WorldWideScience

Sample records for microbiology photosynthesis biophysics

  1. Biophysics conference 1978

    International Nuclear Information System (INIS)

    1978-01-01

    The main subject on the biophysics meeting was the biophysics of membranes with practical subjects from photosynthesis and the transfer processes on membranes. In radiation biophysics, problems of radiation sensitisation, immunological problems after radiation exposure, the oxygen effect and inhibitory processes in RNS synthesis after radiation exposure were discussed with a view to tumour therapy. (AJ) [de

  2. Recent progress in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1980-03-01

    Recent progress in biophysics is reviewed, and three examples of the use of physical techniques and ideas in biological research are given. The first one deals with the oxygen transporting protein-hemoglobin, the second one with photosynthesis, and the third one with image formation, using nuclear magnetic resonance. (Author) [pt

  3. Theoretical Molecular Biophysics

    CERN Document Server

    Scherer, Philipp

    2010-01-01

    "Theoretical Molecular Biophysics" is an advanced study book for students, shortly before or after completing undergraduate studies, in physics, chemistry or biology. It provides the tools for an understanding of elementary processes in biology, such as photosynthesis on a molecular level. A basic knowledge in mechanics, electrostatics, quantum theory and statistical physics is desirable. The reader will be exposed to basic concepts in modern biophysics such as entropic forces, phase separation, potentials of mean force, proton and electron transfer, heterogeneous reactions coherent and incoherent energy transfer as well as molecular motors. Basic concepts such as phase transitions of biopolymers, electrostatics, protonation equilibria, ion transport, radiationless transitions as well as energy- and electron transfer are discussed within the frame of simple models.

  4. Mathematical biophysics

    CERN Document Server

    Rubin, Andrew

    2014-01-01

    This book presents concise descriptions and analysis of the classical and modern models used in mathematical biophysics. The authors ask the question "what new information can be provided by the models that cannot be obtained directly from experimental data?" Actively developing fields such as regulatory mechanisms in cells and subcellular systems and electron transport and energy transport in membranes are addressed together with more classical topics such as metabolic processes, nerve conduction and heart activity, chemical kinetics, population dynamics, and photosynthesis. The main approach is to describe biological processes using different mathematical approaches necessary to reveal characteristic features and properties of simulated systems. With the emergence of powerful mathematics software packages such as MAPLE, Mathematica, Mathcad, and MatLab, these methodologies are now accessible to a wide audience. Provides succinct but authoritative coverage of a broad array of biophysical topics and models Wr...

  5. C- and N-truncated antimicrobial peptides from LFampin 265 - 284: Biophysical versus microbiology results

    Directory of Open Access Journals (Sweden)

    Regina Adão

    2011-01-01

    Full Text Available Lactoferrin is a glycoprotein with two globular lobes, each having two domains. Since the discovery of its antimicrobial properties, efforts have been made to find peptides derived from this protein showing antimicrobial properties. Most peptides initially studied were derived from Lactoferricin B, obtained from the protein by digestion with pepsin. More recently, a new family of antimicrobial peptides (AMPs derived from Lactoferrin was discovered by Bolcher et al, and named Lactoferrampin (LFampin. The original sequence of LFampin contained residues 268 - 284 from the N1 domain of Lactoferrin. From this peptide, the Bolscher′s group synthesized a collection of peptides obtained by extension and / or truncation at the C or N-terminal sides, in order to unravel the main structural features responsible for antimicrobial action. Here, we present results for three of these peptides, namely LFampin 265 - 284, LFampin 265 - 280, and LFampin 270 - 284. The peptides were tested against bacteria (E. coli and S. sanguinis, fungi (C. albicans, and model membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol] (DMPG, and their mixtures at a ratio of 3 : 1 (DMPC : DMPG (3 : 1. The ability to adopt a helical conformation was followed by a circular dichroism (CD, and the perturbation of the gel to the liquid-crystalline phase transition of the membrane was characterized by differential scanning calorimetry (DSC. Distinct behavior was observed in the three peptides, both from the microbiology and model membrane studies, with the biophysical results showing excellent correlation with the microbiology activity studies. LFampin 265 - 284 was the most active peptide toward the tested microorganisms, and in the biophysical studies it showed the highest ability to form an a-helix and the strongest interaction with model membranes, followed by LFampin 265 - 280. LFampin 270 - 284 was inactive, showing

  6. Frederick Yi-Tung Cho (1939-2011) : His PhD days in Biophysics, the Photosynthesis Lab, and his patents in engineering physics.

    Science.gov (United States)

    Govindjee; Munday, John C; Papageorgiou, George C

    2017-06-01

    We present here a Tribute to Frederick Yi-Tung Cho (1939-2011), an innovative and ingenious biophysicist and an entrepreneur. He was one of the 4 earliest PhD students [see: Cederstrand (1965)-Carl Nelson Cederstrand; coadvisor: Eugene Rabinowitch; Papageorgiou (1968)-George C. Papageorgiou (coauthor of this paper); and Munday (1968)-John C. Munday Jr. (also a coauthor of this paper)] of one of us (Govindjee) in Biophysics at the University of Illinois at Urbana-Champaign (UIUC) during the late 1960s (1963-1968). Fred was best known, in the photosynthesis circle for his pioneering work on low temperature (down to liquid helium temperature, 4 K) absorption and fluorescence spectroscopy of photosynthetic systems; he showed temperature independence of excitation energy transfer from (i) chlorophyll (Chl) b to Chl a and (ii) from Chl a 670 to Chl a 678; and temperature dependence of energy transfer from the phycobilins to Chl a and from Chl a 678 to its suggested trap. After doing research in biophysics of photosynthesis, Fred shifted to do research in solid-state physics/engineering in the Government Electronics Division (Group) of the Motorola Company, Scottsdale, Arizona, from where he published research papers in that area and had several patents granted. We focus mainly on his days at the UIUC in context of the laboratory in which he worked. We also list some of his papers and most of his patents in engineering physics. His friends and colleagues have correctly described him as an innovator and an ingenious scientist of the highest order. On the personal side, he was a very easy-going and amiable individual.

  7. Structural biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. The structural biophysics group explores the high-resolution structure of biological macromolecules and cell organelles. Specific subject areas include: the basic characteristics of photosynthesis in plants; the chemical composition of individual fly ash particles at the site of their damaging action in tissues; direct analysis of frozen-hydrated biological samples by scanning electron microscopy; yeast genetics; the optical activity of DNA aggregates; measurement and characterization of lipoproteins; function of lipoproteins; and the effect of radiation and pollutants on mammalian cells

  8. Anoxygenic photosynthesis controls oxygenic photosynthesis in a cyanobacterium from a sulfidic spring.

    Science.gov (United States)

    Klatt, Judith M; Al-Najjar, Mohammad A A; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-03-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 (-) during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Aerosol-induced thermal effects increase modelled terrestrial photosynthesis and transpiration

    International Nuclear Information System (INIS)

    Steiner, Allison L.; Chameides, W.L.

    2005-01-01

    Previous studies suggest that the radiative effects of atmospheric aerosols (reducing total radiation while increasing the diffuse fraction) can enhance terrestrial productivity. Here, simulations using a regional climate/terrestrial biosphere model suggest that atmospheric aerosols could also enhance terrestrial photosynthesis and transpiration through an interaction between solar radiation, leaf temperature and stomatal conductance. During midday, clear-sky conditions, sunlit-leaf temperatures can exceed the optimum for photosynthesis, depressing both photosynthesis and transpiration. Aerosols decrease surface solar radiation, thereby reducing leaf temperatures and enhancing sunlit-leaf photosynthesis and transpiration. This modelling study finds that, under certain conditions, this thermal response of aerosols can have a greater impact on photosynthesis and transpiration than the radiative response. This implies that a full understanding of the impact of aerosols on climate and the global carbon cycle requires consideration of the biophysical responses of terrestrial vegetation as well as atmospheric radiative and thermodynamic effects

  10. Tracking diurnal changes of photosynthesis and evapotranspiration using fluorescence, gas exchange and hyperspectral remote sensing measurements

    Science.gov (United States)

    Wang, S.; Zhang, L.; Guanter, L.; Huang, C.

    2017-12-01

    Photosynthesis and evapotranspiration (ET) are the two most important activities of vegetation and make a great contribution to carbon, water and energy exchanges. Remote sensing provides opportunities for monitoring these processes across time and space. This study focuses on tracking diurnal changes of photosynthesis and evapotranspiration over soybean using multiple measurement techniques. Diurnal changes of both remote sensing-based indicators, including active and passive chlorophyll fluorescence and biophysical-related parameters, including photosynthesis rate (photo) and leaf stomatal conductance (cond), were observed. Results showed that both leaf-level steady-state fluorescence (Fs) and canopy-level solar-induced chlorophyll fluorescence were linearly correlated to photosynthetically active radiation (PAR) during the daytime. A double-peak diurnal change curve was observed for leaf-level photo and cond but not for Fs or SIF. Photo and cond showed a strong nonlinear (second-order) correlation, indicating that photosynthesis, which might be remotely sensed by SIF, has the opportunity to track short-term changes of ET. Results presented in this report will be helpful for better understanding the relationship between remote-sensing-based indices and vegetation's biophysical processes.

  11. E-photosynthesis: Web-based platform for modeling of complex photosynthetic processes

    Czech Academy of Sciences Publication Activity Database

    Šafránek, D.; Červený, Jan; Klement, M.; Pospíšilová, J.; Brim, L.; Lazár, D.; Nedbal, Ladislav

    2011-01-01

    Roč. 103, č. 2 (2011), s. 115-124 ISSN 0303-2647 R&D Projects: GA ČR GA206/09/1284 Institutional research plan: CEZ:AV0Z60870520 Keywords : biomodels repository * computational models * photosynthesis Subject RIV: BO - Biophysics Impact factor: 1.784, year: 2011

  12. Biophysical model of prokaryotic diversity in geothermal hot springs.

    Science.gov (United States)

    Klales, Anna; Duncan, James; Nett, Elizabeth Janus; Kane, Suzanne Amador

    2012-02-01

    Recent studies of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than a single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of different thermal strains and the functional dependence of the net population density on temperature. We present a simple population dynamics model of these systems that is highly constrained by biophysical data and by physical features of the environment. This model can explain in detail the observed thermal population distributions, as well as certain features of population dynamics observed in laboratory studies of the same organisms. © 2012 American Physical Society

  13. Physical stage of photosynthesis charge separation

    Science.gov (United States)

    Yakovlev, A. G.; Shuvalov, V. A.

    2016-06-01

    An analytical review is given concerning the biophysical aspects of light-driven primary charge separation in photosynthesis reaction centers (RCs) which are special pigment-protein complexes residing in a cell membrane. The primary (physical) stage of charge separation occurs in the pico- and femtosecond ranges and consists of transferring an electron along the active A-branch of pigments. The review presents vast factual material on both the general issues of primary photosynthesis and some more specific topics, including (1) the role of the inactive B-branch of pigments, (2) the effect of the protein environment on the charge separation, and (3) the participation of monomeric bacteriochlorophyll BA in primary electron acceptance. It is shown that the electron transfer and stabilization are strongly influenced by crystallographic water and tyrosine M210 molecules from the nearest environment of BA. A linkage between collective nuclear motions and electron transfer upon charge separation is demonstrated. The nature of the high quantum efficiency of primary charge separation reactions is discussed.

  14. Regressive Evolution of Photosynthesis in the Roseobacter Clade

    Czech Academy of Sciences Publication Activity Database

    Koblížek, Michal; Zeng, Yonghui; Horák, A.; Oborník, Miroslav

    2013-01-01

    Roč. 66, č. 2013 (2013), s. 385-405 ISSN 0065-2296 R&D Projects: GA ČR GAP501/10/0221; GA ČR GBP501/12/G055; GA MŠk ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : roseobacter clade * photosynthesis * marine microbial communities Subject RIV: EE - Microbiology, Virology Impact factor: 1.740, year: 2013

  15. Theoretical molecular biophysics

    CERN Document Server

    Scherer, Philipp O J

    2017-01-01

    This book gives an introduction to molecular biophysics. It starts from material properties at equilibrium related to polymers, dielectrics and membranes. Electronic spectra are developed for the understanding of elementary dynamic processes in photosynthesis including proton transfer and dynamics of molecular motors. Since the molecular structures of functional groups of bio-systems were resolved, it has become feasible to develop a theory based on the quantum theory and statistical physics with emphasis on the specifics of the high complexity of bio-systems. This introduction to molecular aspects of the field focuses on solvable models. Elementary biological processes provide as special challenge the presence of partial disorder in the structure which does not destroy the basic reproducibility of the processes. Apparently the elementary molecular processes are organized in a way to optimize the efficiency. Learning from nature by means exploring the relation between structure and function may even help to b...

  16. Evolution of the Z-scheme of photosynthesis: a perspective.

    Science.gov (United States)

    Govindjee; Shevela, Dmitriy; Björn, Lars Olof

    2017-09-01

    The concept of the Z-scheme of oxygenic photosynthesis is in all the textbooks. However, its evolution is not. We focus here mainly on some of the history of its biophysical aspects. We have arbitrarily divided here the 1941-2016 period into three sub-periods: (a) Origin of the concept of two light reactions: first hinted at, in 1941, by James Franck and Karl Herzfeld; described and explained, in 1945, by Eugene Rabinowitch; and a clear hypothesis, given in 1956 by Rabinowitch, of the then available cytochrome experiments: one light oxidizing it and another reducing it; (b) Experimental discovery of the two light reactions and two pigment systems and the Z-scheme of photosynthesis: Robert Emerson's discovery, in 1957, of enhancement in photosynthesis when two light beams (one in the far-red region, and the other of shorter wavelengths) are given together than when given separately; and the 1960 scheme of Robin Hill & Fay Bendall; and (c) Evolution of the many versions of the Z-Scheme: Louis Duysens and Jan Amesz's 1961 experiments on oxidation and reduction of cytochrome f by two different wavelengths of light, followed by the work of many others for more than 50 years.

  17. Photosynthesis in Chromera velia Represents a Simple System with High Efficiency

    Czech Academy of Sciences Publication Activity Database

    Quigg, A.; Kotabová, Eva; Jarešová, Jana; Kaňa, Radek; Šetlík, Jiří; Šedivá, Barbora; Komárek, Ondřej; Prášil, Ondřej

    2012-01-01

    Roč. 7, č. 10 (2012), e47036 E-ISSN 1932-6203 R&D Projects: GA AV ČR IAA601410907; GA ČR GBP501/12/G055; GA ČR GAP501/12/0304 Institutional support: RVO:61388971 Keywords : Photosynthesis * Chromera velia * RuBISCO Subject RIV: EE - Microbiology, Virology Impact factor: 3.730, year: 2012

  18. Chlorophyll Can Be Reduced in Crop Canopies with Little Penalty to Photosynthesis1[OPEN

    Science.gov (United States)

    Drewry, Darren T.; VanLoocke, Andy; Cho, Young B.

    2018-01-01

    The hypothesis that reducing chlorophyll content (Chl) can increase canopy photosynthesis in soybeans was tested using an advanced model of canopy photosynthesis. The relationship among leaf Chl, leaf optical properties, and photosynthetic biochemical capacity was measured in 67 soybean (Glycine max) accessions showing large variation in leaf Chl. These relationships were integrated into a biophysical model of canopy-scale photosynthesis to simulate the intercanopy light environment and carbon assimilation capacity of canopies with wild type, a Chl-deficient mutant (Y11y11), and 67 other mutants spanning the extremes of Chl to quantify the impact of variation in leaf-level Chl on canopy-scale photosynthetic assimilation and identify possible opportunities for improving canopy photosynthesis through Chl reduction. These simulations demonstrate that canopy photosynthesis should not increase with Chl reduction due to increases in leaf reflectance and nonoptimal distribution of canopy nitrogen. However, similar rates of canopy photosynthesis can be maintained with a 9% savings in leaf nitrogen resulting from decreased Chl. Additionally, analysis of these simulations indicate that the inability of Chl reductions to increase photosynthesis arises primarily from the connection between Chl and leaf reflectance and secondarily from the mismatch between the vertical distribution of leaf nitrogen and the light absorption profile. These simulations suggest that future work should explore the possibility of using reduced Chl to improve canopy performance by adapting the distribution of the “saved” nitrogen within the canopy to take greater advantage of the more deeply penetrating light. PMID:29061904

  19. Metabolic flux ratio analysis and cell staining suggest the existence of C4 photosynthesis in Phaeodactylum tricornutum.

    Science.gov (United States)

    Huang, A; Liu, L; Zhao, P; Yang, C; Wang, G C

    2016-03-01

    Mechanisms for carbon fixation via photosynthesis in the diatom Phaeodactylum tricornutum Bohlin were studied recently but there remains a long-standing debate concerning the occurrence of C4 photosynthesis in this species. A thorough investigation of carbon metabolism and the evidence for C4 photosynthesis based on organelle partitioning was needed. In this study, we identified the flux ratios between C3 and C4 compounds in P. tricornutum using (13)C-labelling metabolic flux ratio analysis, and stained cells with various cell-permeant fluorescent probes to investigate the likely organelle partitioning required for single-cell C4 photosynthesis. Metabolic flux ratio analysis indicated the C3/C4 exchange ratios were high. Cell staining indicated organelle partitioning required for single-cell C4 photosynthesis might exist in P. tricornutum. The results of (13)C-labelling metabolic flux ratio analysis and cell staining suggest single-cell C4 photosynthesis exists in P. tricornutum. This study provides insights into photosynthesis patterns of P. tricornutum and the evidence for C4 photosynthesis based on (13)C-labelling metabolic flux ratio analysis and organelle partitioning. © 2015 The Society for Applied Microbiology.

  20. Direct Scaling of Leaf-Resolving Biophysical Models from Leaves to Canopies

    Science.gov (United States)

    Bailey, B.; Mahaffee, W.; Hernandez Ochoa, M.

    2017-12-01

    Recent advances in the development of biophysical models and high-performance computing have enabled rapid increases in the level of detail that can be represented by simulations of plant systems. However, increasingly detailed models typically require increasingly detailed inputs, which can be a challenge to accurately specify. In this work, we explore the use of terrestrial LiDAR scanning data to accurately specify geometric inputs for high-resolution biophysical models that enables direct up-scaling of leaf-level biophysical processes. Terrestrial LiDAR scans generate "clouds" of millions of points that map out the geometric structure of the area of interest. However, points alone are often not particularly useful in generating geometric model inputs, as additional data processing techniques are required to provide necessary information regarding vegetation structure. A new method was developed that directly reconstructs as many leaves as possible that are in view of the LiDAR instrument, and uses a statistical backfilling technique to ensure that the overall leaf area and orientation distribution matches that of the actual vegetation being measured. This detailed structural data is used to provide inputs for leaf-resolving models of radiation, microclimate, evapotranspiration, and photosynthesis. Model complexity is afforded by utilizing graphics processing units (GPUs), which allows for simulations that resolve scales ranging from leaves to canopies. The model system was used to explore how heterogeneity in canopy architecture at various scales affects scaling of biophysical processes from leaves to canopies.

  1. Measurement of phytoplankton photosynthesis rate using a pump-and-probe fluorometer

    Directory of Open Access Journals (Sweden)

    Taras K. Antal

    2001-09-01

    Full Text Available In this work we have studied the possibility of determining the rate of phytoplankton photosynthesis in situ using a submersible pump-and-probe fluorometer in water areas differing in their trophic level, as well as in climatic and hydrophysical characteristics. A biophysical model was used to describe the relationship between photosynthesis, underwater irradiance, and the intensity of phytoplankton fluorescence excited by an artificial light source. Fluorescence intensity was used as a measure of light absorption by phytoplankton and for assessing the efficiency of photochemical energy conversion at photosynthetic reaction centers. Parameters of the model that could not be measured experimentally were determined by calibrating fluorescence and irradiance data against the primary production measured in the Baltic Sea with the radioactive carbon method. It was shown that the standard deviation of these parameters in situ did not exceed 20%, and the use of their mean values to estimate the phytoplankton photosynthetic rate showed a good correlation between the calculated and meas

  2. Photosynthesis monitoring to optimize growth of microalgal mass cultures: application of chlorophyll fluorescence techniques

    Czech Academy of Sciences Publication Activity Database

    Malapascua, José R.F.; Jerez, Celia G.; Sergejevova, Magda; Figueroa, Felix L.; Masojídek, Jiří

    2014-01-01

    Roč. 22, č. 2014 (2014), s. 123-140 ISSN 1864-7790 R&D Projects: GA MŠk ED2.1.00/03.0110; GA MŠk EE2.3.30.0059 Grant - others:ACTION(AT) CTM2011-15659-E Institutional support: RVO:61388971 Keywords : chlorophyll * biomass * photosynthesis Subject RIV: EE - Microbiology, Virology Impact factor: 1.258, year: 2014

  3. 2009 Photosynthesis to be held June 28 - July 3, 2009

    Energy Technology Data Exchange (ETDEWEB)

    Doug Bruce

    2009-07-06

    The capture of solar energy by photosynthesis has had a most profound influence on the development and sustenance of life on earth. It is the engine that has driven the proliferation of life and, as the source of both energy and oxygen, has had a major hand in shaping the forms that life has taken. Both ancient and present day photosynthetic carbon fixation is intimately tied to issues of immediate human concern, global energy and global warming. Decreasing our reliance on fossil fuels by tapping photosynthesis in a more direct way is an attractive goal for sustainable energy. Meeting this challenge means understanding photosynthetic energy conversion at a molecular level, a task requiring perspectives ranging through all disciplines of science. Researchers in photosynthesis have a strong history of working across conventional boundaries and engaging in multidisciplinary collaborations. The Gordon conference in photosynthesis has been a key focal point for the dissemination of new results and the establishment of powerful research collaborations. In this spirit the 2009 Gordon conference on biophysical aspects of photosynthesis will bring together top international researchers from diverse and complementary disciplines, all working towards understanding how photosynthesis converts light into the stable chemical energy that powers so much of our world. Focal points for talks and discussions will include: (1) Watersplitting, structure and function of the oxygen evolving complex; (2) Antenna, the diversity, optimization and regulation of energy capture and transfer; (3) Reaction center structure and function, including functional roles for the protein; (4) Electron transport, proton transport and energy coupling; (5) Photoprotection mechanisms, including secondary electron transport pathways; (6) Biofuels, hydrogen production; and (7) Artificial photosynthesis and solar energy conversion strategies. The 2009 conference will have a close eye on practical applications

  4. Biophysical and biochemical constraints imposed by salt stress:Learning from halophyte

    Directory of Open Access Journals (Sweden)

    Bernardo eDuarte

    2014-12-01

    Full Text Available Soil salinization is one of the most important factors impacting plant productivity. About 3.6 billion of the world’s 5.2 billion ha of agricultural dryland have already suffered erosion, degradation and salinization. Halophytes typically are considered as plants able to complete their life cycle in environments where the salt concentration is 200 mM NaCl or higher. Different strategies are known to overcome salt stress, as adaptation mechanisms from this type of plants. Salinity adjustment is a complex phenomenon characterized by both biochemical and biophysical adaptations. As photosynthesis is a prerequisite for biomass production, halophytes adapted their electronic transduction pathways and the entire energetic metabolism to overcome the salt excess. The maintenance of ionic homeostasis is in the basis of all cellular stress in particular in terms of redox potential and energy transduction. In the present work the biophysical mechanisms underlying energy capture and transduction in halophytes are discussed alongside with their relation to biochemical mechanisms, integrating data from photosystem light harvesting complexes, electronic transport chains to the quinone pools, carbon harvesting and energy dissipation metabolism.

  5. 8.3 Microbiology and Biodegradation: A New Bacterial Communication System

    Science.gov (United States)

    2014-04-09

    Approved for Public Release; Distribution Unlimited 8.3 Microbiology and Biodegradation: A new bacterial communication system The views, opinions and...JB.01479-10 Federico E. Rey, Caroline S. Harwood. FixK, a global regulator of microaerobic growth, controls photosynthesis in Rhodopseudomonas...Quorum sensing is a term used to describe bacterial cell-to-cell communication that allows cell-density-dependent gene expression. There are many

  6. Biophysics of protein evolution and evolutionary protein biophysics

    Science.gov (United States)

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  7. Photosynthesis and Bioconversion

    International Nuclear Information System (INIS)

    Broda, E.

    1983-01-01

    This text summarises a talk held by Engelbert Broda at a conference on non-convential energy sources. The talk about photosynthesis and bioconversion is devided in 6 sections: the great physicist and photosynthesis; the influence of photosynthesis on the biosphere (in the past, present and future); the light reactions in photosynthesis; the dark reactions in photosynthesis; bioconversion; respiration and photorespiration. (nowak)

  8. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlotophyceae)

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Martin; Procházková, L.; Shmidt, O.; Nedbalová, L.; Kaftan, David

    2014-01-01

    Roč. 89, č. 2 (2014), s. 303-315 ISSN 0168-6496 R&D Projects: GA MŠk ED2.1.00/03.0110 Grant - others:GAJU(CZ) 143/2013/P Institutional support: RVO:61388971 Keywords : electron transfer * snow * algae * photosynthesis Subject RIV: EE - Microbiology, Virology Impact factor: 3.568, year: 2014

  9. Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans.

    Science.gov (United States)

    Kasalický, Vojtěch; Zeng, Yonghui; Piwosz, Kasia; Šimek, Karel; Kratochvilová, Hana; Koblížek, Michal

    2018-01-01

    The genus Limnohabitans ( Comamonadaceae , Betaproteobacteria ) is a common and a highly active component of freshwater bacterioplanktonic communities. To date, the genus has been considered to contain only heterotrophic species. In this study, we detected the photosynthesis genes pufLM and bchY in 28 of 46 strains from three Limnohabitans lineages. The pufM sequences obtained are very closely related to environmental pufM sequences detected in various freshwater habitats, indicating the ubiquity and potential importance of photoheterotrophic Limnohabitans in nature. Additionally, we sequenced and analyzed the genomes of 5 potentially photoheterotrophic Limnohabitans strains, to gain further insights into their phototrophic capacity. The structure of the photosynthesis gene cluster turned out to be highly conserved within the genus Limnohabitans and also among all potentially photosynthetic Betaproteobacteria strains. The expression of photosynthetic complexes was detected in a culture of Limnohabitans planktonicus II-D5 T using spectroscopic and pigment analyses. This was further verified by a novel combination of infrared microscopy and fluorescent in situ hybridization. IMPORTANCE The data presented document that the capacity to perform anoxygenic photosynthesis is common among the members of the genus Limnohabitans , indicating that they may have a novel role in freshwater habitats. Copyright © 2017 American Society for Microbiology.

  10. Evolutionary Divergence of Marine Aerobic Anoxygenic Phototrophic Bacteria as Seen from Diverse Organisations of Their Photosynthesis Gene Clusters

    Czech Academy of Sciences Publication Activity Database

    Zheng, Q.; Koblížek, Michal; Beatty, J.T.; Jiao, N.

    2013-01-01

    Roč. 66, č. 2013 (2013), s. 359-383 ISSN 0065-2296 R&D Projects: GA ČR GAP501/10/0221; GA MŠk ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : Aerobic anoxygenic phototrophic bacteria * photosynthesis * genome sequence Subject RIV: EE - Microbiology, Virology Impact factor: 1.740, year: 2013

  11. Regulation in photosynthesis

    International Nuclear Information System (INIS)

    Heber, U.

    1989-01-01

    This short paper focus on an overall perspective of photosynthesis. The author points out that although much progress has been made into the molecular mechanisms of photosynthesis, the picture is still far from complete. The study of interactions in photosynthesis is important because such a complex process must have regulatory mechanisms. The author also discusses the importance of photosynthesis study in the practical world of survival of man and production of food

  12. Biophysics An Introduction

    CERN Document Server

    Glaser, Roland

    2012-01-01

    Biophysics is the science of physical principles underlying all processes of life, including the dynamics and kinetics of biological systems. This fully revised 2nd English edition is an introductory text that spans all steps of biological organization, from the molecular, to the organism level, as well as influences of environmental factors. In response to the enormous progress recently made, especially in theoretical and molecular biophysics, the author has updated the text, integrating new results and developments concerning protein folding and dynamics, molecular aspects of membrane assembly and transport, noise-enhanced processes, and photo-biophysics. The advances made in theoretical biology in the last decade call for a fully new conception of the corresponding sections. Thus, the book provides the background needed for fundamental training in biophysics and, in addition, offers a great deal of advanced biophysical knowledge.

  13. Biophysics

    CERN Document Server

    Glaser, Roland

    1999-01-01

    The message of this book is that biophysics is the science of physical principles underlying the "phenomenon life" on all levels of organization. Rather than teaching "physics for biologists" or "physical methods applied to biology", it regards its subject as a defined discipline with its own network of ideas and approaches. The book starts by explaining molecular structures of biological systems, various kinds of atomic, molecular and ionic interactions, movements, energy transfer, self organization of supramolecular structures and dynamic properties of biological membranes. It then goes on to introduce the biological organism as a non-equilibrium system, before treating thermodynamic concepts of osmotic and electrolyte equilibria as well as currents and potential profiles. It continues with topics of environmental biophysics and such medical aspects as the influence of electromagnetic fields or radiation on living systems and the biophysics of hearing and noice protection. The book concludes with a discussi...

  14. Methods in Modern Biophysics

    CERN Document Server

    Nölting, Bengt

    2006-01-01

    Incorporating recent dramatic advances, this textbook presents a fresh and timely introduction to modern biophysical methods. An array of new, faster and higher-power biophysical methods now enables scientists to examine the mysteries of life at a molecular level. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, proteomics, and protein folding and structure. Incorporating much information previously unavailable in tutorial form, Nölting employs worked examples and 267 illustrations to fully detail the techniques and their underlying mechanisms. Methods in Modern Biophysics is written for advanced undergraduate and graduate students, postdocs, researchers, lecturers and professors in biophysics, biochemistry and related fields. Special features in the 2nd edition: • Illustrates the high-resolution methods for ultrashort-living protei...

  15. Methods in Modern Biophysics

    CERN Document Server

    Nölting, Bengt

    2010-01-01

    Incorporating recent dramatic advances, this textbook presents a fresh and timely introduction to modern biophysical methods. An array of new, faster and higher-power biophysical methods now enables scientists to examine the mysteries of life at a molecular level. This innovative text surveys and explains the ten key biophysical methods, including those related to biophysical nanotechnology, scanning probe microscopy, X-ray crystallography, ion mobility spectrometry, mass spectrometry, proteomics, and protein folding and structure. Incorporating much information previously unavailable in tutorial form, Nölting employs worked examples and about 270 illustrations to fully detail the techniques and their underlying mechanisms. Methods in Modern Biophysics is written for advanced undergraduate and graduate students, postdocs, researchers, lecturers, and professors in biophysics, biochemistry and related fields. Special features in the 3rd edition: Introduces rapid partial protein ladder sequencing - an important...

  16. Climate changes and photosynthesis

    Directory of Open Access Journals (Sweden)

    G.Sh Tkemaladze

    2016-06-01

    Solar energy is environmentally friendly and its conversion to energy of chemical substances is carried out only by photosynthesis – effective mechanism characteristic of plants. However, microorganism photosynthesis occurs more frequently than higher plant photosynthesis. More than half of photosynthesis taking place on the earth surface occurs in single-celled organisms, especially algae, in particular, diatomic organisms.

  17. A biophysical process based approach for estimating net primary production using satellite and ground observations

    Science.gov (United States)

    Choudhury, Bhaskar J.

    An approach is presented for calculating interannual variation of net primary production (C) of terrestrial plant communities at regional scale using satellite and ground measurements. C has been calculated as the difference of gross photosynthesis (A g) and respiration (R), recognizing that different biophysical factors exert major control on these two processes. A g has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R g and R m. The R m has been determined from nitrogen content of plant tissue per unit ground area, while R g has been obtained as a fraction of the difference of A g and R m. Model parameters have not been determined by matching the calculated fluxes against observations at any location. Results are presented for cultivated and temperate deciduous forest areas over North America for five consecutive years (1986-1990) and compared with observations.

  18. 2. biophysical work meeting

    International Nuclear Information System (INIS)

    1992-11-01

    The report comprises 18 papers held at the 2nd Biophysical Work Meeting, 11 - 13 September 1991 in Schlema, Germany. The history of biophysics in Germany particularly of radiation biophysics and radon research, measurements of the radiation effects of radon and the derivation of limits, radon balneotherapy and consequences of uranium ore mining are dealt with. (orig.) [de

  19. New horizons in Biophysics

    Science.gov (United States)

    2011-01-01

    This editorial celebrates the re-launch of PMC Biophysics previously published by PhysMath Central, in its new format as BMC Biophysics published by BioMed Central with an expanded scope and Editorial Board. BMC Biophysics will fill its own niche in the BMC series alongside complementary companion journals including BMC Bioinformatics, BMC Medical Physics, BMC Structural Biology and BMC Systems Biology. PMID:21595996

  20. Fundamental Concepts in Biophysics Volume 1

    CERN Document Server

    Jue, Thomas

    2009-01-01

    HANDBOOK OF MODERN BIOPHYSICS Series Editor Thomas Jue, PhD Handbook of Modern Biophysics brings current biophysics topics into focus, so that biology, medical, engineering, mathematics, and physical-science students or researchers can learn fundamental concepts and the application of new techniques in addressing biomedical challenges. Chapters explicate the conceptual framework of the physics formalism and illustrate the biomedical applications. With the addition of problem sets, guides to further study, and references, the interested reader can continue to explore independently the ideas presented. Volume I: Fundamental Concepts in Biophysics Editor Thomas Jue, PhD In Fundamental Concepts in Biophysics, prominent professors have established a foundation for the study of biophysics related to the following topics: Mathematical Methods in Biophysics Quantum Mechanics Basic to Biophysical Methods Computational Modeling of Receptor–Ligand Binding and Cellular Signaling Processes Fluorescence Spectroscopy Elec...

  1. Encyclopedia of biophysics

    CERN Document Server

    2013-01-01

    The Encyclopedia of Biophysics is envisioned both as an easily accessible source of information and as an introductory guide to the scientific literature. It includes entries describing both Techniques and Systems.  In the Techniques entries, each of the wide range of methods which fall under the heading of Biophysics are explained in detail, together with the value and the limitations of the information each provides. Techniques covered range from diffraction (X-ray, electron and neutron) through a wide range of spectroscopic methods (X-ray, optical, EPR, NMR) to imaging (from electron microscopy to live cell imaging and MRI), as well as computational and simulation approaches. In the Systems entries, biophysical approaches to specific biological systems or problems – from protein and nucleic acid structure to membranes, ion channels and receptors – are described. These sections, which place emphasis on the integration of the different techniques, therefore provide an inroad into Biophysics from a biolo...

  2. Hydrodynamics and photosynthesis performance of Chlorella fusca (Chlorophyta) grown in a thin-layer cascade (TLC) system

    Czech Academy of Sciences Publication Activity Database

    Jerez, Celia G.; Navarro, E.; Rico, Rosa M.; Malpartida, I.; Masojídek, Jiří; Abdala, R.; Figueroa, Félix L.

    2014-01-01

    Roč. 22, č. 2 (2014), s. 111-122 ISSN 1864-7790 R&D Projects: GA MŠk ED2.1.00/03.0110 Grant - others:Government of Spain (ES) Project Ecolife CGL08-05407-C03-01; Junta de Andalucía(ES) RNM-295; Ministry of Economy and Competitiveness(ES) CTM2011-15659-E Institutional support: RVO:61388971 Keywords : Chlorella fusca * TLC * cultivation * photosynthesis Subject RIV: EE - Microbiology, Virology Impact factor: 1.258, year: 2014

  3. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.; Alnajjar, Mohammad Ahmad; Yilmaz, Pelin; Lavik, Gaute; de Beer, Dirk; Polerecky, Lubos

    2015-01-01

    Before the Earth's complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism's affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  4. Anoxygenic Photosynthesis Controls Oxygenic Photosynthesis in a Cyanobacterium from a Sulfidic Spring

    KAUST Repository

    Klatt, Judith M.

    2015-03-15

    Before the Earth\\'s complete oxygenation (0.58 to 0.55 billion years [Ga] ago), the photic zone of the Proterozoic oceans was probably redox stratified, with a slightly aerobic, nutrient-limited upper layer above a light-limited layer that tended toward euxinia. In such oceans, cyanobacteria capable of both oxygenic and sulfide-driven anoxygenic photosynthesis played a fundamental role in the global carbon, oxygen, and sulfur cycle. We have isolated a cyanobacterium, Pseudanabaena strain FS39, in which this versatility is still conserved, and we show that the transition between the two photosynthetic modes follows a surprisingly simple kinetic regulation controlled by this organism\\'s affinity for H2S. Specifically, oxygenic photosynthesis is performed in addition to anoxygenic photosynthesis only when H2S becomes limiting and its concentration decreases below a threshold that increases predictably with the available ambient light. The carbon-based growth rates during oxygenic and anoxygenic photosynthesis were similar. However, Pseudanabaena FS39 additionally assimilated NO3 - during anoxygenic photosynthesis. Thus, the transition between anoxygenic and oxygenic photosynthesis was accompanied by a shift of the C/N ratio of the total bulk biomass. These mechanisms offer new insights into the way in which, despite nutrient limitation in the oxic photic zone in the mid-Proterozoic oceans, versatile cyanobacteria might have promoted oxygenic photosynthesis and total primary productivity, a key step that enabled the complete oxygenation of our planet and the subsequent diversification of life.

  5. Photosynthesis in the Archean era.

    Science.gov (United States)

    Olson, John M

    2006-05-01

    The earliest reductant for photosynthesis may have been H2. The carbon isotope composition measured in graphite from the 3.8-Ga Isua Supercrustal Belt in Greenland is attributed to H2-driven photosynthesis, rather than to oxygenic photosynthesis as there would have been no evolutionary pressure for oxygenic photosynthesis in the presence of H2. Anoxygenic photosynthesis may also be responsible for the filamentous mats found in the 3.4-Ga Buck Reef Chert in South Africa. Another early reductant was probably H2S. Eventually the supply of H2 in the atmosphere was likely to have been attenuated by the production of CH4 by methanogens, and the supply of H2S was likely to have been restricted to special environments near volcanos. Evaporites, possible stromatolites, and possible microfossils found in the 3.5-Ga Warrawoona Megasequence in Australia are attributed to sulfur-driven photosynthesis. Proteobacteria and protocyanobacteria are assumed to have evolved to use ferrous iron as reductant sometime around 3.0 Ga or earlier. This type of photosynthesis could have produced banded iron formations similar to those produced by oxygenic photosynthesis. Microfossils, stromatolites, and chemical biomarkers in Australia and South Africa show that cyanobacteria containing chlorophyll a and carrying out oxygenic photosynthesis appeared by 2.8 Ga, but the oxygen level in the atmosphere did not begin to increase until about 2.3 Ga.

  6. Improving Photosynthesis

    Science.gov (United States)

    Evans, John R.

    2013-01-01

    Photosynthesis is the basis of plant growth, and improving photosynthesis can contribute toward greater food security in the coming decades as world population increases. Multiple targets have been identified that could be manipulated to increase crop photosynthesis. The most important target is Rubisco because it catalyses both carboxylation and oxygenation reactions and the majority of responses of photosynthesis to light, CO2, and temperature are reflected in its kinetic properties. Oxygenase activity can be reduced either by concentrating CO2 around Rubisco or by modifying the kinetic properties of Rubisco. The C4 photosynthetic pathway is a CO2-concentrating mechanism that generally enables C4 plants to achieve greater efficiency in their use of light, nitrogen, and water than C3 plants. To capitalize on these advantages, attempts have been made to engineer the C4 pathway into C3 rice (Oryza sativa). A simpler approach is to transfer bicarbonate transporters from cyanobacteria into chloroplasts and prevent CO2 leakage. Recent technological breakthroughs now allow higher plant Rubisco to be engineered and assembled successfully in planta. Novel amino acid sequences can be introduced that have been impossible to reach via normal evolution, potentially enlarging the range of kinetic properties and breaking free from the constraints associated with covariation that have been observed between certain kinetic parameters. Capturing the promise of improved photosynthesis in greater yield potential will require continued efforts to improve carbon allocation within the plant as well as to maintain grain quality and resistance to disease and lodging. PMID:23812345

  7. Five Lectures on Photosynthesis

    International Nuclear Information System (INIS)

    Broda, E.

    1979-01-01

    These five lectures were held by E. Broda during the International Symposium on Alternative Energies, in September 1979. Lecture 1 – The Great Physicists and Photosynthesis; Lecture 2 – The Influence of Photosynthesis on the Biosphere. Past, Present and Future; Lecture 3 – The Origin of Photosynthesis; Lecture 4 – The Evolution from Photosynthetic Bacteria to Plants; Lecture 5 – Respiration and Photorespiration. (nowak)

  8. Fruit photosynthesis in Satsuma mandarin.

    Science.gov (United States)

    Hiratsuka, Shin; Suzuki, Mayu; Nishimura, Hiroshi; Nada, Kazuyoshi

    2015-12-01

    To clarify detailed characteristics of fruit photosynthesis, possible gas exchange pathway and photosynthetic response to different environments were investigated in Satsuma mandarin (Citrus unshiu). About 300 mm(-2) stomata were present on fruit surface during young stages (∼10-30 mm diameter fruit) and each stoma increased in size until approximately 88 days after full bloom (DAFB), while the stomata collapsed steadily thereafter; more than 50% stomata deformed at 153 DAFB. The transpiration rate of the fruit appeared to match with stoma development and its intactness rather than the density. Gross photosynthetic rate of the rind increased gradually with increasing CO2 up to 500 ppm but decreased at higher concentrations, which may resemble C4 photosynthesis. In contrast, leaf photosynthesis increased constantly with CO2 increment. Although both fruit and leaf photosynthesis were accelerated by rising photosynthetic photon flux density (PPFD), fruit photosynthesis was greater under considerably lower PPFD from 13.5 to 68 μmolm(-2)s(-1). Thus, Satsuma mandarin fruit appears to incorporate CO2 through fully developed and non-collapsed stomata, and subject it to fruit photosynthesis, which may be characterized as intermediate status among C3, C4 and shade plant photosynthesis. The device of fruit photosynthesis may develop differently from its leaf to capture CO2 efficiently. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Teaching Photosynthesis with ELL Students

    Science.gov (United States)

    Piper, Susan; Shaw, Edward Lewis, Jr.

    2010-01-01

    Although the teaching of photosynthesis occurs yearly in elementary classrooms, one thing that makes it challenging is the inclusion of English language learners (ELLs). This article presents several activities for teaching and assessing of photosynthesis in a third grade classroom. The activities incorporate the photosynthesis content, teaching…

  10. Advanced Techniques in Biophysics

    CERN Document Server

    Arrondo, José Luis R

    2006-01-01

    Technical advancements are basic elements in our life. In biophysical studies, new applications and improvements in well-established techniques are being implemented every day. This book deals with advancements produced not only from a technical point of view, but also from new approaches that are being taken in the study of biophysical samples, such as nanotechniques or single-cell measurements. This book constitutes a privileged observatory for reviewing novel applications of biophysical techniques that can help the reader enter an area where the technology is progressing quickly and where a comprehensive explanation is not always to be found.

  11. The Evolution of Photosynthesis

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    This Review was written by Engelbert Broda, an Austrian Chemist and Physicist, on February the 10th 1976. The merits of the inductive and the deductive approach in tracing the pathways of evolution are discussed. Using the latter approach, it is concluded that photosynthesis followed fermentation as a method of obtaining energy-rich compounds, especially ATP. Photosynthesis probably arose by utilization of membranes for bioenergetic processes. Originally photosynthesis served photophosphorylation (ATP production), later reducing power was also made, either by open-ended, light-powered, electron flow or driven by ATP; ultimate electron donors were at first hydrogen or sulfur compounds, and later water, the last-named capability Was acquired by prokaryotic algae the earliest plants, similar to the recent blue-greens. When free oxygen entered the atmosphere for the first time, various forms of respiration (oxidative phosphorylation) became possible. Mechanistically, respiration evolved from photosynthesis (‘conversion hypotheses’). Prokaryotic algae are probably the ancestors of the chloroplasts in the eukaryotes, In the evolution of the eukaryotes, not much change in the basic processes of photosynthesis occurred.(author)

  12. Photosynthesis in Hydrogen-Dominated Atmospheres

    Science.gov (United States)

    Bains, William; Seager, Sara; Zsom, Andras

    2014-01-01

    The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life. PMID:25411926

  13. Photosynthesis in Hydrogen-Dominated Atmospheres

    Directory of Open Access Journals (Sweden)

    William Bains

    2014-11-01

    Full Text Available The diversity of extrasolar planets discovered in the last decade shows that we should not be constrained to look for life in environments similar to early or present-day Earth. Super-Earth exoplanets are being discovered with increasing frequency, and some will be able to retain a stable, hydrogen-dominated atmosphere. We explore the possibilities for photosynthesis on a rocky planet with a thin H2-dominated atmosphere. If a rocky, H2-dominated planet harbors life, then that life is likely to convert atmospheric carbon into methane. Outgassing may also build an atmosphere in which methane is the principal carbon species. We describe the possible chemical routes for photosynthesis starting from methane and show that less energy and lower energy photons could drive CH4-based photosynthesis as compared with CO2-based photosynthesis. We find that a by-product biosignature gas is likely to be H2, which is not distinct from the hydrogen already present in the environment. Ammonia is a potential biosignature gas of hydrogenic photosynthesis that is unlikely to be generated abiologically. We suggest that the evolution of methane-based photosynthesis is at least as likely as the evolution of anoxygenic photosynthesis on Earth and may support the evolution of complex life.

  14. PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Donald A. [Pennsylvania State Univ., University Park, PA (United States)

    2002-06-21

    The Gordon Research Conference (GRC) on PHOTOSYNTHESIS was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  15. Photosynthesis solutions to enhance productivity.

    Science.gov (United States)

    Foyer, Christine H; Ruban, Alexander V; Nixon, Peter J

    2017-09-26

    The concept that photosynthesis is a highly inefficient process in terms of conversion of light energy into biomass is embedded in the literature. It is only in the past decade that the processes limiting photosynthetic efficiency have been understood to an extent that allows a step change in our ability to manipulate light energy assimilation into carbon gain. We can therefore envisage that future increases in the grain yield potential of our major crops may depend largely on increasing the efficiency of photosynthesis. The papers in this issue provide new insights into the nature of current limitations on photosynthesis and identify new targets that can be used for crop improvement, together with information on the impacts of a changing environment on the productivity of photosynthesis on land and in our oceans.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  16. Artificial Photosynthesis: Beyond Mimicking Nature

    International Nuclear Information System (INIS)

    Dau, Holger; Fujita, Etsuko; Sun, Licheng

    2017-01-01

    In this Editorial, Guest Editors Holger Dau, Etsuko Fujita, and Licheng Sun introduce the Special Issue of ChemSusChem on “Artificial Photosynthesis for Sustainable Fuels”. Here, they discuss the need for non-fossil based fuels, introduce both biological and artificial photosynthesis, and outline various important concepts in artificial photosynthesis, including molecular and solid-state catalysts for water oxidation and hydrogen evolution, catalytic CO 2 reduction, and photoelectrochemical systems.

  17. Annual cycle of Scots pine photosynthesis

    Directory of Open Access Journals (Sweden)

    P. Hari

    2017-12-01

    Full Text Available Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity, using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L. photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  18. Annual cycle of Scots pine photosynthesis

    Science.gov (United States)

    Hari, Pertti; Kerminen, Veli-Matti; Kulmala, Liisa; Kulmala, Markku; Noe, Steffen; Petäjä, Tuukka; Vanhatalo, Anni; Bäck, Jaana

    2017-12-01

    Photosynthesis, i.e. the assimilation of atmospheric carbon to organic molecules with the help of solar energy, is a fundamental and well-understood process. Here, we connect theoretically the fundamental concepts affecting C3 photosynthesis with the main environmental drivers (ambient temperature and solar light intensity), using six axioms based on physiological and physical knowledge, and yield straightforward and simple mathematical equations. The light and carbon reactions in photosynthesis are based on the coherent operation of the photosynthetic machinery, which is formed of a complicated chain of enzymes, membrane pumps and pigments. A powerful biochemical regulation system has emerged through evolution to match photosynthesis with the annual cycle of solar light and temperature. The action of the biochemical regulation system generates the annual cycle of photosynthesis and emergent properties, the state of the photosynthetic machinery and the efficiency of photosynthesis. The state and the efficiency of the photosynthetic machinery is dynamically changing due to biosynthesis and decomposition of the molecules. The mathematical analysis of the system, defined by the very fundamental concepts and axioms, resulted in exact predictions of the behaviour of daily and annual patterns in photosynthesis. We tested the predictions with extensive field measurements of Scots pine (Pinus sylvestris L.) photosynthesis on a branch scale in northern Finland. Our theory gained strong support through rigorous testing.

  19. Photosynthesis in high definition

    Science.gov (United States)

    Hilton, Timothy W.

    2018-01-01

    Photosynthesis is the foundation for almost all known life, but quantifying it at scales above a single plant is difficult. A new satellite illuminates plants' molecular machinery at much-improved spatial resolution, taking us one step closer to combined `inside-outside' insights into large-scale photosynthesis.

  20. Conceptual change through the use of student-generated analogies of photosynthesis and respiration by college non-science majors

    Science.gov (United States)

    Hill, Gary D.

    Two of the most important and difficult concepts in biology are photosynthesis and respiration. A pilot study was performed using student volunteers from introductory biology classes to assess student alternative frameworks regarding photosynthesis and respiration. The results of the pilot study were used to construct the Instrument for the Assessment of Respiration and Photosynthesis (IFARP). This was an 11-item, three-tier multiple choice instrument designed to conveniently assess the common misconceptions students have about these concepts upon entering a biology course. The first tier of each item of the IFARP contained a multiple choice question about photosynthesis or respiration. The second tier had a multiple choice question regarding the reason for the choice in the first tier. The third tier asked the students to indicate how confident they were in their responses, on a scale from 1 (not very confident) to 5 (very confident). The IFARP was administered as a pretest and posttest to a group of science non-majors in an introductory biology course. No significant changes were observed in student performance as measured by the IFARP between the pretest and posttest administrations. The students did, however, demonstrate a statistical increase in mean confidence levels regarding their knowledge of photosynthesis and respiration. Even though their comprehension and understanding regarding photosynthesis and respiration had not increased, the confidence they had in their responses about these two concepts had increased. The IFARP was also administered to a group of nursing student volunteers in an introductory microbiology course. This group of students also participated in the use of student-generated analogies as a learning strategy to alter conceptual frameworks. One test group of students provided analogies to photosynthesis and respiration, while the other test group provided analogies to two other concepts. No significant changes were observed in the

  1. Biophysical pathology in cancer transformation

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Pokorný, Jan

    S1, Nov (2013), s. 1-9 ISSN 2324-9110 R&D Projects: GA ČR(CZ) GAP102/11/0649 Institutional support: RVO:68378271 ; RVO:67985882 Keywords : cancer biophysics * Warburg effect * reverse Warburg effect * biological electrodynamics * coherent states Subject RIV: BO - Biophysics

  2. Dynamic photosynthesis in different environmental conditions.

    Science.gov (United States)

    Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Kromdijk, Johannes; Heuvelink, Ep; Marcelis, Leo F M

    2015-05-01

    Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO₂ supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO₂ concentration and temperature (up to ~35°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. How trees uptake carbon, release water and cool themselves in air: a marriage between biophysics and turbulent fluid dynamics

    Science.gov (United States)

    Banerjee, Tirtha; Linn, Rodman

    2017-11-01

    Resolving the role of the biosphere as a terrestrial carbon sink and the nature of nonlinear couplings between carbon and water cycles across a very wide range of spatiotemporal scales constitute the scope of this work. To achieve this goal, plant physiology models are coupled with atmospheric turbulence simulations. The plant biophysics code is based on the following principles: (1) a model for photosynthesis; (2) a mass transfer model through the laminar boundary layer on leaves; (3) an optimal leaf water use strategy regulated by stomatal aperture variation; (4) a leaf-level energy balance to accommodate evaporative cooling. Leaf-level outputs are upscaled to plant, canopy and landscape scales using HIGRAD/FIRETEC, a high fidelity large eddy simulation (LES) framework developed at LANL. The coupled biophysics-CFD code can take inputs such as wind speed, light availability, ambient CO2 concentration, air temperature, site characteristics etc. and can deliver predictions for leaf temperature, transpiration, carbon assimilation, sensible and latent heat flux, which is used to illustrate the complex the complex interaction between trees and their surrounding environments. These simulation capabilities are being used to study climate feedbacks of forests and agroecosystems.

  4. Carotenoids and Photosynthesis.

    Science.gov (United States)

    Hashimoto, Hideki; Uragami, Chiasa; Cogdell, Richard J

    2016-01-01

    Carotenoids are ubiquitous and essential pigments in photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and so expand the wavelength range of light that is able to drive photosynthesis. This is an example of singlet-singlet energy transfer, and so carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. Carotenoids also act to protect photosynthetic organisms from the harmful effects of excess exposure to light. Triplet-triplet energy transfer from chlorophylls to carotenoids plays a key role in this photoprotective reaction. In the light-harvesting pigment-protein complexes from purple photosynthetic bacteria and chlorophytes, carotenoids have an additional role of structural stabilization of those complexes. In this article we review what is currently known about how carotenoids discharge these functions. The molecular architecture of photosynthetic systems will be outlined first to provide a basis from which to describe carotenoid photochemistry, which underlies most of their important functions in photosynthesis.

  5. Practical lesson of Photosynthesis: A demonstration of Hill reaction in chloroplasts with energy dissipation by fluorescence upon photosystems uncoupling or inhibition by Diuron herbicide

    Directory of Open Access Journals (Sweden)

    Vadim Ravara Viviani

    2016-05-01

    Full Text Available During photosynthesis, the photochemical electron transfer process is easily demonstrated by the Hill reaction, where artificial electron acceptors are reduced by active chloroplasts suspensions in the presence of light.  However, the destiny of luminous energy absorbed by chlorophyll molecules in uncoupled or damaged photosystems is not usually demonstrated. Here we provide an adaptation of the classical Hill reaction using intact spinach chloroplasts, which includes the visualization of energy dissipation by fluorescence in lysed chloroplasts, and a dose/effect response in photosystems inhibited by the herbicide DCMU. This laboratory lesson, which is aimed to biochemistry and biophysics for undergraduate courses of Chemistry, Biological, Environmental and Agricultural Sciences, provides the basic photochemical principles using the classical Hill reaction, and photophysical principles through the visualization of energy dissipation by chlorophyll fluorescence,  improving the understanding of the photosynthetic process, and introducing the concept of fluorescence and its applications as bioanalytical tool to monitor photosynthesis in plants and vegetal ecosystems.

  6. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    Directory of Open Access Journals (Sweden)

    D. Lombardozzi

    2012-08-01

    Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3 concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O3 concentration of 100 parts per billion (ppb. Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  7. Spectrometric microbiological analyzer

    Science.gov (United States)

    Schlager, Kenneth J.; Meissner, Ken E.

    1996-04-01

    Currently, there are four general approaches to microbiological analysis, i.e., the detection, identification and quantification of micro-organisms: (1) Traditional culturing and staining procedures, metabolic fermentations and visual morphological characteristics; (2) Immunological approaches employing microbe-specific antibodies; (3) Biotechnical techniques employing DNA probes and related genetic engineering methods; and (4) Physical measurement techniques based on the biophysical properties of micro-organisms. This paper describes an instrumentation development in the fourth of the above categories, physical measurement, that uses a combination of fluorometric and light scatter spectra to detect and identify micro-organisms at the species level. A major advantage of this approach is the rapid turnaround possible in medical diagnostic or water testing applications. Fluorometric spectra serve to define the biochemical characteristics of the microbe, and light scatter spectra the size and shape morphology. Together, the two spectra define a 'fingerprint' for each species of microbe for detection, identification and quantification purposes. A prototype instrument has been developed and tested under NASA sponsorship based on fluorometric spectra alone. This instrument demonstrated identification and quantification capabilities at the species level. The paper reports on test results using this instrument, and the benefits of employing a combination of fluorometric and light scatter spectra.

  8. Can miscanthus C4 photosynthesis compete with festulolium C3 photosynthesis in a temperate climate?

    DEFF Research Database (Denmark)

    Jiao, Xiurong; Kørup, Kirsten; Andersen, Mathias Neumann

    2017-01-01

    Miscanthus, a perennial grass with C4 photosynthesis, is regarded as a promising energy crop due to its high biomass productivity. Compared with other C4 species, most miscanthus genotypes have high cold tolerances at 14 °C. However, in temperate climates, temperatures below 14 °C are common...... at each temperature level and still maintained photosynthesis after growing for a longer period at 6/4 °C. Only two of five measured miscanthus genotypes increased photosynthesis immediately after the temperature was raised again. The photosynthetic capacity of festulolium was significantly higher at 10...

  9. Biophysical applications of satellite remote sensing

    CERN Document Server

    Hanes, Jonathan

    2014-01-01

    Including an introduction and historical overview of the field, this comprehensive synthesis of the major biophysical applications of satellite remote sensing includes in-depth discussion of satellite-sourced biophysical metrics such as leaf area index.

  10. Historical and Critical Review on Biophysical Economics

    Science.gov (United States)

    Adigüzel, Yekbun

    2016-07-01

    Biophysical economics is initiated with the long history of the relation of economics with ecological basis and biophysical perspectives of the physiocrats. It inherently has social, economic, biological, environmental, natural, physical, and scientific grounds. Biological entities in economy like the resources, consumers, populations, and parts of production systems, etc. could all be dealt by biophysical economics. Considering this wide scope, current work is a “biophysical economics at a glance” rather than a comprehensive review of the full range of topics that may just be adequately covered in a book-length work. However, the sense of its wide range of applications is aimed to be provided to the reader in this work. Here, modern approaches and biophysical growth theory are presented after the long history and an overview of the concepts in biophysical economics. Examples of the recent studies are provided at the end with discussions. This review is also related to the work by Cleveland, “Biophysical Economics: From Physiocracy to Ecological Economics and Industrial Ecology” [C. J. Cleveland, in Advances in Bioeconomics and Sustainability: Essay in Honor of Nicholas Gerogescu-Roegen, eds. J. Gowdy and K. Mayumi (Edward Elgar Publishing, Cheltenham, England, 1999), pp. 125-154.]. Relevant parts include critics and comments on the presented concepts in a parallelized fashion with the Cleveland’s work.

  11. Photosynthesis research in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D.O.

    1979-09-27

    Current research programs in photosynthesis in the USSR are described. Some of the programs include: (1) research on hydrogenases; (2) computer facilities (3) photochemical reduction of low potential compounds; (4) hydrogen-producing systems using model pigment systems; (5) stabilization of chloroplast membranes; (6) construction of fuel cells using immobilized enzymes; (7) carbon, hydrogen, and nitrogen metabolism of photosynthetic bacteria; (8) methane producing bacteria; (9) growth of photosynthetic bacteria under dark and light conditions; (10) efficiency of photosynthesis and plant productivity; (11) biomass as a future source of energy; (12) mycology; (13) isolation of photosystems; and (14) factors limiting photosynthesis in the leaf. (DC)

  12. Physiological and Environmental Aspects of Photosynthesis

    OpenAIRE

    Ricardo Alfredo Kluge; Universidade de São Paulo; Jaqueline V. Tezotto-Uliana; Universidade de São Paulo; Paula P. M. da Silva; Universidade de São Paulo

    2015-01-01

    Undoubtedly, photosynthesis is one of the most important process for the life planet maintenance. The sun releases radiant energy that is able to boost the photosynthetic apparatus of the plants, which produce carbohydrates that will be used in the respiration. Among the most important reactions of photosynthesis is the release of oxygen, essential for respiration, which happens in photosystem II. The products generated in the first phase of photosynthesis or photochemical phase (ATP and NADP...

  13. Microclimate, canopy structure and photosynthesis in canopies of three contrasting temperate forage grasses. III. Canopy photosynthesis, individual leaf photosynthesis and the distribution of current assimilate

    Energy Technology Data Exchange (ETDEWEB)

    Sheehy, J E

    1977-01-01

    The rates of canopy and individual leaf photosynthesis and /sup 14/C distribution for three temperate forage grasses Lolium perenne cv. S24, L. perenne cv. Reveille and Festuca arundinacea cv. S170 were determined in the field during a summer growth period. Canopy photosynthesis declined as the growth period progressed, reflecting a decline in the photosynthetic capacity of successive youngest fully expanded leaves. The decline in the maximum photosynthetic capacity of the canopies was correlated with a decline in their quantum efficiencies at low irradiance. Changes in canopy structure resulted in changes in canopy net photosynthesis and dark respiration. No clear relationships between changes in the environment and changes in canopy net photosynthesis and dark respiration were established. The relative distributions of /sup 14/C in the shoots of the varieties gave a good indication of the amount of dry matter per ground area in the varieties. 21 references, 4 figures, 1 table.

  14. Potential photosynthesis of crop surfaces.

    NARCIS (Netherlands)

    Wit, de C.T.

    1959-01-01

    A formula for calculating the potential photosynthesis of a closed crop surface is proposed, assuming that the leaves of the crop are not arranged in any definite direction. In the Netherlands, values for potential photosynthesis vary from 290 kg. CH2O/ha./day in June to 50 kg./ha./day in December.

  15. Investigation of grapevine photosynthesis using hyperspectral techniques and development of hyperspectral band ratio indices sensitive to photosynthesis.

    Science.gov (United States)

    Ozelkan, Emre; Karaman, Muhittin; Candar, Serkan; Coskun, Zafer; Ormeci, Cankut

    2015-01-01

    The photosynthetic rate of 9 different grapevines were analyzed with simultaneous photosynthesis and spectroradiometric measurements on 08.08.2012 (veraison) and 06.09.2012 (harvest). The wavelengths and spectral regions, which most properly express photosynthetic rate, were determined using correlation and regression analysis. In addition, hyperspectral band ratio (BR) indices sensitive to photosynthesis were developed using optimum band ratio (OBRA) method. The relation of BR results with photosynthesis values are presented with the correlation matrix maps created in this study. The examinations were performed for both specific dates (i.e., veraison and harvest) and also in aggregate (i.e., correlation between total spectra and photosynthesis data). For specific dates wavelength based analysis, the photosynthesis were best determined with -0.929 correlation coefficient (r) 609 nm of yellow region at veraison stage, and -0.870 at 641 nm of red region at harvest stage. For wavelength based aggregate analysis, 640 nm of red region was found to be correlated with 0.921 and -0.867 r values respectively and red edge (RE) (695 nm) was found to be correlated with -0.922 and -0.860 r values, respectively. When BR indices results were analyzed with photosynthetic values for specific dates, -0.987 r with R8../R, at veraison stage and -0.911 r with R696/R944 at harvest stage were found most correlated. For aggregate analysis of BR, common BR presenting great correlation with photosynthesis for both measurements was found to be R632/R971 with -0.974, -0.881 r values, respectively and other R610/R760 with -0.976, -0.879 r values. The final results of this study indicate that the proportion of RE region to a region with direct or indirect correlation with photosynthetic provides information about rate of photosynthesis. With the indices created in this study, the photosynthesis rate of vineyards can be determined using in-situ hyperspectral remote sensing. The findings of this

  16. Biophysics an introduction

    CERN Document Server

    Cotteril, Rodney

    2002-01-01

    Biophysics: An Introduction, is a concise balanced introduction to this subject. Written in an accessible and readable style, the book takes a fresh, modern approach with the author successfully combining key concepts and theory with relevant applications and examples drawn from the field as a whole. Beginning with a brief introduction to the origins of biophysics, the book takes the reader through successive levels of complexity, from atoms to molecules, structures, systems and ultimately to the behaviour of organisms. The book also includes extensive coverage of biopolymers, biomembranes, biological energy, and nervous systems. The text not only explores basic ideas, but also discusses recent developments, such as protein folding, DNA/RNA conformations, molecular motors, optical tweezers and the biological origins of consciousness and intelligence.

  17. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  18. Could photosynthesis function on Proxima Centauri b?

    Science.gov (United States)

    Ritchie, Raymond J.; Larkum, Anthony W. D.; Ribas, Ignasi

    2018-04-01

    Could oxygenic and/or anoxygenic photosynthesis exist on planet Proxima Centauri b? Proxima Centauri (spectral type - M5.5 V, 3050 K) is a red dwarf, whereas the Sun is type G2 V (5780 K). The light regimes on Earth and Proxima Centauri b are compared with estimates of the planet's suitability for Chlorophyll a (Chl a) and Chl d-based oxygenic photosynthesis and for bacteriochlorophyll (BChl)-based anoxygenic photosynthesis. Proxima Centauri b has low irradiance in the oxygenic photosynthesis range (400-749 nm: 64-132 µmol quanta m-2 s-1). Much larger amounts of light would be available for BChl-based anoxygenic photosynthesis (350-1100 nm: 724-1538 µmol quanta m-2 s-1). We estimated primary production under these light regimes. We used the oxygenic algae Synechocystis PCC6803, Prochlorothrix hollandica, Acaryochloris marina, Chlorella vulgaris, Rhodomonas sp. and Phaeodactylum tricornutum and the anoxygenic photosynthetic bacteria Rhodopseudomonas palustris (BChl a), Afifella marina (BChl a), Thermochromatium tepidum (BChl a), Chlorobaculum tepidum (BChl a + c) and Blastochloris viridis (BChl b) as representative photosynthetic organisms. Proxima Centauri b has only ~3% of the PAR (400-700 nm) of Earth irradiance, but we found that potential gross photosynthesis (P g) on Proxima Centauri b could be surprisingly high (oxygenic photosynthesis: earth ~0.8 gC m-2 h-1 Proxima Centauri b ~0.14 gC m-2 h-1). The proportion of PAR irradiance useable by oxygenic photosynthetic organisms (the sum of Blue + Red irradiance) is similar for the Earth and Proxima Centauri b. The oxygenic photic zone would be only ~10 m deep in water compared with ~200 m on Earth. The P g of an anoxic Earth (gC m-2 h-1) is ~0.34-0.59 (land) and could be as high as ~0.29-0.44 on Proxima Centauri b. 1 m of water does not affect oxygenic or anoxygenic photosynthesis on Earth, but on Proxima Centauri b oxygenic P g is reduced by ~50%. Effective elimination of near IR limits P g by photosynthetic

  19. Estimating phytoplankton photosynthesis by active fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, P.G.; Kolber, Z.

    1992-01-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  20. Estimating phytoplankton photosynthesis by active fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Falkowski, P.G.; Kolber, Z.

    1992-10-01

    Photosynthesis can be described by target theory, At low photon flux densities, photosynthesis is a linear function of irradiance (I), The number of reaction centers (n), their effective absorption capture cross section {sigma}, and a quantum yield {phi}. As photosynthesis becomes increasingly light saturated, an increased fraction of reaction centers close. At light saturation the maximum photosynthetic rate is given as the product of the number of reaction centers (n) and their maximum electron transport rate (I/{tau}). Using active fluorometry it is possible to measure non-destructively and in real time the fraction of open or closed reaction centers under ambient irradiance conditions in situ, as well as {sigma} and {phi} {tau} can be readily, calculated from knowledge of the light saturation parameter, I{sub k} (which can be deduced by in situ by active fluorescence measurements) and {sigma}. We built a pump and probe fluorometer, which is interfaced with a CTD. The instrument measures the fluorescence yield of a weak probe flash preceding (f{sub 0}) and succeeding (f{sub 0}) a saturating pump flash. Profiles of the these fluorescence yields are used to derive the instantaneous rate of gross photosynthesis in natural phytoplankton communities without any incubation. Correlations with short-term simulated in situ radiocarbon measurements are extremely high. The average slope between photosynthesis derived from fluorescence and that measured by radiocarbon is 1.15 and corresponds to the average photosynthetic quotient. The intercept is about 15% of the maximum radiocarbon uptake and corresponds to the average net community respiration. Profiles of photosynthesis and sections showing the variability in its composite parameters reveal a significant effect of nutrient availability on biomass specific rates of photosynthesis in the ocean.

  1. Integrated Molecular and Cellular Biophysics

    CERN Document Server

    Raicu, Valerica

    2008-01-01

    This book integrates concepts and methods from physics, biology, biochemistry and physical chemistry into a standalone, unitary text of biophysics that aims to provide a quantitative description of structures and processes occurring in living matter. The book introduces graduate physics students and physicists interested in biophysics research to 'classical' as well as emerging areas of biophysics. The advanced undergraduate physics students and the life scientists are also invited to join in, by building on their knowledge of basic physics. Essential notions of biochemistry and biology are introduced, as necessary, throughout the book, while the reader's familiarity with basic knowledge of physics is assumed. Topics covered include interactions between biological molecules, physical chemistry of phospholipids association into bilayer membranes, DNA and protein structure and folding, passive and active electrical properties of the cell membrane, classical as well as fractal aspects of reaction kinetics and di...

  2. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Science.gov (United States)

    Unger, N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.; McKinney, K. A.; Misztal, P.; Potosnak, M.; Rinne, J.; Pressley, S.; Schoon, N.; Serça, D.

    2013-10-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar-Ball-Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64-96%) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr-1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  3. Photosynthesis-dependent Isoprene Emission from Leaf to Planet in a Global Carbon-chemistry-climate Model

    Science.gov (United States)

    Unger, N.; Harper, K.; Zeng, Y.; Kiang, N. Y.; Alienov, I.; Arneth, A.; Schurgers, G.; Amelynck, C.; Goldstein, A.; Guenther, A.; hide

    2013-01-01

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the FarquharBallBerry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50 of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 6496) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr1 that increases by 30 in the artificial absence of plant water stress and by 55 for potential natural vegetation.

  4. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Unger, N.; Harper, K.; Zheng, Y.; Kiang, N. Y.; Aleinov, I.; Arneth, Almut; Schurgers, G.; Amelynck, C.; Goldstein, Allen H.; Guenther, Alex B.; Heinesch, B.; Hewitt, C. N.; Karl, T.; Laffineur, Q.; Langford, B.; McKinney, Karena A.; Misztal, P.; Potosnak, M.; Rinne, J.; Pressley, S.; Schoon, N.; Serca, D.

    2013-10-22

    We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar/Ball- Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present day climatic state that uses plant functional types (PFTs), prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis) reproduces 50% of the variability across different ecosystems and seasons in a global database of measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64-96 %) and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr-1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  5. Proteomic approaches in research of cyanobacterial photosynthesis.

    Science.gov (United States)

    Battchikova, Natalia; Angeleri, Martina; Aro, Eva-Mari

    2015-10-01

    Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.

  6. Biophysical remote sensing and terrestrial CO2 exchange at Cape Bounty, Melville Island

    Science.gov (United States)

    Gregory, Fiona Marianne

    Cape Bounty, Melville Island is a partially vegetated High Arctic landscape with three main plant communities: polar semi-desert (47% of the study area), mesic tundra (31%) , and wet sedge meadows (7%). The objective of this research was to relate biophysical measurements of soil, vegetation, and CO2 exchange rates in each vegetation type to high resolution satellite data from IKONOS-2, extending plot level measurements to a landscape scale. Field data was collected through six weeks of the 2008 growing season. Two IKONOS images were acquired, one on July 4th and the other on August 2nd. Two products were generated from the satellite data: a land-cover classification and the Normalized Difference Vegetation Index (NDVI). The three vegetation types were found to have distinct soil and vegetation characteristics. Only the wet sedge meadows were a net sink for CO2; soil respiration tended to exceed photosynthesis in the sparsely vegetated mesic tundra and polar semi-desert. Scaling up the plot measurements by vegetation type area suggested that Cape Bounty was a small net carbon source (0.34 +/- 0.47 g C m-2 day-1) in the summer of 2008. NDVI was strongly correlated with percent vegetation cover, vegetation volume, soil moisture, and moderately with soil nitrogen, biomass, and leaf area index (LAI). Photosynthesis and respiration of CO2 both positively correlated with NDVI, most strongly when averaged over the season. NDVI increased over time in every vegetation type, but this change was not reflected in any significant measured changes in vegetation or CO2 flux rates. A simple spatial model was developed to estimate Net Ecosystem Exchange (NEE) at every pixel on the satellite images based on NDVI, temperature and incoming solar radiation. It was found that the rate of photosynthesis per unit NDVI was higher early in the growing season. The model estimated a mean flux to the atmosphere of 0.21 g C m-2 day-1 at the time of image acquisition on July 4th, and -0.07 g C m

  7. Modelling C₃ photosynthesis from the chloroplast to the ecosystem.

    Science.gov (United States)

    Bernacchi, Carl J; Bagley, Justin E; Serbin, Shawn P; Ruiz-Vera, Ursula M; Rosenthal, David M; Vanloocke, Andy

    2013-09-01

    Globally, photosynthesis accounts for the largest flux of CO₂ from the atmosphere into ecosystems and is the driving process for terrestrial ecosystem function. The importance of accurate predictions of photosynthesis over a range of plant growth conditions led to the development of a C₃ photosynthesis model by Farquhar, von Caemmerer & Berry that has become increasingly important as society places greater pressures on vegetation. The photosynthesis model has played a major role in defining the path towards scientific understanding of photosynthetic carbon uptake and the role of photosynthesis on regulating the earth's climate and biogeochemical systems. In this review, we summarize the photosynthesis model, including its continued development and applications. We also review the implications these developments have on quantifying photosynthesis at a wide range of spatial and temporal scales, and discuss the model's role in determining photosynthetic responses to changes in environmental conditions. Finally, the review includes a discussion of the larger-scale modelling and remote-sensing applications that rely on the leaf photosynthesis model and are likely to open new scientific avenues to address the increasing challenges to plant productivity over the next century. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Advances Afoot in Microbiology.

    Science.gov (United States)

    Patel, Robin; Karon, Brad S

    2017-07-01

    In 2016, the American Academy of Microbiology convened a colloquium to examine point-of-care (POC) microbiology testing and to evaluate its effects on clinical microbiology. Colloquium participants included representatives from clinical microbiology laboratories, industry, and the government, who together made recommendations regarding the implementation, oversight, and evaluation of POC microbiology testing. The colloquium report is timely and well written (V. Dolen et al., Changing Diagnostic Paradigms for Microbiology , 2017, https://www.asm.org/index.php/colloquium-reports/item/6421-changing-diagnostic-paradigms-for-microbiology?utm_source=Commentary&utm_medium=referral&utm_campaign=diagnostics). Emerging POC microbiology tests, especially nucleic acid amplification tests, have the potential to advance medical care. Copyright © 2017 American Society for Microbiology.

  9. Smoothing of, and parameter estimation from, noisy biophysical recordings.

    Directory of Open Access Journals (Sweden)

    Quentin J M Huys

    2009-05-01

    Full Text Available Biophysically detailed models of single cells are difficult to fit to real data. Recent advances in imaging techniques allow simultaneous access to various intracellular variables, and these data can be used to significantly facilitate the modelling task. These data, however, are noisy, and current approaches to building biophysically detailed models are not designed to deal with this. We extend previous techniques to take the noisy nature of the measurements into account. Sequential Monte Carlo ("particle filtering" methods, in combination with a detailed biophysical description of a cell, are used for principled, model-based smoothing of noisy recording data. We also provide an alternative formulation of smoothing where the neural nonlinearities are estimated in a non-parametric manner. Biophysically important parameters of detailed models (such as channel densities, intercompartmental conductances, input resistances, and observation noise are inferred automatically from noisy data via expectation-maximization. Overall, we find that model-based smoothing is a powerful, robust technique for smoothing of noisy biophysical data and for inference of biophysical parameters in the face of recording noise.

  10. Structure and biophysics

    CERN Document Server

    Puglisi, Joseph D

    2007-01-01

    This volume is a collection of articles from the proceedings of the ISSBMR 7th Course: Structure and Biophysics - New Technologies for Current Challenges in Biology and Beyond. This NATO Advanced Institute (ASI) was held in Erice at the Ettore Majorana Foundation and Centre for Scientific Culture on 22 June through 3 July 2005. The ASI brought together a diverse group of experts in the fields of Structural Biology, Biophysics and Physics. Prominent lecturers, from seven different countries, and students from around the world participated in the NATO ASI organized by Professors Joseph Puglisi (Stanford University, USA) and Alexander Arseniev (Moscow, RU). Advances in nuclear magnetic resonance spectroscopy (NMR) and x-ray crystallography have allowed the three-dimensional structures of many biological macromolecules and their complexes, including the ribosome and RNA polymerase to be solved. Fundamental principles of NMR spectroscopy and dynamics, x-ray crystallography, computation and experimental dynamics we...

  11. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    Science.gov (United States)

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  12. Global analysis of photosynthesis transcriptional regulatory networks.

    Directory of Open Access Journals (Sweden)

    Saheed Imam

    2014-12-01

    Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  13. Reintroducing Photosynthesis

    Science.gov (United States)

    Vila, F.; Sanz, A.

    2012-01-01

    This article reports on conceptual difficulties related to photosynthesis and respiratory metabolism of a Plant Physiology course for undergraduate students that could hinder their better learning of metabolic processes. A survey of results obtained in this area during the last 10 academic years was performed, as well as a specific test, aimed to…

  14. Biophysics: for HTS hit validation, chemical lead optimization, and beyond.

    Science.gov (United States)

    Genick, Christine C; Wright, S Kirk

    2017-09-01

    There are many challenges to the drug discovery process, including the complexity of the target, its interactions, and how these factors play a role in causing the disease. Traditionally, biophysics has been used for hit validation and chemical lead optimization. With its increased throughput and sensitivity, biophysics is now being applied earlier in this process to empower target characterization and hit finding. Areas covered: In this article, the authors provide an overview of how biophysics can be utilized to assess the quality of the reagents used in screening assays, to validate potential tool compounds, to test the integrity of screening assays, and to create follow-up strategies for compound characterization. They also briefly discuss the utilization of different biophysical methods in hit validation to help avoid the resource consuming pitfalls caused by the lack of hit overlap between biophysical methods. Expert opinion: The use of biophysics early on in the drug discovery process has proven crucial to identifying and characterizing targets of complex nature. It also has enabled the identification and classification of small molecules which interact in an allosteric or covalent manner with the target. By applying biophysics in this manner and at the early stages of this process, the chances of finding chemical leads with novel mechanisms of action are increased. In the future, focused screens with biophysics as a primary readout will become increasingly common.

  15. Toward a mechanistic modeling of nitrogen limitation for photosynthesis

    Science.gov (United States)

    Xu, C.; Fisher, R. A.; Travis, B. J.; Wilson, C. J.; McDowell, N. G.

    2011-12-01

    The nitrogen limitation is an important regulator for vegetation growth and global carbon cycle. Most current ecosystem process models simulate nitrogen effects on photosynthesis based on a prescribed relationship between leaf nitrogen and photosynthesis; however, there is a large amount of variability in this relationship with different light, temperature, nitrogen availability and CO2 conditions, which can affect the reliability of photosynthesis prediction under future climate conditions. To account for the variability in nitrogen-photosynthesis relationship under different environmental conditions, in this study, we developed a mechanistic model of nitrogen limitation for photosynthesis based on nitrogen trade-offs among light absorption, electron transport, carboxylization and carbon sink. Our model shows that strategies of nitrogen storage allocation as determined by tradeoff among growth and persistence is a key factor contributing to the variability in relationship between leaf nitrogen and photosynthesis. Nitrogen fertilization substantially increases the proportion of nitrogen in storage for coniferous trees but much less for deciduous trees, suggesting that coniferous trees allocate more nitrogen toward persistence compared to deciduous trees. The CO2 fertilization will cause lower nitrogen allocation for carboxylization but higher nitrogen allocation for storage, which leads to a weaker relationship between leaf nitrogen and maximum photosynthesis rate. Lower radiation will cause higher nitrogen allocation for light absorption and electron transport but less nitrogen allocation for carboxylyzation and storage, which also leads to weaker relationship between leaf nitrogen and maximum photosynthesis rate. At the same time, lower growing temperature will cause higher nitrogen allocation for carboxylyzation but lower allocation for light absorption, electron transport and storage, which leads to a stronger relationship between leaf nitrogen and maximum

  16. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with the design and measurement of physical parameters used in theory or to support biological experiments. The radiation biophysics program tests and uses the theoretical developments for experimental design, and provides information for further theoretical development through experiments on cellular systems

  17. Radiation dosimetry and radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Radiation dosimetry and radiation biophysics are two closely integrated programs whose joint purpose is to explore the connections between the primary physical events produced by radiation and their biological consequences in cellular systems. The radiation dosimetry program includes the theoretical description of primary events and their connection with the observable biological effects. This program also is concerned with design and measurement of those physical parameters used in the theory or to support biological experiments. The radiation biophysics program tests and makes use of the theoretical developments for experimental design. Also, this program provides information for further theoretical development through experiments on cellular systems

  18. Photosynthesis-dependent isoprene emission from leaf to planet in a global carbon-chemistry-climate model

    Directory of Open Access Journals (Sweden)

    N. Unger

    2013-10-01

    Full Text Available We describe the implementation of a biochemical model of isoprene emission that depends on the electron requirement for isoprene synthesis into the Farquhar–Ball–Berry leaf model of photosynthesis and stomatal conductance that is embedded within a global chemistry-climate simulation framework. The isoprene production is calculated as a function of electron transport-limited photosynthesis, intercellular and atmospheric carbon dioxide concentration, and canopy temperature. The vegetation biophysics module computes the photosynthetic uptake of carbon dioxide coupled with the transpiration of water vapor and the isoprene emission rate at the 30 min physical integration time step of the global chemistry-climate model. In the model, the rate of carbon assimilation provides the dominant control on isoprene emission variability over canopy temperature. A control simulation representative of the present-day climatic state that uses 8 plant functional types (PFTs, prescribed phenology and generic PFT-specific isoprene emission potentials (fraction of electrons available for isoprene synthesis reproduces 50% of the variability across different ecosystems and seasons in a global database of 28 measured campaign-average fluxes. Compared to time-varying isoprene flux measurements at 9 select sites, the model authentically captures the observed variability in the 30 min average diurnal cycle (R2 = 64–96% and simulates the flux magnitude to within a factor of 2. The control run yields a global isoprene source strength of 451 TgC yr−1 that increases by 30% in the artificial absence of plant water stress and by 55% for potential natural vegetation.

  19. Community photosynthesis of aquatic macrophytes

    DEFF Research Database (Denmark)

    Binzer, T.; Sand-Jensen, K.; Middelboe, A. L.

    2006-01-01

    We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition of photosynt......We compared 190 photosynthesis-irradiance (P-E) experiments with single- and multispecies communities of macroalgae and vascular plants from freshwater and marine habitats. We found a typical hyperbolic P-E relation in all communities and no sign of photosaturation or photoinhibition...

  20. Advances Afoot in Microbiology

    OpenAIRE

    Patel, Robin; Karon, Brad S.

    2017-01-01

    In 2016, the American Academy of Microbiology convened a colloquium to examine point-of-care (POC) microbiology testing and to evaluate its effects on clinical microbiology. Colloquium participants included representatives from clinical microbiology laboratories, industry, and the government, who together made recommendations regarding the implementation, oversight, and evaluation of POC microbiology testing. The colloquium report is timely and well written (V. Dolen et al., Changing Diagnost...

  1. Enhancing (crop) plant photosynthesis by introducing novel genetic diversity.

    Science.gov (United States)

    Dann, Marcel; Leister, Dario

    2017-09-26

    Although some elements of the photosynthetic light reactions might appear to be ideal, the overall efficiency of light conversion to biomass has not been optimized during evolution. Because crop plants are depleted of genetic diversity for photosynthesis, efforts to enhance its efficiency with respect to light conversion to yield must generate new variation. In principle, three sources of natural variation are available: (i) rare diversity within extant higher plant species, (ii) photosynthetic variants from algae, and (iii) reconstruction of no longer extant types of plant photosynthesis. Here, we argue for a novel approach that outsources crop photosynthesis to a cyanobacterium that is amenable to adaptive evolution. This system offers numerous advantages, including a short generation time, virtually unlimited population sizes and high mutation rates, together with a versatile toolbox for genetic manipulation. On such a synthetic bacterial platform, 10 000 years of (crop) plant evolution can be recapitulated within weeks. Limitations of this system arise from its unicellular nature, which cannot reproduce all aspects of crop photosynthesis. But successful establishment of such a bacterial host for crop photosynthesis promises not only to enhance the performance of eukaryotic photosynthesis but will also reveal novel facets of the molecular basis of photosynthetic flexibility.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  2. The biophysics of neuronal growth

    International Nuclear Information System (INIS)

    Franze, Kristian; Guck, Jochen

    2010-01-01

    For a long time, neuroscience has focused on biochemical, molecular biological and electrophysiological aspects of neuronal physiology and pathology. However, there is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. In this review we briefly summarize the historical background of neurobiophysics and give an overview over the current understanding of neuronal growth from a physics perspective. We show how biophysics has so far contributed to a better understanding of neuronal growth and discuss current inconsistencies. Finally, we speculate how biophysics may contribute to the successful treatment of lesions to the central nervous system, which have been considered incurable until very recently.

  3. Biophysical regulation of stem cell differentiation.

    Science.gov (United States)

    Govey, Peter M; Loiselle, Alayna E; Donahue, Henry J

    2013-06-01

    Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native microenvironments. Bone marrow-derived mesenchymal stem cells-the most broadly studied source of osteoblastic progenitors-undergo osteoblastic differentiation in vitro in response to biophysical signals, including hydrostatic pressure, fluid flow and accompanying shear stress, substrate strain and stiffness, substrate topography, and electromagnetic fields. Furthermore, stem cells may be subject to indirect regulation by mechano-sensing osteocytes positioned to more readily detect these same loading-induced signals within the bone matrix. Such paracrine and juxtacrine regulation of differentiation by osteocytes occurs in vitro. Further studies are needed to confirm both direct and indirect mechanisms of biophysical regulation within the in vivo stem cell niche.

  4. The relationship between fetal biophysical profile and cord blood PH

    Directory of Open Access Journals (Sweden)

    Valadan M

    2009-02-01

    Full Text Available "nBackground: The Biophysical Profile (BPP is a noninvasive test that predicts the presence or absence of fetal asphyxia and, ultimately, the risk of fetal death in the antenatal period. Intervention on the basis of an abnormal biophysical profile result has been reported to yield a significant reduction in prenatal mortality, and an association exists between biophysical profile scoring and a decreased cerebral palsy rate in a given population. The BPP evaluates five characteristics: fetal movement, tone, breathing, heart reactivity, and amniotic fluid (AF volume estimation. The purpose of study was to determine whether there are different degree of acidosis at which the biophysical activity (acute marker are affected. "nMethods: In a prospective study of 140 patients undergoing cesarean section before onset of labor, the fetal biophysical profile was performed 24h before the time of cesarean and was matched with cord arterial PH that was obtained from a cord segment (10-20cm that was double clamped after delivery of newborn. (using cord arterial PH less than 7.20 for the diagnosis of acidosis. "nResults: The fetal biophysical profile was found to have a significant relationship with umbilical blood PH. The sensitivity, specificity, positive predictive value, negative predictive value of fetal biophysical profile score were: 88.9%, 88.6%, 50%, 98.1%. "nConclusion: The first manifestations of fetal acidosis are nonreactive nonstress testing and fetal breathing loss; in advanced acidemia fetal movements and fetal tone are compromised. A protocol of antepartum fetal evaluation is suggested based upon the individual biophysical components rather than the score alone.

  5. Clinical microbiology informatics.

    Science.gov (United States)

    Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron

    2014-10-01

    The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Biophysical Evaluation of SonoSteam®:

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan R.

    and safety evaluations. Our results show that there are no contradictions between data obtained by either approach. However, the biophysical methods draw a much more nuanced picture of the effects and efficiency of the investigated decontamination method, revealing e.g. an exponential dose/response...... relationship between SonoSteam treatment time and changes in collagen I, and a depth dependency in bacterial reduction, which points toward CFU counts overestimating total bacterial reduction. In conclusion the biophysical methods provide a less biased, reproducible and highly detailed system description...

  7. Biophysical Cancer Transformation Pathway

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří

    2009-01-01

    Roč. 28, č. 2 (2009), s. 105-123 ISSN 1536-8378 Institutional research plan: CEZ:AV0Z20670512 Keywords : Biophysics * Cancer * Electromagnetic fields Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.729, year: 2009

  8. Soil Temperature Triggers the Onset of Photosynthesis in Korean Pine

    Science.gov (United States)

    Wu, Jiabing; Guan, Dexin; Yuan, Fenhui; Wang, Anzhi; Jin, Changjie

    2013-01-01

    In forest ecosystems, the onset of spring photosynthesis may have an important influence on the annual carbon balance. However, triggers for the onset of photosynthesis have yet to be clearly identified, especially for temperate evergreen conifers. The effects of climatic factors on recovery of photosynthetic capacity in a Korean pine forest were investigated in the field. No photosynthesis was detectable when the soil temperature was below 0°C even if the air temperature was far beyond 15°C. The onset of photosynthesis and sap flow was coincident with the time of soil thawing. The rates of recovery of photosynthetic capacity highly fluctuated with air temperature after onset of photosynthesis, and intermittent frost events remarkably inhibited the photosynthetic capacity of the needles. The results suggest that earlier soil thawing is more important than air temperature increases in triggering the onset of photosynthesis in Korean pine in temperate zones under global warming scenarios. PMID:23755227

  9. Energy conversion in natural and artificial photosynthesis.

    Science.gov (United States)

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  10. New Concept of Photosynthesis

    Directory of Open Access Journals (Sweden)

    Komissarov Gennadiy Germanovich

    2014-12-01

    Full Text Available The history of the formation of a new concept of photosynthesis proposed by the author is considered for the period since 1966 to 2013. Its essence consists in the following facts: the photosynthetic oxygen (hydrogen source is not water, but exo- and endogenous hydrogen peroxide; thermal energy is a necessary part of the photosynthetic process; along with the carbon dioxide the air (oxygen, inert gases is included in the photosynthetic equation. The mechanism of the photovoltaic (Becquerel effect in films of chlorophyll and its synthetic analogue - phthalocyanine are briefly touched upon in the article. The article presents the works on artificial photosynthesis performed in the laboratory of Photobionics of N.N. Semenov Institute of Chemical Physics, RAS.

  11. Techniques in studies of photosynthesis

    International Nuclear Information System (INIS)

    Kumarasinghe, K.S.

    1990-01-01

    The use of both stable and radioactive isotopes has led to major advances in the understanding of the basic mechanisms of photosynthesis. An early use of isotopic material in photosynthetic investigations was the demonstration using 18 O, that O 2 evolved in photosynthesis was derived from water rather than from CO 2 . When the long-lived isotope of carbon, 14 C, became available in 1945, its use, coupled with two-dimensional chromatography developed a few years earlier, enabled Calvin and Benson (1948) to devise experiments to elucidate the pathway of photosynthetic 14 CO 2 fixation, 12 refs, 6 figs, 10 tabs

  12. The paleobiological record of photosynthesis.

    Science.gov (United States)

    William Schopf, J

    2011-01-01

    Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth's ecosystem has been based on autotrophy since its very early stages, the time of origin of oxygenic photosynthesis, more than 2,450 million years ago, has yet to be established.

  13. Challenges in Understanding Photosynthesis in a University Introductory Biosciences Class

    Science.gov (United States)

    Södervik, Ilona; Virtanen, Viivi; Mikkilä-Erdmann, Mirjamaija

    2015-01-01

    University students' understanding of photosynthesis was examined in a large introductory biosciences class. The focus of this study was to first examine the conceptions of photosynthesis among students in class and then to investigate how a certain type of text could enhance students' understanding of photosynthesis. The study was based on pre-…

  14. [Environmental microbiological control].

    Science.gov (United States)

    Martín Salas, Carmen; Tordoya Titichoca, Igberto J; Ezpeleta Baquedano, Carmen

    2016-07-01

    The environmental microbiological control is necessary to prevent infections associated with certain procedures that are performed at the hospital. In this review the procedures for control of water and dialysis fluids, and air in operating rooms and immunocompromised units are addressed. The dialysis quality management guidelines define the highest levels of chemical, microbiological and endotoxin in purified water and dialysis fluids based on the recommendations of scientific societies. The microbiological control of water and dialysis fluids should include detection of microorganisms and endotoxin levels. Regarding the microbiological air sampling of operating rooms and immunocompromised units the types of clean rooms in which is recommended to perform microbiological air monitoring; the sample collection methods; culture media; incubation conditions; the most common microorganisms, and permissible levels depending on the type of surgery are described. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  15. The physical basis of biochemistry the foundations of molecular biophysics

    CERN Document Server

    Bergethon, Peter R

    1998-01-01

    The objective of this book is to provide a unifying approach to the study of biophysical chemistry for the advanced undergraduate who has had a year of physics, organic chem­ istry, calculus, and biology. This book began as a revised edition of Biophysical Chemistry: Molecules to Membranes, which Elizabeth Simons and I coauthored. That short volume was written in an attempt to provide a concise text for a one-semester course in biophysical chemistry at the graduate level. The experience of teaching biophysical chemistry to bi­ ologically oriented students over the last decade has made it clear that the subject requires a more fundamental text that unifies the many threads of modem science: physics, chem­ istry, biology, mathematics, and statistics. This book represents that effort. This volume is not a treatment of modem biophysical chemistry with its rich history and many contro­ versies, although a book on that topic is also needed. The Physical Basis of Biochemistry is an introduction to the philosophy...

  16. Identification and characterization of nuclear genes involved in photosynthesis in Populus

    Science.gov (United States)

    2014-01-01

    Background The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Results Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. Conclusions This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses. PMID:24673936

  17. [Experimental study on crop photosynthesis, transpiration and high efficient water use].

    Science.gov (United States)

    Wang, Huixiao; Liu, Changming

    2003-10-01

    It is well known that the development of water-saving agriculture is a strategic choice for getting rid of the crisis of water shortage. In this paper, the crop photosynthesis, transpiration, stomatic behavior, and their affecting factors were studied in view of increasing the crop water use efficiency. The experimental results showed that there was a parabola relationship between photosynthesis and transpiration. The transpiration at the maximum photosynthesis was a critical value, above which, transpiration was the luxurious part. The luxurious transpiration could be controlled without affecting photosynthetic production. It is possible that the measures for increasing stomatic resistance and preventing transpiration could save water, and improve photosynthesis and yield as well. The photosynthesis rate increased with photosynthetic active radiation, and the light saturation point for photosynthesis existed. The light saturation point of dry treatment was much lower than that of wet treatment, and the relationship between transpiration and radiation was linear. When the photosynthetic active radiation was bigger than 1,000 mumol.m-2.s-1, some treatments could be carried out for decreasing transpiration and improving photosynthesis.

  18. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  19. Salty Microbiology

    Science.gov (United States)

    Schneegurt, Mark A.; Wedel, Adrianne N.; Pokorski, Edward W.

    2004-01-01

    Using microbiology activities in the classroom is an effective way for teachers to address National Standards in the life sciences. However, common microbiology activities that involve swabbing doorknobs and hands are too risky due to the likelihood of culturing human pathogens. In addition, making sterile media and maintaining sterile conditions…

  20. Biophysical Regulation of Vascular Differentiation and Assembly

    CERN Document Server

    Gerecht, Sharon

    2011-01-01

    The ability to grow stem cells in the laboratory and to guide their maturation to functional cells allows us to study the underlying mechanisms that govern vasculature differentiation and assembly in health and disease. Accumulating evidence suggests that early stages of vascular growth are exquisitely tuned by biophysical cues from the microenvironment, yet the scientific understanding of such cellular environments is still in its infancy. Comprehending these processes sufficiently to manipulate them would pave the way to controlling blood vessel growth in therapeutic applications. This book assembles the works and views of experts from various disciplines to provide a unique perspective on how different aspects of its microenvironment regulate the differentiation and assembly of the vasculature. In particular, it describes recent efforts to exploit modern engineering techniques to study and manipulate various biophysical cues. Biophysical Regulation of Vascular Differentiation and Assembly provides an inter...

  1. Secondary Students' Interpretations of Photosynthesis and Plant Nutrition.

    Science.gov (United States)

    Ozay, Esra; Oztas, Haydar

    2003-01-01

    Studies misconceptions held by grade 9 students (14-15-years old) in Turkey about photosynthesis and plant nutrition. Uses a questionnaire to test students' conceptions and reports conflicting and often incorrect ideas about photosynthesis, respiration, and energy flow in plants. Suggests that there are difficulties in changing students' prior…

  2. Biophysics and systems biology.

    Science.gov (United States)

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights.

  3. Large-scale biophysical evaluation of protein PEGylation effects

    DEFF Research Database (Denmark)

    Vernet, Erik; Popa, Gina; Pozdnyakova, Irina

    2016-01-01

    PEGylation is the most widely used method to chemically modify protein biopharmaceuticals, but surprisingly limited public data is available on the biophysical effects of protein PEGylation. Here we report the first large-scale study, with site-specific mono-PEGylation of 15 different proteins...... of PEGylation on the thermal stability of a protein based on data generated by circular dichroism (CD), differential scanning calorimetry (DSC), or differential scanning fluorimetry (DSF). In addition, DSF was validated as a fast and inexpensive screening method for thermal unfolding studies of PEGylated...... proteins. Multivariate data analysis revealed clear trends in biophysical properties upon PEGylation for a subset of proteins, although no universal trends were found. Taken together, these findings are important in the consideration of biophysical methods and evaluation of second...

  4. Elevated CO2 increases photosynthesis in fluctuating irradiance regardless of photosynthetic induction state

    NARCIS (Netherlands)

    Kaiser, Elias; Zhou, Dianfan; Heuvelink, Ep; Harbinson, Jeremy; Morales Sierra, A.; Marcelis, Leo F.M.

    2017-01-01

    Leaves are often exposed to fluctuating irradiance, which limits assimilation. Elevated CO2 enhances dynamic photosynthesis (i.e. photosynthesis in fluctuating irradiance) beyond its effects on steady-state photosynthesis rates. Studying the role of CO2 in dynamic photosynthesis is important for

  5. Biophysical models of larval dispersal in the Benguela Current ...

    African Journals Online (AJOL)

    We synthesise and update results from the suite of biophysical, larval-dispersal models developed in the Benguela Current ecosystem. Biophysical models of larval dispersal use outputs of physical hydrodynamic models as inputs to individual-based models in which biological processes acting during the larval life are ...

  6. Models for estimating photosynthesis parameters from in situ production profiles

    Science.gov (United States)

    Kovač, Žarko; Platt, Trevor; Sathyendranath, Shubha; Antunović, Suzana

    2017-12-01

    The rate of carbon assimilation in phytoplankton primary production models is mathematically prescribed with photosynthesis irradiance functions, which convert a light flux (energy) into a material flux (carbon). Information on this rate is contained in photosynthesis parameters: the initial slope and the assimilation number. The exactness of parameter values is crucial for precise calculation of primary production. Here we use a model of the daily production profile based on a suite of photosynthesis irradiance functions and extract photosynthesis parameters from in situ measured daily production profiles at the Hawaii Ocean Time-series station Aloha. For each function we recover parameter values, establish parameter distributions and quantify model skill. We observe that the choice of the photosynthesis irradiance function to estimate the photosynthesis parameters affects the magnitudes of parameter values as recovered from in situ profiles. We also tackle the problem of parameter exchange amongst the models and the effect it has on model performance. All models displayed little or no bias prior to parameter exchange, but significant bias following parameter exchange. The best model performance resulted from using optimal parameter values. Model formulation was extended further by accounting for spectral effects and deriving a spectral analytical solution for the daily production profile. The daily production profile was also formulated with time dependent growing biomass governed by a growth equation. The work on parameter recovery was further extended by exploring how to extract photosynthesis parameters from information on watercolumn production. It was demonstrated how to estimate parameter values based on a linearization of the full analytical solution for normalized watercolumn production and from the solution itself, without linearization. The paper complements previous works on photosynthesis irradiance models by analysing the skill and consistency of

  7. Aquatic Microbiology Laboratory Manual.

    Science.gov (United States)

    Cooper, Robert C.; And Others

    This laboratory manual presents information and techniques dealing with aquatic microbiology as it relates to environmental health science, sanitary engineering, and environmental microbiology. The contents are divided into three categories: (1) ecological and physiological considerations; (2) public health aspects; and (3)microbiology of water…

  8. Delineating Biophysical Environments of the Sunda Banda Seascape, Indonesia

    Directory of Open Access Journals (Sweden)

    Mingshu Wang

    2015-01-01

    Full Text Available The Sunda Banda Seascape (SBS, located in the center of the Coral Triangle, is a global center of marine biodiversity and a conservation priority. We proposed the first biophysical environmental delineation of the SBS using globally available satellite remote sensing and model-assimilated data to categorize this area into unique and meaningful biophysical classes. Specifically, the SBS was partitioned into eight biophysical classes characterized by similar sea surface temperature, chlorophyll a concentration, currents, and salinity patterns. Areas within each class were expected to have similar habitat types and ecosystem functions. Our work supplemented prevailing global marine management schemes by focusing in on a regional scale with finer spatial resolution. It also provided a baseline for academic research, ecological assessments and will facilitate marine spatial planning and conservation activities in the area. In addition, the framework and methods of delineating biophysical environments we presented can be expanded throughout the whole Coral Triangle to support research and conservation activities in this important region.

  9. Photosynthesis and the world food problem

    Directory of Open Access Journals (Sweden)

    Jerzy Poskuta

    2014-01-01

    Full Text Available Studies in the field of photosynthesis are particularly predisposed to play an important role in the solving of the main problem of today food for the world's growing population. The article presents data on the rate of population increase, the size of food production and yields of the most important crop plants. The relationship between the photosynthetic productivity of C3 and C4 plants and their yields is discussed. The problem of the rising atmospheric CO2 concentration and its influence on photosynthesis, photorespiration and accumulation of plant biomass is presented.

  10. Photosynthesis 2008 Gordon Research Conferences - June 22-27, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Willem Vermaas

    2009-08-28

    Photosynthesis is the most prevalent, natural way to convert solar energy to chemical energy in living systems, and is a major mechanism to ameliorate rising CO2 levels in the atmosphere and to contribute to sustainable biofuels production. Photosynthesis is a particularly interdisciplinary field of research, with contributions from plant and microbial physiology, biochemistry, spectroscopy, etc. The Photosynthesis GRC is a venue by which scientists with expertise in complementary approaches such as solar energy conversion, molecular mechanisms of electron transfer, and 'systems biology' (molecular physiology) of photosynthetic organisms come together to exchange data and ideas and to forge new collaborations. The 2008 Photosynthesis GRC will focus on important new findings related to, for example: (1) function, structure, assembly, degradation, motility and regulation of photosynthetic complexes; (2) energy and electron transfer in photosynthetic systems; regulation and rate limitations; (3) synthesis, degradation and regulation of cofactors (pigments, etc.); (4) functional, structural and regulatory interactions between photosynthesis and the physiology of the organism; (5) organisms with unusual photosynthetic properties, and insights from metagenomics and evolution; and (6) bioenergy strategies involving solar energy conversion, and practical applications for photosynthetic organisms.

  11. Scientific Conceptions of Photosynthesis among Primary School Pupils and Student Teachers of Biology

    Directory of Open Access Journals (Sweden)

    Darja Skribe Dimec

    2017-03-01

    Full Text Available Photosynthesis is the most important biochemical process on Earth. Most living beings depend on it directly or indirectly. Knowledge about photosynthesis enables us to understand how the world functions as an ecosystem and how photosynthesis acts as a bridge between the non-living and living worlds. It is, therefore, understandable that photosynthesis is included in national curricula around the world. The practice unfortunately shows that students at all school levels mostly learn about photosynthesis by rote. Consequently, they have difficulties understanding this vital process. Research also shows many misconceptions in relation to photosynthesis among students of different ages. Based on these, the main aim of our study was to explore the scientific conceptions about photosynthesis held by primary school pupils and student teachers of biology. Data were collected using a questionnaire containing seven biology content questions. The sample consisted of 634 participants, 427 primary school pupils (aged 11–14, and 207 student teachers of biology (aged 20–23. We found that the populations of primary school pupils and student teachers of biology differ greatly concerning scientific conceptions of photosynthesis. The student teachers showed good and complex understanding of photosynthesis, while pupils showed some misconceptions (location of chlorophyll and photosynthesis in a plant, transformation of energy in photosynthesis. Analysis of the development of scientific conceptions about photosynthesis with age showed that there is very little progress among primary school pupils and none among biology student teachers. More involvement of student teachers of biology in practical work at primary schools during their study was suggested to make student teachers aware of, and better understand pupils’ misconceptions.

  12. Physiological bases for detecting and predicting photoinhibition of aquatic photosynthesis by PAR and UV radiation

    International Nuclear Information System (INIS)

    Neale, P.J.; Cullen, J.J.; Lesser, M.P.; Melis, A.

    1993-01-01

    stress is usually time dependent (12, 36); the light history of the cells must be known to specify the overall effect. The established method for measuring phytoplankton production, photosynthetic incorporation of 14 C into organic carbon during a12-24 h bottle incubation, may seriously misrepresent irradiance regimes actually experienced by phytoplankton in situ. Further discussion of the interaction of photoinhibition and mixing can be found in (36).We propose that an integrated modeling-sampling approach is needed to define the effects of irradiance stress on productivity in situ. The model should incorporate an optical specification of the underwater irradiance environment, abiological weighting function to account for the wavelength-dependence of photoinhibition of photosynthesis, and a response function of biological action during vertical mixing to account for the differences between static incubations and natural movements of phytoplankton. Recently, excellent progress has been made toward defining the individual components of this model (See also Cullen and Neale, this volume). To verify the model, we need to detect reliably the occurrence of irradiance stress in situ. This is the sampling side of the integrated approach. In particular, we would like to differentiate between the effects of PAR and UV. We propose that such detection can be accomplished by indicator assays (or ''diagnostic markers''). Such assays would involve little or no incubation of samples, so that the measurement corresponds as closely as possible to the physiological state of the phytoplankton at time of sampling.Our objective here is to review selected aspects of irradiance stress at biophysical and molecular levels, and then proceed to examine how that information can be used to design indicator assays of irradiance stress for phytoplankton photosynthesis in situ. The effects of PAR and UV at the cellular level and the use of in vivo fluorescence and molecular probes

  13. General lighting requirements for photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, D.R. [Univ. of Dayton, OH (United States)

    1994-12-31

    A review of the general lighting requirements for photosynthesis reveals that four aspects of light are important: irradiance, quality, timing and duration. These properties of light affect photosynthesis by providing the energy that drives carbon assimilation as well as by exerting control over physiology, structure and morphology of plants. Irradiance, expressed as energy flux, W m{sup -2}, or photon irradiance, {mu}mol m{sup -2} s{sup -1}, determines the rate at which energy is being delivered to the photosynthetic reaction centers. Spectral quality, the wavelength composition of light, is important because photons differ in their probability of being absorbed by the light harvesting complex and hence their ability to drive carbon assimilation. Also the various light receptors for light-mediated regulation of plant form and physiology have characteristic absorption spectra and hence photons differ in their effectiveness for eliciting responses. Duration is important because both carbon assimilation and regulation are affected by the total energy or integrated irradiance delivered during a given period. Many processes associated with photosynthesis are time-dependent, increasing or decreasing with duration. Timing is important because the effectiveness of light in the regulation of plant processes varies with the phase of the diumal cycle as determined by the plant`s time-measuring mechanisms.

  14. MODELLING BIOPHYSICAL PARAMETERS OF MAIZE USING LANDSAT 8 TIME SERIES

    Directory of Open Access Journals (Sweden)

    T. Dahms

    2016-06-01

    Full Text Available Open and free access to multi-frequent high-resolution data (e.g. Sentinel – 2 will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR, the leaf area index (LAI and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD: R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing

  15. Modelling Biophysical Parameters of Maize Using Landsat 8 Time Series

    Science.gov (United States)

    Dahms, Thorsten; Seissiger, Sylvia; Conrad, Christopher; Borg, Erik

    2016-06-01

    Open and free access to multi-frequent high-resolution data (e.g. Sentinel - 2) will fortify agricultural applications based on satellite data. The temporal and spatial resolution of these remote sensing datasets directly affects the applicability of remote sensing methods, for instance a robust retrieving of biophysical parameters over the entire growing season with very high geometric resolution. In this study we use machine learning methods to predict biophysical parameters, namely the fraction of absorbed photosynthetic radiation (FPAR), the leaf area index (LAI) and the chlorophyll content, from high resolution remote sensing. 30 Landsat 8 OLI scenes were available in our study region in Mecklenburg-Western Pomerania, Germany. In-situ data were weekly to bi-weekly collected on 18 maize plots throughout the summer season 2015. The study aims at an optimized prediction of biophysical parameters and the identification of the best explaining spectral bands and vegetation indices. For this purpose, we used the entire in-situ dataset from 24.03.2015 to 15.10.2015. Random forest and conditional inference forests were used because of their explicit strong exploratory and predictive character. Variable importance measures allowed for analysing the relation between the biophysical parameters with respect to the spectral response, and the performance of the two approaches over the plant stock evolvement. Classical random forest regression outreached the performance of conditional inference forests, in particular when modelling the biophysical parameters over the entire growing period. For example, modelling biophysical parameters of maize for the entire vegetation period using random forests yielded: FPAR: R² = 0.85; RMSE = 0.11; LAI: R² = 0.64; RMSE = 0.9 and chlorophyll content (SPAD): R² = 0.80; RMSE=4.9. Our results demonstrate the great potential in using machine-learning methods for the interpretation of long-term multi-frequent remote sensing datasets to model

  16. Manganese and the Evolution of Photosynthesis

    Science.gov (United States)

    Fischer, Woodward W.; Hemp, James; Johnson, Jena E.

    2015-09-01

    Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet—it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the photoassembly of the Mn-bearing water-oxidizing complex fuel the hypothesis that Mn(II) once played a key role as an electron donor for anoxygenic photosynthesis prior to the evolution of oxygenic photosynthesis. Here we review the growing body of geological and geochemical evidence from the Archean and Paleoproterozoic sedimentary records that supports this idea and demonstrates that the oxidative branch of the Mn cycle switched on prior to the rise of oxygen. This Mn-oxidizing phototrophy hypothesis also receives support from the biological record of extant phototrophs, and can be made more explicit by leveraging constraints from structural biology and biochemistry of photosystem II in Cyanobacteria. These observations highlight that water-splitting in photosystem II evolved independently from a homodimeric ancestral type II reaction center capable of high potential photosynthesis and Mn(II) oxidation, which is required by the presence of homologous redox-active tyrosines in the modern heterodimer. The ancestral homodimer reaction center also evolved a C-terminal extension that sterically precluded standard phototrophic electron donors like cytochrome c, cupredoxins, or high-potential iron-sulfur proteins, and could only complete direct oxidation of small molecules like Mn2+, and ultimately water.

  17. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus.

    Science.gov (United States)

    Nebauer, Sergio G; Renau-Morata, Begoña; Guardiola, José Luis; Molina, Rosa-Victoria

    2011-02-01

    Photosynthesis down-regulation due to an imbalance between sources and sinks in Citrus leaves could be mediated by excessive accumulation of carbohydrates. However, there is limited understanding of the physiological role of soluble and insoluble carbohydrates in photosynthesis regulation and the elements triggering the down-regulation process. In this work, the role of non-structural carbohydrates in the regulation of photosynthesis under a broad spectrum of source-sink relationships has been investigated in the Salustiana sweet orange. Soluble sugar and starch accumulation in leaves, induced by girdling experiments, did not induce down-regulation of the photosynthetic rate in the presence of sinks (fruits). The leaf-to-fruit ratio did not modulate photosynthesis but allocation of photoassimilates to the fruits. The lack of strong sink activity led to a decrease in the photosynthetic rate and starch accumulation in leaves. However, photosynthesis down-regulation due to an excess of total soluble sugars or starch was discarded because photosynthesis and stomatal conductance reduction occurred prior to any significant accumulation of these carbohydrates. Gas exchange and fluorescence parameters suggested biochemical limitations to photosynthesis. In addition, the expression of carbon metabolism-related genes was altered within 24 h when strong sinks were removed. Sucrose synthesis and export genes were inhibited, whereas the expression of ADP-glucose pyrophosphorylase was increased to cope with the excess of assimilates. In conclusion, changes in starch and soluble sugar turnover, but not sugar content per se, could provide the signal for photosynthesis regulation. In these conditions, non-stomatal limitations strongly inhibited the photosynthetic rate prior to any significant increase in carbohydrate levels.

  18. Microbiological corrosion of metals

    International Nuclear Information System (INIS)

    Vladislavlev, V.V.

    1992-01-01

    Problems is considered of development of the microbiological corrosion of the NPP equipment. The main attention is paid to the selective character of microbiological corrosion in zones of welded joints of austenitic steels. It is noted that the presence of technological defects promotes growth of corrosional damages. Methods for microbiological corrosion protection are discussed

  19. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  20. Artificial photosynthesis combines biology with technology for sustainable energy transformation

    Science.gov (United States)

    Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2013-03-01

    Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP) to support our GDP and nutrition. The cost to Earth systems of "our cut" of NPP is thought to be rapidly driving several Earth systems outside of bounds that were established on the geological time scale. Even with a fundamental realignment of human priorities, changing the unsustainable trajectory of the anthropocene will require reengineering photosynthesis to more efficiently meet human needs. Artificial photosynthetic systems are envisioned that can both supply renewable fuels and serve as platforms for exploring redesign strategies for photosynthesis. These strategies can be used in the nascent field of synthetic biology to make vast, much needed improvements in the biomass production efficiency of photosynthesis.

  1. Biophysical impacts of climate-smart agriculture in the Midwest United States.

    Science.gov (United States)

    Bagley, Justin E; Miller, Jesse; Bernacchi, Carl J

    2015-09-01

    The potential impacts of climate change in the Midwest United States present unprecedented challenges to regional agriculture. In response to these challenges, a variety of climate-smart agricultural methodologies have been proposed to retain or improve crop yields, reduce agricultural greenhouse gas emissions, retain soil quality and increase climate resilience of agricultural systems. One component that is commonly neglected when assessing the environmental impacts of climate-smart agriculture is the biophysical impacts, where changes in ecosystem fluxes and storage of moisture and energy lead to perturbations in local climate and water availability. Using a combination of observational data and an agroecosystem model, a series of climate-smart agricultural scenarios were assessed to determine the biophysical impacts these techniques have in the Midwest United States. The first scenario extended the growing season for existing crops using future temperature and CO2 concentrations. The second scenario examined the biophysical impacts of no-till agriculture and the impacts of annually retaining crop debris. Finally, the third scenario evaluated the potential impacts that the adoption of perennial cultivars had on biophysical quantities. Each of these scenarios was found to have significant biophysical impacts. However, the timing and magnitude of the biophysical impacts differed between scenarios. © 2014 John Wiley & Sons Ltd.

  2. Photosynthesis: The Path of Carbon in Photosynthesis and the Primary Quantum Conversion Act of Photosynthesis

    Science.gov (United States)

    Calvin, Melvin

    1952-11-22

    This constitutes a review of the path of carbon in photosynthesis as it has been elaborated through the summer of 1952, with particular attention focused on those aspects of carbon metabolism and its variation which have led to some direct information regarding the primary quantum conversion act. An introduction to the arguments which have been adduced in support of the idea that chlorophyll is a physical sensitizer handing its excitation on to thioctic acid, a compound containing a strained 1, 2 -dithiolcyclopentane ring, is given.

  3. Role of Membrane Biophysics in Alzheimer's - related cell pathways

    Directory of Open Access Journals (Sweden)

    Donghui eZhu

    2015-05-01

    Full Text Available Cellular membrane alterations are commonly observed in many diseases, including Alzheimer’s disease (AD. Membrane biophysical properties, such as membrane molecular order, membrane fluidity, organization of lipid rafts, and adhesion between membrane and cytoskeleton, play an important role in various cellular activities and functions. While membrane biophysics impacts a broad range of cellular pathways, this review addresses the role of membrane biophysics in amyloid-β peptide aggregation, Aβ-induced oxidative pathways, amyloid precursor protein processing, and cerebral endothelial functions in AD. Understanding the mechanism(s underlying the effects of cell membrane properties on cellular processes should shed light on the development of new preventive and therapeutic strategies for this devastating disease.

  4. Automation in Clinical Microbiology

    Science.gov (United States)

    Ledeboer, Nathan A.

    2013-01-01

    Historically, the trend toward automation in clinical pathology laboratories has largely bypassed the clinical microbiology laboratory. In this article, we review the historical impediments to automation in the microbiology laboratory and offer insight into the reasons why we believe that we are on the cusp of a dramatic change that will sweep a wave of automation into clinical microbiology laboratories. We review the currently available specimen-processing instruments as well as the total laboratory automation solutions. Lastly, we outline the types of studies that will need to be performed to fully assess the benefits of automation in microbiology laboratories. PMID:23515547

  5. Underwater Photosynthesis of Submerged Plants – Recent Advances and Methods

    Science.gov (United States)

    Pedersen, Ole; Colmer, Timothy D.; Sand-Jensen, Kaj

    2013-01-01

    We describe the general background and the recent advances in research on underwater photosynthesis of leaf segments, whole communities, and plant dominated aquatic ecosystems and present contemporary methods tailor made to quantify photosynthesis and carbon fixation under water. The majority of studies of aquatic photosynthesis have been carried out with detached leaves or thalli and this selectiveness influences the perception of the regulation of aquatic photosynthesis. We thus recommend assessing the influence of inorganic carbon and temperature on natural aquatic communities of variable density in addition to studying detached leaves in the scenarios of rising CO2 and temperature. Moreover, a growing number of researchers are interested in tolerance of terrestrial plants during flooding as torrential rains sometimes result in overland floods that inundate terrestrial plants. We propose to undertake studies to elucidate the importance of leaf acclimation of terrestrial plants to facilitate gas exchange and light utilization under water as these acclimations influence underwater photosynthesis as well as internal aeration of plant tissues during submergence. PMID:23734154

  6. Increased sink strength offsets the inhibitory effect of sucrose on sugarcane photosynthesis.

    Science.gov (United States)

    Ribeiro, Rafael V; Machado, Eduardo C; Magalhães Filho, José R; Lobo, Ana Karla M; Martins, Márcio O; Silveira, Joaquim A G; Yin, Xinyou; Struik, Paul C

    2017-01-01

    Spraying sucrose inhibits photosynthesis by impairing Rubisco activity and stomatal conductance (g s ), whereas increasing sink demand by partially darkening the plant stimulates sugarcane photosynthesis. We hypothesized that the stimulatory effect of darkness can offset the inhibitory effect of exogenous sucrose on photosynthesis. Source-sink relationship was perturbed in two sugarcane cultivars by imposing partial darkness, spraying a sucrose solution (50mM) and their combination. Five days after the onset of the treatments, the maximum Rubisco carboxylation rate (V cmax ) and the initial slope of A-C i curve (k) were estimated by measuring leaf gas exchange and chlorophyll fluorescence. Photosynthesis was inhibited by sucrose spraying in both genotypes, through decreases in V cmax , k, g s and ATP production driven by electron transport (J atp ). Photosynthesis of plants subjected to the combination of partial darkness and sucrose spraying was similar to photosynthesis of reference plants for both genotypes. Significant increases in V cmax , g s and J atp and marginal increases in k were noticed when combining partial darkness and sucrose spraying compared with sucrose spraying alone. Our data also revealed that increases in sink strength due to partial darkness offset the inhibition of sugarcane photosynthesis caused by sucrose spraying, enhancing the knowledge on endogenous regulation of sugarcane photosynthesis through the source-sink relationship. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Biophysics of molecular gastronomy.

    Science.gov (United States)

    Brenner, Michael P; Sörensen, Pia M

    2015-03-26

    Chefs and scientists exploring biophysical processes have given rise to molecular gastronomy. In this Commentary, we describe how a scientific understanding of recipes and techniques facilitates the development of new textures and expands the flavor palette. The new dishes that result engage our senses in unexpected ways. PAPERCLIP. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Microbial photosynthesis in the harnessing of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Pirt, S J

    1982-01-01

    The shortage of fossil fuels restricts the world supply of reduced carbon compounds and energy sources. Biotechnology offers the most feasible route to renewing the supplies of reduced carbon compounds. This involves recycling of CO/sub 2/ through photosynthesis. Conventional agriculture has little or no potential for supplying biomass and its derivatives on sufficient scale to offer an alternative to the fossil fuels. The agricultural wastes, on the whole, are intractable to conversion into useful carbon and energy sources and in any case are not available in amounts to provide a significant alternative to the fossil fuels. In contrast, microbial photosynthesis, optimised in photobioreactors, has vast potential to provide organic matter on a scale to match the consumption of fossil fuels. The quantative study of microbial photosynthesis as a biotechnological route to biomass has been neglected. As a result there is a chaos of conflicting data on fundamental parameters, for example, the photosynthetic efficiency of biomass production. New photosynthetic biotechnology with fully controlled continuous-culture systems is providing unequivocal values for the parameters. For the scale-up of microbial photosynthesis a tubular-loop reactor is proposed. (Refs. 14).

  9. Observed and predicted measurements of photosynthesis in a phytoplankton culture exposed to natural irradiance

    International Nuclear Information System (INIS)

    Marra, J.; Heinemann, K.; Landriau, G. Jr.

    1985-01-01

    Photosynthesis-irradiance (P-I) curves were produced (using artificial illumination) from samples taken at one or more times per day from a continuous culture illuminated with sunlight. The continuous culture housed an oxygen electrode used to measure photosynthesis semi-continuously. Rates of photosynthesis predicted from P-I curves agreed with photosynthesis observed in the culture only for days of low irradiance. For sunny days or for days of variable irradiance, P-I curves predicted neither the morning photosynthesis maximum nor the afternoon depression. Daily integrals of predicted and observed photosynthesis, however, were probably within the possible errors of measurement. (orig.)

  10. Auxin transport in leafy pea stem cuttings is partially driven by photosynthesis

    International Nuclear Information System (INIS)

    Kumpula, C.L.; Potter, J.R.

    1987-01-01

    When 14 C-IAA was applied to the apex of disbudded leafy pea stem cuttings (15 cm long), the movement of 14 C-IAA to the base of the cuttings after 24 h was influenced by the photosynthetic rate. In the absence of photosynthesis, light did not influence 14 C-IAA movement. Photosynthesis was altered by varying light, CO 2 concentration, or stomatal aperature (blocked with an antitranspirant). Radioactivity (identified by co-chromatography) was 25, 60, and 5% IAA, IAA-aspartate, and indolealdehyde respectively regardless of treatment. Adventitious root formation was reduced 50 to 95% and movement of IAA was inhibited 50 to 70% by decreasing gross photosynthesis 90 to 100%. Apparently, photosynthesis partially drives the movement of IAA from the apex to the base where roots arise. This gives a probably role of photosynthesis in rooting, because in this system virtually no rooting will take place without exogenous auxin and at least a low level of gross photosynthesis

  11. Biophysical Screening of a Focused Library for the Discovery of CYP121 Inhibitors as Novel Antimycobacterials.

    Science.gov (United States)

    Brengel, Christian; Thomann, Andreas; Schifrin, Alexander; Allegretta, Giuseppe; Kamal, Ahmed A M; Haupenthal, Jörg; Schnorr, Isabell; Cho, Sang Hyun; Franzblau, Scott G; Empting, Martin; Eberhard, Jens; Hartmann, Rolf W

    2017-10-09

    The development of novel antimycobacterial agents against Mycobacterium tuberculosis (Mtb) is urgently required due to the appearance of multidrug resistance (MDR) combined with complicated long-term treatment. CYP121 was shown to be a promising novel target for inhibition of mycobacterial growth. In this study, we describe the rational discovery of new CYP121 inhibitors by a systematic screening based on biophysical and microbiological methods. The best hits originating from only one structural class gave initial information about molecular motifs required for binding and activity. The initial screening procedure was followed by mode-of-action studies and further biological characterizations. The results demonstrate superior antimycobacterial efficacy and a decreased toxicity profile of our frontrunner compound relative to the reference compound econazole. Due to its low molecular weight, promising biological profile, and physicochemical properties, this compound is an excellent starting point for further rational optimization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Photosynthesis efficiency for different wavelengths; Fotosynthese-efficiency bij verschillende golflengten

    Energy Technology Data Exchange (ETDEWEB)

    Snel, J.F.H.; Meinen, E.; Bruins, M.A.; Van Ieperen, W.; Hogewoning, S.W.; Marcelis, L.F.M. [Wageningen UR Glastuinbouw, Wageningen (Netherlands)

    2012-04-15

    LED lighting has recently been introduced into Dutch horticulture. LED development so far indicates that in the near future LED's will be more energy efficient than high pressure sodium lamps. Crop light interception and photosynthesis efficiency are wavelength dependent. Therefore, LED colours for maximum crop photosynthesis, growth and development should be identified. Wageningen UR has investigated light interception and photosynthesis at different wavelengths for tomato, cucumber and rose. Measuring protocols and equipment were developed for leaf photosynthesis measurements in the laboratory and in greenhouses. A crop simulation model was used for up-scaling the leaf level results to crop level photosynthesis. For the vegetable crops the photosynthesis spectra are very similar to the generalised photosynthesis spectrum. Red light is most efficient for leaf photosynthesis. Light from red (ca. 645nm) LED's was maximally 13% more efficient than High Pressure Sodium light. For reddish leaves of the rose cultivar Prestige, red LED light was up to 35% more efficient. These figures apply to the momentary efficiency of leaf photosynthesis at 100 {mu}mol.m{sup -2}.s{sup -1} (PAR) and suggest that use of red light can lead to higher photosynthesis, especially for certain rose cultivars [Dutch] LED verlichting heeft zijn intrede gedaan in de Nederlandse glastuinbouw. De LED ontwikkeling laat zien dat in de nabije toekomst LED's efficiënter zijn dan SON-T verlichting. Lichtonderschepping en fotosynthese efficiëntie zijn afhankelijk van de kleur van het licht. Voor optimale fotosynthese, groei en ontwikkeling zouden de beste LED kleuren uitgezocht moeten worden. Wageningen UR heeft lichtonderschepping en fotosynthese bij verschillende lichtkleuren onderzocht bij tomaat, komkommer en roos. Protocollen en apparatuur werden ontwikkeld voor meting van bladfotosynthese en lichtonderschepping in het laboratorium en in de kas. Met een gewassimulatiemodel werd de

  13. Exploring Undergraduates' Understanding of Photosynthesis Using Diagnostic Question Clusters

    Science.gov (United States)

    Parker, Joyce M.; Anderson, Charles W.; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific…

  14. Antimicrobial and biophysical properties of surfactant supplemented with an antimicrobial peptide for treatment of bacterial pneumonia.

    Science.gov (United States)

    Banaschewski, Brandon J H; Veldhuizen, Edwin J A; Keating, Eleonora; Haagsman, Henk P; Zuo, Yi Y; Yamashita, Cory M; Veldhuizen, Ruud A W

    2015-01-01

    Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Biotic games and cloud experimentation as novel media for biophysics education

    Science.gov (United States)

    Riedel-Kruse, Ingmar; Blikstein, Paulo

    2014-03-01

    First-hand, open-ended experimentation is key for effective formal and informal biophysics education. We developed, tested and assessed multiple new platforms that enable students and children to directly interact with and learn about microscopic biophysical processes: (1) Biotic games that enable local and online play using galvano- and photo-tactic stimulation of micro-swimmers, illustrating concepts such as biased random walks, Low Reynolds number hydrodynamics, and Brownian motion; (2) an undergraduate course where students learn optics, electronics, micro-fluidics, real time image analysis, and instrument control by building biotic games; and (3) a graduate class on the biophysics of multi-cellular systems that contains a cloud experimentation lab enabling students to execute open-ended chemotaxis experiments on slimemolds online, analyze their data, and build biophysical models. Our work aims to generate the equivalent excitement and educational impact for biophysics as robotics and video games have had for mechatronics and computer science, respectively. We also discuss how scaled-up cloud experimentation systems can support MOOCs with true lab components and life-science research in general.

  16. Preface: Special Topic on Single-Molecule Biophysics.

    Science.gov (United States)

    Makarov, Dmitrii E; Schuler, Benjamin

    2018-03-28

    Single-molecule measurements are now almost routinely used to study biological systems and processes. The scope of this special topic emphasizes the physics side of single-molecule observations, with the goal of highlighting new developments in physical techniques as well as conceptual insights that single-molecule measurements bring to biophysics. This issue also comprises recent advances in theoretical physical models of single-molecule phenomena, interpretation of single-molecule signals, and fundamental areas of statistical mechanics that are related to single-molecule observations. A particular goal is to illustrate the increasing synergy between theory, simulation, and experiment in single-molecule biophysics.

  17. Biophysical shunt theory for neuropsychopathology: Part I.

    Science.gov (United States)

    Naisberg, Y; Avnon, M; Weizman, A

    1995-11-01

    We present a new model of the origin of schizophrenia based on biophysical ionic shunts in neuronal (electrical) pathways. Microstructural and molecular evidence is presented for the way in which changes in the neuronal membrane ionic channels may facilitate membrane property rearrangement, leading to a change in the density and composition of the ion channel charge which in turn causes a change in ionic flow orientation and distribution. We suggest that, under abnormal conditions, ionic flow shunts are created which redirect the biophysical collateral neuronal (electrical) pathways, resulting in psychiatric signs and symptoms. This model is complementary to the biological basis of schizophrenia.

  18. 2. biophysical work meeting. Papers; 2. Biophysikalische Arbeitstagung; Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The report comprises 18 papers held at the 2nd Biophysical Work Meeting, 11 - 13 September 1991 in Schlema, Germany. The history of biophysics in Germany particularly of radiation biophysics and radon research, measurements of the radiation effects of radon and the derivation of limits, radon balneotherapy and consequences of uranium ore mining are dealt with. (orig.) [Deutsch] Der Report enthaelt 18 Vortraege, die auf der 2. Biophysikalischen Arbeitstagung in Schlema vom 11. bis 13. September 1991 gehalten wurden. Es werden die Geschichte der Biophysik in Deutschland, speziell der Strahlenbiophysik und Radonforschung, Messungen von Radon und seinen Folgeprodukten, Epidemiologie und Strahlenbiologie zur Bestimmung der Strahlenwirkung des Radons und die Ableitung entsprechender Grenzwerte, Radon-Balneotherapie und Folgen des Uranerzbergbaus behandelt. (orig.)

  19. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution.

    Science.gov (United States)

    Nowicka, Beatrycze; Kruk, Jerzy

    2016-01-01

    Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. The Path of Carbon in Photosynthesis VIII. The Role of Malic Acid

    Science.gov (United States)

    Bassham, James A.; Benson, Andrew A.; Calvin, Melvin

    1950-01-25

    Malonate has been found to inhibit the formation of malic acid during short periods of photosynthesis with radioactive carbon dioxide. This result, together with studies which show the photosynthetic cycle to be operating normally at the same time, indicates that malic acid is not an intermediate in photosynthesis but is probably closely related to some intermediate of the cycle. Absence of labeled succinic and fumaric acids in these experiments, in addition to the failure of malonate to inhibit photosynthesis, precludes the participation of these acids as intermediates in photosynthesis.

  1. Food safety assurance systems: Microbiological testing, sampling plans, and microbiological criteria

    NARCIS (Netherlands)

    Zwietering, M.H.; Ross, T.; Gorris, L.G.M.

    2014-01-01

    Microbiological criteria give information about the quality or safety of foods. A key component of a microbiological criterion is the sampling plan. Considering: (1) the generally low level of pathogens that are deemed tolerable in foods, (2) large batch sizes, and (3) potentially substantial

  2. Mass spectrometry in structural biology and biophysics architecture, dynamics, and interaction of biomolecules

    CERN Document Server

    Kaltashov, Igor A; Desiderio, Dominic M; Nibbering, Nico M

    2012-01-01

    The definitive guide to mass spectrometry techniques in biology and biophysics The use of mass spectrometry (MS) to study the architecture and dynamics of proteins is increasingly common within the biophysical community, and Mass Spectrometry in Structural Biology and Biophysics: Architecture, Dynamics, and Interaction of Biomolecules, Second Edition provides readers with detailed, systematic coverage of the current state of the art. Offering an unrivalled overview of modern MS-based armamentarium that can be used to solve the most challenging problems in biophysics, structural biol

  3. Exploring Photosynthesis and Plant Stress Using Inexpensive Chlorophyll Fluorometers

    Science.gov (United States)

    Cessna, Stephen; Demmig-Adams, Barbara; Adams, William W., III

    2010-01-01

    Mastering the concept of photosynthesis is of critical importance to learning plant physiology and its applications, but seems to be one of the more challenging concepts in biology. This teaching challenge is no doubt compounded by the complexity by which plants alter photosynthesis in different environments. Here we suggest the use of chlorophyll…

  4. Comparison of biophysical factors influencing on emphysema quantification with low-dose CT

    Science.gov (United States)

    Heo, Chang Yong; Kim, Jong Hyo

    2014-03-01

    Emphysema Index(EI) measurements in MDCT is known to be influenced by various biophysical factors such as total lung volume, and body size. We investigated the association of the four biophysical factors with emphysema index in low-dose MDCT. In particular, we attempted to identify a potentially stronger biophysical factor than total lung volume. A total of 400 low-dose MDCT volumes taken at 120kVp, 40mAs, 1mm thickness, and B30f reconstruction kernel were used. The lungs, airways, and pulmonary vessels were automatically segmented, and two Emphysema Indices, relative area below -950HU(RA950) and 15th percentile(Perc15), were extracted from the segmented lungs. The biophysical factors such as total lung volume(TLV), mode of lung attenuation(ModLA), effective body diameter(EBD), and the water equivalent body diameter(WBD) were estimated from the segmented lung and body area. The association of biophysical factors with emphysema indices were evaluated by correlation coefficients. The mean emphysema indices were 8.3±5.5(%) in RA950, and -930±18(HU) in Perc15. The estimates of biophysical factors were 4.7±1.0(L) in TLV, -901±21(HU) in ModLA, 26.9±2.2(cm) in EBD, and 25.9±2.6(cm) in WBD. The correlation coefficients of biophysical factors with RA950 were 0.73 in TLV, 0.94 in ModLA, 0.31 in EBD, and 0.18 WBD, the ones with Perc15 were 0.74 in TLV, 0.98 in ModLA, 0.29 in EBD, and 0.15 WBD. Study results revealed that two biophysical factors, TLV and ModLA, mostly affects the emphysema indices. In particular, the ModLA exhibited strongest correlation of 0.98 with Perc15, which indicating the ModLA is the most significant confounding biophysical factor in emphysema indices measurement.

  5. Radiation biophysics

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. The overall thrust of the research is aimed at understanding the effects of radiation on organisms. Specific subject areas include: the effects of heavy-particle beam nuclear interactions in tissue on dosimetry; tracer studies with radioactive fragments of heavy-ion beams; the effects of heavy/ions on human kidney cells and Chinese hamster cells; the response of a rhabdomyosarcoma tumor system in rats to heavy-ion beams; the use of heavy charged particles in radiotherapy of human cancer; heavy-ion radiography; the biological effects of high magnetic fields; central nervous system neurotoxicity; and biophysical studies on cell membranes

  6. [Onsite microbiology services and outsourcing microbiology and offsite laboratories--advantage and disadvantage, thinking of effective utilization].

    Science.gov (United States)

    Hosokawa, Naoto

    2011-10-01

    In recent years, budget restrictions have prompted hospital managers to consider outsourcing microbiology service. But there are many advantages onsite microbiology services. Onsite microbiology services have some advantages. 1) High recovery rate of microorganism. 2) Shorter turn around time. 3) Easy to communicate between physician and laboratory technician. 4) Effective utilization of blood culture. 5) Getting early information about microorganism. 6) Making antibiogram (microbiological local factor). 7) Getting information for infection control. The disadvantages are operating costs and labor cost. The important point of maximal utilization of onsite microbiology service is close communication between physicians to microbiology laboratory. It will be able to provide prompt and efficient report to physicians through discussion about Gram stain findings, agar plate media findings and epidemiological information. The rapid and accurate identification of pathogen affords directed therapy, thereby decreasing the use of broad-spectrum antibiotics and shortening the length of hospital stay and unnecessary ancillary procedures. When the physician use outsourcing microbiology services, should discuss with offsite laboratories about provided services. Infection control person has to arrange data of susceptibility about every isolate and monitoring multi-drug resistant organism. Not only onsite microbiology services but also outsourcing microbiology services, to communicate bedside and laboratory is most important point of effective utilization.

  7. Deficiency and toxicity of nanomolar copper in low irradiance-A physiological and metalloproteomic study in the aquatic plant Ceratophyllum demersum

    Czech Academy of Sciences Publication Activity Database

    Thomas, G.; Andresen, Elisa; Mattusch, J.; Hubáček, Tomáš; Küpper, Hendrik

    2016-01-01

    Roč. 177, August 2016 (2016), s. 226-236 ISSN 0166-445X R&D Projects: GA MŠk LM2015075 Institutional support: RVO:60077344 Keywords : Ceratophyllum demersum * Biophysics of photosynthesis * Chlorophyll fluorescence kinetics Subject RIV: BO - Biophysics Impact factor: 4.129, year: 2016

  8. On the relation between phototaxis and photosynthesis in Rhodospirillum Rubrum

    NARCIS (Netherlands)

    Thomas, J.B.; Nijenhuis, L.E.

    1950-01-01

    The relation between phototaxis and photosynthesis in Rhodospirillum rubrum has been studied. The light intensity at which saturation is reached in photosynthesis proved to coincide with that at which the contrast sensitivity starts to decrease. Potassium cyanide, which preferably inhibits the

  9. The primary steps of photosynthesis

    International Nuclear Information System (INIS)

    Fleming, G.R.; Van Grondelle, R.

    1996-01-01

    The two important initial steps of photosynthesis-electron transfer and energy transfer occur with great speed and efficiency. New techniques in laser optics and genetic engineering age helping us to understand why. (author). 24 refs. 8 figs

  10. Manganese-based Materials Inspired by Photosynthesis for Water-Splitting

    Directory of Open Access Journals (Sweden)

    Harvey J.M. Hou

    2011-09-01

    Full Text Available In nature, the water-splitting reaction via photosynthesis driven by sunlight in plants, algae, and cyanobacteria stores the vast solar energy and provides vital oxygen to life on earth. The recent advances in elucidating the structures and functions of natural photosynthesis has provided firm framework and solid foundation in applying the knowledge to transform the carbon-based energy to renewable solar energy into our energy systems. In this review, inspired by photosynthesis robust photo water-splitting systems using manganese-containing materials including Mn-terpy dimer/titanium oxide, Mn-oxo tetramer/Nafion, and Mn-terpy oligomer/tungsten oxide, in solar fuel production are summarized and evaluated. Potential problems and future endeavors are also discussed.

  11. 42 CFR 493.909 - Microbiology.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Microbiology. 493.909 Section 493.909 Public Health... Proficiency Testing Programs by Specialty and Subspecialty § 493.909 Microbiology. The subspecialties under the specialty of microbiology for which a program may offer proficiency testing are bacteriology...

  12. Quantum design of photosynthesis for bio-inspired solar-energy conversion

    NARCIS (Netherlands)

    Romero, Elisabet; Novoderezhkin, Vladimir I.; van Grondelle, Rienk

    2017-01-01

    Photosynthesis is the natural process that converts solar photons into energy-rich products that are needed to drive the biochemistry of life. Two ultrafast processes form the basis of photosynthesis: excitation energy transfer and charge separation. Under optimal conditions, every photon that is

  13. Food microbiology

    National Research Council Canada - National Science Library

    Royal Society of Chemistry (Great Britain); Moss, M. O; Adams, M. R

    2008-01-01

    ... is directed primarily at students of Microbiology, Food Science and related subjects up to Master's level and assumes some knowledge of basic microbiology. We have chosen not to burden the text with references to the primary literature in order to preserve what we hope is a reasonable narrative flow. Some suggestions for further reading for each chapter are included in Chapter 12. These are largely review articles and monographs which develop the overview provided and can also give access to...

  14. Biophysics of Human Hair Structural, Nanomechanical, and Nanotribological Studies

    CERN Document Server

    Bhushan, Bharat

    2010-01-01

    This book presents the biophysics of hair. It deals with the structure of hair, its mechanical properties, the nanomechanical characterization, tensile deformation, tribological characterization, the thickness distribution and binding interactions on hair surface. Another important topic of the book is the health of hair, human hair and skin, hair care, cleaning and conditioning treatments and damaging processes. It is the first book on the biophysical properties of hair.

  15. [Photosynthesis and transpiration characteristics of female and male Trichosanthes kirilowii Maxim individuals].

    Science.gov (United States)

    Liu, Yun; Zhong, Zhang-cheng; Wang, Xiao-xue; Xie, Jun; Yang, Wen-ying

    2011-03-01

    A field research was conducted on the photosynthesis and transpiration characteristics of dioecious Trichosanthes kirilowii individuals at four key development stages. At vegetative growth stage, the photosynthesis rate, transpiration rate, stomatal conductance, and water use efficiency of male individuals were higher than those of female individuals, and hence, male individuals entered into reproductive growth stage 22 days earlier than female individuals. After entering into reproductive growth stage, male individuals had higher photosynthesis rate, transpiration rate, and stomatal conductance, but slightly lower water use efficiency than female individuals. As the female individuals started to reproductive growth, their photosynthesis rate and water use efficiency were significantly lower, while the transpiration rate and stomatal conductance were higher than those of the male individuals. The effects of climate factors on the growth and development of T. kirilowii mainly occurred at its vegetative growth and early reproductive growth stages, and weakened at later reproductive growth stages. Higher temperature and lower relative humidity benefited the growth and development of T. kirilowii, and illumination could enhance the photosynthesis rate of T. kirilowii, especially its male individuals. After entering into reproductive growth stage, the photosynthesis rate of male individuals increased significantly with increasing illumination, but that of female individuals only had a slight increase, and the transpiration rate of male individuals as well as the photosynthesis rate of female individuals all increased significantly with increasing temperature.

  16. Cyanobacterial photosynthesis under sulfidic conditions: insights from the isolate Leptolyngbya sp. strain hensonii

    Science.gov (United States)

    Hamilton, Trinity L; Klatt, Judith M; de Beer, Dirk; Macalady, Jennifer L

    2018-01-01

    We report the isolation of a pinnacle-forming cyanobacterium isolated from a microbial mat covering the sediment surface at Little Salt Spring—a flooded sinkhole in Florida with a perennially microoxic and sulfidic water column. The draft genome of the isolate encodes all of the enzymatic machinery necessary for both oxygenic and anoxygenic photosynthesis, as well as genes for methylating hopanoids at the C-2 position. The physiological response of the isolate to H2S is complex: (i) no induction time is necessary for anoxygenic photosynthesis; (ii) rates of anoxygenic photosynthesis are regulated by both H2S and irradiance; (iii) O2 production is inhibited by H2S concentrations as low as 1 μM and the recovery rate of oxygenic photosynthesis is dependent on irradiance; (iv) under the optimal light conditions for oxygenic photosynthesis, rates of anoxygenic photosynthesis are nearly double those of oxygenic photosynthesis. We hypothesize that the specific adaptation mechanisms of the isolate to H2S emerged from a close spatial interaction with sulfate-reducing bacteria. The new isolate, Leptolyngbya sp. strain hensonii, is not closely related to other well-characterized Cyanobacteria that can perform anoxygenic photosynthesis, which further highlights the need to characterize the diversity and biogeography of metabolically versatile Cyanobacteria. The isolate will be an ideal model organism for exploring the adaptation of Cyanobacteria to sulfidic conditions. PMID:29328062

  17. Cyanobacterial photosynthesis under sulfidic conditions: insights from the isolate Leptolyngbya sp. strain hensonii.

    Science.gov (United States)

    Hamilton, Trinity L; Klatt, Judith M; de Beer, Dirk; Macalady, Jennifer L

    2018-02-01

    We report the isolation of a pinnacle-forming cyanobacterium isolated from a microbial mat covering the sediment surface at Little Salt Spring-a flooded sinkhole in Florida with a perennially microoxic and sulfidic water column. The draft genome of the isolate encodes all of the enzymatic machinery necessary for both oxygenic and anoxygenic photosynthesis, as well as genes for methylating hopanoids at the C-2 position. The physiological response of the isolate to H 2 S is complex: (i) no induction time is necessary for anoxygenic photosynthesis; (ii) rates of anoxygenic photosynthesis are regulated by both H 2 S and irradiance; (iii) O 2 production is inhibited by H 2 S concentrations as low as 1 μM and the recovery rate of oxygenic photosynthesis is dependent on irradiance; (iv) under the optimal light conditions for oxygenic photosynthesis, rates of anoxygenic photosynthesis are nearly double those of oxygenic photosynthesis. We hypothesize that the specific adaptation mechanisms of the isolate to H 2 S emerged from a close spatial interaction with sulfate-reducing bacteria. The new isolate, Leptolyngbya sp. strain hensonii, is not closely related to other well-characterized Cyanobacteria that can perform anoxygenic photosynthesis, which further highlights the need to characterize the diversity and biogeography of metabolically versatile Cyanobacteria. The isolate will be an ideal model organism for exploring the adaptation of Cyanobacteria to sulfidic conditions.

  18. Applications of synchrotron radiation in Biophysics

    International Nuclear Information System (INIS)

    Bemski, G.

    1983-01-01

    A short introduction to the generation of the synchrotron radiation is made. Following, the applications of such a radiation in biophysics with emphasis to the study of the hemoglobin molecule are presented. (L.C.) [pt

  19. Environmental microbiology

    Science.gov (United States)

    Briški, Felicita; Vuković Domanovac, Marija

    2017-10-01

    For most people, microorganisms are out of sight and therefore out of mind but they are large, extremely diverse group of organisms, they are everywhere and are the dominant form of life on planet Earth. Almost every surface is colonized by microorganisms, including our skin; however most of them are harmless to humans. Some microorganisms can live in boiling hot springs, whereas others form microbial communities in frozen sea ice. Among their many roles, microorganisms are necessary for biogeochemical cycling, soil fertility, decomposition of dead plants and animals and biodegradation of many complex organic compounds present in the environment. Environmental microbiology is concerned with the study of microorganisms in the soil, water and air and their application in bioremediation to reduce environmental pollution through the biological degradation of pollutants into non-toxic or less toxic substances. Field of environmental microbiology also covers the topics such as microbially induced biocorrosion, biodeterioration of constructing materials and microbiological quality of outdoor and indoor air.

  20. A model for chlorophyll fluorescence and photosynthesis at leaf scale

    NARCIS (Netherlands)

    Tol, van der C.; Verhoef, W.; Rosema, A.

    2009-01-01

    This paper presents a leaf biochemical model for steady-state chlorophyll fluorescence and photosynthesis of C3 and C4 vegetation. The model is a tool to study the relationship between passively measured steady-state chlorophyll fluorescence and actual photosynthesis, and its evolution during the

  1. Consolidated clinical microbiology laboratories.

    Science.gov (United States)

    Sautter, Robert L; Thomson, Richard B

    2015-05-01

    The manner in which medical care is reimbursed in the United States has resulted in significant consolidation in the U.S. health care system. One of the consequences of this has been the development of centralized clinical microbiology laboratories that provide services to patients receiving care in multiple off-site, often remote, locations. Microbiology specimens are unique among clinical specimens in that optimal analysis may require the maintenance of viable organisms. Centralized laboratories may be located hours from patient care settings, and transport conditions need to be such that organism viability can be maintained under a variety of transport conditions. Further, since the provision of rapid results has been shown to enhance patient care, effective and timely means for generating and then reporting the results of clinical microbiology analyses must be in place. In addition, today, increasing numbers of patients are found to have infection caused by pathogens that were either very uncommon in the past or even completely unrecognized. As a result, infectious disease specialists, in particular, are more dependent than ever on access to high-quality diagnostic information from clinical microbiology laboratories. In this point-counterpoint discussion, Robert Sautter, who directs a Charlotte, NC, clinical microbiology laboratory that provides services for a 40-hospital system spread over 3 states in the southeastern United States explains how an integrated clinical microbiology laboratory service has been established in a multihospital system. Richard (Tom) Thomson of the NorthShore University HealthSystem in Evanston, IL, discusses some of the problems and pitfalls associated with large-scale laboratory consolidation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. 21 CFR 866.2540 - Microbiological incubator.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2540 Microbiological... intended for medical purposes to cultivate microorganisms and aid in the diagnosis of disease. (b...

  3. From molecules to materials pathways to artificial photosynthesis

    CERN Document Server

    Rozhkova, Elena A

    2015-01-01

    This interdisciplinary book focuses on the various aspects transformation of the energy from sunlight into the chemical bonds of a fuel, known as the artificial photosynthesis, and addresses the emergent challenges connected with growing societal demands for clean and sustainable energy technologies. The editors assemble the research of world-recognized experts in the field of both molecular and materials artificial systems for energy production. Contributors cover the full scope of research on photosynthesis and related energy processes.

  4. Novel Genetic Tools to Accelerate Our Understanding of Photosynthesis and Lipid Accumulation

    Science.gov (United States)

    2014-08-20

    understanding of photosynthesis and lipid accumulation Martin C. Jonikas, Ph.D. Carnegie Institution for Science, Department of Plant Biology 260...knowledge of algal lipid metabolism and photosynthesis . Advances in our basic understanding of these processes will facilitate genetic engineering of...algae to improve lipid yields. Currently, one of the greatest roadblocks in the study of algal photosynthesis and lipid metabolism is the slow pace of

  5. Global artificial photosynthesis project: a scientific and legal introduction.

    Science.gov (United States)

    Faunce, Thomas

    2011-12-01

    With the global human population set to exceed 10 billion by 2050, its collective energy consumption to rise from 400 to over 500 EJ/yr and with the natural environment under increasing pressure from these sources as well as from anthropogenic climate change, political solutions such as the creation of an efficient carbon price and trading scheme may arrive too late. In this context, the scientific community is exploring technological remedies. Central to these options is artificial photosynthesis--the creation, particularly through nanotechnology, of devices capable to doing what plants have done for millions of years - transforming sunlight, water and carbon dioxide into food and fuel. This article argues that a Global Artificial Photosynthesis (GAP) project can raise the public profile and encourage the pace, complexity and funding of scientific collaborations in artificial photosynthesis research. The legal structure of a GAP project will be critical to prevent issues such as state sovereignty over energy and food resources and corporate intellectual monopoly privileges unduly inhibiting the important contribution of artificial photosynthesis to global public health and environmental sustainability. The article presents an introduction to the scientific and legal concepts behind a GAP project.

  6. Establishing molecular microbiology facilities in developing countries

    Directory of Open Access Journals (Sweden)

    Salman S. Ahmed

    2015-11-01

    Full Text Available Summary: Microbiology laboratories play an important role in epidemiology and infection control programs. Within microbiology laboratories, molecular microbiology techniques have revolutionized the identification and surveillance of infectious diseases. The combination of excellent sensitivity, specificity, low contamination levels and speed has made molecular techniques appealing methods for the diagnosis of many infectious diseases. In a well-equipped microbiology laboratory, the facility designated for molecular techniques remains indiscrete. However, in most developing countries, poor infrastructure and laboratory mismanagement have precipitated hazardous consequences. The establishment of a molecular microbiology facility within a microbiology laboratory remains fragmented. A high-quality laboratory should include both conventional microbiology methods and molecular microbiology techniques for exceptional performance. Furthermore, it should include appropriate laboratory administration, a well-designed facility, laboratory procedure standardization, a waste management system, a code of practice, equipment installation and laboratory personnel training. This manuscript lays out fundamental issues that need to be addressed when establishing a molecular microbiology facility in developing countries. Keywords: Developing country, Molecular technique, Molecular microbiology laboratory

  7. Final report, Feedback limitations of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Sharkey, Thomas D.

    1999-07-22

    Final report of research on carbon metabolism of photosynthesis. The feedback from carbon metabolism to primary photosynthetic processes is summarized, and a comprehensive list of published scientific papers is provided.

  8. Photosynthesis Activates Plasma Membrane H+-ATPase via Sugar Accumulation.

    Science.gov (United States)

    Okumura, Masaki; Inoue, Shin-Ichiro; Kuwata, Keiko; Kinoshita, Toshinori

    2016-05-01

    Plant plasma membrane H(+)-ATPase acts as a primary transporter via proton pumping and regulates diverse physiological responses by controlling secondary solute transport, pH homeostasis, and membrane potential. Phosphorylation of the penultimate threonine and the subsequent binding of 14-3-3 proteins in the carboxyl terminus of the enzyme are required for H(+)-ATPase activation. We showed previously that photosynthesis induces phosphorylation of the penultimate threonine in the nonvascular bryophyte Marchantia polymorpha However, (1) whether this response is conserved in vascular plants and (2) the process by which photosynthesis regulates H(+)-ATPase phosphorylation at the plasma membrane remain unresolved issues. Here, we report that photosynthesis induced the phosphorylation and activation of H(+)-ATPase in Arabidopsis (Arabidopsis thaliana) leaves via sugar accumulation. Light reversibly phosphorylated leaf H(+)-ATPase, and this process was inhibited by pharmacological and genetic suppression of photosynthesis. Immunohistochemical and biochemical analyses indicated that light-induced phosphorylation of H(+)-ATPase occurred autonomously in mesophyll cells. We also show that the phosphorylation status of H(+)-ATPase and photosynthetic sugar accumulation in leaves were positively correlated and that sugar treatment promoted phosphorylation. Furthermore, light-induced phosphorylation of H(+)-ATPase was strongly suppressed in a double mutant defective in ADP-glucose pyrophosphorylase and triose phosphate/phosphate translocator (adg1-1 tpt-2); these mutations strongly inhibited endogenous sugar accumulation. Overall, we show that photosynthesis activated H(+)-ATPase via sugar production in the mesophyll cells of vascular plants. Our work provides new insight into signaling from chloroplasts to the plasma membrane ion transport mechanism. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. Evolution across the Curriculum: Microbiology

    Science.gov (United States)

    Burmeister, Alita R.; Smith, James J.

    2016-01-01

    An integrated understanding of microbiology and evolutionary biology is essential for students pursuing careers in microbiology and healthcare fields. In this Perspective, we discuss the usefulness of evolutionary concepts and an overall evolutionary framework for students enrolled in microbiology courses. Further, we propose a set of learning goals for students studying microbial evolution concepts. We then describe some barriers to microbial evolution teaching and learning and encourage the continued incorporation of evidence-based teaching practices into microbiology courses at all levels. Next, we review the current status of microbial evolution assessment tools and describe some education resources available for teaching microbial evolution. Successful microbial evolution education will require that evolution be taught across the undergraduate biology curriculum, with a continued focus on applications and applied careers, while aligning with national biology education reform initiatives. Journal of Microbiology & Biology Education PMID:27158306

  10. Application of microbial photosynthesis to energy production and CO2 fixation

    International Nuclear Information System (INIS)

    Asada, Y.; Miyake, J.

    1994-01-01

    This paper presents different applications of microbial photosynthesis for energy production and carbon dioxide fixation. The authors discuss about energetic aspects of photosynthesis and features of biological way for solar energy conversion. (TEC). 4 figs., 12 refs

  11. Meta-analysis in microbiology

    Directory of Open Access Journals (Sweden)

    N Pabalan

    2014-01-01

    Full Text Available The use of meta-analysis in microbiology may facilitate decision-making that impacts public health policy. Directed at clinicians and researchers in microbiology, this review outlines the steps in performing this statistical technique, addresses its biases and describes its value in this discipline. The survey to estimate extent of the use of meta-analyses in microbiology shows the remarkable growth in the use of this research methodology, from a minimal Asian output to a level comparable with those of Europe and North America in the last 7 years.

  12. Biophysical analysis of the interaction of granulysin-derived peptides with enterobacterial endotoxins.

    Science.gov (United States)

    Chen, Xi; Howe, Jörg; Andrä, Jörg; Rössle, Manfred; Richter, Walter; da Silva, Ana Paula Galvão; Krensky, Alan M; Clayberger, Carol; Brandenburg, Klaus

    2007-10-01

    To combat infections by Gram-negative bacteria, it is not only necessary to kill the bacteria but also to neutralize pathogenicity factors such as endotoxin (lipopolysaccharide, LPS). The development of antimicrobial peptides based on mammalian endotoxin-binding proteins is a promising tool in the fight against bacterial infections, and septic shock syndrome. Here, synthetic peptides derived from granulysin (Gra-pep) were investigated in microbiological and biophysical assays to understand their interaction with LPS. We analyzed the influence of the binding of Gra-pep on (1) the acyl chain melting of the hydrophobic moiety of LPS, lipid A, by Fourier-transform spectroscopy, (2) the aggregate structure of LPS by small-angle X-ray scattering and cryo-transmission electron microscopy, and 3) the enthalpy change by isothermal titration calorimetry. In addition, the influence of Gra-pep on the incorporation of LPS and LPS-LBP (lipopolysaccharide-binding protein) complexes into negatively charged liposomes was monitored. Our findings demonstrate a characteristic change in the aggregate structure of LPS into multilamellar stacks in the presence of Gra-pep, but little or no change of acyl chain fluidity. Neutralization of LPS by Gra-pep is not due to a scavenging effect in solution, but rather proceeds after incorporation into target membranes, suggesting a requisite membrane-bound step.

  13. Photosynthesis

    DEFF Research Database (Denmark)

    Pribil, Mathias; Leister, Dario Michael

    2017-01-01

    on the genetic engineering of developmental or bioenergetic processes, such as photosynthesis. These approaches offer the prospect of a renewal of the Green Revolution, which is urgently required tomeet the continuously increasing demand for superior high-yield crop varieties for human sustenance and industrial...... by exponential population growth and increased demand for crop plants as sources of renewable energy or high-value products. The foreseeable intensification of competition between agronomical and industrial use makes it imperative that the available supply of cropland be used more efficiently. During the Green...... Revolution that began in the 1960s, significant increases in yield could be achieved by more effective farming strategies, innovations in fertilization, and the introduction of dwarfing genes into important crop species like rice (Oryza sativa) and wheat (Triticum aestivum). The last resulted in a shift...

  14. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Li, Meichao [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032 (China); Wen, Yuezhong, E-mail: wenyuezhong@zju.edu.cn [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-04-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  15. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia; Li, Meichao; Wen, Yuezhong

    2016-01-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  16. Biophysical aspects of photodynamic therapy.

    Science.gov (United States)

    Juzeniene, Asta; Nielsen, Kristian Pagh; Moan, Johan

    2006-01-01

    Over the last three decades photodynamic therapy (PDT) has been developed to a useful clinical tool, a viable alternative in the treatment of cancer and other diseases. Several disciplines have contributed to this development: chemistry in the development of new photosensitizing agents, biology in the elucidation of cellular processes involved in PDT, pharmacology and physiology in identifying the mechanisms of distribution of photosensitizers in an organism, and, last but not least, physics in the development of better light sources, dosimetric concepts and construction of imaging devices, optical sensors and spectroscopic methods for determining sensitizer concentrations in different tissues. Physics and biophysics have also helped to focus on the role of pH for sensitizer accumulation, dose rate effects, oxygen depletion, temperature, and optical penetration of light of different wavelengths into various types of tissue. These are all important parameters for optimally effective PDT. The present review will give a brief, physically based, overview of PDT and then discuss some of the main biophysical aspects of this therapeutic modality.

  17. Daily xanthophyll cycle photoprotection in developing leaves prior to photosynthesis

    Science.gov (United States)

    M.N. Angelov; Shi-Jean S. Sung; C.C. Black

    1995-01-01

    There is widespread agreement that the xanthophyll cycle provides a major photoprotection system for photosynthesis in green leaves.Indeed this type of photoprotection seem to be ubiquitous for photosynthetic organisms. Photoprotection is provided via a rapid, near 10-13 sec, ability of zeaxanthin (Z) to dissipate excess light energy from photosynthesis because the...

  18. Building biophysics in mid-century China: the University of Science and Technology of China.

    Science.gov (United States)

    Luk, Yi Lai Christine

    2015-01-01

    Biophysics has been either an independent discipline or an element of another discipline in the United States, but it has always been recognized as a stand-alone discipline in the People's Republic of China (PRC) since 1949. To inquire into this apparent divergence, this paper investigates the formational history of biophysics in China by examining the early institutional history of one of the best-known and prestigious science and technology universities in the PRC, the University of Science and Technology of China (USTC). By showing how the university and its biophysics program co-evolved with national priorities from the school's founding in 1958 to the eve of the Cultural Revolution in 1966, the purpose of this paper is to assess the development of a scientific discipline in the context of national demands and institutional politics. Specific materials for analysis include the school's admission policies, curricula, students' dissertations, and research program. To further contextualize the institutional setting of Chinese biophysics, this paper begins with a general history of proto-biophysical institutions in China during the Nationalist-Communist transitional years. This paper could be of interest to historians wanting to know more about the origin of the biophysics profession in China, and in particular how research areas that constitute biophysics changed in tandem with socio-political contingencies.

  19. NDH-Mediated Cyclic Electron Flow Around Photosystem I is Crucial for C4 Photosynthesis.

    Science.gov (United States)

    Ishikawa, Noriko; Takabayashi, Atsushi; Noguchi, Ko; Tazoe, Youshi; Yamamoto, Hiroshi; von Caemmerer, Susanne; Sato, Fumihiko; Endo, Tsuyoshi

    2016-10-01

    C 4 photosynthesis exhibits efficient CO 2 assimilation in ambient air by concentrating CO 2 around ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) through a metabolic pathway called the C 4 cycle. It has been suggested that cyclic electron flow (CEF) around PSI mediated by chloroplast NADH dehydrogenase-like complex (NDH), an alternative pathway of photosynthetic electron transport (PET), plays a crucial role in C 4 photosynthesis, although the contribution of NDH-mediated CEF is small in C 3 photosynthesis. Here, we generated NDH-suppressed transformants of a C 4 plant, Flaveria bidentis, and showed that the NDH-suppressed plants grow poorly, especially under low-light conditions. CO 2 assimilation rates were consistently decreased in the NDH-suppressed plants under low and medium light intensities. Measurements of non-photochemical quenching (NPQ) of Chl fluorescence, the oxidation state of the reaction center of PSI (P700) and the electrochromic shift (ECS) of pigment absorbance indicated that proton translocation across the thylakoid membrane is impaired in the NDH-suppressed plants. Since proton translocation across the thylakoid membrane induces ATP production, these results suggest that NDH-mediated CEF plays a role in the supply of ATP which is required for C 4 photosynthesis. Such a role is more crucial when the light that is available for photosynthesis is limited and the energy production by PET becomes rate-determining for C 4 photosynthesis. Our results demonstrate that the physiological contribution of NDH-mediated CEF is greater in C 4 photosynthesis than in C 3 photosynthesis, suggesting that the mechanism of PET in C 4 photosynthesis has changed from that in C 3 photosynthesis accompanying the changes in the mechanism of CO 2 assimilation. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ.

    Science.gov (United States)

    Mank, Nils N; Berghoff, Bork A; Hermanns, Yannick N; Klug, Gabriele

    2012-10-02

    The small RNA PcrZ (photosynthesis control RNA Z) of the facultative phototrophic bacterium Rhodobacter sphaeroides is induced upon a drop of oxygen tension with similar kinetics to those of genes for components of photosynthetic complexes. High expression of PcrZ depends on PrrA, the response regulator of the PrrB/PrrA two-component system with a central role in redox regulation in R. sphaeroides. In addition the FnrL protein, an activator of some photosynthesis genes at low oxygen tension, is involved in redox-dependent expression of this small (s)RNA. Overexpression of full-length PcrZ in R. sphaeroides affects expression of a small subset of genes, most of them with a function in photosynthesis. Some mRNAs from the photosynthetic gene cluster were predicted to be putative PcrZ targets and results from an in vivo reporter system support these predictions. Our data reveal a negative effect of PcrZ on expression of its target mRNAs. Thus, PcrZ counteracts the redox-dependent induction of photosynthesis genes, which is mediated by protein regulators. Because PrrA directly activates photosynthesis genes and at the same time PcrZ, which negatively affects photosynthesis gene expression, this is one of the rare cases of an incoherent feed-forward loop including an sRNA. Our data identified PcrZ as a trans acting sRNA with a direct regulatory function in formation of photosynthetic complexes and provide a model for the control of photosynthesis gene expression by a regulatory network consisting of proteins and a small noncoding RNA.

  1. Growth and photosynthesis of lettuce

    NARCIS (Netherlands)

    Holsteijn, van H.M.C.

    1981-01-01

    Butterhead lettuce is an important glass-house crop in the poor light period in The Netherlands. Fundamental data about the influence of temperature, light and CO 2 on growth and photosynthesis are important e.g. to facilitate selection criteria for new cultivars. In

  2. Assessing Photosynthesis by Fluorescence Imaging

    Science.gov (United States)

    Saura, Pedro; Quiles, Maria Jose

    2011-01-01

    This practical paper describes a novel fluorescence imaging experiment to study the three processes of photochemistry, fluorescence and thermal energy dissipation, which compete during the dissipation of excitation energy in photosynthesis. The technique represents a non-invasive tool for revealing and understanding the spatial heterogeneity in…

  3. Biophysical aspects of cancer - Electromagnetic mechanism

    Czech Academy of Sciences Publication Activity Database

    Pokorný, Jiří; Hašek, Jiří; Vaniš, Jan; Jelínek, František

    2008-01-01

    Roč. 46, č. 5 (2008), s. 310-321 ISSN 0019-5189 Institutional research plan: CEZ:AV0Z20670512; CEZ:AV0Z50200510 Keywords : Electromagnetic Fields * Biophysics * Cancer Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.599, year: 2008

  4. Inhibition of apparent photosynthesis by nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A C; Bennett, J H

    1970-01-01

    The nitrogen oxides (NO/sub 2/ and NO) inhibited apparent photosynthesis of oats and alfalfa at concentrations below those required to cause visible injury. There appeared to be a threshold concentration of about 0.6 ppm for each pollutant. An additive effect in depressing apparent photosynthesis occurred when the plants were exposed to a mixture of NO and NO/sub 2/. Although NO produced a more rapid effect on the plants, lower concentrations of NO/sub 2/ were required to cause a given inhibition after 2 hour of exposure. Inhibition by nitric oxide was more closely related to its partial pressure than was inhibition by NO/sub 2/.

  5. Microbiology Education in Nursing Practice?

    OpenAIRE

    Durrant, Robert J.; Doig, Alexa K.; Buxton, Rebecca L.; Fenn, JoAnn P.

    2017-01-01

    Nurses must have sufficient education and training in microbiology to perform many roles within clinical nursing practice (e.g., administering antibiotics, collecting specimens, preparing specimens for transport and delivery, educating patients and families, communicating results to the healthcare team, and developing care plans based on results of microbiology studies and patient immunological status). It is unclear whether the current microbiology courses required of nursing students in the...

  6. Biophysics and cell physiology

    International Nuclear Information System (INIS)

    Mazur, P.

    1975-01-01

    Progress is reported on research activities in the fields of physiology and low-temperature biology of mammalian embryos; effects of sub-zero temperatures on eggs and embryos of sea urchins; survival of frozen-thawed human red cells; effects of radiation on physiology of Escherichia coli; transfer of triplet electronic energy in dinucleotides; effects of x radiation on DNA degradation; energy deposition by neutrons; photosynthesis; excision repair of uv-induced pyrimidine dimers in DNA of plant cells

  7. Photosynthesis: From De Saussure To Liebig.

    Science.gov (United States)

    Pennazio, Sergio

    2017-01-01

    The dawn of photosynthesis, characterized by the research of Priestley, Ingen- Housz and Senebier, culminated in 1804 with a historical essay of Théodore De Saussure. According to the historians, during the first half of the nineteenth century in which the genesis of the cell theory started off, the research on photosynthesis met a phase of stagnation. Indeed, the literature review of the period does not report particular innovation; however, several scientists (botanists, physiologists, and chemists) supported the thesis of De Saussure with a series of analyses that, in our opinion, deserve to be known. Mirbel, De Candolle, Raspail, Berzelius, Payen, Dutrochet, von Mohl, and other scholars attempted to expand knowledge on photosynthesis but were not able to arrive at a theory that was consistent with a functional mechanism, nor with a suitable chemical model to explain the transformation of the water and carbon dioxide into sugars. A classic case of such inadequacy concerns the discovery of chlorophyll. This compound, isolated in 1818 by Pelletier and Caventou, remained an enigma for many years and was never put in relation with the synthesis of starch. The accurate research of von Mohl led this scientist to believe that the granules of chlorophyll were entirely independent of starch granules, although in many cases these latter were observable inside the granules of chlorophyll. Only in the early forties, Justus von Liebig realized that the assimilation of carbon and hydrogen required a series of chemical reactions that, starting from some organic acids, ended in the formation of sugar. In conclusion, our analysis does not lead to define this period as stagnation but rather as transition, in which the concept of photosynthesis was clear, even though difficult to treat under physiological and chemical views. From the sixties, the researches of Julius von Sachs will open a new road, thanks also to the research carried out in the transition period. Copyright:

  8. Advantages and disadvantages on photosynthesis measurement ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... Through photosynthesis, green plants and cyanobacteria are able to transfer sunlight energy to ... Measurements of this process are useful in order to understand how it might be controlled ...

  9. Oral Microbiology and Immunology

    DEFF Research Database (Denmark)

    Dahlén, Gunnar; Fiehn, Nils-Erik; Olsen, Ingar

    , dental assistants and trainees may find it a useful source of reference. The contents are based on general microbiology and immunology. Oral microbiology is given particular attention, with examples relevant to oral infectious diseases. Each chapter opens with a relatively short pre-reading section...

  10. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors.

    Science.gov (United States)

    Li, T; Heuvelink, E; Dueck, T A; Janse, J; Gort, G; Marcelis, L F M

    2014-07-01

    Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when

  11. Water relations, thallus structure and photosynthesis in Negev Desert lichens

    Science.gov (United States)

    Palmer, R. J. Jr; Friedmann, E. I.

    1990-01-01

    The role of lichen thallus structure in water relations and photosynthesis was studied in Ramalina maciformis (Del.) Bory and Teloschistes lacunosus (Rupr.) Sav. Water-vapour adsorption and photosynthesis are dependent upon thallus integrity and are significantly lower in crushed thalli. Cultured phycobiont (Trebouxia sp.) cells are capable of photosynthesis over the same relative humidity range (> 80% RH) as are intact lichens. Thus, water-vapour adsorption by the thallus and physiological adaptation of the phycobiont contribute to the ability of these lichens to photosynthesize in an arid environment. Despite differences in their anatomical structure and water-uptake characteristics, their CO2 incorporation is similar. The two lichens use liquid water differently and they occupy different niches.

  12. [The modern microbiology in the clinical managing].

    Science.gov (United States)

    Casal Román, Manuel

    2012-01-01

    The tuberculosis is one of the most important and mortal diseases of the world. The microbiological confirmatory diagnosis and the microbiological therapeutic orientation are fundamental nowadays in the tuberculosis in AIDS and in the Resistant tuberculosis. They are described throughout the time by the classic Microbiology: From 1882 to final 20th century (130 years). With the modern current Microbiology: In the beginning of the 21st century (20-30 years). And as will be done with the future Microbiology: From the years 2020-30. The important advances are outlined in the modern and future clinical microbiology, for the control of the Tuberculosis.

  13. Pattern of photosynthesis in saline indica var. of rice Kala Rata

    International Nuclear Information System (INIS)

    Hegde, B.A.; Joshi, G.V.

    1975-01-01

    The present investigation on Kala Rata deals with the pattern of photosynthesis and the salt stress effect on the photosynthetic efficiency in rice. It is evident from the investigation that chlorophyll synthesis is enhanced with the increasing concentration of NaCl in the bathing medium. However, the efficiency of photosynthesis does not increase with increased chlorophyll production. All ions in leaves can stimulate CO 2 incorporation but inhibit at higher concentration. Analysis of short term products of photosynthesis revealed that aspartate is the major product to be heavily labelled which is evident from autoradiogram. PGA has also appreciable label, where as, malate has the least. It appears therefore, that in rice, both, Calvin as well as C 4 type of pathways are operating. 'Aspartate former' type of rice does not seem to be efficient in photosynthesis as it has C 3 pathway also in operation. (author)

  14. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    Science.gov (United States)

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.

  15. The influence of temperature on photosynthesis of different tomato genotypes

    NARCIS (Netherlands)

    Gosiewski, W.; Nilwik, H.J.M.; Bierhuizen, J.F.

    1982-01-01

    Net photosynthesis and dark respiration from whole plants of various tomato genotypes were measured in a closed system. At low irradiance (27 W m−2) and low external CO2 concentration (550 mg m−3), net photosynthesis of 10 genotypes was found to vary between 0.122 and 0.209 mg CO2 m−2 s−1.

  16. Increased SBPase activity improves photosynthesis and grain yield in wheat grown in greenhouse conditions.

    Science.gov (United States)

    Driever, Steven M; Simkin, Andrew J; Alotaibi, Saqer; Fisk, Stuart J; Madgwick, Pippa J; Sparks, Caroline A; Jones, Huw D; Lawson, Tracy; Parry, Martin A J; Raines, Christine A

    2017-09-26

    To meet the growing demand for food, substantial improvements in yields are needed. This is particularly the case for wheat, where global yield has stagnated in recent years. Increasing photosynthesis has been identified as a primary target to achieve yield improvements. To increase leaf photosynthesis in wheat, the level of the Calvin-Benson cycle enzyme sedoheptulose-1,7-biphosphatase (SBPase) has been increased through transformation and expression of a Brachypodium distachyon SBPase gene construct. Transgenic lines with increased SBPase protein levels and activity were grown under greenhouse conditions and showed enhanced leaf photosynthesis and increased total biomass and dry seed yield. This showed the potential of improving yield potential by increasing leaf photosynthesis in a crop species such as wheat. The results are discussed with regard to future strategies for further improvement of photosynthesis in wheat.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Authors.

  17. Microbiological Food Safety Surveillance in China

    Directory of Open Access Journals (Sweden)

    Xiaoyan Pei

    2015-08-01

    Full Text Available Microbiological food safety surveillance is a system that collects data regarding food contamination by foodborne pathogens, parasites, viruses, and other harmful microbiological factors. It helps to understand the spectrum of food safety, timely detect food safety hazards, and provide relevant data for food safety supervision, risk assessment, and standards-setting. The study discusses the microbiological surveillance of food safety in China, and introduces the policies and history of the national microbiological surveillance system. In addition, the function and duties of different organizations and institutions are provided in this work, as well as the generation and content of the surveillance plan, quality control, database, and achievement of the microbiological surveillance of food safety in China.

  18. A dataset mapping the potential biophysical effects of vegetation cover change

    Science.gov (United States)

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-02-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

  19. Spektroskopické studium role karotenoidů ve fotosyntéze

    OpenAIRE

    Loew, Martin

    2007-01-01

    Spectroscopic Study of the Function of Carotenoids in Photosynthesis Abstract of the thesis Author: Martin Loew Supervisor: Prof. RNDr. Jan Hala, DrSc. Department: Department of Chemical Physics and Optics The research of the role of carotenoids in photosynthesis is a fast-growing branch of a biophysical and biochemical research of photosynthesis principles. The Optical Spectroscopy Group of the Department of Chemical Physics and Optics at the Faculty of Mathematics and Physics of Charles Uni...

  20. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J; Silvola, J [Joensuu Univ. (Finland). Dept. of Biology

    1997-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  1. The effect of elevated CO{sub 2} concentration on photosynthesis of Sphagnum fuscum

    Energy Technology Data Exchange (ETDEWEB)

    Jauhiainen, J.; Silvola, J. [Joensuu Univ. (Finland). Dept. of Biology

    1996-12-31

    The objectives of the research were to measure photosynthesis of Sphagnum fuscum in long term exposure to four CO{sub 2} levels at semi-natural conditions, to find out if there is an acclimation of net photosynthesis into prevailing CO{sub 2} concentrations and to measure the moisture dependent net photosynthesis at various CO{sub 2} concentrations of samples grown at different CO{sub 2} concentrations

  2. 42 CFR 493.821 - Condition: Microbiology.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Microbiology. 493.821 Section 493.821 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES... These Tests § 493.821 Condition: Microbiology. The specialty of microbiology includes, for purposes of...

  3. A quantum protective mechanism in photosynthesis

    NARCIS (Netherlands)

    Marais, A.; Sinayskiy, I.; Petruccione, F.; van Grondelle, R.

    2015-01-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product

  4. A mathematical approach to protein biophysics

    CERN Document Server

    Scott, L Ridgway

    2017-01-01

    This book explores quantitative aspects of protein biophysics and attempts to delineate certain rules of molecular behavior that make atomic scale objects behave in a digital way.  This book will help readers to understand how certain biological systems involving proteins function as digital information systems despite the fact that underlying processes are analog in nature. The in-depth explanation of proteins from a quantitative point of view and the variety of level of exercises (including physical experiments) at the end of each chapter will appeal to graduate and senior undergraduate students in mathematics, computer science, mechanical engineering, and physics, wanting to learn about the biophysics of proteins.  L. Ridgway Scott has been Professor of Computer Science and of Mathematics at the University of Chicago since 1998, and the Louis Block Professor since 2001.  He obtained a B.S. degree (Magna Cum Laude) from Tulane University in 1969 and a PhD degree in Mathematics from the Massachusetts Ins...

  5. Institute of Biochemistry and Biophysics. Research Report 1996-1997

    International Nuclear Information System (INIS)

    1998-01-01

    Scientific interests of the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences have evolved from classical biochemistry, biophysics and physiological chemistry to up-to-date molecular biology. Research interests are focussed on replication, mutagenesis and repair of DNA; regulation of gene expression at various levels; biosynthesis and post-translational modifications of proteins; gene sequencing and functional analysis of open reading frames; structure, function and regulation of enzymes; conformation of proteins and peptides; modelling of structures and prediction of functions of proteins; mechanisms of electron transfer in polypeptides

  6. Institute of Biochemistry and Biophysics. Research Report 1996-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    Scientific interests of the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences have evolved from classical biochemistry, biophysics and physiological chemistry to up-to-date molecular biology. Research interests are focussed on replication, mutagenesis and repair of DNA; regulation of gene expression at various levels; biosynthesis and post-translational modifications of proteins; gene sequencing and functional analysis of open reading frames; structure, function and regulation of enzymes; conformation of proteins and peptides; modelling of structures and prediction of functions of proteins; mechanisms of electron transfer in polypeptides.

  7. Biophysical Influence of Airborne Carbon Nanomaterials on Natural Pulmonary Surfactant

    OpenAIRE

    Valle, Russell P.; Wu, Tony; Zuo, Yi Y.

    2015-01-01

    Inhalation of nanoparticles (NP), including lightweight airborne carbonaceous nanomaterials (CNM), poses a direct and systemic health threat to those who handle them. Inhaled NP penetrate deep pulmonary structures in which they first interact with the pulmonary surfactant (PS) lining at the alveolar air–water interface. In spite of many research efforts, there is a gap of knowledge between in vitro biophysical study and in vivo inhalation toxicology since all existing biophysical models handl...

  8. Research Institute for Medical Biophysics

    International Nuclear Information System (INIS)

    Wynchank, S.

    1989-01-01

    The effects of ionising and non-ionising radiation on rodent tumours and normal tissue were studied in terms of cellular repair and the relevant biochemical and biophysical changes following radiation. Rodent tumours investigated in vivo were the CaNT adenocarcinoma and a chemically induced transplantable rhabdomyosarcoma. Radiations used were 100KVp of X-Rays, neutron beams, various magnetic fields, and microwave radiation of 2450MHz. The biochemical parameters measured were, inter alia, levels of adenosine-5'-triphoshate (ATP) and the specific activity of hexokinase (HK). Metabolic changes in ATP levels and the activity of HK were observed in tumour and normal tissues following ionising and non-ionising radiation in normoxia and hypoxia. The observation that the effect of radiation and chemotherapeutic treatment of some tumours may be size dependent can possibly now be explained by the variation of ATP content with tumour size. The enhanced tumour HK specific activity implies increased metabolism, possibly a consequence of cellular requirements to maintain homeostasis during repair processes. Other research projects of the Research Institute for Medical Biophysics involved, inter alia, gastroesophageal scintigraphies to evaluate the results of new forms of therapy. 1 ill

  9. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    Science.gov (United States)

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  10. OpenStax: Microbiology Provides a Cost-Effective and Accessible Resource for Undergraduate Microbiology Students

    Directory of Open Access Journals (Sweden)

    Amanda Lyn Gunn

    2016-05-01

    Full Text Available This is a review of Openstax: Microbiology, a textbook that has been put together by a collaborative effort between Openstax College and the American Society for Microbiology.  The text will be offered in a variety of formats including web-based, PDF, and hardcopy, and is set for publication Spring 2016. Review of: OpenStax: Microbiology. Nina Parker, Mark Schneegurt, and Anh-Hue Tu; (2016. OpenStax and ASM. 1100 pages. (Note: At time of journal printing, this book was not yet published. Certain publication details may change slightly.

  11. Biophysics of Hair Cell Sensory Systems

    NARCIS (Netherlands)

    Duifhuis, Hendrikus; Horst, Johannes; van Dijk, Pim; van Netten, Sietse

    1993-01-01

    The last decade revealed to auditory researchers that hair cells can not only detect and process mechanical energy, but are also able to produce it. Thanks to the active hair cell, ears can produce otoacoustic emissions. This book gives the newest insights into the biophysics and physiology of

  12. Veterinary microbiology and microbial disease

    National Research Council Canada - National Science Library

    Quinn, P. J

    2011-01-01

    "Veterinary Microbiology is one of the core subjects for veterinary students. Fully revised and expanded, this new edition covers every aspect of veterinary microbiology for students in both paraclinical and clinical years...

  13. Conference Support, 23rd Western Photosynthesis Conference 2014, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, Rebekka [Arizona State Univ., Tempe, AZ (United States)

    2015-01-12

    The Western Photosynthesis Conference is a regional conference that is held on an annual basis to bring together researchers primarily from the Western United States to share their newest research advances on photosynthetic processes. The 23rd conference was focused on both fundamental and more applied research on the biological conversion of solar energy to various energy storage forms. Several particular areas of solar energy conversion were emphasized in this conference (see below). Some of these topics, such as carbon limitations on photosynthesis, biomimicry and phenotyping, have traditionally not been incorporated extensively in the Western Photosynthesis Conference. We found that these topics have substantially broadened of the scope of this meeting.

  14. Replacing natural wetlands with stormwater management facilities: Biophysical and perceived social values.

    Science.gov (United States)

    Rooney, R C; Foote, L; Krogman, N; Pattison, J K; Wilson, M J; Bayley, S E

    2015-04-15

    Urban expansion replaces wetlands of natural origin with artificial stormwater management facilities. The literature suggests that efforts to mimic natural wetlands in the design of stormwater facilities can expand the provision of ecosystem services. Policy developments seek to capitalize on these improvements, encouraging developers to build stormwater wetlands in place of stormwater ponds; however, few have compared the biophysical values and social perceptions of these created wetlands to those of the natural wetlands they are replacing. We compared four types of wetlands: natural references sites, natural wetlands impacted by agriculture, created stormwater wetlands, and created stormwater ponds. We anticipated that they would exhibit a gradient in biodiversity, ecological integrity, chemical and hydrologic stress. We further anticipated that perceived values would mirror measured biophysical values. We found higher biophysical values associated with wetlands of natural origin (both reference and agriculturally impacted). The biophysical values of stormwater wetlands and stormwater ponds were lower and indistinguishable from one another. The perceived wetland values assessed by the public differed from the observed biophysical values. This has important policy implications, as the public are not likely to perceive the loss of values associated with the replacement of natural wetlands with created stormwater management facilities. We conclude that 1) agriculturally impacted wetlands provide biophysical values equivalent to those of natural wetlands, meaning that land use alone is not a great predictor of wetland value; 2) stormwater wetlands are not a substantive improvement over stormwater ponds, relative to wetlands of natural origin; 3) stormwater wetlands are poor mimics of natural wetlands, likely due to fundamental distinctions in terms of basin morphology, temporal variation in hydrology, ground water connectivity, and landscape position; 4) these

  15. 2011 Photosynthesis Gordon Research Conference & Seminar (June 11-17, 2011, Davidson College, Davidson, North Carolina)

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Krishna Niyogi

    2011-06-17

    Photosynthesis is the biological process that converts solar energy into chemical energy. Elucidation of the mechanisms of photosynthetic energy conversion at a molecular level is fundamentally important for understanding the biology of photosynthetic organisms, for optimizing biological solar fuels production, and for developing biologically inspired approaches to solar energy conversion. The 2011 Gordon Conference on Photosynthesis will present cutting-edge research focusing on the biochemical aspects of photosynthesis, including: (1) structure, assembly, and function of photosynthetic complexes; (2) the mechanism of water splitting by PSII; (3) light harvesting and quenching; (4) alternative electron transport pathways; (5) biosynthesis of pigments and cofactors; and (6) improvement of photosynthesis for bioenergy and food production. Reflecting the interdisciplinary nature of photosynthesis research, a diverse group of invited speakers will represent a variety of scientific approaches to investigate photosynthesis, such as biochemistry, molecular genetics, structural biology, systems biology, and spectroscopy. Highly interactive poster sessions provide opportunities for graduate students and postdocs to present their work and exchange ideas with leaders in the field. One of the highlights of the Conference is a session featuring short talks by junior investigators selected from the poster presentations. The collegial atmosphere of the Photosynthesis GRC, with programmed discussion sessions as well as informal gatherings in the afternoons and evenings, enables participants to brainstorm, exchange ideas, and forge new collaborations. For the second time, this Conference will be immediately preceded by a Gordon Research Seminar on Photosynthesis (June 11-12, 2011, at the same location), with a focus on 'Photosynthesis, Bioenergy, and the Environment.' The GRS provides an additional opportunity for graduate students and postdocs to present their research

  16. Effect of Bradyrhizobium photosynthesis on stem nodulation of Aeschynomene sensitiva

    OpenAIRE

    Giraud, Eric; Hannibal, Laure; Fardoux, Joël; Verméglio, A.; Dreyfus, Bernard

    2000-01-01

    Some leguminous species of the genus #Aeschynomene$ are specifically stem-nodulated by photosynthetic bradyrhizobia. To study the effect of bacterial photosynthesis during symbiosis, we generated a photosynthesis-negative mutant of the #Bradyrhizobium$ sp. strain ORS278 symbiont of #Aeschynomene sensitiva$. The presence of a functional photosynthetic unit in bacterioids and the high expression of the photosynthetic genes observed in stem nodules demonstrate that the bacteria are photosyntheti...

  17. Estimating Photosynthetic Radiation Use Efficiency Using Incident Light and Photosynthesis of Individual Leaves

    OpenAIRE

    ROSATI, A.; DEJONG, T. M.

    2003-01-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, ‘daily’ photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthes...

  18. [Microbiological diagnosis of HIV infection].

    Science.gov (United States)

    López-Bernaldo de Quirós, Juan Carlos; Delgado, Rafael; García, Federico; Eiros, José M; Ortiz de Lejarazu, Raúl

    2007-12-01

    Currently, there are around 150,000 HIV-infected patients in Spain. This number, together with the fact that this disease is now a chronic condition since the introduction of antiretroviral therapy, has generated an increasing demand on the clinical microbiology laboratories in our hospitals. This increase has occurred not only in the diagnosis and treatment of opportunistic diseases, but also in tests related to the diagnosis and therapeutic management of HIV infection. To meet this demand, the Sociedad de Enfermedades Infecciosas y Microbiología Clinica (Spanish Society of Infectious Diseases and Clinical Microbiology) has updated its standard Procedure for the microbiological diagnosis of HIV infection. The main advances related to serological diagnosis, plasma viral load, and detection of resistance to antiretroviral drugs are reviewed in this version of the Procedure.

  19. Red-light phenotype in a marine diatom involves a specialized oligomeric red-shifted antenna and altered cell morphology

    Czech Academy of Sciences Publication Activity Database

    Herbstová, Miroslava; Bína, David; Kaňa, Radek; Vácha, František; Litvín, Radek

    2017-01-01

    Roč. 7, September 20 (2017), č. článku 11976. ISSN 2045-2322 R&D Projects: GA ČR GBP501/12/G055; GA MŠk(CZ) EE2.3.20.0203 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : phaeodactylum-tricornutum * chromatic adaptation * molecular characterization Subject RIV: BO - Biophysics; EE - Microbiology, Virology (MBU-M) OBOR OECD: Biophysics; Microbiology (MBU-M) Impact factor: 4.259, year: 2016

  20. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995.

  1. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    International Nuclear Information System (INIS)

    1996-01-01

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995

  2. Polish Academy of Sciences Institute of Biochemistry and Biophysics research report 1994-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Scientific interests of Institute of Biochemistry and Biophysics Polish Academy of Sciences are focused on DNA replication and repair, gene expression, gene sequencing and molecular biophysics. The work reviews research projects of the Institute in 1994-1995.

  3. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine

    DEFF Research Database (Denmark)

    Kneipp, J.; Wittig, B.; Bohr, Henrik

    2010-01-01

    Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical and ...

  4. Leaf area and net photosynthesis during development of Prunus serotina seedlings

    Science.gov (United States)

    Stephen B. Horsley; Kurt W. Gottschalk

    1993-01-01

    We used the plastochron index to study the relationship between plant age, leaf age and development, and net photosynthesis of black cherry (Prtmus serotina Ehrh.) seedlings. Leaf area and net photosynthesis were measured on all leaves >=75 mm of plants ranging in age from 7 to 20 plastochrons. Effects of plant developmental stage...

  5. Microbiological soil regeneration

    International Nuclear Information System (INIS)

    Behrens, D.; Wiesner, J.

    1992-01-01

    The Interdiciplinary Task Force ''Environmental Biotechnology - Soil'' of DECHEMA aims to pool the knowledge potential of the Dechema study committees on environmental biotechnology and soil protection with a view to the advancement of microbiological soil decontamination techniques. This conference volume on the 9th expert meeting of Dechema on environmental protection subjects entitled ''Microbiological Soil Regeneration'', held on February 27th and 28th, 1991, and the subsequent compilation of results give an intermediate account of the ongoing work of the Dechema Task Force. (orig.) [de

  6. [Biophysical methods in assessment of the skin microcirculation system].

    Science.gov (United States)

    Dynnik, O B; Mostovoĭ, S E; Berezovskiĭ, V A

    2008-01-01

    In this work has been analyzed the potential of biophysics methods in estimations of the microcirculatory system. Capillaroresistometry, Computer capillaroscopy and Laser Doppler Flowmetry can to detect of the endothelial dysfunction in the patients with chronic hepatic diseases. This instrumentals biophysics methods may be used in clinical investigations for screening early pathological conditions with dysfunction of the microcirculatory system. The methods Laser Doppler Flowmetry is important for investigations the patients with others diseases and for dynamical monitoring by quality of the treatment. The purpose of these methods an objective estimation of disorders in the microcirculatory system.

  7. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    Science.gov (United States)

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

  8. Broad-Scale Comparison of Photosynthesis in Terrestrial and Aquatic Plant Communities

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Krause-Jensen, D.

    1997-01-01

    Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... communities probably due to more efficient light utilization and gas exchange in the terrestrial habitats. By contrast only small differences were found within different aquatic plant communities or within different terrestrial plant communities....... of forests, grasslands and crops and 319 aquatic studies of phytoplankton, macrophyte and attached microalgal communities to test if specific differences existed between the communities. Maximum gross photosynthesis and photosynthetic efficiency were systematically higher in terrestrial than in aquatic...

  9. Evolution across the Curriculum: Microbiology

    Directory of Open Access Journals (Sweden)

    Alita R. Burmeister

    2016-05-01

    Full Text Available An integrated understanding of microbiology and evolutionary biology is essential for students pursuing careers in microbiology and healthcare fields. In this Perspective, we discuss the usefulness of evolutionary concepts and an overall evolutionary framework for students enrolled in microbiology courses. Further, we propose a set of learning goals for students studying microbial evolution concepts. We then describe some barriers to microbial evolution teaching and learning and encourage the continued incorporation of evidence-based teaching practices into microbiology courses at all levels. Next, we review the current status of microbial evolution assessment tools and describe some education resources available for teaching microbial evolution. Successful microbial evolution education will require that evolution be taught across the undergraduate biology curriculum, with a continued focus on applications and applied careers, while aligning with national biology education reform initiatives.

  10. Seasonality of temperate forest photosynthesis and daytime respiration.

    Science.gov (United States)

    Wehr, R; Munger, J W; McManus, J B; Nelson, D D; Zahniser, M S; Davidson, E A; Wofsy, S C; Saleska, S R

    2016-06-30

    Terrestrial ecosystems currently offset one-quarter of anthropogenic carbon dioxide (CO2) emissions because of a slight imbalance between global terrestrial photosynthesis and respiration. Understanding what controls these two biological fluxes is therefore crucial to predicting climate change. Yet there is no way of directly measuring the photosynthesis or daytime respiration of a whole ecosystem of interacting organisms; instead, these fluxes are generally inferred from measurements of net ecosystem-atmosphere CO2 exchange (NEE), in a way that is based on assumed ecosystem-scale responses to the environment. The consequent view of temperate deciduous forests (an important CO2 sink) is that, first, ecosystem respiration is greater during the day than at night; and second, ecosystem photosynthetic light-use efficiency peaks after leaf expansion in spring and then declines, presumably because of leaf ageing or water stress. This view has underlain the development of terrestrial biosphere models used in climate prediction and of remote sensing indices of global biosphere productivity. Here, we use new isotopic instrumentation to determine ecosystem photosynthesis and daytime respiration in a temperate deciduous forest over a three-year period. We find that ecosystem respiration is lower during the day than at night-the first robust evidence of the inhibition of leaf respiration by light at the ecosystem scale. Because they do not capture this effect, standard approaches overestimate ecosystem photosynthesis and daytime respiration in the first half of the growing season at our site, and inaccurately portray ecosystem photosynthetic light-use efficiency. These findings revise our understanding of forest-atmosphere carbon exchange, and provide a basis for investigating how leaf-level physiological dynamics manifest at the canopy scale in other ecosystems.

  11. Invitation to the 17th international congress on photosynthesis research in 2016 : photosynthesis in a changing world

    NARCIS (Netherlands)

    van Amerongen, Herbert; Croce, Roberta

    2016-01-01

    The 17th International Congress on Photosynthesis will be held from August 7 to 12, 2016 in Maastricht, The Netherlands. The congress will include an opening reception, 15 plenary lectures, 28 scientific symposia, many poster sessions, displays by scientific companies, excursions, congress dinner,

  12. PHOTOSYNTHESIS AT THE FOREFRONT OF A SUSTAINABLE LIFE

    Directory of Open Access Journals (Sweden)

    Paul J.D. Janssen

    2014-06-01

    Full Text Available The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production.

  13. Inhibition of photosynthesis and bleaching of zooxanthellae by the coral pathogen Vibrio shiloi.

    Science.gov (United States)

    Ben-Haim, Y; Banim, E; Kushmaro, A; Loya, Y; Rosenberg, E

    1999-06-01

    Vibrio shiloi is the causative agent of bleaching (loss of endosymbiotic zooxanthellae) of the coral Oculina patagonica in the Mediterranean Sea. To obtain information on the mechanism of bleaching, we examined the effect of secreted material (AK1-S) produced by V. shiloi on zooxanthellae isolated from corals. AK1-S caused a rapid inhibition of photosynthesis of the algae, as measured with a Mini-PAM fluorometer. The inhibition of photosynthesis was caused by (i) ammonia produced during the growth of V. shiloi on protein-containing media and (ii) a non-dialysable heat-resistant factor. This latter material did not inhibit photosynthesis of the algae by itself but, when added to different concentrations of NH4Cl, enhanced the inhibition approximately two- to threefold. Ammonia and the enhancer were effective to different degrees on zooxanthellae isolated from four species of coral examined. In addition to the rapid inhibition of photosynthesis, AK1-S caused bleaching (loss of pigmentation) and lysis of zooxanthellae. Bleaching was more rapid than lysis, reaching a peak (25% bleached algae) after 6 h. The factors in AK1-S responsible for bleaching and lysis were different from those responsible for the inhibition of photosynthesis, because they were heat sensitive, non-dialysable and active in the dark. Thus, the coral pathogen V. shiloi produces an array of extracellular materials that can inhibit photosynthesis, bleach and lyse zooxanthellae.

  14. Canopy Photosynthesis: From Basics to Applications

    NARCIS (Netherlands)

    Hikosaka, Kouki; Niinemets, Ülo; Anten, N.P.R.

    2016-01-01

    A plant canopy, a collection of leaves, is an ecosystem-level unit of photosynthesis that assimilates carbon dioxide and exchanges other gases and energy with the atmosphere in a manner highly sensitive to ambient conditions including atmospheric carbon dioxide and water vapor concentrations, light

  15. A Forgotten Application of the Starch Test: C[subscript 4] Photosynthesis

    Science.gov (United States)

    Harley, Suzanne M.

    2013-01-01

    In many labs on photosynthesis, the presence of starch in leaves is used as an indirect indicator of photosynthetic activity. Students do starch tests on leaves from plants that have been kept under a variety of conditions in order to check parameters for photosynthesis. The starch test can also be used to enable students to discover differences…

  16. Phenotypic engineering of photosynthesis related traits in Arabidopsis thaliana using genome interrogation

    NARCIS (Netherlands)

    Tol, Niels van

    2016-01-01

    Photosynthesis is the process that harvests energy from light, and fixes it as chemical energy. It is performed by cyanobacteria, algae, and plants. The overall solar energy to biomass conversion efficiency of plant photosynthesis is widely considered to be very low. Recent models have indicated

  17. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  18. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    Science.gov (United States)

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  19. Cyanobacteria as an Experimental Platform for Modifying Bacterial and Plant Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Poul Erik [Copenhagen Plant Science Center (CPSC), Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen (Denmark); Leister, Dario, E-mail: leister@lmu.de [Copenhagen Plant Science Center (CPSC), Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen (Denmark); Plant Molecular Biology (Botany), Department of Biology I, Ludwig-Maximilians-University Munich, Munich (Germany)

    2014-04-21

    One of the fascinating characteristics of photosynthesis is its capacity for repair, self-renewal, and energy storage within chemical bonds. Given the evolutionary history of plant photosynthesis and the patchwork nature of many of its components, it is safe to assume that the light reactions of plant photosynthesis can be improved by genetic engineering (Leister, 2012). The evolutionary precursor of chloroplasts was a microorganism whose biochemistry was very similar to that of present-day cyanobacteria. Many cyanobacterial species are easy to manipulate genetically and grow robustly in liquid cultures that can be easily scaled up into photobioreactors. Therefore, cyanobacteria such as Synechocystis sp. PCC 6803 (hereafter “Synechocystis”) have widely been used for decades as model systems to study the principles of photosynthesis (Table 1). Indeed, genetic engineering based on homologous recombination is well-established in Synechocystis. Moreover, new genetic engineering toolkits, including marker-less gene deletion and replacement strategies needing only a single transformation step (Viola et al., 2014) and novel approaches for chromosomal integration and expression of synthetic gene operons (Bentley et al., 2014), allow for large-scale replacement and/or integration of dozens of genes in reasonable time frames. This makes Synechocystis a very attractive basis for the experimental modification of important processes like photosynthesis, and it also suggests innovative ways of improving modules of related eukaryotic pathways, among them the combination of cyanobacterial and eukaryotic elements using the tools of synthetic biology.

  20. Cyanobacteria as an Experimental Platform for Modifying Bacterial and Plant Photosynthesis

    International Nuclear Information System (INIS)

    Jensen, Poul Erik; Leister, Dario

    2014-01-01

    One of the fascinating characteristics of photosynthesis is its capacity for repair, self-renewal, and energy storage within chemical bonds. Given the evolutionary history of plant photosynthesis and the patchwork nature of many of its components, it is safe to assume that the light reactions of plant photosynthesis can be improved by genetic engineering (Leister, 2012). The evolutionary precursor of chloroplasts was a microorganism whose biochemistry was very similar to that of present-day cyanobacteria. Many cyanobacterial species are easy to manipulate genetically and grow robustly in liquid cultures that can be easily scaled up into photobioreactors. Therefore, cyanobacteria such as Synechocystis sp. PCC 6803 (hereafter “Synechocystis”) have widely been used for decades as model systems to study the principles of photosynthesis (Table 1). Indeed, genetic engineering based on homologous recombination is well-established in Synechocystis. Moreover, new genetic engineering toolkits, including marker-less gene deletion and replacement strategies needing only a single transformation step (Viola et al., 2014) and novel approaches for chromosomal integration and expression of synthetic gene operons (Bentley et al., 2014), allow for large-scale replacement and/or integration of dozens of genes in reasonable time frames. This makes Synechocystis a very attractive basis for the experimental modification of important processes like photosynthesis, and it also suggests innovative ways of improving modules of related eukaryotic pathways, among them the combination of cyanobacterial and eukaryotic elements using the tools of synthetic biology.

  1. Engineered biomaterial and biophysical stimulation as combinatorial strategies to address prosthetic infection by pathogenic bacteria.

    Science.gov (United States)

    Boda, Sunil Kumar; Basu, Bikramjit

    2017-10-01

    A plethora of antimicrobial strategies are being developed to address prosthetic infection. The currently available methods for implant infection treatment include the use of antibiotics and revision surgery. Among the bacterial strains, Staphylococcus species pose significant challenges particularly, with regard to hospital acquired infections. In order to combat such life threatening infectious diseases, researchers have developed implantable biomaterials incorporating nanoparticles, antimicrobial reinforcements, surface coatings, slippery/non-adhesive and contact killing surfaces. This review discusses a few of the biomaterial and biophysical antimicrobial strategies, which are in the developmental stage and actively being pursued by several research groups. The clinical efficacy of biophysical stimulation methods such as ultrasound, electric and magnetic field treatments against prosthetic infection depends critically on the stimulation protocol and parameters of the treatment modality. A common thread among the three biophysical stimulation methods is the mechanism of bactericidal action, which is centered on biophysical rupture of bacterial membranes, the generation of reactive oxygen species (ROS) and bacterial membrane depolarization evoked by the interference of essential ion-transport. Although the extent of antimicrobial effect, normally achieved through biophysical stimulation protocol is insufficient to warrant therapeutic application, a combination of antibiotic/ROS inducing agents and biophysical stimulation methods can elicit a clinically relevant reduction in viable bacterial numbers. In this review, we present a detailed account of both the biomaterial and biophysical approaches for achieving maximum bacterial inactivation. Summarizing, the biophysical stimulation methods in a combinatorial manner with material based strategies can be a more potent solution to control bacterial infections. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B

  2. African Journal of Clinical and Experimental Microbiology ...

    African Journals Online (AJOL)

    Author Guidelines. Aims and scope. African Journal of Clinical and Experimental Microbiology is the official Journal of African Society for Clinical Microbiology. It publishes original research papers in all aspects of Medical Microbiology, including Bacteriology, Virology Rickettsiology and Chlamydiology, Mycology, ...

  3. Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease

    OpenAIRE

    Hosseini, Poorya; Abidi, Sabia Z.; Du, E; Papageorgiou, Dimitrios P.; Choi, Youngwoon; Park, YongKeun; Higgins, John M.; Kato, Gregory J.; Suresh, Subra; Dao, Ming; Yaqoob, Zahid; So, Peter T. C.

    2016-01-01

    There exists a critical need for developing biomarkers reflecting clinical outcomes and for evaluating the effectiveness of treatments for sickle cell disease patients. Prior attempts to find such patient-specific markers have mostly relied upon chemical biomarkers or biophysical properties at hypoxia with limited success. We introduce unique biomarkers based on characterization of cellular biophysical properties at normoxia and show that these markers correlate sensitively with treatment usi...

  4. MICROBIOLOGICAL QUALITY OF CONFECTIONARY PRODUCTS

    Directory of Open Access Journals (Sweden)

    Ľubomíra Juhaniaková

    2013-02-01

    Full Text Available The aim of this work was to determine microbiological quality of confectionery products. In confectionery products microbiological parameters: total count of bacteria, coliforms bacteria,mesophilic aerobes bacteria and microscopic filamentous fungi were observed. The confectionery products were evaluated: Kremeš and Venčekcake. For microbiological tests 20 samples of confectionery products were used. The numbers of total count of bacteria ranged from 3.29 log CFU.g-1, the number of mesophilic aerobes bacteria ranged from 1.86 to 2.85 log CFU.g-1, coliforms bacteria in confectionery products ranged from 0to 2.06CFU.g-1and the number of microscopic fungi ranged from 1.13 to 1.96CFU.g-1. The samples of cake prom private production showed better microbiological quality as samples from market production. All investigated samples of confectionary products were inaccordance with the Codex Alimentarius of the Slovak Republic.

  5. Biophysical behavior of Scomberoides commersonianus skin collagen.

    Science.gov (United States)

    Kolli, Nagamalleswari; Joseph, K Thomas; Ramasami, T

    2002-06-01

    Some biophysical characteristics of the skin collagen from Scomberoides commersonianus were measured and compared to those of rat tail tendon. Stress-strain data indicate that the strain at break as well as the tensile strength of the fish skin without scales increased significantly. The maximum tension in case of rat skin is at least a factor of two higher than that observed in fish skin. The much lower hydrothermal isometric tension measurements observed in fish skin are attributable to a lesser number of heat stable crosslinks. Stress relaxation measurements in the fish skin indicate that more than one relaxation process may be involved in the stabilization of collagenous matrix. The observed differences in the biophysical behavior of fish skin may well arise from combination of changes in extent of hydroxylation of proline in collagen synthesis, hydrogen bond network and fibril orientation as compared to rat tail tendon.

  6. When growth and photosynthesis don't match: implications for carbon balance models

    Science.gov (United States)

    Medlyn, B.; Mahmud, K.; Duursma, R.; Pfautsch, S.; Campany, C.

    2017-12-01

    Most models of terrestrial plant growth are based on the principle of carbon balance: that growth can be predicted from net uptake of carbon via photosynthesis. A key criticism leveled at these models by plant physiologists is that there are many circumstances in which plant growth appears to be independent of photosynthesis: for example, during the onset of drought, or with rising atmospheric CO2 concentration. A crucial problem for terrestrial carbon cycle models is to develop better representations of plant carbon balance when there is a mismatch between growth and photosynthesis. Here we present two studies providing insight into this mismatch. In the first, effects of root restriction on plant growth were examined by comparing Eucalyptus tereticornis seedlings growing in containers of varying sizes with freely-rooted seedlings. Root restriction caused a reduction in photosynthesis, but this reduction was insufficient to explain the even larger reduction observed in growth. We applied data assimilation to a simple carbon balance model to quantify the response of carbon balance as a whole in this experiment. We inferred that, in addition to photosynthesis, there are significant effects of root restriction on growth respiration, carbon allocation, and carbohydrate utilization. The second study was carried out at the EucFACE Free-Air CO2 Enrichment experiment. At this experiment, photosynthesis of the overstorey trees is increased with enriched CO2, but there is no significant effect on above-ground productivity. These mature trees have reached their maximum height but are at significant risk of canopy loss through disturbance, and we hypothesized that additional carbon taken up through photosynthesis is preferentially allocated to storage rather than growth. We tested this hypothesis by measuring stemwood non-structural carbohydrates (NSC) during a psyllid outbreak that completely defoliated the canopy in 2015. There was a significant drawdown of NSC during

  7. Selective pressures on C4 photosynthesis evolution in grasses through the lens of optimality

    OpenAIRE

    Akcay, Erol; Zhou, Haoran; Helliker, Brent

    2016-01-01

    CO2, temperature, water availability and light intensity were potential selective pressures to propel the initial evolution and global expansion of C4 photosynthesis in grasses. To tease apart the primary selective pressures along the evolutionary trajectory, we coupled photosynthesis and hydraulics models and optimized photosynthesis over stomatal resistance and leaf/fine-root allocation. We also examined the importance of nitrogen reallocation from the dark to the light reactions. Our resul...

  8. Moessbauer spectroscopy in studies of photosynthesis

    International Nuclear Information System (INIS)

    Burda, Kvetoslava

    2008-01-01

    Photosynthesis is a process occurring in certain species of bacteria, algae and higher plants. It transforms solar energy into various forms of energy-rich organic molecules. Photosystem II (PSII) is the 'heart' of the photosynthetic apparatus because it delivers electrons and protons for further steps of the light-driven phases of photosynthesis. There are two enigmatic iron binding structures within the core of photosynthetic apparatus, which play an important role in the electron transfer within PSII. Many investigations focus on the determination of their function which is the key to the understanding of the molecular mechanism of the energy and electron transfer within PSII. Among many methods used in this research field, the Moessbauer spectroscopy is a unique one, which gives the possibility to study changes of the valence and spin states of those two iron sites and the dynamical properties of their protein matrix in the presence of various physiological and stress conditions.

  9. A quantum protective mechanism in photosynthesis

    Science.gov (United States)

    Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk

    2015-03-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.

  10. What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy?

    Science.gov (United States)

    Chen, Tsu-Wei; Henke, Michael; de Visser, Pieter H B; Buck-Sorlin, Gerhard; Wiechers, Dirk; Kahlen, Katrin; Stützel, Hartmut

    2014-09-01

    Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different components of photosynthetic limitations at the leaf level and to upscale these limitations to different canopy layers and the whole plant. A static virtual three-dimensional canopy structure was constructed using digitized plant data in GroIMP. Light interception of the leaves was simulated by a ray-tracer and used to compute leaf photosynthesis. Different components of photosynthetic limitations, namely stomatal (S(L)), mesophyll (M(L)), biochemical (B(L)) and light (L(L)) limitations, were calculated by a quantitative limitation analysis of photosynthesis under different light regimes. In the virtual cucumber canopy, B(L) and L(L) were the most prominent factors limiting whole-plant photosynthesis. Diffusional limitations (S(L) + M(L)) contributed Photosynthesis in the lower canopy was more limited by the biochemical capacity, and the upper canopy was more sensitive to light than other canopy parts. Although leaves in the upper canopy received more light, their photosynthesis was more light restricted than in the leaves of the lower canopy, especially when the light condition above the canopy was poor. An increase in whole-plant photosynthesis under diffuse light did not result from an improvement of light use efficiency but from an increase in light interception. Diffuse light increased the photosynthesis of leaves that were directly shaded by other leaves in the canopy by up to 55%. Based on the results, maintaining biochemical capacity of the middle-lower canopy and increasing the leaf area of the upper canopy would be promising strategies to improve canopy photosynthesis in a high-wire cucumber cropping system. Further analyses using the approach described in this study can be expected to

  11. [Post-mortem microbiology analysis].

    Science.gov (United States)

    Fernández-Rodríguez, Amparo; Alberola, Juan; Cohen, Marta Cecilia

    2013-12-01

    Post-mortem microbiology is useful in both clinical and forensic autopsies, and allows a suspected infection to be confirmed. Indeed, it is routinely applied to donor studies in the clinical setting, as well as in sudden and unexpected death in the forensic field. Implementation of specific sampling techniques in autopsy can minimize the possibility of contamination, making interpretation of the results easier. Specific interpretation criteria for post-mortem cultures, the use of molecular diagnosis, and its fusion with molecular biology and histopathology have led to post-mortem microbiology playing a major role in autopsy. Multidisciplinary work involving microbiologists, pathologists, and forensic physicians will help to improve the achievements of post-mortem microbiology, prevent infectious diseases, and contribute to a healthier population. Crown Copyright © 2012. Published by Elsevier Espana. All rights reserved.

  12. Ambient UV-B radiation decreases photosynthesis in high arctic Vaccinium uliginosum

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    ). Leaf area, biomass, carbon, nitrogen and UV-B-absorbing compounds were determined from a late season harvest. Compared with the reduced UV-B treatment, the plants in ambient UV-B were found to have a higher content of UV-B-absorbing compounds, and canopy net photosynthesis was as an average 23% lower...... during the season. By means of the JIP-test, it was found that the potential of processing light energy through the photosynthetic machinery was slightly reduced in ambient UV-B. This indicates that not only the UV-B effects on PSII may be responsible for some of the observed reduction of photosynthesis...... on photosynthesis clearly indicates that V. uliginosum is negatively affected by the current level of UV-B....

  13. Estimating photosynthetic radiation use efficiency using incident light and photosynthesis of individual leaves.

    Science.gov (United States)

    Rosati, A; Dejong, T M

    2003-06-01

    It has been theorized that photosynthetic radiation use efficiency (PhRUE) over the course of a day is constant for leaves throughout a canopy if leaf nitrogen content and photosynthetic properties are adapted to local light so that canopy photosynthesis over a day is optimized. To test this hypothesis, 'daily' photosynthesis of individual leaves of Solanum melongena plants was calculated from instantaneous rates of photosynthesis integrated over the daylight hours. Instantaneous photosynthesis was estimated from the photosynthetic responses to photosynthetically active radiation (PAR) and from the incident PAR measured on individual leaves during clear and overcast days. Plants were grown with either abundant or scarce N fertilization. Both net and gross daily photosynthesis of leaves were linearly related to daily incident PAR exposure of individual leaves, which implies constant PhRUE over a day throughout the canopy. The slope of these relationships (i.e. PhRUE) increased with N fertilization. When the relationship was calculated for hourly instead of daily periods, the regressions were curvilinear, implying that PhRUE changed with time of the day and incident radiation. Thus, linearity (i.e. constant PhRUE) was achieved only when data were integrated over the entire day. Using average PAR in place of instantaneous incident PAR increased the slope of the relationship between daily photosynthesis and incident PAR of individual leaves, and the regression became curvilinear. The slope of the relationship between daily gross photosynthesis and incident PAR of individual leaves increased for an overcast compared with a clear day, but the slope remained constant for net photosynthesis. This suggests that net PhRUE of all leaves (and thus of the whole canopy) may be constant when integrated over a day, not only when the incident PAR changes with depth in the canopy, but also when it varies on the same leaf owing to changes in daily incident PAR above the canopy. The

  14. Photosynthesis: an interactive didactic model’s use to the learning and teaching process

    Directory of Open Access Journals (Sweden)

    Vanessa Liesenfeld

    2015-06-01

    Full Text Available Photosynthesis is a complex process that involves the implementation of several reactions which, many times, makes this content difficult for students to understand. The objective of this study was to investigate if an interactive didactic model, crafted with simple materials, could facilitate the understanding and learning of students on photosynthesis. Initially students of first year high school class from a public school Western of Paraná were asked to diagram what they knew about photosynthesis and respond to a questionnaire. It was concluded that many of the students’ prior concepts were general or inaccurate, such as the idea of photosynthesis being the process of respiration in plants, and O2 coming from the CO2, not from the photo-oxidation of water. These prior conceptions were important for planning the approach to the subject. The process of photosynthesis was then covered in lecture and dialogued, using the interactive didactic model to highlight the explanations. A new questionnaire was completed by the students, and concluded that the use of the interactive didactic model was efficient, since it helped to consolidate correct concepts and simultaneously, introduced new ones as well it shook the equivocal relations.

  15. Exploring undergraduates' understanding of photosynthesis using diagnostic question clusters.

    Science.gov (United States)

    Parker, Joyce M; Anderson, Charles W; Heidemann, Merle; Merrill, John; Merritt, Brett; Richmond, Gail; Urban-Lurain, Mark

    2012-01-01

    We present a diagnostic question cluster (DQC) that assesses undergraduates' thinking about photosynthesis. This assessment tool is not designed to identify individual misconceptions. Rather, it is focused on students' abilities to apply basic concepts about photosynthesis by reasoning with a coordinated set of practices based on a few scientific principles: conservation of matter, conservation of energy, and the hierarchical nature of biological systems. Data on students' responses to the cluster items and uses of some of the questions in multiple-choice, multiple-true/false, and essay formats are compared. A cross-over study indicates that the multiple-true/false format shows promise as a machine-gradable format that identifies students who have a mixture of accurate and inaccurate ideas. In addition, interviews with students about their choices on three multiple-choice questions reveal the fragility of students' understanding. Collectively, the data show that many undergraduates lack both a basic understanding of the role of photosynthesis in plant metabolism and the ability to reason with scientific principles when learning new content. Implications for instruction are discussed.

  16. Cell biology, biophysics, and mechanobiology: From the basics to Clinics.

    Science.gov (United States)

    Zeng, Y

    2017-04-29

    Cell biology, biomechanics and biophysics are the key subjects that guide our understanding in diverse areas of tissue growth, development, remodeling and homeostasis. Novel discoveries such as molecular mechanism, and mechanobiological mechanism in cell biology, biomechanics and biophysics play essential roles in our understanding of the pathogenesis of various human diseases, as well as in designing the treatment of these diseases. In addition, studies in these areas will also facilitate early diagnostics of human diseases, such as cardiovascular diseases and cancer. In this special issue, we collected 10 original research articles and 1 review...

  17. Sonographic biophysical profile in detection of foetal hypoxia in 100 cases of suspected high risk pregnancy

    International Nuclear Information System (INIS)

    Ullah, N.; Khan, A.R.; Usman, M.

    2010-01-01

    Background: The foetus has become increasingly accessible and visible as a patient over the last two decades. Ultrasound imaging has broadened the scope of foetal assessment. Dynamic real time B-Mode ultrasound is used to monitor cluster of biophysical variables, both dynamic and static collectively termed as biophysical profile. The purpose of this study was to determine the effect of sonographic biophysical profile score on perinatal outcome in terms of mortality and morbidity. Methods: This descriptive study was carried on 100 randomly select ed high risk pregnant patients in Radiology Department PGMI, Government Lady Reading Hospital, Peshawar from December 2007 to June 2008. Manning biophysical profile including non-stress was employed for foetal screening, using Toshiba ultrasound machine model Nemio SSA-550A and 7.5 MHZ probe. Results: Out of 100 cases 79 (79%) had a normal biophysical profile in the last scan of 10/10 and had a normal perinatal outcome with 5 minutes Apgar score >7/10. In 13 (13%) cases Apgar score at 5 minute was < 7/10 and babies were shifted to nursery. There were 2 (2%) false positive cases that showed abnormal biophysical profile scores of 6/10 but babies were born with an Apgar score of 8/10 at 5 minutes. There were 2 (2%) neonatal deaths in this study group. The sensitivity of biophysical profile was 79.1%, specificity 92.9%. Predictive value for a positive test was 98.55%; predictive value for a negative test was 41.93%. Conclusion: Biophysical profile is highly accurate and reliable test of diagnosing foetal hypoxia. (author)

  18. Effect of ambient light on the time needed to complete a fetal biophysical profile: A randomized controlled trial.

    Science.gov (United States)

    Said, Heather M; Gupta, Shweta; Vricella, Laura K; Wand, Katy; Nguyen, Thinh; Gross, Gilad

    2017-10-01

    The objective of this study is to determine whether ambient light serves as a fetal stimulus to decrease the amount of time needed to complete a biophysical profile. This is a randomized controlled trial of singleton gestations undergoing a biophysical profile. Patients were randomized to either ambient light or a darkened room. The primary outcome was the time needed to complete the biophysical profile. Secondary outcomes included total and individual component biophysical profile scores and scores less than 8. A subgroup analysis of different maternal body mass indices was also performed. 357 biophysical profile studies were analyzed. 182 studies were performed with ambient light and 175 were performed in a darkened room. There was no difference in the median time needed to complete the biophysical profile based on exposure to ambient light (6.1min in darkened room versus 6.6min with ambient light; P=0.73). No difference was found in total or individual component biophysical profile scores. Subgroup analysis by maternal body mass index did not demonstrate shorter study times with ambient light exposure in women who were normal weight, overweight or obese. Ambient light exposure did not decrease the time needed to complete the biophysical profile. There was no evidence that ambient light altered fetal behavior observed during the biophysical profile. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. How carotenoids protect bacterial photosynthesis.

    OpenAIRE

    Cogdell, R J; Howard, T D; Bittl, R; Schlodder, E; Geisenheimer, I; Lubitz, W

    2000-01-01

    The essential function of carotenoids in photosynthesis is to act as photoprotective agents, preventing chlorophylls and bacteriochlorophylls from sensitizing harmful photodestructive reactions in the presence of oxygen. Based upon recent structural studies on reaction centres and antenna complexes from purple photosynthetic bacteria, the detailed organization of the carotenoids is described. Then with specific reference to bacterial antenna complexes the details of the photoprotective role, ...

  20. Carrying photosynthesis genes increases ecological fitness of cyanophage in silico.

    Science.gov (United States)

    Hellweger, Ferdi L

    2009-06-01

    Several viruses infecting marine cyanobacteria carry photosynthesis genes (e.g. psbA, hli) that are expressed, yield proteins (D1, HLIP) and help maintain the cell's photosynthesis apparatus during the latent period. This increases energy and speeds up virus production, allowing for a reduced latent period (a fitness benefit), but it also increases the DNA size, which slows down new virus production and reduces burst size (a fitness cost). How do these genes affect the net ecological fitness of the virus? Here, this question is explored using a combined systems biology and systems ecology ('systems bioecology') approach. A novel agent-based model simulates individual cyanobacteria cells and virus particles, each with their own genes, transcripts, proteins and other properties. The effect of D1 and HLIP proteins is explicitly considered using a mechanistic photosynthesis component. The model is calibrated to the available database for Prochlorococcus ecotype MED4 and podovirus P-SSP7. Laboratory- and field-scale in silico survival, competition and evolution (gene packaging error) experiments with wild type and genetically engineered viruses are performed to develop vertical survival and fitness profiles, and to determine the optimal gene content. The results suggest that photosynthesis genes are nonessential, increase fitness in a manner correlated with irradiance, and that the wild type has an optimal gene content.

  1. High-pressure microbiology

    National Research Council Canada - National Science Library

    Michiels, Chris; Bartlett, Douglas Hoyt; Aertsen, Abram

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology * Filip Meersman and Karel Heremans . . . . . . . . . . . . 2. Effects...

  2. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Measurement of Solar Spectra Relating to Photosynthesis and Solar Cells: An Inquiry Lab for Secondary Science

    Science.gov (United States)

    Ruggirello, Rachel M.; Balcerzak, Phyllis; May, Victoria L.; Blankenship, Robert E.

    2012-01-01

    The process of photosynthesis is central to science curriculum at all levels. This article describes an inquiry-based laboratory investigation developed to explore the impact of light quality on photosynthesis and to connect this process to current research on harvesting solar energy, including bioenergy, artificial photosynthesis, and solar…

  4. Biophysics and the Challenges of Emerging Threats

    CERN Document Server

    Puglisi, Joseph D

    2009-01-01

    This volume is a collection of articles from the proceedings of the International School of Structural Biology and Magnetic Resonance 8th Course: Biophysics and the Challenges of Emerging Threats. This NATO Advance Study Institute (ASI) was held in Erice at the Ettore Majorana Foundation and Centre for Scientific Culture on 19 through 30 June 2007. The ASI brought together a diverse group of experts who bridged the fields of virology and biology, biophysics, chemistry and physics. Prominent lecturers and students from around the world representant a total of 24 countries participated in the NATO ASI organized by Professors Joseph Puglisi (Stanford University, USA) and Alexander Arseniev (Moscow, RU). The central hypothesis underlying this ASI was that interdisciplinary research, merging principles of physics, chemistry and biology, can drive new discovery in detecting and fighting bioterrorism agents, lead to cleaner environments, and help propel development in NATO partner countries. The ASI merged the relat...

  5. Microbiology, philosophy and education.

    Science.gov (United States)

    O'Malley, Maureen A

    2016-09-01

    There are not only many links between microbiological and philosophical topics, but good educational reasons for microbiologists to explore the philosophical issues in their fields. I examine three broad issues of classification, causality and model systems, showing how these philosophical dimensions have practical implications. I conclude with a discussion of the educational benefits for recognising the philosophy in microbiology. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease.

    Science.gov (United States)

    Hosseini, Poorya; Abidi, Sabia Z; Du, E; Papageorgiou, Dimitrios P; Choi, Youngwoon; Park, YongKeun; Higgins, John M; Kato, Gregory J; Suresh, Subra; Dao, Ming; Yaqoob, Zahid; So, Peter T C

    2016-08-23

    Hydroxyurea (HU) has been used clinically to reduce the frequency of painful crisis and the need for blood transfusion in sickle cell disease (SCD) patients. However, the mechanisms underlying such beneficial effects of HU treatment are still not fully understood. Studies have indicated a weak correlation between clinical outcome and molecular markers, and the scientific quest to develop companion biophysical markers have mostly targeted studies of blood properties under hypoxia. Using a common-path interferometric technique, we measure biomechanical and morphological properties of individual red blood cells in SCD patients as a function of cell density, and investigate the correlation of these biophysical properties with drug intake as well as other clinically measured parameters. Our results show that patient-specific HU effects on the cellular biophysical properties are detectable at normoxia, and that these properties are strongly correlated with the clinically measured mean cellular volume rather than fetal hemoglobin level.

  7. Unique double concentric ring organization of light harvesting complexes in Gemmatimonas phototrophica

    Czech Academy of Sciences Publication Activity Database

    Dachev, Marko; Bína, David; Sobotka, Roman; Moravcová, Lenka; Gardian, Zdenko; Kaftan, David; Šlouf, V.; Fuciman, M.; Polívka, Tomáš; Koblížek, Michal

    2017-01-01

    Roč. 15, č. 12 (2017), č. článku e2003943. E-ISSN 1545-7885 R&D Projects: GA ČR GA15-00703S; GA ČR GBP501/12/G055; GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 ; RVO:60077344 Keywords : BACTERIUM CHLOROFLEXUS-AURANTIACUS * EXCITATION-ENERGY TRANSFER * PURPLE BACTERIA Subject RIV: EE - Microbiology, Virology; BO - Biophysics (BC-A) OBOR OECD: Microbiology; Biophysics (BC-A) Impact factor: 9.797, year: 2016

  8. Ecosystem respiration depends strongly on photosynthesis in a temperate heath

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, Andreas; Beier, Claus

    2007-01-01

    We measured net ecosystem CO2 flux (F-n) and ecosystem respiration (R-E), and estimated gross ecosystem photosynthesis (P-g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest...... ecosystems with a net ecosystem carbon gain during the second year of 293 +/- 11 g C m(-2) year(-1) showing that the carbon sink strength of heather-dominated ecosystems may be considerable when C. vulgaris is in the building phase of its life cycle. The estimated gross ecosystem photosynthesis and ecosystem.......65) was improved when the P-g rate was incorporated into the model (second year; R-2 = 0.79), suggesting that daytime R-E increased with increasing photosynthesis. Furthermore, the temperature sensitivity of R-E decreased from apparent Q(10) values of 3.3 to 3.9 by the classic equation to a more realistic Q(10...

  9. Electromagnetic Radiation Disturbed the Photosynthesis of Microcystis aeruginosa at the Proteomics Level.

    Science.gov (United States)

    Tang, Chao; Yang, Chuanjun; Yu, Hui; Tian, Shen; Huang, Xiaomei; Wang, Weiyi; Cai, Peng

    2018-01-11

    Photosynthesis of Microcystis aeruginosa under Electromagnetic Radiation (1.8 GHz, 40 V/m) was studied by using the proteomics. A total of 30 differentially expressed proteins, including 15 up-regulated and 15 down-regulated proteins, were obtained in this study. The differentially expressed proteins were significantly enriched in the photosynthesis pathway, in which the protein expression levels of photosystems II cytochrome b559 α subunit, cytochrome C550, PsbY, and F-type ATP synthase (a, b) decreased. Our results indicated that electromagnetic radiation altered the photosynthesis-related protein expression levels, and aimed at the function of photosynthetic pigments, photosystems II potential activity, photosynthetic electron transport process, and photosynthetic phosphorylation process of M. aeruginosa. Based on the above evidence, that photoreaction system may be deduced as a target of electromagnetic radiation on the photosynthesis in cyanobacteria; the photoreaction system of cyanobacteria is a hypothetical "shared target effector" that responds to light and electromagnetic radiation; moreover, electromagnetic radiation does not act on the functional proteins themselves but their expression processes.

  10. Biophysical radiosensitization

    International Nuclear Information System (INIS)

    Vladescu, C.; Apetroae, M.

    1983-01-01

    Experimental studies on normal and tumor-bearing rats revealed that chronic treatment with hydroquinone (5 mg/kg/day) inhibited catalase activity in liver, spleen, blood, and H 18R tumor. 3 H-hydroquinone (1.5 μCi/g body weight) showed tumor specificity, with maximum radioactivity in the tumor at 1 h after administration. The biological half-time of 3 H-hydroquinone in the tumor was 2 h, but there seems to exist a longer component, since 24 h after administration, some 30% of the maximum radioactivity could be detected in the tumor. Hydroquinone treatment produces a specific inhibition of catalase in the tumor and a higher degree of oxygenation at this level. These findings support the assumption that the mechanism of action of hydroquinone as an anticancer agent is achieved mainly via peroxide production. The oxygenation of the hypoxic tumoral tissue is done at non-toxic levels of hydroquinone, through a natural and specific biophysical pathway, recommanding hydroquinone for combined anticancer treatment (radiotherapy and chemotherapy). (orig.)

  11. O2-insensitive photosynthesis in C3 plants: its occurrence and a possible explanation

    International Nuclear Information System (INIS)

    Sharkey, T.D.

    1985-01-01

    Leaves of C 3 plants which exhibit a normal O 2 inhibition of CO 2 fixation at less than saturating light intensity were found to exhibit O 2 -insensitive photosynthesis at high light. This behavior was observed in Phaseolus vulgaris L., Xanthium strumarium L., and Scrophularia desertorum (Shaw.) Munz. O 2 -insensitive photosynthesis has been reported in nine other C 3 species and usually occurred when the intercellular CO 2 pressure was about double the normal pressure. A lack of O 2 inhibition of photosynthesis was always accompanied by a failure of increased CO 2 pressure to stimulate photosynthesis to the expected degree. O 2 -insensitive photosynthesis also occurred after plants had been water stressed. Under such conditions, however, photosynthesis became O 2 and CO 2 insensitive at physiological CO 2 pressures. Postillumination CO 2 exchange kinetics showed that O 2 and CO 2 insensitivity was not the result of elimination of photorespiration. It is proposed that O 2 and CO 2 insensitivity occurs when the concentration of phosphate in the chloroplast stroma cannot be both high enough to allow photophosphorylation and low enough to allow starch and sucrose synthesis at the rates required by the rest of the photosynthetic component processes. Under these conditions, the energy diverted to photorespiration does not adversely affect the potential for CO 2 assimilation

  12. The biophysics of renal sympathetic denervation using radiofrequency energy.

    Science.gov (United States)

    Patel, Hitesh C; Dhillon, Paramdeep S; Mahfoud, Felix; Lindsay, Alistair C; Hayward, Carl; Ernst, Sabine; Lyon, Alexander R; Rosen, Stuart D; di Mario, Carlo

    2014-05-01

    Renal sympathetic denervation is currently performed in the treatment of resistant hypertension by interventionists who otherwise do not typically use radiofrequency (RF) energy ablation in their clinical practice. Adequate RF lesion formation is dependent upon good electrode-tissue contact, power delivery, electrode-tissue interface temperature, target-tissue impedance and the size of the catheter's active electrode. There is significant interplay between these variables and hence an appreciation of the biophysical determinants of RF lesion formation is required to provide effective and safe clinical care to our patients. In this review article, we summarize the biophysics of RF ablation and explain why and how complications of renal sympathetic denervation may occur and discuss methods to minimise them.

  13. The biophysical link between climate, water, and vegetation in bioenergy agro-ecosystems

    International Nuclear Information System (INIS)

    Bagley, Justin E.; Davis, Sarah C.; Georgescu, Matei; Hussain, Mir Zaman; Miller, Jesse; Nesbitt, Stephen W.; VanLoocke, Andy; Bernacchi, Carl J.

    2014-01-01

    Land use change for bioenergy feedstocks is likely to intensify as energy demand rises simultaneously with increased pressure to minimize greenhouse gas emissions. Initial assessments of the impact of adopting bioenergy crops as a significant energy source have largely focused on the potential for bioenergy agroecosystems to provide global-scale climate regulating ecosystem services via biogeochemical processes. Such as those processes associated with carbon uptake, conversion, and storage that have the potential to reduce global greenhouse gas emissions (GHG). However, the expansion of bioenergy crops can also lead to direct biophysical impacts on climate through water regulating services. Perturbations of processes influencing terrestrial energy fluxes can result in impacts on climate and water across a spectrum of spatial and temporal scales. Here, we review the current state of knowledge about biophysical feedbacks between vegetation, water, and climate that would be affected by bioenergy-related land use change. The physical mechanisms involved in biophysical feedbacks are detailed, and interactions at leaf, field, regional, and global spatial scales are described. Locally, impacts on climate of biophysical changes associated with land use change for bioenergy crops can meet or exceed the biogeochemical changes in climate associated with rising GHG's, but these impacts have received far less attention. Realization of the importance of ecosystems in providing services that extend beyond biogeochemical GHG regulation and harvestable yields has led to significant debate regarding the viability of various feedstocks in many locations. The lack of data, and in some cases gaps in knowledge associated with biophysical and biochemical influences on land–atmosphere interactions, can lead to premature policy decisions. - Highlights: • The physical basis for biophysical impacts of expanding bioenergy agroecosystems on climate and water is described. • We

  14. Effects of space environment on chlorophyll fluorescence and photosynthesis characteristics of wheat

    International Nuclear Information System (INIS)

    Lu Li; Lv Jinyin; Gong Qingzhu; Gao Junfeng

    2006-01-01

    The effects of the space environment on the chlorophyll fluorescence parameters and photosynthesis characteristics of wheat cultivars, Xinong 1043 M1 and Shaan253 M 1 , were studied. The results showed that the decrement of contents of PS II primary photochemical efficiency (F v /F m ), potential activity (F v /F 0 ), photochemical quenching coefficient (qP) and photosynthesis rate (Pn) were less than that of control, increment of non-photochemical quenching coefficient (qN) were more than that of control. The results suggested that photosynthetic apparatus were damaged, photosynthetic electron transport, photosynthetic primary reaction were inhibited, rate of photosynthesis decreased and growth of M 1 plant were retarded, which leading to thousand kernel weights decreased. (authors)

  15. Raman spectroscopy reveals biophysical markers in skin cancer surgical margins

    Science.gov (United States)

    Feng, Xu; Moy, Austin J.; Nguyen, Hieu T. M.; Zhang, Yao; Fox, Matthew C.; Sebastian, Katherine R.; Reichenberg, Jason S.; Markey, Mia K.; Tunnell, James W.

    2018-02-01

    The recurrence rate of nonmelanoma skin cancer is highly related to the residual tumor after surgery. Although tissueconserving surgery, such as Mohs surgery, is a standard method for the treatment of nonmelanoma skin cancer, they are limited by lengthy and costly frozen-section histopathology. Raman spectroscopy (RS) is proving to be an objective, sensitive, and non-destructive tool for detecting skin cancer. Previous studies demonstrated the high sensitivity of RS in detecting tumor margins of basal cell carcinoma (BCC). However, those studies rely on statistical classification models and do not elucidate the skin biophysical composition. As a result, we aim to discover the biophysical differences between BCC and primary normal skin structures (including epidermis, dermis, hair follicle, sebaceous gland and fat). We obtained freshly resected ex vivo skin samples from fresh resection specimens from 14 patients undergoing Mohs surgery. Raman images were acquired from regions containing one or more structures using a custom built 830nm confocal Raman microscope. The spectra were grouped using K-means clustering analysis and annotated as either BCC or each of the five normal structures by comparing with the histopathology image of the serial section. The spectral data were then fit by a previously established biophysical model with eight primary skin constituents. Our results show that BCC has significant differences in the fit coefficients of nucleus, collagen, triolein, keratin and elastin compared with normal structures. Our study reveals RS has the potential to detect biophysical changes in resection margins, and supports the development of diagnostic algorithms for future intraoperative implementation of RS during Mohs surgery.

  16. Multi-year coupled biogeochemical and biophysical impacts of restoring drained agricultural peatlands to wetlands across the Sacramento-San Joaquin Delta, California, USA.

    Science.gov (United States)

    Hemes, K. S.; Eichelmann, E.; Chamberlain, S.; Knox, S. H.; Oikawa, P.; Sturtevant, C.; Verfaillie, J. G.; Baldocchi, D. D.

    2017-12-01

    Globally, delta ecosystems are critical for human livelihoods, but are at increasingly greater risk of degradation. The Sacramento-San Joaquin River Delta (`Delta') has been subsiding dramatically, losing close to 100 Tg of carbon since the mid 19th century due in large part to agriculture-induced oxidation of the peat soils through drainage and cultivation. Efforts to re-wet the peat soils through wetland restoration are attractive as climate mitigation activities. While flooded wetland systems have the potential to sequester significant amounts of carbon as photosynthesis outpaces aerobic respiration, the highly-reduced conditions can result in significant methane emissions. This study will utilize three years (2014-2016) of continuous, gap-filled, CO2 and CH4 flux data from a mesonetwork of seven eddy covariance towers in the Delta to compute GHG budgets for the restored wetlands and agricultural baseline sites measured. Along with biogeochemical impacts of wetland restoration, biophysical impacts such as changes in reflectance, energy partitioning, and surface roughness, can have significant local to regional impacts on air temperature and heat fluxes. We hypothesize that despite flooded wetlands reducing albedo, wetland land cover will cool the near-surface air temperature due to increased net radiation being preferentially partitioned into latent heat flux and rougher canopy conditions allowing for more turbulent mixing with the atmosphere. This study will investigate the seasonal and diurnal patterns of turbulent energy fluxes and the surface properties that drive them. With nascent policy mechanisms set to compensate landowners and farmers for low emission land use practices beyond reforestation, it is essential that policy mechanisms take into consideration how the biophysical impacts of land use change could drive local to regional-scale climatic perturbations, enhancing or attenuating the biogeochemical impacts.

  17. The importance of micrometeorological variations for photosynthesis and transpiration in a boreal coniferous forest

    DEFF Research Database (Denmark)

    Schurgers, Guy; Lagergren, F.; Molder, M.

    2015-01-01

    the importance of vertical variations in light, temperature, CO2 concentration and humidity within the canopy for fluxes of photosynthesis and transpiration of a boreal coniferous forest in central Sweden. A leaf-level photosynthesis-stomatal conductance model was used for aggregating these processes to canopy...... abovecanopy and within-canopy humidity, and despite large gradients in CO2 concentration during early morning hours after nights with stable conditions, neither humidity nor CO2 played an important role for vertical heterogeneity of photosynthesis and transpiration....

  18. X-Ray structure and biophysical properties of rabbit fibroblast growth factor 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jihun; Blaber, Sachiko I.; Irsigler, Andre; Aspinwall, Eric; Blaber, Michael; (FSU)

    2010-01-14

    The rabbit is an important and de facto animal model in the study of ischemic disease and angiogenic therapy. Additionally, fibroblast growth factor 1 (FGF-1) is emerging as one of the most important growth factors for novel pro-angiogenic and pro-arteriogenic therapy. However, despite its significance, the fundamental biophysical properties of rabbit FGF-1, including its X-ray structure, have never been reported. Here, the cloning, crystallization, X-ray structure and determination of the biophysical properties of rabbit FGF-1 are described. The X-ray structure shows that the amino-acid differences between human and rabbit FGF-1 are solvent-exposed and therefore potentially immunogenic, while the biophysical studies identify differences in thermostability and receptor-binding affinity that distinguish rabbit FGF-1 from human FGF-1.

  19. Modeling photosynthesis of Spartina alterniflora (smooth cordgrass) impacted by the Deepwater Horizon oil spill using Bayesian inference

    International Nuclear Information System (INIS)

    Wu Wei; Biber, Patrick D; Peterson, Mark S; Gong Chongfeng

    2012-01-01

    To study the impact of the Deepwater Horizon oil spill on photosynthesis of coastal salt marsh plants in Mississippi, we developed a hierarchical Bayesian (HB) model based on field measurements collected from July 2010 to November 2011. We sampled three locations in Davis Bayou, Mississippi (30.375°N, 88.790°W) representative of a range of oil spill impacts. Measured photosynthesis was negative (respiration only) at the heavily oiled location in July 2010 only, and rates started to increase by August 2010. Photosynthesis at the medium oiling location was lower than at the control location in July 2010 and it continued to decrease in September 2010. During winter 2010–2011, the contrast between the control and the two impacted locations was not as obvious as in the growing season of 2010. Photosynthesis increased through spring 2011 at the three locations and decreased starting with October at the control location and a month earlier (September) at the impacted locations. Using the field data, we developed an HB model. The model simulations agreed well with the measured photosynthesis, capturing most of the variability of the measured data. On the basis of the posteriors of the parameters, we found that air temperature and photosynthetic active radiation positively influenced photosynthesis whereas the leaf stress level negatively affected photosynthesis. The photosynthesis rates at the heavily impacted location had recovered to the status of the control location about 140 days after the initial impact, while the impact at the medium impact location was never severe enough to make photosynthesis significantly lower than that at the control location over the study period. The uncertainty in modeling photosynthesis rates mainly came from the individual and micro-site scales, and to a lesser extent from the leaf scale. (letter)

  20. Alternative nutritional strategies in protists: symposium introduction and a review of freshwater protists that combine photosynthesis and heterotrophy.

    Science.gov (United States)

    Sanders, Robert W

    2011-01-01

    The alternative nutritional strategies in protists that were addressed during the symposium by that name at the 2010 annual meeting of the International Society of Protistologists and here in contributed papers, include a range of mechanisms that combine photosynthesis with heterotrophy in a single organism. Often called mixotrophy, these multiple trophic level combinations occur across a broad range of organisms and environments. Consequently, there is great variability in the physiological abilities and relative importance of phototrophy vs. phagotrophy and/or osmotrophy in mixotrophic protists. Recently, research papers addressing ecological questions about mixotrophy in marine systems have been more numerous than those that deal with freshwater systems, a trend that is probably partly due to a realization that many harmful algal blooms in coastal marine systems involve mixotrophic protists. After an introduction to the symposium presentations, recent studies of mixotrophy in freshwater systems are reviewed to encourage continuing research on their importance to inland waters. © 2011 The Author(s). Journal of Eukaryotic Microbiology© 2011 International Society of Protistologists.

  1. Recruitment of pre-existing networks during the evolution of C4 photosynthesis.

    Science.gov (United States)

    Reyna-Llorens, Ivan; Hibberd, Julian M

    2017-09-26

    During C 4 photosynthesis, CO 2 is concentrated around the enzyme RuBisCO. The net effect is to reduce photorespiration while increasing water and nitrogen use efficiencies. Species that use C 4 photosynthesis have evolved independently from their C 3 ancestors on more than 60 occasions. Along with mimicry and the camera-like eye, the C 4 pathway therefore represents a remarkable example of the repeated evolution of a highly complex trait. In this review, we provide evidence that the polyphyletic evolution of C 4 photosynthesis is built upon pre-existing metabolic and genetic networks. For example, cells around veins of C 3 species show similarities to those of the C 4 bundle sheath in terms of C 4 acid decarboxylase activity and also the photosynthetic electron transport chain. Enzymes of C 4 photosynthesis function together in gluconeogenesis during early seedling growth of C 3 Arabidopsis thaliana Furthermore, multiple C 4 genes appear to be under control of both light and chloroplast signals in the ancestral C 3 state. We, therefore, hypothesize that relatively minor rewiring of pre-existing genetic and metabolic networks has facilitated the recurrent evolution of this trait. Understanding how these changes are likely to have occurred could inform attempts to install C 4 traits into C 3 crops.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).

  2. Surviving metabolic arrest: photosynthesis during desiccation and rehydration in resurrection plants.

    Science.gov (United States)

    Challabathula, Dinakar; Puthur, Jos T; Bartels, Dorothea

    2016-02-01

    Photosynthesis is the key process that is affected by dehydration in plants. Desiccation-tolerant resurrection plants can survive conditions of very low relative water content. During desiccation, photosynthesis is not operational, but is recovered within a short period after rehydration. While homoiochlorophyllous resurrection plants retain their photosynthetic apparatus during desiccation, poikilochlorophyllous resurrection species dismantle chloroplasts and degrade chlorophyll but resynthesize them again during rehydration. Dismantling the chloroplasts avoids the photooxidative stress in poikilochlorophyllous resurrection plants, whereas it is minimized in homoiochlorophyllous plants through the synthesis of antioxidant enzymes and protective proteins or metabolites. Although the cellular protection mechanisms in both of these species vary, these mechanisms protect cells from desiccation-induced damage and restore photosynthesis upon rehydration. Several of the proteins synthesized during dehydration are localized in chloroplasts and are believed to play major roles in the protection of photosynthetic structures and in recovery in resurrection species. This review focuses on the strategies of resurrection plants in terms of how they protect their photosynthetic apparatus from oxidative stress during desiccation without membrane damage and with full recovery during rehydration. We review the role of the dehydration-induced protection mechanisms in chloroplasts and how photosynthesis is restored during rehydration. © 2015 New York Academy of Sciences.

  3. Rising CO2 widens the transpiration-photosynthesis optimality space

    Science.gov (United States)

    de Boer, Hugo J.; Eppinga, Maarten B.; Dekker, Stefan C.

    2016-04-01

    Stomatal conductance (gs) and photosynthetic biochemistry, typically expressed by the temperature-adjusted maximum rates of carboxylation (V cmax) and electron transport (Jmax), are key traits in land ecosystem models. Contrary to the many approaches available for simulating gs responses, the biochemical parameters V cmax and Jmax are often treated as static traits in ecosystem models. However, observational evidence indicates that V cmax and Jmax respond to persistent changes in atmospheric CO2. Hence, ecosystem models may be improved by incorporating coordinated responses of photosynthetic biochemistry and gs to atmospheric CO2. Recently, Prentice et al. (2014) proposed an optimality framework (referred to as the Prentice framework from here on) to predict relationships between V cmax and gs based on Fick's law, Rubisco-limited photosynthesis and the carbon costs of transpiration and photosynthesis. Here we show that this framework is, in principle, suited to predict CO2-induced changes in the V cmax -gs relationships. The framework predicts an increase in the V cmax:gs-ratio with higher atmospheric CO2, whereby the slope of this relationship is determined by the carbon costs of transpiration and photosynthesis. For our empirical analyses we consider that the carbon cost of transpiration is positively related to the plant's Huber value (sapwood area/leaf area), while the carbon cost of photosynthesis is positively related to the maintenance cost of the photosynthetic proteins. We empirically tested the predicted effect of CO2 on the V cmax:gs-ratio in two genotypes of Solanum dulcamara (bittersweet) that were grown from seeds to maturity under 200, 400 and 800 ppm CO2 in walk-in growth chambers with tight control on light, temperature and humidity. Seeds of the two Solanum genotypes were obtained from two distinct natural populations; one adapted to well-drained sandy soil (the 'dry' genotype) and one adapted to poorly-drained clayey soil (the 'wet' genotype

  4. Chief, Structural Biophysics Laboratory | Center for Cancer Research

    Science.gov (United States)

    The SBL Chief is expected to establish a strong research program in structural biology/biophysics in addition to providing leadership of the SBL and the structural biology community in the NCI Intramural Program.  Applicants should hold a Ph.D., M.D./Ph.D., or equivalent doctoral degree in a relevant discipline, and should possess outstanding communication skills and documented leadership experience.  Tenured faculty or industrial scientists of equivalent rank with a demonstrated commitment to structural biophysics should apply.  Salary will be commensurate with experience and accomplishments.  This position is not restricted to U.S. citizens. A full civil service package of benefits (including health insurance, life insurance, and retirement) is available. This position is subject to a background investigation.  The NIH is dedicated to building a diverse community in its training and employment programs.

  5. Carbon dioxide fixation by artificial photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ibusuki, Takashi; Koike, Kazuhide; Ishitani, Osamu [National Inst. for Resources and Environment, AIST, MITI, Tsukuba, Ibaraki (Japan)

    1993-12-31

    Green plants can absorb atmospheric CO{sub 2} and transform it to sugars, carbohydrates through their photosynthetic systems, but they become the source of CO{sub 2} when they are dead. This is the reason why artificial leaves which can be alive forever should be developed to meet with global warming due to the increase of CO{sub 2} concentration. The goal of artificial photosynthesis is not to construct the same system as the photosynthetic one, but to mimic the ability of green plants to utilize solar energy to make high energy chemicals. Needless to say, the artificial photosynthetic system is desired to be as simple as possible and to be as efficient as possible. From the knowledge on photosynthesis and the results of previous investigations, the critical components of artificial photosynthetic system are understood as follows: (1) light harvesting chromophore, (2) a center for electron transfer and charge separation, (3) catalytic sites for converting small molecules like water and CO{sub 2} (mutilelectron reactions) which are schematically described.

  6. Box photosynthesis modeling results for WRF/CMAQ LSM

    Data.gov (United States)

    U.S. Environmental Protection Agency — Box Photosynthesis model simulations for latent heat and ozone at 6 different FLUXNET sites. This dataset is associated with the following publication: Ran, L., J....

  7. Operation of trans-thylakoid thiol-metabolizing pathways in photosynthesis

    Directory of Open Access Journals (Sweden)

    Mohamed eKaramoko

    2013-11-01

    Full Text Available Thiol oxidation to disulfides and the reverse reaction, i.e. disulfide reduction to free thiols, are under the control of catalysts in vivo. Enzymatically assisted thiol-disulfide chemistry is required for the biogenesis of all energy-transducing membrane systems. However, until recently, this had only been demonstrated for the bacterial plasma membrane. Long considered to be vacant, the thylakoid lumen has now moved to the forefront of photosynthesis research with the realization that its proteome is far more complicated than initially anticipated. Several lumenal proteins are known to be disulfide bonded in Arabidopsis, highlighting the importance of sulfhydryl oxidation in the thylakoid lumen. While disulfide reduction in the plastid stroma is known to activate several enzymatic activities, it appears that it is the reverse reaction, i.e. thiol oxidation that is required for the activity of several lumen-resident proteins. This paradigm for redox regulation in the thylakoid lumen has opened a new frontier for research in the field of photosynthesis. Of particular significance in this context is the discovery of trans-thylakoid redox pathways controlling disulfide bond formation and reduction, which are required for photosynthesis.

  8. Effects of SO/sub 2/ on photosynthesis and nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Haellgren, J E; Huss, K

    1975-06-15

    Responses of photosynthesis and nitrogen fixation to NaHSO/sub 3/ (10/sup -5/ to 5 x 10/sup -3/ M) were investigated in the lichen Stereocaulon paschale (L.) Fr. and the blue-green alga Anabaena cylindrica Lemmermann. The treatments were performed in buffered media with varying pH (5.8 to 8.1) and light conditions (0 to 32 W x m/sup -2/). The activities of the intact organisms were investigated, under the same environmental conditions, with /sup 14/C liquid scintillation and acetylene reduction techniques respectively. The nitrogen fixation proved to be more susceptible than photosynthesis, in both organisms, and in all cases treatments at pH 5.8 were more inhibitory than at higher pH-values. Treatment with 5 x 10/sup -4/ M NaHSO/sub 3/ at pH 5.8 caused no reduction of photosynthesis in S. paschale, while the inhibition of nitrogen fixation was 97%. For A. cylindrica the corresponding values were 40% and 75% respectively. Short-time treatments of A. cylindrica showed that the nitrogen fixation was more rapidly affected than photosynthesis. The inhibition of nitrogenase activity and CO/sub 2/-fixation was smaller in the dark and increased at higher light intensities. Both processes showed a good capacity for recovery after removal of the NaHSO/sub 3/ solution. Also the clumping ability of A. cylindrica was disturbed by NaHSO/sub 3/ treatments.

  9. Building a Portuguese Food Microbiological Information Network

    OpenAIRE

    Viegas, Silvia; Machado, Claudia; Dantas, Maria; Oliveira, Luísa

    2011-01-01

    Introduction: The integration of food data from research, microbiological monitoring, epidemiological investigation and disease surveillance is crucial to manage foodborne risk. Consequently, INSA launched the Portuguese Food Information Resource Programme (PortFIR) in a partnership with GS1 Portugal to create national food chain expert networks and sustainable databases on food composition, consumption and chemical and microbiological contamination. Presently, the Food Microbiological Inform...

  10. Ecophysiological traits of various genotypes of a green key alga in biological soil crusts from the semi-arid Colorado Plateau, USA

    Czech Academy of Sciences Publication Activity Database

    Donner, A.; Ryšánek, David; Mikhailyuk, T.; Karsten, U.

    2017-01-01

    Roč. 26, č. 3 (2017), s. 2911-2923 ISSN 0921-8971 Institutional support: RVO:61388971 Keywords : Terrestrial algae * Desiccation * Photosynthesis Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.616, year: 2016

  11. Terrestrial adaptation of green algae Klebsormidium and Zygnema (Charophyta) involves diversity in photosynthetic traits but not in CO2 acquisition

    Czech Academy of Sciences Publication Activity Database

    Pierangelini, M.; Ryšánek, David; Lang, I.; Adlassnig, W.; Holzinger, A.

    2017-01-01

    Roč. 246, č. 5 (2017), s. 971-986 ISSN 0032-0935 Institutional support: RVO:61388971 Keywords : Desiccation * Green algae * Photosynthesis Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.361, year: 2016

  12. Photochemistry and enzymology of photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Radmer, R.

    1979-07-30

    In the first task, a specially designed mass spectrometer system monitors the gas exchange occurring in response to single short flashes of light. This apparatus will be primarily used to study photosystem II donor reactions, such as the photooxidation of hydroxylamine, hydrazine, and hydrogen peroxide. This technique will also be used to study the light-induced exchange of O/sub 2/ and CO/sub 2/ in algae. The second task, biochemical studies, will focus on the role of chloroplast copper in photosynthesis. We propose to isolate, purify, and characterize the chloroplast copper enzyme polyphenol oxidase, and attempt to elucidate its role in photosynthesis. These studies will be integrated with a new program devoted to the biochemical response of the photosynthetic membrane to stress. The third task is a series of studies on the light-harvesting and electron-transport mechanisms of C/sub 4/ plants. This program will address three basic problems: (1) the effect of different preparative procedures on various photosynthetic reactions, with particular emphasis on photosystem II reactions in corn bundle sheath chloroplasts; (2) the development and testing of photosystem II assays; and (3) studies of the stoichiometry of electron carriers in bundle sheath chloroplasts, and whether cyclic phosphorylation could be a major pathway in this tissue.

  13. Satellite mapping of surface biophysical parameters at the biome scale over the North American grasslands: A case study

    Science.gov (United States)

    Wylie, B.K.; Meyer, D.J.; Tieszen, L.L.; Mannel, S.

    2002-01-01

    Quantification of biophysical parameters is needed by terrestrial process modeling and other applications. A study testing the role of multispectral data for monitoring biophysical parameters was conducted over a network of grassland field sites in the Great Plains of North America. Grassland biophysical parameters [leaf area index (LAI), fraction of absorbed photosynthetically active radiation (fPAR), and biomass] and their relationships with ground radiometer normalized difference vegetation index (NDVI) were established in this study (r2=.66–.85) from data collected across the central and northern Great Plains in 1995. These spectral/biophysical relationships were compared to 1996 field data from the Tallgrass Prairie Preserve in northeastern Oklahoma and showed no consistent biases, with most regression estimates falling within the respective 95% confidence intervals. Biophysical parameters were estimated for 21 “ground pixels” (grids) at the Tallgrass Prairie Preserve in 1996, representing three grazing/burning treatments. Each grid was 30×30 m in size and was systematically sampled with ground radiometer readings. The radiometric measurements were then converted to biophysical parameters and spatially interpolated using geostatistical kriging. Grid-based biophysical parameters were monitored through the growing season and regressed against Landsat Thematic Mapper (TM) NDVI (r2=.92–.94). These regression equations were used to estimate biophysical parameters for grassland TM pixels over the Tallgrass Prairie Preserve in 1996. This method maintained consistent regression development and prediction scales and attempted to minimize scaling problems associated with mixed land cover pixels. A method for scaling Landsat biophysical parameters to coarser resolution satellite data sets (1 km2) was also investigated.

  14. The Path of Carbon in Photosynthesis VII. Respiration and Photosynthesis

    Science.gov (United States)

    Benson, A. A.; Calvin, M.

    1949-07-21

    The relationship of respiration to photosynthesis in barley seedling leaves and the algae, Chlorella and Scenedesmus, has been investigated using radioactive carbon dioxide and the techniques of paper chromatography and radioautography. The plants are allowed to photosynthesize normally for thirty seconds in c{sup 14}O{sub 2} after which they are allowed to respire in air or helium in the light or dark. Respiration of photosynthetic intermediates as evidenced by the appearance of labeled glutomic, isocitric, fumaric and succinic acids is slower in the light than in the dark. Labeled glycolic acid is observed in barley and algae. It disappears rapidly in the dark and is maintained and increased in quantity in the light in C0{sub 2}-free air.

  15. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate

    Science.gov (United States)

    Takai, Toshiyuki; Adachi, Shunsuke; Taguchi-Shiobara, Fumio; Sanoh-Arai, Yumiko; Iwasawa, Norio; Yoshinaga, Satoshi; Hirose, Sakiko; Taniguchi, Yojiro; Yamanouchi, Utako; Wu, Jianzhong; Matsumoto, Takashi; Sugimoto, Kazuhiko; Kondo, Katsuhiko; Ikka, Takashi; Ando, Tsuyu; Kono, Izumi; Ito, Sachie; Shomura, Ayahiko; Ookawa, Taiichiro; Hirasawa, Tadashi; Yano, Masahiro; Kondo, Motohiko; Yamamoto, Toshio

    2013-01-01

    Improvement of leaf photosynthesis is an important strategy for greater crop productivity. Here we show that the quantitative trait locus GPS (GREEN FOR PHOTOSYNTHESIS) in rice (Oryza sativa L.) controls photosynthesis rate by regulating carboxylation efficiency. Map-based cloning revealed that GPS is identical to NAL1 (NARROW LEAF1), a gene previously reported to control lateral leaf growth. The high-photosynthesis allele of GPS was found to be a partial loss-of-function allele of NAL1. This allele increased mesophyll cell number between vascular bundles, which led to thickened leaves, and it pleiotropically enhanced photosynthesis rate without the detrimental side effects observed in previously identified nal1 mutants, such as dwarf plant stature. Furthermore, pedigree analysis suggested that rice breeders have repeatedly selected the high-photosynthesis allele in high-yield breeding programs. The identification and utilization of NAL1 (GPS) can enhance future high-yield breeding and provides a new strategy for increasing rice productivity. PMID:23985993

  16. Developing spatial biophysical accounting for multiple ecosystem services

    NARCIS (Netherlands)

    Remme, R.P.; Schroter, M.; Hein, L.G.

    2014-01-01

    Ecosystem accounting is receiving increasing interest as a way to systematically monitor the conditions of ecosystems and the ecosystem services they provide. A critical element of ecosystem accounting is understanding spatially explicit flows of ecosystem services. We developed spatial biophysical

  17. ANALYTICAL MICROBIOLOGY LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains equipment that performs a broad array of microbiological analyses for pathogenic and spoilage microorganisms. It performs challenge studies...

  18. THE GENESIS OF PHOTOSYNTHESIS TYPES AS THE BASIS OF ECOLOGICAL EXPANSION OF HALOPHYTIC PLANTS

    Directory of Open Access Journals (Sweden)

    Pyurko O.Ye.

    2011-12-01

    Full Text Available The C3, C4, and CAM photosynthesis types are considerably differed by CO2 absorption intensity, its biochemistry, saturation level, water productivity, biological productivity, and other different features, which secure the plants survival at stress and extreme conditions. The aim of current research was to discover the photosynthesis peculiarities at halophytic plants species (Salicornia europaea L., Halimione pedunculata, Artemisia santonica L., Plantago lanceolata L. by salinity at model and natural conditions, and to generalize data in historical aspect. It was constituted that S. europaea L. was characterized by C3 photosynthesis passage which was switched on CAM CO2 fixation under soil salinity conditions till 4-4,5 %, but glycophyte A.santonica was immanent C4assimilation way of aspartate type.Analysis of literature data and own research allows to find out that in majority the C3photosynthesis dependence from environmental factors described by determinate curve with matched mathematical expression. It was suggested to generalize the data by Lagrange polynomial. The obtained results proved that the pattern of photosynthesis evolution is: C3 → C4 → CAM with commute possibilities: C3 → CAM; C4 → CAM.

  19. Water relations and photosynthesis along an elevation gradient for Artemisia tridentata during an historic drought.

    Science.gov (United States)

    Reed, Charlotte C; Loik, Michael E

    2016-05-01

    Quantifying the variation in plant-water relations and photosynthesis over environmental gradients and during unique events can provide a better understanding of vegetation patterns in a future climate. We evaluated the hypotheses that photosynthesis and plant water potential would correspond to gradients in precipitation and soil moisture during a lengthy drought, and that experimental water additions would increase photosynthesis for the widespread evergreen shrub Artemisia tridentata ssp. vaseyana. We quantified abiotic conditions and physiological characteristics for control and watered plants at 2135, 2315, and 2835 m near Mammoth Lakes, CA, USA, at the ecotone of the Sierra Nevada and Great Basin ecoregions. Snowfall, total precipitation, and soil moisture increased with elevation, but air temperature and soil N content did not. Plant water potential (Ψ), stomatal conductance (g s), maximum photosynthetic rate (A max), carboxylation rate (V cmax), and electron transport rate (J max) all significantly increased with elevations. Addition of water increased Ψ, g s, J max, and A max only at the lowest elevation; g s contributed about 30 % of the constraints on photosynthesis at the lowest elevation and 23 % at the other two elevations. The physiology of this foundational shrub species was quite resilient to this 1-in-1200 year drought. However, plant water potential and photosynthesis corresponded to differences in soil moisture across the gradient. Soil re-wetting in early summer increased water potential and photosynthesis at the lowest elevation. Effects on water relations and photosynthesis of this widespread, cold desert shrub species may be disproportionate at lower elevations as drought length increases in a future climate.

  20. Dorsoventral variations in dark chilling effects on photosynthesis and stomatal function in Paspalum dilatatum leaves.

    Science.gov (United States)

    Soares-Cordeiro, Ana Sofia; Driscoll, Simon P; Arrabaça, Maria Celeste; Foyer, Christine H

    2011-01-01

    The effects of dark chilling on the leaf-side-specific regulation of photosynthesis were characterized in the C(4) grass Paspalum dilatatum. CO(2)- and light-response curves for photosynthesis and associated parameters were measured on whole leaves and on each leaf side independently under adaxial and abaxial illumination before and after plants were exposed to dark chilling for one or two consecutive nights. The stomata closed on the adaxial sides of the leaves under abaxial illumination and no CO(2) uptake could be detected on this surface. However, high rates of whole leaf photosynthesis were still observed because CO(2) assimilation rates were increased on the abaxial sides of the leaves under abaxial illumination. Under adaxial illumination both leaf surfaces contributed to the inhibition of whole leaf photosynthesis observed after one night of chilling. After two nights of chilling photosynthesis remained inhibited on the abaxial side of the leaf but the adaxial side had recovered, an effect related to increased maximal ribulose-1,5-bisphosphate carboxylation rates (V(cmax)) and enhanced maximal electron transport rates (J(max)). Under abaxial illumination, whole leaf photosynthesis was decreased only after the second night of chilling. The chilling-dependent inhibition of photosynthesis was located largely on the abaxial side of the leaf and was related to decreased V(cmax) and J(max), but not to the maximal phosphoenolpyruvate carboxylase carboxylation rate (V(pmax)). Each side of the leaf therefore exhibits a unique sensitivity to stress and recovery. Side-specific responses to stress are related to differences in the control of enzyme and photosynthetic electron transport activities.

  1. The paleobiological record of photosynthesis

    OpenAIRE

    William Schopf, J.

    2010-01-01

    Fossil evidence of photosynthesis, documented in Precambrian sediments by microbially laminated stromatolites, cyanobacterial microscopic fossils, and carbon isotopic data consistent with the presence of Rubisco-mediated CO2-fixation, extends from the present to ~3,500 million years ago. Such data, however, do not resolve time of origin of O2-producing photoautotrophy from its anoxygenic, bacterial, evolutionary precursor. Though it is well established that Earth’s ecosystem has been based on...

  2. Achievements and challenges in structural bioinformatics and computational biophysics.

    Science.gov (United States)

    Samish, Ilan; Bourne, Philip E; Najmanovich, Rafael J

    2015-01-01

    The field of structural bioinformatics and computational biophysics has undergone a revolution in the last 10 years. Developments that are captured annually through the 3DSIG meeting, upon which this article reflects. An increase in the accessible data, computational resources and methodology has resulted in an increase in the size and resolution of studied systems and the complexity of the questions amenable to research. Concomitantly, the parameterization and efficiency of the methods have markedly improved along with their cross-validation with other computational and experimental results. The field exhibits an ever-increasing integration with biochemistry, biophysics and other disciplines. In this article, we discuss recent achievements along with current challenges within the field. © The Author 2014. Published by Oxford University Press.

  3. Evolution and Biophysics of the Escherichia coli lac Operon

    Science.gov (United States)

    Ray, J. Christian; Igoshin, Oleg; Quan, Selwyn; Monds, Russell; Cooper, Tim; Balázsi, Gábor

    2011-03-01

    To understand, predict, and control the evolution of living organisms, we consider biophysical effects and molecular network architectures. The lactose utilization system of E. coli is among the most well-studied molecular networks in biology, making it an ideal candidate for such studies. Simulations show how the genetic architecture of the wild-type operon attenuates large metabolic intermediate fluctuations that are predicted to occur in an equivalent system with the component genes on separate operons. Quantification of gene expression in the lac operon evolved in growth conditions containing constant lactose, alternating with glucose, or constant glucose, shows characteristic gene expression patterns depending on conditions. We are simulating these conditions to show context-dependent biophysical sources and costs of different lac operon architectures.

  4. [The opportunities, challenges and trends in the rejuvenation of microbiology].

    Science.gov (United States)

    Shen, Ping; Chen, Xiangdong

    2010-01-01

    In history, the development of microbiology had undergone two golden ages and some depression time as well. In the last two decades, the application of many physiochemical technologies including genomics, structural biology, bioinformatics, PCR, and high-resolution microscopy has led to a series of breakthroughs in microbiology. Microbiology has now awakened and entered its third golden age for development. This review discusses our view of the opportunities, challenges, and trends in the current advancement of microbiology. The topics include: (1) The two golden ages for microbiology in history. (2) The opportunities and challenges in the rejuvenation of microbiology. (3) The characteristics and trends of the current development of microbiology. (4) Integral microbiology--the hallmark of the third golden age.

  5. Environmental Microbiology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Microbiology Laboratory, located in Bldg. 644 provides a dual-gas respirometer for measurement of oxygen consumption and carbon dioxide evolution...

  6. Microbiological aspects of safety in radioactive waste management

    International Nuclear Information System (INIS)

    Ershov, B.G.; Safonov, A.V.; Nazina, T.N.; Gorbunova, O.A.

    2012-01-01

    In long-term storage and/or disposal of radioactive waste, microbiological processes play an important, and in some cases a vital role. The article discusses the issues of microbiological processes in underground liquid LLW repositories and microbiological destruction of cemented radwaste. It is shown that biological additives to cement matrices can be used to effectively prevent the occurrence of microbiological processes, increasing reliability of engineering barriers that block release of radionuclides into the areas adjacent to the repositories [ru

  7. Misconception of biology education student of teacher training and education of Sriwijaya University to the concept of photosynthesis and respiration

    Science.gov (United States)

    Susanti, Rahmi

    2018-05-01

    This study aimed to gain an overview of misconceptions on the concept of photosynthesis and respiration. The study involved 58 students from Biology Education of Sriwijaya University. Collecting data used written test of 16 questions, which are 10 questions of multiple choice and 6 of choice with reason. The results showed that:photosynthesis occurs continuously (37.9%), energy used for photosynthesis are light and heat energy (34.5%), plants take CO2to respiration (47%), plants carry on respiration in the absence of light for photosynthesis (22.4%), respiration in plants occurs only in leaf cells (76.4%), and only animals that take O2 of photosynthesis to respiration (68.9%). The conclusion: 1) on the concept of photosynthesis is still prevailing misconceptions about the concept of the place and time of the occurrence of photosynthesis in plants, the role of the sun in photosynthesis, energy is required in the form of photosynthesis, and the role of photosynthesis for the plant. 2) on the concept of respiration is still prevailing misconceptions about the place of the respiration in plants, gas necessary for respiration of plants, and the plants perform respiration time, as well as the cycle of CO2 and O2 that occurs in nature.

  8. A quantitative overview of biophysical forces impinging on neural function

    International Nuclear Information System (INIS)

    Mueller, Jerel K; Tyler, William J

    2014-01-01

    The fundamentals of neuronal membrane excitability are globally described using the Hodgkin-Huxley (HH) model. The HH model, however, does not account for a number of biophysical phenomena associated with action potentials or propagating nerve impulses. Physical mechanisms underlying these processes, such as reversible heat transfer and axonal swelling, have been compartmentalized and separately investigated to reveal neuronal activity is not solely influenced by electrical or biochemical factors. Instead, mechanical forces and thermodynamics also govern neuronal excitability and signaling. To advance our understanding of neuronal function and dysfunction, compartmentalized analyses of electrical, chemical, and mechanical processes need to be revaluated and integrated into more comprehensive theories. The present perspective is intended to provide a broad overview of biophysical forces that can influence neural function, but which have been traditionally underappreciated in neuroscience. Further, several examples where mechanical forces have been shown to exert their actions on nervous system development, signaling, and plasticity are highlighted to underscore their importance in sculpting neural function. By considering the collective actions of biophysical forces influencing neuronal activity, our working models can be expanded and new paradigms can be applied to the investigation and characterization of brain function and dysfunction. (topical review)

  9. An apparatus for field measurement of photosynthesis activity in plants using radioactive carbon dioxide

    International Nuclear Information System (INIS)

    Varshney, O.P.

    1994-01-01

    An apparatus was designed for rapid and accurate determination of photosynthesis rates in the field. It was standardised with respect to exposure time during which maize leaf was exposed to 14 CO 2 labelled air and the photosynthesis rates were measured

  10. Elements Required for an Efficient NADP-Malic Enzyme Type C4 Photosynthesis1[C][W][OPEN

    Science.gov (United States)

    Wang, Yu; Long, Stephen P.; Zhu, Xin-Guang

    2014-01-01

    C4 photosynthesis has higher light, nitrogen, and water use efficiencies than C3 photosynthesis. Although the basic anatomical, cellular, and biochemical features of C4 photosynthesis are well understood, the quantitative significance of each element of C4 photosynthesis to the high photosynthetic efficiency are not well defined. Here, we addressed this question by developing and using a systems model of C4 photosynthesis, which includes not only the Calvin-Benson cycle, starch synthesis, sucrose synthesis, C4 shuttle, and CO2 leakage, but also photorespiration and metabolite transport between the bundle sheath cells and mesophyll cells. The model effectively simulated the CO2 uptake rates, and the changes of metabolite concentrations under varied CO2 and light levels. Analyses show that triose phosphate transport and CO2 leakage can help maintain a high photosynthetic rate by balancing ATP and NADPH amounts in bundle sheath cells and mesophyll cells. Finally, we used the model to define the optimal enzyme properties and a blueprint for C4 engineering. As such, this model provides a theoretical framework for guiding C4 engineering and studying C4 photosynthesis in general. PMID:24521879

  11. Measurement of solar spectra relating to photosynthesis and solar cells: an inquiry lab for secondary science.

    Science.gov (United States)

    Ruggirello, Rachel M; Balcerzak, Phyllis; May, Victoria L; Blankenship, Robert E

    2012-07-01

    The process of photosynthesis is central to science curriculum at all levels. This article describes an inquiry-based laboratory investigation developed to explore the impact of light quality on photosynthesis and to connect this process to current research on harvesting solar energy, including bioenergy, artificial photosynthesis, and solar cells. This laboratory was used with high-school science teachers who then took this experience back to their classrooms. During this exercise, teachers used an economical spectroradiometer to measure the solar spectrum and relate this to photosynthetic light absorption by determining the quality of light beneath trees. Following this investigation, teachers learned about the plant-inspired dye-sensitized solar cells and constructed one. To connect their light quality investigation to the efficiency of photosynthesis and solar cells, teachers then collected data at locations with varying quality and intensity of light. In sum, this investigation provides a crucial connection between photosynthesis and cutting edge research on solar energy technologies. Our learning experience provides a new instructional model for understanding a little investigated aspect of photosynthesis and connects to authentic scientific research. Copyright © 2012 Wiley Periodicals, Inc.

  12. Promoting the Understanding of Photosynthesis among Elementary School Student Teachers through Text Design

    Science.gov (United States)

    Södervik, Ilona; Mikkilä-Erdmann, Mirjamaija; Vilppu, Henna

    2014-01-01

    The purpose of this study was to investigate elementary school pre-service teachers' understanding of photosynthesis and to examine if a refutational text can support understanding of photosynthesis better than a non-refutational text. A total of 91 elementary school pre-service teachers read either a refutational or a non-refutational text…

  13. Mössbauer spectroscopy in studies of photosynthesis

    Science.gov (United States)

    Burda, Květoslava

    2008-02-01

    Photosynthesis is a process occurring in certain species of bacteria, algae and higher plants. It transforms solar energy into various forms of energy-rich organic molecules. Photosystem II (PSII) is the “heart” of the photosynthetic apparatus because it delivers electrons and protons for further steps of the light-driven phases of photosynthesis. There are two enigmatic iron binding structures within the core of photosynthetic apparatus, which play an important role in the electron transfer within PSII. Many investigations focus on the determination of their function which is the key to the understanding of the molecular mechanism of the energy and electron transfer within PSII. Among many methods used in this research field, the Mössbauer spectroscopy is a unique one, which gives the possibility to study changes of the valence and spin states of those two iron sites and the dynamical properties of their protein matrix in the presence of various physiological and stress conditions.

  14. Biophysical characteristics reveal neural stem cell differentiation potential.

    Directory of Open Access Journals (Sweden)

    Fatima H Labeed

    Full Text Available Distinguishing human neural stem/progenitor cell (huNSPC populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers.We used dielectrophoresis (DEP to analyze the biophysical, specifically electrophysiological, properties of cortical human and mouse NSPCs that vary in differentiation potential. Our data demonstrate that the electrophysiological property membrane capacitance inversely correlates with the neurogenic potential of NSPCs. Furthermore, as huNSPCs are continually passaged they decrease neuron generation and increase membrane capacitance, confirming that this parameter dynamically predicts and negatively correlates with neurogenic potential. In contrast, differences in membrane conductance between NSPCs do not consistently correlate with the ability of the cells to generate neurons. DEP crossover frequency, which is a quantitative measure of cell behavior in DEP, directly correlates with neuron generation of NSPCs, indicating a potential mechanism to separate stem cells biased to particular differentiated cell fates.We show here that whole cell membrane capacitance, but not membrane conductance, reflects and predicts the neurogenic potential of human and mouse NSPCs. Stem cell biophysical characteristics therefore provide a completely novel and quantitative measure of stem cell fate potential and a label-free means to identify neuron- or glial-biased progenitors.

  15. How to Improve the Mastery of Students’ Concept on Photosynthesis Topic?

    Science.gov (United States)

    Ulfa, K.; Anggraeni, S.; Supriatno, B.

    2017-09-01

    The PPDP learning strategy in this research is the acronym of Practicum method, Presentation-discussion method, Demonstration method, and Presentation-discussion method. This study aims to describe the effect of applying PPDP learning strategies to mastery of high school students’ concepts on photosynthesis topic. The research method is a weak experiment, with the research design “The One-Group Pretest-Postetst Design”. The implementation of the study involved 35 students in one of the high schools in the city of Palembang. The research instrument used is in the form of test equipment, assessment rubric and questionnaire. Data were analyzed using Microsoft Excel and SPSS 24 Program. The statistical result showed that PPDP learning strategy had an effect on improving conceptual and Effective on the achievement of the value on the minimum criteria set by the school. This is due to the transformation of knowledge from hands-on to minds-on through the discovery of facts about the concept of photosynthesis. This fact leads to the construction of further understanding through cognitive sharing when the activities of the discussions formed similarity and consolidation of the concept of photosynthesis intact. In addition, demonstration activities also cause students’ logic of thinking to develop through observation of factors that may affect the rate of photosynthesis. This PPDP learning strategy can be utilized by teachers in explaining photosynthetic topic.

  16. Continuous background light significantly increases flashing-light enhancement of photosynthesis and growth of microalgae.

    Science.gov (United States)

    Abu-Ghosh, Said; Fixler, Dror; Dubinsky, Zvy; Iluz, David

    2015-01-01

    Under specific conditions, flashing light enhances the photosynthesis rate in comparison to continuous illumination. Here we show that a combination of flashing light and continuous background light with the same integrated photon dose as continuous or flashing light alone can be used to significantly enhance photosynthesis and increase microalgae growth. To test this hypothesis, the green microalga Dunaliella salina was exposed to three different light regimes: continuous light, flashing light, and concomitant application of both. Algal growth was compared under three different integrated light quantities; low, intermediate, and moderately high. Under the combined light regime, there was a substantial increase in all algal growth parameters, with an enhanced photosynthesis rate, within 3days. Our strategy demonstrates a hitherto undescribed significant increase in photosynthesis and algal growth rates, which is beyond the increase by flashing light alone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment.

    Science.gov (United States)

    Xiao, Yun; Ahadian, Samad; Radisic, Milica

    2017-02-01

    Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell-matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them.

  18. Soil microbiology

    International Nuclear Information System (INIS)

    Wolf, D.C.; Legg, J.O.

    1984-01-01

    The major areas of soil microbiological and biochemical research which have involved both stable and radioactive isotopes are summarized. These include microbial decomposition of naturally occurring materials, microbial biomass, interactions of plants and microbes, denitrification, mineralization and immobilization of nitrogen and biological nitrogen fixation. (U.K.)

  19. Biophysical models of radiobiological effects

    International Nuclear Information System (INIS)

    Obaturov, G.M.

    1987-01-01

    Radiobiological effect models at different organization levels, developed by the author, are presented. Classification and analysis of concepts and biophysical models at molecular, genetic and cellular levels, developed by Soviet and foreign authors in comparison to inherent models, are conducted from the viewpoint of system approach to radiobiological processes and of modelling principles. Models are compared with each other, limits of their applicability and drawbacks are determined. Evaluation of the model truthfulness is conducted according to a number of criteria, ways of further investigations and experimental examination of some models are proposed

  20. The Path of Carbon in Photosynthesis XV. Ribulose and Sedoheptulose

    Science.gov (United States)

    Benson, A. A.; Bassham, J. A.; Calvin, M.; Hall, A. G.; Hirsch, H.; Kawaguchi, S.; Lynch, V.; Tolbert, N. E.

    1952-01-01

    The intermediates of carbon dioxide reduction by plants include phosphorylated derivatives of hydroxy acids and sugars. Their identification became possible when the use of labeled carbon dioxide permitted discrimination between the earliest products and the many other components of photosynthetic tissues. A number of compounds were identified by virtue of the chemical and physical properties of the radioactive compounds in tracer amounts and by direct comparison of these properties with those of suspected known metabolic intermediates. It became apparent that several labeled compounds found in short exposures to radioactive carbon dioxide were not substances previously identified as metabolic intermediates. Two phosphate esters in particular were observed in the products of the first few seconds of steady-state photosynthesis by all the photosynthetic microorganisms and higher plants examined in this laboratory. These esters have been isolated by paper chromatography in tracer quantities and enzymatically hydrolyzed to give two sugars, ribulose and sedoheptulose. This paper contains a description of the chemical identification of these sugars and some observations and suggestions regarding the function of their esters. The general importance of these compounds in photosynthesis was summarized before their identification. The products of photosynthesis with C{sup 14}O{sub 2} by each plant included phosphate esters of the same two then unknown compounds in addition to those of the expected glucose, fructose, dihydroxyacetone and glyceric acid. As the time of steady-state photosynthesis in C{sup 14}O{sub 2} decreased, the fractions of total fixed radiocarbon in the esters of the two unidentified compounds increased.

  1. Undergraduate Laboratory Exercises Specific to Food Spoilage Microbiology

    Science.gov (United States)

    Snyder, Abigail B.; Worobo, Randy W.; Orta-Ramirez, Alicia

    2016-01-01

    Food spoilage has an enormous economic impact, and microbial food spoilage plays a significant role in food waste and loss; subsequently, an equally significant portion of undergraduate food microbiology instruction should be dedicated to spoilage microbiology. Here, we describe a set of undergraduate microbiology laboratory exercises that focus…

  2. Photosynthesis of amphibious and obligately submerged plants in CO2-rich lowland streams.

    Science.gov (United States)

    Sand-Jensen, Kaj; Frost-Christensen, Henning

    1998-11-01

    Small unshaded streams in lowland regions receive drainage water with high concentrations of free␣CO 2 , and they support an abundant growth of amphibious and obligately submerged plants. Our first objective was to measure the CO 2 regime during summer in a wide range of small alkaline Danish streams subject to wide variation in temperature, O 2 and CO 2 during the day. The second objective was to determine the effect of these variations on daily changes in light-saturated photosynthesis in water of a homophyllous and a heterophyllous amphibious species that only used CO 2 , and an obligately submerged species capable of using both HCO - 3 and CO 2 . We found that the median CO 2 concentrations of the streams were 11 and 6 times above air saturation in the morning and the afternoon, respectively, but stream sites with dense plant growth had CO 2 concentrations approaching air saturation in the afternoon. In contrast, outlets from lakes had low CO 2 concentrations close to, or below, air saturation. The amphibious species showed a reduction of photosynthesis in water from morning to afternoon along with the decline in CO 2 concentrations, while increasing temperature and O 2 had little effect on photosynthesis. Photosynthesis of the obligately submerged species varied little with the change of CO 2 because of HCO 3 - - use, and variations were mostly due to changes in O 2 concentration. Independent measurements showed that changes in temperature, O 2 and CO 2 could account for the daily variability of photosynthesis of all three species in water. The results imply that CO 2 supersaturation in small lowland streams is important for the rich representation of amphibious species and their contribution to system photosynthesis.

  3. Prokaryotic photosynthesis and phototrophy illuminated

    DEFF Research Database (Denmark)

    Bryant, Donald A; Frigaard, Niels-Ulrik

    2006-01-01

    Genome sequencing projects are revealing new information about the distribution and evolution of photosynthesis and phototrophy. Although coverage of the five phyla containing photosynthetic prokaryotes (Chlorobi, Chloroflexi, Cyanobacteria, Proteobacteria and Firmicutes) is limited and uneven...... components that have not yet been described. Metagenomics has already shown how the relatively simple phototrophy based upon rhodopsins has spread laterally throughout Archaea, Bacteria and eukaryotes. In this review, we present examples that reflect recent advances in phototroph biology as a result...

  4. Diagnostic microbiology in veterinary dermatology: present and future

    DEFF Research Database (Denmark)

    Guardabassi, Luca; Damborg, Peter; Stamm, Ivonne

    2017-01-01

    the identification (ID) and antimicrobial susceptibility testing (AST) of key pathogens in veterinary dermatology. Methods The Study Group for Veterinary Microbiology (ESGVM) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) identified scientific, technological, educational...... not adequately equipped to run up-to-date clinical microbiologic diagnostic tests. Conclusions and clinical importance ESGVM recommends the use of laboratories employing mass spectrometry for ID and broth micro-dilution for AST, and offering assistance by expert microbiologists on pre- and post-analytical issues......Background The microbiology laboratory can be perceived as a service provider rather than an integral part of the healthcare team. Objectives The aim of this review is to discuss the current challenges of providing a state-of-the-art diagnostic veterinary microbiology service including...

  5. Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels.

    Science.gov (United States)

    Xu, Yuxing; Li, Ailong; Yao, Tingting; Ma, Changtong; Zhang, Xianwen; Shah, Jafar Hussain; Han, Hongxian

    2017-11-23

    Converting sunlight to solar fuels by artificial photosynthesis is an innovative science and technology for renewable energy. Light harvesting, photogenerated charge separation and transfer (CST), and catalytic reactions are the three primary steps in the processes involved in the conversion of solar energy to chemical energy (SE-CE). Among the processes, CST is the key "energy pump and delivery" step in determining the overall solar-energy conversion efficiency. Efficient CST is always high priority in designing and assembling artificial photosynthesis systems for solar-fuel production. This Review not only introduces the fundamental strategies for CST but also the combinatory application of these strategies to five types of the most-investigated semiconductor-based artificial photosynthesis systems: particulate, Z-scheme, hybrid, photoelectrochemical, and photovoltaics-assisted systems. We show that artificial photosynthesis systems with high SE-CE efficiency can be rationally designed and constructed through combinatory application of these strategies, setting a promising blueprint for the future of solar fuels. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves

    Science.gov (United States)

    In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (NO2, 4 microliter per liter) on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba x Populus berolinensis hybrid leaves using the photosynthesis system and scanning...

  7. Biophysics of DNA

    CERN Document Server

    Vologodskii, Alexander

    2015-01-01

    Surveying the last sixty years of research, this book describes the physical properties of DNA in the context of its biological functioning. It is designed to enable both students and researchers of molecular biology, biochemistry and physics to better understand the biophysics of DNA, addressing key questions and facilitating further research. The chapters integrate theoretical and experimental approaches, emphasising throughout the importance of a quantitative knowledge of physical properties in building and analysing models of DNA functioning. For example, the book shows how the relationship between DNA mechanical properties and the sequence specificity of DNA-protein binding can be analyzed quantitatively by using our current knowledge of the physical and structural properties of DNA. Theoretical models and experimental methods in the field are critically considered to enable the reader to engage effectively with the current scientific literature on the physical properties of DNA.

  8. Journal of Tropical Microbiology and Biotechnology

    African Journals Online (AJOL)

    The Journal of Tropical Microbiology and Biotechnology (JTMB) formerly Journal of Tropical Microbiology gives preeminence to the central role of modern biotechnology and microorganisms as tools and targets in current research, which is largely multidisciplinary. JTMB covers a broad range of topics, such as disease ...

  9. Teaching microbiological food safety through case studies

    Directory of Open Access Journals (Sweden)

    Florence Dubois-Brissonnet

    2015-10-01

    Full Text Available Higher education students usually ask for more training based on case studies. This was addressed by designing a specific food safety module (24 hours in which students were shown how to predict microbiological risks in food products i.e. they were asked to determine product shelf-life according to product formulation, preservation methods and consumption habits using predictive microbiology tools. Working groups of four students first identified the main microbiological hazards associated with a specific product. To perform this task, they were given several documents including guides for good hygiene practices, reviews on microbiological hazards in the food sector, flow sheets, etc…  After three-hours of work, the working groups prepared and gave an oral presentation in front of their classmates and professors. This raised comments and discussion that allowed students to adjust their conclusions before beginning the next step of their work. This second step consisted in the evaluation of the safety risk associated with the two major microbiological hazards of the product studied, using predictive microbiology. Students then attended a general lecture on the different tools of predictive microbiology and tutorials (6 hours that made them familiar with the modelling of bacterial growth or inactivation. They applied these tools (9 hours to predict the shelf-life of the studied product according to various scenarios of preservation (refrigeration, water activity, concentration of salt or acid, modified atmosphere, etc… and/or consumption procedures (cooking. The module was concluded by oral presentations of each working group and included student evaluation (3 hours.

  10. Effect of gamma radiation on chlorophylls contents, net photosynthesis and respiration of chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.; Martin Moreno, C.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first 'b' chlorophyll affected to a greater extent than 'a' chlorophyll. Net photosynthesis and respiration decline throughout the time of the observations after irradiation, this depressing effect being much more remarkable for the first one. Net photosynthesis inhibition levels of about 30% have got only five hours post irradiation at a dose of 5000 Gy. (author)

  11. Effects of primitive photosynthesis on Earth's early climate system

    Science.gov (United States)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  12. Regulation of Calcium on Peanut Photosynthesis Under Low Night Temperature Stress

    Institute of Scientific and Technical Information of China (English)

    LIU Yi-fei; HAN Xiao-ri; ZHAN Xiu-mei; YANG Jin-feng; WANG Yu-zhi; SONG Qiao-bo; CHEN Xin

    2013-01-01

    The effects of different levels of CaCl2 on photosynthesis under low night temperature (8°C) stress in peanuts were studied in order to ifnd out the appropriate concentration of Ca2+ through the artiifcial climate chamber potted culture test. The results indicated that Ca2+, by means of improving the stomatal conductivity of peanut leaves under low night temperature stress, may mitigate the decline of photosynthetic rate in the peanut leaves. The regulation with 15 mmol L-1 CaCl2 (Ca15) was the most effective, compared with other treatments. Subsequently, the improvement of Ca2+ on peanut photosynthesis under low night temperature stress was validated further through spraying withCa15, Ca2+ chelator (ethylene glycol bis(2-aminoethyl) tetraacetic acid; EGTA) and calmodulin antagonists (trilfuonerazine; TFP).And CaM (Ca2+-modulin) played an important role in the nutritional signal transduction for Ca2+ mitigating photosynthesis limitations in peanuts under low night temperature stress.

  13. New Egyptian Journal of Microbiology: Journal Sponsorship

    African Journals Online (AJOL)

    New Egyptian Journal of Microbiology: Journal Sponsorship. Journal Home > About the Journal > New Egyptian Journal of Microbiology: Journal Sponsorship. Log in or Register to get access to full text downloads.

  14. Crassulacean acid metabolism enhances underwater photosynthesis and diminishes photorespiration in the aquatic plant Isoetes australis

    DEFF Research Database (Denmark)

    Pedersen, Ole; Rich, S.M.; Pulido Pérez, Cristina

    2011-01-01

    Underwater photosynthesis by aquatic plants is often limited by low availability of CO2, and photorespiration can be high. Some aquatic plants utilize crassulacean acid metabolism (CAM) photosynthesis. The benefits of CAM for increased underwater photosynthesis and suppression of photorespiration...... photorespiration was evident at a range of O2 concentrations, including values below air equilibrium. At a high O2 concentration of 2.2-fold the atmospheric equilibrium concentration, net photosynthesis was reduced substantially and, although it remained positive in leaves containing high malate concentrations...... were evaluated for Isoetes australis, a submerged plant that inhabits shallow temporary rock pools. • Leaves high or low in malate were evaluated for underwater net photosynthesis and apparent photorespiration at a range of CO2 and O2 concentrations. • CAM activity was indicated by 9.7-fold higher leaf...

  15. Ecosystem warming does not affect photosynthesis or aboveground autotrophic respiration for boreal black spruce

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, D.R. [Wyoming Univ., Laramie, WY (United States). Dept. of Renewable Resources; Gower, S.T. [Wisconsin Univ., Madison, WI (United States). Dept. of Forest Ecology and Management

    2010-04-15

    Substantial increases in climatic temperatures may cause boreal forests to become a carbon source. An improved understanding of the effect of climatic warming on photosynthesis and autotrophic respiration is needed in order to determine the impact of temperature increases on net carbon balances. This study measured the light-saturated photosynthesis foliage respiration and stem respiration of black spruce in heated and control plots during a 3-year period at a site located in Thompson, Manitoba. Greenhouses and soil-heating cables were used to maintain air and soil temperatures at 5 degrees C above ambient air and soil temperatures. Studies were conducted to determine the influence of soil and air warming; soil-only warming; and greenhouses maintained at ambient temperatures. The study showed that treatment differences for photosynthesis, foliage respiration, and stem respiration were not significant over the 3-year period. Results suggested that black spruce may not have significant changes in photosynthesis or respiration rates in warmer climates. 38 refs., 3 tabs., 4 figs.

  16. Role of seagrass photosynthesis in root aerobic processes.

    Science.gov (United States)

    Smith, R D; Dennison, W C; Alberte, R S

    1984-04-01

    The role of shoot photosynthesis as a means of supporting aerobic respiration in the roots of the seagrass Zostera marina was examined. O(2) was transported rapidly (10-15 minutes) from the shoots to the root-rhizome tissues upon shoot illumination. The highest rates of transport were in shoots possessing the greatest biomass and leaf area. The rates of O(2) transport do not support a simple gas phase diffusion mechanism. O(2) transport to the root-rhizome system supported aerobic root respiration and in many cases exceeded respiratory requirements leading to O(2) release from the subterranean tissue. Release of O(2) can support aerobic processes in reducing sediments typical of Z. marina habitats. Since the root-rhizome respiration is supported primarily under shoot photosynthetic conditions, then the daily period of photosynthesis determines the diurnal period of root aerobiosis.

  17. Anthocyanin-dependent anoxygenic photosynthesis in coloured flower petals?

    Science.gov (United States)

    Lysenko, Vladimir; Varduny, Tatyana

    2013-11-01

    Chlorophylless flower petals are known to be composed of non-photosynthetic tissues. Here, we show that the light energy storage that can be photoacoustically measured in flower petals of Petunia hybrida is approximately 10-12%. We found that the supposed chlorophylless photosynthesis is an anoxygenic, anthocyanin-dependent process occurring in blue flower petals (ADAPFP), accompanied by non-respiratory light-dependent oxygen uptake and a 1.5-fold photoinduced increase in ATP levels. Using a simple, adhesive tape stripping technique, we have obtained a backside image of an intact flower petal epidermis, revealing sword-shaped ingrowths connecting the cell wall and vacuole, which is of interest for the further study of possible vacuole-related photosynthesis. Approaches to the interpretations of ADAPFP are discussed, and we conclude that these results are not impossible in terms of the known photochemistry of anthocyanins.

  18. Ecological Understanding 1: Ways of Experiencing Photosynthesis.

    Science.gov (United States)

    Carlsson, Britta

    2002-01-01

    Investigates 10 student teachers' understanding of the different ways in which the function of the ecosystem could be experienced. Explores the functional aspects of the ecosystem using a system approach. Concludes that the idea of transformation is crucial to more complex ways of understanding photosynthesis. (Contains 62 references.) (Author/YDS)

  19. [Bacterial identification methods in the microbiology laboratory].

    Science.gov (United States)

    Bou, Germán; Fernández-Olmos, Ana; García, Celia; Sáez-Nieto, Juan Antonio; Valdezate, Sylvia

    2011-10-01

    In order to identify the agent responsible of the infectious process and understanding the pathogenic/pathological implications, clinical course, and to implement an effective antimicrobial therapy, a mainstay in the practice of clinical microbiology is the allocation of species to a microbial isolation. In daily routine practice microbiology laboratory phenotypic techniques are applied to achieve this goal. However, they have some limitations that are seen more clearly for some kinds of microorganism. Molecular methods can circumvent some of these limitations, although its implementation is not universal. This is due to higher costs and the level of expertise required for thei implementation, so molecular methods are often centralized in reference laboratories and centers. Recently, proteomics-based methods made an important breakthrough in the field of diagnostic microbiology and will undoubtedly have a major impact on the future organization of the microbiology services. This paper is a short review of the most noteworthy aspects of the three bacterial identification methods described above used in microbiology laboratories. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  20. Biophysical approach to low back pain: a pilot report

    Czech Academy of Sciences Publication Activity Database

    Foletti, A.; Pokorný, Jiří

    2015-01-01

    Roč. 34, č. 2 (2015), s. 156-159 ISSN 1536-8378 Institutional support: RVO:67985882 Keywords : Bioelectromagnetic medicine * Biophysical therapy * Coherence domains Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.208, year: 2015

  1. Salinity-dependent limitation of photosynthesis and oxygen exchange in microbial mats

    DEFF Research Database (Denmark)

    Garcia-Pichel, F.; Kühl, Michael; Nübel, U.

    1999-01-01

    was specific for each community and in accordance with optimal performance at the respective salinity of origin. This pattern was lost after long-term exposure to varying salinities when responses to salinity were found to approach a general pattern of decreasing photosynthesis and oxygen exchange capacity...... with increasing salinity. Exhaustive measurements of oxygen export in the light, oxygen consumption in the dark and gross photosynthesis indicated that a salinity-dependent limitation of all three parameters occurred. Maximal values for all three parameters decreased exponentially with increasing salinity...

  2. Automation in the clinical microbiology laboratory.

    Science.gov (United States)

    Novak, Susan M; Marlowe, Elizabeth M

    2013-09-01

    Imagine a clinical microbiology laboratory where a patient's specimens are placed on a conveyor belt and sent on an automation line for processing and plating. Technologists need only log onto a computer to visualize the images of a culture and send to a mass spectrometer for identification. Once a pathogen is identified, the system knows to send the colony for susceptibility testing. This is the future of the clinical microbiology laboratory. This article outlines the operational and staffing challenges facing clinical microbiology laboratories and the evolution of automation that is shaping the way laboratory medicine will be practiced in the future. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Estimating photosynthesis and concurrent export rates in C3 and C4 species at ambient and elevated CO2

    International Nuclear Information System (INIS)

    Grodzinski, B.; Jiao, J.; Leonardos, E.D.

    1998-01-01

    The ability of 21 C3 and C4 monocot and dicot species to rapidly export newly fixed C in the light at both ambient and enriched CO2 levels was compared. Photosynthesis and concurrent export rates were estimated during isotopic equilibrium of the transport sugars using a steady-state 14CO2-labeling procedure. At ambient CO2 photosynthesis and export rates for C3 species were 5 to 15 and 1 to 10 micromole C m-2 s-1, respectively, and 20 to 30 and 15 to 22 micromole C m-2 s-1, respectively, for C4 species. A linear regression plot of export on photosynthesis rate of all species had a correlation coefficient of 0.87. When concurrent export was expressed as a percentage of photosynthesis, several C3 dicots that produced transport sugars other than Suc had high efflux rates relative to photosynthesis, comparable to those of C4 species. At high CO2 photosynthetic and export rates were only slightly altered in C4 species, and photosynthesis increased but export rates did not in all C3 species. The C3 species that had high efflux rates relative to photosynthesis at ambient CO2 exported at rates comparable to those of C4 species on both an absolute basis and as a percentage of photosynthesis. At ambient CO2 there were strong linear relationships between photosynthesis, sugar synthesis, and concurrent export. However, at high CO2 the relationships between photosynthesis and export rate and between sugar synthesis and export rate were not as strong because sugars and starch were accumulated

  4. Temperature effects on respiration and photosynthesis in three diatom-dominated benthic communities

    DEFF Research Database (Denmark)

    Hancke, Kasper; Glud, R.N.

    2004-01-01

    ABSTRACT: Short-term temperature effects on respiration and photosynthesis were investigated in intact diatom-dominated benthic communities, collected at 2 temperate and 1 high-arctic subtidal sites. Areal rates of total (TOE) and diffusive (DOE) O2 exchange were determined from O2-microsensor....... This can be ascribed to changes in physical and biological controls during resuspension. Gross photosynthesis was measured with the light-dark shift method at the 2 temperate sites. Both areal (Pgross) and volumetric (Pgross,vol) rates increased with temperature to an optimum temperature at 12 and 15°C......, with a Q10 for Pgross of 2.2 and 2.6 for the 2 sites, respectively. The gross photosynthesis response could be categorised as psychrotrophic for both sites and no temperature adaptation was observed between the 2 sites. Our measurements document that temperature stimulates heterotrophic activity more than...

  5. A roadmap for improving the representation of photosynthesis in Earth system models.

    Science.gov (United States)

    Rogers, Alistair; Medlyn, Belinda E; Dukes, Jeffrey S; Bonan, Gordon; von Caemmerer, Susanne; Dietze, Michael C; Kattge, Jens; Leakey, Andrew D B; Mercado, Lina M; Niinemets, Ülo; Prentice, I Colin; Serbin, Shawn P; Sitch, Stephen; Way, Danielle A; Zaehle, Sönke

    2017-01-01

    Accurate representation of photosynthesis in terrestrial biosphere models (TBMs) is essential for robust projections of global change. However, current representations vary markedly between TBMs, contributing uncertainty to projections of global carbon fluxes. Here we compared the representation of photosynthesis in seven TBMs by examining leaf and canopy level responses of photosynthetic CO 2 assimilation (A) to key environmental variables: light, temperature, CO 2 concentration, vapor pressure deficit and soil water content. We identified research areas where limited process knowledge prevents inclusion of physiological phenomena in current TBMs and research areas where data are urgently needed for model parameterization or evaluation. We provide a roadmap for new science needed to improve the representation of photosynthesis in the next generation of terrestrial biosphere and Earth system models. No claim to original US Government works New Phytologist © 2016 New Phytologist Trust.

  6. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria.

    Science.gov (United States)

    Mallmann, Julia; Heckmann, David; Bräutigam, Andrea; Lercher, Martin J; Weber, Andreas P M; Westhoff, Peter; Gowik, Udo

    2014-06-16

    C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3-C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect.

  7. Recent advances in diagnostic microbiology.

    Science.gov (United States)

    Bravo, Lulette Tricia C; Procop, Gary W

    2009-07-01

    The past decade has seen a surge in the development of a variety of molecular diagnostics designed to rapidly identify or characterize medically important microorganisms. We briefly review important advances in molecular microbiology, and then discuss specific assays that have been implemented in clinical microbiology laboratories throughout the country. We also discuss emerging methods and technologies that will soon be more widely used for the prompt and accurate detection of the agents of infectious diseases.

  8. Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.

    Science.gov (United States)

    M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica

    2016-06-01

    Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. The social acceptance of artificial photosynthesis: towards a conceptual framework

    Science.gov (United States)

    Sovacool, Benjamin K.; Gross, Allan

    2015-01-01

    Advancements in artificial photosynthesis have the potential to radically transform how societies convert and use energy. Their successful development, however, hinges not only on technical breakthroughs, but also acceptance and adoption by energy users. This article introduces a conceptual framework enabling analysts, planners and even investors to determine environments where artificial photosynthesis may thrive, and those where it may struggle. Drawn from work looking at the barriers and acceptance of solar photovoltaic and wind energy systems, the article proposes that social acceptance has multiple dimensions—socio-political, community and market—that must be met holistically in order for investors and users to embrace new technologies. The article argues that any future market acceptance for artificial photosynthesis will depend upon the prevalence of nine factors, which create conducive environments; the lack of the conditions engenders environments where they will likely be rejected. The conditions are (i) strong institutional capacity; (ii) political commitment; (iii) favourable legal and regulatory frameworks; (iv) competitive installation and/or production costs; (v) mechanisms for information and feedback; (vi) access to financing; (vii) prolific community and/or individual ownership and use; (viii) participatory project siting; and (ix) recognition of externalities or positive public image. PMID:26052424

  10. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  11. Predictive Food Microbiology

    DEFF Research Database (Denmark)

    Østergaard, Nina Bjerre

    Listeria monocytogenes is a well-known food borne pathogen that potentially causes listeriosis. No outbreaks or cases of listeriosis have been associated with cottage cheese, but several confirmed cases and outbreaks in the EU and the US have been related to dairy products made from raw...... or pasteurised milk. This, in combination with the fact that cottage cheese support growth of Listeria monocytogenes, induces a documentation requirement on the food producer. In the EU regulatory framework, mathematical models are recognised as a suitable supplement to traditional microbiological methods....... The models can be used for documentation of compliance with microbiological criteria for Listeria monocytogenes under reasonably foreseeable conditions. Cottage cheese is a fresh, fermented dairy product. It consists of a fermented cheese curd mixed with a fresh or cultured cream dressing. The product...

  12. Interactive effects of oxygen, carbon dioxide and flow on photosynthesis and respiration in the scleractinian coral Galaxea fascicularis.

    Science.gov (United States)

    Osinga, Ronald; Derksen-Hooijberg, Marlous; Wijgerde, Tim; Verreth, Johan A J

    2017-06-15

    Rates of dark respiration and net photosynthesis were measured for six replicate clonal fragments of the stony coral Galaxea fascicularis (Linnaeus 1767), which were incubated under 12 different combinations of dissolved oxygen (20%, 100% and 150% saturation), dissolved carbon dioxide (9.5 and 19.1 µmol l -1 ) and water flow (1-1.6 versus 4-13 cm s -1 ) in a repeated measures design. Dark respiration was enhanced by increased flow and increased oxygen saturation in an interactive way, which relates to improved oxygen influx into the coral tissue. Oxygen saturation did not influence net photosynthesis: neither hypoxia nor hyperoxia affected net photosynthesis, irrespective of flow and pH, which suggests that hyperoxia does not induce high rates of photorespiration in this coral. Flow and pH had a synergistic effect on net photosynthesis: at high flow, a decrease in pH stimulated net photosynthesis by 14%. These results indicate that for this individual of G. fascicularis , increased uptake of carbon dioxide rather than increased efflux of oxygen explains the beneficial effect of water flow on photosynthesis. Rates of net photosynthesis measured in this study are among the highest ever recorded for scleractinian corals and confirm a strong scope for growth. © 2017. Published by The Company of Biologists Ltd.

  13. High photochemical trapping efficiency in Photosystem I from the red Glade algae Chromera velia and Phaeodactylum tricornuturn

    Czech Academy of Sciences Publication Activity Database

    Belgio, Erica; Santabarbara, S.; Bína, David; Trsková, Eliška; Herbstová, Miroslava; Kaňa, Radek; Zucchelli, G.; Prášil, Ondřej

    2017-01-01

    Roč. 1858, č. 1 (2017), s. 56-63 ISSN 0005-2728 R&D Projects: GA ČR(CZ) GA14-15728S; GA MŠk(CZ) LO1416; GA MŠk(CZ) ED2.1.00/19.0392; GA ČR GBP501/12/G055; GA ČR(CZ) GA16-10088S Institutional support: RVO:61388971 ; RVO:60077344 Keywords : Chromera velia * Phaeodactylum tricornutum * Red Glade algae Subject RIV: EE - Microbiology, Virology; BO - Biophysics (BC-A) OBOR OECD: Microbiology; Biophysics (BC-A) Impact factor: 4.932, year: 2016

  14. Biophysical dosimetry using electron paramagnetic resonance in human tooth

    International Nuclear Information System (INIS)

    Khan, R.F.H.; Boreham, D.R.; Rink, W.J.

    2002-01-01

    Accidental dosimetry utilizing radiation induced paramagnetic species in biophysical tissues like teeth is a technique; that can measure the amount of radiation exposure to an individual. The major problem in implementing this technique at low doses is the presence of native organic signal, and various other artifacts produced as a result of sample processing. After a series of experimental trials, we developed an optimum set of rules, which uses high temperature ultrasonic treatment of enamel in KOH, multiple sample rotation during in-cavity measurement of natural and calibrated added irradiations, and dose construction using a backward extrapolation method. By using this we report the successful dose reconstruction in a few of our laboratory samples in 100 mGy range (76.29 ± 30.14) mGy with reasonably low uncertainty. Keywords: biophysical dosimetry, human tooth enamel, low dose measurements, accidental dosimetry (author)

  15. Radiobiology, biochemistry and radiation biophysics at CYLAB

    International Nuclear Information System (INIS)

    Ftacnikova, S.

    1998-01-01

    The Cyclotron Laboratory (CYLAB) should fill the gap in the field of nuclear medicine, radiotherapy, basic research, metrology of ionizing radiation, education and implications of accelerator technology existing today in Slovak Republic. The main planned activities of this facility are in the fields of nuclear medicine (production of radioisotopes for Positron Emission Tomography - PET and for oncology) and radiotherapy (neutron capture therapy, fast neutron therapy and proton therapy). The radiobiological and biophysical research will be closely connected with medical applications, particularly with radiotherapy. Problems to be addressed include the determination of the values of Relative Biological Effectiveness (RBE) for different types of ionizing radiation involved in the therapy, microdosimetric measurements and calculations, which are indispensable in the calculation of the absorbed dose (lineal and specific energy spectra) at the cellular and macromolecular level. Radiation biophysics and medical physics help in creating therapeutic plans for radiotherapy (NCT and fast neutron therapy). In nuclear medicine, in diagnostic and therapeutical procedures it is necessary to assess the biodistribution of radiopharmaceuticals and to calculate doses in target and critical organs and to determine whole body burden - effective equivalent dose for newly developed radiopharmaceuticals

  16. REMOTE-SENSING-BASED BIOPHYSICAL MODELS FOR ESTIMATING LAI OF IRRIGATED CROPS IN MURRY DARLING BASIN

    Directory of Open Access Journals (Sweden)

    I. Wittamperuma

    2012-07-01

    Full Text Available Remote sensing is a rapid and reliable method for estimating crop growth data from individual plant to crops in irrigated agriculture ecosystem. The LAI is one of the important biophysical parameter for determining vegetation health, biomass, photosynthesis and evapotranspiration (ET for the modelling of crop yield and water productivity. Ground measurement of this parameter is tedious and time-consuming due to heterogeneity across the landscape over time and space. This study deals with the development of remote-sensing based empirical relationships for the estimation of ground-based LAI (LAIG using NDVI, modelled with and without atmospheric correction models for three irrigated crops (corn, wheat and rice grown in irrigated farms within Coleambally Irrigation Area (CIA which is located in southern Murray Darling basin, NSW in Australia. Extensive ground truthing campaigns were carried out to measure crop growth and to collect field samples of LAI using LAI- 2000 Plant Canopy Analyser and reflectance using CROPSCAN Multi Spectral Radiometer at several farms within the CIA. A Set of 12 cloud free Landsat 5 TM satellite images for the period of 2010-11 were downloaded and regression analysis was carried out to analyse the co-relationships between satellite and ground measured reflectance and to check the reliability of data sets for the crops. Among all the developed regression relationships between LAI and NDVI, the atmospheric correction process has significantly improved the relationship between LAI and NDVI for Landsat 5 TM images. The regression analysis also shows strong correlations for corn and wheat but weak correlations for rice which is currently being investigated.

  17. 76 FR 67461 - Cosmetic Microbiological Safety Issues; Public Meeting

    Science.gov (United States)

    2011-11-01

    ...] Cosmetic Microbiological Safety Issues; Public Meeting AGENCY: Food and Drug Administration, HHS. ACTION... Administration (FDA) is announcing a public meeting entitled ``Cosmetic Microbiological Safety Issues.'' The... cosmetic microbiological safety and to suggest areas for the possible development of FDA guidance documents...

  18. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional–structural plant model

    Science.gov (United States)

    Sarlikioti, V.; de Visser, P. H. B.; Marcelis, L. F. M.

    2011-01-01

    Background and Aims At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions. Methods Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional–structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions. Key Results Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north–south orientation of rows differed from east–west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis. Conclusions Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical

  19. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model.

    Science.gov (United States)

    Sarlikioti, V; de Visser, P H B; Marcelis, L F M

    2011-04-01

    At present most process-based models and the majority of three-dimensional models include simplifications of plant architecture that can compromise the accuracy of light interception simulations and, accordingly, canopy photosynthesis. The aim of this paper is to analyse canopy heterogeneity of an explicitly described tomato canopy in relation to temporal dynamics of horizontal and vertical light distribution and photosynthesis under direct- and diffuse-light conditions. Detailed measurements of canopy architecture, light interception and leaf photosynthesis were carried out on a tomato crop. These data were used for the development and calibration of a functional-structural tomato model. The model consisted of an architectural static virtual plant coupled with a nested radiosity model for light calculations and a leaf photosynthesis module. Different scenarios of horizontal and vertical distribution of light interception, incident light and photosynthesis were investigated under diffuse and direct light conditions. Simulated light interception showed a good correspondence to the measured values. Explicitly described leaf angles resulted in higher light interception in the middle of the plant canopy compared with fixed and ellipsoidal leaf-angle distribution models, although the total light interception remained the same. The fraction of light intercepted at a north-south orientation of rows differed from east-west orientation by 10 % on winter and 23 % on summer days. The horizontal distribution of photosynthesis differed significantly between the top, middle and lower canopy layer. Taking into account the vertical variation of leaf photosynthetic parameters in the canopy, led to approx. 8 % increase on simulated canopy photosynthesis. Leaf angles of heterogeneous canopies should be explicitly described as they have a big impact both on light distribution and photosynthesis. Especially, the vertical variation of photosynthesis in canopy is such that the

  20. Ultrasound assessment of the fetal biophysical profile: What does an radiologist need to know?

    International Nuclear Information System (INIS)

    Guimaraes Filho, Helio Antonio; Araujo Junior, Edward; Marcondes Machado Nardozza, Luciano; Linhares Dias da Costa, Lavoisier; Fernandes Moron, Antonio; Mattar, Rosiane

    2008-01-01

    Proposed by Frank Manning about 26 years ago, fetal biophysical profile has been incorporated to the propaedeutics of non-invasive fetal well being assessment in high-risk gestations. Despite the existence of other methods for assessing fetal vitality, as Doppler flowmetry, the biophysical profile continues to be important in estimating the risk of hypoxia and perinatal morbimortality for those fetuses. In the present article, the authors review the regulatory mechanisms of fetal biophysical activities, as well as physiological and pathological factors that interfere with them. The main objective of the study is to discuss the present and important aspects of the method, and the practical applications and interpretation of its findings, in order to help radiologists improve their knowledge in this specific area of fetal ultrasonography

  1. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    Science.gov (United States)

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  2. Bibliography of reviews and methods of photosynthesis-85

    Czech Academy of Sciences Publication Activity Database

    Šesták, Zdeněk; Čatský, Jiří

    2002-01-01

    Roč. 39, č. 4 (2002), s. 615-640 ISSN 0300-3604 R&D Projects: GA AV ČR KSK5020115 Institutional research plan: CEZ:AV0Z5038910 Keywords : methods of photosynthesis Subject RIV: EF - Botanics Impact factor: 0.773, year: 2002

  3. Preamble to marine microbiology: Facets and opportunities

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.

    The book titled 'Marine Microbiology: Facets & Opportunities' is an attempt to bring together some facets of marine microbiology as have been made out by many contemporaries in particular from the tropical marine regions. There are 18 contributed...

  4. In situ temperature relationships of biochemical and stomatal controls of photosynthesis in four lowland tropical tree species.

    Science.gov (United States)

    Slot, Martijn; Winter, Klaus

    2017-12-01

    Net photosynthetic carbon uptake of Panamanian lowland tropical forest species is typically optimal at 30-32 °C. The processes responsible for the decrease in photosynthesis at higher temperatures are not fully understood for tropical trees. We determined temperature responses of maximum rates of RuBP-carboxylation (V CMax ) and RuBP-regeneration (J Max ), stomatal conductance (G s ), and respiration in the light (R Light ) in situ for 4 lowland tropical tree species in Panama. G s had the lowest temperature optimum (T Opt ), similar to that of net photosynthesis, and photosynthesis became increasingly limited by stomatal conductance as temperature increased. J Max peaked at 34-37 °C and V CMax ~2 °C above that, except in the late-successional species Calophyllum longifolium, in which both peaked at ~33 °C. R Light significantly increased with increasing temperature, but simulations with a photosynthesis model indicated that this had only a small effect on net photosynthesis. We found no evidence for Rubisco-activase limitation of photosynthesis. T Opt of V CMax and J Max fell within the observed in situ leaf temperature range, but our study nonetheless suggests that net photosynthesis of tropical trees is more strongly influenced by the indirect effects of high temperature-for example, through elevated vapour pressure deficit and resulting decreases in stomatal conductance-than by direct temperature effects on photosynthetic biochemistry and respiration. © 2017 John Wiley & Sons Ltd.

  5. Applying photosynthesis research to increase crop yields

    Science.gov (United States)

    Clayton C. Black; Shi-Jean S. Sung; Kristina Toderich; Pavel Yu Voronin

    2010-01-01

    This account is dedicated to Dr. Guivi Sanadze for his career long devotion to science and in recognition of his discovery of isoprene emission by trees during photosynthesis. Investigations on the emission of isoprene and other monoterpenes now have been extended globally to encompass other terrestrial vegetation, algae, waters, and marine life in the world's...

  6. Photosynthate supply and utilization in alfalfa: a developmental shift from a source to a sink limitation of photosynthesis

    International Nuclear Information System (INIS)

    Baysdorfer, C.; Bassham, J.A.

    1985-01-01

    Long-term carbon dioxide enrichment, 14 CO 2 feeding, and partial defoliation were employed as probes to investigate source/sink limitations of photosynthesis during the development of symbiotically grown alfalfa. In the mature crop, long-term CO 2 enrichment does not affect the rates of net photosynthesis, relative growth, 14 C export to nonphotosynthetic organs, or the rates of 14 C label incorporation into leaf sucrose, starch, or malate. The rate of glycolate labeling is, however, substantially reduced under these conditions. When the mature crop was partially defoliated, a considerable increase in net photosynthesis occurred in the remaining leaves. In the seedling crop, long-term CO 2 enrichment increased dry matter accumulation, primarily as a result of increases in leaf starch content. Although the higher rates of starch synthesis are not maintained, the growth enhancement of the enriched plants persisted throughout the experimental period. These results imply a source limitation of seedling photosynthesis and a sink limitation of photosynthesis in more mature plants. Consequently, both the supply and the utilization of photosynthate may limit seasonal photosynthesis in alfalfa

  7. Automated photosynthesis of 11C-glucose

    International Nuclear Information System (INIS)

    Ishiwata, K.; Monma, M.; Iwata, R.; Ido, T.

    1982-01-01

    Glucose and fructose, labelled with 11 C, were produced by passing 11 CO 2 into an evacuated chamber containing spinach leaves. Photosynthesis was carried out by day light lamp illumination. 75-95% of the 11 CO 2 was absorbed by the leaves and the radioactivity in the leaves was extracted in ethanol as sugars. Radiochemical purity was determined by HPLC. The automated system was controlled by timers. (U.K.)

  8. Evaluation of oral microbiology lab curriculum reform.

    Science.gov (United States)

    Nie, Min; Gao, Zhen Y; Wu, Xin Y; Jiang, Chen X; Du, Jia H

    2015-12-07

    According to the updated concept of oral microbiology, the School of Stomatology, Wuhan University, has carried out oral microbiology teaching reforms during the last 5 years. There was no lab curriculum before 2009 except for a theory course of oral microbiology. The school has implemented an innovative curriculum with oral medicine characteristics to strengthen understanding of knowledge, cultivate students' scientific interest and develop their potential, to cultivate the comprehensive ability of students. This study was designed to evaluate the oral microbiology lab curriculum by analyzing student performance and perceptions regarding the curriculum from 2009 to 2013. The lab curriculum adopted modalities for cooperative learning. Students collected dental plaque from each other and isolated the cariogenic bacteria with selective medium plates. Then they purified the enrichment culture medium and identified the cariogenic strains by Gram stain and biochemical tests. Both quantitative and qualitative data for 5 years were analysed in this study. Part One of the current study assessed student performance in the lab from 2009 to 2013. Part Two used qualitative means to assess students' perceptions by an open questionnaire. The 271 study students' grades on oral microbiology improved during the lab curriculum: "A" grades rose from 60.5 to 81.2 %, and "C" grades fell from 28.4 to 6.3 %. All students considered the lab curriculum to be interesting and helpful. Quantitative and qualitative data converge to suggest that the lab curriculum has strengthened students' grasp of important microbiology-related theory, cultivated their scientific interest, and developed their potential and comprehensive abilities. Our student performance and perception data support the continued use of the innovative teaching system. As an extension and complement of the theory course, the oral microbiology lab curriculum appears to improve the quality of oral medicine education and help to

  9. Significance of cold-season respiration and photosynthesis in a subarctic heath ecosystem in Northern Sweden

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, Andreas; Jonasson, S.

    2007-01-01

    While substantial cold-season respiration has been documented in most arctic and alpine ecosystems in recent years, the significance of cold-season photosynthesis in these biomes is still believed to be small. In a mesic, subartic heath during both the cold and warm season, we measured in situ...... ecosystem respiration and photosynthesis with a chamber technique at ambient conditions and at artificially, increased frequency of freeze-thaw (FT) cycles during fall and spring. We fitted the measured ecosystem exchange rates to respiration and photosynthesis models with R-2-values ranging from 0.81 to 0.......85. As expected, estimated cold-season (October, November, April and May) respiration was significant and accounted for at least 22% of the annual respiratory CO2 flux. More surprisingly, estimated photosynthesis during this period accounted for up to 19% of the annual gross CO2 uptake, suggesting that cold...

  10. Medical microbiology training needs and trainee experience.

    Science.gov (United States)

    Seale, Josephine; Elamin, Wael; Millar, Michael

    2014-02-01

    Training in microbiology is continuing to evolve. Standardisation of this process has, in part, been achieved through the development of a training curriculum by the Royal College of Pathologists (RCPath). A substantial proportion of microbiology training occurs through telephone consultations. To ascertain the content of these interactions and the extent to which the necessary skills outlined by the curriculum are attainable via these consultations. Records of telephone consultations made by microbiology registrars (SpR) on the Laboratory Information Management System (LIMS) over a 6 month period were analysed with regard to who initiated contact and the type of advice provided. An average of 426 SpR entries per month were made on the LIMS following telephone consultations. These consultations were predominantly initiated by fellow clinicians as opposed to the SpR. The majority (79%) of advice entailed guidance as to the use of antimicrobials which resulted in an alteration of the current regimen in 54% of cases. This study represents the first attempt to quantify the telephone consultations of microbiology trainees. It is concluded that although such interactions provide a means of attaining some of the competencies outlined by the RCPath curriculum, the bias towards antimicrobial advice reflects a discrepancy between the needs of the service users and the broad skill set advocated by the current microbiology training programme. Future modifications will need to take this into account to ensure both the training of SpRs and the microbiology service is fit for purpose.

  11. Suppression of nighttime sap flux with lower stem photosynthesis in Eucalyptus trees.

    Science.gov (United States)

    Gao, Jianguo; Zhou, Juan; Sun, Zhenwei; Niu, Junfeng; Zhou, Cuiming; Gu, Daxing; Huang, Yuqing; Zhao, Ping

    2016-04-01

    It is widely accepted that substantial nighttime sap flux (J s,n) or transpiration (E) occurs in most plants, but the physiological implications are poorly known. It has been hypothesized that J s,n or E serves to enhance nitrogen uptake or deliver oxygen; however, no clear evidence is currently available. In this study, sap flux (J s) in Eucalyptus grandis × urophylla with apparent stem photosynthesis was measured, including control trees which were covered by aluminum foil (approximately 1/3 of tree height) to block stem photosynthesis. We hypothesized that the nighttime water flux would be suppressed in trees with lower stem photosynthesis. The results showed that the green tissue degraded after 3 months, demonstrating a decrease in stem photosynthesis. The daytime J s decreased by 21.47%, while J s,n decreased by 12.03% in covered trees as compared to that of control, and the difference was statistically significant (P photosynthesis in covered trees. Predawn (ψ pd) of covered trees was marginally higher than that of control while lower at predawn stomatal conductance (g s), indicating a suppressed water flux in covered trees. There was no difference in leaf carbon content and δ(13)C between the two groups, while leaf nitrogen content and δ(15)N were significantly higher in covered trees than that of the control (P < 0.05), indicating that J s,n was not used for nitrogen uptake. These results suggest that J s,n may act as an oxygen pathway since green tissue has a higher respiration or oxygen demand than non-green tissue. Thus, this study demonstrated the physiological implications of J s,n and the possible benefits of nighttime water use or E by the tree.

  12. Synthesis of Phenolics and Flavonoids in Ginger (Zingiber officinale Roscoe and Their Effects on Photosynthesis Rate

    Directory of Open Access Journals (Sweden)

    Asmah Rahmat

    2010-11-01

    Full Text Available The relationship between phenolics and flavonoids synthesis/accumulation and photosynthesis rate was investigated for two Malaysian ginger (Zingiber officinale varieties grown under four levels of glasshouse light intensity, namely 310, 460, 630 and 790 μmol m−2s−1. High performance liquid chromatography (HPLC was employed to identify and quantify the polyphenolic components. The results of HPLC analysis indicated that synthesis and partitioning of quercetin, rutin, catechin, epicatechin and naringenin were high in plants grown under 310 µmol m−2s−1. The average value of flavonoids synthesis in leaves for both varieties increased (Halia Bentong 26.1%; Halia Bara 19.5% when light intensity decreased. Photosynthetic rate and plant biomass increased in both varieties with increasing light intensity. More specifically, a high photosynthesis rate (12.25 µmol CO2 m−2s−1 in Halia Bara and plant biomass (79.47 g in Halia Bentong were observed at 790 µmol m−2s−1. Furthermore, plants with the lowest rate of photosynthesis had highest flavonoids content. Previous studies have shown that quercetin inhibits and salicylic acid induces the electron transport rate in photosynthesis photosystems. In the current study, quercetin was an abundant flavonoid in both ginger varieties. Moreover, higher concentration of quercetin (1.12 mg/g dry weight was found in Halia Bara leaves grown under 310 µmol m−2s−1 with a low photosynthesis rate. Furthermore, a high content of salicylic acid (0.673 mg/g dry weight was detected in Halia Bara leaves exposed under 790 µmol m−2s−1 with a high photosynthesis rate. No salicylic acid was detected in gingers grown under 310 µmol m−2s−1. Ginger is a semi-shade loving plant that does not require high light intensity for photosynthesis. Different photosynthesis rates at different light intensities may be related to the absence or presence of some flavonoid and phenolic compounds.

  13. Synthesis of Phenolics and Flavonoids in Ginger (Zingiber officinale Roscoe) and Their Effects on Photosynthesis Rate

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z. E.; Rahmat, Asmah

    2010-01-01

    The relationship between phenolics and flavonoids synthesis/accumulation and photosynthesis rate was investigated for two Malaysian ginger (Zingiber officinale) varieties grown under four levels of glasshouse light intensity, namely 310, 460, 630 and 790 μmol m−2s−1. High performance liquid chromatography (HPLC) was employed to identify and quantify the polyphenolic components. The results of HPLC analysis indicated that synthesis and partitioning of quercetin, rutin, catechin, epicatechin and naringenin were high in plants grown under 310 μmol m−2s−1. The average value of flavonoids synthesis in leaves for both varieties increased (Halia Bentong 26.1%; Halia Bara 19.5%) when light intensity decreased. Photosynthetic rate and plant biomass increased in both varieties with increasing light intensity. More specifically, a high photosynthesis rate (12.25 μmol CO2 m−2s−1 in Halia Bara) and plant biomass (79.47 g in Halia Bentong) were observed at 790 μmol m−2s−1. Furthermore, plants with the lowest rate of photosynthesis had highest flavonoids content. Previous studies have shown that quercetin inhibits and salicylic acid induces the electron transport rate in photosynthesis photosystems. In the current study, quercetin was an abundant flavonoid in both ginger varieties. Moreover, higher concentration of quercetin (1.12 mg/g dry weight) was found in Halia Bara leaves grown under 310 μmol m−2s−1 with a low photosynthesis rate. Furthermore, a high content of salicylic acid (0.673 mg/g dry weight) was detected in Halia Bara leaves exposed under 790 μmol m−2s−1 with a high photosynthesis rate. No salicylic acid was detected in gingers grown under 310 μmol m−2s−1. Ginger is a semi-shade loving plant that does not require high light intensity for photosynthesis. Different photosynthesis rates at different light intensities may be related to the absence or presence of some flavonoid and phenolic compounds. PMID:21151455

  14. A biophysical approach to the optimisation of dendritic-tumour cell electrofusion

    International Nuclear Information System (INIS)

    Sukhorukov, Vladimir L.; Reuss, Randolph; Endter, Joerg M.; Fehrmann, Steffen; Katsen-Globa, Alisa; Gessner, Petra; Steinbach, Andrea; Mueller, Kilian J.; Karpas, Abraham; Zimmermann, Ulrich; Zimmermann, Heiko

    2006-01-01

    Electrofusion of tumour and dendritic cells (DCs) is a promising approach for production of DC-based anti-tumour vaccines. Although human DCs are well characterised immunologically, little is known about their biophysical properties, including dielectric and osmotic parameters, both of which are essential for the development of efficient electrofusion protocols. In the present study, human DCs from the peripheral blood along with a tumour cell line used as a model fusion partner were examined by means of time-resolved cell volumetry and electrorotation. Based on the biophysical cell data, the electrofusion protocol could be rapidly optimised with respect to the sugar composition of the fusion medium, duration of hypotonic treatment, frequency range for stable cell alignment, and field strengths of breakdown pulses triggering membrane fusion. The hypotonic electrofusion consistently gave a tumour-DC hybrid rate of up to 19%, as determined by counting dually labelled fluorescent hybrids in a microscope. This fusion rate is nearly twice as high as that usually reported in the literature for isotonic media. The experimental findings and biophysical approach presented here are generally useful for the development of efficient electrofusion protocols, especially for rare and valuable human cells

  15. Proteomics in medical microbiology.

    Science.gov (United States)

    Cash, P

    2000-04-01

    The techniques of proteomics (high resolution two-dimensional electrophoresis and protein characterisation) are widely used for microbiological research to analyse global protein synthesis as an indicator of gene expression. The rapid progress in microbial proteomics has been achieved through the wide availability of whole genome sequences for a number of bacterial groups. Beyond providing a basic understanding of microbial gene expression, proteomics has also played a role in medical areas of microbiology. Progress has been made in the use of the techniques for investigating the epidemiology and taxonomy of human microbial pathogens, the identification of novel pathogenic mechanisms and the analysis of drug resistance. In each of these areas, proteomics has provided new insights that complement genomic-based investigations. This review describes the current progress in these research fields and highlights some of the technical challenges existing for the application of proteomics in medical microbiology. The latter concern the analysis of genetically heterogeneous bacterial populations and the integration of the proteomic and genomic data for these bacteria. The characterisation of the proteomes of bacterial pathogens growing in their natural hosts remains a future challenge.

  16. 21 CFR 866.2900 - Microbiological specimen collection and transport device.

    Science.gov (United States)

    2010-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices... microbiological specimen collection and transport device is a specimen collecting chamber intended for medical...

  17. Seminal Fluid Analysis And Biophysical Profile: Findings And ...

    African Journals Online (AJOL)

    Seminal Fluid Analysis And Biophysical Profile: Findings And Relevance In Infertile Males In Ilorin, Nigeria. EK Oghagbon, AAG Jimoh, SA Adebisi. Abstract. To determine if there was a bearing of body mass index (BMI) on male infertility, a cross-sectional study of males of infertile couples, attending our infertility clinic was ...

  18. The Danish Microbiology Database (MiBa) 2010 to 2013

    DEFF Research Database (Denmark)

    Voldstedlund, M; Haarh, M; Mølbak, K

    2014-01-01

    The Danish Microbiology Database (MiBa) is a national database that receives copies of reports from all Danish departments of clinical microbiology. The database was launched in order to provide healthcare personnel with nationwide access to microbiology reports and to enable real-time surveillance...

  19. Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants

    Energy Technology Data Exchange (ETDEWEB)

    Torsethaugen, Gro

    1998-09-01

    The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.

  20. Effects of high temperature on photosynthesis and related gene expression in poplar

    Science.gov (United States)

    2014-01-01

    Background High temperature, whether transitory or constant, causes physiological, biochemical and molecular changes that adversely affect tree growth and productivity by reducing photosynthesis. To elucidate the photosynthetic adaption response and examine the recovery capacity of trees under heat stress, we measured gas exchange, chlorophyll fluorescence, electron transport, water use efficiency, and reactive oxygen-producing enzyme activities in heat-stressed plants. Results We found that photosynthesis could completely recover after less than six hours of high temperature treatment, which might be a turning point in the photosynthetic response to heat stress. Genome-wide gene expression analysis at six hours of heat stress identified 29,896 differentially expressed genes (15,670 up-regulated and 14,226 down-regulated), including multiple classes of transcription factors. These interact with each other and regulate the expression of photosynthesis-related genes in response to heat stress, controlling carbon fixation and changes in stomatal conductance. Heat stress of more than twelve hours caused reduced electron transport, damaged photosystems, activated the glycolate pathway and caused H2O2 production; as a result, photosynthetic capacity did not recover completely. Conclusions This study provides a systematic physiological and global gene expression profile of the poplar photosynthetic response to heat stress and identifies the main limitations and threshold of photosynthesis under heat stress. It will expand our understanding of plant thermostability and provides a robust dataset for future studies. PMID:24774695

  1. An ethnographic study: Becoming a physics expert in a biophysics research group

    Science.gov (United States)

    Rodriguez, Idaykis

    Expertise in physics has been traditionally studied in cognitive science, where physics expertise is understood through the difference between novice and expert problem solving skills. The cognitive perspective of physics experts only create a partial model of physics expertise and does not take into account the development of physics experts in the natural context of research. This dissertation takes a social and cultural perspective of learning through apprenticeship to model the development of physics expertise of physics graduate students in a research group. I use a qualitative methodological approach of an ethnographic case study to observe and video record the common practices of graduate students in their biophysics weekly research group meetings. I recorded notes on observations and conduct interviews with all participants of the biophysics research group for a period of eight months. I apply the theoretical framework of Communities of Practice to distinguish the cultural norms of the group that cultivate physics expert practices. Results indicate that physics expertise is specific to a topic or subfield and it is established through effectively publishing research in the larger biophysics research community. The participant biophysics research group follows a learning trajectory for its students to contribute to research and learn to communicate their research in the larger biophysics community. In this learning trajectory students develop expert member competencies to learn to communicate their research and to learn the standards and trends of research in the larger research community. Findings from this dissertation expand the model of physics expertise beyond the cognitive realm and add the social and cultural nature of physics expertise development. This research also addresses ways to increase physics graduate student success towards their PhD. and decrease the 48% attrition rate of physics graduate students. Cultivating effective research

  2. Representing biophysical landscape interactions in soil models by bridging disciplines and scales.

    Science.gov (United States)

    van der Ploeg, M. J.; Carranza, C.; Teixeira da Silva, R.; te Brake, B.; Baartman, J.; Robinson, D.

    2017-12-01

    The combination of climate change, population growth and soil threats including carbon loss, biodiversity decline and erosion, increasingly confront the global community (Schwilch et al., 2016). One major challenge in studying processes involved in soil threats, landscape resilience, ecosystem stability, sustainable land management and resulting economic consequences, is that it is an interdisciplinary field (Pelletier et al., 2012). Less stringent scientific disciplinary boundaries are therefore important (Liu et al., 2007), because as a result of disciplinary focus, ambiguity may arise on the understanding of landscape interactions. This is especially true in the interaction between a landscape's physical and biological processes (van der Ploeg et al. 2012). Biophysical landscape interactions are those biotic and abiotic processes in a landscape that have an influence on the developments within and evolution of a landscape. An important aspect in biophysical landscape interactions is the differences in scale related to the various processes that play a role in these systems. Moreover, the interplay between the physical landscape and the occurring vegetation, which often co-evolve, and the resulting heterogeneity and emerging patterns are the reason why it is so challenging to establish a theoretical basis to describe biophysical processes in landscapes (e.g. te Brake et al. 2013, Robinson et al. 2016). Another complicating factor is the response of vegetation to changing environmental conditions, including a possible, and often unknown, time-lag (e.g. Metzger et al., 2009). An integrative description for modelling biophysical interactions has been a long standing goal in soil science (Vereecken et al., 2016). We need the development of soil models that are more focused on networks, connectivity and feedbacks incorporating the most important aspects of our detailed mechanistic modelling (Paola & Leeder, 2011). Additionally, remote sensing measurement techniques

  3. Microbiologically Influenced Corrosion

    Science.gov (United States)

    2009-01-01

    species grow as multicel- lular filaments called hyphae forming a mycelium, some fungal species also grow as single cells. Sexual and asexual...reinforced fluorinated 18 MICROBIOLOGICALLY INFLUENCED CORROSION polyimide composites due to hyphae penetration into resin interiors. The

  4. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria

    Science.gov (United States)

    Mallmann, Julia; Heckmann, David; Bräutigam, Andrea; Lercher, Martin J; Weber, Andreas PM; Westhoff, Peter; Gowik, Udo

    2014-01-01

    C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3–C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect. DOI: http://dx.doi.org/10.7554/eLife.02478.001 PMID:24935935

  5. Physiological and Proteomics Analyses Reveal Low-Phosphorus Stress Affected the Regulation of Photosynthesis in Soybean.

    Science.gov (United States)

    Chu, Shanshan; Li, Hongyan; Zhang, Xiangqian; Yu, Kaiye; Chao, Maoni; Han, Suoyi; Zhang, Dan

    2018-06-06

    Previous studies have revealed a significant genetic relationship between phosphorus (P)-efficiency and photosynthesis-related traits in soybean. In this study, we used proteome profiling in combination with expression analysis, biochemical investigations, and leaf ultrastructural analysis to identify the underlying physiological and molecular responses. The expression analysis and ultrastructural analysis showed that the photosynthesis key genes were decreased at transcript levels and the leaf mesophyll and chloroplast were severely damaged after low-P stress. Approximately 55 protein spots showed changes under low-P condition by mass spectrometry, of which 17 were involved in various photosynthetic processes. Further analysis revealed the depression of photosynthesis caused by low-P stress mainly involves the regulation of leaf structure, adenosine triphosphate (ATP) synthesis, absorption and transportation of CO₂, photosynthetic electron transport, production of assimilatory power, and levels of enzymes related to the Calvin cycle. In summary, our findings indicated that the existence of a stringent relationship between P supply and the genomic control of photosynthesis in soybean. As an important strategy to protect soybean photosynthesis, P could maintain the stability of cell structure, up-regulate the enzymes’ activities, recover the process of photosystem II (PSII), and induce the expression of low-P responsive genes and proteins.

  6. Manual de microbiología

    OpenAIRE

    Montoya Campuzano, Olga Inés

    1999-01-01

    Resumen: el manual de microbiología general fue elaborado con el objetivo de proporcionarle al estudiante de Zootecnia de la Universidad Nacional, las técnicas básicas en microbiología, de interés para aquellos cursos que 10 requieren. El estudiante trabajara con los microorganismos (patógenos y no patógenos de importancia, en las áreas de asistencia técnica que le corresponde prestar como: calidad de agua, de alimentos, de Semen entre otras

  7. Remote sensing of the Canadian Arctic: Modelling biophysical variables

    Science.gov (United States)

    Liu, Nanfeng

    It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic

  8. The Path of Carbon in Photosynthesis

    Science.gov (United States)

    Bassham, J. A.; Calvin, Melvin

    1960-10-01

    Biosynthesis begins with photosynthesis. Green plants and other photosynthetic organisms use the energy of absorbed visible light to make organic compounds from inorganic compounds. These organic compounds are the starting point for all other biosynthetic pathways. The products of photosynthesis provide not only the substrate material but also chemical energy for all subsequent biosynthesis. For example, nonphotosynthetic organisms making fats from sugars would first break down the sugars to smaller organic molecules. Some of the smaller molecules might be oxidized with O{sub 2} to CO{sub 2} and water. These reactions are accompanied by a release of chemical energy because O{sub 2} and sugar have a high chemical potential energy towards conversion to CO{sub 2} and H{sub 2}O. In a biochemical system only part of this energy would be released as heat. The heat would be used to bring about the conversion of certain enzymic cofactors to their more energetic forms. These cofactors would then enter into specific enzymic reactions in such a way as to supply energy to drive reactions in the direction of fat synthesis. Fats would be formed from the small organic molecules resulting from the breakdown of sugars. Thus sugar, a photosynthetic product, can supply both the energy and the material for the biosynthesis of fats.

  9. THE PATH OF CARBON IN PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, J.A.; Calvin, Melvin

    1960-10-01

    Biosynthesis begins with photosynthesis. Green plants and other photosynthetic organisms use the energy of absorbed visible light to make organic compounds from inorganic compounds. These organic compounds are the starting point for all other biosynthetic pathways. The products of photosynthesis provide not only the substrate material but also chemical energy for all subsequent biosynthesis. For example, nonphotosynthetic organisms making fats from sugars would first break down the sugars to smaller organic molecules. Some of the smaller molecules might be oxidized with O{sub 2} to CO{sub 2} and water. These reactions are accompanied by a release of chemical energy because O{sub 2} and sugar have a high chemical potential energy towards conversion to CO{sub 2} and H{sub 2}O. In a biochemical system only part of this energy would be released as heat. The heat would be used to bring about the conversion of certain enzymic cofactors to their more energetic forms. These cofactors would then enter into specific enzymic reactions in such a way as to supply energy to drive reactions in the direction of fat synthesis. Fats would be formed from the small organic molecules resulting from the breakdown of sugars. Thus sugar, a photosynthetic product, can supply both the energy and the material for the biosynthesis of fats.

  10. Acclimation of biochemical and diffusive components of photosynthesis in rice, wheat and maize to heat and water deficit: implications for modeling photosynthesis

    Directory of Open Access Journals (Sweden)

    Juan Alejandro Perdomo

    2016-11-01

    Full Text Available The impact of the combined effects of heat stress, increased vapor pressure deficit (VPD and water deficit on the physiology of major crops needs to be better understood to help identifying the expected negative consequences of climate change and heat waves on global agricultural productivity. To address this issue, rice, wheat and maize plants were grown under control temperature (CT, 25°C, VPD 1.8 kPa, and a high temperature (HT, 38°C, VPD 3.5 kPa, both under well-watered (WW and water deficit (WD conditions. Gas-exchange measurements showed that, in general, WD conditions affected the leaf conductance to CO2, while growth at HT had a more marked effect on the biochemistry of photosynthesis. When combined, HT and WD had an additive effect in limiting photosynthesis. The negative impacts of the imposed treatments on the processes governing leaf gas-exchange were species-dependent. Wheat presented a higher sensitivity while rice and maize showed a higher acclimation potential to increased temperature. Rubisco and PEPC kinetic constants determined in vitro at 25°C and 38°C were used to estimate Vcmax, Jmax and Vpmax in the modeling of C3 and C4 photosynthesis. The results here obtained reiterate the need to use species-specific and temperature-specific values for Rubisco and PEPC kinetic constants for a precise parameterization of the photosynthetic response to changing environmental conditions in different crop species.

  11. Biophysical constraints on leaf expansion in a tall conifer.

    Science.gov (United States)

    Fredrick C. Meinzer; Barbara J. Bond; Jennifer A. Karanian

    2008-01-01

    The physiological mechanisms responsible for reduced extension growth as trees increase in height remain elusive. We evaluated biophysical constraints on leaf expansion in old-growth Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) trees. Needle elongation rates, plastic and elastic extensibility, bulk leaf water, (L...

  12. Lower antibiotic costs attributable to clinical microbiology rounds.

    Science.gov (United States)

    Huang, Richard S P; Guervil, David J; Hunter, Robert L; Wanger, Audrey

    2015-09-01

    At our institution, our microbiologist, pharmacist, and infectious disease (ID) team meet to discuss ID patients, and this meeting is referred to as microbiology rounds. We hypothesized that our microbiology rounds reduce antibiotic costs. The study involved a review of 80 patients with an ID consultation order at each of the 3 hospitals: hospital A (HA) (only HA has microbiology rounds), hospital B (HB), and hospital C (HC). Of this population, we included patients with a positive blood culture. Thirty-six patients who met the above criteria were included in the study. The average antibiotic cost/patient/day at HA, HB, and HC were $66.0, $123, and $109, respectively. Also, we found that change in antibiotics was appropriate when compared to the final microbiology results in 90%, 44%, and 40% of the time at HA, HB, and HC, respectively. Herein, we found an association between conducting microbiology rounds and reduction of antibiotic cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Aerobic Anoxygenic Photosynthesis Is Commonly Present within the Genus Limnohabitans

    Czech Academy of Sciences Publication Activity Database

    Kasalický, Vojtěch; Zeng, Yonghui; Piwosz, Kasia; Šimek, Karel; Kratochvílová, Hana; Koblížek, Michal

    2018-01-01

    Roč. 84, č. 1 (2018), č. článku e02116-17. ISSN 0099-2240 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA ČR(CZ) GA13-00243S; GA ČR GA15-12197S; GA MŠk(CZ) LO1416 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : fish * IR microscopy * Limnohabitans * bacteriochlorophyll * bchY Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology; Microbiology (MBU-M) Impact factor: 3.807, year: 2016

  14. [Safety in the Microbiology laboratory].

    Science.gov (United States)

    Rojo-Molinero, Estrella; Alados, Juan Carlos; de la Pedrosa, Elia Gómez G; Leiva, José; Pérez, José L

    2015-01-01

    The normal activity in the laboratory of microbiology poses different risks - mainly biological - that can affect the health of their workers, visitors and the community. Routine health examinations (surveillance and prevention), individual awareness of self-protection, hazard identification and risk assessment of laboratory procedures, the adoption of appropriate containment measures, and the use of conscientious microbiological techniques allow laboratory to be a safe place, as records of laboratory-acquired infections and accidents show. Training and information are the cornerstones for designing a comprehensive safety plan for the laboratory. In this article, the basic concepts and the theoretical background on laboratory safety are reviewed, including the main legal regulations. Moreover, practical guidelines are presented for each laboratory to design its own safety plan according its own particular characteristics. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  15. 21 CFR 866.2350 - Microbiological assay culture medium.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2350... consists primarily of liquid or solid biological materials intended for medical purposes to cultivate...

  16. Biophysics and cancer

    CERN Document Server

    Nicolini, Claudio

    1986-01-01

    Since the early times of the Greek philosophers Leucippus and Democritus, and later of the Roman philosopher Lucretius, a simple, fundamental idea emerged that brought the life sciences into the realm of the physical sciences. Atoms, after various interactions, were assumed to acquire stable configurations that corresponded either to the living or to the inanimate world. This simple and unitary theory, which has evolved in successive steps to our present time, remarkably maintained its validity despite several centuries of alternative vicissitudes, and is the foundation of modern biophysics. Some of the recent developments of this ancient idea are the discovery of the direct relationship between spatial structures and chemical activity of such molecules as methane and benzene, and the later discovery of the three-dimensional structure of double-helical DNA, and of its relationship with biological activity. The relationship between the structure of various macromolecules and the function of living cells was on...

  17. Biophysical aspects of using liposomes as delivery vehicles.

    Science.gov (United States)

    Ulrich, Anne S

    2002-04-01

    Liposomes are used as biocompatible carriers of drugs, peptides, proteins, plasmic DNA, antisense oligonucleotides or ribozymes, for pharmaceutical, cosmetic, and biochemical purposes. The enormous versatility in particle size and in the physical parameters of the lipids affords an attractive potential for constructing tailor-made vehicles for a wide range of applications. Some of the recent literature will be reviewed here and presented from a biophysical point of view, thus providing a background for the more specialized articles in this special issue on liposome technology. Different properties (size, colloidal behavior, phase transitions, and polymorphism) of diverse lipid formulations (liposomes, lipoplexes, cubic phases, emulsions, and solid lipid nanoparticles) for distinct applications (parenteral, transdermal, pulmonary, and oral administration) will be rationalized in terms of common structural, thermodynamic and kinetic parameters of the lipids. This general biophysical basis helps to understand pharmaceutically relevant aspects such as liposome stability during storage and towards serum, the biodistribution and specific targeting of cargo, and how to trigger drug release and membrane fusion. Methods for the preparation and characterization of liposomal formulations in vitro will be outlined, too.

  18. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine.

    Science.gov (United States)

    Chang, Christine Y; Fréchette, Emmanuelle; Unda, Faride; Mansfield, Shawn D; Ensminger, Ingo

    2016-10-01

    Rising global temperature and CO 2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO 2 , affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L -1 ) or elevated (800 μmol mol -1 ) CO 2 , and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO 2 (LTAC), elevated temperature/ambient CO 2 (ETAC), or elevated temperature/elevated CO 2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus Our findings suggest that exposure to elevated temperature and CO 2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO 2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low

  19. Rubisco catalytic properties of wild and domesticated relatives provide scope for improving wheat photosynthesis.

    Science.gov (United States)

    Prins, Anneke; Orr, Douglas J; Andralojc, P John; Reynolds, Matthew P; Carmo-Silva, Elizabete; Parry, Martin A J

    2016-03-01

    Rubisco is a major target for improving crop photosynthesis and yield, yet natural diversity in catalytic properties of this enzyme is poorly understood. Rubisco from 25 genotypes of the Triticeae tribe, including wild relatives of bread wheat (Triticum aestivum), were surveyed to identify superior enzymes for improving photosynthesis in this crop. In vitro Rubisco carboxylation velocity (V c), Michaelis-Menten constants for CO2 (K c) and O2 (K o) and specificity factor (S c/o) were measured at 25 and 35 °C. V c and K c correlated positively, while V c and S c/o were inversely related. Rubisco large subunit genes (rbcL) were sequenced, and predicted corresponding amino acid differences analysed in relation to the corresponding catalytic properties. The effect of replacing native wheat Rubisco with counterparts from closely related species was analysed by modelling the response of photosynthesis to varying CO2 concentrations. The model predicted that two Rubisco enzymes would increase photosynthetic performance at 25 °C while only one of these also increased photosynthesis at 35 °C. Thus, under otherwise identical conditions, catalytic variation in the Rubiscos analysed is predicted to improve photosynthetic rates at physiological CO2 concentrations. Naturally occurring Rubiscos with superior properties amongst the Triticeae tribe can be exploited to improve wheat photosynthesis and crop productivity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. NO MECHANISTIC DEPENDENCE OF PHOTOSYNTHESIS ON CALCIFICATION IN THE COCCOLITHOPHORID EMILIANIA HUXLEYI (HAPTOPHYTA)(1).

    Science.gov (United States)

    Leonardos, Nikos; Read, Betsy; Thake, Brenda; Young, Jeremy R

    2009-10-01

    There is still considerable uncertainty about the relationship between calcification and photosynthesis. It has been suggested that since calcification in coccolithophorids is an intracellular process that releases CO2 , it enhances photosynthesis in a manner analogous to a carbon-concentrating mechanism (CCM). The ubiquitous, bloom-forming, and numerically abundant coccolithophorid Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler was studied in nutrient-replete, pH and [CO2 ] controlled, continuous cultures (turbidostats) under a range of [Ca(2+) ] from 0 to 9 mM. We examined the long-term, fully acclimated photosynthesis-light responses and analyzed the crystalline structure of the coccoliths using SEM. The E. huxleyi cells completely lost their coccosphere when grown in 0 [Ca(2+) ], while thin, undercalcified and brittle coccoliths were evident at 1 mM [Ca(2+) ]. Coccoliths showed increasing levels of calcification with increasing [Ca(2+) ]. More robust coccoliths were noted, with no discernable differences in coccolith morphology when the cells were grown in either 5 or 9 mM (ambient seawater) [Ca(2+) ]. In contrast to calcification, photosynthesis was not affected by the [Ca(2+) ] in the media. Cells showed no correlation of their light-dependent O2 evolution with [Ca(2+) ], and in all [Ca(2+) ]-containing turbidostats, there were no significant differences in growth rate. The results show unequivocally that as a process, photosynthesis in E. huxleyi is mechanistically independent from calcification. © 2009 Phycological Society of America.

  1. Elevated Temperature and CO2 Stimulate Late-Season Photosynthesis But Impair Cold Hardening in Pine[OPEN

    Science.gov (United States)

    2016-01-01

    Rising global temperature and CO2 levels may sustain late-season net photosynthesis of evergreen conifers but could also impair the development of cold hardiness. Our study investigated how elevated temperature, and the combination of elevated temperature with elevated CO2, affected photosynthetic rates, leaf carbohydrates, freezing tolerance, and proteins involved in photosynthesis and cold hardening in Eastern white pine (Pinus strobus). We designed an experiment where control seedlings were acclimated to long photoperiod (day/night 14/10 h), warm temperature (22°C/15°C), and either ambient (400 μL L−1) or elevated (800 μmol mol−1) CO2, and then shifted seedlings to growth conditions with short photoperiod (8/16 h) and low temperature/ambient CO2 (LTAC), elevated temperature/ambient CO2 (ETAC), or elevated temperature/elevated CO2 (ETEC). Exposure to LTAC induced down-regulation of photosynthesis, development of sustained nonphotochemical quenching, accumulation of soluble carbohydrates, expression of a 16-kD dehydrin absent under long photoperiod, and increased freezing tolerance. In ETAC seedlings, photosynthesis was not down-regulated, while accumulation of soluble carbohydrates, dehydrin expression, and freezing tolerance were impaired. ETEC seedlings revealed increased photosynthesis and improved water use efficiency but impaired dehydrin expression and freezing tolerance similar to ETAC seedlings. Sixteen-kilodalton dehydrin expression strongly correlated with increases in freezing tolerance, suggesting its involvement in the development of cold hardiness in P. strobus. Our findings suggest that exposure to elevated temperature and CO2 during autumn can delay down-regulation of photosynthesis and stimulate late-season net photosynthesis in P. strobus seedlings. However, this comes at the cost of impaired freezing tolerance. Elevated temperature and CO2 also impaired freezing tolerance. However, unless the frequency and timing of extreme low

  2. Preface: photosynthesis and hydrogen energy research for sustainability.

    Science.gov (United States)

    Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2017-09-01

    Energy supply, climate change, and global food security are among the main chalenges facing humanity in the twenty-first century. Despite global energy demand is continuing to increase, the availability of low cost energy is decreasing. Together with the urgent problem of climate change due to CO 2 release from the combustion of fossil fuels, there is a strong requirement of developing the clean and renewable energy system for the hydrogen production. Solar fuel, biofuel, and hydrogen energy production gained unlimited possibility and feasibility due to understanding of the detailed photosynthetic system structures. This special issue contains selected papers on photosynthetic and biomimetic hydrogen production presented at the International Conference "Photosynthesis Research for Sustainability-2016", that was held in Pushchino (Russia), during June 19-25, 2016, with the sponsorship of the International Society of Photosynthesis Research (ISPR) and of the International Association for Hydrogen Energy (IAHE). This issue is intended to provide recent information on the photosynthetic and biohydrogen production to our readers.

  3. significance of rice sheath photosynthesis: yield determination by c ...

    African Journals Online (AJOL)

    ACSS

    1State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China. 2School of ... for contribution rates of sheath photosynthesis to economical yield. ..... related processes during ripening in rice plants.

  4. THE MICROBIOLOGY OF SOUTH AFRICAN DRIED SAUSAGE

    African Journals Online (AJOL)

    THE MICROBIOLOGY OF SOUTH AFRICAN DRIED SAUSAGE. W.H. Holzapfel and A.N. Hail. Receipt of MS s.3.76. Department of Microbiology and Plant Pathology, University of hetoria and. Animol and Dairv Science Reseorch Institute, Irene. OPSOMMING: DIE MIKROBIOLOGIE VAN SUID.AFRIKAANSE DROiWORS.

  5. Advances in the application of molecular microbiological methods in the oil and gas industry and links to microbiologically influenced corrosion

    DEFF Research Database (Denmark)

    Eckert, Rickard; Skovhus, Torben Lund

    2018-01-01

    While the oil and gas industry has witnessed increased applications of molecular microbiological methods (MMMs) for diagnosing and managing microbiologically influenced corrosion (MIC) in the past decade, the process for establishing clear links between microbiological conditions and corrosion...... mechanisms is still emerging. Different MMMs provide various types of information about microbial diversity, abundance, activity and function, all of which are quite different from the culture-based results that are familiar to oil and gas industry corrosion professionals. In addition, a multidisciplinary...

  6. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant.

    Science.gov (United States)

    Sakowska, Karolina; Alberti, Giorgio; Genesio, Lorenzo; Peressotti, Alessandro; Delle Vedove, Gemini; Gianelle, Damiano; Colombo, Roberto; Rodeghiero, Mirco; Panigada, Cinzia; Juszczak, Radosław; Celesti, Marco; Rossini, Micol; Haworth, Matthew; Campbell, Benjamin W; Mevy, Jean-Philippe; Vescovo, Loris; Cendrero-Mateo, M Pilar; Rascher, Uwe; Miglietta, Franco

    2018-03-02

    The photosynthetic, optical, and morphological characteristics of a chlorophyll-deficient (Chl-deficient) "yellow" soybean mutant (MinnGold) were examined in comparison with 2 green varieties (MN0095 and Eiko). Despite the large difference in Chl content, similar leaf photosynthesis rates were maintained in the Chl-deficient mutant by offsetting the reduced absorption of red photons by a small increase in photochemical efficiency and lower non-photochemical quenching. When grown in the field, at full canopy cover, the mutants reflected a significantly larger proportion of incoming shortwave radiation, but the total canopy light absorption was only slightly reduced, most likely due to a deeper penetration of light into the canopy space. As a consequence, canopy-scale gross primary production and ecosystem respiration were comparable between the Chl-deficient mutant and the green variety. However, total biomass production was lower in the mutant, which indicates that processes other than steady state photosynthesis caused a reduction in biomass accumulation over time. Analysis of non-photochemical quenching relaxation and gas exchange in Chl-deficient and green leaves after transitions from high to low light conditions suggested that dynamic photosynthesis might be responsible for the reduced biomass production in the Chl-deficient mutant under field conditions. © 2018 John Wiley & Sons Ltd.

  7. Molecular Factors Controlling Photosynthetic Light Harvesting by Carotenoids

    Czech Academy of Sciences Publication Activity Database

    Polívka, Tomáš; Frank, H.A.

    2010-01-01

    Roč. 43, č. 8 (2010), s. 1125-1134 ISSN 0001-4842 Institutional research plan: CEZ:AV0Z50510513 Keywords : carotenoids * energy transfer * photosynthesis * light-harvesting Subject RIV: BO - Biophysics Impact factor: 21.840, year: 2010

  8. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  9. Diagnostic microbiology in veterinary dermatology: present and future.

    Science.gov (United States)

    Guardabassi, Luca; Damborg, Peter; Stamm, Ivonne; Kopp, Peter A; Broens, Els M; Toutain, Pierre-Louis

    2017-02-01

    The microbiology laboratory can be perceived as a service provider rather than an integral part of the healthcare team. The aim of this review is to discuss the current challenges of providing a state-of-the-art diagnostic veterinary microbiology service including the identification (ID) and antimicrobial susceptibility testing (AST) of key pathogens in veterinary dermatology. The Study Group for Veterinary Microbiology (ESGVM) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) identified scientific, technological, educational and regulatory issues impacting the predictive value of AST and the quality of the service offered by microbiology laboratories. The advent of mass spectrometry has significantly reduced the time required for ID of key pathogens such as Staphylococcus pseudintermedius. However, the turnaround time for validated AST methods has remained unchanged for many years. Beyond scientific and technological constraints, AST methods are not harmonized and clinical breakpoints for some antimicrobial drugs are either missing or inadequate. Small laboratories, including in-clinic laboratories, are usually not adequately equipped to run up-to-date clinical microbiologic diagnostic tests. ESGVM recommends the use of laboratories employing mass spectrometry for ID and broth micro-dilution for AST, and offering assistance by expert microbiologists on pre- and post-analytical issues. Setting general standards for veterinary clinical microbiology, promoting antimicrobial stewardship, and the development of new, validated and rapid diagnostic methods, especially for AST, are among the missions of ESGVM. © 2017 The Authors. Veterinary Dermatology published by John Wiley & Sons Ltd on behalf of the ESVD and ACVD.

  10. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations.

    Science.gov (United States)

    Kapus, András; Janmey, Paul

    2013-07-01

    From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions. © 2013 American Physiological Society.

  11. Biophysical Evaluation of Food Decontamination Effects on Tissue and Bacteria

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan

    2011-01-01

    Traditionally, the effects and efficiency of food surface decontamination processes, such as chlorine washing, radiation, or heating, have been evaluated by sensoric analysis and colony-forming unit (CFU) counts of surface swabs or carcass rinses. These methods suffice when determining probable...... consumer responses or meeting legislative contamination limits. However, in the often very costly, optimization process of a new method, more quantitative and unbiased results are invaluable. In this study, we employed a biophysical approach for the investigation of qualitative and quantitative changes...... that there are no contradictions between data obtained by either approach. However, the biophysical methods draw a much more nuanced picture of the effects and efficiency of the investigated decontamination method, revealing, e.g., an exponential dose/response relationship between SonoSteam® treatment time and changes in collagen...

  12. Enhancing Irreversible Electroporation by Manipulating Cellular Biophysics with a Molecular Adjuvant.

    Science.gov (United States)

    Ivey, Jill W; Latouche, Eduardo L; Richards, Megan L; Lesser, Glenn J; Debinski, Waldemar; Davalos, Rafael V; Verbridge, Scott S

    2017-07-25

    Pulsed electric fields applied to cells have been used as an invaluable research tool to enhance delivery of genes or other intracellular cargo, as well as for tumor treatment via electrochemotherapy or tissue ablation. These processes involve the buildup of charge across the cell membrane, with subsequent alteration of transmembrane potential that is a function of cell biophysics and geometry. For traditional electroporation parameters, larger cells experience a greater degree of membrane potential alteration. However, we have recently demonstrated that the nuclear/cytoplasm ratio (NCR), rather than cell size, is a key predictor of response for cells treated with high-frequency irreversible electroporation (IRE). In this study, we leverage a targeted molecular therapy, ephrinA1, known to markedly collapse the cytoplasm of cells expressing the EphA2 receptor, to investigate how biophysical cellular changes resulting from NCR manipulation affect the response to IRE at varying frequencies. We present evidence that the increase in the NCR mitigates the cell death response to conventional electroporation pulsed-electric fields (∼100 μs), consistent with the previously noted size dependence. However, this same molecular treatment enhanced the cell death response to high-frequency electric fields (∼1 μs). This finding demonstrates the importance of considering cellular biophysics and frequency-dependent effects in developing electroporation protocols, and our approach provides, to our knowledge, a novel and direct experimental methodology to quantify the relationship between cell morphology, pulse frequency, and electroporation response. Finally, this novel, to our knowledge, combinatorial approach may provide a paradigm to enhance in vivo tumor ablation through a molecular manipulation of cellular morphology before IRE application. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. A biotic video game smart phone kit for formal and informal biophysics education

    Science.gov (United States)

    Kim, Honesty; Lee, Seung Ah; Riedel-Kruse, Ingmar

    2015-03-01

    Novel ways for formal and informal biophysics education are important. We present a low-cost biotic game design kit that incorporates microbial organisms into an interactive gaming experience: A 3D-printable microscope containing four LEDs controlled by a joystick enable human players to provide directional light stimuli to the motile single-celled organism Euglena gracilis. These cellular behaviors are displayed on the integrated smart phone. Real time cell-tracking couples these cells into interactive biotic video game play, i.e., the human player steers Euglena to play soccer with virtual balls and goals. The player's learning curve in mastering this fun game is intrinsically coupled to develop a deeper knowledge about Euglena's cell morphology and the biophysics of its phototactic behavior. This kit is dual educational - via construction and via play - and it provides an engaging theme for a formal biophysics devices class as well as to be presented in informal outreach activities; its low cost and open soft- and hardware should enable wide adoption.

  14. Radio photosynthesis of some 14 C-labelled sugars using the unicellular green alga scenedesmus ACUTUS

    International Nuclear Information System (INIS)

    Barakat, M.F.; Farag, A.N.; Ragab, M.T.; El-Fouly, M.M.; El-Baz, F.K.

    1993-01-01

    Radiosynthesis has been carried out using the unicellular green alga scenedesmus acutus together with Na H 14 CO 3 solution as a carbon-14 source, in an ordinary photosynthesis chamber. The process is more easier and less laborious than the techniques involving the use of gaseous 14 CO 2 in a tight photosynthesis chamber. Uniformly labelled 14 C-glucose, 14 C-fructose and 14 C-sucrose have been prepared with specific activities of several micro curies per milli mole. The specific activity of the products was found to increase on increasing the photosynthesis time or the initial activity of the Na H 14 CO 3 solution used. 3 tabs

  15. Bibliography of reviews and methods of photosynthesis - 88

    Czech Academy of Sciences Publication Activity Database

    Šesták, Zdeněk; Čatský, Jiří

    2004-01-01

    Roč. 42, č. 4 (2004), s. 619-640 ISSN 0300-3604 R&D Projects: GA ČR GA206/97/0120 Institutional research plan: CEZ:AV0Z5038910 Keywords : Bibliographic survey * processes of photosynthesis * accumulation of energy Subject RIV: EF - Botanics Impact factor: 0.734, year: 2004

  16. Dynamics of photosynthesis in Eichhornia crassipes Solms of ...

    African Journals Online (AJOL)

    2009-11-14

    With LI-6400 portable photosynthesis system, the photosynthetic characteristics of artificially cultured Eichhornia crassipes in Jiangsu, China, were monitored from June 1 to November 14, 2009. Both the net photosynthetic rate (Pn) in different positions and light and temperature-response curves of the top fourth leaf were ...

  17. Effect of gamma radiation on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Martin Moreno, C.; Fernandez Gonzalez, J.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first b chlorophyll affected to a greater extent than a chlorophyll. Net photosynthesis and respiration decline throughout the time of the observation after irradiation, this depressing effect being much more remarkable for the first one. Met photosynthesis inhibition levels of about 30% are got only five hours post irradiation at a dose of 5000 Gy. Radio estimation by low doses, although obtained in some cases for tho 10 Gy dose, has not been statistically confirmed. (Author) 23 refs

  18. Understanding of photosynthesis among students of biology and non-biology programmes of study

    OpenAIRE

    Lekan, Erika

    2016-01-01

    Photosynthesis is one of the most important processes on Earth, thus knowing at least its basic principles is essential. In Slovenia, the students become acquainted with these principles in the fifth form of elementary school. Due to the complexity of the photosynthesis process, the students hold misconceptions about it since the very beginning of the learning process. Due to several factors and reasons, these misconceptions persist throughout the secondary school and university studies. ...

  19. Biophysical and lipofection studies of DOTAP analogs.

    Science.gov (United States)

    Regelin, A E; Fankhaenel, S; Gürtesch, L; Prinz, C; von Kiedrowski, G; Massing, U

    2000-03-15

    In order to investigate the relationship between lipid structure and liposome-mediated gene transfer, we have studied biophysical parameters and transfection properties of monocationic DOTAP analogs, systematically modified in their non-polar hydrocarbon chains. Stability, size and (by means of anisotropy profiles) membrane fluidity of liposomes and lipoplexes were determined, and lipofection efficiency was tested in a luciferase reporter gene assay. DOTAP analogs were used as single components or combined with a helper lipid, either DOPE or cholesterol. Stability of liposomes was a precondition for formation of temporarily stable lipoplexes. Addition of DOPE or cholesterol improved liposome and lipoplex stability. Transfection efficiencies of lipoplexes based on pure DOTAP analogs could be correlated with stability data and membrane fluidity at transfection temperature. Inclusion of DOPE led to rather uniform transfection and anisotropy profiles, corresponding to lipoplex stability. Cholesterol-containing lipoplexes were generally stable, showing high transfection efficiency at low relative fluidity. Our results demonstrate that the efficiency of gene transfer mediated by monocationic lipids is greatly influenced by lipoplex biophysics due to lipid composition. The measurement of fluorescence anisotropy is an appropriate method to characterize membrane fluidity within a defined system of liposomes or lipoplexes and may be helpful to elucidate structure-activity relationships.

  20. Plants growth, water relations and photosynthesis of two bean ...

    African Journals Online (AJOL)

    ... almost all physiological activities were suppressed. The superiority of the genotype Tema against Djadida genotype was attributed to quantitative rather than qualitative physiological response differences. Keywords: Salinity, fluridone, bean, growth, photosynthesis, stomatal conductance. African Journal of Biotechnology ...

  1. Promotion of Cyclic Electron Transport Around Photosystem I with the Development of C4 Photosynthesis.

    Science.gov (United States)

    Munekage, Yuri Nakajima; Taniguchi, Yukimi Y

    2016-05-01

    C4 photosynthesis is present in approximately 7,500 species classified into 19 families, including monocots and eudicots. In the majority of documented cases, a two-celled CO2-concentrating system that uses a metabolic cycle of four-carbon compounds is employed. C4 photosynthesis repeatedly evolved from C3 photosynthesis, possibly driven by the survival advantages it bestows in the hot, often dry, and nutrient-poor soils of the tropics and subtropics. The development of the C4 metabolic cycle greatly increased the ATP demand in chloroplasts during the evolution of malic enzyme-type C4 photosynthesis, and the additional ATP required for C4 metabolism may be produced by the cyclic electron transport around PSI. Recent studies have revealed the nature of cyclic electron transport and the elevation of its components during C4 evolution. In this review, we discuss the energy requirements of C3 and C4 photosynthesis, the current model of cyclic electron transport around PSI and how cyclic electron transport is promoted during C4 evolution using studies on the genus Flaveria, which contains a number of closely related C3, C4 and C3-C4 intermediate species. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Photoprotection in a purple phototrophic bacterium mediated by oxygen-dependent alteration of carotenoid excited-state properties

    Czech Academy of Sciences Publication Activity Database

    Šlouf, V.; Chábera, P.; Olsen, J.D.; Martin, E.C.; Qian, P.; Hunter, C.N.; Polívka, Tomáš

    2012-01-01

    Roč. 109, č. 22 (2012), s. 8570-8575 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z50510513 Keywords : charge-transfer state * photoprotection * purple bacteria * photosynthesis Subject RIV: BO - Biophysics Impact factor: 9.737, year: 2012

  3. Biophysical approach to low back pain: a pilot report.

    Science.gov (United States)

    Foletti, Alberto; Pokorný, Jiry

    2015-01-01

    Since biophysical treatment has been reported to be effective in the general management of pain, we decided to assess the specific effect and treatment duration of this therapeutic strategy in low back pain. We were interested in verifying the possibility that a single clinical procedure could reduce pain and improve patients' quality of life within a period of three months. An Electromagnetic Information Transfer Through Aqueous System was employed to record endogenous therapeutic signals from each individual using an electromagnetic recording device (Med Select 729). A highly significant reduction in the Roland Morris low back pain and disability questionnaire score was observed after 3 months following a single biophysical intervention (11.83 ± 6 at baseline versus 2.3 ± 3.25 at 3 months, p < 0.0001). This preliminary report provides further evidence of the theoretical implications and clinical applications of Quantum Electro Dynamic concepts in biology and medicine.

  4. Quantum-Sequencing: Biophysics of quantum tunneling through nucleic acids

    Science.gov (United States)

    Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant

    2014-03-01

    Tunneling microscopy and spectroscopy has extensively been used in physical surface sciences to study quantum tunneling to measure electronic local density of states of nanomaterials and to characterize adsorbed species. Quantum-Sequencing (Q-Seq) is a new method based on tunneling microscopy for electronic sequencing of single molecule of nucleic acids. A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free single-molecule sequencing method. Here, we present the unique ``electronic fingerprints'' for all nucleotides on DNA and RNA using Q-Seq along their intrinsic biophysical parameters. We have analyzed tunneling spectra for the nucleotides at different pH conditions and analyzed the HOMO, LUMO and energy gap for all of them. In addition we show a number of biophysical parameters to further characterize all nucleobases (electron and hole transition voltage and energy barriers). These results highlight the robustness of Q-Seq as a technique for next-generation sequencing.

  5. What is the most prominent factor limiting photosynthesis in different layers of a greenhouse cucumber canopy?

    NARCIS (Netherlands)

    Chen, T.W.; Henke, M.; Visser, de P.H.B.; Buck-Sorlin, G.H.; Wiechers, D.; Kahlen, K.; Stützel, H.

    2014-01-01

    Background and Aims Maximizing photosynthesis at the canopy level is important for enhancing crop yield, and this requires insights into the limiting factors of photosynthesis. Using greenhouse cucumber (Cucumis sativus) as an example, this study provides a novel approach to quantify different

  6. A note on the roles of quantum and mechanical models in social biophysics.

    Science.gov (United States)

    Takahashi, Taiki; Kim, Song-Ju; Naruse, Makoto

    2017-11-01

    Recent advances in the applications of quantum models into various disciplines such as cognitive science, social sciences, economics, and biology witnessed enormous achievements and possible future progress. In this paper, we propose one of the most promising directions in the applications of quantum models: the combination of quantum and mechanical models in social biophysics. The possible resulting discipline may be called as experimental quantum social biophysics and could foster our understandings of the relationships between the society and individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biophysical processes in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mc; Murtugudde, R.; Vialard, J.; Vinayachandran, P.N.; Wiggert, J.D.; Hood, R.R.; Shankar, D.; Shetye, S.R.

    Ocean Biogeochemical Processes and Ecological Variability Geophysical Monograph Series 185 Copyright 200� by the American Geophysical Union. 10.102�/2008GM000768 Biophysical Processes in the Indian Ocean J. P. McCreary, 1 R. Murtugudde, 2 J. Vialard, 3...) also plots the upper-layer thickness, h 1 , from the model of McCreary et al. [1��3] (hereinafter referred to as MKM); h 1 simulates the structure of the top of the actual thermocline reasonably well, except that it is somewhat too thin from 5...

  8. Practical microbiology in schools: a survey of UK teachers.

    Science.gov (United States)

    Redfern, James; Burdass, Dariel; Verran, Joanna

    2013-11-01

    A survey of secondary school teachers investigated practical microbiology in the classroom. The results were heartening (practical microbiology was common), but concerns were expressed regarding equipment, time, cost, and expertise. Microbiologists should engage more with school education to support teachers and maintain the health of microbiology for future generations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Comparative sensitivity of photosynthesis and translocation to sulfur dioxide damage in Phaseolus vulgaris L

    International Nuclear Information System (INIS)

    Noyes, R.D.

    1978-01-01

    The inhibiting effect of sulfur dioxide on photosynthesis in a mature bean leaf and, simultaneously, on the rate of carbohydrate translocation from this same leaf has been examined. The results show a reduction of 0, 13, and 73% in net photosynthesis and 39, 44, and 69% in translocation, at concentrations of 0.1, 1, and 3 ppm sulfur dioxide, respectively. The inhibition of translocation at 0.1 ppm sulfur dioxide without any accompanying inhibition of net photosynthesis indicates that translocation is considerably more sensitive to sulfur dioxide damage. The mechanism of translocation inhibition at 1 ppm sulfur dioxide or less is shown to be independent of photosynthetic inhibition. Whereas, it is suggested that at higher concentrations significant inhibition of photosynthesis causes an additive reduction of translocation due to reduced levels of transport sugars. Autoradiograms of 14 C-labeled source leaves indicate that one possible mechanism of sulfur dioxide damage to translocation is the inhibition of sieve-tube loading. Inhibition of phloem translocation at common ambient levels (0.1 ppm) of sulfur dioxide is important to the overall growth and yield of major agricultural crops sensitive to sulfur dioxide

  10. Estimating Net Photosynthesis of Biological Soil Crusts in the Atacama Using Hyperspectral Remote Sensing

    Directory of Open Access Journals (Sweden)

    Lukas W. Lehnert

    2018-06-01

    Full Text Available Biological soil crusts (BSC encompassing green algae, cyanobacteria, lichens, bryophytes, heterotrophic bacteria and microfungi are keystone species in arid environments because of their role in nitrogen- and carbon-fixation, weathering and soil stabilization, all depending on the photosynthesis of the BSC. Despite their importance, little is known about the BSCs of the Atacama Desert, although especially crustose chlorolichens account for a large proportion of biomass in the arid coastal zone, where photosynthesis is mainly limited due to low water availability. Here, we present the first hyperspectral reflectance data for the most wide-spread BSC species of the southern Atacama Desert. Combining laboratory and field measurements, we establish transfer functions that allow us to estimate net photosynthesis rates for the most common BSC species. We found that spectral differences among species are high, and differences between the background soil and the BSC at inactive stages are low. Additionally, we found that the water absorption feature at 1420 nm is a more robust indicator for photosynthetic activity than the chlorophyll absorption bands. Therefore, we conclude that common vegetation indices must be taken with care to analyze the photosynthesis of BSC with multispectral data.

  11. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  12. Vegetation Function and Physiology: Photosynthesis, Fluorescence and Non-photochemical Quenching (NPQ)

    Science.gov (United States)

    Zhang, Q.; Yao, T.

    2017-12-01

    Photosynthesis is a basic physiological function of vegetation that relies on PAR provided through photosynthetic pigments (mainly chlorophyll) for plant growth and biomass accumulation. Vegetation chlorophyll (chl) content and non-chlorophyll (non-chl) components vary with plant functional types (PFTs) and growing stages. The PAR absorbed by canopy chlorophyll (APARchl) is associated with photosynthesis (i.e., gross primary production, GPP) while the PAR absorbed by canopy non-chl components (APARnon-chl) is not associated with photosynthesis. Under non-optimal environmental conditions, vegetation is "stressed" and both photosynthesis (GPP) and light use efficiency are reduced, therefore, excess portions of APARchl are discarded as fluorescence or non-photochemical quenching (NPQ). The photochemical reflectance index (PRI) is a measurement related to NPQ. Both PRI and yield of solar induced chlorophyll fluorescence (SIFyield = SIF/APARchl) have been proposed as possible bio-indicators of LUEchl. We have successfully developed an algorithm to distinguish between chlorophyll and non-chl components of vegetation, and to retrieve fractional absorptions of PAR by chlorophyll (fAPARchl) and by non-chl components (fAPARnon-chl) with surface reflectance of MODIS bands 1 - 7. A method originally pioneered by Hanan et al. (2002) has been used to retrieve fAPAR for vegetation photosynthesis (fAPARPSN) at flux tower sites based on the light response curve of tower net ecosystem exchange (NEE) and incident PAR at low light intensity. We have also retrieved the PRI from MODIS data (bands 11 and 1) and have derived SIFyield with the Global Ozone Monitoring Experiment - 2 (GOME-2) SIF data. We find that fAPARPSN at flux tower sites matches well with site fAPARchl, and ratio fAPARnon-chl/fAPARchl varies largely. APARchl can explain >=78% variation in seasonal GPP . We disentangle the possible impact of fAPARchl on PRI from physiological stress response, disentangle the possible

  13. [Publication rates of Turkish medical specialty and doctorate theses on Medical Microbiology, Clinical Microbiology and Infectious Diseases disciplines in international journals].

    Science.gov (United States)

    Sipahi, Oğuz Reşat; Caglayan Serin, Derya; Pullukcu, Hüsnü; Tasbakan, Meltem; Köseli Ulu, Demet; Yamazhan, Tansu; Arda, Bilgin; Sipahi, Hilal; Ulusoy, Sercan

    2014-04-01

    Writing a thesis is mandatory for getting a postgraduate medical degree in Turkey. Publication of the results of the thesis in an indexed journal makes the results available to researchers, however publication rate is usually low. The aim of this retrospective observational study was to investigate the publication rate of Turkish Infectious Diseases and Clinical Microbiology, Medical Microbiology specialty theses and Microbiology doctorate theses in international peer-review journals. On August 17th 2007, the thesis database of the Council of Higher Education of the Republic of Turkey (YOK) where all specialization and doctorate theses are recorded obligatorily, was searched for Infectious Diseases and Clinical Microbiology and Medical Microbiology specialty and Microbiology doctorate theses. Assuming that publication of a thesis would last at least six months, theses dated to February 2007 and after were excluded. The publication rate of those theses was found out by searching Science Citation Index-Expanded database for thesis author and supervisor between August 17-September 12, 2007. Chi-square test was used for statistical analysis. Our search yielded a total of 834 theses dated from 1997 to 2007, however 10 of them were excluded, since they were dated to February 2007 or after. It was found that the overall publication rate was 11.4% (94/824). The publication rates for Microbiology doctorate, Medical Microbiology and Infectious Diseases and Clinical Microbiology specialty theses were 13.7% (34/249), 10.7% (33/309) and 10.2% (27/266), respectively, with no statistical significance (p> 0.05). It was determined that nine (9.6%) of the 94 published theses belonged to 1997-2001 period, whereas 85 (80.4%) were in 2002-2007 period (p< 0.05). The probable reason for this increase was thought to be related with the updated criteria of YOK carried out in 2000 for academic promotions, nevertheless the publication rate of the investigated theses in international peer

  14. [Laboratory unification: advantages and disadvantages for clinical microbiology].

    Science.gov (United States)

    Andreu, Antonia; Matas, Lurdes

    2010-10-01

    This article aims to reflect on which areas or tasks of microbiology laboratories could be unified with those of clinical biochemistry, hematology, immunology or pathology laboratories to benefit patients and the health system, as well as the areas that should remain independent since their amalgamation would not only fail to provide a benefit but could even jeopardize the quality of microbiological diagnosis, and consequently patient care. To do this, the distinct analytic phases of diagnosis are analyzed, and the advantages and disadvantages of amalgamation are evaluated in each phase. The pros and cons of the unification of certain areas such as the computer system, occupational risk units, customer service, purchasing logistics, and materials storage, etc, are also discussed. Lastly, the effect of unification on urgent microbiology diagnosis is analyzed. Microbiological diagnosis should be unique. The microbiologist should perform an overall evaluation of the distinct techniques used for a particular patient, both those that involve direct diagnosis (staining, culture, antigen detection techniques or molecular techniques) and indirect diagnosis (antibody detection). Moreover, the microbiology laboratory should be independent, with highly trained technicians and specialists in microbiology that provide added value as experts in infection and as key figures in the process of establishing a correct etiological diagnosis. Copyright © 2010 Elsevier España S.L. All rights reserved.

  15. Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees.

    Science.gov (United States)

    Asao, Shinichi; Ryan, Michael G

    2015-06-01

    How trees sense source-sink carbon balance remains unclear. One potential mechanism is a feedback from non-structural carbohydrates regulating photosynthesis and removing excess as waste respiration when the balance of photosynthesis against growth and metabolic activity changes. We tested this carbohydrate regulation of photosynthesis and respiration using branch girdling in four tree species in a wet tropical rainforest in Costa Rica. Because girdling severs phloem to stop carbohydrate export while leaving xylem intact to allow photosynthesis, we expected carbohydrates to accumulate in leaves to simulate a carbon imbalance. We varied girdling intensity by removing phloem in increments of one-quarter of the circumference (zero, one--quarter, half, three-quarters, full) and surrounded a target branch with fully girdled ones to create a gradient in leaf carbohydrate content. Light saturated photosynthesis rate was measured in situ, and foliar respiration rate and leaf carbohydrate content were measured after destructive harvest at the end of the treatment. Girdling intensity created no consistent or strong responses in leaf carbohydrates. Glucose and fructose slightly increased in all species by 3.4% per one-quarter girdle, total carbon content and leaf mass per area increased only in one species by 5.4 and 5.5% per one-quarter girdle, and starch did not change. Only full girdling lowered photosynthesis in three of four species by 59-69%, but the decrease in photosynthesis was unrelated to the increase in glucose and fructose content. Girdling did not affect respiration. The results suggest that leaf carbohydrate content remains relatively constant under carbon imbalance, and any changes are unlikely to regulate photosynthesis or respiration. Because girdling also stops the export of hormones and reactive oxygen species, girdling may induce physiological changes unrelated to carbohydrate accumulation and may not be an effective method to study carbohydrate feedback

  16. 2012 Photosynthesis Gordon Research Conference and Seminar, JUL 7-13, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Richard [Univ. of California, Riverside, CA (United States)

    2012-07-13

    The Gordon Research Conference on PHOTOSYNTHESIS was held at Davidson College, Davidson, North Carolina, July 8-13, 2012. The Conference was well-attended with 150 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. Of the 150 attendees, 65 voluntarily responded to a general inquiry regarding ethnicity which appears on our registration forms. Of the 65 respondents, 20% were Minorities$-$ 5% Hispanic, 15% Asian and 0% African American. Approximately 28% of the participants at the 2012 meeting were women. The Gordon Research Seminar on PHOTOSYNTHESIS held at Davidson College, Davidson, North Carolina, July 7-8, 2012.. The Conference was well-attended with 51 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. Of the 51 attendees, 22 voluntarily responded to a general inquiry regarding ethnicity which appears on our registration forms. Of the 22 respondents, 14% were Minorities $-$0% Hispanic, 14% Asian and 0% African American. Approximately 35% of the participants at the 2012 meeting were women. Focal points for talks and discussions will include: Artificial photosynthesis and solar energy conversion strategies; Engineering organisms for biofuels and hydrogen production; Electron transport, proton transport, and energy coupling; Photoprotection mechanisms; Photosynthetic reaction center structure and function, including rewiring reaction centers for artificial photosynthesis; Energy capture and light harvesting solutions, including quantum coherence; Structure of the oxygen evolving complex and the mechanism of oxygen production.

  17. Hierarchy and Interactions in Environmental Interfaces Regarded as Biophysical Complex Systems

    Science.gov (United States)

    Mihailovic, Dragutin T.; Balaz, Igor

    The field of environmental sciences is abundant with various interfaces and is the right place for the application of new fundamental approaches leading towards a better understanding of environmental phenomena. For example, following the definition of environmental interface by Mihailovic and Balaž [23], such interface can be placed between: human or animal bodies and surrounding air, aquatic species and water and air around them, and natural or artificially built surfaces (vegetation, ice, snow, barren soil, water, urban communities) and the atmosphere. Complex environmental interface systems are open and hierarchically organised, interactions between their constituent parts are nonlinear, and the interaction with the surrounding environment is noisy. These systems are therefore very sensitive to initial conditions, deterministic external perturbations and random fluctuations always present in nature. The study of noisy non-equilibrium processes is fundamental for modelling the dynamics of environmental interface systems and for understanding the mechanisms of spatio-temporal pattern formation in contemporary environmental sciences, particularly in environmental fluid mechanics. In modelling complex biophysical systems one of the main tasks is to successfully create an operative interface with the external environment. It should provide a robust and prompt translation of the vast diversity of external physical and/or chemical changes into a set of signals, which are "understandable" for an organism. Although the establishment of organisation in any system is of crucial importance for its functioning, it should not be forgotten that in biophysical systems we deal with real-life problems where a number of other conditions should be reached in order to put the system to work. One of them is the proper supply of the system by the energy. Therefore, we will investigate an aspect of dynamics of energy flow based on the energy balance equation. The energy as well as

  18. Future Elementary School Teachers' Conceptual Change Concerning Photosynthesis

    Science.gov (United States)

    Ahopelto, Ilona; Mikkila-Erdmann, Mirjamaija; Anto, Erkki; Penttinen, Marjaana

    2011-01-01

    The purpose of this study was to examine conceptual change among future elementary school teachers while studying a scientific text concerning photosynthesis. Students' learning goals in relation to their learning outcomes were also examined. The participants were future elementary school teachers. The design consisted of pre- and post-tests. The…

  19. Photosynthesis versus irradiance relationships in the Atlantic sector ...

    African Journals Online (AJOL)

    The results show substantial variability in the photosynthesis–irradiance (P vs E) parameters, with phytoplankton communities at stations that were considered iron (Fe)-limited showing low maximum photosynthetic capacity (PBmax) and low quantum efficiency of photosynthesis (αB) for ρNO3, but high PBmax and αB for ...

  20. Significance of rice sheath photosynthesis: Yield determination by ...

    African Journals Online (AJOL)

    Using high-yielding hybrid rice Liangyopeijiu (LYP9), its male parent 9311 and hybrid rice Shanyou 63 (SY63) as the experimental materials, the photosynthesis of rice sheath was studied by 14C radio-autography. The results showed that rice sheath could trap sunlight and produce photosynthates, and these ...

  1. Colloquium and Report on Systems Microbiology: Beyond Microbial Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Merry R. Buckley

    2004-12-13

    The American Academy of Microbiology convened a colloquium June 4-6, 2004 to confer about the scientific promise of systems microbiology. Participants discussed the power of applying a systems approach to the study of biology and to microbiology in particular, specifics about current research efforts, technical bottlenecks, requirements for data acquisition and maintenance, educational needs, and communication issues surrounding the field. A number of recommendations were made for removing barriers to progress in systems microbiology and for improving opportunities in education and collaboration. Systems biology, as a concept, is not new, but the recent explosion of genomic sequences and related data has revived interest in the field. Systems microbiology, a subset of systems biology, represents a different approach to investigating biological systems. It attempts to examine the emergent properties of microorganisms that arise from the interplay of genes, proteins, other macromolecules, small molecules, organelles, and the environment. It is these interactions, often nonlinear, that lead to the emergent properties of biological systems that are generally not tractable by traditional approaches. As a complement to the long-standing trend toward reductionism, systems microbiology seeks to treat the organism or community as a whole, integrating fundamental biological knowledge with genomics, metabolomics, and other data to create an integrated picture of how a microbial cell or community operates. Systems microbiology promises not only to shed light on the activities of microbes, but will also provide biology the tools and approaches necessary for achieving a better understanding of life and ecosystems. Microorganisms are ideal candidates for systems biology research because they are relatively easy to manipulate and because they play critical roles in health, environment, agriculture, and energy production. Potential applications of systems microbiology research

  2. Enhancing Engineering Students’ Learning in an Environmental Microbiology Course

    Directory of Open Access Journals (Sweden)

    Zhi Zhou

    2012-08-01

    Full Text Available While environmental engineering students have gained some knowledge of biogeochemical cycles and sewage treatment, most of them haven’t learned microbiology previously and usually have difficulty in learning environmental microbiology because microbiology deals with invisible living microorganisms instead of visible built environment. Many teaching techniques can be used to enhance students’ learning in microbiology courses, such as lectures, animations, videos, small-group discussions, and active learning techniques. All of these techniques have been applied in the engineering class, but the results indicate that these techniques are often inadequate for students. Learning difficulties have to be identified to enhance students’ learning.

  3. Analysis of Microbiological and Physiochemical Properties of Top ...

    African Journals Online (AJOL)

    ADOWIE PERE

    2Medical Laboratory, Lonia Clinic and Maternity Ovwian Delta State ... ABSTRACT: The effect of disposing municipal waste on soil was evaluated by analyzing the microbiological and enzyme ..... Analysis Part 2: Chemical and Microbiological.

  4. Emerging Technologies for the Clinical Microbiology Laboratory

    Science.gov (United States)

    Buchan, Blake W.

    2014-01-01

    SUMMARY In this review we examine the literature related to emerging technologies that will help to reshape the clinical microbiology laboratory. These topics include nucleic acid amplification tests such as isothermal and point-of-care molecular diagnostics, multiplexed panels for syndromic diagnosis, digital PCR, next-generation sequencing, and automation of molecular tests. We also review matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry methods and their role in identification of microorganisms. Lastly, we review the shift to liquid-based microbiology and the integration of partial and full laboratory automation that are beginning to impact the clinical microbiology laboratory. PMID:25278575

  5. INTERACTIVE ILUSTRATION FOR PHOTOSYNTHESIS TEACHING

    Directory of Open Access Journals (Sweden)

    M.R. Pereira

    2004-05-01

    Full Text Available Computational resources became the major tool in the challenge of making high education moreeasy and motivating. Complex Biochemical pathways can now be presented in interactive and three-dimensional animations. One of the most complex (detailed and interesting metabolic pathway thatstudents must understand in biochemical courses is photosynthesis. The light-dependent reactionsare of special interest since they involve many dierent kinds of mechanisms, as light absorptionby membrane complexes, proteins movement inside membranes, reactions of water hydrolysis, andelectrons ow; making it dicult to understand by static bi-dimensional representations.The resources of animation and ActionScript programming were used to make an interactive ani-mation of photosynthesis, which at some times even simulates three-dimensionality. The animationbegins with a leaf and progressively zooms in, until we have a scheme of a tylakoyd membrane, whereeach of the dierent steps of the pathway can be clicked to reveal a more detailed scheme of it. Whereappropriate, the energy graphs are shown side by side with the reactions. The electron is representedwith a face, so it can be shown to be stressing while going up in the energy graphs. Finally, there isa simplied version of the whole pathway, to illustrate how it all goes together.The objective is to help professors on teaching the subject in regular classes, since currently allthe explanations are omitted. In a future version, texts will be added to each step so it can beself-explicative to the students, helping them even on home or on-line learning.

  6. Interaction of two photoreceptors in the regulation of bacterial photosynthesis genes.

    Science.gov (United States)

    Metz, Sebastian; Haberzettl, Kerstin; Frühwirth, Sebastian; Teich, Kristin; Hasewinkel, Christian; Klug, Gabriele

    2012-07-01

    The expression of photosynthesis genes in the facultatively photosynthetic bacterium Rhodobacter sphaeroides is controlled by the oxygen tension and by light quantity. Two photoreceptor proteins, AppA and CryB, have been identified in the past, which are involved in this regulation. AppA senses light by its N-terminal BLUF domain, its C-terminal part binds heme and is redox-responsive. Through its interaction to the transcriptional repressor PpsR the AppA photoreceptor controls expression of photosynthesis genes. The cryptochrome-like protein CryB was shown to affect regulation of photosynthesis genes, but the underlying signal chain remained unknown. Here we show that CryB interacts with the C-terminal domain of AppA and modulates the binding of AppA to the transcriptional repressor PpsR in a light-dependent manner. Consequently, binding of the transcription factor PpsR to its DNA target is affected by CryB. In agreement with this, all genes of the PpsR regulon showed altered expression levels in a CryB deletion strain after blue-light illumination. These results elucidate for the first time how a bacterial cryptochrome affects gene expression.

  7. The regulation of the chloroplast proton motive force plays a key role for photosynthesis in fluctuating light.

    Science.gov (United States)

    Armbruster, Ute; Correa Galvis, Viviana; Kunz, Hans-Henning; Strand, Deserah D

    2017-06-01

    Plants use sunlight as their primary energy source. During photosynthesis, absorbed light energy generates reducing power by driving electron transfer reactions. These are coupled to the transfer of protons into the thylakoid lumen, generating a proton motive force (pmf) required for ATP synthesis. Sudden alterations in light availability have to be met by regulatory mechanisms to avoid the over-accumulation of reactive intermediates and maximize energy efficiency. Here, the acidification of the lumen, as an intermediate product of photosynthesis, plays an important role by regulating photosynthesis in response to excitation energy levels. Recent findings reveal pmf regulation and the modulation of its composition as key determinants for efficient photosynthesis, plant growth, and survival in fluctuating light environments. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Effects of light intensity on the morphology and CAM photosynthesis of Vanilla planifolia Andrews

    Directory of Open Access Journals (Sweden)

    María Claudia Díez

    2017-01-01

    Full Text Available Vanilla planifolia is a neotropical orchid, whose fruits produce the natural vanilla, a fundamental ingredient for the food and cosmetic industry. Because of its importance in the world market, it is cultivated in many tropical countries and recently its cultivation has started in Colombia. This species requires shade for its development; however, the optimal of light conditions are unknown. This work evaluates the effect of different light intensities on CAM photosynthesis, physiology, morphology, and growth of this species. For this, vanilla seedlings were subjected to four treatments of relative illumination (RI (T1=8%, T2=17%, T3=31% and T4=67%. Most CO2 assimilation occurred along night in all treatments, which confirms that vanilla is a strong CAM species. Plants grown under high lighting (67% RI had almost half of the photosynthesis in treatments of intermediate lighting (17 and 31%, which is consistent with the lower nocturnal acid accumulation in that treatment. Likewise, the photochemical efficiency of photosystem II (Fv / Fm showed that in plants of the 67% RI occurred high radiation stress. On the other hand, vanilla plants reached greater length, leaf area, and total biomass when grown under intermediate radiation (17 and 31% RI. These results suggest that high radiation alters the functioning of vanilla plants, inhibiting photosynthesis and growth, and that highly shaded environments not significantly affected the CAM photosynthesis of vanilla; however, in the long-term this species showed higher photosynthesis and growth under intermediate levels of radiation

  9. Linking biophysical models and public preferences for ecosystem service assessments: a case study for the Southern Rocky Mountains

    Science.gov (United States)

    Bagstad, Kenneth J.; Reed, James; Semmens, Darius J.; Sherrouse, Ben C.; Troy, Austin

    2016-01-01

    Through extensive research, ecosystem services have been mapped using both survey-based and biophysical approaches, but comparative mapping of public values and those quantified using models has been lacking. In this paper, we mapped hot and cold spots for perceived and modeled ecosystem services by synthesizing results from a social-values mapping study of residents living near the Pike–San Isabel National Forest (PSI), located in the Southern Rocky Mountains, with corresponding biophysically modeled ecosystem services. Social-value maps for the PSI were developed using the Social Values for Ecosystem Services tool, providing statistically modeled continuous value surfaces for 12 value types, including aesthetic, biodiversity, and life-sustaining values. Biophysically modeled maps of carbon sequestration and storage, scenic viewsheds, sediment regulation, and water yield were generated using the Artificial Intelligence for Ecosystem Services tool. Hotspots for both perceived and modeled services were disproportionately located within the PSI’s wilderness areas. Additionally, we used regression analysis to evaluate spatial relationships between perceived biodiversity and cultural ecosystem services and corresponding biophysical model outputs. Our goal was to determine whether publicly valued locations for aesthetic, biodiversity, and life-sustaining values relate meaningfully to results from corresponding biophysical ecosystem service models. We found weak relationships between perceived and biophysically modeled services, indicating that public perception of ecosystem service provisioning regions is limited. We believe that biophysical and social approaches to ecosystem service mapping can serve as methodological complements that can advance ecosystem services-based resource management, benefitting resource managers by showing potential locations of synergy or conflict between areas supplying ecosystem services and those valued by the public.

  10. Effects of LiDAR point density, sampling size and height threshold on estimation accuracy of crop biophysical parameters.

    Science.gov (United States)

    Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong

    2016-05-30

    Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.

  11. Modelling basin-wide variations in Amazon forest photosynthesis

    Science.gov (United States)

    Mercado, Lina; Lloyd, Jon; Domingues, Tomas; Fyllas, Nikolaos; Patino, Sandra; Dolman, Han; Sitch, Stephen

    2010-05-01

    Given the importance of Amazon rainforest in the global carbon and hydrological cycles, there is a need to use parameterized and validated ecosystem gas exchange and vegetation models for this region in order to adequately simulate present and future carbon and water balances. Recent research has found major differences in above-ground net primary productivity (ANPP), above ground biomass and tree dynamics across Amazonia. West Amazonia is more dynamic, with younger trees, higher stem growth rates and lower biomass than central and eastern Amazon (Baker et al. 2004; Malhi et al. 2004; Phillips et al. 2004). A factor of three variation in above-ground net primary productivity has been estimated across Amazonia by Malhi et al. (2004). Different hypotheses have been proposed to explain the observed spatial variability in ANPP (Malhi et al. 2004). First, due to the proximity to the Andes, sites from western Amazonia tend to have richer soils than central and eastern Amazon and therefore soil fertility could possibly be highly related to the high wood productivity found in western sites. Second, if GPP does not vary across the Amazon basin then different patterns of carbon allocation to respiration could also explain the observed ANPP gradient. However since plant growth depends on the interaction between photosynthesis, transport of assimilates, plant respiration, water relations and mineral nutrition, variations in plant gross photosynthesis (GPP) could also explain the observed variations in ANPP. In this study we investigate whether Amazon GPP can explain variations of observed ANPP. We use a sun and shade canopy gas exchange model that has been calibrated and evaluated at five rainforest sites (Mercado et al. 2009) to simulate gross primary productivity of 50 sites across the Amazon basin during the period 1980-2001. Such simulation differs from the ones performed with global vegetation models (Cox et al. 1998; Sitch et al. 2003) where i) single plant functional

  12. Effects of iron limitation on photosynthesis and carbohydrate metabolism in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae)

    NARCIS (Netherlands)

    van Oijen, T; van Leeuwe, MA; Gieskes, WWC; de Baar, HJW

    Iron, one of the structural elements of organic components that play an essential role in photosynthesis and nitrogen assimilation of plants, is available at extremely low concentrations in large parts of the Southern Ocean's surface waters. We tested the hypothesis that photosynthesis is the

  13. Quality control for diagnostic oral microbiology laboratories in European countries

    NARCIS (Netherlands)

    Rautemaa-Richardson, R.; van der Reijden, W.A.; Dahlen, G.; Smith, A.J.

    2011-01-01

    Participation in diagnostic microbiology internal and external quality control (QC) processes is good laboratory practice and an essential component of a quality management system. However, no QC scheme for diagnostic oral microbiology existed until 2009 when the Clinical Oral Microbiology (COMB)

  14. Modelling benthic biophysical drivers of ecosystem structure and biogeochemical response

    Science.gov (United States)

    Stephens, Nicholas; Bruggeman, Jorn; Lessin, Gennadi; Allen, Icarus

    2016-04-01

    The fate of carbon deposited at the sea floor is ultimately decided by biophysical drivers that control the efficiency of remineralisation and timescale of carbon burial in sediments. Specifically, these drivers include bioturbation through ingestion and movement, burrow-flushing and sediment reworking, which enhance vertical particulate transport and solute diffusion. Unfortunately, these processes are rarely satisfactorily resolved in models. To address this, a benthic model that explicitly describes the vertical position of biology (e.g., habitats) and biogeochemical processes is presented that includes biological functionality and biogeochemical response capturing changes in ecosystem structure, benthic-pelagic fluxes and biodiversity on inter-annual timescales. This is demonstrated by the model's ability to reproduce temporal variability in benthic infauna, vertical pore water nutrients and pelagic-benthic solute fluxes compared to in-situ data. A key advance is the replacement of bulk parameterisation of bioturbation by explicit description of the bio-physical processes responsible. This permits direct comparison with observations and determination of key parameters in experiments. Crucially, the model resolves the two-way interaction between sediment biogeochemistry and ecology, allowing exploration of the benthic response to changing environmental conditions, the importance of infaunal functional traits in shaping benthic ecological structure and the feedback the resulting bio-physical processes exert on pore water nutrient profiles. The model is actively being used to understand shelf sea carbon cycling, the response of the benthos to climatic change, food provision and other societal benefits.

  15. Estimation of effects of photosynthesis response functions on rice yields and seasonal variation of CO2 fixation using a photosynthesis-sterility type of crop yield model

    International Nuclear Information System (INIS)

    Kaneko, D.; Moriwaki, Y.

    2008-01-01

    This study presents a crop production model improvement: the previously adopted Michaelis-Menten (MM) type photosynthesis response function (fsub(rad-MM)) was replaced with a Prioul-Chartier (PC) type function (fsub(rad-PC)). The authors' analysis reflects concerns regarding the background effect of global warming, under simultaneous conditions of high air temperature and strong solar radiation. The MM type function fsub(rad-MM) can give excessive values leading to an overestimate of photosynthesis rate (PSN) and grain yield for paddy-rice. The MM model is applicable to many plants whose (PSN) increases concomitant with increased insolation: wheat, maize, soybean, etc. For paddy rice, the PSN apparently shows a maximum PSN. This paper proves that the MM model overestimated the PSN for paddy rice for sufficient solar radiation: the PSN using the PC model yields 10% lower values. However, the unit crop production index (CPIsub(U)) is almost independent of the MM and PC models because of respective standardization of both PSN and crop production index using average PSNsub(0) and CPIsub(0). The authors improved the estimation method using a photosynthesis-and-sterility based crop situation index (CSIsub(E)) to produce a crop yield index (CYIsub(E)), which is used to estimate rice yields in place of the crop situation index (CSI); the CSI gives a percentage of rice yields compared to normal annual production. The model calculates PSN including biomass effects, low-temperature sterility, and high-temperature injury by incorporating insolation, effective air temperature, the normalized difference vegetation index (NDVI), and effects of temperature on photosynthesis. Based on routine observation data, the method enables automated crop-production monitoring in remote regions without special observations. This method can quantify grain production early to raise an alarm in Southeast Asian countries, which must confront climate fluctuation through this era of global

  16. Developing a protocol for managing the biophysical condition of a ...

    African Journals Online (AJOL)

    Their function will focus on the overall management of water resources on a ... for the integrated management of the biophysical component of a catchment, with ... and implement a protocol which will combine and integrate the knowledge of ...

  17. Testing the performance of microbiological safety cabinets used in microbiology laboratories in South Korea.

    Science.gov (United States)

    Hwang, S H; Yi, T W; Cho, K H; Lee, I M; Yoon, C S

    2011-09-01

    To test a performance of the microbiological safety cabinets (MSCs) according to the type of MSCs in microbial laboratories. Tests were carried out to assess the performance of 31 MSCs in 14 different facilities, including six different biological test laboratories in six hospitals and eight different laboratories in three universities. The following tests were performed on the MSCs: the downflow test, intake velocity test, high-efficiency particulate air filter leak test and the airflow smoke pattern test. These performance tests were carried out in accordance with the standard procedures. Only 23% of Class II A1 (8), A2 (19) and unknown MSCs (4) passed these performance tests. The main reasons for the failure of MSCs were inappropriate intake velocity (65%), leakage in the HEPA filter sealing (50%), unbalanced airflow smoke pattern in the cabinets (39%) and inappropriate downflow (27%). This study showed that routine checks of MSCs are important to detect and strengthen the weak spots that frequently develop, as observed during the evaluation of the MSCs of various institutions. Routine evaluation and maintenance of MSCs are critical for optimizing performance. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  18. Biophysical properties of the normal-sized aorta in patients with Marfan syndrome: evaluation with MR flow mapping

    NARCIS (Netherlands)

    Groenink, M.; de Roos, A.; Mulder, B. J.; Verbeeten, B.; Timmermans, J.; Zwinderman, A. H.; Spaan, J. A.; van der Wall, E. E.

    2001-01-01

    PURPOSE: To investigate the feasibility of magnetic resonance (MR) flow mapping in the assessment of aortic biophysical properties in patients with Marfan syndrome and to detect differences in biophysical properties in the normal-sized aorta distal to the aortic root between these patients and

  19. Ecosystem Phenology from Eddy-covariance Measurements: Spring Photosynthesis in a Cool Temperate Bog

    Science.gov (United States)

    Lafleur, P.; Moore, T. R.; Poon, D.; Seaquist, J.

    2005-12-01

    The onset and increase of spring photosynthetic flux of carbon dioxide is an important attribute of the carbon budget of northern ecosystems and we used eddy-covariance measurements from March to May over 5 years at the Mer Bleue ombrotrophic bog to establish the important controls. The onset of ecosystem photosynthesis (day-of-year from 86 to 101) was associated with the disappearance on the snow cover and there is evidence that photosynthesis can continue after a thin new snowfall. The growth of photosynthesis during the spring period was partially associated with light (daily photosynthetically active radiation) but primarily with temperature, with the strongest correlation being observed with peat temperature at a depth of 5 and 10 cm, except in one year in which there was a long snow cover. The vegetation comprises mosses, which are able to photosynthesize very early, evergreen shrubs, which appear dependent on soil warming, and deciduous shrubs, which leaf-out only in late spring. We observed changes in shrub leaf colour from brown to green and concomitant increases in foliar nitrogen and chlorophyll concentrations during the spring in this "evergreen" system. We analyzed MODIS images for periods of overlap of tower and satellite data and found a generally strong correlation, though the infrequent satellite measurements were unable to pick out the onset and timing of rapid growth of photosynthesis in this ecosystem.

  20. Photosynthesis by isolated chloroplasts. IV. General concept and comparison of three photochemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Arnon, D I; Allen, M B; Whatley, F R

    1956-01-01

    Procedures are described for the preparation of chloroplasts capable of carrying out three photochemical reactions, each representing an increasingly complex phase of photosynthesis: photolysis of water (Hill reaction), esterification of inorganic phosphate into adenosine triphosphate (photosynthetic phosphorylation) and the reduction of carbon dioxide to the level of carbohydrates with a simultaneous evolution of oxygen. The three photochemical reactions were separable by variations in the technique for preparation of chloroplasts and by differential inhibition by several reagents. Inhibition of a more complex phase of photosynthesis does not affect the simpler one which precedes it and, conversely, the inhibition of a simpler phase of photosynthesis is paralleled by an inhibition of the more complex phase which follows. Reversible inhibition of CO/sub 2/ fixation and photosynthetic phosphorylation, but not of photolysis, by sulfhydryl group inhibitors suggests that sulfhydryl compounds (enzymes, cofactors, or both) are involved in phosphorylation and CO/sub 2/ fixation, but not in the primary conversion of light into chemical energy as measured by the Hill reaction. Evidence is presented in support of the conclusion that the synthesis of ATP by green cells occurs at two distinct sites: anaerobically in chloroplasts by photosynthetic phosphorylation, and acrobically in smaller cytoplasmic particles, presumably mitochondria, by oxidative phosphorylation independent of light. A general scheme of photosynthesis by chloroplasts, consistent with these findings, is presented. 44 references, 8 figures, 4 tables.

  1. A Method Sustaining the Bioelectric, Biophysical, and Bioenergetic Function of Cultured Rabbit Atrial Cells

    OpenAIRE

    Noa Kirschner Peretz; Sofia Segal; Limor Arbel-Ganon; Ronen Ben Jehuda; Ronen Ben Jehuda; Yuval Shemer; Yuval Shemer; Binyamin Eisen; Binyamin Eisen; Moran Davoodi; Ofer Binah; Ofer Binah; Yael Yaniv

    2017-01-01

    Culturing atrial cells leads to a loss in their ability to be externally paced at physiological rates and to maintain their shape. We aim to develop a culture method that sustains the shape of atrial cells along with their biophysical and bioenergetic properties in response to physiological pacing. We hypothesize that adding 2,3-Butanedione 2-monoxime (BDM), which inhibits contraction during the culture period, will preserve these biophysical and bioenergetic properties. Rabbit atrial cells w...

  2. Nanoscale biophysics of the cell

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2018-01-01

    Macroscopic cellular structures and functions are generally investigated using biological and biochemical approaches. But these methods are no longer adequate when one needs to penetrate deep into the small-scale structures and understand their functions. The cell is found to hold various physical structures, molecular machines, and processes that require physical and mathematical approaches to understand and indeed manipulate them. Disorders in general cellular compartments, perturbations in single molecular structures, drug distribution therein, and target specific drug-binding, etc. are mostly physical phenomena. This book will show how biophysics has revolutionized our way of addressing the science and technology of nanoscale structures of cells, and also describes the potential for manipulating the events that occur in them.

  3. Inorganic carbon availability in benthic diatom communities: photosynthesis and migration.

    Science.gov (United States)

    Marques da Silva, Jorge; Cruz, Sónia; Cartaxana, Paulo

    2017-09-05

    Diatom-dominated microphytobenthos (MPB) is the main primary producer of many intertidal and shallow subtidal environments, being therefore of critical importance to estuarine and coastal food webs. Owing to tidal cycles, intertidal MPB diatoms are subjected to environmental conditions far more variable than the ones experienced by pelagic diatoms (e.g. light, temperature, salinity, desiccation and nutrient availability). Nevertheless, benthic diatoms evolved adaptation mechanisms to these harsh conditions, including the capacity to move within steep physical and chemical gradients, allowing them to perform photosynthesis efficiently. In this contribution, we will review present knowledge on the effects of dissolved inorganic carbon (DIC) availability on photosynthesis and productivity of diatom-dominated MPB. We present evidence of carbon limitation of photosynthesis in benthic diatom mats and highly productive MPB natural communities. Furthermore, we hypothesize that active vertical migration of epipelic motile diatoms could overcome local depletion of DIC in the photic layer, providing the cells alternately with light and inorganic carbon supply. The few available longer-term experiments on the effects of inorganic carbon enrichment on the productivity of diatom-dominated MPB have yielded inconsistent results. Therefore, further studies are needed to properly assess the response of MPB communities to increased CO 2 and ocean acidification related to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  4. Microbiological implications of the food irradiation process

    International Nuclear Information System (INIS)

    Teufel, P.

    1981-01-01

    The Joint FAO/IAEA/WHO Expert Committee on the wholesomeness of irradiated food which met in 1976 concluded after a detailed and critical review of the available information, that the microbiological aspects of food irradiation were fully comparable to those of conventional processes used in modern food technology. Processing of food by irradiation may be considered from the microbiological point of view as separate procedures: high dose treatment (> 10 kGy), for sterilisation (radappertization) and low dose treatment (< 10 kGy) for pasteurisation (radicidation, radurization), (for definitions see p. 43), disinfestation, or inhibition of sprouting. No public health hazards related to micro-organisms arise from high dose irradiation because this process results in commercially sterile products. On the other hand, it is important to consider the possible microbiological hazards when food is irradiated with a low dose. The microbiological implications relate to the natural radiation resistance of bacteria, yeasts, fungi and viruses or to the mutagenic effects of ionising radiation in micro-organisms. Both areas of concern were reviewed in detail by Ingram and Ingram and Farkas. (orig.)

  5. Chlorophyll fluorescence tracks seasonal variations of photosynthesis from leaf to canopy in a temperate forest.

    Science.gov (United States)

    Yang, Hualei; Yang, Xi; Zhang, Yongguang; Heskel, Mary A; Lu, Xiaoliang; Munger, J William; Sun, Shucun; Tang, Jianwu

    2017-07-01

    Accurate estimation of terrestrial gross primary productivity (GPP) remains a challenge despite its importance in the global carbon cycle. Chlorophyll fluorescence (ChlF) has been recently adopted to understand photosynthesis and its response to the environment, particularly with remote sensing data. However, it remains unclear how ChlF and photosynthesis are linked at different spatial scales across the growing season. We examined seasonal relationships between ChlF and photosynthesis at the leaf, canopy, and ecosystem scales and explored how leaf-level ChlF was linked with canopy-scale solar-induced chlorophyll fluorescence (SIF) in a temperate deciduous forest at Harvard Forest, Massachusetts, USA. Our results show that ChlF captured the seasonal variations of photosynthesis with significant linear relationships between ChlF and photosynthesis across the growing season over different spatial scales (R 2  = 0.73, 0.77, and 0.86 at leaf, canopy, and satellite scales, respectively; P chlorophyll content (R 2  = 0.65 for canopy GPP SIF and chlorophyll content; P < 0.0001), leaf area index (LAI) (R 2  = 0.35 for canopy GPP SIF and LAI; P < 0.0001), and normalized difference vegetation index (NDVI) (R 2  = 0.36 for canopy GPP SIF and NDVI; P < 0.0001). Our results suggest that ChlF can be a powerful tool to track photosynthetic rates at leaf, canopy, and ecosystem scales. © 2016 John Wiley & Sons Ltd.

  6. Diagnostic virology laboratory within a microbiology setting.

    Science.gov (United States)

    Rubin, S J

    1984-01-01

    The virology section at St. Francis Hospital and Medical Center, Connecticut, is not a separate laboratory division but is a part of the microbiology division and is supervised by the same personnel who supervise bacteriology, mycology, mycobacteriology, and serology. Current volume is over 1,000 cultures yearly with 12 to 24 percent positive. Isolates are confirmed and typed by the Connecticut State Health Department Laboratory. Specimen distribution, percentage positive specimens, and distribution of viral isolates are similar to those reported from microbiology laboratories with separate virology laboratories directed by a full-time doctoral-level virologist. Our seven years' experience demonstrates that a microbiology laboratory without a full-time doctoral-level virologist can provide clinically useful virologic information.

  7. Microbiological and therapeutic challenges in infectious spondylodiscitis

    DEFF Research Database (Denmark)

    Aagaard, Theis; Roed-Petersen, Casper; Dragsted, Casper

    2013-01-01

    The microbiological diagnosis of infectious spondylodiscitis is often difficult to establish and the disease requires prolonged antibiotic treatment. We analyzed the medical records of 100 patients admitted for infectious spondylodiscitis from 2006 to 2011 with an emphasis on (1) the diagnostic u...... utility of blood cultures and invasive biopsies in the microbiological diagnosis, (2) clinical features differentiating Staphylococcus aureus infections from those with other aetiologies, and (3) evaluation of the outcome of the antimicrobial therapy.......The microbiological diagnosis of infectious spondylodiscitis is often difficult to establish and the disease requires prolonged antibiotic treatment. We analyzed the medical records of 100 patients admitted for infectious spondylodiscitis from 2006 to 2011 with an emphasis on (1) the diagnostic...

  8. Transforming clinical microbiology with bacterial genome sequencing.

    Science.gov (United States)

    Didelot, Xavier; Bowden, Rory; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W

    2012-09-01

    Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.

  9. The potential feasibility of chlorinic photosynthesis on exoplanets.

    Science.gov (United States)

    Haas, Johnson R

    2010-11-01

    The modern search for life-bearing exoplanets emphasizes the potential detection of O(2) and O(3) absorption spectra in exoplanetary atmospheres as ideal signatures of biology. However, oxygenic photosynthesis may not arise ubiquitously in exoplanetary biospheres. Alternative evolutionary paths may yield planetary atmospheres tinted with the waste products of other dominant metabolisms, including potentially exotic biochemistries. This paper defines chlorinic photosynthesis (CPS) as biologically mediated photolytic oxidation of aqueous Cl(-) to form halocarbon or dihalogen products, coupled with CO(2) assimilation. This hypothetical metabolism appears to be feasible energetically, physically, and geochemically, and could potentially develop under conditions that approximate the terrestrial Archean. It is hypothesized that an exoplanetary biosphere in which chlorinic photosynthesis dominates primary production would tend to evolve a strongly oxidizing, halogen-enriched atmosphere over geologic time. It is recommended that astronomical observations of exoplanetary outgoing thermal emission spectra consider signs of halogenated chemical species as likely indicators of the presence of a chlorinic biosphere. Planets that favor the evolution of CPS would probably receive equivalent or greater surface UV flux than is produced by the Sun, which would promote stronger abiotic UV photolysis of aqueous halides than occurred during Earth's Archean era and impose stronger evolutionary selection pressures on endemic life to accommodate and utilize halogenated compounds. Ocean-bearing planets of stars with metallicities equivalent to, or greater than, the Sun should especially favor the evolution of chlorinic biospheres because of the higher relative seawater abundances of Cl, Br, and I such planets would tend to host. Directed searches for chlorinic biospheres should probably focus on G0-G2, F, and A spectral class stars that have bulk metallicities of +0.0 Dex or greater.

  10. Coupling Biophysical and Socioeconomic Models for Coral Reef Systems in Quintana Roo, Mexican Caribbean

    Directory of Open Access Journals (Sweden)

    Jessica Melbourne-Thomas

    2011-09-01

    Full Text Available Transdisciplinary approaches that consider both socioeconomic and biophysical processes are central to understanding and managing rapid change in coral reef systems worldwide. To date, there have been limited attempts to couple the two sets of processes in dynamic models for coral reefs, and these attempts are confined to reef systems in developed countries. We present an approach to coupling existing biophysical and socioeconomic models for coral reef systems in the Mexican state of Quintana Roo. The biophysical model is multiscale, using dynamic equations to capture local-scale ecological processes on individual reefs, with reefs connected at regional scales by the ocean transport of larval propagules. The agent-based socioeconomic model simulates changes in tourism, fisheries, and urbanization in the Quintana Roo region. Despite differences in the formulation and currencies of the two models, we were able to successfully modify and integrate them to synchronize and define information flows and feedbacks between them. A preliminary evaluation of the coupled model system indicates that the model gives reasonable predictions for fisheries and ecological variables and can be used to examine scenarios for future social-ecological change in Quintana Roo. We provide recommendations for where efforts might usefully be focused in future attempts to integrate models of biophysical and socioeconomic processes, based on the limitations of our coupled system.

  11. Winnowing and Flocculation in Bio-physical Cohesive Substrate: A Flume Experimental and Estuarine Study

    Science.gov (United States)

    Ye, L.; Parsons, D. R.; Manning, A. J.

    2016-12-01

    Cohesive sediment, or mud, is ubiquitously found in most aqueous environments, such as coasts and estuaries. The study of cohesive sediment behaviors requires the synchronous description of mutual interactions of grains (e.g., winnowing and flocculation), their physical properties (e.g., grain size) and also the ambient water. Herein, a series of flume experiments (14 runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substrates: secreted by aquatic microorganisms) are combined with an estuarine field survey (Dee estuary, NW England) to investigate the behavior of suspensions over bio-physical cohesive substrates. The experimental results indicate that winnowing and flocculation occur pervasively in bio-physical cohesive flow systems. Importantly however, the evolution of the bed and bedform dynamics and hence turbulence production can be lower when cohesivity is high. The estuarine survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed, that pervasively exists in many natural estuarine systems, plays a significant role in controlling the interactions between bed substrate and sediment suspension and deposition, including controlling processes such as sediment winnowing, flocculation and re-deposition. Full understanding of these processes are essential in advancing sediment transport modelling and prediction studies across natural estuarine systems and the work will report on an improved conceptual model for sediment sorting deposition in bio-physical cohesive substrates.

  12. Effects of light and temperature on duckweed photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wedge, R M; Burris, J E

    1982-06-01

    Rates of photosynthesis of Lemna minor L. and Spirodela punctata, two aquatic angiosperms, were measured at different temperatures and light intensities. Photosynthesis was measured both as oxygen evolution and /sup 14/CO/sub 2/ fixation. At temperatures ranging from 15 to 35/sup 0/C, light saturation of photosynthetic O/sub 2/ evolution of Lemna occured from 300-600 ..mu..E m/sup -2/ s/sup -1/, while in Spirodela photosynthetic O/sub 2/ evolution was light saturated at 5600-1200 ..mu..E m/sup -2/ s/sup -1/. Photosynthetic O/sub 2/ evolution of both species was photoinhibited at light intensities greater than 1200 ..mu..E m/sup -2/ s/sup -1/. The optimal temperature for Lemna photosynthetic O/sub 2/ evolution was 30/sup 0/C, while the optimal temperatures for /sup 14/CO/sub 2/ fixation were from 20 to 30/sup 0/C. For Spirodela maximum photosynthetic O/sub 2/, evolution occurred at 35/sup 0/C, while maximum /sup 14/CO/sub 2/ fixation was at 30/sup 0/C.

  13. Biocatalytic photosynthesis with water as an electron donor.

    Science.gov (United States)

    Ryu, Jungki; Nam, Dong Heon; Lee, Sahng Ha; Park, Chan Beum

    2014-09-15

    Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever-increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh-based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3](2+). Based on these results, we could successfully photosynthesize a model chiral compound (L-glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Evaluation of Global Photosynthesis and BVOC Emission Covariance with Climate in NASA ModelE2-Y

    Science.gov (United States)

    Unger, N.

    2012-12-01

    Terrestrial gross primary productivity (GPP), a measure of the total amount of CO2 removed from the atmosphere every year to fuel photosynthesis, is the largest global carbon flux. GPP is vital for human welfare as the basis for food and fiber, and provides the crucial ecosystem service of reducing the accumulation of fossil fuel CO2 in the atmosphere. Land plants emit a significant fraction of the assimilated carbon back to the atmosphere in the form of biogenic volatile organic compounds (BVOCs). Isoprene is the dominant BVOC emission with an estimated global source of 200-660 TgC/yr. Global monoterpene emission estimates range from 30-130 TgC/yr. BVOC photochemical oxidation exerts a profound impact on the distribution and variability of the short-lived climate forcers: ozone, biogenic secondary organic aerosol and methane. Here, we apply multiple observational datasets from a suite of platforms to evaluate an updated global chemistry-climate model that is coupled to a new vegetation biophysics scheme incorporating photosynthesis-dependent BVOC emissions (NASA ModelE2-Y). A fixed vegetation structure dataset based on 8 plant functional types and prescribed phenology including crop planting and harvesting gives GPP of 128 PgC/yr and a global isoprene source of 200TgC/yr. The model GPP captures 85% of the annual average zonal mean variability in a FLUXNET-derived global dataset that was generated by data orientated diagnostic upscaling. We assess model BVOC emission climatology against a comprehensive database of campaign-average above canopy flux measurements and surface concentrations of isoprene and monoterpene collected between 1995-2010 across a wide range of ecosystem types, regions and seasons (> 25 flux estimates; > 22 surface concentration values). We evaluate the diurnal, seasonal and interannual integrity of the model BVOC variability against 9 sites for isoprene and 4 sites for monoterpene. The model captures ~60% of the variability in the time

  15. Reevaluation of the plant "gemstones": Calcium oxalate crystals sustain photosynthesis under drought conditions.

    Science.gov (United States)

    Tooulakou, Georgia; Giannopoulos, Andreas; Nikolopoulos, Dimosthenis; Bresta, Panagiota; Dotsika, Elissavet; Orkoula, Malvina G; Kontoyannis, Christos G; Fasseas, Costas; Liakopoulos, Georgios; Klapa, Maria I; Karabourniotis, George

    2016-09-01

    Land plants face the perpetual dilemma of using atmospheric carbon dioxide for photosynthesis and losing water vapors, or saving water and reducing photosynthesis and thus growth. The reason behind this dilemma is that this simultaneous exchange of gases is accomplished through the same minute pores on leaf surfaces, called stomata. In a recent study we provided evidence that pigweed, an aggressive weed, attenuates this problem exploiting large crystals of calcium oxalate as dynamic carbon pools. This plant is able to photosynthesize even under drought conditions, when stomata are closed and water losses are limited, using carbon dioxide from crystal decomposition instead from the atmosphere. Abscisic acid, an alarm signal that causes stomatal closure seems to be implicated in this function and for this reason we named this path "alarm photosynthesis." The so-far "enigmatic," but highly conserved and widespread among plant species calcium oxalate crystals seem to play a crucial role in the survival of plants.

  16. Growth, water relations and photosynthesis of seedlings and resprouts after fire

    Science.gov (United States)

    Clemente, Adelaide S.; Rego, Francisco C.; Correia, Otília A.

    2005-05-01

    Seasonal patterns of growth, water relations, photosynthesis and leaf characteristics were compared between obligate seeders ( Cistus monspeliensis and Cistus ladanifer) and resprouters ( Arbutus unedo and Pistacia lentiscus) from the first to the second year after fire. We hypothesized that seedlings would be more water-limited than resprouts due to their shallower root systems. Regarding water use strategies, Cistus species are drought semi-deciduous and A. unedo and P. lentiscus are evergreen sclerophylls, therefore, comparisons were based on the relative deviation from mature conspecific plants. Seedlings and resprouts had higher shoot elongation and leaf production than mature plants, and over an extended period. Differences from mature plants were larger in resprouts, with two-fold transpiration, leaf conductance and photosynthesis in late spring/early summer. Seedlings of C. monspeliensis exhibited higher transpiration and leaf conductance than mature plants, while those of C. ladanifer only exhibited higher water potential. Growth increments and ameliorated water relations and photosynthesis after fire were attributed to an increase in water and nutrient availability. The small differences in water relations and photosynthesis between seedlings and mature conspecifics are in accordance with the prediction of seedlings experiencing higher water limitation than resprouts. We attribute these results to differences in root systems: resprouters benefited from an increase in root/shoot ratios and the presence of deep roots whereas Cistus seedlings relied on very shallow roots, which cannot provide assess to deep water during summer. Nevertheless, seedlings did not show evidence of experiencing a more severe water limitation than mature conspecifics, which we attributed to the presence of efficient mechanisms of avoiding and tolerating water stress. The results are discussed in relation to post-fire demography of seeders and resprouters in Mediterranean

  17. Relative Sensitivity of Photosynthesis and Respiration to Freeze-Thaw Stress in Herbaceous Species 1

    Science.gov (United States)

    Steffen, Kenneth L.; Arora, Rajeev; Palta, Jiwan P.

    1989-01-01

    The relative effect of a freeze-thaw cycle on photosynthesis, respiration, and ion leakage of potato leaf tissue was examined in two potato species, Solanum acaule Bitt. and Solanum commersonii Dun. Photosynthesis was found to be much more sensitive to freezing stress than was respiration, and demonstrated more than a 60% inhibition before any impairment of respiratory function was observed. Photosynthesis showed a slight to moderate inhibition when only 5 to 10% of the total electrolytes had leaked from the tissue (reversible injury). This was in contrast to respiration which showed no impairment until temperatures at which about 50% ion leakage (irreversible injury) had occurred. The influence of freeze-thaw protocol was further examined in S. acaule and S. commersonii, in order to explore discrepancies in the literature as to the relative sensitivities of photosynthesis and respiration. As bath cooling rates increased from 1°C/hour to about 3 or 6°C/hour, there was a dramatic increase in the level of damage to all measured cellular functions. The initiation of ice formation in deeply supercooled tissue caused even greater damage. As the cooling rates used in stress treatments increased, the differential sensitivity between photosynthesis and respiration nearly disappeared. Examination of agriculturally relevant, climatological data from an 11 year period confirmed that air cooling rates in the freezing range do not exceed 2°C/hour. It was demonstrated, in the studies presented here, that simply increasing the actual cooling rate from 1.0 to 2.9°C/hour, in frozen tissue from paired leaflet halves, meant the difference between cell survival and cell death. Images Figure 4 Figure 5 PMID:16666712

  18. Photosynthesis and Ribulose 1,5-Bisphosphate Concentrations in Intact Leaves of Xanthium strumarium L.

    Science.gov (United States)

    Mott, K A; Jensen, R G; O'leary, J W; Berry, J A

    1984-12-01

    The interacting effects of the rate of ribulose 1,5-bisphosphate (RuBP) regeneration and the rate of RuBP utilization as influenced by the amount and activation of RuBP carboxylase on photosynthesis and RuBP concentrations were resolved in experiments which examined the kinetics of the response of photosynthesis and RuBP concentrations after step changes from a rate-saturating to a rate-limiting light intensity in Xanthium strumarium. Because RuBP carboxylase requires several minutes to deactivate in vivo, it was possible to observe the effect of reducing the rate of RuBP regeneration on the RuBP concentration at constant enzyme activation state by sampling very soon after reducing the light intensity. Samples taken over longer time periods showed the effect of changes in enzyme activation at constant RuBP regeneration rate on RuBP concentration and photosynthetic rate. Within 15 s of lowering the light intensity from 1500 to 600 microEinsteins per square meter per second the RuBP concentration in the leaves dropped below the enzyme active site concentration, indicating that RuBP regeneration rate was limiting for photosynthesis. After longer intervals of time, the RuBP concentration in the leaf increased as the RuBP carboxylase assumed a new steady state activation level. No change in the rate of photosynthesis was observed during the interval that RuBP concentration increased. It is concluded that the rate of photosynthesis at the lower light intensity was limited by the rate of RuBP regeneration and that parallel changes in the activation of RuBP carboxylase occurred such that concentrations of RuBP at steady state were not altered by changes in light intensity.

  19. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties

    International Nuclear Information System (INIS)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying; Liu, Lianqing; Li, Yanchun; Xiao, Wei; Li, Jianchun; Ma, Enlong

    2015-01-01

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. - Highlights: • Fibrogenesis was accompanied with the changes of cyto-biophysical properties. • Cyto-biophysical properties could be markers for anti-fibrotic drugs screening. • Stiffness is a leading index among all biophysical markers. • SalB was

  20. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Miao; Zheng, Mingjing; Xu, Hanying [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Liu, Lianqing [Shenyang Institute of Automation China Academy of Sciences, Shenyang, 110016 (China); Li, Yanchun [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Xiao, Wei [Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 222001 (China); Li, Jianchun, E-mail: lijianchun0317@sina.com.cn [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Ma, Enlong, E-mail: enlong_ma2014@hotmail.com [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016 (China); Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing, 222001 (China)

    2015-12-04

    Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control. Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. - Highlights: • Fibrogenesis was accompanied with the changes of cyto-biophysical properties. • Cyto-biophysical properties could be markers for anti-fibrotic drugs screening. • Stiffness is a leading index among all biophysical markers. • SalB was