transition metal catalysts have advantages such as low catalyst loading, broad reactivity, and that they have been well studied, some disadvantages are that they can be relatively expensive and sometimes air sensitive which can make them challenging to use. Organocatalysis, specifically noncovalent catalysis operating through hydrogen bond donating interactions, offers an environmentally-friendly alternative to transition metal catalysis. Our lab utilizes organocatalysis as a strategy to synthesize challenging, sterically-hindered bonds. Nitrimines have been identified as powerful coupling partners for the sustainable construction of new sterically congested carbon-carbon and carbon-heteroatom bonds. Using urea catalysis, a metal-free method to synthesize previously inaccessible enamines has been developed. Conventional routes to synthesize enamines as important building blocks toward target molecules generally require Lewis/Bronsted acids or expensive transition metals; however, these methods are often unsuccessful when stericallyhindered substrates are used. To address this synthetic challenge, it was hypothesized that hydrogen bonding interactions between a urea organocatalyst and nitrimine would generate a reactive species suited for the effective carbon-nitrogen coupling with amines to give the desired enamine products. This reaction provides high yields (up to 99%) of enamines using a

  12. Supplementary Material for: Hologenome analysis of two marine sponges with different microbiomes

    KAUST Repository

    Ryu, Tae Woo; Seridi, Loqmane; Moitinho-Silva, Lucas; Oates, Matthew; Liew, Yi; Mavromatis, Charalampos Harris; Wang, Xiaolei; Haywood, Annika; Lafi, Feras; Kupresanin, Marija; Sougrat, Rachid; Alzahrani, Majed A.; Giles, Emily; Ghosheh, Yanal; Schunter, Celia Marei; Baumgarten, Sebastian; Berumen, Michael; Gao, Xin; Aranda, Manuel; Foret, Sylvain; Gough, Julian; Voolstra, Christian; Hentschel, Ute; Ravasi, Timothy

    2016-01-01

    Abstract Background Sponges (Porifera) harbor distinct microbial consortia within their mesohyl interior. We herein analysed the hologenomes of Stylissa carteri and Xestospongia testudinaria, which notably differ in their microbiome content. Results Our analysis revealed that S. carteri has an expanded repertoire of immunological domains, specifically Scavenger Receptor Cysteine-Rich (SRCR)-like domains, compared to X. testudinaria. On the microbial side, metatranscriptome analyses revealed an overrepresentation of potential symbiosis-related domains in X. testudinaria. Conclusions Our findings provide genomic insights into the molecular mechanisms underlying host-symbiont coevolution and may serve as a roadmap for future hologenome analyses.

  13. Breaking down the gut microbiome composition in multiple sclerosis.

    Science.gov (United States)

    Budhram, Adrian; Parvathy, Seema; Kremenchutzky, Marcelo; Silverman, Michael

    2017-04-01

    The gut microbiome, which consists of a highly diverse ecologic community of micro-organisms, has increasingly been studied regarding its role in multiple sclerosis (MS) immunopathogenesis. This review critically examines the literature investigating the gut microbiome in MS. A comprehensive search was performed of PubMed databases and ECTRIMS meeting abstracts for literature relating to the gut microbiome in MS. Controlled studies examining the gut microbiome in patients with MS were included for review. Identified studies were predominantly case-control in their design and consistently found differences in the gut microbiome of MS patients compared to controls. We examine plausible mechanistic links between these differences and MS immunopathogenesis, and discuss the therapeutic implications of these findings. Review of the available literature reveals potential immunopathogenic links between the gut microbiome and MS, identifies avenues for therapeutic advancement, and emphasizes the need for further systematic study in this emerging field.

  14. SNARE zippering is hindered by polyphenols in the neuron

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yoosoo [Department of Genetic Engineering and Center for Human Interface Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Kim, Se-Hyun; Heo, Paul; Kong, Byoungjae; Shin, Jonghyeok; Jung, Young-Hun; Yoon, Keejung; Chung, Woo-Jae [Department of Genetic Engineering and Center for Human Interface Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, Yeon-Kyun [Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011 (United States); Kweon, Dae-Hyuk, E-mail: dhkweon@skku.edu [Department of Genetic Engineering and Center for Human Interface Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-07-18

    Highlights: • Membrane fusion driven by SNARE complex is hindered by several polyphenols. • Distinctive inhibitory effect of each polyphenol on SNARE zippering in neuron was examined. • FRET between fluorescence protein-tagged SNAREs probed well SNARE zippering in PC12 cells. • Delphinidin and cyanidin inhibit N-terminal SNARE nucleation in Ca{sup 2+}-independent manner. • Myricetin inhibits Ca{sup 2+}-dependent transmembrane association of SNARE complex. - Abstract: Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus and proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca{sup 2+}-independent manner, while myricetin inhibits Ca{sup 2+}-dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo.

  15. The placental membrane microbiome is altered among subjects with spontaneous preterm birth with and without chorioamnionitis.

    Science.gov (United States)

    Prince, Amanda L; Ma, Jun; Kannan, Paranthaman S; Alvarez, Manuel; Gisslen, Tate; Harris, R Alan; Sweeney, Emma L; Knox, Christine L; Lambers, Donna S; Jobe, Alan H; Chougnet, Claire A; Kallapur, Suhas G; Aagaard, Kjersti M

    2016-05-01

    Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality and is not uncommonly associated with chorioamnionitis. We recently have demonstrated that the placenta harbors a unique microbiome with similar flora to the oral community. We also have shown an association of these placental microbiota with PTB, history of antenatal infection, and excess maternal weight gain. On the basis of these previous observations, we hypothesized that the placental membranes would retain a microbiome community that would vary in association with preterm birth and chorioamnionitis. In the current study, we aimed to examine the differences in the placental membrane microbiome in association with PTB in both the presence and absence of chorioamnionitis and/or funisitis using state-of-the-science whole-genome shotgun metagenomics. This was a cross-sectional analysis with 6 nested spontaneous birth cohorts (n = 9-15 subjects/cohort): Term gestations without chorioamnionitis, term with chorioamnionitis, preterm without chorioamnionitis, preterm with mild chorioamnionitis, preterm with severe chorioamnionitis, and preterm with chorioamnionitis and funisitis. Histologic analysis was performed with Redline's criteria, and inflammatory cytokines were analyzed in the cord blood. DNA from placental membranes was extracted from sterile swabs collected at delivery, and whole-genome shotgun sequencing was performed on the Illumina HiSeq platform. Filtered microbial DNA sequences were annotated and analyzed with MG-RAST (ie, Metagenomic Rapid Annotations using Subsystems Technology) and R. Subjects were assigned to cohorts on the basis of gestational age at delivery and independent scoring of histologic chorioamnionitis. We found that preterm subjects with severe chorioamnionitis and funisitis had increases in cord blood inflammatory cytokines. Of interest, although the placental membrane microbiome was altered in association with severity of histologic chorioamnionitis

  16. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes.

    Science.gov (United States)

    Hehemann, Jan-Hendrik; Kelly, Amelia G; Pudlo, Nicholas A; Martens, Eric C; Boraston, Alisdair B

    2012-11-27

    Humans host an intestinal population of microbes--collectively referred to as the gut microbiome--which encode the carbohydrate active enzymes, or CAZymes, that are absent from the human genome. These CAZymes help to extract energy from recalcitrant polysaccharides. The question then arises as to if and how the microbiome adapts to new carbohydrate sources when modern humans change eating habits. Recent metagenome analysis of microbiomes from healthy American, Japanese, and Spanish populations identified putative CAZymes obtained by horizontal gene transfer from marine bacteria, which suggested that human gut bacteria evolved to degrade algal carbohydrates-for example, consumed in form of sushi. We approached this hypothesis by studying such a polysaccharide utilization locus (PUL) obtained by horizontal gene transfer by the gut bacterium Bacteroides plebeius. Transcriptomic and growth experiments revealed that the PUL responds to the polysaccharide porphyran from red algae, enabling growth on this carbohydrate but not related substrates like agarose and carrageenan. The X-ray crystallographic and biochemical analysis of two proteins encoded by this PUL, BACPLE_01689 and BACPLE_01693, showed that they are β-porphyranases belonging to glycoside hydrolase families 16 and 86, respectively. The product complex of the GH86 at 1.3 Å resolution highlights the molecular details of porphyran hydrolysis by this new porphyranase. Combined, these data establish experimental support for the argument that CAZymes and associated genes obtained from extrinsic microbes add new catabolic functions to the human gut microbiome.

  17. The Willow Microbiome is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects

    Directory of Open Access Journals (Sweden)

    Stacie Tardif

    2016-09-01

    Full Text Available The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and, after two growing seasons, bulk soil, rhizosphere soil, roots and stems samples of two willow cultivars (Salix purpurea cv. FishCreek and Salix miyabeana cv. SX67 growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS regions were amplified and sequenced using an Ion Torrent Personal Genome Machine. Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment and thus protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology.

  18. Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis.

    Science.gov (United States)

    Song, Han; Yoo, Young; Hwang, Junghyun; Na, Yun-Cheol; Kim, Heenam Stanley

    2016-03-01

    Atopic dermatitis (AD) is a serious global epidemic associated with a modern lifestyle. Although aberrant interactions between gut microbes and the intestinal immune system have been implicated in this skin disease, the nature of the microbiome dysfunction underlying the disease remains unclear. The gut microbiome from 132 subjects, including 90 patients with AD, was analyzed by using 16S rRNA gene and metagenome sequence analyses. Reference genomes from the Human Microbiome Project and the KEGG Orthology database were used for metagenome analyses. Short-chain fatty acids in fecal samples were compared by using gas chromatographic-mass spectrometric analyses. We show that enrichment of a subspecies of the major gut species Faecalibacterium prausnitzii is strongly associated with AD. In addition, the AD microbiome was enriched in genes encoding the use of various nutrients that could be released from damaged gut epithelium, reflecting a bloom of auxotrophic bacteria. Fecal samples from patients with AD showed decreased levels of butyrate and propionate, which have anti-inflammatory effects. This is likely a consequence of an intraspecies compositional change in F prausnitzii that reduces the number of high butyrate and propionate producers, including those related to the strain A2-165, a lack of which has been implicated in patients with Crohn disease. The data suggest that feedback interactions between dysbiosis in F prausnitzii and dysregulation of gut epithelial inflammation might underlie the chronic progression of AD by resulting in impairment of the gut epithelial barrier, which ultimately leads to aberrant TH2-type immune responses to allergens in the skin. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Dental Calculus and the Evolution of the Human Oral Microbiome.

    Science.gov (United States)

    Warinner, Christina

    2016-07-01

    Characterizing the evolution of the oral microbiome is a challenging, but increasingly feasible, task. Recently, dental calculus has been shown to preserve ancient biomolecules from the oral microbiota, host tissues and diet for tens of thousands of years. As such, it provides a unique window into the ancestral oral microbiome. This article reviews recent advancements in ancient dental calculus research and emerging insights into the evolution and ecology of the human oral microbiome.

  20. Testing the Neutral Theory of Biodiversity with Human Microbiome Datasets

    OpenAIRE

    Li, Lianwei; Ma, Zhanshan (Sam)

    2016-01-01

    The human microbiome project (HMP) has made it possible to test important ecological theories for arguably the most important ecosystem to human health?the human microbiome. Existing limited number of studies have reported conflicting evidence in the case of the neutral theory; the present study aims to comprehensively test the neutral theory with extensive HMP datasets covering all five major body sites inhabited by the human microbiome. Utilizing 7437 datasets of bacterial community samples...

  1. The adult nasopharyngeal microbiome as a determinant of pneumococcal acquisition.

    Science.gov (United States)

    Cremers, Amelieke Jh; Zomer, Aldert L; Gritzfeld, Jenna F; Ferwerda, Gerben; van Hijum, Sacha Aft; Ferreira, Daniela M; Shak, Joshua R; Klugman, Keith P; Boekhorst, Jos; Timmerman, Harro M; de Jonge, Marien I; Gordon, Stephen B; Hermans, Peter Wm

    2014-01-01

    Several cohort studies have indicated associations between S. pneumoniae and other microbes in the nasopharynx. To study causal relationships between the nasopharyngeal microbiome and pneumococcal carriage, we employed an experimental human pneumococcal carriage model. Healthy adult volunteers were assessed for pneumococcal carriage by culture of nasal wash samples (NWS). Those without natural pneumococcal carriage received an intranasal pneumococcal inoculation with serotype 6B or 23F. The composition of the nasopharyngeal microbiome was longitudinally studied by 16S rDNA pyrosequencing on NWS collected before and after challenge. Among 40 selected volunteers, 10 were natural carriers and 30 were experimentally challenged. At baseline, five distinct nasopharyngeal microbiome profiles were identified. The phylogenetic distance between microbiomes of natural pneumococcal carriers was particularly large compared to non-carriers. A more diverse microbiome prior to inoculation was associated with the establishment of pneumococcal carriage. Perturbation of microbiome diversity upon pneumococcal challenge was strain specific. Shifts in microbiome profile occurred after pneumococcal exposure, and those volunteers who acquired carriage more often diverted from their original profile. S. pneumoniae was little prominent in the microbiome of pneumococcal carriers. Pneumococcal acquisition in healthy adults is more likely to occur in a diverse microbiome and appears to promote microbial heterogeneity.

  2. Bioinformatics for discovery of microbiome variation

    DEFF Research Database (Denmark)

    Brejnrod, Asker Daniel

    of various molecular methods to build hypotheses about the impact of a copper contaminated soil. The introduction is a broad introduction to the field of microbiome research with a focus on the technologies that enable these discoveries and how some of the broader issues have related to this thesis......Sequencing based tools have revolutionized microbiology in recent years. Highthroughput DNA sequencing have allowed high-resolution studies on microbial life in many different environments and at unprecedented low cost. These culture-independent methods have helped discovery of novel bacteria...... 1 ,“Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies”, benchmarked the performance of a variety of popular statistical methods for discovering differentially abundant bacteria . between...

  3. Microbiome, Metabolome and Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Ishfaq Ahmed

    2016-06-01

    Full Text Available Inflammatory Bowel Disease (IBD is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD or Ulcerative Colitis (UC, two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis.

  4. Seven Billion Microcosms: Evolution within Human Microbiomes.

    Science.gov (United States)

    Lieberman, Tami D

    2018-01-01

    Rational microbiome-based therapies may one day treat a wide range of diseases and promote wellness. Yet, we are still limited in our abilities to employ such therapies and to predict which bacterial strains have the potential to stably colonize a person. The Lieberman laboratory is working to close this knowledge gap and to develop an understanding of how individual species and strains behave in the human microbiome, including with regard to their niche ranges, survival strategies, and the degree to which they adapt to individual people. We employ system-level approaches, with a particular emphasis on using de novo mutations and evolutionary inference to reconstruct the history of bacterial lineages within individuals.

  5. Enterotypes of the human gut microbiome

    DEFF Research Database (Denmark)

    Arumugam, Manimozhiyan; Raes, Jeroen; Pelletier, Eric

    2011-01-01

    Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previou......Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries....... This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species...

  6. Factors Affecting Gastrointestinal Microbiome Development in Neonates

    Directory of Open Access Journals (Sweden)

    Clara Yieh Lin Chong

    2018-02-01

    Full Text Available The gut microbiome is established in the newborn period and is recognised to interact with the host to influence metabolism. Different environmental factors that are encountered during this critical period may influence the gut microbial composition, potentially impacting upon later disease risk, such as asthma, metabolic disorder, and inflammatory bowel disease. The sterility dogma of the foetus in utero is challenged by studies that identified bacteria, bacterial DNA, or bacterial products in meconium, amniotic fluid, and the placenta; indicating the initiation of maternal-to-offspring microbial colonisation in utero. This narrative review aims to provide a better understanding of factors that affect the development of the gastrointestinal (GI microbiome during prenatal, perinatal to postnatal life, and their reciprocal relationship with GI tract development in neonates.

  7. The microbiome of New World vultures

    OpenAIRE

    Roggenbuck, Michael; Schnell, Ida Baerholm; Blom, Nikolaj; Bælum, Jacob; Bertelsen, Mads Frost; Sicheritz-Pontén, Thomas; Sørensen, Søren Johannes; Gilbert, M. Thomas P.; Graves, Gary R.; Hansen, Lars Henrik

    2014-01-01

    Vultures are scavengers that fill a key ecosystem niche, in which they have evolved a remarkable tolerance to bacterial toxins in decaying meat. Here we report the first deep metagenomic analysis of the vulture microbiome. Through face and gut comparisons of 50 vultures representing two species, we demonstrate a remarkably conserved low diversity of gut microbial flora. The gut samples contained an average of 76 operational taxonomic units (OTUs) per specimen, compared with 528 OTUs on the fa...

  8. Alterations of the Gut Microbiome in Hypertension

    Directory of Open Access Journals (Sweden)

    Qiulong Yan

    2017-08-01

    Full Text Available Introduction: Human gut microbiota is believed to be directly or indirectly involved in cardiovascular diseases and hypertension. However, the identification and functional status of the hypertension-related gut microbe(s have not yet been surveyed in a comprehensive manner.Methods: Here we characterized the gut microbiome in hypertension status by comparing fecal samples of 60 patients with primary hypertension and 60 gender-, age-, and body weight-matched healthy controls based on whole-metagenome shotgun sequencing.Results: Hypertension implicated a remarkable gut dysbiosis with significant reduction in within-sample diversity and shift in microbial composition. Metagenome-wide association study (MGWAS revealed 53,953 microbial genes that differ in distribution between the patients and healthy controls (false discovery rate, 0.05 and can be grouped into 68 clusters representing bacterial species. Opportunistic pathogenic taxa, such as, Klebsiella spp., Streptococcus spp., and Parabacteroides merdae were frequently distributed in hypertensive gut microbiome, whereas the short-chain fatty acid producer, such as, Roseburia spp. and Faecalibacterium prausnitzii, were higher in controls. The number of hypertension-associated species also showed stronger correlation to the severity of disease. Functionally, the hypertensive gut microbiome exhibited higher membrane transport, lipopolysaccharide biosynthesis and steroid degradation, while in controls the metabolism of amino acid, cofactors and vitamins was found to be higher. We further provided the microbial markers for disease discrimination and achieved an area under the receiver operator characteristic curve (AUC of 0.78, demonstrating the potential of gut microbiota in prediction of hypertension.Conclusion: These findings represent specific alterations in microbial diversity, genes, species and functions of the hypertensive gut microbiome. Further studies on the causality relationship between

  9. The oral microbiome and adverse pregnancy outcomes

    Directory of Open Access Journals (Sweden)

    Cobb CM

    2017-08-01

    Full Text Available Charles M Cobb,1 Patricia J Kelly,2 Karen B Williams,3 Shilpa Babbar,4 Mubashir Angolkar,5 Richard J Derman6 1Department of Periodontics, School of Dentistry, 2Department of Public Health Nursing, School of Nursing and Health Studies, 3Department of Biomedical & Health Informatics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 4Department of Obstetrics, Gynecology & Women’s Health, Division of Maternal & Fetal Medicine, School of Medicine, Saint Louis University, St Louis, MO, USA; 5Department of Public Health, Jawaharlal Nehru Medical College (JNMC, KLE University, Karnataka, India; 6Department of Obstetrics & Gynecology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA Abstract: Significant evidence supports an association between periodontal pathogenic bacteria and preterm birth and preeclampsia. The virulence properties assigned to specific oral pathogenic bacteria, for example, Fusobacterium nucleatum, Porphyromonas gingivalis, Filifactor alocis, Campylobacter rectus, and others, render them as potential collaborators in adverse outcomes of pregnancy. Several pathways have been suggested for this association: 1 hematogenous spread (bacteremia of periodontal pathogens; 2 hematogenous spread of multiple mediators of inflammation that are generated by the host and/or fetal immune response to pathogenic bacteria; and 3 the possibility of oral microbial pathogen transmission, with subsequent colonization, in the vaginal microbiome resulting from sexual practices. As periodontal disease is, for the most part, preventable, the medical and dental public health communities can address intervention strategies to control oral inflammatory disease, lessen the systemic inflammatory burden, and ultimately reduce the potential for adverse pregnancy outcomes. This article reviews the oral, vaginal, and placental microbiomes, considers their potential impact on preterm labor, and the future

  10. The fecal microbiome in cats with diarrhea.

    Directory of Open Access Journals (Sweden)

    Jan S Suchodolski

    Full Text Available Recent studies have revealed that microbes play an important role in the pathogenesis of gastrointestinal (GI diseases in various animal species, but only limited data is available about the microbiome in cats with GI disease. The aim of this study was to evaluate the fecal microbiome in cats with diarrhea. Fecal samples were obtained from healthy cats (n = 21 and cats with acute (n = 19 or chronic diarrhea (n = 29 and analyzed by sequencing of 16S rRNA genes, and PICRUSt was used to predict the functional gene content of the microbiome. Linear discriminant analysis (LDA effect size (LEfSe revealed significant differences in bacterial groups between healthy cats and cats with diarrhea. The order Burkholderiales, the families Enterobacteriaceae, and the genera Streptococcus and Collinsella were significantly increased in diarrheic cats. In contrast the order Campylobacterales, the family Bacteroidaceae, and the genera Megamonas, Helicobacter, and Roseburia were significantly increased in healthy cats. Phylum Bacteroidetes was significantly decreased in cats with chronic diarrhea (>21 days duration, while the class Erysipelotrichi and the genus Lactobacillus were significantly decreased in cats with acute diarrhea. The observed changes in bacterial groups were accompanied by significant differences in functional gene contents: metabolism of fatty acids, biosynthesis of glycosphingolipids, metabolism of biotin, metabolism of tryptophan, and ascorbate and aldarate metabolism, were all significantly (p<0.001 altered in cats with diarrhea. In conclusion, significant differences in the fecal microbiomes between healthy cats and cats with diarrhea were identified. This dysbiosis was accompanied by changes in bacterial functional gene categories. Future studies are warranted to evaluate if these microbial changes correlate with changes in fecal concentrations of microbial metabolites in cats with diarrhea for the identification of potential diagnostic or

  11. Municipal Solid Waste Landfills Harbor Distinct Microbiomes

    Directory of Open Access Journals (Sweden)

    Blake Warren Stamps

    2016-04-01

    Full Text Available Landfills are the final repository for most of the discarded material from human society and its built environments. Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2 and a complex mixture of soluble chemical compounds in leachate. Characterization of landfill microbiomes and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  12. Forest microbiome: diversity, complexity and dynamics

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr

    2017-01-01

    Roč. 41, č. 2 (2017), s. 109-130 ISSN 0168-6445 R&D Projects: GA ČR GA13-06763S; GA ČR GA13-27454S; GA MŠk(CZ) LD15086 Institutional support: RVO:61388971 Keywords : forests * microbiome * habitat Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 12.198, year: 2016

  13. Towards the human colorectal cancer microbiome.

    Directory of Open Access Journals (Sweden)

    Julian R Marchesi

    Full Text Available Multiple factors drive the progression from healthy mucosa towards sporadic colorectal carcinomas and accumulating evidence associates intestinal bacteria with disease initiation and progression. Therefore, the aim of this study was to provide a first high-resolution map of colonic dysbiosis that is associated with human colorectal cancer (CRC. To this purpose, the microbiomes colonizing colon tumor tissue and adjacent non-malignant mucosa were compared by deep rRNA sequencing. The results revealed striking differences in microbial colonization patterns between these two sites. Although inter-individual colonization in CRC patients was variable, tumors consistently formed a niche for Coriobacteria and other proposed probiotic bacterial species, while potentially pathogenic Enterobacteria were underrepresented in tumor tissue. As the intestinal microbiota is generally stable during adult life, these findings suggest that CRC-associated physiological and metabolic changes recruit tumor-foraging commensal-like bacteria. These microbes thus have an apparent competitive advantage in the tumor microenvironment and thereby seem to replace pathogenic bacteria that may be implicated in CRC etiology. This first glimpse of the CRC microbiome provides an important step towards full understanding of the dynamic interplay between intestinal microbial ecology and sporadic CRC, which may provide important leads towards novel microbiome-related diagnostic tools and therapeutic interventions.

  14. Relationship structure-antioxidant activity of hindered phenolic compounds

    Directory of Open Access Journals (Sweden)

    Weng, X. C.

    2014-12-01

    Full Text Available The relationship between the structure and the antioxidant activity of 21 hindered phenolic compounds was investigated by Rancimat and DPPH· tests. 3-tert-butyl-5-methylbenzene-1,2-diol is the strongest antioxidant in the Rancimat test but not in the DPPH· test because its two hydroxyl groups have very strong steric synergy. 2,6-Ditert-butyl-4-hydroxy-methylphenol exhibits a strong antioxidant activity as 2,6-ditertbutyl- 4-methoxyphenol does in lard. 2,6-Ditert-butyl-4- hydroxy-methylphenol also exhibits stronger activity than 2-tert-butyl-4- methoxyphenol. The methylene of 2,6-ditert-butyl-4-hydroxy-methylphenol can provide a hydrogen atom to active free radicals like a phenolic hydroxyl group does because it is greatly activated by both the aromatic ring and hydroxyl group. Five factors affect the antioxidant activities of the phenolic compounds: how stable the phenolic compound free radicals are after providing hydrogen atoms; how many hy drogen atoms each of the phenolic compounds can provide; how fast the phenolic compounds provide hydrogen atoms; how easily the phenolic compound free radicals can combine with more active free radicals, and whether or not a new antioxidant can form after the phenolic compound provides hydrogen atoms.La relación entre estructura y la actividad antioxidante de 21 compuestos fenólicos con impedimentos estéricos fue investigado mediante ensayos con Rancimat y DPPH·. El 3-terc-butil-5-metilbenceno-1,2-diol es el antioxidante más potente en los ensayos mediante Rancimat pero no mediante ensayos con DPPH·, porque sus dos grupos hidroxilo tienen una fuerte sinergia estérica. El 2,6-Di-terc-butil-4-hidroxi-metil-fenol mostró una actividad antioxidante tan fuerte como el 2,6-di-ter-butil-4-metoxifenol en ensayos con manteca de cerdo. El 2,6-di-terc-butil-4-hidroxi-metilfenol también mostró una actividad más fuerte que el 2-terc-butil-4-metoxifenol. El grupo metileno del 2,6-di-ter-butil-4-hidroxi

  15. Sewage reflects the microbiomes of human populations.

    Science.gov (United States)

    Newton, Ryan J; McLellan, Sandra L; Dila, Deborah K; Vineis, Joseph H; Morrison, Hilary G; Eren, A Murat; Sogin, Mitchell L

    2015-02-24

    Molecular characterizations of the gut microbiome from individual human stool samples have identified community patterns that correlate with age, disease, diet, and other human characteristics, but resources for marker gene studies that consider microbiome trends among human populations scale with the number of individuals sampled from each population. As an alternative strategy for sampling populations, we examined whether sewage accurately reflects the microbial community of a mixture of stool samples. We used oligotyping of high-throughput 16S rRNA gene sequence data to compare the bacterial distribution in a stool data set to a sewage influent data set from 71 U.S. cities. On average, only 15% of sewage sample sequence reads were attributed to human fecal origin, but sewage recaptured most (97%) human fecal oligotypes. The most common oligotypes in stool matched the most common and abundant in sewage. After informatically separating sequences of human fecal origin, sewage samples exhibited ~3× greater diversity than stool samples. Comparisons among municipal sewage communities revealed the ubiquitous and abundant occurrence of 27 human fecal oligotypes, representing an apparent core set of organisms in U.S. populations. The fecal community variability among U.S. populations was significantly lower than among individuals. It clustered into three primary community structures distinguished by oligotypes from either: Bacteroidaceae, Prevotellaceae, or Lachnospiraceae/Ruminococcaceae. These distribution patterns reflected human population variation and predicted whether samples represented lean or obese populations with 81 to 89% accuracy. Our findings demonstrate that sewage represents the fecal microbial community of human populations and captures population-level traits of the human microbiome. The gut microbiota serves important functions in healthy humans. Numerous projects aim to define a healthy gut microbiome and its association with health states. However

  16. Interaction between microbiome and host genetics in psoriatic arthritis.

    Science.gov (United States)

    Chimenti, Maria Sole; Perricone, Carlo; Novelli, Lucia; Caso, Francesco; Costa, Luisa; Bogdanos, Dimitrios; Conigliaro, Paola; Triggianese, Paola; Ciccacci, Cinzia; Borgiani, Paola; Perricone, Roberto

    2018-03-01

    Psoriatic arthritis (PsA) is a chronic inflammatory joint disease, seen in combination with psoriasis. Both genetic and environmental factors are responsible for the development of PsA, however little is known about the different weight of these two distinctive components in the pathogenesis of the disease. Genomic variability in PsA is associated with the disease and/or some peculiar clinical phenotypes. Candidate genes involved are crucial in inflammation, immune system, and epithelial permeability. Moreover, the genesis and regulation of inflammation are influenced by the composition of the human intestinal microbiome that is able to modulate both mucosal and systemic immune system. It is possible that pro-inflammatory responses initiated in gut mucosa could contribute to the induction and progression of autoimmune conditions. Given such premises, the aim of this review is to summarize immune-mediated response and specific bacterial changes in the composition of fecal microbiota in PsA patients and to analyze the relationships between bacterial changes, immune system, and host genetic background. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Diet may influence the oral microbiome composition in cats.

    Science.gov (United States)

    Adler, Christina J; Malik, Richard; Browne, Gina V; Norris, Jacqueline M

    2016-06-09

    Periodontal disease is highly prevalent amongst domestic cats, causing pain, gingival bleeding, reduced food intake, loss of teeth and possibly impacts on overall systemic health. Diet has been suggested to play a role in the development of periodontal disease in cats. There is a complete lack of information about how diet (composition and texture) affects the feline oral microbiome, the composition of which may influence oral health and the development of periodontal disease. We undertook a pilot study to assess if lifelong feeding of dry extruded kibble or wet (canned and/or fresh meat combinations) diets to cats (n = 10) with variable oral health affected the microbiome. Oral microbiome composition was assessed by amplifying the V1-V3 region of the 16S gene from supragingival dental plaque DNA extracts. These amplicons were sequenced using Illumina technology. This deep sequencing revealed the feline oral microbiome to be diverse, containing 411 bacterial species from 14 phyla. We found that diet had a significant influence on the overall diversity and abundance of specific bacteria in the oral environment. Cats fed a dry diet exclusively had higher bacterial diversity in their oral microbiome than wet-food diet cats (p microbiome between cats on the two diets assessed, the relationship between these differences and gingival health was unclear. Our preliminary results indicate that further analysis of the influence of dietary constituents and texture on the feline oral microbiome is required to reveal the relationship between diet, the oral microbiome and gingival health in cats.

  18. Acquiring and maintaining a normal oral microbiome: current perspective.

    NARCIS (Netherlands)

    Zaura, E.; Nicu, E.A.; Krom, B.P.; Keijser, B.J.

    2014-01-01

    The oral microbiota survives daily physical and chemical perturbations from the intake of food and personal hygiene measures, resulting in a long-term stable microbiome. Biological properties that confer stability in the microbiome are important for the prevention of dysbiosis-a microbial shift

  19. Acquiring and maintaining a normal oral microbiome : Current perspective

    NARCIS (Netherlands)

    Zaura, E.; Nicu, E.A.; Krom, B.P.; Keijser, B.J.F.

    2014-01-01

    The oral microbiota survives daily physical and chemical perturbations from the intake of food and personal hygiene measures, resulting in a long-term stable microbiome. Biological properties that confer stability in the microbiome are important for the prevention of dysbiosis—a microbial shift

  20. Experimental metagenomics and ribosomal profiling of the human skin microbiome.

    Science.gov (United States)

    Ferretti, Pamela; Farina, Stefania; Cristofolini, Mario; Girolomoni, Giampiero; Tett, Adrian; Segata, Nicola

    2017-03-01

    The skin is the largest organ in the human body, and it is populated by a large diversity of microbes, most of which are co-evolved with the host and live in symbiotic harmony. There is increasing evidence that the skin microbiome plays a crucial role in the defense against pathogens, immune system training and homoeostasis, and microbiome perturbations have been associated with pathological skin conditions. Studying the skin resident microbial community is thus essential to better understand the microbiome-host crosstalk and to associate its specific configurations with cutaneous diseases. Several community profiling approaches have proved successful in unravelling the composition of the skin microbiome and overcome the limitations of cultivation-based assays, but these tools remain largely inaccessible to the clinical and medical dermatology communities. The study of the skin microbiome is also characterized by specific technical challenges, such as the low amount of microbial biomass and the extensive human DNA contamination. Here, we review the available community profiling approaches to study the skin microbiome, specifically focusing on the practical experimental and analytical tools necessary to generate and analyse skin microbiome data. We describe all the steps from the initial samples collection to the final data interpretation, with the goal of enabling clinicians and researchers who are not familiar with the microbiome field to perform skin profiling experiments. © 2016 The Authors. Experimental Dermatology Published by John Wiley & Sons Ltd.

  1. Functional variation in the gut microbiome of wild Drosophila populations.

    Science.gov (United States)

    Bost, Alyssa; Martinson, Vincent G; Franzenburg, Soeren; Adair, Karen L; Albasi, Alice; Wells, Martin T; Douglas, Angela E

    2018-05-26

    Most of the evidence that the gut microbiome of animals is functionally variable, with consequences for the health and fitness of the animal host, is based on laboratory studies, often using inbred animals under tightly controlled conditions. It is largely unknown whether these microbiome effects would be evident in outbred animal populations under natural conditions. In this study, we quantified the functional traits of the gut microbiota (metagenome) and host (gut transcriptome) and the taxonomic composition of the gut microorganisms (16S rRNA gene sequence) in natural populations of three mycophagous Drosophila species. Variation in microbiome function and composition was driven principally by the period of sample collection, while host function varied mostly with Drosophila species, indicating that variation in microbiome traits is determined largely by environmental factors, and not host taxonomy. Despite this, significant correlations between microbiome and host functional traits were obtained. In particular, microbiome functions dominated by metabolism were positively associated with host functions relating to gut epithelial turnover. Much of the functional variation in the microbiome could be attributed to variation in abundance of Bacteroidetes, rather than the two other abundant groups, the γ-Proteobacteria or Lactobacillales. We conclude that functional variation in the interactions between animals and their gut microbiome can be detectable in natural populations and, in mycophagous Drosophila, this variation relates primarily to metabolism and homeostasis of the gut epithelium. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Gut microbiome and lipid metabolism : from associations to mechanisms

    NARCIS (Netherlands)

    Wang, Zheng; Koonen, Debby; Hofker, Marten; Fu, Jingyuan

    Purpose of review The gut microbiome has now been convincingly linked to human metabolic health but the underlying causality and mechanisms remain poorly understood. This review focuses on the recent progress in establishing the associations between gut microbiome species and lipid metabolism in

  3. Overweight and the feline gut microbiome - a pilot study

    DEFF Research Database (Denmark)

    Kieler, I. N.; Mølbak, Lars; Hansen, L. L.

    2016-01-01

    Compared with lean humans, the gut microbiota is altered in the obese. Whether these changes are due to an obesogenic diet, and whether the microbiota contributes to adiposity is currently discussed. In the cat population, where obesity is also prevalent, gut microbiome changes associated...... microbiome as compared to lean cats....

  4. Host Genetics and Gut Microbiome : Challenges and Perspectives

    NARCIS (Netherlands)

    Kurilshikov, Alexander; Wijmenga, Cisca; Fu, Jingyuan; Zhernakova, Alexandra

    The mammalian gut is colonized by trillions of microorganisms collectively called the microbiome. It is increasingly clear that this microbiome has a critical role of in many aspects of health including metabolism and immunity. While environmental factors such as diet and medications have been shown

  5. Metagenomic and metatranscriptomic analysis of the microbiome of watermelon fruits

    Science.gov (United States)

    The plant microbiome is a key determinant of plant health and productivity, and alteration of the plant microbiome can increase the quality of agricultural products. Little is known about the microbial population in fruit development of plants. In this study, we aimed to understand the function of m...

  6. Computational Approaches for Integrative Analysis of the Metabolome and Microbiome

    Directory of Open Access Journals (Sweden)

    Jasmine Chong

    2017-11-01

    Full Text Available The study of the microbiome, the totality of all microbes inhabiting the host or an environmental niche, has experienced exponential growth over the past few years. The microbiome contributes functional genes and metabolites, and is an important factor for maintaining health. In this context, metabolomics is increasingly applied to complement sequencing-based approaches (marker genes or shotgun metagenomics to enable resolution of microbiome-conferred functionalities associated with health. However, analyzing the resulting multi-omics data remains a significant challenge in current microbiome studies. In this review, we provide an overview of different computational approaches that have been used in recent years for integrative analysis of metabolome and microbiome data, ranging from statistical correlation analysis to metabolic network-based modeling approaches. Throughout the process, we strive to present a unified conceptual framework for multi-omics integration and interpretation, as well as point out potential future directions.

  7. Acquisition of Uropygial Gland Microbiome by Hoopoe Nestlings.

    Science.gov (United States)

    Martín-Vivaldi, Manuel; Soler, Juan José; Martínez-García, Ángela; Arco, Laura; Juárez-García-Pelayo, Natalia; Ruiz-Rodríguez, Magdalena; Martínez-Bueno, Manuel

    2017-12-18

    Mutualistic symbioses between animals and bacteria depend on acquisition of appropriate symbionts while avoiding exploitation by non-beneficial microbes. The mode of acquisition of symbionts would determine, not only the probability of encountering but also evolutionary outcomes of mutualistic counterparts. The microbiome inhabiting the uropygial gland of the European hoopoe (Upupa epops) includes a variety of bacterial strains, some of them providing antimicrobial benefits. Here, the mode of acquisition and stability of this microbiome is analyzed by means of Automated rRNA Intergenic Spacer Analysis and two different experiments. The first experiment impeded mothers' access to their glands, thus avoiding direct transmission of microorganisms from female to offspring secretions. The second experiment explored the stability of the microbiomes by inoculating glands with secretions from alien nests. The first experiment provoked a reduction in similarity of microbiomes of mother and nestlings. Interestingly, some bacterial strains were more often detected when females had not access to their glands, suggesting antagonistic effects among bacteria from different sources. The second experiment caused an increase in richness of the microbiome of receivers in terms of prevalence of Operational Taxonomic Units (OTUs) that reduced differences in microbiomes of donors and receivers. That occurred because OTUs that were present in donors but not in receivers incorporated to the microbiome of the latter, which provoked that cross-inoculated nestlings got similar final microbiomes that included the most prevalent OTUs. The results are therefore consistent with a central role of vertical transmission in bacterial acquisition by nestling hoopoes and support the idea that the typical composition of the hoopoe gland microbiome is reached by the incorporation of some bacteria during the nestling period. This scenario suggests the existence of a coevolved core microbiome composed by

  8. HuMiChip: Development of a Functional Gene Array for the Study of Human Microbiomes

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Q.; Deng, Ye; Lin, Lu; Hemme, Chris L.; He, Zhili; Zhou, Jizhong

    2010-05-17

    Microbiomes play very important roles in terms of nutrition, health and disease by interacting with their hosts. Based on sequence data currently available in public domains, we have developed a functional gene array to monitor both organismal and functional gene profiles of normal microbiota in human and mouse hosts, and such an array is called human and mouse microbiota array, HMM-Chip. First, seed sequences were identified from KEGG databases, and used to construct a seed database (seedDB) containing 136 gene families in 19 metabolic pathways closely related to human and mouse microbiomes. Second, a mother database (motherDB) was constructed with 81 genomes of bacterial strains with 54 from gut and 27 from oral environments, and 16 metagenomes, and used for selection of genes and probe design. Gene prediction was performed by Glimmer3 for bacterial genomes, and by the Metagene program for metagenomes. In total, 228,240 and 801,599 genes were identified for bacterial genomes and metagenomes, respectively. Then the motherDB was searched against the seedDB using the HMMer program, and gene sequences in the motherDB that were highly homologous with seed sequences in the seedDB were used for probe design by the CommOligo software. Different degrees of specific probes, including gene-specific, inclusive and exclusive group-specific probes were selected. All candidate probes were checked against the motherDB and NCBI databases for specificity. Finally, 7,763 probes covering 91.2percent (12,601 out of 13,814) HMMer confirmed sequences from 75 bacterial genomes and 16 metagenomes were selected. This developed HMM-Chip is able to detect the diversity and abundance of functional genes, the gene expression of microbial communities, and potentially, the interactions of microorganisms and their hosts.

  9. The Microbiome-Gut-Behavior Axis: Crosstalk Between the Gut Microbiome and Oligodendrocytes Modulates Behavioral Responses.

    Science.gov (United States)

    Ntranos, Achilles; Casaccia, Patrizia

    2018-01-01

    Environmental and dietary stimuli have always been implicated in brain development and behavioral responses. The gut, being the major portal of communication with the external environment, has recently been brought to the forefront of this interaction with the establishment of a gut-brain axis in health and disease. Moreover, recent breakthroughs in germ-free and antibiotic-treated mice have demonstrated the significant impact of the microbiome in modulating behavioral responses in mice and have established a more specific microbiome-gut-behavior axis. One of the mechanisms by which this axis affects social behavior is by regulating myelination at the prefrontal cortex, an important site for complex cognitive behavior planning and decision-making. The prefrontal cortex exhibits late myelination of its axonal projections that could extend into the third decade of life in humans, which make it susceptible to external influences, such as microbial metabolites. Changes in the gut microbiome were shown to alter the composition of the microbial metabolome affecting highly permeable bioactive compounds, such as p-cresol, which could impair oligodendrocyte differentiation. Dysregulated myelination in the prefrontal cortex is then able to affect behavioral responses in mice, shifting them towards social isolation. The reduced social interactions could then limit microbial exchange, which could otherwise pose a threat to the survival of the existing microbial community in the host and, thus, provide an evolutionary advantage to the specific microbial community. In this review, we will analyze the microbiome-gut-behavior axis, describe the interactions between the gut microbiome and oligodendrocytes and highlight their role in the modulation of social behavior.

  10. Municipal solid waste landfills harbor distinct microbiomes

    Science.gov (United States)

    Stamps, Blake W.; Lyles, Christopher N.; Suflita, Joseph M.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Kolpin, Dana W.; Stevenson, Bradley S.

    2016-01-01

    Landfills are the final repository for most of the discarded material from human society and its “built environments.” Microorganisms subsequently degrade this discarded material in the landfill, releasing gases (largely CH4 and CO2) and a complex mixture of soluble chemical compounds in leachate. Characterization of “landfill microbiomes” and their comparison across several landfills should allow the identification of environmental or operational properties that influence the composition of these microbiomes and potentially their biodegradation capabilities. To this end, the composition of landfill microbiomes was characterized as part of an ongoing USGS national survey studying the chemical composition of leachates from 19 non-hazardous landfills across 16 states in the continental U.S. The landfills varied in parameters such as size, waste composition, management strategy, geography, and climate zone. The diversity and composition of bacterial and archaeal populations in leachate samples were characterized by 16S rRNA gene sequence analysis, and compared against a variety of physical and chemical parameters in an attempt to identify their impact on selection. Members of the Epsilonproteobacteria, Gammaproteobacteria, Clostridia, and candidate division OP3 were the most abundant. The distribution of the observed phylogenetic diversity could best be explained by a combination of variables and was correlated most strongly with the concentrations of chloride and barium, rate of evapotranspiration, age of waste, and the number of detected household chemicals. This study illustrates how leachate microbiomes are distinct from those of other natural or built environments, and sheds light on the major selective forces responsible for this microbial diversity.

  11. Sewage Reflects the Microbiomes of Human Populations

    Science.gov (United States)

    Newton, Ryan J.; McLellan, Sandra L.; Dila, Deborah K.; Vineis, Joseph H.; Morrison, Hilary G.; Eren, A. Murat

    2015-01-01

    ABSTRACT Molecular characterizations of the gut microbiome from individual human stool samples have identified community patterns that correlate with age, disease, diet, and other human characteristics, but resources for marker gene studies that consider microbiome trends among human populations scale with the number of individuals sampled from each population. As an alternative strategy for sampling populations, we examined whether sewage accurately reflects the microbial community of a mixture of stool samples. We used oligotyping of high-throughput 16S rRNA gene sequence data to compare the bacterial distribution in a stool data set to a sewage influent data set from 71 U.S. cities. On average, only 15% of sewage sample sequence reads were attributed to human fecal origin, but sewage recaptured most (97%) human fecal oligotypes. The most common oligotypes in stool matched the most common and abundant in sewage. After informatically separating sequences of human fecal origin, sewage samples exhibited ~3× greater diversity than stool samples. Comparisons among municipal sewage communities revealed the ubiquitous and abundant occurrence of 27 human fecal oligotypes, representing an apparent core set of organisms in U.S. populations. The fecal community variability among U.S. populations was significantly lower than among individuals. It clustered into three primary community structures distinguished by oligotypes from either: Bacteroidaceae, Prevotellaceae, or Lachnospiraceae/Ruminococcaceae. These distribution patterns reflected human population variation and predicted whether samples represented lean or obese populations with 81 to 89% accuracy. Our findings demonstrate that sewage represents the fecal microbial community of human populations and captures population-level traits of the human microbiome. PMID:25714718

  12. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    Science.gov (United States)

    Amoutzias, Grigoris D.; Chaliotis, Anargyros; Mossialos, Dimitris

    2016-01-01

    Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs) and polyketides (PKs) are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes) and type-I polyketide synthases (PKSes-I), respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS) technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds. PMID:27092515

  13. Discovery Strategies of Bioactive Compounds Synthesized by Nonribosomal Peptide Synthetases and Type-I Polyketide Synthases Derived from Marine Microbiomes

    Directory of Open Access Journals (Sweden)

    Grigoris D. Amoutzias

    2016-04-01

    Full Text Available Considering that 70% of our planet’s surface is covered by oceans, it is likely that undiscovered biodiversity is still enormous. A large portion of marine biodiversity consists of microbiomes. They are very attractive targets of bioprospecting because they are able to produce a vast repertoire of secondary metabolites in order to adapt in diverse environments. In many cases secondary metabolites of pharmaceutical and biotechnological interest such as nonribosomal peptides (NRPs and polyketides (PKs are synthesized by multimodular enzymes named nonribosomal peptide synthetases (NRPSes and type-I polyketide synthases (PKSes-I, respectively. Novel findings regarding the mechanisms underlying NRPS and PKS evolution demonstrate how microorganisms could leverage their metabolic potential. Moreover, these findings could facilitate synthetic biology approaches leading to novel bioactive compounds. Ongoing advances in bioinformatics and next-generation sequencing (NGS technologies are driving the discovery of NRPs and PKs derived from marine microbiomes mainly through two strategies: genome-mining and metagenomics. Microbial genomes are now sequenced at an unprecedented rate and this vast quantity of biological information can be analyzed through genome mining in order to identify gene clusters encoding NRPSes and PKSes of interest. On the other hand, metagenomics is a fast-growing research field which directly studies microbial genomes and their products present in marine environments using culture-independent approaches. The aim of this review is to examine recent developments regarding discovery strategies of bioactive compounds synthesized by NRPS and type-I PKS derived from marine microbiomes and to highlight the vast diversity of NRPSes and PKSes present in marine environments by giving examples of recently discovered bioactive compounds.

  14. Cultivating the Deep Subsurface Microbiome

    Science.gov (United States)

    Casar, C. P.; Osburn, M. R.; Flynn, T. M.; Masterson, A.; Kruger, B.

    2017-12-01

    Subterranean ecosystems are poorly understood because many microbes detected in metagenomic surveys are only distantly related to characterized isolates. Cultivating microorganisms from the deep subsurface is challenging due to its inaccessibility and potential for contamination. The Deep Mine Microbial Observatory (DeMMO) in Lead, SD however, offers access to deep microbial life via pristine fracture fluids in bedrock to a depth of 1478 m. The metabolic landscape of DeMMO was previously characterized via thermodynamic modeling coupled with genomic data, illustrating the potential for microbial inhabitants of DeMMO to utilize mineral substrates as energy sources. Here, we employ field and lab based cultivation approaches with pure minerals to link phylogeny to metabolism at DeMMO. Fracture fluids were directed through reactors filled with Fe3O4, Fe2O3, FeS2, MnO2, and FeCO3 at two sites (610 m and 1478 m) for 2 months prior to harvesting for subsequent analyses. We examined mineralogical, geochemical, and microbiological composition of the reactors via DNA sequencing, microscopy, lipid biomarker characterization, and bulk C and N isotope ratios to determine the influence of mineralogy on biofilm community development. Pre-characterized mineral chips were imaged via SEM to assay microbial growth; preliminary results suggest MnO2, Fe3O4, and Fe2O3 were most conducive to colonization. Solid materials from reactors were used as inoculum for batch cultivation experiments. Media designed to mimic fracture fluid chemistry was supplemented with mineral substrates targeting metal reducers. DNA sequences and microscopy of iron oxide-rich biofilms and fracture fluids suggest iron oxidation is a major energy source at redox transition zones where anaerobic fluids meet more oxidizing conditions. We utilized these biofilms and fluids as inoculum in gradient cultivation experiments targeting microaerophilic iron oxidizers. Cultivation of microbes endemic to DeMMO, a system

  15. PopGenome: An Efficient Swiss Army Knife for Population Genomic Analyses in R

    OpenAIRE

    Pfeifer, Bastian; Wittelsbürger, Ulrich; Ramos-Onsins, Sebastian E.; Lercher, Martin J.

    2014-01-01

    Although many computer programs can perform population genetics calculations, they are typically limited in the analyses and data input formats they offer; few applications can process the large data sets produced by whole-genome resequencing projects. Furthermore, there is no coherent framework for the easy integration of new statistics into existing pipelines, hindering the development and application of new population genetics and genomics approaches. Here, we present PopGenome, a populati...

  16. Exploring coral microbiome assemblages in the South China Sea.

    Science.gov (United States)

    Cai, Lin; Tian, Ren-Mao; Zhou, Guowei; Tong, Haoya; Wong, Yue Him; Zhang, Weipeng; Chui, Apple Pui Yi; Xie, James Y; Qiu, Jian-Wen; Ang, Put O; Liu, Sheng; Huang, Hui; Qian, Pei-Yuan

    2018-02-05

    Coral reefs are significant ecosystems. The ecological success of coral reefs relies on not only coral-algal symbiosis but also coral-microbial partnership. However, microbiome assemblages in the South China Sea corals remain largely unexplored. Here, we compared the microbiome assemblages of reef-building corals Galaxea (G. fascicularis) and Montipora (M. venosa, M. peltiformis, M. monasteriata) collected from five different locations in the South China Sea using massively-parallel sequencing of 16S rRNA gene and multivariate analysis. The results indicated that microbiome assemblages for each coral species were unique regardless of location and were different from the corresponding seawater. Host type appeared to drive the coral microbiome assemblages rather than location and seawater. Network analysis was employed to explore coral microbiome co-occurrence patterns, which revealed 61 and 80 co-occurring microbial species assembling the Galaxea and Montipora microbiomes, respectively. Most of these co-occurring microbial species were commonly found in corals and were inferred to play potential roles in host nutrient metabolism; carbon, nitrogen, sulfur cycles; host detoxification; and climate change. These findings suggest that the co-occurring microbial species explored might be essential to maintain the critical coral-microbial partnership. The present study provides new insights into coral microbiome assemblages in the South China Sea.

  17. The Microbiome: a Revolution in Treatment for Rheumatic Diseases?

    Science.gov (United States)

    Rosenbaum, James T; Asquith, Mark J

    2016-10-01

    The microbiome is the term that describes the microbial ecosystem that cohabits an organism such as humans. The microbiome has been implicated in a long list of immune-mediated diseases which include rheumatoid arthritis, ankylosing spondylitis, and even gout. The mechanisms to account for this effect are multiple. The clinical implications from observations on the microbiome and disease are broad. A growing number of microbiota constituents such as Prevotella copri, Porphyromonas gingivalis, and Collinsella have been correlated or causally related to rheumatic disease. The microbiome has a marked effect on the immune system. Our understanding of immune pathways modulated by the microbiota such as the induction of T helper 17 (Th17) cells and secretory immunoglobulin A (IgA) responses to segmented filamentous bacteria continues to expand. In addition to the gut microbiome, bacterial communities of other sites such as the mouth, lung, and skin have also been associated with the pathogenesis of rheumatic diseases. Strategies to alter the microbiome or to alter the immune activation from the microbiome might play a role in the future therapy for rheumatic diseases.

  18. Immunomodulatory interplay of the microbiome and therapy of rheumatic diseases.

    Science.gov (United States)

    Ostrov, Barbara E; Amsterdam, Daniel

    2017-11-01

    Modulation of the immune system by microbes, especially from the gastrointestinal tract, is increasingly considered a key factor in the onset, course and outcome of rheumatic diseases. The interplay of the microbiome, along with genetic predisposition and environmental exposure, is thought to be an important trigger for rheumatic diseases. Improved identification of the relationship of disease-specific genetic alterations and rheumatic diseases has potential diagnostic and therapeutic applications. Treatment of rheumatic disorders is influenced by microbial actions but this interplay can be challenging due to variable and unpredictable responses to therapies. Expanded knowledge of the microbiome now allows clinicians to more precisely select ideal medication regimens and to predict response to and toxicity from drugs. Rheumatic diseases and associated therapies were among the earliest microbiome interactions investigated, yet it is notable that current research is focused on clinical and immunological associations but, in comparison, a limited number of studies regarding the microbiome's impact on treatment for rheumatic diseases have been published. In the coming years, further knowledge of immunomodulating interactions between the microbiome and the immune system will aid our understanding of autoimmunity and will be increasingly important in selection of therapeutic agents for patients with autoimmune and rheumatic diseases. In this review, recent literature regarding the bidirectional immunomodulatory effects of the microbiome with rheumatic diseases and current understanding and gaps regarding the drug-microbiome interface in the management of these disorders is presented.

  19. Interplay between the lung microbiome and lung cancer.

    Science.gov (United States)

    Mao, Qixing; Jiang, Feng; Yin, Rong; Wang, Jie; Xia, Wenjie; Dong, Gaochao; Ma, Weidong; Yang, Yao; Xu, Lin; Hu, Jianzhong

    2018-02-28

    The human microbiome confers benefits or disease susceptibility to the human body through multiple pathways. Disruption of the symbiotic balance of the human microbiome is commonly found in systematic diseases such as diabetes, obesity, and chronic gastric diseases. Emerging evidence has suggested that dysbiosis of the microbiota may also play vital roles in carcinogenesis at multiple levels, e.g., by affecting metabolic, inflammatory, or immune pathways. Although the impact of the gut microbiome on the digestive cancer has been widely explored, few studies have investigated the interplay between the microbiome and lung cancer. Some recent studies have shown that certain microbes and microbiota dysbiosis are correlated with development of lung cancer. In this mini-review, we briefly summarize current research findings describing the relationship between the lung microbiome and lung cancer. We further discuss the potential mechanisms through which the lung microbiome may play a role in lung carcinogenesis and impact lung cancer treatment. A better knowledge of the interplay between the lung microbiome and lung cancer may promote the development of innovative strategies for early prevention and personalized treatment in lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Urinary Tract Microbiome in Health and Disease.

    Science.gov (United States)

    Aragón, Isabel M; Herrera-Imbroda, Bernardo; Queipo-Ortuño, María I; Castillo, Elisabeth; Del Moral, Julia Sequeira-García; Gómez-Millán, Jaime; Yucel, Gozde; Lara, María F

    2016-11-14

    The urinary tract, previously considered a sterile body niche, has emerged as the host of an array of bacteria in healthy individuals, revolutionizing the urology research field. To review the literature on microbiome implications in the urinary tract and the usefulness of probiotics/prebiotics and diet as treatment for urologic disorders. A systematic review was conducted using PubMed and Medline from inception until July 2016. The initial search identified 1419 studies and 89 were included in this systematic review. Specific bacterial communities have been found in the healthy urinary tract. Changes in this microbiome have been observed in certain urologic disorders such as urinary incontinence, urologic cancers, interstitial cystitis, neurogenic bladder dysfunction, sexually transmitted infections, and chronic prostatitis/chronic pelvic pain syndrome. The role of probiotics, prebiotics, and diet as treatment or preventive agents for urologic disorders requires further investigation. There is a microbiome associated with the healthy urinary tract that can change in urologic disorders. This represents a propitious context to identify new diagnostic, prognostic, and predictive microbiome-based biomarkers that could be used in clinical urology practice. In addition, probiotics, prebiotics, and diet modifications appear to represent an opportunity to regulate the urinary microbiome. We review the urinary microbiome of healthy individuals and its changes in relation to urinary disorders. The question to resolve is how we can modulate the microbiome to improve urinary tract health. Copyright © 2016 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  1. The Microbiome of Animals: Implications for Conservation Biology

    Directory of Open Access Journals (Sweden)

    Simon Bahrndorff

    2016-01-01

    Full Text Available In recent years the human microbiome has become a growing area of research and it is becoming clear that the microbiome of humans plays an important role for human health. Extensive research is now going into cataloging and annotating the functional role of the human microbiome. The ability to explore and describe the microbiome of any species has become possible due to new methods for sequencing. These techniques allow comprehensive surveys of the composition of the microbiome of nonmodel organisms of which relatively little is known. Some attention has been paid to the microbiome of insect species including important vectors of pathogens of human and veterinary importance, agricultural pests, and model species. Together these studies suggest that the microbiome of insects is highly dependent on the environment, species, and populations and affects the fitness of species. These fitness effects can have important implications for the conservation and management of species and populations. Further, these results are important for our understanding of invasion of nonnative species, responses to pathogens, and responses to chemicals and global climate change in the present and future.

  2. Genetic Markers Are Associated with the Ruminal Microbiome and Metabolome in Grain and Sugar Challenged Dairy Heifers

    Directory of Open Access Journals (Sweden)

    Helen M. Golder

    2018-02-01

    Full Text Available Dairy heifers were subjected to a non-life-threatening challenge designed to induce ruminal acidosis by feeding grain and sugar. Large among animal variation in clinical signs of acidosis, rumen metabolite concentrations, and the rumen microbiome occurred. This exploratory study investigates sources of the variation by examining associations between the genome, metabolome, and microbiome, albeit with a limited population. The broader objective is to provide a rationale for a larger field study to identify markers for susceptibility to ruminal acidosis. Initially, heifers (n = 40 allocated to five feed additive groups were fed 20-days pre-challenge with a total mixed ration and additives. Fructose (0.1% of bodyweight/day was added for the last 10 days pre-challenge. On day 21 heifers were challenged with 1.0% of bodyweight dry matter wheat + 0.2% of bodyweight fructose + additives. Rumen samples were collected via stomach tube weekly (day 0, 7, and 14 and at five times over 3.6 h after challenge and analyzed for pH and volatile fatty acid, ammonia, D-, and L-lactate concentrations. Relative abundance of bacteria and archaea were determined using Illumina MiSeq. Genotyping was undertaken using a 150K Illumina SNPchip. Genome-wide association was performed for metabolite and microbiome measures (n = 33. Few genome associations occurred with rumen pH, concentration of acetate, propionate, total volatile fatty acids, or ammonia, or the relative abundance of the Firmicutes, Bacteroidetes, and Spirochaetes phyla. Metabolites and microbial phyla that had markers associated and quantitative trait loci (QTL were: acetate to propionate ratio (A:P, D-, L-, and total lactate, butyrate, acidosis eigenvalue, Actinobacteria, Chloroflexi, Euryarchaeota, Fibrobacteres, Planctomycetes, Proteobacteria, and Tenericutes. A putative genomic region overlapped for Actinobacteria, Euryarchaeota, and Fibrobacteres and covered the region that codes for matrix extracellular

  3. Explorin metabolic pathway reconstruction and genome-wide expression profiling in lactobacillus reuteri to define functional probiotic features.

    NARCIS (Netherlands)

    Saulnier, D.M.A.; Santos, F.; Roos, S.; Mistretta, T.-A.; Spinler, J.K.; Molenaar, D.; Teusink, B.; Versalovic, J.

    2011-01-01

    The genomes of four Lactobacillus reuteri strains isolated from human breast milk and the gastrointestinal tract have been recently sequenced as part of the Human Microbiome Project. Preliminary genome comparisons suggested that these strains belong to two different clades, previously shown to

  4. Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features.

    NARCIS (Netherlands)

    Saulnier, D.M.; Santos, F.; Roos, S.; Mistretta, T.A.; Spinler, J.K.; Molenaar, D.; Teusink, B.; Versalovic, J.

    2011-01-01

    The genomes of four Lactobacillus reuteri strains isolated from human breast milk and the gastrointestinal tract have been recently sequenced as part of the Human Microbiome Project. Preliminary genome comparisons suggested that these strains belong to two different clades, previously shown to

  5. Exploring Metabolic Pathway Reconstruction and Genome-Wide Expression Profiling in Lactobacillus reuteri to Define Functional Probiotic Features

    NARCIS (Netherlands)

    Saulnier, D.M.; santos, F.; Roos, S.; Mistretta, T.A.; Spinler, J.K.; Molenaar, D.; Teusink, B.; Versalovic, J.

    2011-01-01

    The genomes of four Lactobacillus reuteri strains isolated from human breast milk and the gastrointestinal tract have been recently sequenced as part of the Human Microbiome Project. Preliminary genome comparisons suggested that these strains belong to two different clades, previously shown to

  6. Dysbiosis of the microbiome in gastric carcinogenesis.

    Science.gov (United States)

    Castaño-Rodríguez, Natalia; Goh, Khean-Lee; Fock, Kwong Ming; Mitchell, Hazel M; Kaakoush, Nadeem O

    2017-11-21

    The gastric microbiome has been proposed as an etiological factor in gastric carcinogenesis. We compared the gastric microbiota in subjects presenting with gastric cancer (GC, n = 12) and controls (functional dyspepsia (FD), n = 20) from a high GC risk population in Singapore and Malaysia. cDNA from 16S rRNA transcripts were amplified (515F-806R) and sequenced using Illumina MiSeq 2 × 250 bp chemistry. Increased richness and phylogenetic diversity but not Shannon's diversity was found in GC as compared to controls. nMDS clustered GC and FD subjects separately, with PERMANOVA confirming a significant difference between the groups. H. pylori serological status had a significant impact on gastric microbiome α-diversity and composition. Several bacterial taxa were enriched in GC, including Lactococcus, Veilonella, and Fusobacteriaceae (Fusobacterium and Leptotrichia). Prediction of bacterial metabolic contribution indicated that serological status had a significant impact on metabolic function, while carbohydrate digestion and pathways were enriched in GC. Our findings highlight three mechanisms of interest in GC, including enrichment of pro-inflammatory oral bacterial species, increased abundance of lactic acid producing bacteria, and enrichment of short chain fatty acid production pathways.

  7. Community assembly of the worm gut microbiome

    Science.gov (United States)

    Gore, Jeff

    It has become increasingly clear that human health is strongly influenced by the bacteria that live within the gut, known collectively as the gut microbiome. This complex community varies tremendously between individuals, but understanding the sources that lead to this heterogeneity is challenging. To address this challenge, we are using a bottom-up approach to develop a predictive understanding of how the microbiome assembles and functions within a simple and experimentally tractable gut, the gut of the worm C. elegans. We have found that stochastic community assembly in the C. elegansintestine is sufficient to produce strong inter-worm heterogeneity in community composition. When worms are fed with two neutrally-competing fluorescently labeled bacterial strains, we observe stochastically-driven bimodality in community composition, where approximately half of the worms are dominated by each bacterial strain. A simple model incorporating stochastic colonization suggests that heterogeneity between worms is driven by the low rate at which bacteria successfully establish new intestinal colonies. We can increase this rate experimentally by feeding worms at high bacterial density; in these conditions the bimodality disappears. We have also characterized all pairwise interspecies competitions among a set of eleven bacterial species, illuminating the rules governing interspecies community assembly. These results demonstrate the potential importance of stochastic processes in bacterial community formation and suggest a role for C. elegans as a model system for ecology of host-associated communities.

  8. The fecal microbiome of ALS patients.

    Science.gov (United States)

    Brenner, David; Hiergeist, Andreas; Adis, Carolin; Mayer, Benjamin; Gessner, André; Ludolph, Albert C; Weishaupt, Jochen H

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative motor neuron disease accompanied by both systemic and central nervous system-specific inflammation as well as deregulated energy metabolism. These potential pathogenetic factors have recently been found to mutually interact with the gut microbiota, raising the hypothesis of a link between microbiome alterations and ALS pathogenesis. The aim of our study was to assess whether ALS is associated with an altered composition of the fecal microbiota. We compared the fecal microbiota of 25 ALS patients with 32 age- and gender-matched healthy persons using 16S rRNA gene sequencing analysis. Confounding factors and secondary disease effects on the microbiome were minimized by selection of patients without dysphagia, gastrostomy, noninvasive ventilation, or reduced body mass index. Comparing the 2 carefully matched groups, the diversity and the abundance of the bacterial taxa on the different taxonomic levels as well as PICRUSt-predicted metagenomes were almost indistinguishable. Significant differences between ALS patients and healthy controls were only observed with regard to the overall number of microbial species (operational taxonomic units) and in the abundance of uncultured Ruminococcaceae. Conclusively, ALS patients do not exhibit a substantial alteration of the gut microbiota composition. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Gut microbiomes and their metabolites shape human and animal health.

    Science.gov (United States)

    Park, Woojun

    2018-03-01

    The host genetic background, complex surrounding environments, and gut microbiome are very closely linked to human and animal health and disease. Although significant correlations between gut microbiota and human and animal health have been revealed, the specific roles of each gut bacterium in shaping human and animal health and disease remain unclear. However, recent omics-based studies using experimental animals and surveys of gut microbiota from unhealthy humans have provided insights into the relationships among microbial community, their metabolites, and human and animal health. This editorial introduces six review papers that provide new discoveries of disease-associated microbiomes and suggest possible microbiome-based therapeutic approaches to human disease.

  10. The development of lower respiratory tract microbiome in mice.

    Science.gov (United States)

    Singh, Nisha; Vats, Asheema; Sharma, Aditi; Arora, Amit; Kumar, Ashwani

    2017-06-21

    Although culture-independent methods have paved the way for characterization of the lung microbiome, the dynamic changes in the lung microbiome from neonatal stage to adult age have not been investigated. In this study, we tracked changes in composition and diversity of the lung microbiome in C57BL/6N mice, starting from 1-week-old neonates to 8-week-old mice. Towards this, the lungs were sterilely excised from mice of different ages from 1 to 8 weeks. High-throughput DNA sequencing of the 16S rRNA gene followed by composition and diversity analysis was utilized to decipher the microbiome in these samples. Microbiome analysis suggests that the changes in the lung microbiome correlated with age. The lung microbiome was primarily dominated by phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria in all the stages from week 1 to week 8 after birth. Although Defluvibacter was the predominant genus in 1-week-old neonatal mice, Streptococcus became the dominant genus at the age of 2 weeks. Lactobacillus, Defluvibacter, Streptococcus, and Achromobacter were the dominant genera in 3-week-old mice, while Lactobacillus and Achromobacter were the most abundant genera in 4-week-old mice. Interestingly, relatively greater diversity (at the genus level) during the age of 5 to 6 weeks was observed as compared to the earlier weeks. The diversity of the lung microbiome remained stable between 6 and 8 weeks of age. In summary, we have tracked the development of the lung microbiome in mice from an early age of 1 week to adulthood. The lung microbiome is dominated by the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. However, dynamic changes were observed at the genus level. Relatively higher richness in the microbial diversity was achieved by age of 6 weeks and then maintained at later ages. We believe that this study improves our understanding of the development of the mice lung microbiome and will facilitate further analyses of the role of

  11. Benchmark Evaluation of True Single Molecular Sequencing to Determine Cystic Fibrosis Airway Microbiome Diversity

    Directory of Open Access Journals (Sweden)

    Andrea Hahn

    2018-05-01

    Full Text Available Cystic fibrosis (CF is an autosomal recessive disease associated with recurrent lung infections that can lead to morbidity and mortality. The impact of antibiotics for treatment of acute pulmonary exacerbations on the CF airway microbiome remains unclear with prior studies giving conflicting results and being limited by their use of 16S ribosomal RNA sequencing. Our primary objective was to validate the use of true single molecular sequencing (tSMS and PathoScope in the analysis of the CF airway microbiome. Three control samples were created with differing amounts of Burkholderia cepacia, Pseudomonas aeruginosa, and Prevotella melaninogenica, three common bacteria found in cystic fibrosis lungs. Paired sputa were also obtained from three study participants with CF before and >6 days after initiation of antibiotics. Antibiotic resistant B. cepacia and P. aeruginosa were identified in concurrently obtained respiratory cultures. Direct sequencing was performed using tSMS, and filtered reads were aligned to reference genomes from NCBI using PathoScope and Kraken and unique clade-specific marker genes using MetaPhlAn. A total of 180–518 K of 6–12 million filtered reads were aligned for each sample. Detection of known pathogens in control samples was most successful using PathoScope. In the CF sputa, alpha diversity measures varied based on the alignment method used, but similar trends were found between pre- and post-antibiotic samples. PathoScope outperformed Kraken and MetaPhlAn in our validation study of artificial bacterial community controls and also has advantages over Kraken and MetaPhlAn of being able to determine bacterial strains and the presence of fungal organisms. PathoScope can be confidently used when evaluating metagenomic data to determine CF airway microbiome diversity.

  12. A protocol for amide bond formation with electron deficient amines and sterically hindered substrates

    DEFF Research Database (Denmark)

    Due-Hansen, Maria E; Pandey, Sunil K; Christiansen, Elisabeth

    2016-01-01

    A protocol for amide coupling by in situ formation of acyl fluorides and reaction with amines at elevated temperature has been developed and found to be efficient for coupling of sterically hindered substrates and electron deficient amines where standard methods failed.......A protocol for amide coupling by in situ formation of acyl fluorides and reaction with amines at elevated temperature has been developed and found to be efficient for coupling of sterically hindered substrates and electron deficient amines where standard methods failed....

  13. Feeling hindered by health problems and functional capacity at 60 years and above.

    Science.gov (United States)

    Fagerström, Cecilia; Holst, Göran; Hallberg, Ingalill R

    2007-01-01

    It is common to use activities of daily living (ADL) rating scales to identify the impact of health problems such as diseases, impaired eyesight or hearing on daily life. However, for various reasons people with health problems might feel hindered in daily life before limitations in ability to perform ADL have occurred. In addition, there is sparse knowledge of what makes people feel hindered by health problems in relation to their ADL capacity. The aim was to investigate feeling hindered by health problems among 1297 people aged 60-89 living at home in relation to ADL capacity, health problems, life satisfaction, self-esteem, and social and financial resources, using a self-reported questionnaire, including questions from Older Americans' Resources and Services schedule (OARS), Rosenberg's self-esteem and Life Satisfaction Index Z (LSIZ). People feeling greatly hindered by health problems rarely had anyone who could help when they needed support, had lower life satisfaction and self-esteem than those not feeling hindered. Feeling hindered by health problems appeared to take on a different meaning depending on ADL capacity, knowledge that seems essential to include when accomplishing health promotion and rehabilitation interventions, especially at the early stages of reduced ADL capacity.

  14. Alterations in human milk leptin and insulin are associated with early changes in the infant intestinal microbiome.

    Science.gov (United States)

    Lemas, Dominick J; Young, Bridget E; Baker, Peter R; Tomczik, Angela C; Soderborg, Taylor K; Hernandez, Teri L; de la Houssaye, Becky A; Robertson, Charles E; Rudolph, Michael C; Ir, Diana; Patinkin, Zachary W; Krebs, Nancy F; Santorico, Stephanie A; Weir, Tiffany; Barbour, Linda A; Frank, Daniel N; Friedman, Jacob E

    2016-05-01

    Increased maternal body mass index (BMI) is a robust risk factor for later pediatric obesity. Accumulating evidence suggests that human milk (HM) may attenuate the transfer of obesity from mother to offspring, potentially through its effects on early development of the infant microbiome. Our objective was to identify early differences in intestinal microbiota in a cohort of breastfeeding infants born to obese compared with normal-weight (NW) mothers. We also investigated relations between HM hormones (leptin and insulin) and both the taxonomic and functional potentials of the infant microbiome. Clinical data and infant stool and fasting HM samples were collected from 18 NW [prepregnancy BMI (in kg/m(2)) obese (prepregnancy BMI >30.0) mothers and their exclusively breastfed infants at 2 wk postpartum. Infant body composition at 2 wk was determined by air-displacement plethysmography. Infant gastrointestinal microbes were estimated by using 16S amplicon and whole-genome sequencing. HM insulin and leptin were determined by ELISA; short-chain fatty acids (SCFAs) were measured in stool samples by using gas chromatography. Power was set at 80%. Infants born to obese mothers were exposed to 2-fold higher HM insulin and leptin concentrations (P obesity may adversely affect the early infant intestinal microbiome, HM insulin and leptin are independently associated with beneficial microbial metabolic pathways predicted to increase intestinal barrier function and reduce intestinal inflammation. This trial was registered at clinicaltrials.gov as NCT01693406. © 2016 American Society for Nutrition.

  15. Changes of Cattle Fecal Microbiome Under Field Conditions

    Science.gov (United States)

    Next generation sequencing (NGS) has been applied to study the microbiome in wastewater, sewage sludge, and feces. Previous microbial survival studies have shown different fecal-associated microbes have different decay rates and regrowth behaviors.

  16. The role of the skin microbiome in atopic dermatitis

    DEFF Research Database (Denmark)

    Bjerre, R. D.; Bandier, J.; Skov, L.

    2017-01-01

    Dysbiosis is a hallmark of atopic dermatitis (AD). The composition of skin microbiome communities and the causality of dysbiosis in eczema have not been well established. The objective of this review is to describe the skin microbiome profile in AD and address whether there is a causal relationship...... between dysbiosis and AD. The protocol is registered in PROSPERO (CRD42016035813). We searched PubMed, Embase, Scopus and ClinicalTrials.gov for primary research studies applying culture-independent analysis on the microbiome on AD skin of humans and animal models. Two authors independently screened...... of dysbiosis in eczema in mice should encourage future studies to investigate if this also applies to humans. Other important aspects are temporal dynamics and the influence of methodology on microbiome data....

  17. The adult nasopharyngeal microbiome as a determinant of pneumococcal acquisition

    NARCIS (Netherlands)

    Cremers, Amelieke Jh; Zomer, Aldert L; Gritzfeld, Jenna F; Ferwerda, Gerben; van Hijum, Sacha Aft; Ferreira, Daniela M; Shak, Joshua R; Klugman, Keith P; Boekhorst, Jos; Timmerman, Harro M; de Jonge, Marien I; Gordon, Stephen B; Hermans, Peter Wm

    2014-01-01

    BACKGROUND: Several cohort studies have indicated associations between S. pneumoniae and other microbes in the nasopharynx. To study causal relationships between the nasopharyngeal microbiome and pneumococcal carriage, we employed an experimental human pneumococcal carriage model. Healthy adult

  18. Characterization of the oral fungal microbiome (mycobiome in healthy individuals.

    Directory of Open Access Journals (Sweden)

    Mahmoud A Ghannoum

    2010-01-01

    Full Text Available The oral microbiome-organisms residing in the oral cavity and their collective genome-are critical components of health and disease. The fungal component of the oral microbiota has not been characterized. In this study, we used a novel multitag pyrosequencing approach to characterize fungi present in the oral cavity of 20 healthy individuals, using the pan-fungal internal transcribed spacer (ITS primers. Our results revealed the "basal" oral mycobiome profile of the enrolled individuals, and showed that across all the samples studied, the oral cavity contained 74 culturable and 11 non-culturable fungal genera. Among these genera, 39 were present in only one person, 16 genera were present in two participants, and 5 genera were present in three people, while 15 genera (including non-culturable organisms were present in >/=4 (20% participants. Candida species were the most frequent (isolated from 75% of participants, followed by Cladosporium (65%, Aureobasidium, Saccharomycetales (50% for both, Aspergillus (35%, Fusarium (30%, and Cryptococcus (20%. Four of these predominant genera are known to be pathogenic in humans. The low-abundance genera may represent environmental fungi present in the oral cavity and could simply be spores inhaled from the air or material ingested with food. Among the culturable genera, 61 were represented by one species each, while 13 genera comprised between 2 and 6 different species; the total number of species identified were 101. The number of species in the oral cavity of each individual ranged between 9 and 23. Principal component (PCO analysis of the obtained data set followed by sample clustering and UniFrac analysis revealed that White males and Asian males clustered differently from each other, whereas both Asian and White females clustered together. This is the first study that identified the "basal mycobiome" of healthy individuals, and provides the basis for a detailed characterization of the oral mycobiome in

  19. Negative binomial mixed models for analyzing microbiome count data.

    Science.gov (United States)

    Zhang, Xinyan; Mallick, Himel; Tang, Zaixiang; Zhang, Lei; Cui, Xiangqin; Benson, Andrew K; Yi, Nengjun

    2017-01-03

    Recent advances in next-generation sequencing (NGS) technology enable researchers to collect a large volume of metagenomic sequencing data. These data provide valuable resources for investigating interactions between the microbiome and host environmental/clinical factors. In addition to the well-known properties of microbiome count measurements, for example, varied total sequence reads across samples, over-dispersion and zero-inflation, microbiome studies usually collect samples with hierarchical structures, which introduce correlation among the samples and thus further complicate the analysis and interpretation of microbiome count data. In this article, we propose negative binomial mixed models (NBMMs) for detecting the association between the microbiome and host environmental/clinical factors for correlated microbiome count data. Although having not dealt with zero-inflation, the proposed mixed-effects models account for correlation among the samples by incorporating random effects into the commonly used fixed-effects negative binomial model, and can efficiently handle over-dispersion and varying total reads. We have developed a flexible and efficient IWLS (Iterative Weighted Least Squares) algorithm to fit the proposed NBMMs by taking advantage of the standard procedure for fitting the linear mixed models. We evaluate and demonstrate the proposed method via extensive simulation studies and the application to mouse gut microbiome data. The results show that the proposed method has desirable properties and outperform the previously used methods in terms of both empirical power and Type I error. The method has been incorporated into the freely available R package BhGLM ( http://www.ssg.uab.edu/bhglm/ and http://github.com/abbyyan3/BhGLM ), providing a useful tool for analyzing microbiome data.

  20. Breast tissue, oral and urinary microbiomes in breast cancer

    OpenAIRE

    Wang, Hannah; Altemus, Jessica; Niazi, Farshad; Green, Holly; Calhoun, Benjamin C.; Sturgis, Charles; Grobmyer, Stephen R.; Eng, Charis

    2017-01-01

    It has long been proposed that the gut microbiome contributes to breast carcinogenesis by modifying systemic estrogen levels. This is often cited as a possible mechanism linking breast cancer and high-fat, low-fiber diets as well as antibiotic exposure, associations previously identified in population-based studies. More recently, a distinct microbiome has been identified within breast milk and tissue, but few studies have characterized differences in the breast tissue microbiota of patients ...

  1. The Human Microbiome and Skin and Soft-Tissue Infections

    Science.gov (United States)

    2015-09-23

    purulent (ex. cutaneous abscess) or non-purulent (ex. cellulitis ). Furthermore, SSTIs can be caused by a wide array of bacterial pathogens such as...or cellulitis . Using a high-throughput sequencing approach, we found that the nasal microbiomes of trainees developed SSTI had significantly less...susceptibility to chlorhexidine. While S. aureus was typically associated with purulent abscess, cellulitis microbiomes were mostly composed of

  2. The microbiota and microbiome in aging: potential implications in health and age-related diseases.

    Science.gov (United States)

    Zapata, Heidi J; Quagliarello, Vincent J

    2015-04-01

    Advances in bacterial deoxyribonucleic acid sequencing allow for characterization of the human commensal bacterial community (microbiota) and its corresponding genome (microbiome). Surveys of healthy adults reveal that a signature composite of bacteria characterizes each unique body habitat (e.g., gut, skin, oral cavity, vagina). A myriad of clinical changes, including a basal proinflammatory state (inflamm-aging), that directly interface with the microbiota of older adults and enhance susceptibility to disease accompany aging. Studies in older adults demonstrate that the gut microbiota correlates with diet, location of residence (e.g., community dwelling, long-term care settings), and basal level of inflammation. Links exist between the microbiota and a variety of clinical problems plaguing older adults, including physical frailty, Clostridium difficile colitis, vulvovaginal atrophy, colorectal carcinoma, and atherosclerotic disease. Manipulation of the microbiota and microbiome of older adults holds promise as an innovative strategy to influence the development of comorbidities associated with aging. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  3. Metabolic Modeling of Common Escherichia coli Strains in Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Yue-Dong Gao

    2014-01-01

    Full Text Available The recent high-throughput sequencing has enabled the composition of Escherichia coli strains in the human microbial community to be profiled en masse. However, there are two challenges to address: (1 exploring the genetic differences between E. coli strains in human gut and (2 dynamic responses of E. coli to diverse stress conditions. As a result, we investigated the E. coli strains in human gut microbiome using deep sequencing data and reconstructed genome-wide metabolic networks for the three most common E. coli strains, including E. coli HS, UTI89, and CFT073. The metabolic models show obvious strain-specific characteristics, both in network contents and in behaviors. We predicted optimal biomass production for three models on four different carbon sources (acetate, ethanol, glucose, and succinate and found that these stress-associated genes were involved in host-microbial interactions and increased in human obesity. Besides, it shows that the growth rates are similar among the models, but the flux distributions are different, even in E. coli core reactions. The correlations between human diabetes-associated metabolic reactions in the E. coli models were also predicted. The study provides a systems perspective on E. coli strains in human gut microbiome and will be helpful in integrating diverse data sources in the following study.

  4. Empirical and deterministic accuracies of across-population genomic prediction

    NARCIS (Netherlands)

    Wientjes, Y.C.J.; Veerkamp, R.F.; Bijma, P.; Bovenhuis, H.; Schrooten, C.; Calus, M.P.L.

    2015-01-01

    Background: Differences in linkage disequilibrium and in allele substitution effects of QTL (quantitative trait loci) may hinder genomic prediction across populations. Our objective was to develop a deterministic formula to estimate the accuracy of across-population genomic prediction, for which

  5. IMG: the integrated microbial genomes database and comparative analysis system

    Science.gov (United States)

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Jacob, Biju; Huang, Jinghua; Williams, Peter; Huntemann, Marcel; Anderson, Iain; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2012-01-01

    The Integrated Microbial Genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG integrates publicly available draft and complete genomes from all three domains of life with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. IMG's data content and analytical capabilities have been continuously extended through regular updates since its first release in March 2005. IMG is available at http://img.jgi.doe.gov. Companion IMG systems provide support for expert review of genome annotations (IMG/ER: http://img.jgi.doe.gov/er), teaching courses and training in microbial genome analysis (IMG/EDU: http://img.jgi.doe.gov/edu) and analysis of genomes related to the Human Microbiome Project (IMG/HMP: http://www.hmpdacc-resources.org/img_hmp). PMID:22194640

  6. A psychology of the human brain-gut-microbiome axis.

    Science.gov (United States)

    Allen, Andrew P; Dinan, Timothy G; Clarke, Gerard; Cryan, John F

    2017-04-01

    In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain-gut-microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress-related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain-gut-microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain-gut-microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain-gut-microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain-gut-microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology.

  7. The Sphagnum microbiome: new insights from an ancient plant lineage.

    Science.gov (United States)

    Kostka, Joel E; Weston, David J; Glass, Jennifer B; Lilleskov, Erik A; Shaw, A Jonathan; Turetsky, Merritt R

    2016-07-01

    57 I. 57 II. 58 III. 59 IV. 59 V. 61 VI. 62 63 References 63 SUMMARY: Peat mosses of the genus Sphagnum play a major role in global carbon storage and dominate many northern peatland ecosystems, which are currently being subjected to some of the most rapid climate changes on Earth. A rapidly expanding database indicates that a diverse community of microorganisms is intimately associated with Sphagnum, inhabiting the tissues and surface of the plant. Here we summarize the current state of knowledge regarding the Sphagnum microbiome and provide a perspective for future research directions. Although the majority of the microbiome remains uncultivated and its metabolic capabilities uncharacterized, prokaryotes and fungi have the potential to act as mutualists, symbionts, or antagonists of Sphagnum. For example, methanotrophic and nitrogen-fixing bacteria may benefit the plant host by providing up to 20-30% of Sphagnum carbon and nitrogen, respectively. Next-generation sequencing approaches have enabled the detailed characterization of microbiome community composition in peat mosses. However, as with other ecologically or economically important plants, our knowledge of Sphagnum-microbiome associations is in its infancy. In order to attain a predictive understanding of the role of the microbiome in Sphagnum productivity and ecosystem function, the mechanisms of plant-microbiome interactions and the metabolic potential of constituent microbial populations must be revealed. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  8. The plant microbiome explored: implications for experimental botany

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Gabriele; Rybakova, Daria; Grube, Martin; Köberl, Martina

    2015-11-07

    The importance of microbial root inhabitants for plant growth and health was recognized as early as 100 years ago. Recent insights reveal a close symbiotic relationship between plants and their associated microorganisms, and high structural and functional diversity within plant microbiomes. Plants provide microbial communities with specific habitats, which can be broadly categorized as the rhizosphere, phyllosphere, and endosphere. Plant-associated microbes interact with their host in essential functional contexts. They can stimulate germination and growth, help plants fend off disease, promote stress resistance, and influence plant fitness. Therefore, plants have to be considered as metaorganisms within which the associated microbes usually outnumber the cells belonging to the plant host. The structure of the plant microbiome is determined by biotic and abiotic factors but follows ecological rules. Metaorganisms are coevolved species assemblages. The metabolism and morphology of plants and their microbiota are intensively connected with each other, and the interplay of both maintains the functioning and fitness of the holobiont. Our study of the current literature shows that analysis of plant microbiome data has brought about a paradigm shift in our understanding of the diverse structure and functioning of the plant microbiome with respect to the following: (i) the high interplay of bacteria, archaea, fungi, and protists; (ii) the high specificity even at cultivar level; (iii) the vertical transmission of core microbiomes; (iv) the extraordinary function of endophytes; and (v) several unexpected functions and metabolic interactions. The plant microbiome should be recognized as an additional factor in experimental botany and breeding strategies.

  9. Targeting gut microbiome: A novel and potential therapy for autism.

    Science.gov (United States)

    Yang, Yongshou; Tian, Jinhu; Yang, Bo

    2018-02-01

    Autism spectrum disorder (ASD) is a severely neurodevelopmental disorder that impairs a child's ability to communicate and interact with others. Children with neurodevelopmental disorder, including ASD, are regularly affected by gastrointestinal problems and dysbiosis of gut microbiota. On the other hand, humans live in a co-evolutionary association with plenty of microorganisms that resident on the exposed and internal surfaces of our bodies. The microbiome, refers to the collection of microbes and their genetic material, confers a variety of physiologic benefits to the host in many key aspects of life as well as being responsible for some diseases. A large body of preclinical literature indicates that gut microbiome plays an important role in the bidirectional gut-brain axis that communicates between the gut and central nervous system. Moreover, accumulating evidences suggest that the gut microbiome is involved in the pathogenesis of ASD. The present review introduces the increasing evidence suggesting the reciprocal interaction network among microbiome, gut and brain. It also discusses the possible mechanisms by which gut microbiome influences the etiology of ASD via altering gut-brain axis. Most importantly, it highlights the new findings of targeting gut microbiome, including probiotic treatment and fecal microbiota transplant, as novel and potential therapeutics for ASD diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A psychology of the human brain–gut–microbiome axis

    Science.gov (United States)

    Allen, Andrew P.; Dinan, Timothy G.; Clarke, Gerard

    2017-01-01

    Abstract In recent years, we have seen increasing research within neuroscience and biopsychology on the interactions between the brain, the gastrointestinal tract, the bacteria within the gastrointestinal tract, and the bidirectional relationship between these systems: the brain–gut–microbiome axis. Although research has demonstrated that the gut microbiota can impact upon cognition and a variety of stress‐related behaviours, including those relevant to anxiety and depression, we still do not know how this occurs. A deeper understanding of how psychological development as well as social and cultural factors impact upon the brain–gut–microbiome axis will contextualise the role of the axis in humans and inform psychological interventions that improve health within the brain–gut–microbiome axis. Interventions ostensibly aimed at ameliorating disorders in one part of the brain–gut–microbiome axis (e.g., psychotherapy for depression) may nonetheless impact upon other parts of the axis (e.g., microbiome composition and function), and functional gastrointestinal disorders such as irritable bowel syndrome represent a disorder of the axis, rather than an isolated problem either of psychology or of gastrointestinal function. The discipline of psychology needs to be cognisant of these interactions and can help to inform the future research agenda in this emerging field of research. In this review, we outline the role psychology has to play in understanding the brain–gut–microbiome axis, with a focus on human psychology and the use of research in laboratory animals to model human psychology. PMID:28804508

  11. The microbiome of New World vultures.

    Science.gov (United States)

    Roggenbuck, Michael; Bærholm Schnell, Ida; Blom, Nikolaj; Bælum, Jacob; Bertelsen, Mads Frost; Sicheritz-Pontén, Thomas; Pontén, Thomas Sicheritz; Sørensen, Søren Johannes; Gilbert, M Thomas P; Graves, Gary R; Hansen, Lars H

    2014-11-25

    Vultures are scavengers that fill a key ecosystem niche, in which they have evolved a remarkable tolerance to bacterial toxins in decaying meat. Here we report the first deep metagenomic analysis of the vulture microbiome. Through face and gut comparisons of 50 vultures representing two species, we demonstrate a remarkably conserved low diversity of gut microbial flora. The gut samples contained an average of 76 operational taxonomic units (OTUs) per specimen, compared with 528 OTUs on the facial skin. Clostridia and Fusobacteria, widely pathogenic to other vertebrates, dominate the vulture's gut microbiota. We reveal a likely faecal-oral-gut route for their origin. DNA of prey species detectable on facial swabs was completely degraded in the gut samples from most vultures, suggesting that the gastrointestinal tracts of vultures are extremely selective. Our findings show a strong adaption of vultures and their bacteria to their food source, exemplifying a specialized host-microbial alliance.

  12. [The importance of maternal microbiome in pregnancy].

    Science.gov (United States)

    Záhumenský, J; Hederlingová, J; Pšenková, P

    2017-01-01

    To bring the most actual published findings of the influence of maternal microbiome on the development of pregnancy and possibilities of its adjusting. Review. 2nd Department of Gyneacology and Obstetrics of the Faculty of Medicine and the University Hospital, Bratislava. Review of the literature. The appearance of microbes on various body surface areas determines the overall health status of the individual in significant manner. The change in composition of microbioma in pregnant woman is well known. It was believed that the placenta and the body of the newborn is sterile environment. Modern diagnostic methods proved the presence of microorganisms inside the fetoplacentar unit without the signs of inflammation. Mutual interaction between the immune system of the mother, microbioma and immune system of the newborn can decrease the risk of serious obstetrical syndromes as well as define the lifelong health status of the newborn. The risk can be decreased by the administration of probiotics during the pregnancy.

  13. The microbiome of New World vultures

    DEFF Research Database (Denmark)

    Roggenbuck, Michael; Schnell, Ida Baerholm; Blom, Nikolaj

    2014-01-01

    Vultures are scavengers that fill a key ecosystem niche, in which they have evolved a remarkable tolerance to bacterial toxins in decaying meat. Here we report the first deep metagenomic analysis of the vulture microbiome. Through face and gut comparisons of 50 vultures representing two species, we...... demonstrate a remarkably conserved low diversity of gut microbial flora. The gut samples contained an average of 76 operational taxonomic units (OTUs) per specimen, compared with 528 OTUs on the facial skin. Clostridia and Fusobacteria, widely pathogenic to other vertebrates, dominate the vulture's gut...... microbiota. We reveal a likely faecal-oral-gut route for their origin. DNA of prey species detectable on facial swabs was completely degraded in the gut samples from most vultures, suggesting that the gastrointestinal tracts of vultures are extremely selective. Our findings show a strong adaption of vultures...

  14. Nutrition, the Gut and the Microbiome

    DEFF Research Database (Denmark)

    Kjølbæk, Louise

    , but an optimal diet to improve the success of weight loss maintenance has not reached consensus among worldwide expects. During the last decade, it has been observed that the gut microbiota composition is associated with obesity and obesity-associated diseases. However, a deeper understanding of how the host...... the gut and the microbiome in relation to obesity and obesity-associated diseases. The objective was investigated by the conduct of three studies (KIFU, PROKA, MNG). In KIFU, the effect of habitual calcium intake on faecal fat and energy excretions was investigated by an observational study. The 189...... (PUFA) intakes on the gut microbiota composition was investigated by a randomised cross-over study with two 4-week diets periods and a 4-week washout period. Faecal samples and metabolic markers were collected from 30 subjects before and after each diet period. Results showed that habitual dietary...

  15. An Adhesive Patch-Based Skin Biopsy Device for Molecular Diagnostics and Skin Microbiome Studies.

    Science.gov (United States)

    Yao, Zuxu; Moy, Ronald; Allen, Talisha; Jansen, Burkhard

    2017-10-01

    A number of diagnoses in clinical dermatology are currently histopathologically confirmed and this image recognition-based confirmation generally requires surgical biopsies. The increasing ability of molecular pathology to corroborate or correct a clinical diagnosis based on objective gene expression, mutation analysis, or molecular microbiome data is on the horizon and would be further supported by a tool or procedure to collect samples non-invasively. This study characterizes such a tool in form of a 'bladeless' adhesive patch-based skin biopsy device. The performance of this device was evaluated through a variety of complementary technologies including assessment of sample biomass, electron microscopy demonstrating the harvesting of layers of epidermal tissue, and isolation of RNA and DNA from epidermal skin samples. Samples were obtained by application of adhesive patches to the anatomical area of interest. Biomass assessment demonstrated collection of approximately 0.3mg of skin tissue per adhesive patch and electron microscopy confirmed the nature of the harvested epidermal skin tissue. The obtained tissue samples are stored in a stable fashion on adhesive patches over a wide range of temperatures (-80oC to +60oC) and for extended periods of time (7 days or more). Total human RNA, human genomic DNA and microbiome DNA yields were 23.35 + 15.75ng, 27.72 + 20.71ng and 576.2 + 376.8pg, respectively, in skin samples obtained from combining 4 full patches collected non-invasively from the forehead of healthy volunteers. The adhesive patch skin sampling procedure is well tolerated and provides robust means to obtain skin tissue, RNA, DNA, and microbiome samples without involving surgical biopsies. The non-invasively obtained skin samples can be shipped cost effectively at ambient temperature by mail or standard courier service, and are suitable for a variety of molecular analyses of the skin microbiome as well as of keratinocytes, T cells, dendritic cells

  16. Power law analysis of the human microbiome.

    Science.gov (United States)

    Ma, Zhanshan Sam

    2015-11-01

    Taylor's (1961, Nature, 189:732) power law, a power function (V = am(b) ) describing the scaling relationship between the mean and variance of population abundances of organisms, has been found to govern the population abundance distributions of single species in both space and time in macroecology. It is regarded as one of few generalities in ecology, and its parameter b has been widely applied to characterize spatial aggregation (i.e. heterogeneity) and temporal stability of single-species populations. Here, we test its applicability to bacterial populations in the human microbiome using extensive data sets generated by the US-NIH Human Microbiome Project (HMP). We further propose extending Taylor's power law from the population to the community level, and accordingly introduce four types of power-law extensions (PLEs): type I PLE for community spatial aggregation (heterogeneity), type II PLE for community temporal aggregation (stability), type III PLE for mixed-species population spatial aggregation (heterogeneity) and type IV PLE for mixed-species population temporal aggregation (stability). Our results show that fittings to the four PLEs with HMP data were statistically extremely significant and their parameters are ecologically sound, hence confirming the validity of the power law at both the population and community levels. These findings not only provide a powerful tool to characterize the aggregations of population and community in both time and space, offering important insights into community heterogeneity in space and/or stability in time, but also underscore the three general properties of power laws (scale invariance, no average and universality) and their specific manifestations in our four PLEs. © 2015 John Wiley & Sons Ltd.

  17. Initiation of a comparative metagenomic study of the Red Sea and Pacific Ocean marine microbiomes

    KAUST Repository

    Kodzius, Rimantas

    2014-03-26

    The marine microbiome is a fundamental component of the biosphere. Its bacteria are abundant and play critical roles within the ocean environment. The majority of this important group of bacteria are genetically uncharacterized. Relatively few species have been studied in the laboratory. However, by applying metagenomic analyses to marine microbial populations, genomic ‘snapshots’ may be taken and from appropriate time series experiments their dynamics established. As a key component of the CBRC Centre Research Program (2014-2020), we are initiating a comparative study of the Red Sea and North Eastern Japanese coast and bay complexes. These environments differ in physical characteristics significantly. The Red Sea exhibits consistently high salinity, temperature and insolation characteristics, whereas the Japanese waters are less saline, cooler and receive lower insolation. Here, we present initial data and analytical pipelines for Phase 1 of our collaborative research program.

  18. Initiation of a comparative metagenomic study of the Red Sea and Pacific Ocean marine microbiomes

    KAUST Repository

    Kodzius, Rimantas; Gojobori, Takashi; Bajic, Vladimir B.; Alam, Intikhab; Mineta, Katsuhiko; Watabe, Shugo; Ikeo, Kazuho; Mori, Takahisa; Archer, John A.C.

    2014-01-01

    The marine microbiome is a fundamental component of the biosphere. Its bacteria are abundant and play critical roles within the ocean environment. The majority of this important group of bacteria are genetically uncharacterized. Relatively few species have been studied in the laboratory. However, by applying metagenomic analyses to marine microbial populations, genomic ‘snapshots’ may be taken and from appropriate time series experiments their dynamics established. As a key component of the CBRC Centre Research Program (2014-2020), we are initiating a comparative study of the Red Sea and North Eastern Japanese coast and bay complexes. These environments differ in physical characteristics significantly. The Red Sea exhibits consistently high salinity, temperature and insolation characteristics, whereas the Japanese waters are less saline, cooler and receive lower insolation. Here, we present initial data and analytical pipelines for Phase 1 of our collaborative research program.

  19. Differential Ecological Specificity of Protist and Bacterial Microbiomes across a Set of Termite Species

    KAUST Repository

    Waidele, Lena; Korb, Judith; Voolstra, Christian R.; Kü nzel, Sven; Dedeine, Franck; Staubach, Fabian

    2017-01-01

    The gut microbiome of lower termites comprises protists and bacteria that help these insects to digest cellulose and to thrive on wood. The composition of the termite gut microbiome correlates with phylogenetic distance of the animal host and host

  20. Deciphering composition and function of the root microbiome of a legume plant

    NARCIS (Netherlands)

    Hartman, Kyle; van der Heijden, Marcel G A|info:eu-repo/dai/nl/240923901; Roussely-Provent, Valexia; Walser, Jean-Claude; Schlaeppi, Klaus

    2017-01-01

    BACKGROUND: Diverse assemblages of microbes colonize plant roots and collectively function as a microbiome. Earlier work has characterized the root microbiomes of numerous plant species, but little information is available for legumes despite their key role in numerous ecosystems including

  1. Phylotyping and functional analysis of two ancient human microbiomes.

    Directory of Open Access Journals (Sweden)

    Raúl Y Tito

    Full Text Available BACKGROUND: The Human Microbiome Project (HMP is one of the U.S. National Institutes of Health Roadmap for Medical Research. Primary interests of the HMP include the distinctiveness of different gut microbiomes, the factors influencing microbiome diversity, and the functional redundancies of the members of human microbiotas. In this present work, we contribute to these interests by characterizing two extinct human microbiotas. METHODOLOGY/PRINCIPAL FINDINGS: We examine two paleofecal samples originating from cave deposits in Durango Mexico and dating to approximately 1300 years ago. Contamination control is a serious issue in ancient DNA research; we use a novel approach to control contamination. After we determined that each sample originated from a different human, we generated 45 thousand shotgun DNA sequencing reads. The phylotyping and functional analysis of these reads reveals a signature consistent with the modern gut ecology. Interestingly, inter-individual variability for phenotypes but not functional pathways was observed. The two ancient samples have more similar functional profiles to each other than to a recently published profile for modern humans. This similarity could not be explained by a chance sampling of the databases. CONCLUSIONS/SIGNIFICANCE: We conduct a phylotyping and functional analysis of ancient human microbiomes, while providing novel methods to control for DNA contamination and novel hypotheses about past microbiome biogeography. We postulate that natural selection has more of an influence on microbiome functional profiles than it does on the species represented in the microbial ecology. We propose that human microbiomes were more geographically structured during pre-Columbian times than today.

  2. Exploring Metabolic Pathway Reconstruction and Genome-Wide Expression Profiling in Lactobacillus reuteri to Define Functional Probiotic Features

    OpenAIRE

    Saulnier, Delphine M.; Santos, Filipe; Roos, Stefan; Mistretta, Toni-Ann; Spinler, Jennifer K.; Molenaar, Douwe; Teusink, Bas; Versalovic, James

    2011-01-01

    The genomes of four Lactobacillus reuteri strains isolated from human breast milk and the gastrointestinal tract have been recently sequenced as part of the Human Microbiome Project. Preliminary genome comparisons suggested that these strains belong to two different clades, previously shown to differ with respect to antimicrobial production, biofilm formation, and immunomodulation. To explain possible mechanisms of survival in the host and probiosis, we completed a detailed genomic comparison...

  3. Additional file 6: Figure S1. of Pancreatic cyst fluid harbors a unique microbiome

    OpenAIRE

    Li, Shan; Fuhler, Gwenny; BN, Nahush; Jose, Tony; Bruno, Marco; Peppelenbosch, Maikel; Konstantinov, Sergey

    2017-01-01

    PCA of pancreatic cyst fluid (PCF) and 13 body site microbiome comparisons. PCA showing the difference between pancreatic cyst fluid and 13 different body site microbiome selected from Human Microbiome Project database. When compared 136 bacterial genus with p 

  4. Coupling of the chemical niche and microbiome in the rhizosphere: implications from watermelon grafting

    Directory of Open Access Journals (Sweden)

    Yang SONG,Chen ZHU,Waseem RAZA,Dongsheng WANG,Qiwei HUANG,Shiwei GUO,Ning LING,Qirong SHEN

    2016-09-01

    Full Text Available Grafting is commonly used to overcome soil-borne diseases. However, its effects on the rhizodeposits as well as the linkages between the rhizosphere chemical niche and microbiome remained unknown. In this paper, significant negative correlations between the bacterial alpha diversity and both the disease incidence (r = -0.832, P = 0.005 and pathogen population (r = - 0.786, P = 0.012 were detected. Moreover, our results showed that the chemical diversity not only predicts bacterial alpha diversity but also can impact on overall microbial community structure (beta diversity in the rhizosphere. Furthermore, some anti-fungal compounds including heptadecane and hexadecane were identified in the rhizosphere of grafted watermelon. We concluded that grafted watermelon can form a distinct rhizosphere chemical niche and thus recruit microbial communities with high diversity. Furthermore, the diverse bacteria and the antifungal compounds in the rhizosphere can potentially serve as biological and chemical barriers, respectively, to hinder pathogen invasion. These results not only lead us toward broadening the view of disease resistance mechanism of grafting, but also provide clues to control the microbial composition by manipulating the rhizosphere chemical niche.

  5. Microbiome change by symbiotic invasion in lichens

    Science.gov (United States)

    Maier, Stefanie; Wedin, Mats; Fernandez-Brime, Samantha; Cronholm, Bodil; Westberg, Martin; Weber, Bettina; Grube, Martin

    2016-04-01

    Biological soil crusts (BSC) seal the soil surface from erosive forces in many habitats where plants cannot compete. Lichens symbioses of fungi and algae often form significant fraction of these microbial assemblages. In addition to the fungal symbiont, many species of other fungi can inhabit the lichenic structures and interact with their hosts in different ways, ranging from commensalism to parasitism. More than 1800 species of lichenicolous (lichen-inhabiting) fungi are known to science. One example is Diploschistes muscorum, a common species in lichen-dominated BSC that infects lichens of the genus Cladonia. D. muscorum starts as a lichenicolous fungus, invading the lichen Cladonia symphycarpa and gradually develops an independent Diploschistes lichen thallus. Furthermore, bacterial groups, such as Alphaproteobacteria and Acidobacteria, have been consistently recovered from lichen thalli and evidence is rapidly accumulating that these microbes may generally play integral roles in the lichen symbiosis. Here we describe lichen microbiome dynamics as the parasitic lichen D. muscorum takes over C. symphycarpa. We used high-throughput 16S rRNA gene and photobiont-specific ITS rDNA sequencing to track bacterial and algal transitions during the infection process, and employed fluorescence in situ hybridization to localize bacteria in the Cladonia and Diploschistes lichen thalli. We sampled four transitional stages, at sites in Sweden and Germany: A) Cladonia with no visible infection, B) early infection stage defined by the first visible Diploschistes thallus, C) late-stage infection with parts of the Cladonia thallus still identifiable, and D) final stage with a fully developed Diploschistes thallus, A gradual microbiome shift occurred during the transition, but fractions of Cladonia-associated bacteria were retained during the process of symbiotic reorganization. Consistent changes observed across sites included a notable decrease in the relative abundance of

  6. Helpful and Hindering Multicultural Events in Group Supervision: Climate and Multicultural Competence

    Science.gov (United States)

    Kaduvettoor, Anju; O'Shaughnessy, Tiffany; Mori, Yoko; Beverly, Clyde, III; Weatherford, Ryan D.; Ladany, Nicholas

    2009-01-01

    This study examines the relationship between multicultural events in group supervision, group climate, and supervisee multicultural competence using a mixed qualitative/quantitative design. The discovery-oriented approach yielded 196 helpful and hindering multicultural events among 136 participants. The most common events included multicultural…

  7. On the hindered settling of suspensions of mud and mud-sand mixtures

    NARCIS (Netherlands)

    Dankers, P.J.T.

    2006-01-01

    Highly concentrated suspensions are present in many natural environments. When the concentration becomes large enough, particles start to interfere with each other and their settling velocity reduces. This is called hindered settling. As a result of the reduced settling velocity, particles remain in

  8. The Experience of Unemployment for Fishery Workers in Newfoundland: What Helps and Hinders.

    Science.gov (United States)

    Borgen, William A.; Amundson, Norman E.; McVicar, Jonathan

    2002-01-01

    Explores the unemployment experience of people involved in the fishery and living in the outports of Newfoundland and Labrador. Fifty-three critical incident interviews were conducted by community outreach workers. These interviews yielded important information about the factors that facilitated or hindered the unemployment experience. (Contains…

  9. Factors that Promote or Hinder Young Disabled People in Work Participation: A Systematic Review

    NARCIS (Netherlands)

    Achterberg, T. J.; Wind, H.; de Boer, A. G. E. M.; Frings-Dresen, M. H. W.

    2009-01-01

    Introduction The aim of this systematic review was to study factors which promote or hinder young disabled people entering the labor market. Methods We systematically searched PubMed (by means of MESH and text words), EMBASE, PsycINFO, Web of Science and CINAHL for studies regarding (1) disabled

  10. Role of the Lung Microbiome in the Pathogenesis of Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Wang, Lei; Hao, Ke; Yang, Ting; Wang, Chen

    2017-09-05

    The development of culture-independent techniques for microbiological analysis shows that bronchial tree is not sterile in either healthy or chronic obstructive pulmonary disease (COPD) individuals. With the advance of sequencing technologies, lung microbiome has become a new frontier for pulmonary disease research, and such advance has led to better understanding of the lung microbiome in COPD. This review aimed to summarize the recent advances in lung microbiome, its relationships with COPD, and the possible mechanisms that microbiome contributed to COPD pathogenesis. Literature search was conducted using PubMed to collect all available studies concerning lung microbiome in COPD. The search terms were "microbiome" and "chronic obstructive pulmonary disease", or "microbiome" and "lung/pulmonary". The papers in English about lung microbiome or lung microbiome in COPD were selected, and the type of articles was not limited. The lung is a complex microbial ecosystem; the microbiome in lung is a collection of viable and nonviable microbiota (bacteria, viruses, and fungi) residing in the bronchial tree and parenchymal tissues, which is important for health. The following types of respiratory samples are often used to detect the lung microbiome: sputum, bronchial aspirate, bronchoalveolar lavage, and bronchial mucosa. Disordered bacterial microbiome is participated in pathogenesis of COPD; there are also dynamic changes in microbiota during COPD exacerbations. Lung microbiome may contribute to the pathogenesis of COPD by manipulating inflammatory and/or immune process. Normal lung microbiome could be useful for prophylactic or therapeutic management in COPD, and the changes of lung microbiome could also serve as biomarkers for the evaluation of COPD.

  11. The microbiome in PTEN hamartoma tumor syndrome.

    Science.gov (United States)

    Byrd, Victoria; Getz, Ted; Padmanabhan, Roshan; Arora, Hans; Eng, Charis

    2018-03-01

    Germline PTEN mutations defining PTEN hamartoma tumor syndrome (PHTS) confer heritable predisposition to breast, endometrial, thyroid and other cancers with known age-related risks, but it remains impossible to predict if any individual will develop cancer. In the general population, gut microbial dysbiosis has been linked to cancer, yet is unclear whether these are associated in PHTS patients. In this pilot study, we aimed to characterize microbial composition of stool, urine, and oral wash from 32 PTEN mutation-positive individuals using 16S rRNA gene sequencing. PCoA revealed clustering of the fecal microbiome by cancer history ( P  = 0.03, R 2  = 0.04). Fecal samples from PHTS cancer patients had relatively more abundant operational taxonomic units (OTUs) from family Rikenellaceae and unclassified members of Clostridia compared to those from non-cancer patients, whereas families Peptostreptococcaceae, Enterobacteriaceae, and Bifidobacteriaceae represented relatively more abundant OTUs among fecal samples from PHTS non-cancer patients. Functional metagenomic prediction revealed enrichment of the folate biosynthesis, genetic information processing and cell growth and death pathways among fecal samples from PHTS cancer patients compared to non-cancer patients. We found no major shifts in overall diversity and no clustering by cancer history among oral wash or urine samples. Our observations suggest the utility of an expanded study to interrogate gut dysbiosis as a potential cancer risk modifier in PHTS patients. © 2018 The authors.

  12. The human gut microbiome, a taxonomic conundrum.

    Science.gov (United States)

    Sankar, Senthil Alias; Lagier, Jean-Christophe; Pontarotti, Pierre; Raoult, Didier; Fournier, Pierre-Edouard

    2015-06-01

    From culture to metagenomics, within only 130 years, our knowledge of the human microbiome has considerably improved. With >1000 microbial species identified to date, the gastro-intestinal microbiota is the most complex of human biotas. It is composed of a majority of Bacteroidetes and Firmicutes and, although exhibiting great inter-individual variations according to age, geographic origin, disease or antibiotic uptake, it is stable over time. Metagenomic studies have suggested associations between specific gut microbiota compositions and a variety of diseases, including irritable bowel syndrome, Crohn's disease, colon cancer, type 2 diabetes and obesity. However, these data remain method-dependent, as no consensus strategy has been defined to decipher the complexity of the gut microbiota. High-throughput culture-independent techniques have highlighted the limitations of culture by showing the importance of uncultured species, whereas modern culture methods have demonstrated that metagenomics underestimates the microbial diversity by ignoring minor populations. In this review, we highlight the progress and challenges that pave the way to a complete understanding of the human gastrointestinal microbiota and its influence on human health. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Diversity, structure and convergent evolution of the global sponge microbiome

    Science.gov (United States)

    Thomas, Torsten; Moitinho-Silva, Lucas; Lurgi, Miguel; Björk, Johannes R.; Easson, Cole; Astudillo-García, Carmen; Olson, Julie B.; Erwin, Patrick M.; López-Legentil, Susanna; Luter, Heidi; Chaves-Fonnegra, Andia; Costa, Rodrigo; Schupp, Peter J.; Steindler, Laura; Erpenbeck, Dirk; Gilbert, Jack; Knight, Rob; Ackermann, Gail; Victor Lopez, Jose; Taylor, Michael W.; Thacker, Robert W.; Montoya, Jose M.; Hentschel, Ute; Webster, Nicole S.

    2016-01-01

    Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host–microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world's oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions. PMID:27306690

  14. The skin microbiome: Associations between altered microbial communities and disease.

    Science.gov (United States)

    Weyrich, Laura S; Dixit, Shreya; Farrer, Andrew G; Cooper, Alan J; Cooper, Alan J

    2015-11-01

    A single square centimetre of the human skin can contain up to one billion microorganisms. These diverse communities of bacteria, fungi, mites and viruses can provide protection against disease, but can also exacerbate skin lesions, promote disease and delay wound healing. This review addresses the current knowledge surrounding the healthy skin microbiome and examines how different alterations to the skin microbial communities can contribute to disease. Current methodologies are considered, changes in microbial diversity and colonisation by specific microorganisms are discussed in the context of atopic dermatitis, psoriasis, acne vulgaris and chronic wounds. The recent impact of modern Westernised lifestyles on the human skin microbiome is also examined, as well as the potential benefits and pitfalls of novel therapeutic strategies. Further analysis of the human skin microbiome, and its interactions with the host immune system and other commensal microorganisms, will undoubtedly elucidate molecular mechanisms for disease and reveal gateways for novel therapeutic treatment strategies. © 2015 The Australasian College of Dermatologists.

  15. A hundred-year-old insight into the gut microbiome!

    Science.gov (United States)

    Aziz, Ramy Karam

    2009-12-07

    As the National Institutes of Health-funded Human Microbiome Project enters its second phase, and as a major part of this project focuses on the human gut microbiome and its effects on human health, it might help us to travel a century back in time and examine how microbiologists dealt with microbiome-related challenges similar to those of the 21st century using the tools of their time. An article by Arthur I. Kendall, published in The Journal of Biological Chemistry in November 1909 (Some observations on the study of the intestinal bacteria J Biol Chem 1909, 6:499-507), offers a visionary insight into many of today's hot research questions.

  16. Microbiome and mental health in the modern environment.

    Science.gov (United States)

    Deans, Emily

    2016-06-27

    A revolution in the understanding of the pathophysiology of mental illness combined with new knowledge about host/microbiome interactions and psychoneuroimmunology has opened an entirely new field of study, the "psychobiotics". The modern microbiome is quite changed compared to our ancestral one due to diet, antibiotic exposure, and other environmental factors, and these differences may well impact our brain health. The sheer complexity and scope of how diet, probiotics, prebiotics, and intertwined environmental variables could influence mental health are profound obstacles to an organized and useful study of the microbiome and psychiatric disease. However, the potential for positive anti-inflammatory effects and symptom amelioration with perhaps few side effects makes the goal of clarifying the role of the microbiota in mental health a vital one.

  17. Understanding the holobiont: the interdependence of plants and their microbiome.

    Science.gov (United States)

    Sánchez-Cañizares, Carmen; Jorrín, Beatriz; Poole, Philip S; Tkacz, Andrzej

    2017-08-01

    The holobiont is composed by the plant and its microbiome. In a similar way to ecological systems of higher organisms, the holobiont shows interdependent and complex dynamics [1,2]. While plants originate from seeds, the microbiome has a multitude of sources. The assemblage of these communities depends on the interaction between the emerging seedling and its surrounding environment, with soil being the main source. These microbial communities are controlled by the plant through different strategies, such as the specific profile of root exudates and its immune system. Despite this control, the microbiome is still able to adapt and thrive. The molecular knowledge behind these interactions and microbial '-omic' technologies are developing to the point of enabling holobiont engineering. For a long time microorganisms were in the background of plant biology but new multidisciplinary approaches have led to an appreciation of the importance of the holobiont, where plants and microbes are interdependent. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Regulation of host metabolism and immunity by the gut microbiome

    DEFF Research Database (Denmark)

    Laursen, Janne Marie

    During recent years, central roles of the gut microbiome in metabolic and immunological diseases have been uncovered, and multiple studies have shown that bacterial-derived components shape host physiology and immune responses via direct cellular interactions. The intestinal immune system...... developed a computational framework for identifying bacteria that produce specific endotoxin variants with opposing immunological effects in metagenomic fecal samples. This framework was used to identify the endotoxin variant distribution amongst bacteria in the gut microbiome of Danes and Chinese...... with obesity and type 2 diabetes. We show for the first time that species producing pro-inflammatory endotoxin variants are vastly underrepresented in the gut microbiome compared to species producing non-inflammatory endotoxin and we identify country-specific gram-negative bacterial modules associated...

  19. Clinical implications of the microbiome in urinary tract diseases.

    Science.gov (United States)

    Hiergeist, Andreas; Gessner, André

    2017-03-01

    The purpose of this review is to outline and evaluate the most recent literature on the role of the microbiome in urinary tract diseases. High throughput molecular DNA sequencing of bacterial 16S rRNA genes enabled the analysis of complex microbial communities inhabiting the human urinary tract. Several recent studies have identified bacterial taxa of the urinary microbiome to impact urinary tract diseases including interstitial cystitis, urgency urinary incontinence or calcium oxalate stone formation. Furthermore, treatment of urinary tract infections by antibiotics globally impacts community profiles of the intestinal microbiota and might indirectly influence human health. Alternative treatment options like application of probiotics for the treatment of urinary tract infections are currently under investigation. The urinary microbiome and its relationship to urinary tract diseases is currently under comprehensive investigation. Further studies are needed to shed light on the role of commensal microbiota for urinary tract infections.

  20. A hundred-year-old insight into the gut microbiome!

    Directory of Open Access Journals (Sweden)

    Aziz Ramy

    2009-12-01

    Full Text Available Abstract As the National Institutes of Health-funded Human Microbiome Project enters its second phase, and as a major part of this project focuses on the human gut microbiome and its effects on human health, it might help us to travel a century back in time and examine how microbiologists dealt with microbiome-related challenges similar to those of the 21st century using the tools of their time. An article by Arthur I. Kendall, published in The Journal of Biological Chemistry in November 1909 (Some observations on the study of the intestinal bacteria J Biol Chem 1909, 6:499-507, offers a visionary insight into many of today's hot research questions.

  1. Current state of knowledge: the canine gastrointestinal microbiome.

    Science.gov (United States)

    Hooda, Seema; Minamoto, Yasushi; Suchodolski, Jan S; Swanson, Kelly S

    2012-06-01

    Gastrointestinal (GI) microbes have important roles in the nutritional, immunological, and physiologic processes of the host. Traditional cultivation techniques have revealed bacterial density ranges from 10(4) to 10(5) colony forming units (CFU)/g in the stomach, from 10(5) to 10(7) CFU/g in the small intestine, and from 10(9) to 10(11) CFU/g in the colon of healthy dogs. As a small number of bacterial species can be grown and studied in culture, however, progress was limited until the recent emergence of DNA-based techniques. In recent years, DNA sequencing technology and bioinformatics have allowed for better phylogenetic and functional/metabolic characterization of the canine gut microbiome. Predominant phyla include Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria, and Actinobacteria. Studies using 16S ribosomal RNA (rRNA) gene pyrosequencing have demonstrated spatial differences along the GI tract and among microbes adhered to the GI mucosa compared to those in intestinal contents or feces. Similar to humans, GI microbiome dysbiosis is common in canine GI diseases such as chronic diarrhea and inflammatory bowel diseases. DNA-based assays have also identified key pathogens contributing to such conditions, including various Clostridium, Campylobacter, Salmonella, and Escherichia spp. Moreover, nutritionists have applied DNA-based techniques to study the effects of dietary interventions such as dietary fiber, prebiotics, and probiotics on the canine GI microbiome and associated health indices. Despite recent advances in the field, the canine GI microbiome is far from being fully characterized and a deeper characterization of the phylogenetic and functional/metabolic capacity of the GI microbiome in health and disease is needed. This paper provides an overview of recent studies performed to characterize the canine GI microbiome.

  2. The microbiome of the built environment and mental health.

    Science.gov (United States)

    Hoisington, Andrew J; Brenner, Lisa A; Kinney, Kerry A; Postolache, Teodor T; Lowry, Christopher A

    2015-12-17

    The microbiome of the built environment (MoBE) is a relatively new area of study. While some knowledge has been gained regarding impacts of the MoBE on the human microbiome and disease vulnerability, there is little knowledge of the impacts of the MoBE on mental health. Depending on the specific microbial species involved, the transfer of microorganisms from the built environment to occupant's cutaneous or mucosal membranes has the potential to increase or disrupt immunoregulation and/or exaggerate or suppress inflammation. Preclinical evidence highlighting the influence of the microbiota on systemic inflammation supports the assertion that microorganisms, including those originating from the built environment, have the potential to either increase or decrease the risk of inflammation-induced psychiatric conditions and their symptom severity. With advanced understanding of both the ecology of the built environment, and its influence on the human microbiome, it may be possible to develop bioinformed strategies for management of the built environment to promote mental health. Here we present a brief summary of microbiome research in both areas and highlight two interdependencies including the following: (1) effects of the MoBE on the human microbiome and (2) potential opportunities for manipulation of the MoBE in order to improve mental health. In addition, we propose future research directions including strategies for assessment of changes in the microbiome of common areas of built environments shared by multiple human occupants, and associated cohort-level changes in the mental health of those who spend time in the buildings. Overall, our understanding of the fields of both the MoBE and influence of host-associated microorganisms on mental health are advancing at a rapid pace and, if linked, could offer considerable benefit to health and wellness.

  3. Stability of the Gorilla Microbiome Despite SIV Infection

    Science.gov (United States)

    Moeller, Andrew H.; Peeters, Martine; Ayouba, Ahidjo; Ngole, Eitel Mpoudi; Esteban, Amadine; Hahn, Beatrice H.; Ochman, Howard

    2015-01-01

    Simian Immunodeficiency Viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in fecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. Here, we examine the effects of SIVgor, a close relative of SIVcpz of chimpanzees and HIV-1 of humans, on the gut bacterial communities residing within wild gorillas, revealing that gorilla gut microbiomes are exceptionally robust to SIV infection. In contrast to the microbiomes of HIV-1 infected humans and SIVcpz-infected chimpanzees, SIVgor-infected gorilla microbiomes exhibit neither rises in the frequencies of opportunistic pathogens nor elevated rates of microbial turnover within individual hosts. Regardless of SIV infection status, gorilla microbiomes assort into enterotypes, one of which is compositionally analogous to those identified in humans and chimpanzees. The other gorilla enterotype appears specialized for a leaf-based diet and is enriched in environmentally derived bacterial genera. We hypothesize that the acquisition of this gorilla-specific enterotype was enabled by lowered immune-system control over the composition of the microbiome. Our results indicate differences between the pathology of SIVgor and SIVcpz/HIV-1 infections, demonstrating the utility of investigating host microbial ecology as a means for studying disease in wild primates of high conservation priority. PMID:25545295

  4. Stability of the gorilla microbiome despite simian immunodeficiency virus infection.

    Science.gov (United States)

    Moeller, Andrew H; Peeters, Martine; Ayouba, Ahidjo; Ngole, Eitel Mpoudi; Esteban, Amadine; Hahn, Beatrice H; Ochman, Howard

    2015-02-01

    Simian immunodeficiency viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in faecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. Here, we examine the effects of SIVgor, a close relative of SIVcpz of chimpanzees and HIV-1 of humans, on the gut bacterial communities residing within wild gorillas, revealing that gorilla gut microbiomes are exceptionally robust to SIV infection. In contrast to the microbiomes of HIV-1-infected humans and SIVcpz-infected chimpanzees, SIVgor-infected gorilla microbiomes exhibit neither rises in the frequencies of opportunistic pathogens nor elevated rates of microbial turnover within individual hosts. Regardless of SIV infection status, gorilla microbiomes assort into enterotypes, one of which is compositionally analogous to those identified in humans and chimpanzees. The other gorilla enterotype appears specialized for a leaf-based diet and is enriched in environmentally derived bacterial genera. We hypothesize that the acquisition of this gorilla-specific enterotype was enabled by lowered immune system control over the composition of the microbiome. Our results indicate differences between the pathology of SIVgor and SIVcpz/HIV-1 infections, demonstrating the utility of investigating host microbial ecology as a means for studying disease in wild primates of high conservation priority. © 2014 John Wiley & Sons Ltd.

  5. Quantitative microbiome profiling links gut community variation to microbial load.

    Science.gov (United States)

    Vandeputte, Doris; Kathagen, Gunter; D'hoe, Kevin; Vieira-Silva, Sara; Valles-Colomer, Mireia; Sabino, João; Wang, Jun; Tito, Raul Y; De Commer, Lindsey; Darzi, Youssef; Vermeire, Séverine; Falony, Gwen; Raes, Jeroen

    2017-11-23

    Current sequencing-based analyses of faecal microbiota quantify microbial taxa and metabolic pathways as fractions of the sample sequence library generated by each analysis. Although these relative approaches permit detection of disease-associated microbiome variation, they are limited in their ability to reveal the interplay between microbiota and host health. Comparative analyses of relative microbiome data cannot provide information about the extent or directionality of changes in taxa abundance or metabolic potential. If microbial load varies substantially between samples, relative profiling will hamper attempts to link microbiome features to quantitative data such as physiological parameters or metabolite concentrations. Saliently, relative approaches ignore the possibility that altered overall microbiota abundance itself could be a key identifier of a disease-associated ecosystem configuration. To enable genuine characterization of host-microbiota interactions, microbiome research must exchange ratios for counts. Here we build a workflow for the quantitative microbiome profiling of faecal material, through parallelization of amplicon sequencing and flow cytometric enumeration of microbial cells. We observe up to tenfold differences in the microbial loads of healthy individuals and relate this variation to enterotype differentiation. We show how microbial abundances underpin both microbiota variation between individuals and covariation with host phenotype. Quantitative profiling bypasses compositionality effects in the reconstruction of gut microbiota interaction networks and reveals that the taxonomic trade-off between Bacteroides and Prevotella is an artefact of relative microbiome analyses. Finally, we identify microbial load as a key driver of observed microbiota alterations in a cohort of patients with Crohn's disease, here associated with a low-cell-count Bacteroides enterotype (as defined through relative profiling).

  6. The plant microbiome explored: implications for experimental botany.

    Science.gov (United States)

    Berg, Gabriele; Rybakova, Daria; Grube, Martin; Köberl, Martina

    2016-02-01

    The importance of microbial root inhabitants for plant growth and health was recognized as early as 100 years ago. Recent insights reveal a close symbiotic relationship between plants and their associated microorganisms, and high structural and functional diversity within plant microbiomes. Plants provide microbial communities with specific habitats, which can be broadly categorized as the rhizosphere, phyllosphere, and endosphere. Plant-associated microbes interact with their host in essential functional contexts. They can stimulate germination and growth, help plants fend off disease, promote stress resistance, and influence plant fitness. Therefore, plants have to be considered as metaorganisms within which the associated microbes usually outnumber the cells belonging to the plant host. The structure of the plant microbiome is determined by biotic and abiotic factors but follows ecological rules. Metaorganisms are co-evolved species assemblages. The metabolism and morphology of plants and their microbiota are intensively connected with each other, and the interplay of both maintains the functioning and fitness of the holobiont. Our study of the current literature shows that analysis of plant microbiome data has brought about a paradigm shift in our understanding of the diverse structure and functioning of the plant microbiome with respect to the following: (i) the high interplay of bacteria, archaea, fungi, and protists; (ii) the high specificity even at cultivar level; (iii) the vertical transmission of core microbiomes; (iv) the extraordinary function of endophytes; and (v) several unexpected functions and metabolic interactions. The plant microbiome should be recognized as an additional factor in experimental botany and breeding strategies. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Microbiome of Trichodesmium Colonies from the North Pacific Subtropical Gyre

    Directory of Open Access Journals (Sweden)

    Mary R. Gradoville

    2017-07-01

    Full Text Available Filamentous diazotrophic Cyanobacteria of the genus Trichodesmium, often found in colonial form, provide an important source of new nitrogen to tropical and subtropical marine ecosystems. Colonies are composed of several clades of Trichodesmium in association with a diverse community of bacterial and eukaryotic epibionts. We used high-throughput 16S rRNA and nifH gene sequencing, carbon (C and dinitrogen (N2 fixation assays, and metagenomics to describe the diversity and functional potential of the microbiome associated with Trichodesmium colonies collected from the North Pacific Subtropical Gyre (NPSG. The 16S rRNA and nifH gene sequences from hand-picked colonies were predominantly (>99% from Trichodesmium Clade I (i.e., T. thiebautii, which is phylogenetically and ecologically distinct from the Clade III IMS101 isolate used in most laboratory studies. The bacterial epibiont communities were dominated by Bacteroidetes, Alphaproteobacteria, and Gammaproteobacteria, including several taxa with a known preference for surface attachment, and were relatively depleted in the unicellular Cyanobacteria and small photoheterotrophic bacteria that dominate NPSG surface waters. Sequencing the nifH gene (encoding a subcomponent of the nitrogenase enzyme identified non-Trichodesmium diazotrophs that clustered predominantly among the Cluster III nifH sequence-types that includes putative anaerobic diazotrophs. Trichodesmium colonies may represent an important habitat for these Cluster III diazotrophs, which were relatively rare in the surrounding seawater. Sequence analyses of nifH gene transcripts revealed several cyanobacterial groups, including heterocystous Richelia, associated with the colonies. Both the 16S rRNA and nifH datasets indicated strong differences between Trichodesmium epibionts and picoplankton in the surrounding seawater, and also between the epibionts inhabiting Trichodesmium puff and tuft colony morphologies. Metagenomic and 16S r

  8. The human gut microbiome of Latin America populations: a landscape to be discovered.

    Science.gov (United States)

    Magne, Fabien; O'Ryan, Miguel L; Vidal, Roberto; Farfan, Mauricio

    2016-10-01

    The gut microbiome is critical for human health, and its alteration is associated with intestinal, autoimmune and metabolic diseases. Numerous studies have focused on prevention or treatment of dysbiotic microbiome to reduce the risk or effect of these diseases. A key issue is to define the microbiome associated with the state of good health. The purpose of this review is to describe factors influencing the gut microbiome with special emphasis on contributions from Latin America. In addition, we will highlight opportunities for future studies on gut microbiome in Latin America. A relevant factor influencing gut microbiome composition is geographical location associated with specific genetic, dietary and lifestyle factors. Geographical specificities suggest that a universal 'healthy microbiome' is unlikely. Several research programs, mostly from Europe and North America, are extensively sequencing gut microbiome of healthy people, whereas data from Latin America remain scarce yet slowly increasing. Few studies have shown difference in the composition of gut microbiome between their local populations with that of other industrialized countries (North American populations). Latin America is composed of countries with a myriad of lifestyles, traditions, genetic backgrounds and socioeconomic conditions, which may determine differences in gut microbiome of individuals from different countries. This represents an opportunity to better understand the relationship between these factors and gut microbiome.

  9. Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics.

    Science.gov (United States)

    ElRakaiby, Marwa; Dutilh, Bas E; Rizkallah, Mariam R; Boleij, Annemarie; Cole, Jason N; Aziz, Ramy K

    2014-07-01

    The Human Microbiome Project (HMP) is a global initiative undertaken to identify and characterize the collection of human-associated microorganisms at multiple anatomic sites (skin, mouth, nose, colon, vagina), and to determine how intra-individual and inter-individual alterations in the microbiome influence human health, immunity, and different disease states. In this review article, we summarize the key findings and applications of the HMP that may impact pharmacology and personalized therapeutics. We propose a microbiome cloud model, reflecting the temporal and spatial uncertainty of defining an individual's microbiome composition, with examples of how intra-individual variations (such as age and mode of delivery) shape the microbiome structure. Additionally, we discuss how this microbiome cloud concept explains the difficulty to define a core human microbiome and to classify individuals according to their biome types. Detailed examples are presented on microbiome changes related to colorectal cancer, antibiotic administration, and pharmacomicrobiomics, or drug-microbiome interactions, highlighting how an improved understanding of the human microbiome, and alterations thereof, may lead to the development of novel therapeutic agents, the modification of antibiotic policies and implementation, and improved health outcomes. Finally, the prospects of a collaborative computational microbiome research initiative in Africa are discussed.

  10. Does the change on gastrointestinal tract microbiome affects host?

    Directory of Open Access Journals (Sweden)

    Elisa M. Beirão

    2014-11-01

    Full Text Available During the past decade, studies on the composition of human microbiota and its relation to the host became one of the most explored subjects of the medical literature. The development of high-throughput molecular technologies allowed a deeper characterization of human microbiota and a better understanding of its relationship with health and disease. Changes in human habits including wide use of antimicrobials can result in dysregulation of host–microbiome homeostasis, with multiple consequences. The purpose of this review is to highlight the most important evidence in the literature of host–microbiome interactions and illustrate how these intriguing relations may lead to new treatment and prevention strategies.

  11. Capturing One of the Human Gut Microbiome's Most Wanted

    DEFF Research Database (Denmark)

    Jeraldo, Patricio; Hernandez, Alvaro; Nielsen, Henrik Bjørn

    2016-01-01

    The role of the microbiome in health and disease is attracting great attention, yet we still know little about some of the most prevalent microorganisms inside our bodies. Several years ago, Human Microbiome Project (HMP) researchers generated a list of "most wanted" taxa: bacteria both prevalent...... the environment, and to lack virulence genes. Thus, the evidence is consistent with a secondary degrader that occupies a host-dependent, nutrient scavenging niche within the gut; its ability to produce butyrate, which is thought to play an anti-inflammatory role, makes it intriguing for the study of diseases...

  12. Keystone taxa as drivers of microbiome structure and functioning.

    Science.gov (United States)

    Banerjee, Samiran; Schlaeppi, Klaus; van der Heijden, Marcel G A

    2018-05-22

    Microorganisms have a pivotal role in the functioning of ecosystems. Recent studies have shown that microbial communities harbour keystone taxa, which drive community composition and function irrespective of their abundance. In this Opinion article, we propose a definition of keystone taxa in microbial ecology and summarize over 200 microbial keystone taxa that have been identified in soil, plant and marine ecosystems, as well as in the human microbiome. We explore the importance of keystone taxa and keystone guilds for microbiome structure and functioning and discuss the factors that determine their distribution and activities.

  13. Association of disease severity with skin microbiome and filaggrin gene mutations in adult atopic dermatitis

    DEFF Research Database (Denmark)

    Clausen, Maja Lisa; Agner, Tove; Lilje, Berit

    2018-01-01

    IMPORTANCE Skin microbiome correlates with disease severity for lesional and nonlesional skin, indicating a global influence of atopic dermatitis (AD). A relation between skin microbiome and filaggrin gene (FLG) mutations proposes a possible association between skin microbiome and host genetics....... OBJECTIVES To assess skin and nasal microbiome diversity and composition in patients with AD and compare with healthy controls, and to investigate the microbiome in relation to disease severity and FLG mutations in patients with AD. DESIGN, SETTING, AND PARTICIPANTS An observational case-control study of 45...... analyses of the microbiome were analyzed using R statistical software (version 3.3.1, R Foundation Inc). MAIN OUTCOMES AND MEASURES Skin microbiomeswere investigated using next-generation sequencing targeting 16S ribosomal RNA. RESULTS Microbiome alpha diversity was lower in patients with AD compared...

  14. Integrating genomics into evolutionary medicine.

    Science.gov (United States)

    Rodríguez, Juan Antonio; Marigorta, Urko M; Navarro, Arcadi

    2014-12-01

    The application of the principles of evolutionary biology into medicine was suggested long ago and is already providing insight into the ultimate causes of disease. However, a full systematic integration of medical genomics and evolutionary medicine is still missing. Here, we briefly review some cases where the combination of the two fields has proven profitable and highlight two of the main issues hindering the development of evolutionary genomic medicine as a mature field, namely the dissociation between fitness and health and the still considerable difficulties in predicting phenotypes from genotypes. We use publicly available data to illustrate both problems and conclude that new approaches are needed for evolutionary genomic medicine to overcome these obstacles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Microbiome, inflammation, epigenetic alterations, and mental diseases.

    Science.gov (United States)

    Alam, Reza; Abdolmaleky, Hamid M; Zhou, Jin-Rong

    2017-09-01

    Major mental diseases such as autism, bipolar disorder, schizophrenia, and major depressive disorder are debilitating illnesses with complex etiologies. Recent findings show that the onset and development of these illnesses cannot be well described by the one-gene; one-disease approach. Instead, their clinical presentation is thought to result from the regulative interplay of a large number of genes. Even though the involvement of many genes are likely, up regulating and activation or down regulation and silencing of these genes by the environmental factors play a crucial role in contributing to their pathogenesis. Much of this interplay may be moderated by epigenetic changes. Similar to genetic mutations, epigenetic modifications such as DNA methylation, histone modifications, and RNA interference can influence gene expression and therefore may cause behavioral and neuronal changes observed in mental disorders. Environmental factors such as diet, gut microbiota, and infections have significant role in these epigenetic modifications. Studies show that bioactive nutrients and gut microbiota can alter either DNA methylation and histone signatures through a variety of mechanisms. Indeed, microbes within the human gut may play a significant role in the regulation of various elements of "gut-brain axis," via their influence on inflammatory cytokines and production of antimicrobial peptides that affect the epigenome through their involvement in generating short chain fatty acids, vitamin synthesis, and nutrient absorption. In addition, they may participate in-gut production of many common neurotransmitters. In this review we will consider the potential interactions of diet, gastrointestinal microbiome, inflammation, and epigenetic alterations in psychiatric disorders. © 2017 Wiley Periodicals, Inc.

  16. Subgingival Microbiome of Gingivitis in Chinese Undergraduates.

    Science.gov (United States)

    Deng, Ke; Ouyang, Xiang Ying; Chu, Yi; Zhang, Qian

    To analyse the microbiome composition of health and gingivitis in Chinese undergraduates with high-throughput sequencing. Sequencing of 16S rRNA gene amplicons was performed with the MiSeq system to compare subgingival bacterial communities from 54 subjects with gingivitis and 12 periodontally healthy controls. A total of 1,967,372 sequences representing 14 phyla, 104 genera, and 96 species were detected. Analysis of similarities (Anosim) test and Principal Component Analysis (PCA) showed significantly different community profiles between the health control and the subjects with gingivitis. Alpha-diversity metrics were significantly higher in the subgingival plaque of the subjects with gingivitis compared with that of the healthy control. Overall, the relative abundance of 35 genera and 46 species were significantly different between the two groups, among them 28 genera and 45 species showed higher relative abundance in the subjects with gingivitis, whereas seven genera and one species showed a higher relative abundance in the healthy control. The genera Porphyromonas, Treponema, and Tannerella showed higher relative abundance in the subjects with gingivitis, while the genera Capnocytophaga showed higher proportions in health controls. Porphyromonas gingivalis, Prevotella intermedia and Porphyromonas endodontalis had higher relative abundance in gingivitis. Among them, Porphyromonas gingivalis was most abundant. Our results revealed significantly different microbial community composition and structures of subgingival plaque between subjects with gingivitis and healthy controls. Subjects with gingivitis showed greater taxonomic diversity compared with periodontally healthy subjects. The proportion of Porphyromonas, especially Porphyromonas gingivalis, may be associated with gingivitis subjects aged between 18 and 21 years old in China. Adults with gingivitis in this age group may have a higher risk of developing periodontitis.

  17. Competences for enhancing interprofessional collaboration in a paediatrics setting: Enabling and hindering factors.

    Science.gov (United States)

    Solevåg, Anne Lee; Karlgren, Klas

    2016-01-01

    In 2011 an interprofessional educational programme called "Pediatric systematic assessment and communication for preventing emergencies" designed to increase clinical staff's competence in treating sick children was introduced in one paediatrics department in Norway. To elicit an in-depth understanding of the perceptions of clinical staff about the programme and enact adjustments according to identified enabling and hindering factors for learning, nurses and paediatricians were invited to participate in focus group interviews. The interviews were analysed by content analysis. Enabling factors for learning included improved interprofessional collaboration and positive feedback on performance. Hindering factors included perceptions that the programme was redundant and the fact that collaborating departments, such as the surgical departments, were not familiar with the programme. Peer learning, more interprofessional learning activities, and the fostering of a learning organization were suggestions for sustained learning. Based on the results of the study we have now included collaborating departments in the programme.

  18. Fusion hindrance in reactions with very heavy ions: Border between normal and hindered fusion

    International Nuclear Information System (INIS)

    Shen Caiwan; Li Qingfeng; Boilley, David; Shen Junjie; Abe, Yasuhisa

    2011-01-01

    The fusion hindrance in heavy-ion collisions is studied in the framework of the two-center liquid drop model. It appears that the neck and the radial degrees of freedom might both be hampered by an inner potential barrier on their path between the contact configuration to the compound nucleus. Heavy-ion reactions with and without the two kinds of fusion hindrance are classified through systematic calculations. It is found that the number of reactions without radial fusion hindrance is much smaller than that without neck fusion hindrance, and for both kinds of fusion hindrance the number of reactions without fusion hindrance at small mass-asymmetry parameter α is smaller than that at large α. In the formation of a given compound nucleus, if a reaction with α c is not hindered, then other reactions with α>α c are also not hindered, as is well known experimentally.

  19. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism.

    Science.gov (United States)

    Mohammed, Akram; Guda, Chittibabu

    2015-01-01

    Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids, cofactors and

  20. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism

    Science.gov (United States)

    2015-01-01

    Background Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. Results ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids

  1. Help or hinder? : Journalists affecting the future of female genital mutilation in a patriarchal society

    OpenAIRE

    Hallonsten, Sofia

    2016-01-01

    Is it possible to cover an issue as a journalist to the extent that you are practically a human rights activist, and still contribute to its continuation by unconsciously upholding the values causing the issue? This study asks the question if journalists help or hinder the elimination of female genital mutilation (FGM), and puts forth the thesis that journalists as a collective in fact are affecting the development more negatively through their attitudes than positively through their actions....

  2. Helpful and Hindering Factors in Psychodrama Field Training: A Longitudinal Mixed Methods Study of Student Development

    Directory of Open Access Journals (Sweden)

    Bracha Azoulay

    2018-02-01

    Full Text Available Although the literature indicates that students in mental health professions start to form their professional identity and competence in graduate school, there are few studies on the in-training experience of creative arts therapies students. This mixed methods study examined how five first-year students in a psychodrama master’s degree program in Israel experienced their field training, with the aim of identifying the factors likely to promote or hinder the development of their professional identity and sense of professional ability. Longitudinal data were collected weekly throughout the 20-week field training experience. The students reported qualitatively on helpful and hindering factors and were assessed quantitatively on questionnaires measuring professional identity, perceived demands-abilities fit, client involvement, and therapy session evaluations. A thematic analysis of the students’ reports indicated that a clear and defined setting and structure, observing the instructor as a role model, actively leading parts of the session, and observing fellow students were all helpful factors. The hindering factors included role confusion, issues related to coping with client resistance and disciplinary problems, as well as school end-of-year activities that disrupted the continuity of therapy. The quantitative results indicated that students’ professional identity did not significantly change over the year, whereas a U-shaped curve trajectory characterized the changes in demands-abilities fit and other measures. Students began their field training with an overstated sense of ability that soon declined and later increased. These findings provide indications of which helping and hindering factors should be maximized and minimized, to enhance students’ field training.

  3. Helpful and Hindering Factors in Psychodrama Field Training: A Longitudinal Mixed Methods Study of Student Development.

    Science.gov (United States)

    Azoulay, Bracha; Orkibi, Hod

    2018-01-01

    Although the literature indicates that students in mental health professions start to form their professional identity and competence in graduate school, there are few studies on the in-training experience of creative arts therapies students. This mixed methods study examined how five first-year students in a psychodrama master's degree program in Israel experienced their field training, with the aim of identifying the factors likely to promote or hinder the development of their professional identity and sense of professional ability. Longitudinal data were collected weekly throughout the 20-week field training experience. The students reported qualitatively on helpful and hindering factors and were assessed quantitatively on questionnaires measuring professional identity, perceived demands-abilities fit, client involvement, and therapy session evaluations. A thematic analysis of the students' reports indicated that a clear and defined setting and structure, observing the instructor as a role model, actively leading parts of the session, and observing fellow students were all helpful factors. The hindering factors included role confusion, issues related to coping with client resistance and disciplinary problems, as well as school end-of-year activities that disrupted the continuity of therapy. The quantitative results indicated that students' professional identity did not significantly change over the year, whereas a U-shaped curve trajectory characterized the changes in demands-abilities fit and other measures. Students began their field training with an overstated sense of ability that soon declined and later increased. These findings provide indications of which helping and hindering factors should be maximized and minimized, to enhance students' field training.

  4. Statin Use and Self-Reported Hindering Muscle Complaints in Older Persons: A Population Based Study.

    Directory of Open Access Journals (Sweden)

    Milly A van der Ploeg

    Full Text Available Statins are widely used by older persons in primary and secondary prevention of cardiovascular disease. Although serious adverse events are rare, many statin users report mild muscle pain and/or muscle weakness. It's unclear what impact statins exert on a patient's daily life. Research on statin related side effects in older persons is relatively scarce. We therefore investigated the relation between statin use and self-reported hindering muscle complaints in older persons in the general population.The present research was performed within the Integrated Systematic Care for Older Persons (ISCOPE study in the Netherlands (Netherlands trial register, NTR1946. All registered adults aged ≥ 75 years from 59 participating practices (n = 12,066 were targeted. Information about the medical history and statin use at baseline and after 9 months was available for 4355 participants from the Electronic Patient Records of the general practitioners. In the screening questionnaire at baseline we asked participants: 'At the moment, which health complaints limit you the most in your day-to-day life?' Answers indicating muscle or musculoskeletal complaints were coded as such. No specific questions about muscle complaints were asked.The participants had a median age of 80.3 (IQR 77.6-84.4 years, 60.8% were female and 28.5% had a history of CVD. At baseline 29% used a statin. At follow-up, no difference was found in the prevalence of self-reported hindering muscle complaints in statin users compared to non-statin users (3.3% vs. 2.5%, OR 1.39, 95% CI 0.94-2.05; P = 0.98. Discontinuation of statin use during follow-up was independent of self-reported hindering muscle complaints.Based on the present findings, prevalent statin use in this community-dwelling older population is not associated with self-reported hindering muscle complaints; however, the results might be different for incident users.

  5. Statin Use and Self-Reported Hindering Muscle Complaints in Older Persons: A Population Based Study.

    Science.gov (United States)

    van der Ploeg, Milly A; Poortvliet, Rosalinde K E; van Blijswijk, Sophie C E; den Elzen, Wendy P J; van Peet, Petra G; de Ruijter, Wouter; Blom, Jeanet W; Gussekloo, Jacobijn

    2016-01-01

    Statins are widely used by older persons in primary and secondary prevention of cardiovascular disease. Although serious adverse events are rare, many statin users report mild muscle pain and/or muscle weakness. It's unclear what impact statins exert on a patient's daily life. Research on statin related side effects in older persons is relatively scarce. We therefore investigated the relation between statin use and self-reported hindering muscle complaints in older persons in the general population. The present research was performed within the Integrated Systematic Care for Older Persons (ISCOPE) study in the Netherlands (Netherlands trial register, NTR1946). All registered adults aged ≥ 75 years from 59 participating practices (n = 12,066) were targeted. Information about the medical history and statin use at baseline and after 9 months was available for 4355 participants from the Electronic Patient Records of the general practitioners. In the screening questionnaire at baseline we asked participants: 'At the moment, which health complaints limit you the most in your day-to-day life?' Answers indicating muscle or musculoskeletal complaints were coded as such. No specific questions about muscle complaints were asked. The participants had a median age of 80.3 (IQR 77.6-84.4) years, 60.8% were female and 28.5% had a history of CVD. At baseline 29% used a statin. At follow-up, no difference was found in the prevalence of self-reported hindering muscle complaints in statin users compared to non-statin users (3.3% vs. 2.5%, OR 1.39, 95% CI 0.94-2.05; P = 0.98). Discontinuation of statin use during follow-up was independent of self-reported hindering muscle complaints. Based on the present findings, prevalent statin use in this community-dwelling older population is not associated with self-reported hindering muscle complaints; however, the results might be different for incident users.

  6. Heat-conserving postures hinder escape: a thermoregulation–predation trade-off in wintering birds

    OpenAIRE

    Jennie M. Carr; Steven L. Lima

    2012-01-01

    Wintering birds may conserve body heat by adopting postures with minimal leg exposure or significant ptiloerection. However, maximally heat-conserving postures may hinder a bird's ability to escape attack, leading to a trade-off between predation risk and thermoregulation. Such a trade-off implies that birds should use the most heat-conserving postures only at very cold temperatures. Feeding in a relatively low-risk environment should also facilitate the use of such heat-conserving postures. ...

  7. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta and its microbiome

    Directory of Open Access Journals (Sweden)

    de Oliveira Louisi

    2012-09-01

    Full Text Available Abstract Background Seaweeds of the Laurencia genus have a broad geographic distribution and are largely recognized as important sources of secondary metabolites, mainly halogenated compounds exhibiting diverse potential pharmacological activities and relevant ecological role as anti-epibiosis. Host-microbe interaction is a driving force for co-evolution in the marine environment, but molecular studies of seaweed-associated microbial communities are still rare. Despite the large amount of research describing the chemical compositions of Laurencia species, the genetic knowledge regarding this genus is currently restricted to taxonomic markers and general genome features. In this work we analyze the transcriptomic profile of L. dendroidea J. Agardh, unveil the genes involved on the biosynthesis of terpenoid compounds in this seaweed and explore the interactions between this host and its associated microbiome. Results A total of 6 transcriptomes were obtained from specimens of L. dendroidea sampled in three different coastal locations of the Rio de Janeiro state. Functional annotations revealed predominantly basic cellular metabolic pathways. Bacteria was the dominant active group in the microbiome of L. dendroidea, standing out nitrogen fixing Cyanobacteria and aerobic heterotrophic Proteobacteria. The analysis of the relative contribution of each domain highlighted bacterial features related to glycolysis, lipid and polysaccharide breakdown, and also recognition of seaweed surface and establishment of biofilm. Eukaryotic transcripts, on the other hand, were associated with photosynthesis, synthesis of carbohydrate reserves, and defense mechanisms, including the biosynthesis of terpenoids through the mevalonate-independent pathway. Conclusions This work describes the first transcriptomic profile of the red seaweed L. dendroidea, increasing the knowledge about ESTs from the Florideophyceae algal class. Our data suggest an important role for L

  8. What hinders implementation of the WHO FCTC Article 5.3? - The case of South Korea.

    Science.gov (United States)

    Lee, Sungkyu

    2016-10-01

    The aims of this study are to identify what hinders implementation of the WHO Framework Convention on Tobacco Control (FCTC) Article 5.3 in Korea, and to provide suggestions for the implementation of Article 5.3. Official governmental documents on tobacco control were reviewed. We also searched news articles for data triangulation. There were three factors that hindered the implementation of Article 5.3 in Korea. Firstly, there has been legal conflict between two tobacco-related laws, one of which is designed to promote the tobacco industry. The other is designed to promote public health. Secondly, the government has had economic interests in the tobacco industry, and its lack of action to effectively regulate the tobacco industry's corporate social responsibility (CSR) practices has hindered the implementation of Article 5.3. Thirdly, the tobacco industry's lobby and active interference in the policy-making process has been a barrier. To fully implement Article 5.3, this study suggests: defusing legal conflict between tobacco-related laws; not considering tobacco industry as a stakeholder; regulating tobacco industry's CSR activities; raising awareness of tobacco industry interference; securing transparency between the government and tobacco industry; and establishing a core group or a committee under the government to implement Article 5.3.

  9. Factors that promote or hinder young disabled people in work participation: a systematic review.

    Science.gov (United States)

    Achterberg, T J; Wind, H; de Boer, A G E M; Frings-Dresen, M H W

    2009-06-01

    The aim of this systematic review was to study factors which promote or hinder young disabled people entering the labor market. We systematically searched PubMed (by means of MESH and text words), EMBASE, PsycINFO, Web of Science and CINAHL for studies regarding (1) disabled patients diagnosed before the age of 18 years and (2) factors of work participation. Out of 1,268 retrieved studies and 28 extended studies from references and four from experts, ten articles were included. Promoting factors are male gender, high educational level, age at survey, low depression scores, high dispositional optimism and high psychosocial functioning. Female and low educational level gives high odds of unemployment just like low IQ, inpatient treatment during follow up, epilepsy, motor impairment, wheelchair dependency, functional limitations, co-morbidity, physical disability and chronic health conditions combined with mental retardation. High dose cranial radiotherapy, type of cancer, and age of diagnosis also interfered with employment. Of the promoting factors, education appeared to be important, and several physical obstructions were found to be hindering factors. The last mentioned factors can be influenced in contrast to for instance age and gender. However, to optimize work participation of this group of young disabled it is important to know the promoting or hindering influence for employment.

  10. Emerging Perspectives on the Natural Microbiome of Fresh Produce Vegetables

    Directory of Open Access Journals (Sweden)

    Colin R. Jackson

    2015-04-01

    Full Text Available Plants harbor a diverse microbiome existing as bacterial populations on the leaf surface (the phyllosphere and within plant tissues (endophytes. The composition of this microbiome has been largely unexplored in fresh produce vegetables, where studies have tended to focus on pathogen detection and survival. However, the application of next-generation 16S rRNA gene sequencing approaches is beginning to reveal the diversity of this produce-associated bacterial community. In this article we review what is known about the composition of the microbiome of fresh produce vegetables, placing it in the context of general phyllosphere research. We also demonstrate how next-generation sequencing can be used to assess the bacterial assemblages present on fresh produce, using fresh herbs as an example. That data shows how the use of such culture-independent approaches can detect groups of taxa (anaerobes, psychrophiles that may be missed by traditional culture-based techniques. Other issues discussed include questions as to whether to determine the microbiome during plant growth or at point of purchase or consumption, and the potential role of the natural bacterial community in mitigating pathogen survival.

  11. A healthy gastrointestinal microbiome is dependent on dietary diversity

    Directory of Open Access Journals (Sweden)

    Mark L. Heiman

    2016-05-01

    Full Text Available Background: Like all healthy ecosystems, richness of microbiota species characterizes the GI microbiome in healthy individuals. Conversely, a loss in species diversity is a common finding in several disease states. This biome is flooded with energy in the form of undigested and partially digested foods, and in some cases drugs and dietary supplements. Each microbiotic species in the biome transforms that energy into new molecules, which may signal messages to physiological systems of the host. Scope of review: Dietary choices select substrates for species, providing a competitive advantage over other GI microbiota. The more diverse the diet, the more diverse the microbiome and the more adaptable it will be to perturbations. Unfortunately, dietary diversity has been lost during the past 50 years and dietary choices that exclude food products from animals or plants will narrow the GI microbiome further. Major conclusion: Additional research into expanding gut microbial richness by dietary diversity is likely to expand concepts in healthy nutrition, stimulate discovery of new diagnostics, and open up novel therapeutic possibilities. Keywords: Microbiome, Microbiota, Gastrointestinal, Dietary diversity, Agrobiodiversity, Microbiota richness

  12. Genetic Characterization of the Gut Microbiome of Hajj Pilgrims

    KAUST Repository

    Beaudoin, Christopher

    2018-05-01

    Hajj, the annual Islamic pilgrimage to Makkah, Saudi Arabia, is a unique mass gathering event that brings more than 2 million individuals from around the world. Several public health considerations, such as the spread of infectious diseases, must be taken into account with this large temporary influx of people. Gastrointestinal diseases, such as diarrhea, are common at Hajj, yet little is known about the etiology. The human gut microbiome, collection of organisms residing within the intestinal tract, has been under intense study recently, since next generation DNA sequencing technologies allow for extensive surveying of genetic material found in complex biological samples, such as those containing many different organisms. Thus, using 16S rRNA and metagenomic shotgun sequencing, we have characterized the gut microbiome of over 612 pilgrims with and without diarrhea. Several metadata factors, such as hospitalization and different comorbidities, were found to have significant effects on the overall gut microbiome composition. Metagenomic shotgun sequencing efforts revealed the presence of antimicrobial resistance genes originating from disparate regions from around the world. This study provides a snapshot of information concerning the health status of the gut microbiome of Hajj pilgrims and provides more context to the investigation of how to best prepare for mass gathering events.

  13. Fecal microbiome analysis as a diagnostic test for diverticulitis

    NARCIS (Netherlands)

    Daniels, L.; Budding, A. E.; de Korte, N.; Eck, A.; Bogaards, J. A.; Stockmann, H. B.; Consten, E. C.; Savelkoul, P. H.; Boermeester, M. A.

    2014-01-01

    Disease-specific variations in intestinal microbiome composition have been found for a number of intestinal disorders, but little is known about diverticulitis. The purpose of this study was to compare the fecal microbiota of diverticulitis patients with control subjects from a general

  14. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis.

    Science.gov (United States)

    Wen, Chengping; Zheng, Zhijun; Shao, Tiejuan; Liu, Lin; Xie, Zhijun; Le Chatelier, Emmanuelle; He, Zhixing; Zhong, Wendi; Fan, Yongsheng; Zhang, Linshuang; Li, Haichang; Wu, Chunyan; Hu, Changfeng; Xu, Qian; Zhou, Jia; Cai, Shunfeng; Wang, Dawei; Huang, Yun; Breban, Maxime; Qin, Nan; Ehrlich, Stanislav Dusko

    2017-07-27

    The assessment and characterization of the gut microbiome has become a focus of research in the area of human autoimmune diseases. Ankylosing spondylitis is an inflammatory autoimmune disease and evidence showed that ankylosing spondylitis may be a microbiome-driven disease. To investigate the relationship between the gut microbiome and ankylosing spondylitis, a quantitative metagenomics study based on deep shotgun sequencing was performed, using gut microbial DNA from 211 Chinese individuals. A total of 23,709 genes and 12 metagenomic species were shown to be differentially abundant between ankylosing spondylitis patients and healthy controls. Patients were characterized by a form of gut microbial dysbiosis that is more prominent than previously reported cases with inflammatory bowel disease. Specifically, the ankylosing spondylitis patients demonstrated increases in the abundance of Prevotella melaninogenica, Prevotella copri, and Prevotella sp. C561 and decreases in Bacteroides spp. It is noteworthy that the Bifidobacterium genus, which is commonly used in probiotics, accumulated in the ankylosing spondylitis patients. Diagnostic algorithms were established using a subset of these gut microbial biomarkers. Alterations of the gut microbiome are associated with development of ankylosing spondylitis. Our data suggest biomarkers identified in this study might participate in the pathogenesis or development process of ankylosing spondylitis, providing new leads for the development of new diagnostic tools and potential treatments.

  15. Staphylococcus aureus and the ecology of the nasal microbiome

    DEFF Research Database (Denmark)

    Liu, Cindy M; Price, Lance B; Hungate, Bruce A

    2015-01-01

    The human microbiome can play a key role in host susceptibility to pathogens, including in the nasal cavity, a site favored by Staphylococcus aureus. However, what determines our resident nasal microbiota-the host or the environment-and can interactions among nasal bacteria determine S. aureus...

  16. Human gut microbiome viewed across age and geography

    Science.gov (United States)

    Gut microbial communities represent one source of human genetic and metabolic diversity. To examine how gut microbiomes differ among human populations, we characterized bacterial species in fecal samples from 531 individuals, plus the gene content of 110 of them. The cohort encompassed healthy child...

  17. Impact of plant domestication on rhizosphere microbiome assembly and functions

    NARCIS (Netherlands)

    Perez Jaramillo, Juan Esteban; Mendes, Rodrigo; Raaijmakers, Jos

    2016-01-01

    The rhizosphere microbiome is pivotal for plant health and growth, providing defence against pests and diseases, facilitating nutrient acquisition and helping plants to withstand abiotic stresses. Plants can actively recruit members of the soil microbial community for positive feedbacks, but the

  18. Microbiome to brain: : Unravelling the multidirectional axes of communication.

    NARCIS (Netherlands)

    El Aidy, Sahar; Stilling, R.; Dinan, T.G.; Cryan, J.F.; Lyte, Mark

    2016-01-01

    The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of

  19. Structure, function and diversity of the healthy human microbiome.

    Science.gov (United States)

    2012-06-13

    Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat's signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81-99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.

  20. Testing the Neutral Theory of Biodiversity with Human Microbiome Datasets.

    Science.gov (United States)

    Li, Lianwei; Ma, Zhanshan Sam

    2016-08-16

    The human microbiome project (HMP) has made it possible to test important ecological theories for arguably the most important ecosystem to human health-the human microbiome. Existing limited number of studies have reported conflicting evidence in the case of the neutral theory; the present study aims to comprehensively test the neutral theory with extensive HMP datasets covering all five major body sites inhabited by the human microbiome. Utilizing 7437 datasets of bacterial community samples, we discovered that only 49 communities (less than 1%) satisfied the neutral theory, and concluded that human microbial communities are not neutral in general. The 49 positive cases, although only a tiny minority, do demonstrate the existence of neutral processes. We realize that the traditional doctrine of microbial biogeography "Everything is everywhere, but the environment selects" first proposed by Baas-Becking resolves the apparent contradiction. The first part of Baas-Becking doctrine states that microbes are not dispersal-limited and therefore are neutral prone, and the second part reiterates that the freely dispersed microbes must endure selection by the environment. Therefore, in most cases, it is the host environment that ultimately shapes the community assembly and tip the human microbiome to niche regime.

  1. Bacterial microbiome and nematode occurrence in different potato agricultural soils

    Science.gov (United States)

    Pratylenchus neglectus and Meloidogyne chitwoodi are the main plant-parasitic nematodes in potato crops of the San Luis Valley, Colorado. Bacterial microbiome (16S rRNA copies per gram of soil) and nematode communities (nematodes per 200 gr of soil) from five different potato farms were analyzed to ...

  2. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor

    Science.gov (United States)

    Kwashiorkor, an enigmatic form of severe acute malnutrition, is the consequence of inadequate nutrient intake plus additional environmental insults. To investigate the role of the gut microbiome, we studied 317 Malawian twin pairs during the first 3 years of life. During this time, half of the twin ...

  3. The emerging relevance of the gut microbiome in cardiometabolic health

    Science.gov (United States)

    Host metabolic pathways and physiological responses are regulated by signals linking the host to the gut microbial community or microbiome. Here, we draw a spotlight on lipid and bile acid metabolism and inflammatory response as they pertain to cardiometabolic dysfunction. Gut microbial dysbiosis al...

  4. Antibiotic resistance potential of the healthy preterm infant gut microbiome

    Directory of Open Access Journals (Sweden)

    Graham Rose

    2017-01-01

    Full Text Available Background Few studies have investigated the gut microbiome of infants, fewer still preterm infants. In this study we sought to quantify and interrogate the resistome within a cohort of premature infants using shotgun metagenomic sequencing. We describe the gut microbiomes from preterm but healthy infants, characterising the taxonomic diversity identified and frequency of antibiotic resistance genes detected. Results Dominant clinically important species identified within the microbiomes included C. perfringens, K. pneumoniae and members of the Staphylococci and Enterobacter genera. Screening at the gene level we identified an average of 13 antimicrobial resistance genes per preterm infant, ranging across eight different antibiotic classes, including aminoglycosides and fluoroquinolones. Some antibiotic resistance genes were associated with clinically relevant bacteria, including the identification of mecA and high levels of Staphylococci within some infants. We were able to demonstrate that in a third of the infants the S. aureus identified was unrelated using MLST or metagenome assembly, but low abundance prevented such analysis within the remaining samples. Conclusions We found that the healthy preterm infant gut microbiomes in this study harboured a significant diversity of antibiotic resistance genes. This broad picture of resistances and the wider taxonomic diversity identified raises further caution to the use of antibiotics without consideration of the resident microbial communities.

  5. Correlating the Gut Microbiome to Health and Disease

    NARCIS (Netherlands)

    Marques, T.M.; Holster, S.; Wall, R.; König, J.; Brummer, R.J.; Vos, de Willem

    2016-01-01

    The gut microbiota is a complex ecosystem consisting of a diverse population of prokaryotes that has a symbiotic relationship with its host; thus it plays a vital role for the host's health. Our understanding of the effect of the gut microbiome in health and disease has grown substantially over

  6. Next-generation sequencing approaches to understanding the oral microbiome

    NARCIS (Netherlands)

    Zaura, E.

    2012-01-01

    Until recently, the focus in dental research has been on studying a small fraction of the oral microbiome—so-called opportunistic pathogens. With the advent of next-generation sequencing (NGS) technologies, researchers now have the tools that allow for profiling of the microbiomes and metagenomes at

  7. Innovation in microbiome-based strategies for promoting metabolic health.

    Science.gov (United States)

    Romaní-Pérez, Marina; Agusti, Ana; Sanz, Yolanda

    2017-11-01

    Update on the development of microbiome-based interventions and dietary supplements to combat obesity and related comorbidities, which are leading causes of global mortality. The role of intestinal dysbiosis, partly resulting from unhealthy diets, in the development of obesity and metabolic disorders, is well documented by recent translational research. Human experimental trials with whole-faecal transplants are ongoing, and their results will be crucial as proof of concept that interventions intended to modulate the microbiome composition and function could be alternatives for the management of obesity and related comorbidities. Potential next-generation probiotic bacteria (Akkermansia, Bacteroides spp., Eubacterium halli) and microbiota-derived molecules (e.g. membrane proteins, short-chain fatty acids) are being evaluated in preclinical and clinical trials to promote the development of innovative dietary supplements. The fact that live or inactivated bacteria and their products can regulate pathways that increase energy expenditure, and reduce energy intake, and absorption and systemic inflammation make them attractive research targets from a nutritional and clinical perspective. Understanding which are the beneficial bacteria and their bioactive products is helping us to envisage innovative microbiome-based dietary interventions to tackle obesity. Advances will likely result from future refinements of these strategies according to the individual's microbiome configuration and its particular response to interventions, thereby progressing towards personalized nutrition.

  8. Canola Root–Associated Microbiomes in the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Chih-Ying Lay

    2018-06-01

    Full Text Available Canola is one of the most economically important crops in Canada, and the root and rhizosphere microbiomes of a canola plant likely impact its growth and nutrient uptake. The aim of this study was to determine whether canola has a core root microbiome (i.e., set of microbes that are consistently selected in the root environment, and whether this is distinct from the core microbiomes of other crops that are commonly grown in the Canadian Prairies, pea, and wheat. We also assessed whether selected agronomic treatments can modify the canola microbiome, and whether this was associated to enhanced yield. We used a field experiment with a randomized complete block design, which was repeated at three locations across the canola-growing zone of Canada. Roots and rhizosphere soil were harvested at the flowering stage of canola. We separately isolated total extractable DNA from plant roots and from adjacent rhizosphere soil, and constructed MiSeq amplicon libraries for each of 60 samples, targeting bacterial, and archaeal 16S rRNA genes and the fungal ITS region. We determined that the microbiome of the roots and rhizosphere of canola was consistently different from those of wheat and pea. These microbiomes comprise several putative plant-growth-promoting rhizobacteria, including Amycolatopsis sp., Serratia proteamaculans, Pedobacter sp., Arthrobacter sp., Stenotrophomonas sp., Fusarium merismoides, and Fusicolla sp., which correlated positively with canola yield. Crop species had a significant influence on bacterial and fungal assemblages, especially within the roots, while higher nutrient input or seeding density did not significantly alter the global composition of bacterial, fungal, or archaeal assemblages associated with canola roots. However, the relative abundance of Olpidium brassicae, a known pathogen of members of the Brassicaceae, was significantly reduced in the roots of canola planted at higher seeding density. Our results suggest that

  9. The Overarching Influence of the Gut Microbiome on End-Organ Function: The Role of Live Probiotic Cultures

    Directory of Open Access Journals (Sweden)

    Luis Vitetta

    2014-09-01

    Full Text Available At the time of birth, humans experience an induced pro-inflammatory beneficial event. The mediators of this encouraged activity, is a fleet of bacteria that assault all mucosal surfaces as well as the skin. Thus initiating effects that eventually provide the infant with immune tissue maturation. These effects occur beneath an emergent immune system surveillance and antigenic tolerance capability radar. Over time, continuous and regulated interactions with environmental as well as commensal microbial, viral, and other antigens lead to an adapted and maintained symbiotic state of tolerance, especially in the gastrointestinal tract (GIT the organ site of the largest microbial biomass. However, the perplexing and much debated surprise has been that all microbes need not be targeted for destruction. The advent of sophisticated genomic techniques has led to microbiome studies that have begun to clarify the critical and important biochemical activities that commensal bacteria provide to ensure continued GIT homeostasis. Until recently, the GIT and its associated micro-biometabolome was a neglected factor in chronic disease development and end organ function. A systematic underestimation has been to undervalue the contribution of a persistent GIT dysbiotic (a gut barrier associated abnormality state. Dysbiosis provides a plausible clue as to the origin of systemic metabolic disorders encountered in clinical practice that may explain the epidemic of chronic diseases. Here we further build a hypothesis that posits the role that subtle adverse responses by the GIT microbiome may have in chronic diseases. Environmentally/nutritionally/and gut derived triggers can maintain microbiome perturbations that drive an abnormal overload of dysbiosis. Live probiotic cultures with specific metabolic properties may assist the GIT microbiota and reduce the local metabolic dysfunctions. As such the effect may translate to a useful clinical treatment approach for patients

  10. Early-life gut microbiome composition and milk allergy resolution.

    Science.gov (United States)

    Bunyavanich, Supinda; Shen, Nan; Grishin, Alexander; Wood, Robert; Burks, Wesley; Dawson, Peter; Jones, Stacie M; Leung, Donald Y M; Sampson, Hugh; Sicherer, Scott; Clemente, Jose C

    2016-10-01

    Gut microbiota may play a role in the natural history of cow's milk allergy. We sought to examine the association between early-life gut microbiota and the resolution of cow's milk allergy. We studied 226 children with milk allergy who were enrolled at infancy in the Consortium of Food Allergy observational study of food allergy. Fecal samples were collected at age 3 to 16 months, and the children were followed longitudinally with clinical evaluation, milk-specific IgE levels, and milk skin prick test performed at enrollment, 6 months, 12 months, and yearly thereafter up until age 8 years. Gut microbiome was profiled by 16s rRNA sequencing and microbiome analyses performed using Quantitative Insights into Microbial Ecology (QIIME), Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt), and Statistical Analysis of Metagenomic Profiles (STAMP). Milk allergy resolved by age 8 years in 128 (56.6%) of the 226 children. Gut microbiome composition at age 3 to 6 months was associated with milk allergy resolution by age 8 years (PERMANOVA P = .047), with enrichment of Clostridia and Firmicutes in the infant gut microbiome of subjects whose milk allergy resolved. Metagenome functional prediction supported decreased fatty acid metabolism in the gut microbiome of subjects whose milk allergy resolved (η 2  = 0.43; ANOVA P = .034). Early infancy is a window during which gut microbiota may shape food allergy outcomes in childhood. Bacterial taxa within Clostridia and Firmicutes could be studied as probiotic candidates for milk allergy therapy. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Early-life gut microbiome composition and milk allergy resolution

    Science.gov (United States)

    Bunyavanich, Supinda; Shen, Nan; Grishin, Alexander; Wood, Robert; Burks, Wesley; Dawson, Peter; Jones, Stacie M.; Leung, Donald; Sampson, Hugh; Sicherer, Scott; Clemente, Jose C.

    2016-01-01

    Background Gut microbiota may play a role in the natural history of cow’s milk allergy Objective To examine the association between early life gut microbiota and the resolution of cow’s milk allergy Methods We studied 226 children with milk allergy who were enrolled at infancy in the Consortium of Food Allergy (CoFAR) observational study of food allergy. Fecal samples were collected at age 3–16 months, and the children were followed longitudinally with clinical evaluation, milk-specific IgE levels, and milk skin prick test performed at enrollment, 6 months, 12 months, and yearly thereafter up until age 8 years. Gut microbiome was profiled by 16s rRNA sequencing and microbiome analyses performed using QIIME (Quantitative Insights into Microbial Ecology), PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), and STAMP (Statistical Analysis of Metagenomic Profiles). Results Milk allergy resolved by age 8 years in 128 (56.6%) of the 226 children. Gut microbiome composition at age 3–6 months was associated with milk allergy resolution by age 8 years (PERMANOVA P = 0.047), with enrichment of Clostridia and Firmicutes in the infant gut microbiome of subjects whose milk allergy resolved. Metagenome functional prediction supported decreased fatty acid metabolism in the gut microbiome of subjects whose milk allergy resolved (η2 = 0.43, ANOVA P = 0.034). Conclusions Early infancy is a window during which gut microbiota may shape food allergy outcomes in childhood. Bacterial taxa within Clostridia and Firmicutes could be studied as probiotic candidates for milk allergy therapy. PMID:27292825

  12. Characterization of the human gut microbiome during travelers' diarrhea.

    Science.gov (United States)

    Youmans, Bonnie P; Ajami, Nadim J; Jiang, Zhi-Dong; Campbell, Frederick; Wadsworth, W Duncan; Petrosino, Joseph F; DuPont, Herbert L; Highlander, Sarah K

    2015-01-01

    Alterations in the gut microbiota are correlated with ailments such as obesity, inflammatory bowel disease, and diarrhea. Up to 60% of individuals traveling from industrialized to developing countries acquire a form of secretory diarrhea known as travelers' diarrhea (TD), and enterotoxigenic Escherichia coli (ETEC) and norovirus (NoV) are the leading causative pathogens. Presumably, TD alters the gut microbiome, however the effect of TD on gut communities has not been studied. We report the first analysis of bacterial gut populations associated with TD. We examined and compared the gut microbiomes of individuals who developed TD associated with ETEC, NoV, or mixed pathogens, and TD with no pathogen identified, to healthy travelers. We observed a signature dysbiotic gut microbiome profile of high Firmicutes:Bacteroidetes ratios in the travelers who developed diarrhea, regardless of etiologic agent or presence of a pathogen. There was no significant difference in α-diversity among travelers. The bacterial composition of the microbiota of the healthy travelers was similar to the diarrheal groups, however the β-diversity of the healthy travelers was significantly different than any pathogen-associated TD group. Further comparison of the healthy traveler microbiota to those from healthy subjects who were part of the Human Microbiome Project also revealed a significantly higher Firmicutes:Bacteriodetes ratio in the healthy travelers and significantly different β-diversity. Thus, the composition of the gut microbiome in healthy, diarrhea-free travelers has characteristics of a dysbiotic gut, suggesting that these alterations could be associated with factors such as travel.

  13. The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions.

    Science.gov (United States)

    Bragina, Anastasia; Oberauner-Wappis, Lisa; Zachow, Christin; Halwachs, Bettina; Thallinger, Gerhard G; Müller, Henry; Berg, Gabriele

    2014-09-01

    Sphagnum-dominated bogs represent a unique yet widely distributed type of terrestrial ecosystem and strongly contribute to global biosphere functioning. Sphagnum is colonized by highly diverse microbial communities, but less is known about their function. We identified a high functional diversity within the Sphagnum microbiome applying an Illumina-based metagenomic approach followed by de novo assembly and MG-RAST annotation. An interenvironmental comparison revealed that the Sphagnum microbiome harbours specific genetic features that distinguish it significantly from microbiomes of higher plants and peat soils. The differential traits especially support ecosystem functioning by a symbiotic lifestyle under poikilohydric and ombrotrophic conditions. To realise a plasticity-stability balance, we found abundant subsystems responsible to cope with oxidative and drought stresses, to exchange (mobile) genetic elements, and genes that encode for resistance to detrimental environmental factors, repair and self-controlling mechanisms. Multiple microbe-microbe and plant-microbe interactions were also found to play a crucial role as indicated by diverse genes necessary for biofilm formation, interaction via quorum sensing and nutrient exchange. A high proportion of genes involved in nitrogen cycle and recycling of organic material supported the role of bacteria for nutrient supply. 16S rDNA analysis indicated a higher structural diversity than that which had been previously detected using PCR-dependent techniques. Altogether, the diverse Sphagnum microbiome has the ability to support the life of the host plant and the entire ecosystem under changing environmental conditions. Beyond this, the moss microbiome presents a promising bio-resource for environmental biotechnology - with respect to novel enzymes or stress-protecting bacteria. © 2014 John Wiley & Sons Ltd.

  14. A Framework for Human Microbiome Research

    Science.gov (United States)

    2012-06-14

    Biostatistics President and Fellows of Harvard College Boston, MA 02115 -6028 REPORT DOCUMENTATION PAGE b. ABSTRACT UU c. THIS PAGE UU 2. REPORT TYPE...Institute for Genome Sciences 801 W. Baltimore Street, Baltimore, Maryland 21201, USA. 4Harvard School of Public Health, Department of Biostatistics , 655...School of Dentistry , Department of Periodontics, 6516 MD Anderson Blvd, Houston, Texas 77030, USA. 50San Diego State University, Department of Biology

  15. Development of SYN-004, an oral beta-lactamase treatment to protect the gut microbiome from antibiotic-mediated damage and prevent Clostridium difficile infection.

    Science.gov (United States)

    Kaleko, Michael; Bristol, J Andrew; Hubert, Steven; Parsley, Todd; Widmer, Giovanni; Tzipori, Saul; Subramanian, Poorani; Hasan, Nur; Koski, Perrti; Kokai-Kun, John; Sliman, Joseph; Jones, Annie; Connelly, Sheila

    2016-10-01

    The gut microbiome, composed of the microflora that inhabit the gastrointestinal tract and their genomes, make up a complex ecosystem that can be disrupted by antibiotic use. The ensuing dysbiosis is conducive to the emergence of opportunistic pathogens such as Clostridium difficile. A novel approach to protect the microbiome from antibiotic-mediated dysbiosis is the use of beta-lactamase enzymes to degrade residual antibiotics in the gastrointestinal tract before the microflora are harmed. Here we present the preclinical development and early clinical studies of the beta-lactamase enzymes, P3A, currently referred to as SYN-004, and its precursor, P1A. Both P1A and SYN-004 were designed as orally-delivered, non-systemically available therapeutics for use with intravenous beta-lactam antibiotics. SYN-004 was engineered from P1A, a beta-lactamase isolated from Bacillus licheniformis, to broaden its antibiotic degradation profile. SYN-004 efficiently hydrolyses penicillins and cephalosporins, the most widely used IV beta-lactam antibiotics. In animal studies, SYN-004 degraded ceftriaxone in the GI tract of dogs and protected the microbiome of pigs from ceftriaxone-induced changes. Phase I clinical studies demonstrated SYN-004 safety and tolerability. Phase 2 studies are in progress to assess the utility of SYN-004 for the prevention of antibiotic-associated diarrhea and Clostridium difficile disease. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes.

    Science.gov (United States)

    Nielsen, H Bjørn; Almeida, Mathieu; Juncker, Agnieszka Sierakowska; Rasmussen, Simon; Li, Junhua; Sunagawa, Shinichi; Plichta, Damian R; Gautier, Laurent; Pedersen, Anders G; Le Chatelier, Emmanuelle; Pelletier, Eric; Bonde, Ida; Nielsen, Trine; Manichanh, Chaysavanh; Arumugam, Manimozhiyan; Batto, Jean-Michel; Quintanilha Dos Santos, Marcelo B; Blom, Nikolaj; Borruel, Natalia; Burgdorf, Kristoffer S; Boumezbeur, Fouad; Casellas, Francesc; Doré, Joël; Dworzynski, Piotr; Guarner, Francisco; Hansen, Torben; Hildebrand, Falk; Kaas, Rolf S; Kennedy, Sean; Kristiansen, Karsten; Kultima, Jens Roat; Léonard, Pierre; Levenez, Florence; Lund, Ole; Moumen, Bouziane; Le Paslier, Denis; Pons, Nicolas; Pedersen, Oluf; Prifti, Edi; Qin, Junjie; Raes, Jeroen; Sørensen, Søren; Tap, Julien; Tims, Sebastian; Ussery, David W; Yamada, Takuji; Renault, Pierre; Sicheritz-Ponten, Thomas; Bork, Peer; Wang, Jun; Brunak, Søren; Ehrlich, S Dusko

    2014-08-01

    Most current approaches for analyzing metagenomic data rely on comparisons to reference genomes, but the microbial diversity of many environments extends far beyond what is covered by reference databases. De novo segregation of complex metagenomic data into specific biological entities, such as particular bacterial strains or viruses, remains a largely unsolved problem. Here we present a method, based on binning co-abundant genes across a series of metagenomic samples, that enables comprehensive discovery of new microbial organisms, viruses and co-inherited genetic entities and aids assembly of microbial genomes without the need for reference sequences. We demonstrate the method on data from 396 human gut microbiome samples and identify 7,381 co-abundance gene groups (CAGs), including 741 metagenomic species (MGS). We use these to assemble 238 high-quality microbial genomes and identify affiliations between MGS and hundreds of viruses or genetic entities. Our method provides the means for comprehensive profiling of the diversity within complex metagenomic samples.

  17. Rhizosphere Microbiomes Modulated by Pre-crops Assisted Plants in Defense Against Plant-Parasitic Nematodes

    Directory of Open Access Journals (Sweden)

    Ahmed Elhady

    2018-06-01

    Full Text Available Plant-parasitic nematodes cause considerable damage to crop plants. The rhizosphere microbiome can affect invasion and reproductive success of plant-parasitic nematodes, thus affecting plant damage. In this study, we investigated how the transplanted rhizosphere microbiome from different crops affect plant-parasitic nematodes on soybean or tomato, and whether the plant’s own microbiome from the rhizosphere protects it better than the microbiome from fallow soil. Soybean plants growing in sterilized substrate were inoculated with the microbiome extracted from the rhizosphere of soybean, maize, or tomato. Controls were inoculated with extracts from bulk soil, or not inoculated. After the microbiome was established, the root lesion nematode Pratylenchus penetrans was added. Root invasion of P. penetrans was significantly reduced on soybean plants inoculated with the microbiome from maize or soybean compared to tomato or bulk soil, or the uninoculated control. In the analogous experiment with tomato plants inoculated with either P. penetrans or the root knot nematode Meloidogyne incognita, the rhizosphere microbiomes of maize and tomato reduced root invasion by P. penetrans and M. incognita compared to microbiomes from soybean or bulk soil. Reproduction of M. incognita on tomato followed the same trend, and it was best suppressed by the tomato rhizosphere microbiome. In split-root experiments with soybean and tomato plants, a systemic effect of the inoculated rhizosphere microbiomes on root invasion of P. penetrans was shown. Furthermore, some transplanted microbiomes slightly enhanced plant growth compared to uninoculated plants. The microbiomes from maize rhizosphere and bulk soil increased the fresh weights of roots and shoots of soybean plants, and microbiomes from soybean rhizosphere and bulk soil increased the fresh weights of roots and shoots of tomato plants. Nematode invasion did not affect plant growth in these short-term experiments. In

  18. High-throughput metagenomic analysis of petroleum-contaminated soil microbiome reveals the versatility in xenobiotic aromatics metabolism.

    Science.gov (United States)

    Bao, Yun-Juan; Xu, Zixiang; Li, Yang; Yao, Zhi; Sun, Jibin; Song, Hui

    2017-06-01

    The soil with petroleum contamination is one of the most studied soil ecosystems due to its rich microorganisms for hydrocarbon degradation and broad applications in bioremediation. However, our understanding of the genomic properties and functional traits of the soil microbiome is limited. In this study, we used high-throughput metagenomic sequencing to comprehensively study the microbial community from petroleum-contaminated soils near Tianjin Dagang oilfield in eastern China. The analysis reveals that the soil metagenome is characterized by high level of community diversity and metabolic versatility. The metageome community is predominated by γ-Proteobacteria and α-Proteobacteria, which are key players for petroleum hydrocarbon degradation. The functional study demonstrates over-represented enzyme groups and pathways involved in degradation of a broad set of xenobiotic aromatic compounds, including toluene, xylene, chlorobenzoate, aminobenzoate, DDT, methylnaphthalene, and bisphenol. A composite metabolic network is proposed for the identified pathways, thus consolidating our identification of the pathways. The overall data demonstrated the great potential of the studied soil microbiome in the xenobiotic aromatics degradation. The results not only establish a rich reservoir for novel enzyme discovery but also provide putative applications in bioremediation. Copyright © 2016. Published by Elsevier B.V.

  19. Biodiversity and Seasonal Changes of the Microbiome in Chernozem Agroecosystem

    Science.gov (United States)

    Kutovaya, Olga; Chernov, Timofey; Tkhakakhova, Azida; Ivanova, Ekaterina

    2016-04-01

    Studies of the influence of different agricultural technologies on the soil microbiome are widespread; they are important for understanding the dependence of the microbiome on environmental and soil factors and solution of practical problems related to the control of biochemical processes in soils used in agriculture. The seasonal variability (spring-summer-autumn) of the taxonomic structure of prokaryotic microbiomes in chernozems was studied using sequencing of the 16S rRNA gene. The DNA preparation was used as the matrix for a polymerase chain reaction with the use of a pair of universal primers to the variable region V4 of the 16S rRNA gene - F515 (GTGCCAGCMGCCGCGGTAA) and R806 (GGACTACVSGGGTATCTAAT). The preparation of the samples and sequencing were made on a GS Junior. The samples were collected from the topsoil (0-20 cm) horizons of a long-term fallow and croplands differing in the rates of application of mineral fertilizers (NPK). The results of the weighted UniFrac analysis show that the microbiomes of the fallow and field were distinctly distinguished and that the type of land use significantly affected the structure of the microbial community. The most sensitive to the type of land use were the representatives of the Firmicutes, Gemmatiomonades, and Verrucomicrobia phyla. The type of vegetation and aeration of the root-dwelling soil layer seem to be key factors of this influence. The microbiomes analyzed also differed by seasons: in the autumn samples, they were closer to the spring ones than to the summer ones. This fact evidences that the seasonal differences in the microbiomes are not simple gradual temporal changes; they reflect the influence of some ecological factors transforming the phylogenetic structure of prokaryotic communities. As the seasonal shift was equally expressed in the microbiomes of the field and fallow, it is logical to assume that it was caused by the factors common for two systems of land use. Statistically sensitive to seasonal

  20. Market Integration Predicts Human Gut Microbiome Attributes across a Gradient of Economic Development.

    Science.gov (United States)

    Stagaman, Keaton; Cepon-Robins, Tara J; Liebert, Melissa A; Gildner, Theresa E; Urlacher, Samuel S; Madimenos, Felicia C; Guillemin, Karen; Snodgrass, J Josh; Sugiyama, Lawrence S; Bohannan, Brendan J M

    2018-01-01

    Economic development is marked by dramatic increases in the incidence of microbiome-associated diseases, such as autoimmune diseases and metabolic syndromes, but the lifestyle changes that drive alterations in the human microbiome are not known. We measured market integration as a proxy for economically related lifestyle attributes, such as ownership of specific market goods that index degree of market integration and components of traditional and nontraditional (more modern) house structure and infrastructure, and profiled the fecal microbiomes of 213 participants from a contiguous, indigenous Ecuadorian population. Despite relatively modest differences in lifestyle across the population, greater economic development correlated with significantly lower within-host diversity, higher between-host dissimilarity, and a decrease in the relative abundance of the bacterium Prevotella . These microbiome shifts were most strongly associated with more modern housing, followed by reduced ownership of traditional subsistence lifestyle-associated items. IMPORTANCE Previous research has reported differences in the gut microbiome between populations residing in wealthy versus poorer countries, leading to the assertion that lifestyle changes associated with economic development promote changes in the gut microbiome that promote the proliferation of microbiome-associated diseases. However, a direct relationship between economic development and the gut microbiome has not previously been shown. We surveyed the gut microbiomes of a single indigenous population undergoing economic development and found significant associations between features of the gut microbiome and lifestyle changes associated with economic development. These findings suggest that even the earliest stages of economic development can drive changes in the gut microbiome, which may provide a warning sign for the development of microbiome-associated diseases.

  1. Understanding Microbiome Effect on Immune Checkpoint Inhibition in Lung Cancer: Placing the Puzzle Pieces Together.

    Science.gov (United States)

    Swami, Umang; Zakharia, Yousef; Zhang, Jun

    2018-05-17

    Over the past couple of years, human microbiome has received increasing attention as a regulator and predictor of response to the therapies of various diseases. It is speculated that manipulating gut microbiome can modify response to cancer immunotherapies as well. Through this review, we have critically analyzed our current understanding of gut microbiome as a modulator of immunotherapies in lung cancer, explained conflicting data, evaluated current gaps and extrapolated our present knowledge to generate directions for future investigations.

  2. Exploring bikeability in a metropolitan setting: stimulating and hindering factors in commuting route environments

    Directory of Open Access Journals (Sweden)

    Wahlgren Lina

    2012-03-01

    Full Text Available Abstract Background Route environments may influence people's active commuting positively and thereby contribute to public health. Assessments of route environments are, however, needed in order to better understand the possible relationship between active commuting and the route environment. The aim of this study was, therefore, to assess the potential associations between perceptions of whether the route environment on the whole hinders or stimulates bicycle commuting and perceptions of environmental factors. Methods The Active Commuting Route Environment Scale (ACRES was used for the assessment of bicycle commuters' perceptions of their route environments in the inner urban parts of Greater Stockholm, Sweden. Bicycle commuters (n = 827 were recruited by advertisements in newspapers. Simultaneous multiple regression analyses were used to assess the relation between predictor variables (such as levels of exhaust fumes, noise, traffic speed, traffic congestion and greenery and the outcome variable (hindering - stimulating route environments. Two models were run, (Model 1 without and (Model 2 with the item traffic: unsafe or safe included as a predictor. Results Overall, about 40% of the variance of hindering - stimulating route environments was explained by the environmental predictors in our models (Model 1, R2 = 0.415, and Model 2, R 2= 0.435. The regression equation for Model 1 was: y = 8.53 + 0.33 ugly or beautiful + 0.14 greenery + (-0.14 course of the route + (-0.13 exhaust fumes + (-0.09 congestion: all types of vehicles (p ≤ 0.019. The regression equation for Model 2 was y = 6.55 + 0.31 ugly or beautiful + 0.16 traffic: unsafe or safe + (-0.13 exhaust fumes + 0.12 greenery + (-0.12 course of the route (p ≤ 0.001. Conclusions The main results indicate that beautiful, green and safe route environments seem to be, independently of each other, stimulating factors for bicycle commuting in inner urban areas. On the other hand, exhaust

  3. Genome-Wide Association Studies of the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Emily R Davenport

    Full Text Available The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both. These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%. For example, we identified an association between a taxon known to affect obesity (genus Akkermansia and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10-7. Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

  4. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome

    Science.gov (United States)

    Tajkarimi, Mehrdad; Wexler, Hannah M.

    2017-01-01

    Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from benign resident of the gut microbiome to virulent pathogen are not well understood, but a combination of horizontal gene transfer (HGT) of virulence genes and differential transcription of endogenous genes are clearly involved. The CRISPR-Cas system is a multi-functional system described in prokaryotes that may be involved in control both of HGT and of gene regulation. Results: Clustered regularly interspaced short palindromic repeats (CRISPR) elements in all strains of B. fragilis (n = 109) with publically available genomes were identified. Three different CRISPR-Cas types, corresponding most closely to Type IB, Type IIIB, and Type IIC, were identified. Thirty-five strains had two CRISPR-Cas types, and three strains included all three CRISPR-Cas types in their respective genomes. The cas1 gene in the Type IIIB system encoded a reverse-transcriptase/Cas1 fusion protein rarely found in prokaryotes. We identified a short CRISPR (3 DR) with no associated cas genes present in most of the isolates; these CRISPRs were found immediately upstream of a hipA/hipB operon and we speculate that this element may be involved in regulation of this operon related to formation of persister cells during antimicrobial exposure. Also, blood isolates of B. fragilis did not have Type IIC CRISPR-Cas systems and had atypical Type IIIB CRISPR-Cas systems that were lacking adjacent cas genes. Conclusions: This is the first systematic report of CRISPR-Cas systems in a wide range of B. fragilis strains

  5. CRISPR-Cas Systems in Bacteroides fragilis, an Important Pathobiont in the Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Mehrdad Tajkarimi

    2017-11-01

    Full Text Available Background: While CRISPR-Cas systems have been identified in bacteria from a wide variety of ecological niches, there are no studies to describe CRISPR-Cas elements in Bacteroides species, the most prevalent anaerobic bacteria in the lower intestinal tract. Microbes of the genus Bacteroides make up ~25% of the total gut microbiome. Bacteroides fragilis comprises only 2% of the total Bacteroides in the gut, yet causes of >70% of Bacteroides infections. The factors causing it to transition from benign resident of the gut microbiome to virulent pathogen are not well understood, but a combination of horizontal gene transfer (HGT of virulence genes and differential transcription of endogenous genes are clearly involved. The CRISPR-Cas system is a multi-functional system described in prokaryotes that may be involved in control both of HGT and of gene regulation.Results: Clustered regularly interspaced short palindromic repeats (CRISPR elements in all strains of B. fragilis (n = 109 with publically available genomes were identified. Three different CRISPR-Cas types, corresponding most closely to Type IB, Type IIIB, and Type IIC, were identified. Thirty-five strains had two CRISPR-Cas types, and three strains included all three CRISPR-Cas types in their respective genomes. The cas1 gene in the Type IIIB system encoded a reverse-transcriptase/Cas1 fusion protein rarely found in prokaryotes. We identified a short CRISPR (3 DR with no associated cas genes present in most of the isolates; these CRISPRs were found immediately upstream of a hipA/hipB operon and we speculate that this element may be involved in regulation of this operon related to formation of persister cells during antimicrobial exposure. Also, blood isolates of B. fragilis did not have Type IIC CRISPR-Cas systems and had atypical Type IIIB CRISPR-Cas systems that were lacking adjacent cas genes.Conclusions: This is the first systematic report of CRISPR-Cas systems in a wide range of B

  6. Extreme genomes

    OpenAIRE

    DeLong, Edward F

    2000-01-01

    The complete genome sequence of Thermoplasma acidophilum, an acid- and heat-loving archaeon, has recently been reported. Comparative genomic analysis of this 'extremophile' is providing new insights into the metabolic machinery, ecology and evolution of thermophilic archaea.

  7. Human microbiome science: vision for the future, Bethesda, MD, July 24 to 26, 2013

    Science.gov (United States)

    2014-01-01

    A conference entitled ‘Human microbiome science: Vision for the future’ was organized in Bethesda, MD from July 24 to 26, 2013. The event brought together experts in the field of human microbiome research and aimed at providing a comprehensive overview of the state of microbiome research, but more importantly to identify and discuss gaps, challenges and opportunities in this nascent field. This report summarizes the presentations but also describes what is needed for human microbiome research to move forward and deliver medical translational applications.

  8. The Challenge of Maintaining a Healthy Microbiome during Long-Duration Space Missions

    International Nuclear Information System (INIS)

    Voorhies, Alexander A.; Lorenzi, Hernan A.

    2016-01-01

    Astronauts will face a host of challenges on long-duration space missions like a human expedition to Mars, including the difficulty of maintaining a balanced and healthy microbiome. The human microbiome is the collection of all microorganisms residing in and on a human host, and it plays an essential role in keeping humans healthy. However, imbalances in the microbiome have also been linked to many human diseases. Space travel has been shown to alter the microbiome of astronauts in ways that are not yet completely understood. Here we review past and current microbiology and microbiome research with the aim of determining the extent of change to the human microbiome caused by space travel and implications for astronaut health. We also address several challenges that will need to be overcome in order to facilitate long-duration human exploration missions. These challenges include maintaining environmental conditions that favor healthy microbiomes, controlling the microbial organisms astronauts are exposed to, the impact of galactic cosmic radiation on the microbiome, and medical interventions that can potentially damage the microbiome.

  9. The Challenge of Maintaining a Healthy Microbiome During Long-Duration Space Missions.

    Directory of Open Access Journals (Sweden)

    Alexander Arnot Voorhies

    2016-07-01

    Full Text Available Astronauts will face a host of challenges on long-duration space missions like a human expedition to Mars, including the difficulty of maintaining a balanced and healthy microbiome. The human microbiome is the collection of all microorganisms residing in and on a human host, and it plays an essential role in keeping humans healthy. However, imbalances in the microbiome have also been linked to many human diseases. Space travel has been shown to alter the microbiome of astronauts in ways that are not yet completely understood. Here we review past and current microbiology and microbiome research with the aim of determining the extent of change to the human microbiome caused by space travel and implications for astronaut health. We also address several challenges that will need to be overcome in order to facilitate long-duration human exploration missions. These challenges include maintaining environmental conditions that favor healthy microbiomes, controlling the microbial organisms astronauts are exposed to, the impact of galactic cosmic radiation on the microbiome, and medical interventions that can potentially damage the microbiome.

  10. The Challenge of Maintaining a Healthy Microbiome during Long-Duration Space Missions

    Energy Technology Data Exchange (ETDEWEB)

    Voorhies, Alexander A.; Lorenzi, Hernan A., E-mail: hlorenzi@jcvi.org [Department of Infectious Disease, J. Craig Venter Institute, Rockville, MD (United States)

    2016-07-22

    Astronauts will face a host of challenges on long-duration space missions like a human expedition to Mars, including the difficulty of maintaining a balanced and healthy microbiome. The human microbiome is the collection of all microorganisms residing in and on a human host, and it plays an essential role in keeping humans healthy. However, imbalances in the microbiome have also been linked to many human diseases. Space travel has been shown to alter the microbiome of astronauts in ways that are not yet completely understood. Here we review past and current microbiology and microbiome research with the aim of determining the extent of change to the human microbiome caused by space travel and implications for astronaut health. We also address several challenges that will need to be overcome in order to facilitate long-duration human exploration missions. These challenges include maintaining environmental conditions that favor healthy microbiomes, controlling the microbial organisms astronauts are exposed to, the impact of galactic cosmic radiation on the microbiome, and medical interventions that can potentially damage the microbiome.

  11. Grass genomes

    OpenAIRE

    Bennetzen, Jeffrey L.; SanMiguel, Phillip; Chen, Mingsheng; Tikhonov, Alexander; Francki, Michael; Avramova, Zoya

    1998-01-01

    For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that in...

  12. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  13. Data versus Spock: lay theories about whether emotion helps or hinders.

    Science.gov (United States)

    Karnaze, Melissa M; Levine, Linda J

    2018-05-01

    The android Data from Star Trek admired human emotion whereas Spock viewed emotion as irrational and maladaptive. The theory that emotions fulfil adaptive functions is widely accepted in academic psychology but little is known about laypeople's theories. The present study assessed the extent to which laypeople share Data's view of emotion as helpful or Spock's view of emotion as a hindrance. We also assessed how help and hinder theory endorsement were related to reasoning, emotion regulation, and well-being. Undergraduates (N = 630) completed a stressful timed reasoning task and questionnaires that assessed their theories of emotion, emotion regulation strategies, happiness, and social support. Overall, participants viewed emotion more as a help than a hindrance. The more they endorsed the view that emotion helps, the better their reasoning scores. Endorsing a help theory also predicted the use of reappraisal which, in turn, predicted greater happiness and social support. In contrast, endorsing the view that emotion hinders was associated with emotion suppression and less social support. Thus, people's theories about the functionality of emotion may have important implications for their reasoning and emotional well-being.

  14. Factors hindering clinical training of students in selected nursing educational institutions in Southeastern Nigeria.

    Science.gov (United States)

    Anarado, Agnes N; Agu, Grace U; Nwonu, Eunice I

    2016-05-01

    Clinical training is an integral part of professional nursing education as it equips students with the required knowledge, skills, attitudes, and values needed for optimal practice in real-life situations. Inappropriate professional attributes have been observed among nursing graduates, while challenges to acquisition of clinical skills have been understudied in Nigeria. This study investigated system factors related to the provision of infrastructure/equipment, training/supervisory activities, and students' factors that may hinder clinical training of nursing students in two selected institutions in Southeastern Nigeria. This cross-sectional descriptive study purposively enlisted 283 students from a diploma and a degree nursing education program. Data were collected with researchers' developed questionnaire and analyzed in percentages, and means, with a mean decision criterion of valueprogram students had significantly less opportunity for return demonstration under supervision and independent practice in the laboratory; the diploma program students had significantly fewer teachers in their school and patients in their clinical area, clinical nurses as role models were not following the standard procedures in practice and students were not evaluated by supervisors at the end of each clinical experience. Identified factors in these training environments could hinder learners' interest and acquisition of professional attributes. Rectifying these situations could enhance the acquisition and display of appropriate professional performance behavior in practice by nursing graduates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Fragmentation approach to the point-island model with hindered aggregation: Accessing the barrier energy

    Science.gov (United States)

    González, Diego Luis; Pimpinelli, Alberto; Einstein, T. L.

    2017-07-01

    We study the effect of hindered aggregation on the island formation process in a one- (1D) and two-dimensional (2D) point-island model for epitaxial growth with arbitrary critical nucleus size i . In our model, the attachment of monomers to preexisting islands is hindered by an additional attachment barrier, characterized by length la. For la=0 the islands behave as perfect sinks while for la→∞ they behave as reflecting boundaries. For intermediate values of la, the system exhibits a crossover between two different kinds of processes, diffusion-limited aggregation and attachment-limited aggregation. We calculate the growth exponents of the density of islands and monomers for the low coverage and aggregation regimes. The capture-zone (CZ) distributions are also calculated for different values of i and la. In order to obtain a good spatial description of the nucleation process, we propose a fragmentation model, which is based on an approximate description of nucleation inside of the gaps for 1D and the CZs for 2D. In both cases, the nucleation is described by using two different physically rooted probabilities, which are related with the microscopic parameters of the model (i and la). We test our analytical model with extensive numerical simulations and previously established results. The proposed model describes excellently the statistical behavior of the system for arbitrary values of la and i =1 , 2, and 3.

  16. Common Lung Microbiome Identified among Mechanically Ventilated Surgical Patients.

    Directory of Open Access Journals (Sweden)

    Ashley D Smith

    Full Text Available The examination of the pulmonary microbiome in patients with non-chronic disease states has not been extensively examined. Traditional culture based screening methods are often unable to identify bacteria from bronchoalveolar lavage samples. The advancement of next-generation sequencing technologies allows for a culture-independent molecular based analysis to determine the microbial composition in the lung of this patient population. For this study, the Ion Torrent PGM system was used to assess the microbial complexity of culture negative bronchoalveolar lavage samples. A group of samples were identified that all displayed high diversity and similar relative abundance of bacteria. This group consisted of Hydrogenophaga, unclassified Bacteroidetes, Pedobacter, Thauera, and Acinetobacter. These bacteria may be representative of a common non-pathogenic pulmonary microbiome associated within this population of patients.

  17. Defining the Core Microbiome in Corals' Microbial Soup.

    Science.gov (United States)

    Hernandez-Agreda, Alejandra; Gates, Ruth D; Ainsworth, Tracy D

    2017-02-01

    Corals are considered one of the most complex microbial biospheres studied to date, hosting thousands of bacterial phylotypes in species-specific associations. There are, however, substantial knowledge gaps and challenges in understanding the functional significance of bacterial communities and bacterial symbioses of corals. The ubiquitous nature of some bacterial interactions has only recently been investigated and an accurate differentiation between the healthy (symbiotic) and unhealthy (dysbiotic) microbial state has not yet been determined. Here we review the complexity of the coral holobiont, coral microbiome diversity, and recently proposed bacterial symbioses of corals. We provide insight into coupling the core microbiome framework with community ecology principals, and draw on the theoretical insights from other complex systems, to build a framework to aid in deciphering ecologically significant microbes within a corals' microbial soup. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Control of Colon Cancer Progression by the Colon Microbiome

    Science.gov (United States)

    2015-08-01

    Award  Number:    W81XWH-­14-­1-­0235   TITLE:      Control of Colon Cancer Progression by the Colon Microbiome PRINCIPAL  INVESTIGATOR:    Frank  J... Microbiome Table  of  Contents   Page   1. Introduction………………………………………………………….4 2. Keywords…………………………………………………………….5 3. Accomplishments………..…………………………………………5

  19. Systems approaches to computational modeling of the oral microbiome

    Directory of Open Access Journals (Sweden)

    Dimiter V. Dimitrov

    2013-07-01

    Full Text Available Current microbiome research has generated tremendous amounts of data providing snapshots of molecular activity in a variety of organisms, environments, and cell types. However, turning this knowledge into whole system level of understanding on pathways and processes has proven to be a challenging task. In this review we highlight the applicability of bioinformatics and visualization techniques to large collections of data in order to better understand the information that contains related diet – oral microbiome – host mucosal transcriptome interactions. In particular we focus on systems biology of Porphyromonas gingivalis in the context of high throughput computational methods tightly integrated with translational systems medicine. Those approaches have applications for both basic research, where we can direct specific laboratory experiments in model organisms and cell cultures, to human disease, where we can validate new mechanisms and biomarkers for prevention and treatment of chronic disorders

  20. Insights into the human gut microbiome and cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Soumalya Sarkar

    2018-01-01

    Full Text Available The microbiome comprises all of the genetic materials within a microbiota. This can also be referred to as the metagenome of the microbiota. Dysbiosis, a change in the composition of the gut microbiota, has been associated with pathology, including cardiovascular diseases (CVDs. The recently discovered contribution of gut microbiota-derived molecules in the development of heart disease and its risk factors has significantly increased attention toward the connection between our gut and heart. The gut microbiome is virtually an endocrine organ, capable of contributing to and reacting to circulating signaling molecules within the host. Gut microbiota-host interactions occur through many pathways, including trimethylamine-N-oxide and short-chain fatty acids. These molecules and others have been linked to chronic kidney disease, atherosclerosis, and hypertension. Dysbiosis has been implicated in CVD as well as many aspects of obesity, hypertension, chronic kidney disease, and diabetes.

  1. The Characterization and Manipulation of the Reticulated Microbiome in Vertebrates

    DEFF Research Database (Denmark)

    Roggenbuck, Michael

    The term microbiome - “The ecological community of commensal, symbiotic, and pathogenic microorganisms that literally share our body space” - was first described by Professor Joshua Lederberg of the Rockefeller University. With the beginning of the golden age of High-throughput-Sequencing, is has...... become more evident that animals and their microbial communities are metabolically and immunologically tightly connected and highly dependent on each other. Today the complex microbial flora is often considered as an organ – with a healthy and a diseased stage. Currently the human microbiome is most...... intense evaluated. However, mechanistically questions often cannot be studied in humans, therefor animal research is applied. In the first part of this thesis, the diet intervention on the “total” microbial community of two animal model organisms – mice and lambs - was characterized using 16S rRNA gene...

  2. The Potential for Emerging Microbiome-Mediated Therapeutics in Asthma.

    Science.gov (United States)

    Ozturk, Ayse Bilge; Turturice, Benjamin Arthur; Perkins, David L; Finn, Patricia W

    2017-08-10

    In terms of immune regulating functions, analysis of the microbiome has led the development of therapeutic strategies that may be applicable to asthma management. This review summarizes the current literature on the gut and lung microbiota in asthma pathogenesis with a focus on the roles of innate molecules and new microbiome-mediated therapeutics. Recent clinical and basic studies to date have identified several possible therapeutics that can target innate immunity and the microbiota in asthma. Some of these drugs have shown beneficial effects in the treatment of certain asthma phenotypes and for protection against asthma during early life. Current clinical evidence does not support the use of these therapies for effective treatment of asthma. The integration of the data regarding microbiota with technologic advances, such as next generation sequencing and omics offers promise. Combining comprehensive bioinformatics, new molecules and approaches may shape future asthma treatment.

  3. Microbiome in the urinary system—a review

    Directory of Open Access Journals (Sweden)

    Jane Tang

    2017-03-01

    Full Text Available Urine was considered sterile in healthy individuals for many years, and the presence of bacteria signified urinary tract infection. With the development of Expanded Quantitative Urine Culture (EQUC and utilization of molecular techniques, the previous clinical dogma is no longer valid. Instead, healthy people harbor a considerable microbial community, or microbiota, in their urinary systems. Similar to other physiological niches where microbiota contribute to the health status of their hosts, recent studies demonstrated different microbial populations also play a crucial role in urinary health of individuals. Understanding urinary microbiome thus allows a more holistic approach in the diagnosis, treatment, and prevention of diseases and disorders in urinary system. This review article provides an overview of current findings in urinary microbiome and discusses some of the gaps for future research.

  4. Immune and genetic gardening of the intestinal microbiome

    Science.gov (United States)

    Jacobs, Jonathan P.; Braun, Jonathan

    2014-01-01

    The mucosal immune system – consisting of adaptive and innate immune cells as well as the epithelium – is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to nonpathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility. PMID:24613921

  5. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy

    DEFF Research Database (Denmark)

    Campanaro, Stefano; Treu, Laura; Kougias, Panagiotis

    2016-01-01

    Biogas production is an economically attractive technology that has gained momentum worldwide over the past years. Biogas is produced by a biologically mediated process, widely known as "anaerobic digestion." This process is performed by a specialized and complex microbial community, in which...... performed using >400 proteins revealed that the biogas community is a trove of new species. A new approach based on functional properties as per network representation was developed to assign roles to the microbial species. The organization of the anaerobic digestion microbiome is resembled by a funnel...... on the phylogenetic and functional characterization of the microbial community populating biogas reactors. By applying for the first time high-throughput sequencing and a novel binning strategy, the identified genes were anchored to single genomes providing a clear understanding of their metabolic pathways...

  6. Diet may influence the oral microbiome composition in cats

    OpenAIRE

    Adler, Christina J.; Malik, Richard; Browne, Gina V.; Norris, Jacqueline M.

    2016-01-01

    Background Periodontal disease is highly prevalent amongst domestic cats, causing pain, gingival bleeding, reduced food intake, loss of teeth and possibly impacts on overall systemic health. Diet has been suggested to play a role in the development of periodontal disease in cats. There is a complete lack of information about how diet (composition and texture) affects the feline oral microbiome, the composition of which may influence oral health and the development of periodontal disease. We u...

  7. The Tasmanian devil microbiome-implications for conservation and management.

    Science.gov (United States)

    Cheng, Yuanyuan; Fox, Samantha; Pemberton, David; Hogg, Carolyn; Papenfuss, Anthony T; Belov, Katherine

    2015-12-21

    The Tasmanian devil, the world's largest carnivorous marsupial, is at risk of extinction due to devil facial tumour disease (DFTD), a fatal contagious cancer. The Save the Tasmanian Devil Program has established an insurance population, which currently holds over 600 devils in captive facilities across Australia. Microbes are known to play a crucial role in the health and well-being of humans and other animals, and increasing evidence suggests that changes in the microbiota can influence various aspects of host physiology and development. To improve our understanding of devils and facilitate management and conservation of the species, we characterised the microbiome of wild devils and investigated differences in the composition of microbial community between captive and wild individuals. A total of 1,223,550 bacterial 16S ribosomal RNA (rRNA) sequences were generated via Roche 454 sequencing from 56 samples, including 17 gut, 15 skin, 18 pouch and 6 oral samples. The devil's gut microbiome was dominated by Firmicutes and showed a high Firmicutes-to-Bacteroidetes ratio, which appears to be a common feature of many carnivorous mammals. Metabolisms of carbohydrates, amino acids, energy, cofactors and vitamins, nucleotides and lipids were predicted as the most prominent metabolic pathways that the devil's gut flora contributed to. The microbiota inside the female's pouch outside lactation was highly similar to that of the skin, both co-dominated by Firmicutes and Proteobacteria. The oral microbiome had similar proportions of Proteobacteria, Bacteroidetes, Firmicutes and Fusobacteria. Compositional differences were observed in all four types of microbiota between devils from captive and wild populations. Certain captive devils had significantly lower levels of gut bacterial diversity than wild individuals, and the two groups differed in the proportion of gut bacteria accounting for the metabolism of glycan, amino acids and cofactors and vitamins. Further studies are

  8. Stability of the gorilla microbiome despite simian immunodeficiency virus infection

    OpenAIRE

    Moeller, A. H.; Peeters, Martine; Ayouba, Ahidjo; Ngole, E. M.; Esteban, A.; Hahn, B. H.; Ochman, H.

    2015-01-01

    Simian immunodeficiency viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in faecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. H...

  9. Stability of the Gorilla Microbiome Despite SIV Infection

    OpenAIRE

    Moeller, Andrew H.; Peeters, Martine; Ayouba, Ahidjo; Ngole, Eitel Mpoudi; Esteban, Amadine; Hahn, Beatrice H.; Ochman, Howard

    2015-01-01

    Simian Immunodeficiency Viruses (SIVs) have been discovered in over 45 primate species; however, the pathogenic potential of most SIV strains remains unknown due to difficulties inherent in observing wild populations. Because those SIV infections that are pathogenic have been shown to induce changes in the host's gut microbiome, monitoring the microbiota present in fecal samples can provide a noninvasive means for studying the effects of SIV infection on the health of wild-living primates. He...

  10. Analysis of the Small Intestinal Microbiome of Children With Autism

    Science.gov (United States)

    2013-05-01

    Rarefaction curves for OTUs (b) Boxplot Figure 1: Number of OTUs within the microbiome (bacteria) data. The number of...subject are linked via a line. 9 (a) Rarefaction curves for the Shannondiversity estimate ] (b) Boxplot Figure...8217=−  i=1 R piln(pi) where R is richness and pi is the relative abundance of the ith OTU. For both, rarefaction was used to indicate the impact of

  11. Periodontitis, Microbiomes and their Role in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Anna B. Pritchard

    2017-10-01

    Full Text Available As far back as the eighteenth and early nineteenth centuries, microbial infections were responsible for vast numbers of deaths. The trend reversed with the introduction of antibiotics coinciding with longer life. Increased life expectancy however, accompanied the emergence of age related chronic inflammatory states including the sporadic form of Alzheimer’s disease (AD. Taken together, the true challenge of retaining health into later years of life now appears to lie in delaying and/or preventing the progression of chronic inflammatory diseases, through identifying and influencing modifiable risk factors. Diverse pathogens, including periodontal bacteria have been associated with AD brains. Amyloid-beta (Aβ hallmark protein of AD may be a consequence of infection, called upon due to its antimicrobial properties. Up to this moment in time, a lack of understanding and knowledge of a microbiome associated with AD brain has ensured that the role pathogens may play in this neurodegenerative disease remains unresolved. The oral microbiome embraces a range of diverse bacterial phylotypes, which especially in vulnerable individuals, will excite and perpetuate a range of inflammatory conditions, to a wide range of extra-oral body tissues and organs specific to their developing pathophysiology, including the brain. This offers the tantalizing opportunity that by controlling the oral-specific microbiome; clinicians may treat or prevent a range of chronic inflammatory diseases orally. Evolution has equipped the human host to combat infection/disease by providing an immune system, but Porphyromonas gingivalis and selective spirochetes, have developed immune avoidance strategies threatening the host-microbe homeostasis. It is clear from longitudinal monitoring of patients that chronic periodontitis contributes to declining cognition. The aim here is to discuss the contribution from opportunistic pathogens of the periodontal microbiome, and highlight the

  12. Mobile phones carry the personal microbiome of their owners.

    Science.gov (United States)

    Meadow, James F; Altrichter, Adam E; Green, Jessica L

    2014-01-01

    Most people on the planet own mobile phones, and these devices are increasingly being utilized to gather data relevant to our personal health, behavior, and environment. During an educational workshop, we investigated the utility of mobile phones to gather data about the personal microbiome - the collection of microorganisms associated with the personal effects of an individual. We characterized microbial communities on smartphone touchscreens to determine whether there was significant overlap with the skin microbiome sampled directly from their owners. We found that about 22% of the bacterial taxa on participants' fingers were also present on their own phones, as compared to 17% they shared on average with other people's phones. When considered as a group, bacterial communities on men's phones were significantly different from those on their fingers, while women's were not. Yet when considered on an individual level, men and women both shared significantly more of their bacterial communities with their own phones than with anyone else's. In fact, 82% of the OTUs were shared between a person's index and phone when considering the dominant taxa (OTUs with more than 0.1% of the sequences in an individual's dataset). Our results suggest that mobile phones hold untapped potential as personal microbiome sensors.

  13. Mobile phones carry the personal microbiome of their owners

    Science.gov (United States)

    Altrichter, Adam E.; Green, Jessica L.

    2014-01-01

    Most people on the planet own mobile phones, and these devices are increasingly being utilized to gather data relevant to our personal health, behavior, and environment. During an educational workshop, we investigated the utility of mobile phones to gather data about the personal microbiome — the collection of microorganisms associated with the personal effects of an individual. We characterized microbial communities on smartphone touchscreens to determine whether there was significant overlap with the skin microbiome sampled directly from their owners. We found that about 22% of the bacterial taxa on participants’ fingers were also present on their own phones, as compared to 17% they shared on average with other people’s phones. When considered as a group, bacterial communities on men’s phones were significantly different from those on their fingers, while women’s were not. Yet when considered on an individual level, men and women both shared significantly more of their bacterial communities with their own phones than with anyone else’s. In fact, 82% of the OTUs were shared between a person’s index and phone when considering the dominant taxa (OTUs with more than 0.1% of the sequences in an individual’s dataset). Our results suggest that mobile phones hold untapped potential as personal microbiome sensors. PMID:25024916

  14. Variance Component Selection With Applications to Microbiome Taxonomic Data

    Directory of Open Access Journals (Sweden)

    Jing Zhai

    2018-03-01

    Full Text Available High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Microbiome data are summarized as counts or composition of the bacterial taxa at different taxonomic levels. An important problem is to identify the bacterial taxa that are associated with a response. One method is to test the association of specific taxon with phenotypes in a linear mixed effect model, which incorporates phylogenetic information among bacterial communities. Another type of approaches consider all taxa in a joint model and achieves selection via penalization method, which ignores phylogenetic information. In this paper, we consider regression analysis by treating bacterial taxa at different level as multiple random effects. For each taxon, a kernel matrix is calculated based on distance measures in the phylogenetic tree and acts as one variance component in the joint model. Then taxonomic selection is achieved by the lasso (least absolute shrinkage and selection operator penalty on variance components. Our method integrates biological information into the variable selection problem and greatly improves selection accuracies. Simulation studies demonstrate the superiority of our methods versus existing methods, for example, group-lasso. Finally, we apply our method to a longitudinal microbiome study of Human Immunodeficiency Virus (HIV infected patients. We implement our method using the high performance computing language Julia. Software and detailed documentation are freely available at https://github.com/JingZhai63/VCselection.

  15. The Mammalian Microbiome and Its Importance in Laboratory Animal Research.

    Science.gov (United States)

    Bleich, André; Fox, James G

    2015-01-01

    In this issue are assembled 10 fascinating, well-researched papers that describe the emerging field centered on the microbiome of vertebrate animals and how these complex microbial populations play a fundamental role in shaping homeostasis of the host. The content of the papers will deal with bacteria and, because of relative paucity of information on these organisms, will not include discussions on viruses, fungus, protozoa, and parasites that colonize various animals. Dissecting the number and interactions of the 500-1000 bacterial species that can inhabit the intestines of animals is made possible by advanced DNA sequencing methods, which do not depend on whether the organism can be cultured or not. Laboratory animals, particularly rodents, have proven to be an indispensable component in not only understanding how the microbiome aids in digestion and protects the host against pathogens, but also in understanding the relationship of various species of bacteria to development of the immune system. Importantly, this research elucidates purported mechanisms for how the microbiome can profoundly affect initiation and progression of diseases such as type 1 diabetes, metabolic syndromes, obesity, autoimmune arthritis, inflammatory bowel disease, and irritable bowel syndrome. The strengths and limitations of the use of germfree mice colonized with single species of bacteria, a restricted flora, or most recently the use of human-derived microbiota are also discussed. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Early microbial contact, the breast milk microbiome and child health.

    Science.gov (United States)

    Rautava, S

    2016-02-01

    The significance of contact with microbes in early life for subsequent health has been the subject of intense research during the last 2 decades. Disturbances in the establishment of the indigenous intestinal microbiome caused by cesarean section delivery or antibiotic exposure in early life have been linked to the risk of immune-mediated and inflammatory conditions such as atopic disorders, inflammatory bowel disease and obesity later in life. Distinct microbial populations have recently been discovered at maternal sites including the amniotic cavity and breast milk, as well as meconium, which have previously been thought to be sterile. Our understanding of the impact of fetal microbial contact on health outcomes is still rudimentary. Breast milk is known to modulate immune and metabolic programming. The breast milk microbiome is hypothesized to guide infant gut colonization and is affected by maternal health status and mode of delivery. Immunomodulatory factors in breast milk interact with the maternal and infant gut microbiome and may mediate some of the health benefits associated with breastfeeding. The intimate connection between the mother and the fetus or the infant is a potential target for microbial therapeutic interventions aiming to support healthy microbial contact and protect against disease.

  17. Probiotics, prebiotics, and the host microbiome: the science of translation.

    Science.gov (United States)

    Petschow, Bryon; Doré, Joël; Hibberd, Patricia; Dinan, Timothy; Reid, Gregor; Blaser, Martin; Cani, Patrice D; Degnan, Fred H; Foster, Jane; Gibson, Glenn; Hutton, John; Klaenhammer, Todd R; Ley, Ruth; Nieuwdorp, Max; Pot, Bruno; Relman, David; Serazin, Andrew; Sanders, Mary Ellen

    2013-12-01

    Recent advances in our understanding of the community structure and function of the human microbiome have implications for the potential role of probiotics and prebiotics in promoting human health. A group of experts recently met to review the latest advances in microbiota/microbiome research and discuss the implications for development of probiotics and prebiotics, primarily as they relate to effects mediated via the intestine. The goals of the meeting were to share recent advances in research on the microbiota, microbiome, probiotics, and prebiotics, and to discuss these findings in the contexts of regulatory barriers, evolving healthcare environments, and potential effects on a variety of health topics, including the development of obesity and diabetes; the long-term consequences of exposure to antibiotics early in life to the gastrointestinal (GI) microbiota; lactose intolerance; and the relationship between the GI microbiota and the central nervous system, with implications for depression, cognition, satiety, and mental health for people living in developed and developing countries. This report provides an overview of these discussions. © 2013 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  18. The human microbiome as a reservoir of antimicrobial resistance

    Directory of Open Access Journals (Sweden)

    John ePenders

    2013-04-01

    Full Text Available The gut microbiota is amongst the most densely populated microbial ecosystem on earth. While the microbiome exerts numerous health beneficial functions, the high density of microorganisms within this ecosystem also facilitates horizontal transfer of antimicrobial resistance (AMR genes to potential pathogenic bacteria. Over the past decades antibiotic susceptibility testing of specific indicator bacteria from the microbiome, such as Escherichia coli, has been the method of choice in most studies. These studies have greatly enlarged our understanding on the prevalence and distribution of AMR and associated risk factors.Recent studies using (functional metagenomics, however, highlighted the unappreciated diversity of AMR genes in the human microbiome and identified genes that had not been described previously. Next to metagenomics, more targeted approaches such as PCR for detection and quantification of AMR genes within a population are promising, in particular for large-scale epidemiological screening. Here we present an overview of the indigenous microbiota as a reservoir of AMR genes, the current knowledge on this resistome and the recent and upcoming advances in the molecular diagnostic approaches to unravel this reservoir.

  19. The microbiome and HIV prevention strategies in women.

    Science.gov (United States)

    Abdool Karim, Salim S; Passmore, Jo-Ann S; Baxter, Cheryl

    2018-01-01

    HIV prevention approaches that women can use and control are a priority. Results from topical and oral preexposure prophylaxis (PrEP) HIV prevention trials have produced inconsistent results in women. One of the main behavioural factors impacting effectiveness of PrEP has been suboptimal adherence. In this review, we examine biological factors that modulate topical PrEP efficacy, with particular focus on the vaginal microbiome. Genital inflammation is an independent risk factor for HIV acquisition in women. Using 16S rRNA sequencing of the vaginal microbiota, anaerobic bacteria linked with bacterial vaginosis have been shown to be associated with both genital inflammation and HIV risk. Using proteomics, it was recently discovered that a dysbiotic vaginal microbiome, comprising less than 50% Lactobacillus spp., directly influenced topical PrEP efficacy. Gardnerella vaginalis, the dominant vaginal species in dysbiotic women, was able to directly degrade tenofovir, but not dapivirine, an antiretroviral also being developed for topical PrEP. The link between bacterial vaginosis-associated organisms with HIV risk and altered tenofovir gel effectiveness underscores the importance of good vaginal health and good adherence for women to benefit maximally from topical PrEP. Altering the vaginal microbiome is one of the new directions being pursued for HIV prevention.

  20. Gut microbiome and its role in cardiovascular diseases.

    Science.gov (United States)

    Ahmadmehrabi, Shadi; Tang, W H Wilson

    2017-11-01

    In recent years, an interest in intestinal microbiota-host interactions has increased due to many findings about the impact of gut bacteria on human health and disease. Dysbiosis, a change in the composition of the gut microbiota, has been associated with much pathology, including cardiovascular diseases (CVD). This article will review normal functions of the gut microbiome, its link to CVD, and potential therapeutic interventions. The recently discovered contribution of gut microbiota-derived molecules in the development of heart disease and its risk factors has significantly increased attention towards the connection between our gut and heart. The gut microbiome is virtually an endocrine organ, arguably the largest, capable of contributing to and reacting to circulating signaling molecules within the host. Gut microbiota-host interactions occur through many pathways, including trimethylamine-N-oxide and short-chain fatty acids. These molecules and others have been linked to much pathology including chronic kidney disease, atherosclerosis, and hypertension. Although our understanding of gut microbiota-host interactions has increased recently; many questions remain about the mechanistic links between the gut microbiome and CVD. With further research, we may one day be able to add gut microbiota profiles as an assessable risk factor for CVD and target therapies towards the gut microbiota.

  1. Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis.

    Science.gov (United States)

    Czaja, Albert J

    2016-11-14

    The intestinal microbiome is a reservoir of microbial antigens and activated immune cells. The aims of this review were to describe the role of the intestinal microbiome in generating innate and adaptive immune responses, indicate how these responses contribute to the development of systemic immune-mediated diseases, and encourage investigations that improve the understanding and management of autoimmune hepatitis. Alterations in the composition of the intestinal microflora (dysbiosis) can disrupt intestinal and systemic immune tolerances for commensal bacteria. Toll-like receptors within the intestine can recognize microbe-associated molecular patterns and shape subsets of T helper lymphocytes that may cross-react with host antigens (molecular mimicry). Activated gut-derived lymphocytes can migrate to lymph nodes, and gut-derived microbial antigens can translocate to extra-intestinal sites. Inflammasomes can form within hepatocytes and hepatic stellate cells, and they can drive the pro-inflammatory, immune-mediated, and fibrotic responses. Diet, designer probiotics, vitamin supplements, re-colonization methods, antibiotics, drugs that decrease intestinal permeability, and molecular interventions that block signaling pathways may emerge as adjunctive regimens that complement conventional immunosuppressive management. In conclusion, investigations of the intestinal microbiome are warranted in autoimmune hepatitis and promise to clarify pathogenic mechanisms and suggest alternative management strategies.

  2. Control of the gut microbiome by fecal microRNA

    Directory of Open Access Journals (Sweden)

    Shirong Liu

    2016-03-01

    Full Text Available Since their discovery in the early 90s, microRNAs (miRNAs, small non-coding RNAs, have mainly been associated with posttranscriptional regulation of gene expression on a cell-autonomous level. Recent evidence has extended this role by adding inter-species communication to the manifold functional range. In our latest study [Liu S, et al., 2016, Cell Host & Microbe], we identified miRNAs in gut lumen and feces of both mice and humans. We found that intestinal epithelial cells (IEC and Hopx+ cells were the two main sources of fecal miRNA. Deficiency of IEC-miRNA resulted in gut dysbiosis and WT fecal miRNA transplantation restored the gut microbiota. We investigated potential mechanisms for this effect and found that miRNAs were able to regulate the gut microbiome. By culturing bacteria with miRNAs, we found that host miRNAs were able to enter bacteria, specifically regulate bacterial gene transcripts and affect bacterial growth. Oral administration of synthetic miRNA mimics affected specific bacteria in the gut. Our findings describe a previously unknown pathway by which the gut microbiome is regulated by the host and raises the possibility that miRNAs may be used therapeutically to manipulate the microbiome for the treatment of disease.

  3. The role of microbiome in determining pediatric health

    Directory of Open Access Journals (Sweden)

    Annamaria Staiano

    2014-06-01

    Full Text Available The beneficial effects of food containing probiotics (or prebiotics or synbiotics on human health – and in particular of dairy products such as yogurt and milk – are increasingly being promoted by food manufacturers, but also by health professionals. The human microbiome is composed of bacteria, viruses, fungi, archaea and protozoa. Each body site has its own distinct microbiome, with a unique microbial composition that presumably reflects the differences in tissue structure and function. Shifts in the composition of the gastrointestinal microbiome have been linked to the development and progression of several intestinal and extra-intestinal diseases, including childhood asthma development and inflammatory bowel disease. Probiotics are advertised to contribute to overall well-being and are sought to prevent and alleviate many diseases, especially digestive, immunological and respiratory disorders. Modulating microbial exposure through probiotic supplementation represents a long-held strategy towards ameliorating disease via intestinal microbial community restructuring. Several recent human trials have demonstrated the potential for live biotherapeutic products in disease management and prevention, but larger, better controlled, and universally standardized studies are needed for the rigorous scientific evaluation of probiotic therapies and the comparison of diametric outcomes. Proceedings of the 10th International Workshop on Neonatology · Cagliari (Italy · October 22nd-25th, 2014 · The last ten years, the next ten years in Neonatology Guest Editors: Vassilios Fanos, Michele Mussap, Gavino Faa, Apostolos Papageorgiou

  4. Multi-layer foil web hindering radiation, particularly radioactive radiation. Strahlung, insbesondere radioaktive Strahlung hemmende mehrschichtige Folienbahn

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1987-02-19

    The invention concerns surfaces hindering radiation, which contain lead or other heavy material, which have a layer containing heavy material particles, particularly lead particles, for use as protective clothing.

  5. Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity

    Directory of Open Access Journals (Sweden)

    Vinod K. Gupta

    2017-06-01

    Full Text Available One of the fundamental issues in the microbiome research is characterization of the healthy human microbiota. Recent studies have elucidated substantial divergences in the microbiome structure between healthy individuals from different race and ethnicity. This review provides a comprehensive account of such geography, ethnicity or life-style-specific variations in healthy microbiome at five major body habitats—Gut, Oral-cavity, Respiratory Tract, Skin, and Urogenital Tract (UGT. The review focuses on the general trend in the human microbiome evolution—a gradual transition in the gross compositional structure along with a continual decrease in diversity of the microbiome, especially of the gut microbiome, as the human populations passed through three stages of subsistence like foraging, rural farming and industrialized urban western life. In general, gut microbiome of the hunter-gatherer populations is highly abundant with Prevotella, Proteobacteria, Spirochaetes, Clostridiales, Ruminobacter etc., while those of the urban communities are often enriched in Bacteroides, Bifidobacterium, and Firmicutes. The oral and skin microbiome are the next most diverse among different populations, while respiratory tract and UGT microbiome show lesser variations. Higher microbiome diversity is observed for oral-cavity in hunter-gatherer group with higher prevalence of Haemophilus than agricultural group. In case of skin microbiome, rural and urban Chinese populations show variation in abundance of Trabulsiella and Propionibacterium. On the basis of published data, we have characterized the core microbiota—the set of genera commonly found in all populations, irrespective of their geographic locations, ethnicity or mode of subsistence. We have also identified the major factors responsible for geography-based alterations in microbiota; though it is not yet clear which factor plays a dominant role in shaping the microbiome—nature or nurture, host genetics

  6. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions.

    Science.gov (United States)

    Gao, Bei; Bian, Xiaoming; Mahbub, Ridwan; Lu, Kun

    2017-02-01

    There is growing recognition of the significance of the gut microbiome to human health, and the association between a perturbed gut microbiome with human diseases has been established. Previous studies also show the role of environmental toxicants in perturbing the gut microbiome and its metabolic functions. The wide agricultural use of diazinon, an organophosphate insecticide, has raised serious environmental health concerns since it is a potent neurotoxicant. With studies demonstrating the presence of a microbiome-gut-brain axis, it is possible that gut microbiome perturbation may also contribute to diazinon toxicity. We investigated the impact of diazinon exposure on the gut microbiome composition and its metabolic functions in C57BL/6 mice. We used a combination of 16S rRNA gene sequencing, metagenomics sequencing, and mass spectrometry-based metabolomics profiling in a mouse model to examine the functional impact of diazinon on the gut microbiome. 16S rRNA gene sequencing revealed that diazinon exposure significantly perturbed the gut microbiome, and metagenomic sequencing found that diazinon exposure altered the functional metagenome. Moreover, metabolomics profiling revealed an altered metabolic profile arising from exposure. Of particular significance, these changes were more pronounced for male mice than for female mice. Diazinon exposure perturbed the gut microbiome community structure, functional metagenome, and associated metabolic profiles in a sex-specific manner. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism contributing to diazinon neurotoxicity and, in particular, its sex-selective effects. Citation: Gao B, Bian X, Mahbub R, Lu K. 2017. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125:198-206; http://dx.doi.org/10.1289/EHP202.

  7. Models of microbiome evolution incorporating host and microbial selection.

    Science.gov (United States)

    Zeng, Qinglong; Wu, Steven; Sukumaran, Jeet; Rodrigo, Allen

    2017-09-25

    Numerous empirical studies suggest that hosts and microbes exert reciprocal selective effects on their ecological partners. Nonetheless, we still lack an explicit framework to model the dynamics of both hosts and microbes under selection. In a previous study, we developed an agent-based forward-time computational framework to simulate the neutral evolution of host-associated microbial communities in a constant-sized, unstructured population of hosts. These neutral models allowed offspring to sample microbes randomly from parents and/or from the environment. Additionally, the environmental pool of available microbes was constituted by fixed and persistent microbial OTUs and by contributions from host individuals in the preceding generation. In this paper, we extend our neutral models to allow selection to operate on both hosts and microbes. We do this by constructing a phenome for each microbial OTU consisting of a sample of traits that influence host and microbial fitnesses independently. Microbial traits can influence the fitness of hosts ("host selection") and the fitness of microbes ("trait-mediated microbial selection"). Additionally, the fitness effects of traits on microbes can be modified by their hosts ("host-mediated microbial selection"). We simulate the effects of these three types of selection, individually or in combination, on microbiome diversities and the fitnesses of hosts and microbes over several thousand generations of hosts. We show that microbiome diversity is strongly influenced by selection acting on microbes. Selection acting on hosts only influences microbiome diversity when there is near-complete direct or indirect parental contribution to the microbiomes of offspring. Unsurprisingly, microbial fitness increases under microbial selection. Interestingly, when host selection operates, host fitness only increases under two conditions: (1) when there is a strong parental contribution to microbial communities or (2) in the absence of a strong

  8. Nitroxyl free radicals formed from hindered amine light stabilizers under 60Co γ-ray irradiation

    International Nuclear Information System (INIS)

    Wang Huiliang; Chen Wenxiu

    2006-01-01

    Nitroxyl free radicals formed from several low molecular weight (LMW) hindered amine light stabilizers (HALS) under 60 Co γ-ray irradiation was studied with electron spin resonance (ESR) spectroscopy. All the HALSs irradiated in air formed nitroxyl free radicals under irradiation in air. For most of the HALSs, concentration of the nitroxyl free radicals increased linearly and quickly with absorbed dose in 0-10 kGy range, but increased slowly, or even kept constant, with doses of greater than 10 kGy. Concentration of nitroxyl free radicals formed from LMW HALS was usually higher than high molecular weight HALS. Tetramethyl HALS was easier to form nitroxyl free radicals than pentamethyl HLAS. Concentration of nitroxyl free radicals formed from the samples irradiated in oxygen was about two times higher than that the samples irradiated in air. Mechanisms of the nitroxyl free radical formation from the γ-ray irradiated HALSs were was discussed. (authors)

  9. What Hinders the Implementation of the Supply Chain Risk Management Process Into Practice Organizations?

    DEFF Research Database (Denmark)

    Gredal, Pauline; Panyi, Zsófia; Kinra, Aseem

    2017-01-01

    Supply chain risk management process (SCRMP) is being advanced as a systematic and structured approach for identifying, assessing, mitigating, and monitoring all risks arising from complex supply chains. However, while the literature deems it necessary to implement such a process as the solution ...... indicate that the unavailability of information and lack of proper data management hinders the implementation of SCRMP in the context global supply chains.......Supply chain risk management process (SCRMP) is being advanced as a systematic and structured approach for identifying, assessing, mitigating, and monitoring all risks arising from complex supply chains. However, while the literature deems it necessary to implement such a process as the solution...... to the increasing vulnerability companies face, there is a lack of empirical evidence on whether the process model can be implemented. This paper shows possible hindrances in the implementation of SCRMP for companies with global supply chains based on the findings of an in-depth case study. Our empirical findings...

  10. Metagenomic analysis of buffalo rumen microbiome: Effect of roughage diet on Dormancy and Sporulation genes.

    Science.gov (United States)

    Singh, K M; Reddy, B; Patel, A K; Panchasara, H; Parmar, N; Patel, A B; Shah, T M; Bhatt, V D; Joshi, C G

    2014-12-01

    Buffalo rumen microbiome experiences a variety of diet stress and represents reservoir of Dormancy and Sporulation genes. However, the information on genomic responses to such conditions is very limited. The Ion Torrent PGM next generation sequencing technology was used to characterize general microbial diversity and the repertoire of microbial genes present, including genes associated with Dormancy and Sporulation in Mehsani buffalo rumen metagenome. The research findings revealed the abundance of bacteria at the domain level and presence of Dormancy and Sporulation genes which were predominantly associated with the Clostridia and Bacilli taxa belonging to the phyla Firmicutes. Genes associated with Sporulation cluster and Sporulation orphans were increased from 50% to 100% roughage treatment, thereby promoting sporulation all along the treatments. The spore germination is observed to be the highest in the 75% roughage treatment both in the liquid and solid rumen fraction samples with respect to the decrease in the values of the genes associated with spore core dehydration, thereby facilitating spore core hydration which is necessary for spore germination.

  11. Fast and simple protein-alignment-guided assembly of orthologous gene families from microbiome sequencing reads.

    Science.gov (United States)

    Huson, Daniel H; Tappu, Rewati; Bazinet, Adam L; Xie, Chao; Cummings, Michael P; Nieselt, Kay; Williams, Rohan

    2017-01-25

    Microbiome sequencing projects typically collect tens of millions of short reads per sample. Depending on the goals of the project, the short reads can either be subjected to direct sequence analysis or be assembled into longer contigs. The assembly of whole genomes from metagenomic sequencing reads is a very difficult problem. However, for some questions, only specific genes of interest need to be assembled. This is then a gene-centric assembly where the goal is to assemble reads into contigs for a family of orthologous genes. We present a new method for performing gene-centric assembly, called protein-alignment-guided assembly, and provide an implementation in our metagenome analysis tool MEGAN. Genes are assembled on the fly, based on the alignment of all reads against a protein reference database such as NCBI-nr. Specifically, the user selects a gene family based on a classification such as KEGG and all reads binned to that gene family are assembled. Using published synthetic community metagenome sequencing reads and a set of 41 gene families, we show that the performance of this approach compares favorably with that of full-featured assemblers and that of a recently published HMM-based gene-centric assembler, both in terms of the number of reference genes detected and of the percentage of reference sequence covered. Protein-alignment-guided assembly of orthologous gene families complements whole-metagenome assembly in a new and very useful way.

  12. Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model

    Science.gov (United States)

    Martin, Francois-Pierre J; Wang, Yulan; Sprenger, Norbert; Yap, Ivan K S; Lundstedt, Torbjörn; Lek, Per; Rezzi, Serge; Ramadan, Ziad; van Bladeren, Peter; Fay, Laurent B; Kochhar, Sunil; Lindon, John C; Holmes, Elaine; Nicholson, Jeremy K

    2008-01-01

    The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ-free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse metabolic compartments, including biofluids, tissue and cecal short-chain fatty acids (SCFAs) in relation to microbial population modulation generated a novel top-down systems biology view of the host response to probiotic intervention. Probiotic exposure exerted microbiome modification and resulted in altered hepatic lipid metabolism coupled with lowered plasma lipoprotein levels and apparent stimulated glycolysis. Probiotic treatments also altered a diverse range of pathways outcomes, including amino-acid metabolism, methylamines and SCFAs. The novel application of hierarchical-principal component analysis allowed visualization of multicompartmental transgenomic metabolic interactions that could also be resolved at the compartment and pathway level. These integrated system investigations demonstrate the potential of metabolic profiling as a top-down systems biology driver for investigating the mechanistic basis of probiotic action and the therapeutic surveillance of the gut microbial activity related to dietary supplementation of probiotics. PMID:18197175

  13. Microbiome analysis of a disease affecting the deep-sea sponge Geodia barretti.

    Science.gov (United States)

    Luter, Heidi M; Bannister, Raymond J; Whalan, Steve; Kutti, Tina; Pineda, Mari-Carmen; Webster, Nicole S

    2017-05-24

    Reports of sponge disease are becoming increasingly frequent, although almost all instances involve shallow-water, tropical species. Here, we describe the first disease affecting the deep-water sponge, Geodia barretti. The disease is characterised by brown/black discolouration of the sponge tissue, extensive levels of tissue disintegration and increased levels of fouling. Disease prevalence was quantified using video survey transects conducted between 100 and 220 meters in Korsfjorden, Norway and the microbial communities of healthy and diseased sponges were compared using 16S rRNA gene sequencing. Highly divergent community profiles were evident between the different health states; with distinct community shifts involving higher relative abundances of Bacteroidetes, Firmicutes and Deltaproteobacteria in diseased individuals. In addition, three Operational Taxonomic Units (OTUs) were exclusively present in diseased individuals and were shared between the disease lesions and the apparently healthy tissue of diseased individuals, suggesting a non-localised infection or dysbiosis. Genomic analysis of the G. barretti microbiome combined with experimental work to assess the mechanisms of infection will further elucidate the role of microorganisms in the disease. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. High-Resolution Microbiome Profiling for Detection and Tracking of Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Christopher J. Grim

    2017-08-01

    Full Text Available 16S rRNA community profiling continues to be a useful tool to study microbiome composition and dynamics, in part due to advances in next generation sequencing technology that translate into reductions in cost. Reliable taxonomic identification to the species-level, however, remains difficult, especially for short-read sequencing platforms, due to incomplete coverage of the 16S rRNA gene. This is especially true for Salmonella enterica, which is often found as a low abundant member of the microbial community, and is often found in combination with several other closely related enteric species. Here, we report on the evaluation and application of Resphera Insight, an ultra-high resolution taxonomic assignment algorithm for 16S rRNA sequences to the species level. The analytical pipeline achieved 99.7% sensitivity to correctly identify S. enterica from WGS datasets extracted from the FDA GenomeTrakr Bioproject, while demonstrating 99.9% specificity over other Enterobacteriaceae members. From low-diversity and low-complexity samples, namely ice cream, the algorithm achieved 100% specificity and sensitivity for Salmonella detection. As demonstrated using cilantro and chili powder, for highly complex and diverse samples, especially those that contain closely related species, the detection threshold will likely have to be adjusted higher to account for misidentifications. We also demonstrate the utility of this approach to detect Salmonella in the clinical setting, in this case, bloodborne infections.

  15. In vitro circumvention of cisplatin resistance by the novel sterically hindered platinum complex AMD473.

    Science.gov (United States)

    Holford, J.; Sharp, S. Y.; Murrer, B. A.; Abrams, M.; Kelland, L. R.

    1998-01-01

    A novel sterically hindered platinum complex, AMD473 [cis-aminedichloro(2-methylpyridine) platinum (II)], has been selected for phase I clinical trials due to commence in 1997. AMD473 was rationally designed to react preferentially with nucleic acids over sulphur ligands such as glutathione. This report documents the in vitro circumvention of acquired cisplatin resistance mechanisms in human ovarian carcinoma (HOC) cell lines by AMD473. In a panel of 11 HOC cell lines, AMD473 showed intermediate growth inhibition potency (mean IC50 of 8.1 microM) in comparison to cisplatin (mean IC50 of 2.6 microM) and carboplatin (mean IC50 of 20.3 microM). AMD473 showed only a 30.7-fold increase in IC50 value from the most sensitive to the most resistant HOC cell line, whereas for cisplatin it was 117.9-fold and for carboplatin 119.7-fold. AMD473 also showed significantly (P or = 14 h for AMD473) after equitoxic doses were exposed to HOC cells for 2 h. AMD473 ICLs in the CH1 HOC cell line were slowly formed and showed no visible signs of being repaired 24 h after removal of drug. This was paralleled by a slower, longer lasting induction of p53 protein by equitoxic doses of AMD473 in HOC cell lines with wild-type p53. This new class of sterically hindered platinum compound, selected for clinical trial in 1997, may therefore elicit improved clinical response in intrinsically and acquired cisplatin-resistant tumours in the clinic. Images Figure 9 PMID:9472630

  16. Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis.

    Directory of Open Access Journals (Sweden)

    Christopher J Stewart

    Full Text Available The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM microbiome. Stool samples (n = 173 from 27 infants (12 twin pairs and 1 triplet set and EBM (n = 18 from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae. This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics.

  17. Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis.

    Science.gov (United States)

    Stewart, Christopher J; Marrs, Emma C L; Nelson, Andrew; Lanyon, Clare; Perry, John D; Embleton, Nicholas D; Cummings, Stephen P; Berrington, Janet E

    2013-01-01

    The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC) and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM) microbiome. Stool samples (n = 173) from 27 infants (12 twin pairs and 1 triplet set) and EBM (n = 18) from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis) analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae. This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics.

  18. Structure and function of the healthy pre-adolescent pediatric gut microbiome

    Science.gov (United States)

    The gut microbiome influences myriad host functions, including nutrient acquisition, immune modulation, brain development, and behavior. Although human gut microbiota are recognized to change as we age, information regarding the structure and function of the gut microbiome during childhood is limite...

  19. Pharmacomicrobiomics : the impact of human microbiome variations on systems pharmacology and personalized therapeutics

    NARCIS (Netherlands)

    ElRakaiby, Marwa; Dutilh, Bas E; Rizkallah, Mariam R; Boleij, Annemarie; Cole, Jason N; Aziz, Ramy K

    The Human Microbiome Project (HMP) is a global initiative undertaken to identify and characterize the collection of human-associated microorganisms at multiple anatomic sites (skin, mouth, nose, colon, vagina), and to determine how intra-individual and inter-individual alterations in the microbiome

  20. Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics

    NARCIS (Netherlands)

    ElRakaiby, M.; Dutilh, B.E.; Rizkallah, M.R.; Boleij, A.; Cole, J.N.; Aziz, R.K.

    2014-01-01

    The Human Microbiome Project (HMP) is a global initiative undertaken to identify and characterize the collection of human-associated microorganisms at multiple anatomic sites (skin, mouth, nose, colon, vagina), and to determine how intra-individual and inter-individual alterations in the microbiome

  1. The Intestinal Microbiome in Infectious Diseases: The Clinical Relevance of a Rapidly Emerging Field

    NARCIS (Netherlands)

    Harris, Vanessa C.; Haak, Bastiaan W.; Boele van Hensbroek, Michaël; Wiersinga, Willem J.

    2017-01-01

    The field of infectious disease is undergoing a paradigm shift as the intestinal microbiome is becoming understood. The aim of this review is to inform infectious disease physicians of the potential relevance of the intestinal microbiome to their practice. We searched Medline using both index and

  2. Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota.

    Science.gov (United States)

    van Veelen, H Pieter J; Salles, Joana Falcão; Tieleman, B Irene

    2018-05-01

    The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates.

  3. Subtle Microbiome Manipulation Using Probiotics Reduces Antibiotic-Associated Mortality in Fish

    NARCIS (Netherlands)

    Schmidt, V.; Gomez-Chiarri, M.; Roy, C.; Smith, K.; Amaral-Zettler, L.

    2017-01-01

    Prophylactic antibiotics in the aquaculture and ornamental fish industry are intended to prevent the negative impacts of disease outbreaks. Research in mice and humans suggests that antibiotics may disturb microbiome communities and decrease microbiome-mediated disease resistance, also known as

  4. Early postnatal diets affect the bioregional small intestine microbiome and ileal metabolome in neonatal piglets

    Science.gov (United States)

    Exclusive breastfeeding is known to be protective against gastrointestinal disorders and may modify gut development. Although the gut microbiome has been implicated, little is known about how early diet impacts the small intestinal microbiome, and how microbial shifts impact gut metabolic physiology...

  5. The microbiome and HIV persistence: implications for viral remission and cure.

    Science.gov (United States)

    Koay, Wei Li A; Siems, Lilly V; Persaud, Deborah

    2018-01-01

    This article discusses the interaction between HIV infection, the gut microbiome, inflammation and immune activation, and HIV reservoirs, along with interventions to target the microbiome and their implications for HIV remission and cure. Most studies show that HIV-infected adults have a gut microbiome associated with decreased bacterial richness and diversity, and associated systemic inflammation and immune activation. A unique set of individuals, elite controllers, who spontaneously control HIV replication, have a similar microbiome to HIV-uninfected individuals. Conversely, exposure to maternal HIV in infants was shown to alter the gut microbiome, even in infants who escaped perinatal infection. Emerging research highlights the importance of the metabolomics and metaproteomics of the gut microbiome, which may have relevance for HIV remission and cure. Together, these studies illustrate the complexity of the relationship between HIV infection, the gut microbiome, and its systemic effects. Understanding the association of HIV with the microbiome, metabolome, and metaproteome may lead to novel therapies to decrease inflammation and immune activation, and impact HIV reservoir size and vaccine responses. Further research in this area is important to inform HIV remission and cure treatments.

  6. Eelgrass Leaf Surface Microbiomes Are Locally Variable and Highly Correlated with Epibiotic Eukaryotes

    Directory of Open Access Journals (Sweden)

    Mia M. Bengtsson

    2017-07-01

    Full Text Available Eelgrass (Zostera marina is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome (here defined as an associated prokaryotic community which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes as well as eukaryotic epibionts in- and outside lagoons on the German Baltic Sea coast. Prokaryote microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both prokaryotic and eukaryotic community composition. The prokaryotic microbiome and eukaryotic epibiont communities were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surfaces are home to a mosaic of microbiomes of several epibiotic eukaryotes, in addition to the microbiome of the eelgrass itself. Our findings thereby underline that eukaryotic diversity should be taken into account in order to explain prokaryotic microbiome assembly and dynamics in aquatic environments.

  7. Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea

    KAUST Repository

    Alzubaidy, Hanin S.; Essack, Magbubah; Malas, Tareq Majed Yasin; Bokhari, Ameerah; Motwalli, Olaa Amin; Kamanu, Frederick Kinyua; Jamhor, Suhaiza; Mokhtar, Noor Azlin; Antunes, Andre; Simoes, Marta; Alam, Intikhab; Bougouffa, Salim; Lafi, Feras Fawzi; Bajic, Vladimir B.; Archer, John A.C.

    2015-01-01

    To our knowledge, this is the first metagenomic study on the microbiome of mangroves in the Red Sea, and the first application of unbiased 454-pyrosequencing to study the rhizosphere microbiome associated with A. marina. Our results provide the first insights into the range of functions and microbial diversity in the rhizosphere and soil sediments of gray mangrove (A. marina) in the Red Sea.

  8. Xenobiotics and the Human Gut Microbiome: Metatranscriptomics Reveal the Active Players

    OpenAIRE

    Ursell, Luke K.; Knight, Rob

    2013-01-01

    The human gut microbiome plays an important role in the metabolism of xenobiotics. In a recent issue of Cell, Maurice et al. identify the active members of the gut microbiome and show how gene expression profiles change within the gut microbial community in response to antibiotics and host-targeted xenobiotics.

  9. Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome.

    Science.gov (United States)

    Ballard, Zachary S; Brown, Calvin; Ozcan, Aydogan

    2018-04-24

    The microbiome has been heralded as a gauge of and contributor to both human health and environmental conditions. Current challenges in probing, engineering, and harnessing the microbiome stem from its microscopic and nanoscopic nature, diversity and complexity of interactions among its members and hosts, as well as the spatiotemporal sampling and in situ measurement limitations induced by the restricted capabilities and norm of existing technologies, leaving some of the constituents of the microbiome unknown. To facilitate significant progress in the microbiome field, deeper understanding of the constituents' individual behavior, interactions with others, and biodiversity are needed. Also crucial is the generation of multimodal data from a variety of subjects and environments over time. Mobile imaging and sensing technologies, particularly through smartphone-based platforms, can potentially meet some of these needs in field-portable, cost-effective, and massively scalable manners by circumventing the need for bulky, expensive instrumentation. In this Perspective, we outline how mobile sensing and imaging technologies could lead the way to unprecedented insight into the microbiome, potentially shedding light on various microbiome-related mysteries of today, including the composition and function of human, animal, plant, and environmental microbiomes. Finally, we conclude with a look at the future, propose a computational microbiome engineering and optimization framework, and discuss its potential impact and applications.

  10. The role of the microbiome for human health : from basic science to clinical applications

    NARCIS (Netherlands)

    Mohajeri, M Hasan; Brummer, Robert J M; Rastall, Robert A; Weersma, Rinse K; Harmsen, Hermie J M; Faas, Marijke; Eggersdorfer, Manfred

    The 2017 annual symposium organized by the University Medical Center Groningen in The Netherlands focused on the role of the gut microbiome in human health and disease. Experts from academia and industry examined interactions of prebiotics, probiotics, or vitamins with the gut microbiome in health

  11. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity

    NARCIS (Netherlands)

    Zhernakova, A.; Kurilshikov, Alexander; Bonder, Marc Jan; Feskens, E.J.M.

    2016-01-01

    Deep sequencing of the gut microbiomes of 1135 participants from a Dutch population-based cohort shows relations between the microbiome and 126 exogenous and intrinsic host factors, including 31 intrinsic factors, 12 diseases, 19 drug groups, 4 smoking categories, and 60 dietary factors. These

  12. Feeding on microbiomes: effects of detritivory on the taxonomic and phylogenetic bacterial composition of animal manures.

    Science.gov (United States)

    Aira, Manuel; Bybee, Seth; Pérez-Losada, Marcos; Domínguez, Jorge

    2015-11-01

    Earthworms play a key role in nutrient cycling by interacting with microorganisms thus accelerating organic matter turnover in soil systems. As detritivores, some earthworm types ingest and digest a mixture of dead organic matter and microorganisms, like animal manures (i.e. animal gut microbiomes). Here we described the earthworm cast microbiome and the role ingested bacteria play on its composition. We fed Eisenia andrei with cow, horse and pig manures and determined the taxonomic and phylogenetic composition of the these manures before and after passage through the earthworm gut. Earthworm cast microbiomes showed a smaller diversity than the manure they fed on. Manures strongly differed in their taxonomic and phylogenetic composition, but these differences were markedly reduced once transformed into earthworm cast microbiomes after passage through the earthworm gut. The core earthworm cast microbiome comprised 30 OTUs (2.6% of OTUs from cast samples), of which 10 are possibly native to the earthworm gut. Most of the core cast microbiome OTUs belonged to phyla Actinobacteria and Proteobacteria, as opposed to already described animal core gut microbiomes, which are composed mainly of Firmicutes and Bacteroidetes. Our results suggest that earthworms build up their cast microbiome by selecting from the pool of ingested bacteria. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Genomics-assisted breeding in fruit trees.

    Science.gov (United States)

    Iwata, Hiroyoshi; Minamikawa, Mai F; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.

  14. Laboratory colonization stabilizes the naturally dynamic microbiome composition of field collected Dermacentor andersoni ticks.

    Science.gov (United States)

    Gall, Cory A; Scoles, Glen A; Magori, Krisztian; Mason, Kathleen L; Brayton, Kelly A

    2017-10-04

    Nearly a quarter of emerging infectious diseases identified in the last century are arthropod-borne. Although ticks and insects can carry pathogenic microorganisms, non-pathogenic microbes make up the majority of their microbial communities. The majority of tick microbiome research has had a focus on discovery and description; very few studies have analyzed the ecological context and functional responses of the bacterial microbiome of ticks. The goal of this analysis was to characterize the stability of the bacterial microbiome of Dermacentor andersoni ticks between generations and two populations within a species. The bacterial microbiome of D. andersoni midguts and salivary glands was analyzed from populations collected at two different ecologically distinct sites by comparing field (F1) and lab-reared populations (F1-F3) over three generations. The microbiome composition of pooled and individual samples was analyzed by sequencing nearly full-length 16S rRNA gene amplicons using a Pacific Biosciences CCS platform that allows identification of bacteria to the species level. In this study, we found that the D. andersoni microbiome was distinct in different geographic populations and was tissue specific, differing between the midgut and the salivary gland, over multiple generations. Additionally, our study showed that the microbiomes of laboratory-reared populations were not necessarily representative of their respective field populations. Furthermore, we demonstrated that the microbiome of a few individual ticks does not represent the microbiome composition at the population level. We demonstrated that the bacterial microbiome of D. andersoni was complex over three generations and specific to tick tissue (midgut vs. salivary glands) as well as geographic location (Burns, Oregon vs. Lake Como, Montana vs. laboratory setting). These results provide evidence that habitat of the tick population is a vital component of the complexity of the bacterial microbiome of ticks

  15. Extensive Core Microbiome in Drone-Captured Whale Blow Supports a Framework for Health Monitoring.

    Science.gov (United States)

    Apprill, Amy; Miller, Carolyn A; Moore, Michael J; Durban, John W; Fearnbach, Holly; Barrett-Lennard, Lance G

    2017-01-01

    The pulmonary system is a common site for bacterial infections in cetaceans, but very little is known about their respiratory microbiome. We used a small, unmanned hexacopter to collect exhaled breath condensate (blow) from two geographically distinct populations of apparently healthy humpback whales ( Megaptera novaeangliae ), sampled in the Massachusetts coastal waters off Cape Cod ( n = 17) and coastal waters around Vancouver Island ( n = 9). Bacterial and archaeal small-subunit rRNA genes were amplified and sequenced from blow samples, including many of sparse volume, as well as seawater and other controls, to characterize the associated microbial community. The blow microbiomes were distinct from the seawater microbiomes and included 25 phylogenetically diverse bacteria common to all sampled whales. This core assemblage comprised on average 36% of the microbiome, making it one of the more consistent animal microbiomes studied to date. The closest phylogenetic relatives of 20 of these core microbes were previously detected in marine mammals, suggesting that this core microbiome assemblage is specialized for marine mammals and may indicate a healthy, noninfected pulmonary system. Pathogen screening was conducted on the microbiomes at the genus level, which showed that all blow and few seawater microbiomes contained relatives of bacterial pathogens; no known cetacean respiratory pathogens were detected in the blow. Overall, the discovery of a shared large core microbiome in humpback whales is an important advancement for health and disease monitoring of this species and of other large whales. IMPORTANCE The conservation and management of large whales rely in part upon health monitoring of individuals and populations, and methods generally necessitate invasive sampling. Here, we used a small, unmanned hexacopter drone to noninvasively fly above humpback whales from two populations, capture their exhaled breath (blow), and examine the associated microbiome. In the

  16. Synthesis, autoxidation and photooxidation of hindered pyrrole derivatives. Hindered pyrrolic nitroxide radicals; Synthese, autoxydation et photoxidation de pyrroles encombres radicaux nitroxydes pyrroliques encombres

    Energy Technology Data Exchange (ETDEWEB)

    Ramasseul, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    2,5-di-t-butyl and 2,3,5-tri-t-butyl pyrrole are prepared from pinacoline and their structure is confirmed by comparison with 2,5-di-t-butyl furan and thiophene (I.R., U.V. and N.M.R. {sup 13}C satellites observation giving J{sub 13{sub C-H}} and J{sub H{sub 3}-H{sub 4}}). The sensitized photooxidation of these hindered pyrroles gives corresponding hydroperoxides which most likely structure is determined using physical and chemical methods. Oxidation of 2,5-di-t-butyl and 2,3,5-tri-t-butyl pyrrole by hydrogen peroxide in presence of inorganic per-acid of by p-nitro-perbenzoic acid does not give the pyrrolic nitroxides in contrast with secondary amines. Some N-hydroxypyrroles are then prepared from pinacoline and ethyl pivaloyl-acetate. Their oxidation by lead dioxide gives the corresponding pyrrolic nitroxides. 2,5-di-t-butyl 3,4-di-ethoxycarbonyl pyrryl 1-oxy is isolated and studied spectroscopically (visible and U.V., E.P.R.). In marked contrast with ordinary nitroxides it does not show solvent effect. It can be compared with 2,4-di-t-butyl cyclopentadienone, a carbon analog. For both, the long wave length transition does not show the usual n - {pi}* behaviour; that is confirmed by E.P.R. Using Huckel method for pyrrolic nitroxide skeleton, it is possible to have a good interpretation of experimental data. (author) [French] Les di-t-butyl 2,5 et tri-t-butyl-2,3,5 pyrrole sont synthetises a partir de la pinacoline et leur structure confirmee par comparaison avec les di-t-butyl-2,5 furanne et thiophene (I.R., U.V. et R.M.N.: observation des satellites {sup 13}C conduisant a la mesure des J{sub 13{sub C-H}} et J{sub H{sub 3}{sub -H{sub 4}}). La photoxydation sensibilisee de ces pyrroles encombres conduit aux hydroperoxydes correspondants dont la structure la plus probable est determinee par les methodes physicochimiques. L'oxydation des di-t-butyl-2,5 et tri-t-butyl-2,3,5 pyrrole par l'eau oxygenee en presence de peracide mineral ou par l'acide p

  17. The follicular skin microbiome in patients with hidradenitis suppurativa and healthy controls

    DEFF Research Database (Denmark)

    Ring, Hans Christian; Thorsen, Jonathan; Saunte, Ditte M.

    2017-01-01

    IMPORTANCE: Although the pathogenesis of hidradenitis suppurativa (HS) remains enigmatic, several factors point to potential involvement of the cutaneous microbiome. Insight into the cutaneous microbiome in HS using next-generation sequencing may provide novel data on the microbiological diversity...... of the skin.  OBJECTIVE: To investigate the follicular skin microbiome in patients with HS and in healthy controls.  DESIGN, SETTING, AND PARTICIPANTS: This case-control study obtained punch biopsy specimens from patients with HS (lesional and nonlesional) and healthy controls between October 1, 2014....... Biopsy specimens from healthy controls were obtained from the axilla only.  MAIN OUTCOMES AND MEASURES: The different microbiomes were investigated using next-generation sequencing targeting 16S and 18S ribosomal RNA.  RESULTS: The skin microbiome was characterized in 30 patients with HS (mean [SD] age...

  18. Turning Participatory Microbiome Research into Usable Data: Lessons from the American Gut Project.

    Science.gov (United States)

    Debelius, Justine W; Vázquez-Baeza, Yoshiki; McDonald, Daniel; Xu, Zhenjiang; Wolfe, Elaine; Knight, Rob

    2016-03-01

    The role of the human microbiome is the subject of continued investigation resulting in increased understanding. However, current microbiome research has only scratched the surface of the variety of healthy microbiomes. Public participation in science through crowdsourcing and crowdfunding microbiome research provides a novel opportunity for both participants and investigators. However, turning participatory science into publishable data can be challenging. Clear communication with the participant base and among researchers can ameliorate some challenges. Three major aspects need to be considered: recruitment and ongoing interaction, sample collection, and data analysis. Usable data can be maximized through diligent participant interaction, careful survey design, and maintaining an open source pipeline. While participatory science will complement rather than replace traditional avenues, it presents new opportunities for studies in the microbiome and beyond.

  19. Turning Participatory Microbiome Research into Usable Data: Lessons from the American Gut Project

    Directory of Open Access Journals (Sweden)

    Justine W. Debelius

    2015-10-01

    Full Text Available The role of the human microbiome is the subject of continued investigation resulting in increased understanding. However, current microbiome research has only scratched the surface of the variety of healthy microbiomes. Public participation in science through crowdsourcing and crowdfunding microbiome research provides a novel opportunity for both participants and investigators. However, turning participatory science into publishable data can be challenging. Clear communication with the participant base and among researchers can ameliorate some challenges. Three major aspects need to be considered: recruitment and ongoing interaction, sample collection, and data analysis. Usable data can be maximized through diligent participant interaction, careful survey design, and maintaining an open source pipeline. While participatory science will complement rather than replace traditional avenues, it presents new opportunities for studies in the microbiome and beyond.

  20. The Gut Microbiome, Obesity, and Weight Control in Women's Reproductive Health.

    Science.gov (United States)

    Greathouse, K Leigh; Faucher, Mary Ann; Hastings-Tolsma, Marie

    2017-08-01

    The microbes residing in the human gut, referred to as the microbiome, are intricately linked to energy homeostasis and subsequently obesity. Integral to the origins of obesity, the microbiome is believed to affect not only health of the human gut but also overall health. This microbiome-obesity association is mediated through the process of energy extraction, metabolism, and cross talk between the brain and the gut microbiome. Host exposures, including diet, that potentially modify genetic predisposition to obesity and affect weight management are reviewed. The higher prevalence of obesity among women and recent evidence linking obesity during pregnancy with offspring health make this topic particularly relevant. Current limitations in microbiome research to address obesity and future advances in this field are described. Applications of this science with respect to applied nursing and overall health care in general are included, with emphasis on the reproductive health of women and their offspring.

  1. The maternal microbiome during pregnancy and allergic disease in the offspring

    DEFF Research Database (Denmark)

    Vuillermin, Peter J; Macia, Laurence; Nanan, Ralph

    2017-01-01

    There is substantial epidemiological and mechanistic evidence that the increase in allergic disease and asthma in many parts of the world in part relates to changes in microbial exposures and diet acting via the composition and metabolic products of the intestinal microbiome. The majority...... of research in this field has focused on the gut microbiome during infancy, but it is increasingly clear that the maternal microbiome during pregnancy also has a key role in preventing an allergy-prone immune phenotype in the offspring. The mechanisms by which the maternal microbiome influences the developing...... influence on fetal immune development. However, our understanding of these pathways is at an early stage and further mechanistic studies are needed. There are also no data from human studies relating the composition and metabolic activity of the maternal microbiome during pregnancy to the offspring's immune...

  2. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy.

    Science.gov (United States)

    Campanaro, Stefano; Treu, Laura; Kougias, Panagiotis G; De Francisci, Davide; Valle, Giorgio; Angelidaki, Irini

    2016-01-01

    Biogas production is an economically attractive technology that has gained momentum worldwide over the past years. Biogas is produced by a biologically mediated process, widely known as "anaerobic digestion." This process is performed by a specialized and complex microbial community, in which different members have distinct roles in the establishment of a collective organization. Deciphering the complex microbial community engaged in this process is interesting both for unraveling the network of bacterial interactions and for applicability potential to the derived knowledge. In this study, we dissect the bioma involved in anaerobic digestion by means of high throughput Illumina sequencing (~51 gigabases of sequence data), disclosing nearly one million genes and extracting 106 microbial genomes by a novel strategy combining two binning processes. Microbial phylogeny and putative taxonomy performed using >400 proteins revealed that the biogas community is a trove of new species. A new approach based on functional properties as per network representation was developed to assign roles to the microbial species. The organization of the anaerobic digestion microbiome is resembled by a funnel concept, in which the microbial consortium presents a progressive functional specialization while reaching the final step of the process (i.e., methanogenesis). Key microbial genomes encoding enzymes involved in specific metabolic pathways, such as carbohydrates utilization, fatty acids degradation, amino acids fermentation, and syntrophic acetate oxidation, were identified. Additionally, the analysis identified a new uncultured archaeon that was putatively related to Methanomassiliicoccales but surprisingly having a methylotrophic methanogenic pathway. This study is a pioneer research on the phylogenetic and functional characterization of the microbial community populating biogas reactors. By applying for the first time high-throughput sequencing and a novel binning strategy, the

  3. Species-level analysis of DNA sequence data from the NIH Human Microbiome Project.

    Science.gov (United States)

    Conlan, Sean; Kong, Heidi H; Segre, Julia A

    2012-01-01

    Outbreaks of antibiotic-resistant bacterial infections emphasize the importance of surveillance of potentially pathogenic bacteria. Genomic sequencing of clinical microbiological specimens expands our capacity to study cultivable, fastidious and uncultivable members of the bacterial community. Herein, we compared the primary data collected by the NIH's Human Microbiome Project (HMP) with published epidemiological surveillance data of Staphylococcus aureus. The HMP's initial dataset contained microbial survey data from five body regions (skin, nares, oral cavity, gut and vagina) of 242 healthy volunteers. A significant component of the HMP dataset was deep sequencing of the 16S ribosomal RNA gene, which contains variable regions enabling taxonomic classification. Since species-level identification is essential in clinical microbiology, we built a reference database and used phylogenetic placement followed by most recent common ancestor classification to look at the species distribution for Staphylococcus, Klebsiella and Enterococcus. We show that selecting the accurate region of the 16S rRNA gene to sequence is analogous to carefully selecting culture conditions to distinguish closely related bacterial species. Analysis of the HMP data showed that Staphylococcus aureus was present in the nares of 36% of healthy volunteers, consistent with culture-based epidemiological data. Klebsiella pneumoniae and Enterococcus faecalis were found less frequently, but across many habitats. This work demonstrates that large 16S rRNA survey studies can be used to support epidemiological goals in the context of an increasing awareness that microbes flourish and compete within a larger bacterial community. This study demonstrates how genomic techniques and information could be critically important to trace microbial evolution and implement hospital infection control.

  4. Species-level analysis of DNA sequence data from the NIH Human Microbiome Project.

    Directory of Open Access Journals (Sweden)

    Sean Conlan

    Full Text Available BACKGROUND: Outbreaks of antibiotic-resistant bacterial infections emphasize the importance of surveillance of potentially pathogenic bacteria. Genomic sequencing of clinical microbiological specimens expands our capacity to study cultivable, fastidious and uncultivable members of the bacterial community. Herein, we compared the primary data collected by the NIH's Human Microbiome Project (HMP with published epidemiological surveillance data of Staphylococcus aureus. METHODS: The HMP's initial dataset contained microbial survey data from five body regions (skin, nares, oral cavity, gut and vagina of 242 healthy volunteers. A significant component of the HMP dataset was deep sequencing of the 16S ribosomal RNA gene, which contains variable regions enabling taxonomic classification. Since species-level identification is essential in clinical microbiology, we built a reference database and used phylogenetic placement followed by most recent common ancestor classification to look at the species distribution for Staphylococcus, Klebsiella and Enterococcus. MAIN RESULTS: We show that selecting the accurate region of the 16S rRNA gene to sequence is analogous to carefully selecting culture conditions to distinguish closely related bacterial species. Analysis of the HMP data showed that Staphylococcus aureus was present in the nares of 36% of healthy volunteers, consistent with culture-based epidemiological data. Klebsiella pneumoniae and Enterococcus faecalis were found less frequently, but across many habitats. CONCLUSIONS: This work demonstrates that large 16S rRNA survey studies can be used to support epidemiological goals in the context of an increasing awareness that microbes flourish and compete within a larger bacterial community. This study demonstrates how genomic techniques and information could be critically important to trace microbial evolution and implement hospital infection control.

  5. Common contaminants in next-generation sequencing that hinder discovery of low-abundance microbes.

    Directory of Open Access Journals (Sweden)

    Martin Laurence

    Full Text Available Unbiased high-throughput sequencing of whole metagenome shotgun DNA libraries is a promising new approach to identifying microbes in clinical specimens, which, unlike other techniques, is not limited to known sequences. Unlike most sequencing applications, it is highly sensitive to laboratory contaminants as these will appear to originate from the clinical specimens. To assess the extent and diversity of sequence contaminants, we aligned 57 "1000 Genomes Project" sequencing runs from six centers against the four largest NCBI BLAST databases, detecting reads of diverse contaminant species in all runs and identifying the most common of these contaminant genera (Bradyrhizobium in assembled genomes from the NCBI Genome database. Many of these microorganisms have been reported as contaminants of ultrapure water systems. Studies aiming to identify novel microbes in clinical specimens will greatly benefit from not only preventive measures such as extensive UV irradiation of water and cross-validation using independent techniques, but also a concerted effort to sequence the complete genomes of common contaminants so that they may be subtracted computationally.

  6. Season, but not symbiont state, drives microbiome structure in the temperate coral Astrangia poculata.

    Science.gov (United States)

    Sharp, Koty H; Pratte, Zoe A; Kerwin, Allison H; Rotjan, Randi D; Stewart, Frank J

    2017-09-15

    Understanding the associations among corals, their photosynthetic zooxanthella symbionts (Symbiodinium), and coral-associated prokaryotic microbiomes is critical for predicting the fidelity and strength of coral symbioses in the face of growing environmental threats. Most coral-microbiome associations are beneficial, yet the mechanisms that determine the composition of the coral microbiome remain largely unknown. Here, we characterized microbiome diversity in the temperate, facultatively symbiotic coral Astrangia poculata at four seasonal time points near the northernmost limit of the species range. The facultative nature of this system allowed us to test seasonal influence and symbiotic state (Symbiodinium density in the coral) on microbiome community composition. Change in season had a strong effect on A. poculata microbiome composition. The seasonal shift was greatest upon the winter to spring transition, during which time A. poculata microbiome composition became more similar among host individuals. Within each of the four seasons, microbiome composition differed significantly from that of surrounding seawater but was surprisingly uniform between symbiotic and aposymbiotic corals, even in summer, when differences in Symbiodinium density between brown and white colonies are the highest, indicating that the observed seasonal shifts are not likely due to fluctuations in Symbiodinium density. Our results suggest that symbiotic state may not be a primary driver of coral microbial community organization in A. poculata, which is a surprise given the long-held assumption that excess photosynthate is of importance to coral-associated microbes. Rather, other environmental or host factors, in this case, seasonal changes in host physiology associated with winter quiescence, may drive microbiome diversity. Additional studies of A. poculata and other facultatively symbiotic corals will provide important comparisons to studies of reef-building tropical corals and therefore

  7. Oral Microbial Shift: Factors affecting the Microbiome and Prevention of Oral Disease.

    Science.gov (United States)

    Dagli, Namrata; Dagli, Rushabh; Darwish, Shrouq; Baroudi, Kusai

    2016-01-01

    Recently, oral microbiome has gained popularity among scientists. Microorganisms are no longer considered as disease-producing pathogens, rather they are now considered as partners of human in maintaining health. Since ancient times, changes in our lifestyle have affected our microbiome and the balance with their human host has been perturbed. The present review includes the description about factors affecting oral microbiome and establishing symbiosis with the human host so that they contribute in maintaining health rather than eliciting diseases. A comprehensive literature search was performed on databases such as Google Scholar, PubMed and Medline until April 2015. First, articles were selected on the basis of their titles and then abstracts were screened and unwanted articles were excluded. Articles obtained from all the databases were checked and duplicate articles were removed. Articles obtained from various databases: PubMed = 35, Google Scholar=8. Out of these 43 articles, total 29 articles were finally selected for this review. The published literature suggests that the modern oral microbiome is less biodiverse, and possess more pathogenic bacterial species and lesser beneficial bacteria. The possible factors mainly responsible for this shift in microbiome were found to be change in diet, industrial revolution and indiscriminate use of antibiotics. Various changes in lifestyles have affected oral microbiome adversely and perturb the symbiosis between the microbiome and their hosts. The present oral microbiome is found to be less diverse and more pathogenic. The present review may be helpful in understanding the relationship between the microbiome and their human hosts so that microbiome contributes in maintaining healthy state of the body.

  8. Impact of Age, Caloric Restriction, and Influenza Infection on Mouse Gut Microbiome: An Exploratory Study of the Role of Age-Related Microbiome Changes on Influenza Responses

    OpenAIRE

    Jenna M. Bartley; Jenna M. Bartley; Xin Zhou; Xin Zhou; George A. Kuchel; George A. Kuchel; George M. Weinstock; George M. Weinstock; Laura Haynes; Laura Haynes

    2017-01-01

    Immunosenescence refers to age-related declines in the capacity to respond to infections such as influenza (flu). Caloric restriction represents a known strategy to slow many aging processes, including those involving the immune system. More recently, some changes in the microbiome have been described with aging, while the gut microbiome appears to influence responses to flu vaccination and infection. With these considerations in mind, we used a well-established mouse model of flu infection t...

  9. Developing a Bacteroides System for Function-Based Screening of DNA from the Human Gut Microbiome.

    Science.gov (United States)

    Lam, Kathy N; Martens, Eric C; Charles, Trevor C

    2018-01-01

    Functional metagenomics is a powerful method that allows the isolation of genes whose role may not have been predicted from DNA sequence. In this approach, first, environmental DNA is cloned to generate metagenomic libraries that are maintained in Escherichia coli, and second, the cloned DNA is screened for activities of interest. Typically, functional screens are carried out using E. coli as a surrogate host, although there likely exist barriers to gene expression, such as lack of recognition of native promoters. Here, we describe efforts to develop Bacteroides thetaiotaomicron as a surrogate host for screening metagenomic DNA from the human gut. We construct a B. thetaiotaomicron-compatible fosmid cloning vector, generate a fosmid clone library using DNA from the human gut, and show successful functional complementation of a B. thetaiotaomicron glycan utilization mutant. Though we were unable to retrieve the physical fosmid after complementation, we used genome sequencing to identify the complementing genes derived from the human gut microbiome. Our results demonstrate that the use of B. thetaiotaomicron to express metagenomic DNA is promising, but they also exemplify the challenges that can be encountered in the development of new surrogate hosts for functional screening. IMPORTANCE Human gut microbiome research has been supported by advances in DNA sequencing that make it possible to obtain gigabases of sequence data from metagenomes but is limited by a lack of knowledge of gene function that leads to incomplete annotation of these data sets. There is a need for the development of methods that can provide experimental data regarding microbial gene function. Functional metagenomics is one such method, but functional screens are often carried out using hosts that may not be able to express the bulk of the environmental DNA being screened. We expand the range of current screening hosts and demonstrate that human gut-derived metagenomic libraries can be

  10. Preschoolers' social and moral judgments of third-party helpers and hinderers align with infants' social evaluations.

    Science.gov (United States)

    Van de Vondervoort, Julia W; Hamlin, J Kiley

    2017-12-01

    Two experiments explored preschoolers' social preferences and moral judgments of prosocial and antisocial others. In Experiment 1, 3- to 5-year-olds (N=74) observed helping and hindering scenarios previously used to explore sociomoral evaluation in preverbal infants. Whereas 3-year-olds in Experiment 1 did not reliably distinguish between the helper and hinderer when reporting social preferences or moral judgments, both 4- and 5-year-olds preferred the helper, judged the helper to be "nicer" than the hinderer, selectively allocated punishment to the hinderer, and were able to justify their punishment allocations. A simplified procedure and the addition of comprehension questions in Experiment 2 (N=24) improved 3-year-olds' performance, suggestive that their performance in Experiment 1 was likely due to processing or memory difficulties rather than an inability to engage in explicit social and moral evaluation. These studies reveal that young children readily interpret helping and hindering scenarios as socially and morally relevant. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The human gut microbiome as source of innovation for health: Which physiological and therapeutic outcomes could we expect?

    Science.gov (United States)

    Doré, Joël; Multon, Marie-Christine; Béhier, Jehan-Michel

    2017-02-01

    microbiome knowledge and tools. The rationale for our working group has been structured around four domains of innovation that could derive from ongoing efforts in deciphering the interactions between human cells and intestinal microbiome as a central component of human health, namely: (1) development of stratification and monitoring tools; (2) identification of new target and drug discovery, as a part of our supra-genome; (4) exploitation of microbiota as a therapeutic target that can be modulated; (4) and finally as a source of live biotherapeutics and adjuvants. These four streams will exemplify how microbiota has changed the way we consider a wide range of chronic and incurable diseases and the consequences of long-lasting dysbiosis. In-depth microbiota analysis is opening one of the broadest fields of investigation for improving human and animal health and will be a source of major therapeutic innovations for tackling today's medical unmet needs. We thus propose a range of recommendations for basic researchers, care givers as well as for health authorities to gain reliability in microbiome analysis and accelerate discovery processes and their translation into applications for the benefits of the people. Finally, les Ateliers de Giens round table on microbiota benefited from the richness of the French ecosystem. France represents a center of excellence in the microbiota research field, with French institutions as Institut national de la recherche agronomique (INRA [Metagenopolis, Micalis]), Centre national de la recherché scientifique (CNRS), Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), Institut of Cardiometabolism and Nutrition (ICAN), Institut des maladies métaboliques et cardiovasculaires (I2MC), Institut national de la santé et de la recherche médicale (Inserm), Pasteur Institute and Gustave-Roussy being top-players for the number of publications. Copyright © 2016. Published by Elsevier Masson SAS.

  12. Early-life gut microbiome and egg allergy.

    Science.gov (United States)

    Fazlollahi, M; Chun, Y; Grishin, A; Wood, R A; Burks, A W; Dawson, P; Jones, S M; Leung, D Y M; Sampson, H A; Sicherer, S H; Bunyavanich, S

    2018-07-01

    Gut microbiota may play a role in egg allergy. We sought to examine the association between early-life gut microbiota and egg allergy. We studied 141 children with egg allergy and controls from the multicenter Consortium of Food Allergy Research study. At enrollment (age 3 to 16 months), fecal samples were collected, and clinical evaluation, egg-specific IgE measurement, and egg skin prick test were performed. Gut microbiome was profiled by 16S rRNA sequencing. Analyses for the primary outcome of egg allergy at enrollment, and the secondary outcomes of egg sensitization at enrollment and resolution of egg allergy by age 8 years, were performed using Quantitative Insights into Microbial Ecology, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States, and Statistical Analysis of Metagenomic Profiles. Compared to controls, increased alpha diversity and distinct taxa (PERMANOVA P = 5.0 × 10 -4 ) characterized the early-life gut microbiome of children with egg allergy. Genera from the Lachnospiraceae, Streptococcaceae, and Leuconostocaceae families were differentially abundant in children with egg allergy. Predicted metagenome functional analyses showed differential purine metabolism by the gut microbiota of egg-allergic subjects (Kruskal-Wallis P adj  = 0.021). Greater gut microbiome diversity and genera from Lachnospiraceae and Ruminococcaceae were associated with egg sensitization (PERMANOVA P = 5.0 × 10 -4 ). Among those with egg allergy, there was no association between early-life gut microbiota and egg allergy resolution by age 8 years. The distinct early-life gut microbiota in egg-allergic and egg-sensitized children identified by our study may point to targets for preventive or therapeutic intervention. © 2018 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  13. The skin microbiome in healthy and allergic dogs.

    Directory of Open Access Journals (Sweden)

    Aline Rodrigues Hoffmann

    Full Text Available BACKGROUND: Changes in the microbial populations on the skin of animals have traditionally been evaluated using conventional microbiology techniques. The sequencing of bacterial 16S rRNA genes has revealed that the human skin is inhabited by a highly diverse and variable microbiome that had previously not been demonstrated by culture-based methods. The goals of this study were to describe the microbiome inhabiting different areas of the canine skin, and to compare the skin microbiome of healthy and allergic dogs. METHODOLOGY/PRINCIPAL FINDINGS: DNA extracted from superficial skin swabs from healthy (n = 12 and allergic dogs (n = 6 from different regions of haired skin and mucosal surfaces were used for 454-pyrosequencing of the 16S rRNA gene. Principal coordinates analysis revealed clustering for the different skin sites across all dogs, with some mucosal sites and the perianal regions clustering separately from the haired skin sites. The rarefaction analysis revealed high individual variability between samples collected from healthy dogs and between the different skin sites. Higher species richness and microbial diversity were observed in the samples from haired skin when compared to mucosal surfaces or mucocutaneous junctions. In all examined regions, the most abundant phylum and family identified in the different regions of skin and mucosal surfaces were Proteobacteria and Oxalobacteriaceae. The skin of allergic dogs had lower species richness when compared to the healthy dogs. The allergic dogs had lower proportions of the Betaproteobacteria Ralstonia spp. when compared to the healthy dogs. CONCLUSIONS/SIGNIFICANCE: The study demonstrates that the skin of dogs is inhabited by much more rich and diverse microbial communities than previously thought using culture-based methods. Our sequence data reveal high individual variability between samples collected from different patients. Differences in species richness was also seen between

  14. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides.

    Science.gov (United States)

    Lach, Gilliard; Schellekens, Harriet; Dinan, Timothy G; Cryan, John F

    2018-01-01

    The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.

  15. Microbial co-occurrence relationships in the human microbiome.

    Directory of Open Access Journals (Sweden)

    Karoline Faust

    Full Text Available The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs to taxonomic marker (16S rRNA gene profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut often compete, while potential pathogens (e.g. Treponema and

  16. Microbial Co-occurrence Relationships in the Human Microbiome

    Science.gov (United States)

    Izard, Jacques; Segata, Nicola; Gevers, Dirk

    2012-01-01

    The healthy microbiota show remarkable variability within and among individuals. In addition to external exposures, ecological relationships (both oppositional and symbiotic) between microbial inhabitants are important contributors to this variation. It is thus of interest to assess what relationships might exist among microbes and determine their underlying reasons. The initial Human Microbiome Project (HMP) cohort, comprising 239 individuals and 18 different microbial habitats, provides an unprecedented resource to detect, catalog, and analyze such relationships. Here, we applied an ensemble method based on multiple similarity measures in combination with generalized boosted linear models (GBLMs) to taxonomic marker (16S rRNA gene) profiles of this cohort, resulting in a global network of 3,005 significant co-occurrence and co-exclusion relationships between 197 clades occurring throughout the human microbiome. This network revealed strong niche specialization, with most microbial associations occurring within body sites and a number of accompanying inter-body site relationships. Microbial communities within the oropharynx grouped into three distinct habitats, which themselves showed no direct influence on the composition of the gut microbiota. Conversely, niches such as the vagina demonstrated little to no decomposition into region-specific interactions. Diverse mechanisms underlay individual interactions, with some such as the co-exclusion of Porphyromonaceae family members and Streptococcus in the subgingival plaque supported by known biochemical dependencies. These differences varied among broad phylogenetic groups as well, with the Bacilli and Fusobacteria, for example, both enriched for exclusion of taxa from other clades. Comparing phylogenetic versus functional similarities among bacteria, we show that dominant commensal taxa (such as Prevotellaceae and Bacteroides in the gut) often compete, while potential pathogens (e.g. Treponema and Prevotella in the

  17. Analyses of the microbial diversity across the human microbiome.

    Directory of Open Access Journals (Sweden)

    Kelvin Li

    Full Text Available Analysis of human body microbial diversity is fundamental to understanding community structure, biology and ecology. The National Institutes of Health Human Microbiome Project (HMP has provided an unprecedented opportunity to examine microbial diversity within and across body habitats and individuals through pyrosequencing-based profiling of 16 S rRNA gene sequences (16 S from habits of the oral, skin, distal gut, and vaginal body regions from over 200 healthy individuals enabling the application of statistical techniques. In this study, two approaches were applied to elucidate the nature and extent of human microbiome diversity. First, bootstrap and parametric curve fitting techniques were evaluated to estimate the maximum number of unique taxa, S(max, and taxa discovery rate for habitats across individuals. Next, our results demonstrated that the variation of diversity within low abundant taxa across habitats and individuals was not sufficiently quantified with standard ecological diversity indices. This impact from low abundant taxa motivated us to introduce a novel rank-based diversity measure, the Tail statistic, ("τ", based on the standard deviation of the rank abundance curve if made symmetric by reflection around the most abundant taxon. Due to τ's greater sensitivity to low abundant taxa, its application to diversity estimation of taxonomic units using taxonomic dependent and independent methods revealed a greater range of values recovered between individuals versus body habitats, and different patterns of diversity within habitats. The greatest range of τ values within and across individuals was found in stool, which also exhibited the most undiscovered taxa. Oral and skin habitats revealed variable diversity patterns, while vaginal habitats were consistently the least diverse. Collectively, these results demonstrate the importance, and motivate the introduction, of several visualization and analysis methods tuned specifically for

  18. Genome Imprinting

    Indian Academy of Sciences (India)

    the cell nucleus (mitochondrial and chloroplast genomes), and. (3) traits governed ... tively good embryonic development but very poor development of membranes and ... Human homologies for the type of situation described above are naturally ..... imprint; (b) New modifications of the paternal genome in germ cells of each ...

  19. Baculovirus Genomics

    NARCIS (Netherlands)

    Oers, van M.M.; Vlak, J.M.

    2007-01-01

    Baculovirus genomes are covalently closed circles of double stranded-DNA varying in size between 80 and 180 kilobase-pair. The genomes of more than fourty-one baculoviruses have been sequenced to date. The majority of these (37) are pathogenic to lepidopteran hosts; three infect sawflies

  20. Genomic Testing

    Science.gov (United States)

    ... this database. Top of Page Evaluation of Genomic Applications in Practice and Prevention (EGAPP™) In 2004, the Centers for Disease Control and Prevention launched the EGAPP initiative to establish and test a ... and other applications of genomic technology that are in transition from ...

  1. Ancient genomes

    OpenAIRE

    Hoelzel, A Rus

    2005-01-01

    Ever since its invention, the polymerase chain reaction has been the method of choice for work with ancient DNA. In an application of modern genomic methods to material from the Pleistocene, a recent study has instead undertaken to clone and sequence a portion of the ancient genome of the cave bear.

  2. A subsurface Fe-silicate weathering microbiome

    Science.gov (United States)

    Napieralski, S. A.; Buss, H. L.; Roden, E. E.

    2017-12-01

    Traditional models of microbially mediated weathering of primary Fe-bearing minerals often invoke organic ligands (e.g. siderophores) used for nutrient acquisition. However, it is well known that the oxidation of Fe(II) governs the overall rate of Fe-silicate mineral dissolution. Recent work has demonstrated the ability of lithtrophic iron oxidizing bacteria (FeOB) to grow via the oxidation of structural Fe(II) in biotite as a source of metabolic energy with evidence suggesting a direct enzymatic attack on the mineral surface. This process necessitates the involvement of dedicated outer membrane proteins that interact with insoluble mineral phases in a process known as extracellular electron transfer (EET). To investigate the potential role FeOB in a terrestrial subsurface weathering system, samples were obtained from the bedrock-saprolite interface (785 cm depth) within the Rio Icacos Watershed of the Luquillo Mountains in Puerto Rico. Prior geochemical evidence suggests the flux of Fe(II) from the weathering bedrock supports a robust lithotrophic microbial community at depth. Current work confirms the activity of microorganism in situ, with a marked increase in ATP near the bedrock-saprolite interface. Regolith recovered from the interface was used as inoculum to establish enrichment cultures with powderized Fe(II)-bearing minerals serving as the sole energy source. Monitoring of the Fe(II)/Fe(total) ratio and ATP generation suggests growth of microorganisms coupled to the oxidation of mineral bound Fe(II). Analysis of 16S rRNA gene and shotgun metagenomic libraries from in situ and enrichment culture samples lends further support to FeOB involvement in the weathering process. Multiple metagenomic bins related to known FeOB, including Betaproteobacteria genera, contain homologs to model EET systems, including Cyc2 and MtoAB. Our approach combining geochemistry and metagenomics with ongoing microbiological and genomic characterization of novel isolates obtained

  3. Nasopharyngeal Microbiome Diversity Changes over Time in Children with Asthma.

    Science.gov (United States)

    Pérez-Losada, Marcos; Alamri, Lamia; Crandall, Keith A; Freishtat, Robert J

    2017-01-01

    The nasopharynx is a reservoir for pathogens associated with respiratory illnesses such as asthma. Next-generation sequencing (NGS) has been used to characterize the nasopharyngeal microbiome of infants and adults during health and disease; less is known, however, about the composition and temporal dynamics (i.e., longitudinal variation) of microbiotas from children and adolescents. Here we use NGS technology to characterize the nasopharyngeal microbiomes of asthmatic children and adolescents (6 to 18 years) and determine their stability over time. Two nasopharyngeal washes collected 5.5 to 6.5 months apart were taken from 40 children and adolescents with asthma living in the Washington D.C. area. Sequence data from the 16S-V4 rRNA gene region (~250 bp) were collected from the samples using the MiSeq platform. Raw data were processed in mothur (SILVA123 reference database) and Operational Taxonomic Units (OTU)-based alpha- and beta-diversity metrics were estimated. Relatedness among samples was assessed using PCoA ordination and Procrustes analyses. Differences in microbial diversity and taxon mean relative proportions were assessed using linear mixed effects models. Core microbiome analyses were also performed to identify stable and consistent microbes of the nasopharynx. A total of 2,096,584 clean 16S sequences corresponding to an average of 167 OTUs per sample were generated. Representatives of Moraxella*, Staphylococcus*, Dolosigranulum, Corynebacterium, Prevotella, Streptococcus*, Haemophilus*, Fusobacterium* and a Neisseriaceae genus accounted for 86% of the total reads. These nine genera have been previously found in the nasopharynxes of both infants and adults, but in different proportions. OTUs from the five genera highlighted (*) above defined the nasopharyngeal core microbiome at the 95% level. No significant differences in alpha- and beta-diversity were observed between seasons, but bacterial mean relative proportions of Haemophilus, Moraxella

  4. Nasopharyngeal Microbiome Diversity Changes over Time in Children with Asthma.

    Directory of Open Access Journals (Sweden)

    Marcos Pérez-Losada

    Full Text Available The nasopharynx is a reservoir for pathogens associated with respiratory illnesses such as asthma. Next-generation sequencing (NGS has been used to characterize the nasopharyngeal microbiome of infants and adults during health and disease; less is known, however, about the composition and temporal dynamics (i.e., longitudinal variation of microbiotas from children and adolescents. Here we use NGS technology to characterize the nasopharyngeal microbiomes of asthmatic children and adolescents (6 to 18 years and determine their stability over time.Two nasopharyngeal washes collected 5.5 to 6.5 months apart were taken from 40 children and adolescents with asthma living in the Washington D.C. area. Sequence data from the 16S-V4 rRNA gene region (~250 bp were collected from the samples using the MiSeq platform. Raw data were processed in mothur (SILVA123 reference database and Operational Taxonomic Units (OTU-based alpha- and beta-diversity metrics were estimated. Relatedness among samples was assessed using PCoA ordination and Procrustes analyses. Differences in microbial diversity and taxon mean relative proportions were assessed using linear mixed effects models. Core microbiome analyses were also performed to identify stable and consistent microbes of the nasopharynx.A total of 2,096,584 clean 16S sequences corresponding to an average of 167 OTUs per sample were generated. Representatives of Moraxella*, Staphylococcus*, Dolosigranulum, Corynebacterium, Prevotella, Streptococcus*, Haemophilus*, Fusobacterium* and a Neisseriaceae genus accounted for 86% of the total reads. These nine genera have been previously found in the nasopharynxes of both infants and adults, but in different proportions. OTUs from the five genera highlighted (* above defined the nasopharyngeal core microbiome at the 95% level. No significant differences in alpha- and beta-diversity were observed between seasons, but bacterial mean relative proportions of Haemophilus

  5. The oral microbiome - an update for oral healthcare professionals

    DEFF Research Database (Denmark)

    Kilian, M; Chapple, I L C; Hannig, M

    2016-01-01

    disease-promoting bacteria to manifest and cause conditions such as caries, gingivitis and periodontitis. For practitioners and patients alike, promoting a balanced microbiome is therefore important to effectively maintain or restore oral health. This article aims to give an update on our current...... and health. The mouth houses the second most diverse microbial community in the body, harbouring over 700 species of bacteria that colonise the hard surfaces of teeth and the soft tissues of the oral mucosa. Through recent advances in technology, we have started to unravel the complexities of the oral...

  6. Gut microbiome development along the colorectal adenoma-carcinoma sequence

    DEFF Research Database (Denmark)

    Feng, Qiang; Liang, Suisha; Jia, Huijue

    2015-01-01

    factors indicates that high intake of red meat relative to fruits and vegetables appears to associate with outgrowth of bacteria that might contribute to a more hostile gut environment. These findings suggest that faecal microbiome-based strategies may be useful for early diagnosis and treatment......Colorectal cancer, a commonly diagnosed cancer in the elderly, often develops slowly from benign polyps called adenoma. The gut microbiota is believed to be directly involved in colorectal carcinogenesis. The identity and functional capacity of the adenoma- or carcinoma-related gut microbe...

  7. The gut mycobiome of the Human Microbiome Project healthy cohort.

    Science.gov (United States)

    Nash, Andrea K; Auchtung, Thomas A; Wong, Matthew C; Smith, Daniel P; Gesell, Jonathan R; Ross, Matthew C; Stewart, Christopher J; Metcalf, Ginger A; Muzny, Donna M; Gibbs, Richard A; Ajami, Nadim J; Petrosino, Joseph F

    2017-11-25

    Most studies describing the human gut microbiome in healthy and diseased states have emphasized the bacterial component, but the fungal microbiome (i.e., the mycobiome) is beginning to gain recognition as a fundamental part of our microbiome. To date, human gut mycobiome studies have primarily been disease centric or in small cohorts of healthy individuals. To contribute to existing knowledge of the human mycobiome, we investigated the gut mycobiome of the Human Microbiome Project (HMP) cohort by sequencing the Internal Transcribed Spacer 2 (ITS2) region as well as the 18S rRNA gene. Three hundred seventeen HMP stool samples were analyzed by ITS2 sequencing. Fecal fungal diversity was significantly lower in comparison to bacterial diversity. Yeast dominated the samples, comprising eight of the top 15 most abundant genera. Specifically, fungal communities were characterized by a high prevalence of Saccharomyces, Malassezia, and Candida, with S. cerevisiae, M. restricta, and C. albicans operational taxonomic units (OTUs) present in 96.8, 88.3, and 80.8% of samples, respectively. There was a high degree of inter- and intra-volunteer variability in fungal communities. However, S. cerevisiae, M. restricta, and C. albicans OTUs were found in 92.2, 78.3, and 63.6% of volunteers, respectively, in all samples donated over an approximately 1-year period. Metagenomic and 18S rRNA gene sequencing data agreed with ITS2 results; however, ITS2 sequencing provided greater resolution of the relatively low abundance mycobiome constituents. Compared to bacterial communities, the human gut mycobiome is low in diversity and dominated by yeast including Saccharomyces, Malassezia, and Candida. Both inter- and intra-volunteer variability in the HMP cohort were high, revealing that unlike bacterial communities, an individual's mycobiome is no more similar to itself over time than to another person's. Nonetheless, several fungal species persisted across a majority of samples, evidence that

  8. Richness of human gut microbiome correlates with metabolic markers

    DEFF Research Database (Denmark)

    Le Chatelier, Emmanuelle; Nielsen, Trine; Qin, Junjie

    2013-01-01

    We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus ...... and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities....

  9. Hinder för utomhusundervisning med fokus på årskurs 4-6

    OpenAIRE

    Petersson, Essi; Carstensen, Linnea

    2018-01-01

    I den här studien har vi tagit fram de hinder som begränsar möjligheterna för utomhusundervisning för elever i grundskolan, med fokus på årskurs 4-6 och middle school. Syftet med studien var att synliggöra vilka hinder som kan stå i vägen för utomhusundervisning samt visa på behov av vidare forskning i området. Forskningsfrågan som vi har försökt svara på är: Vad utgör hinder för utomhusundervisning med elever i grundskolan, med fokus på årskurs 4-6 och middle school? Studien bygger på den pr...

  10. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes.

    Science.gov (United States)

    Berry, Hugues; Chaté, Hugues

    2014-02-01

    In vivo measurements of the passive movements of biomolecules or vesicles in cells consistently report "anomalous diffusion," where mean-squared displacements scale as a power law of time with exponent αmovement hindrance by obstacles is often invoked. However, our understanding of how hindered diffusion leads to subdiffusion is based on diffusion amidst randomly located immobile obstacles. Here, we have used Monte Carlo simulations to investigate transient subdiffusion due to mobile obstacles with various modes of mobility. Our simulations confirm that the anomalous regimes rapidly disappear when the obstacles move by Brownian motion. By contrast, mobile obstacles with more confined displacements, e.g., Orstein-Ulhenbeck motion, are shown to preserve subdiffusive regimes. The mean-squared displacement of tracked protein displays convincing power laws with anomalous exponent α that varies with the density of Orstein-Ulhenbeck (OU) obstacles or the relaxation time scale of the OU process. In particular, some of the values we observed are significantly below the universal value predicted for immobile obstacles in two dimensions. Therefore, our results show that subdiffusion due to mobile obstacles with OU type of motion may account for the large variation range exhibited by experimental measurements in living cells and may explain that some experimental estimates are below the universal value predicted for immobile obstacles.

  11. Synthesis and characterization of copolymers from hindered amines and vinyl monomers

    Directory of Open Access Journals (Sweden)

    Marcelo Aparecido Chinelatto

    2014-01-01

    Full Text Available New copolymers from hindered amines and vinyl monomers were synthesized by radical chain polymerization. To obtain polymeric HALS, acrylamide-(1ATP and acrylate-(4ATP monomers, derivatives from 2,2,6,6-tetramethylpiperidine and 2,2,6,6-tetramethyl-4-piperidinol were synthesized. The radical chain polymerization of 1ATP with styrene (Sty using 1-butanethiol (BTN resulted in a copolymer with 95 units of Sty and 15 units of 1ATP. The radical chain polymerization of 1ATP and vinyl acetate (VAc has produced only 1ATP homopolymer. In the chain polymerization of 4ATP with Sty or VAc, the hydrogen atom bonded to the nitrogen of 4ATP is labile enough to originate another radical at this site. The steric hindrance imposed by methyl groups on this bonding site hampers its reaction with other propagating species and the formation of a copolymer or network structure will be dependent on the size of the pendent group in the vinyl monomer.

  12. Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties

    Directory of Open Access Journals (Sweden)

    Xiuying Zhao

    2015-10-01

    Full Text Available New natural rubber (NR/nitrile butadiene rubber (NBR/hindered phenol (AO-80 composites with high-damping properties were prepared in this study. The morphological, structural, and mechanical properties were characterized by atomic force microscopy (AFM, polarized Fourier transform infrared spectrometer (FTIR, dynamic mechanical thermal analyzer (DMTA, and a tensile tester. Each composite consisted of two phases: the NR phase and the NBR/AO-80 phase. There was partial compatibility between the NR phase and the NBR/AO-80 phase, and the NR/NBR/AO-80 (50/50/20 composite exhibited a co-continuous morphology. Strain-induced crystallization occurred in the NR phase at strains higher than 200%, and strain-induced orientation appeared in the NBR/AO-80 phase with the increase of strain from 100% to 500%. The composites had a special stress–strain behavior and mechanical properties because of the simultaneous strain-induced orientation and strain-induced crystallization. In the working temperature range of a seismic isolation bearing, the composites (especially the NR/NBR/AO-80 (50/50/20 composite presented a high loss factor, high area of loss peak (TA, and high hysteresis energy. Therefore, the NR/NBR/AO-80 rubber composites are expected to have important application as a high-performance damping material for rubber bearing.

  13. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    Energy Technology Data Exchange (ETDEWEB)

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano [Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  14. Water Sorption and Hindered Diffusion with Different Chain Stiffness of Superabsorbent Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Myung-Suk; Lee, Dae-Young [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2015-01-15

    Water sorption and diffusion are essential physicochemical properties of a high-performance superabsorbent polymer (SAP). We combine the Park model with the obstruction-scaling model and the water clustering in confined spaces of the polymer hydrogel. Special attention is focused on elucidating the effect of chain stiffness by considering the conformation of the polymer chain. Theoretical model parameters are determined from the best fits by simultaneous nonlinear regressions for both sorption and corrected diffusion data based on previous experiments with poly(acrylamide-co-sodium acrylate) hydrogel. Predictions show that the hindered water diffusivity leads to a sigmoid curve with relative humidity a{sub w}, where it increases monotonically up to aw{sub ≅} 0.6 due to the swelling but decreases at higher a{sub w} caused by water clustering. Water diffusion decreases with increasing chain stiffness, and the larger persistence length provides a smaller opening radius in void spaces regarding the weak elastic deformation of hydrogel under the applied stress.

  15. Observation/confirmation of hindered E2 strength in {sup 18}C/{sup 16}C

    Energy Technology Data Exchange (ETDEWEB)

    Ong, H.J. [Osaka University, RCNP, Ibaraki, Osaka (Japan); Imai, N. [KEK, Tsukuba, Ibaraki (Japan); Suzuki, D.; Iwasaki, H.; Onishi, T.K.; Suzuki, M.K.; Nakao, T.; Ichikawa, Y. [University of Tokyo, Department of Physics, Bunkyo,Tokyo (Japan); Sakurai, H.; Takeuchi, S.; Kondo, Y.; Aoi, N.; Baba, H.; Bishop, S.; Ishihara, M.; Kubo, T.; Motobayashi, T.; Yanagisawa, Y. [RIKEN, RIKEN Nishina Center, Wako, Saitama (Japan); Ota, S. [University of Tokyo, RIKEN Campus, CNS, Wako, Saitama (Japan); Togano, Y.; Kurita, K. [Rikkyo University, Department of Physics, Toshima, Tokyo (Japan); Nakamura, T.; Okumura, T. [Tokyo Institute of Technology, Department of Physics, Meguro, Tokyo (Japan)

    2009-12-15

    We have measured the lifetime of the first excited 2{sup +} state in {sup 18}C using an upgraded recoil shadow method to determine the electric quadrupole transition. The measured mean lifetime is 18.9{+-}0.9 (stat){+-}4.4 (syst) ps, corresponding to B(E2;2{sub 1} {sup +}{yields} 0{sup +} {sub gs}) = 4.3{+-}0.2{+-}1.0 e{sup 2}fm{sup 4}, or about 1.5 Weisskopf units. The mean lifetime of the first 2{sup +} state in {sup 16}C was remeasured to be 18.3{+-}1.4{+-}4.8 ps, about four times shorter than the value reported previously. The discrepancy is explained by incorporating the {gamma} -ray angular distribution obtained in this work into the previous measurement. The observed transition strengths in {sup 16,18}C are hindered compared to the empirical values, indicating that the anomalous E2 strength observed in {sup 16}C persists in {sup 18}C. (orig.)

  16. Doxorubicin hinders DNA condensation promoted by the protein bovine serum albumin (BSA).

    Science.gov (United States)

    Lima, C H M; de Paula, H M C; da Silva, L H M; Rocha, M S

    2017-12-01

    In this work, we have studied the interaction between the anticancer drug doxorubicin (doxo) and condensed DNA, using optical tweezers. To perform this task, we use the protein bovine serum albumin (BSA) in the working buffer to mimic two key conditions present in the real intracellular environment: the condensed state of the DNA and the abundant presence of charged macromolecules in the surrounding medium. In particular, we have found that, when doxo is previously intercalated in disperse DNA, the drug hinders the DNA condensation process upon the addition of BSA in the buffer. On the other hand, when bare DNA is firstly condensed by BSA, doxo is capable to intercalate and to unfold the DNA condensates at relatively high concentrations. In addition, a specific interaction between BSA and doxo was verified, which significantly changes the chemical equilibrium of the DNA-doxo interaction. Finally, the presence of BSA in the buffer stabilizes the double-helix structure of the DNA-doxo complexes, preventing partial DNA denaturation induced by the stretching forces. © 2017 Wiley Periodicals, Inc.

  17. The hyperturbid state of the water column in estuaries and rivers: the importance of hindered settling

    Science.gov (United States)

    Dijkstra, Yoeri M.; Schuttelaars, Henk M.; Winterwerp, Johan C.

    2018-03-01

    Over the last few decades, some estuaries have undergone a transition to a hyperturbid state, characterised by suspended sediment concentrations of several grammes per litre averaged over the water column. To improve our understanding of this transition and of naturally hyperturbid estuaries, we systematically identify the processes allowing for high suspended sediment concentrations using a water column (1DV) model. Under a range of realistic forcing conditions, the state of the water column can be characterised by one of two equilibrium states. The first is an erosion-limited state, in which there still is sediment available for erosion at the bed. We find that this state only occurs with relatively low concentrations. The second is a supply-limited state, in which all erodable sediment is in suspension. The concentration in this state depends entirely on the amount of sediment in the system and can potentially be very high. We identify the conditions under which the state of the water column can jump from a low to a high concentration and identify hysteresis in the transition between the two states. The mechanism responsible for this hysteresis is hindered settling. It thus follows that hyperturbidity is only possible in a supply-limited state. From this observation we derive a necessary condition for an estuarine system to make the transition from low turbidity to hyperturbidity in a 1DV context. This is an important step towards understanding why some estuaries are hyperturbid and assessing the risk that particular estuaries may become hyperturbid in the future.

  18. Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies

    Directory of Open Access Journals (Sweden)

    Mario eCarrillo

    2015-05-01

    Full Text Available The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding specialists: insectivore Macrotus waterhousii, sanguivore Desmodus rotundus, nectarivores Leptonycteris yerbabuenae and Glossophaga soricina, and frugivores Carollia perspicillata and Artibeus jamaicensis. The V4 region of the 16S rRNA gene from three intestinal regions of three individuals per species was amplified and community composition and structure was analyzed with α and β diversity metrics. Bats with plant-based diets had low diversity microbiomes, whereas the sanguivore D. rotundus and insectivore M. waterhousii had the most diverse microbiomes. There were no significant differences in microbiome composition between different intestine regions within each individual. Plant-based feeders showed less specificity in their microbiome compositions, whereas animal-based specialists, although more diverse overall, showed a more clustered arrangement of their intestinal bacterial components. The main characteristics defining microbiome composition in phyllostomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae.

  19. Human and rat gut microbiome composition is maintained following sleep restriction.

    Science.gov (United States)

    Zhang, Shirley L; Bai, Lei; Goel, Namni; Bailey, Aubrey; Jang, Christopher J; Bushman, Frederic D; Meerlo, Peter; Dinges, David F; Sehgal, Amita

    2017-02-21

    Insufficient sleep increasingly characterizes modern society, contributing to a host of serious medical problems. Loss of sleep is associated with metabolic diseases such as obesity and diabetes, cardiovascular disorders, and neurological and cognitive impairments. Shifts in gut microbiome composition have also been associated with the same pathologies; therefore, we hypothesized that sleep restriction may perturb the gut microbiome to contribute to a disease state. In this study, we examined the fecal microbiome by using a cross-species approach in both rat and human studies of sleep restriction. We used DNA from hypervariable regions (V1-V2) of 16S bacteria rRNA to define operational taxonomic units (OTUs) of the microbiome. Although the OTU richness of the microbiome is decreased by sleep restriction in rats, major microbial populations are not altered. Only a single OTU, TM7-3a, was found to increase with sleep restriction of rats. In the human microbiome, we find no overt changes in the richness or composition induced by sleep restriction. Together, these results suggest that the microbiome is largely resistant to changes during sleep restriction.

  20. Links between Natural Variation in the Microbiome and Host Fitness in Wild Mammals.

    Science.gov (United States)

    Suzuki, Taichi A

    2017-10-01

    Recent studies in model organisms have shown that compositional variation in the microbiome can affect a variety of host phenotypes including those related to digestion, development, immunity, and behavior. Natural variation in the microbiome within and between natural populations and species may also affect host phenotypes and thus fitness in the wild. Here, I review recent evidence that compositional variation in the microbiome may affect host phenotypes and fitness in wild mammals. Studies over the last decade indicate that natural variation in the mammalian microbiome may be important in the assistance of energy uptake from different diet types, detoxification of plant secondary compounds, protection from pathogens, chemical communication, and behavior. I discuss the importance of combining both field observations and manipulative experiments in a single system to fully characterize the functions and fitness effects of the microbiome. Finally, I discuss the evolutionary consequences of mammal-microbiome associations by proposing a framework to test how natural selection on hosts is mediated by the microbiome. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Emulating Host-Microbiome Ecosystem of Human Gastrointestinal Tract in Vitro.

    Science.gov (United States)

    Park, Gun-Seok; Park, Min Hee; Shin, Woojung; Zhao, Connie; Sheikh, Sameer; Oh, So Jung; Kim, Hyun Jung

    2017-06-01

    The human gut microbiome performs prodigious physiological functions such as production of microbial metabolites, modulation of nutrient digestion and drug metabolism, control of immune system, and prevention of infection. Paradoxically, gut microbiome can also negatively orchestrate the host responses in diseases or chronic disorders, suggesting that the regulated and balanced host-gut microbiome crosstalk is a salient prerequisite in gastrointestinal physiology. To understand the pathophysiological role of host-microbiome crosstalk, it is critical to recreate in vivo relevant models of the host-gut microbiome ecosystem in human. However, controlling the multi-species microbial communities and their uncontrolled growth has remained a notable technical challenge. Furthermore, conventional two-dimensional (2D) or 3D culture systems do not recapitulate multicellular microarchitectures, mechanical dynamics, and tissue-specific functions. Here, we review recent advances and current pitfalls of in vitro and ex vivo models that display human GI functions. We also discuss how the disruptive technologies such as 3D organoids or a human organ-on-a-chip microphysiological system can contribute to better emulate host-gut microbiome crosstalks in health and disease. Finally, the medical and pharmaceutical significance of the gut microbiome-based personalized interventions is underlined as a future perspective.

  2. Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies

    Science.gov (United States)

    Carrillo-Araujo, Mario; Taş, Neslihan; Alcántara-Hernández, Rocio J.; Gaona, Osiris; Schondube, Jorge E.; Medellín, Rodrigo A.; Jansson, Janet K.; Falcón, Luisa I.

    2015-01-01

    The members of the Phyllostomidae, the New-World leaf-nosed family of bats, show a remarkable evolutionary diversification of dietary strategies including insectivory, as the ancestral trait, followed by appearance of carnivory and plant-based diets such as nectarivory and frugivory. Here we explore the microbiome composition of different feeding specialists: insectivore Macrotus waterhousii, sanguivore Desmodus rotundus, nectarivores Leptonycteris yerbabuenae and Glossophaga soricina, and frugivores Carollia perspicillata and Artibeus jamaicensis. The V4 region of the 16S rRNA gene from three intestinal regions of three individuals per species was amplified and community composition and structure was analyzed with α and β diversity metrics. Bats with plant-based diets had low diversity microbiomes, whereas the sanguivore D. rotundus and insectivore M. waterhousii had the most diverse microbiomes. There were no significant differences in microbiome composition between different intestine regions within each individual. Plant-based feeders showed less specificity in their microbiome compositions, whereas animal-based specialists, although more diverse overall, showed a more clustered arrangement of their intestinal bacterial components. The main characteristics defining microbiome composition in phyllostomids were species and feeding strategy. This study shows how differences in feeding strategies contributed to the development of different intestinal microbiomes in Phyllostomidae. PMID:26042099

  3. Omics for Understanding the Gut-Liver-Microbiome Axis and Precision Medicine.

    Science.gov (United States)

    Khalsa, Jag; Duffy, Linda C; Riscuta, Gabriela; Starke-Reed, Pamela; Hubbard, Van S

    2017-03-01

    Human metabolic disease opens a new view to understanding the contribution of the intestinal microbiome to drug metabolism and drug-induced toxicity in gut-liver function. The gut microbiome, a key determinant of intestinal inflammation, also plays a direct role in chronic inflammation and liver disease. Gut bacterial communities directly metabolize certain drugs, reducing their bioavailability and influencing individual variation in drug response. In addition, some microbiome-produced compounds may affect drug pharmacokinetics and pharmacodynamics via altered expression of metabolizing enzymes and drug transporters or genes coding for drug target proteins, drug response phenotypes, and disease states. Molecular-based high-throughput technologies are providing novel insight about host-gut microbiome interactions, homeostasis, and xenobiotic effects associated with wide variation in efficacy or toxicity in humans. It is envisioned that future approaches to treating and preventing liver disease will benefit from in-depth studies of the liver-microbiome axis. Thus, the microbiome shares a fundamental role in human physiology with various organ systems, and its importance must be considered in the rapid evolution of precision medicine. A new emerging perspective of understanding the effect of the gut microbiome on human response to drugs would be indispensable for developing efficacious, safe, and cost-effective precision therapies. © 2017, The American College of Clinical Pharmacology.

  4. Significant Correlation Between the Infant Gut Microbiome and Rotavirus Vaccine Response in Rural Ghana.

    Science.gov (United States)

    Harris, Vanessa C; Armah, George; Fuentes, Susana; Korpela, Katri E; Parashar, Umesh; Victor, John C; Tate, Jacqueline; de Weerth, Carolina; Giaquinto, Carlo; Wiersinga, Willem Joost; Lewis, Kristen D C; de Vos, Willem M

    2017-01-01

     Rotavirus (RV) is the leading cause of diarrhea-related death in children worldwide and 95% of RV-associated deaths occur in Africa and Asia where RV vaccines (RVVs) have lower efficacy. We hypothesize that differences in intestinal microbiome composition correlate with the decreased RVV efficacy observed in poor settings.  We conducted a nested, case-control study comparing prevaccination, fecal microbiome compositions between 6-week old, matched RVV responders and nonresponders in rural Ghana. These infants' microbiomes were then compared with 154 age-matched, healthy Dutch infants' microbiomes, assumed to be RVV responders. Fecal microbiome analysis was performed in all groups using the Human Intestinal Tract Chip.  We analyzed findings in 78 Ghanaian infants, including 39 RVV responder and nonresponder pairs. The overall microbiome composition was significantly different between RVV responders and nonresponders (FDR, 0.12), and Ghanaian responders were more similar to Dutch infants than nonresponders (P = .002). RVV response correlated with an increased abundance of Streptococcus bovis and a decreased abundance of the Bacteroidetes phylum in comparisons between both Ghanaian RVV responders and nonresponders (FDR, 0.008 vs 0.003) and Dutch infants and Ghanaian nonresponders (FDR, 0.002 vs 0.009).  The intestinal microbiome composition correlates significantly with RVV immunogenicity and may contribute to the diminished RVV immunogenicity observed in developing countries. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.

  5. The Heisenberg-Weyl algebra on the circle and a related quantum mechanical model for hindered rotation.

    Science.gov (United States)

    Kouri, Donald J; Markovich, Thomas; Maxwell, Nicholas; Bodmann, Bernhard G

    2009-07-02

    We discuss a periodic variant of the Heisenberg-Weyl algebra, associated with the group of translations and modulations on the circle. Our study of uncertainty minimizers leads to a periodic version of canonical coherent states. Unlike the canonical, Cartesian case, there are states for which the uncertainty product associated with the generators of the algebra vanishes. Next, we explore the supersymmetric (SUSY) quantum mechanical setting for the uncertainty-minimizing states and interpret them as leading to a family of "hindered rotors". Finally, we present a standard quantum mechanical treatment of one of these hindered rotor systems, including numerically generated eigenstates and energies.

  6. Environment and host species shape the skin microbiome of captive neotropical bats

    Science.gov (United States)

    Tromas, Nicolas; Shapiro, B. Jesse; Lapointe, François-Joseph

    2016-01-01

    Background A wide range of microorganisms inhabit animal skin. This microbial community (microbiome) plays an important role in host defense against pathogens and disease. Bats (Chiroptera: Mammalia) are an ecologically and evolutionarily diversified group with a relatively unexplored skin microbiome. The bat skin microbiome could play a role in disease resistance, for example, to white nose syndrome (WNS), an infection which has been devastating North American bat populations. However, fundamental knowledge of the bat skin microbiome is needed before understanding its role in health and disease resistance. Captive neotropical frugivorous bats Artibeus jamaicensis and Carollia perspicillataprovide a simple controlled system in which to characterize the factors shaping the bat microbiome. Here, we aimed to determine the relative importance of habitat and host species on the bat skin microbiome. Methods We performed high-throughput 16S rRNA gene sequencing of the skin microbiome of two different bat species living in captivity in two different habitats. In the first habitat, A. jamaicensis and C. perspicillata lived together, while the second habitat contained only A. jamaicensis. Results We found that both habitat and host species shape the composition and diversity of the skin microbiome, with habitat having the strongest influence. Cohabitating A. jamaicensis and C. perspicillata shared more similar skin microbiomes than members of the same species (A. jamaicensis) across two habitats. Discussion These results suggest that in captivity, the skin microbial community is homogenised by the shared environments and individual proximities of bats living together in the same habitat, at the expense of the innate host species factors. The predominant influence of habitat suggests that environmental microorganisms or pathogens might colonize bat skin. We also propose that bat populations could differ in pathogen susceptibility depending on their immediate environment and

  7. Environment and host species shape the skin microbiome of captive neotropical bats

    Directory of Open Access Journals (Sweden)

    Virginie Lemieux-Labonté

    2016-09-01

    Full Text Available Background A wide range of microorganisms inhabit animal skin. This microbial community (microbiome plays an important role in host defense against pathogens and disease. Bats (Chiroptera: Mammalia are an ecologically and evolutionarily diversified group with a relatively unexplored skin microbiome. The bat skin microbiome could play a role in disease resistance, for example, to white nose syndrome (WNS, an infection which has been devastating North American bat populations. However, fundamental knowledge of the bat skin microbiome is needed before understanding its role in health and disease resistance. Captive neotropical frugivorous bats Artibeus jamaicensis and Carollia perspicillataprovide a simple controlled system in which to characterize the factors shaping the bat microbiome. Here, we aimed to determine the relative importance of habitat and host species on the bat skin microbiome. Methods We performed high-throughput 16S rRNA gene sequencing of the skin microbiome of two different bat species living in captivity in two different habitats. In the first habitat, A. jamaicensis and C. perspicillata lived together, while the second habitat contained only A. jamaicensis. Results We found that both habitat and host species shape the composition and diversity of the skin microbiome, with habitat having the strongest influence. Cohabitating A. jamaicensis and C. perspicillata shared more similar skin microbiomes than members of the same species (A. jamaicensis across two habitats. Discussion These results suggest that in captivity, the skin microbial community is homogenised by the shared environments and individual proximities of bats living together in the same habitat, at the expense of the innate host species factors. The predominant influence of habitat suggests that environmental microorganisms or pathogens might colonize bat skin. We also propose that bat populations could differ in pathogen susceptibility depending on their immediate

  8. Contact with turf algae alters the coral microbiome: contact versus systemic impacts

    Science.gov (United States)

    Pratte, Zoe A.; Longo, Guilherme O.; Burns, Andrew S.; Hay, Mark E.; Stewart, Frank J.

    2018-03-01

    Coral reefs are degrading to algae-dominated reefs worldwide, with alterations of coral microbiomes commonly co-occurring with reef demise. The severe thermal anomaly during the 2016 El Niño event in the South Pacific killed many corals and stressed others. We examined the microbiome of turf algae and of the coral Porites sp. in contact with turf during this thermal event to investigate algal turf effects on the coral microbiome during a period of environmental stress. The microbial composition of turf did not differ between coral-contacted and non-contacted turfs. However, microbiomes of corals in direct contact with turf were similar to those of the turf microbiome, but differed significantly from coral portions 5 cm from the point of turf/coral contact and from portions of the coral that looked most healthy, regardless of location. Although the majority of significant differences occurred in coral samples at the point of contact, a small subset of microbial taxa was enriched in coral tissues taken 5 cm from turf contact compared to all other sample types, including samples from areas of the coral that appeared most healthy. These results suggest that the coral microbiome is susceptible to colonization by microbes from turf, but not vice versa. Results also suggest that algal contact elicits a subtle shift in the coral microbiome just beyond the contact site. The combination of turf microbiome stability and coral microbiome vulnerability at areas of contact may contribute to the continued decline in coral cover and increase in algal cover associated with coral-algae phase shifts.

  9. The Gut Microbiome and Mental Health: Implications for Anxiety- and Trauma-Related Disorders.

    Science.gov (United States)

    Malan-Muller, Stefanie; Valles-Colomer, Mireia; Raes, Jeroen; Lowry, Christopher A; Seedat, Soraya; Hemmings, Sian M J

    2018-02-01

    Biological psychiatry research has long focused on the brain in elucidating the neurobiological mechanisms of anxiety- and trauma-related disorders. This review challenges this assumption and suggests that the gut microbiome and its interactome also deserve attention to understand brain disorders and develop innovative treatments and diagnostics in the 21st century. The recent, in-depth characterization of the human microbiome spurred a paradigm shift in human health and disease. Animal models strongly suggest a role for the gut microbiome in anxiety- and trauma-related disorders. The microbiota-gut-brain (MGB) axis sits at the epicenter of this new approach to mental health. The microbiome plays an important role in the programming of the hypothalamic-pituitary-adrenal (HPA) axis early in life, and stress reactivity over the life span. In this review, we highlight emerging findings of microbiome research in psychiatric disorders, focusing on anxiety- and trauma-related disorders specifically, and discuss the gut microbiome as a potential therapeutic target. 16S rRNA sequencing has enabled researchers to investigate and compare microbial composition between individuals. The functional microbiome can be studied using methods involving metagenomics, metatranscriptomics, metaproteomics, and metabolomics, as discussed in the present review. Other factors that shape the gut microbiome should be considered to obtain a holistic view of the factors at play in the complex interactome linked to the MGB. In all, we underscore the importance of microbiome science, and gut microbiota in particular, as emerging critical players in mental illness and maintenance of mental health. This new frontier of biological psychiatry and postgenomic medicine should be embraced by the mental health community as it plays an ever-increasing transformative role in integrative and holistic health research in the next decade.

  10. Chemoprevention in gastrointestinal physiology and disease. Natural products and microbiome.

    Science.gov (United States)

    Greiner, Allen K; Papineni, Rao V L; Umar, Shahid

    2014-07-01

    The human intestinal tract harbors a complex ecosystem of commensal bacteria that play a fundamental role in the well-being of their host. There is a general consensus that diet rich in plant-based foods has many advantages in relation to the health and well-being of an individual. In adults, diets that have a high proportion of fruit and vegetables and a low consumption of meat are associated with a highly diverse microbiota and are defined by a greater abundance of Prevotella compared with Bacteroides, whereas the reverse is associated with a diet that contains a low proportion of plant-based foods. In a philosophical term, our consumption of processed foods, widespread use of antibiotics and disinfectants, and our modern lifestyle may have forever altered our ancient gut microbiome. We may never be able to identify or restore our microbiomes to their ancestral state, but dietary modulation to manipulate specific gut microbial species or groups of species may offer new therapeutic approaches to conditions that are prevalent in modern society, such as functional gastrointestinal disorders, obesity, and age-related nutritional deficiency. We believe that this will become an increasingly important area of health research. Copyright © 2014 the American Physiological Society.

  11. Microbiomes associated with bovine periodontitis and oral health.

    Science.gov (United States)

    Borsanelli, Ana C; Lappin, David F; Viora, Lorenzo; Bennett, David; Dutra, Iveraldo S; Brandt, Bernd W; Riggio, Marcello P

    2018-05-01

    Periodontitis is an infectious polymicrobial, immuno-inflammatory disease of multifactorial aetiology that has an impact on the health, production and welfare of ruminants. The objective of the present study was to determine the microbial profiles present in the gingival sulcus of cattle considered periodontally healthy and in the periodontal pocket of animals with periodontitis lesions using high-throughput bacterial 16S rRNA gene sequencing. Subgingival biofilm samples were collected from 40 cattle with periodontitis and 38 periodontally healthy animals. In total, 1923 OTUs were identified and classified into 395 genera or higher taxa. Microbial profiles in health differed significantly from periodontitis in their composition (p PERMANOVA) but no statistically significant differences were observed in the diversity of healthy and periodontitis microbiomes. The most prevalent taxa in health were Pseudomonas, Burkholderia and Actinobacteria, whereas in disease these were Prevotella, Fusobacterium and Porphyromonas. The most discriminative taxa in health were Gastranaerophilales, Planifilum and Burkholderia, and in disease these were Elusimicrobia, Synergistes and Propionivibrio. In conclusion, statistically significant difference exists between the microbiome in bovine oral health and periodontitis, with populations showing 72.6% dissimilarity. The diversity of the bacteria found in health and periodontitis were similar and bacteria recognised as periodontal pathogens showed increased abundance in disease. In this context, the main components of bacterial homeostasis in the biofilm of healthy sites and of dysbiosis in periodontal lesions provide unprecedented indicators for the evolution of knowledge about bovine periodontitis. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Drinking Water Microbiome as a Screening Tool for ...

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of the bulk water (BW) microbiome from a chloraminated drinking water distribution system (DWDS) simulator. The DWDS was operated through four successive operational schemes, including two stable events (SS) and an episode of nitrification (SF), followed by a ‘chlorine burn’ (SR) by switching disinfectant from chloramine to free chlorine. Specifically, this study focuses on biomarker discovery and their potential use to classify SF episodes. Principal coordinate analysis identified two major clusters (SS and SF; PERMANOVA, p 0.976, p < 0.01). Furthermore, models were able to correctly predict 95% (AUC = 0.983, n = 104) and 96% (AUC = 0.973, n = 72) of samples of the DWDS (community structure of two published studies) and water quality datasets, respectively. The results from this study demonstrate the feasibility of selected BW microbiome signatures as predictive biomarkers of nitrification in DWDS. This new information can be used to optimize current nitrification monitoring plans. The purpose of this research is to add to our knowledge of chloramine and chlorine disinfectants, with regards to effects on the microbial communities in drinking water distribution systems. We used a

  13. Chemoprevention in Gastrointestinal Physiology and Disease. Natural products and microbiome

    Science.gov (United States)

    Greiner, Allen K.; Papineni, Rao V. L.

    2014-01-01

    The human intestinal tract harbors a complex ecosystem of commensal bacteria that play a fundamental role in the well-being of their host. There is a general consensus that diet rich in plant-based foods has many advantages in relation to the health and well-being of an individual. In adults, diets that have a high proportion of fruit and vegetables and a low consumption of meat are associated with a highly diverse microbiota and are defined by a greater abundance of Prevotella compared with Bacteroides, whereas the reverse is associated with a diet that contains a low proportion of plant-based foods. In a philosophical term, our consumption of processed foods, widespread use of antibiotics and disinfectants, and our modern lifestyle may have forever altered our ancient gut microbiome. We may never be able to identify or restore our microbiomes to their ancestral state, but dietary modulation to manipulate specific gut microbial species or groups of species may offer new therapeutic approaches to conditions that are prevalent in modern society, such as functional gastrointestinal disorders, obesity, and age-related nutritional deficiency. We believe that this will become an increasingly important area of health research. PMID:24789206

  14. Disease Suppressive Soils: New Insights from the Soil Microbiome.

    Science.gov (United States)

    Schlatter, Daniel; Kinkel, Linda; Thomashow, Linda; Weller, David; Paulitz, Timothy

    2017-11-01

    Soils suppressive to soilborne pathogens have been identified worldwide for almost 60 years and attributed mainly to suppressive or antagonistic microorganisms. Rather than identifying, testing and applying potential biocontrol agents in an inundative fashion, research into suppressive soils has attempted to understand how indigenous microbiomes can reduce disease, even in the presence of the pathogen, susceptible host, and favorable environment. Recent advances in next-generation sequencing of microbiomes have provided new tools to reexamine and further characterize the nature of these soils. Two general types of suppression have been described: specific and general suppression, and theories have been developed around these two models. In this review, we will present three examples of currently-studied model systems with features representative of specific and general suppressiveness: suppression to take-all (Gaeumannomyces graminis var. tritici), Rhizoctonia bare patch of wheat (Rhizoctonia solani AG-8), and Streptomyces. To compare and contrast the two models of general versus specific suppression, we propose a number of hypotheses about the nature and ecology of microbial populations and communities of suppressive soils. We outline the potential and limitations of new molecular techniques that can provide novel ways of testing these hypotheses. Finally, we consider how this greater understanding of the phytobiome can facilitate sustainable disease management in agriculture by harnessing the potential of indigenous soil microbes.

  15. Diet rapidly and reproducibly alters the human gut microbiome

    Science.gov (United States)

    David, Lawrence A.; Maurice, Corinne F.; Carmody, Rachel N.; Gootenberg, David B.; Button, Julie E.; Wolfe, Benjamin E.; Ling, Alisha V.; Devlin, A. Sloan; Varma, Yug; Fischbach, Michael A.; Biddinger, Sudha B.; Dutton, Rachel J.; Turnbaugh, Peter J.

    2013-01-01

    Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut1–5, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals2, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease6. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. PMID:24336217

  16. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition.

    Science.gov (United States)

    Deaver, Jessica A; Eum, Sung Y; Toborek, Michal

    2018-01-01

    Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light-dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles. Stool samples were collected at the beginning and after the circadian rhythm disruption. A metatranscriptomic analysis revealed an increase in Ruminococcus torques , a bacterial species known to decrease gut barrier integrity, and a decrease in Lactobacillus johnsonii , a bacterium that helps maintain the intestinal epithelial cell layer, after circadian rhythm disruption. In addition, genes involved in pathways promoting host beneficial immune responses were downregulated, while genes involved in the synthesis and transportation of the endotoxin lipopolysaccharide were upregulated in mice with disrupted circadian cycles. Importantly, these mice were also more prone to dysfunction of the intestinal barrier. These results further elucidate the impact of light-cycle disruption on the gut microbiome and its connection with increased incidence of disease in response to circadian rhythm disturbances.

  17. Overweight and the feline gut microbiome - a pilot study.

    Science.gov (United States)

    Kieler, I N; Mølbak, L; Hansen, L L; Hermann-Bank, M L; Bjornvad, C R

    2016-06-01

    Compared with lean humans, the gut microbiota is altered in the obese. Whether these changes are due to an obesogenic diet, and whether the microbiota contributes to adiposity is currently discussed. In the cat population, where obesity is also prevalent, gut microbiome changes associated with obesity have not been studied. Consequently, the aim of this study was to compare the gut microbiota of lean cats, with that of overweight and obese cats. Seventy-seven rescue-shelter cats housed for ≥3 consecutive days were included in the study. Faecal samples were obtained by rectal swab and, when available, by a paired litter box sample. Body condition was assessed using a 9-point scoring system. DNA was extracted, and the 16S rRNA gene was amplified with a high-throughput quantitative real-time PCR chip. Overweight and obese cats had a significantly different gut microbiota compared to lean cats (p gut microbiome as compared to lean cats. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  18. The core faecal bacterial microbiome of Irish Thoroughbred racehorses.

    Science.gov (United States)

    O' Donnell, M M; Harris, H M B; Jeffery, I B; Claesson, M J; Younge, B; O' Toole, P W; Ross, R P

    2013-12-01

    In this study, we characterized the gut microbiota in six healthy Irish thoroughbred racehorses and showed it to be dominated by the phyla Firmicutes, Bacteroidetes, Proteobacteria, Verrucomicrobia, Actinobacteria, Euryarchaeota, Fibrobacteres and Spirochaetes. Moreover, all the horses harboured Clostridium, Fibrobacter, Faecalibacterium, Ruminococcus, Eubacterium, Oscillospira, Blautia Anaerotruncus, Coprococcus, Treponema and Lactobacillus spp. Notwithstanding the sample size, it was noteworthy that the core microbiota species assignments identified Fibrobacter succinogenes, Eubacterium coprostanoligenes, Eubacterium hallii, Eubacterium ruminantium, Oscillospira guillermondii, Sporobacter termiditis, Lactobacillus equicursoris, Treponema parvum and Treponema porcinum in all the horses. This is the first study of the faecal microbiota in the Irish thoroughbred racehorse, a significant competitor in the global bloodstock industry. The information gathered in this pilot study provides a foundation for veterinarians and other equine health-associated professionals to begin to analyse the microbiome of performance of racehorses. This study and subsequent work may lead to alternate dietary approaches aimed at minimizing the risk of microbiota-related dysbiosis in these performance animals. Although Irish thoroughbreds are used nationally and internationally as performance animals, very little is known about the core faecal microbiota of these animals. This is the first study to characterize the bacterial microbiota present in the Irish thoroughbred racehorse faeces and elucidate a core microbiome irrespective of diet, animal management and geographical location. © 2013 The Society for Applied Microbiology.

  19. Connections between the human gut microbiome and gestational diabetes mellitus.

    Science.gov (United States)

    Kuang, Ya-Shu; Lu, Jin-Hua; Li, Sheng-Hui; Li, Jun-Hua; Yuan, Ming-Yang; He, Jian-Rong; Chen, Nian-Nian; Xiao, Wan-Qing; Shen, Song-Ying; Qiu, Lan; Wu, Ying-Fang; Hu, Cui-Yue; Wu, Yan-Yan; Li, Wei-Dong; Chen, Qiao-Zhu; Deng, Hong-Wen; Papasian, Christopher J; Xia, Hui-Min; Qiu, Xiu

    2017-08-01

    The human gut microbiome can modulate metabolic health and affect insulin resistance, and it may play an important role in the etiology of gestational diabetes mellitus (GDM). Here, we compared the gut microbial composition of 43 GDM patients and 81 healthy pregnant women via whole-metagenome shotgun sequencing of their fecal samples, collected at 21-29 weeks, to explore associations between GDM and the composition of microbial taxonomic units and functional genes. A metagenome-wide association study identified 154 837 genes, which clustered into 129 metagenome linkage groups (MLGs) for species description, with significant relative abundance differences between the 2 cohorts. Parabacteroides distasonis, Klebsiella variicola, etc., were enriched in GDM patients, whereas Methanobrevibacter smithii, Alistipes spp., Bifidobacterium spp., and Eubacterium spp. were enriched in controls. The ratios of the gross abundances of GDM-enriched MLGs to control-enriched MLGs were positively correlated with blood glucose levels. A random forest model shows that fecal MLGs have excellent discriminatory power to predict GDM status. Our study discovered novel relationships between the gut microbiome and GDM status and suggests that changes in microbial composition may potentially be used to identify individuals at risk for GDM. © The Author 2017. Published by Oxford University Press.

  20. gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.

    Science.gov (United States)

    Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav

    2016-01-01

    Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).

  1. Secrets from the microbiome: molecular biology meets microbiology meets histopathology...meets clinical biochemistry.

    Science.gov (United States)

    Young, Caroline; Quirke, Philip

    2015-11-01

    The microbiome is the collective term used to describe the bacteria, viruses, fungi and archaea that reside on and in the human body. The majority of these organisms are found within the large bowel. Mounting evidence suggests that changes in the microbiome may be associated with the development of colorectal cancer, a disease which affects 1.3 million people a year worldwide. Using colorectal cancer as an example, this article presents the inter-specialty collaborative approach to microbiome research and discusses the key role that clinical biochemistry is likely to play. © The Author(s) 2015.

  2. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data.

    Science.gov (United States)

    Robertson, Charles E; Harris, J Kirk; Wagner, Brandie D; Granger, David; Browne, Kathy; Tatem, Beth; Feazel, Leah M; Park, Kristin; Pace, Norman R; Frank, Daniel N

    2013-12-01

    Studies of the human microbiome, and microbial community ecology in general, have blossomed of late and are now a burgeoning source of exciting research findings. Along with the advent of next-generation sequencing platforms, which have dramatically increased the scope of microbiome-related projects, several high-performance sequence analysis pipelines (e.g. QIIME, MOTHUR, VAMPS) are now available to investigators for microbiome analysis. The subject of our manuscript, the graphical user interface-based Explicet software package, fills a previously unmet need for a robust, yet intuitive means of integrating the outputs of the software pipelines with user-specified metadata and then visualizing the combined data.

  3. The sequence and de novo assembly of the giant panda genome

    Science.gov (United States)

    Li, Ruiqiang; Fan, Wei; Tian, Geng; Zhu, Hongmei; He, Lin; Cai, Jing; Huang, Quanfei; Cai, Qingle; Li, Bo; Bai, Yinqi; Zhang, Zhihe; Zhang, Yaping; Wang, Wen; Li, Jun; Wei, Fuwen; Li, Heng; Jian, Min; Li, Jianwen; Zhang, Zhaolei; Nielsen, Rasmus; Li, Dawei; Gu, Wanjun; Yang, Zhentao; Xuan, Zhaoling; Ryder, Oliver A.; Leung, Frederick Chi-Ching; Zhou, Yan; Cao, Jianjun; Sun, Xiao; Fu, Yonggui; Fang, Xiaodong; Guo, Xiaosen; Wang, Bo; Hou, Rong; Shen, Fujun; Mu, Bo; Ni, Peixiang; Lin, Runmao; Qian, Wubin; Wang, Guodong; Yu, Chang; Nie, Wenhui; Wang, Jinhuan; Wu, Zhigang; Liang, Huiqing; Min, Jiumeng; Wu, Qi; Cheng, Shifeng; Ruan, Jue; Wang, Mingwei; Shi, Zhongbin; Wen, Ming; Liu, Binghang; Ren, Xiaoli; Zheng, Huisong; Dong, Dong; Cook, Kathleen; Shan, Gao; Zhang, Hao; Kosiol, Carolin; Xie, Xueying; Lu, Zuhong; Zheng, Hancheng; Li, Yingrui; Steiner, Cynthia C.; Lam, Tommy Tsan-Yuk; Lin, Siyuan; Zhang, Qinghui; Li, Guoqing; Tian, Jing; Gong, Timing; Liu, Hongde; Zhang, Dejin; Fang, Lin; Ye, Chen; Zhang, Juanbin; Hu, Wenbo; Xu, Anlong; Ren, Yuanyuan; Zhang, Guojie; Bruford, Michael W.; Li, Qibin; Ma, Lijia; Guo, Yiran; An, Na; Hu, Yujie; Zheng, Yang; Shi, Yongyong; Li, Zhiqiang; Liu, Qing; Chen, Yanling; Zhao, Jing; Qu, Ning; Zhao, Shancen; Tian, Feng; Wang, Xiaoling; Wang, Haiyin; Xu, Lizhi; Liu, Xiao; Vinar, Tomas; Wang, Yajun; Lam, Tak-Wah; Yiu, Siu-Ming; Liu, Shiping; Zhang, Hemin; Li, Desheng; Huang, Yan; Wang, Xia; Yang, Guohua; Jiang, Zhi; Wang, Junyi; Qin, Nan; Li, Li; Li, Jingxiang; Bolund, Lars; Kristiansen, Karsten; Wong, Gane Ka-Shu; Olson, Maynard; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian; Wang, Jun

    2013-01-01

    Using next-generation sequencing technology alone, we have successfully generated and assembled a draft sequence of the giant panda genome. The assembled contigs (2.25 gigabases (Gb)) cover approximately 94% of the whole genome, and the remaining gaps (0.05 Gb) seem to contain carnivore-specific repeats and tandem repeats. Comparisons with the dog and human showed that the panda genome has a lower divergence rate. The assessment of panda genes potentially underlying some of its unique traits indicated that its bamboo diet might be more dependent on its gut microbiome than its own genetic composition. We also identified more than 2.7 million heterozygous single nucleotide polymorphisms in the diploid genome. Our data and analyses provide a foundation for promoting mammalian genetic research, and demonstrate the feasibility for using next-generation sequencing technologies for accurate, cost-effective and rapid de novo assembly of large eukaryotic genomes. PMID:20010809

  4. Helping or hindering: the role of nurse managers in the transfer of practice development learning.

    Science.gov (United States)

    Currie, Kay; Tolson, Debbie; Booth, Jo

    2007-09-01

    This paper reports selected findings from a recent PhD study exploring how graduates from a BSc Specialist Nursing programme, with an NMC-approved Specialist Practitioner Qualification, engage in practice development during their subsequent careers. The UKCC (1998) defines specialist practice as requiring higher levels of judgement, discretion and decision-making, with leadership in clinical practice development forming a core dimension of this level of practice. However, there is little evidence in the published literature that describes or evaluates the practice development role of graduate specialist practitioners. This study applied a modified Glaserian approach to grounded theory methods. A preliminary descriptive survey questionnaire was posted to all graduates from the programme, response rate of 45% (n=102). From these respondents, theoretical sampling decisions directed the selection of 20 participants for interview, permitting data saturation. The grounded theory generated by this study discovered a basic social process labelled 'making a difference', whereby graduate specialist practitioners are increasingly able to impact in developing patient care at a strategic level by coming to own the identity of an expert practitioner (Currie, 2006). Contextual factors strongly influence the practitioner journey, with organizational position and other people presenting enabling or blocking conditions. The line manager plays a crucial role in helping or hindering graduate specialist practitioners to transfer their learning to the clinical setting and become active in practice development. Recommendations to enhance managerial support for the practice development role of graduate specialist practitioners are proposed. ADDING TO CURRENT KNOWLEDGE: This work adds to currently limited knowledge of the graduate specialist practitioners' role in the leadership of clinical practice development. In addition, the findings emphasize the potential influence of the workplace

  5. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium.

    Directory of Open Access Journals (Sweden)

    Emirhan Nemutlu

    Full Text Available Integration of mitochondria with cytosolic ATP-consuming/ATP-sensing and substrate supply processes is critical for muscle bioenergetics and electrical activity. Whether age-dependent muscle weakness and increased electrical instability depends on perturbations in cellular energetic circuits is unknown. To define energetic remodeling of aged atrial myocardium we tracked dynamics of ATP synthesis-utilization, substrate supply, and phosphotransfer circuits through adenylate kinase (AK, creatine kinase (CK, and glycolytic/glycogenolytic pathways using 18O stable isotope-based phosphometabolomic technology. Samples of intact atrial myocardium from adult and aged rats were subjected to 18O-labeling procedure at resting basal state, and analyzed using the 18O-assisted HPLC-GC/MS technique. Characteristics for aging atria were lower inorganic phosphate Pi[18O], γ-ATP[18O], β-ADP[18O], and creatine phosphate CrP[18O] 18O-labeling rates indicating diminished ATP utilization-synthesis and AK and CK phosphotransfer fluxes. Shift in dynamics of glycolytic phosphotransfer was reflected in the diminished G6P[18O] turnover with relatively constant glycogenolytic flux or G1P[18O] 18O-labeling. Labeling of G3P[18O], an indicator of G3P-shuttle activity and substrate supply to mitochondria, was depressed in aged myocardium. Aged atrial myocardium displayed reduced incorporation of 18O into second (18O2, third (18O3, and fourth (18O4 positions of Pi[18O] and a lower Pi[18O]/γ-ATP[18 O]-labeling ratio, indicating delayed energetic communication and ATP cycling between mitochondria and cellular ATPases. Adrenergic stress alleviated diminished CK flux, AK catalyzed β-ATP turnover and energetic communication in aging atria. Thus, 18O-assisted phosphometabolomics uncovered simultaneous phosphotransfer through AK, CK, and glycolytic pathways and G3P substrate shuttle deficits hindering energetic communication and ATP cycling, which may underlie energetic

  6. Driving and hindering factors for rural electrification in developing countries: Lessons from Bangladesh

    International Nuclear Information System (INIS)

    Rahman, Md. Mizanur; Paatero, Jukka V.; Poudyal, Aditya; Lahdelma, Risto

    2013-01-01

    Rural electrification is essential for bringing about social and economic developments, but the progress is distressingly slow in most developing countries. The Bangladesh Rural Electrification Program (BREP) has been highlighted as a positive case among developing countries, but from 2006 onwards there have been doubts about the program's chances of success. In this paper, we examine the rural electrification practices in Bangladesh and evaluate the claim that, whereas they were successful up to 2005, they then began to decline in terms of their performance. This study determines the factors behind the initial success of the program as well as those that account for the recent downturn in BREP. We found that the BREP was a clear success in terms of its growth and progress; however, its performance has been declining since 2006. The key driving factors for the success of this program had to do with prioritizing system investment, community involvement, anti-corruption features, standardized practices and performance-based incentives while excluding political parties. The major issues accounting for the decline were the lack of organizational autonomy, a shortage of funding, unrealistic tariffs, and power supply shortages. Renewable-based, off-grid technologies have been successfully supplementing the on-grid program in remote areas. - Highlights: • Rural electrification is essential for bringing about socio-economic developments. • The pace of rural electrification in the developing countries has been very slow. • A multitude of issues plays behind in making the task a success or a failure. • Lack of policy reforms, unrealistic tariffs are the main hinderers. • Rural electrification cannot be successful by sticking to a rigid model

  7. What hinders the development of small businesses: the view of the Murmansk Oblast entrepreneurs

    Directory of Open Access Journals (Sweden)

    Tat’yana Igorevna Barasheva

    2014-07-01

    Full Text Available In recent years there has been a slowdown in the growth rate of Russia’s sector of small and medium entrepreneurship; this issue once again brings to the fore the search for new ways and mechanisms in the management of its subjects. A necessary condition for such a search consists in focusing on the problems that hinder the development of this sector and that can be revealed exclusively in the formation of valuable and accurate information – the collective views of its representatives. In this regard, the information base for the analysis was found in the results of several studies initiated by the all-Russian public organization “OPORA Rossii” (Moscow, its regional branch in Murmansk and the Northern Chamber of Commerce and Industry; the results were obtained in the course of the questionnaire survey, which was conducted among entrepreneurs with the purpose of revealing their assessment of the terms of doing business. The generalization of the research results and information obtained by the author in cooperation with representatives of small business and workers of the Prosecutor’s Office has identified the main problems, their causes and consequences of their impact on the activity of the Murmansk Oblast business sector. In the opinion of a significant part of businessmen, such factor as business climate plays a decisive role in the creation and development of the sector in the region. Despite the complexity of the situation, entrepreneurs do not lose hope of solving their problems and see the solution to the problem in efficient work of the regional and municipal authorities. The author’s conclusions may become a reference point for further reforms in the sphere of management of small enterprises in the Murmansk Oblast

  8. Coupling genetic and chemical microbiome profiling reveals heterogeneity of archaeome and bacteriome in subsurface biofilms that are dominated by the same archaeal species.

    Directory of Open Access Journals (Sweden)

    Alexander J Probst

    Full Text Available Earth harbors an enormous portion of subsurface microbial life, whose microbiome flux across geographical locations remains mainly unexplored due to difficult access to samples. Here, we investigated the microbiome relatedness of subsurface biofilms of two sulfidic springs in southeast Germany that have similar physical and chemical parameters and are fed by one deep groundwater current. Due to their unique hydrogeological setting these springs provide accessible windows to subsurface biofilms dominated by the same uncultivated archaeal species, called SM1 Euryarchaeon. Comparative analysis of infrared imaging spectra demonstrated great variations in archaeal membrane composition between biofilms of the two springs, suggesting different SM1 euryarchaeal strains of the same species at both aquifer outlets. This strain variation was supported by ultrastructural and metagenomic analyses of the archaeal biofilms, which included intergenic spacer region sequencing of the rRNA gene operon. At 16S rRNA gene level, PhyloChip G3 DNA microarray detected similar biofilm communities for archaea, but site-specific communities for bacteria. Both biofilms showed an enrichment of different deltaproteobacterial operational taxonomic units, whose families were, however, congruent as were their lipid spectra. Consequently, the function of the major proportion of the bacteriome appeared to be conserved across the geographic locations studied, which was confirmed by dsrB-directed quantitative PCR. Consequently, microbiome differences of these subsurface biofilms exist at subtle nuances for archaea (strain level variation and at higher taxonomic levels for predominant bacteria without a substantial perturbation in bacteriome function. The results of this communication provide deep insight into the dynamics of subsurface microbial life and warrant its future investigation with regard to metabolic and genomic analyses.

  9. Herbarium genomics

    DEFF Research Database (Denmark)

    Bakker, Freek T.; Lei, Di; Yu, Jiaying

    2016-01-01

    Herbarium genomics is proving promising as next-generation sequencing approaches are well suited to deal with the usually fragmented nature of archival DNA. We show that routine assembly of partial plastome sequences from herbarium specimens is feasible, from total DNA extracts and with specimens...... up to 146 years old. We use genome skimming and an automated assembly pipeline, Iterative Organelle Genome Assembly, that assembles paired-end reads into a series of candidate assemblies, the best one of which is selected based on likelihood estimation. We used 93 specimens from 12 different...... correlation between plastome coverage and nuclear genome size (C value) in our samples, but the range of C values included is limited. Finally, we conclude that routine plastome sequencing from herbarium specimens is feasible and cost-effective (compared with Sanger sequencing or plastome...

  10. Professionals' Perspectives on Organizational Factors that Support or Hinder the Successful Implementation of Family-Centered Practice

    Science.gov (United States)

    Wright, Alexandra; Hiebert-Murphy, Diane; Trute, Barry

    2010-01-01

    This article presents findings from an exploratory, qualitative study whose objective was to identify professionals' perceptions of organizational factors that support or hinder the implementation of family-centered practice (FCP). Two disability services organizations in Manitoba, Canada, were selected as the research sites. In 2002, all staff…

  11. How Perspective-Taking Helps and Hinders Group-Based Guilt as a Function of Group Identification

    NARCIS (Netherlands)

    Zebel, Sven; Doosje, Bertjan; Spears, Russell

    In two studies we hypothesized that outgroup perspective-taking promotes group-based guilt among weakly identified perpetrator group members, but hinders it among higher identifiers. In Study 1, native Dutch participants (N = 153) confronted their group's past mistreatment of outgroups, while

  12. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses.

    Science.gov (United States)

    Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu

    2012-01-01

    Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast

  13. Webinar Presentation: Effects of Formula Supplementation on the Composition of the Infant Microbiome

    Science.gov (United States)

    This presentation, Effects of Formula Supplementation on the Composition of the Infant Microbiome, was given at the NIEHS/EPA Children's Centers 2015 Webinar Series: Food and Children's Health held on Dec. 9, 2015.

  14. Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome

    DEFF Research Database (Denmark)

    Sverrild, Asger; Kiilerich, Pia; Brejnrod, Asker Daniel

    2017-01-01

    BACKGROUND: Asthmatic patients have higher microbiome diversity and an altered composition, with more Proteobacteria and less Bacteroidetes compared with healthy control subjects. Studies comparing airway inflammation and the airway microbiome are sparse, especially in subjects not receiving anti......-inflammatory treatment. OBJECTIVE: We sought to describe the relationship between the airway microbiome and patterns of airway inflammation in steroid-free patients with asthma and healthy control subjects. METHODS: Bronchoalveolar lavage fluid was collected from 23 steroid-free nonsmoking patients with asthma and 10...... and AHR to mannitol but not airway neutrophilia. The overall composition of the airway microbiome of asthmatic patients with the lowest levels of eosinophils but not asthmatic patients with the highest levels of eosinophils deviated significantly from that of healthy subjects. Asthmatic patients...

  15. Microbiome, autoimmunity, allergy, and helminth infection: The importance of the pregnancy period.

    Science.gov (United States)

    Chen, Xian; Liu, Su; Tan, Qiao; Shoenfeld, Yehuda; Zeng, Yong

    2017-08-01

    Pregnancy is a special physical period in reproductive age women, which has a beneficial influence on the course of certain autoimmune diseases. It has been recently suggested that the microbiome undergoes pr