WorldWideScience

Sample records for microbial technetium reduction

  1. Influence of microbial activity on the migration behaviour of redox-sensitive radionuclides (technetium and selenium) in loose rock

    International Nuclear Information System (INIS)

    Stroetmann, I.

    1995-01-01

    In closed cycle column tests under sterile conditions there was no or hardly any sorption of the two radionuclides. In closed cycle column tests with unsterile soils, however, the two radionuclides were extremely immobilised (80 % of the output activity of Tc-95m and 40 % of the output activity of Se-75). By inoculation of the sterile columns with mixed soil cultures an increase in sorption of 40 % of the output activity was achieved which is attributed to the microbial activity. The adsorbed radionuclides in unsterile columns could be remobilized by adding a bactericide. In columns with saline water the sorption of radionuclides was slightly lower. Soils with a 5 % organic carbon content showed extremely increased sorption of the two radionuclides. In comparison with closed cycle columns shake tests were carried out. During turbulent intermixing of water and solid, no sorption of technetium was observed in unsterile tests either, while Se-75 added as selenite was strongly adsorbed to the solid. When adding acetate as a C-source, the microbially conditioned reduction of the redox potential to -100 mV and, subsequently, a strong increase of sorption could be observed. A reduction of the pH value in the soils to pH 4, and simultaneous adding of acetate significally reduced the microbial activity and the sorption of technetium, while selenite sorption remained strong as before. Sorption tests with bacteria-pure and mixed cultures showed no sorption of the pertechnetate anion in the oxidation stage (VII). However, when reducing the pertechnetate by means of SnCl2, up to 40 % of the feed activity of killed and living biomass was immobilized. Between 20-30 % of the adsorbed technetium quantity was outside at the membrane, and 40% inside the cells. After a three-day incubation period in a technetium-containing solution, a factor of 15,5 was achieved as the maximum intracellular concentration factor for the isolate 143 (Xanthomas sp.). (orig./MG) [de

  2. Microbial reductive dehalogenation.

    Science.gov (United States)

    Mohn, W W; Tiedje, J M

    1992-01-01

    A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic communities that catalyze reductive dehalogenation appear to differ in many respects. A large number of pure cultures which catalyze reductive dehalogenation of aliphatic compounds are known, in contrast to only a few organisms which catalyze reductive dehalogenation of aromatic compounds. Desulfomonile tiedjei DCB-1 is an anaerobe which dehalogenates aromatic compounds and is physiologically and morphologically unusual in a number of respects, including the ability to exploit reductive dehalogenation for energy metabolism. When possible, we use D. tiedjei as a model to understand dehalogenating organisms in the above-mentioned undefined systems. Aerobes use reductive dehalogenation for substrates which are resistant to known mechanisms of oxidative attack. Reductive dehalogenation, especially of aliphatic compounds, has recently been found in cell-free systems. These systems give us an insight into how and why microorganisms catalyze this activity. In some cases transition metal complexes serve as catalysts, whereas in other cases, particularly with aromatic substrates, the catalysts appear to be enzymes. Images PMID:1406492

  3. Microbial reductive dehalogenation.

    OpenAIRE

    Mohn, W W; Tiedje, J M

    1992-01-01

    A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic commun...

  4. Study of reduction and complexation of technetium in the presence of humate

    International Nuclear Information System (INIS)

    Tkac, P.

    2003-06-01

    Reduction of pertechnetate was studied by different reduction systems: Sn 2+ , Fe 2+ , ascorbic acid, mixture of ascorbic acid and Fe 3+ , and thiourea. Reduction of pertechnetate by Sn 2+ ions (5 · 10 -2 - 5 · 10 -7 mol.dm -3 ) was studied in pH range of 0.94-6.4. For effective reduction of Tc(VII) an acidic environment (pH 2+ ions higher than 1 · 10 -5 mol.dm-3 was necessary. Reduction of Tc(VII) by Fe 2+ (0.01 mol.dm -3 FeSO 4 ) was strongly dependent on pH and for reduction yield higher than 95 %, pH = 8 and higher was needed. In the presence of ascorbic acid (1 - 5 %) no significant reduction was observed. When a 5 % solution of ascorbic acid was prepared by dilution of ascorbic acid in 2 mol.dm -3 HCl, 60 % reduction after 30 minutes of reaction was observed. Reduction of Tc(VII) in the presence of ascorbic acid was most effectively observed in the presence of Fe 3+ ions. The yield of reduction was about 98 % after 20 minutes of reaction. Reduction of pertechnetate by thiourea was studied in acidic solution (HCl). Different conditions were used for reduction of 99m TcO 4 - and 99 TcO 4 - , respectively. The best yield for a routine preparation of [ 99 Tc(tu) 6 ] 3+ (tu = thiourea) was observed when 70 mg of thiourea was dissolved in 5 ml of 0.5 mol.dm -3 HCl and 0.2 - 0.5 ml of 6 · 10 -2 mol.dm -3 TcO 4 - was added. The mixture was allowed to react at least 20 hours. In the case of 99m Tc, 35 mg of thiourea was diluted in 5 ml of 2 mol.dm -3 HCl and 0.1 - 0.5 ml of pertechnetate generator solution was added. Reaction mixture was heated at 100 grad C for at least 30 minutes under nitrogen atmosphere. The yield of pertechnetate reduction for both preparation methods was about 99 %. The thiourea complex of technetium was chosen for preparation of technetium-humic complex, because it is well known as the most suitable precursor for preparation of new technetium complexes with Tc 3+ . Gel chromatography of natrium humate was carried out before preparation of

  5. Microbial reduction of iron ore

    Science.gov (United States)

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  6. [Advances in microbial genome reduction and modification].

    Science.gov (United States)

    Wang, Jianli; Wang, Xiaoyuan

    2013-08-01

    Microbial genome reduction and modification are important strategies for constructing cellular chassis used for synthetic biology. This article summarized the essential genes and the methods to identify them in microorganisms, compared various strategies for microbial genome reduction, and analyzed the characteristics of some microorganisms with the minimized genome. This review shows the important role of genome reduction in constructing cellular chassis.

  7. Technetium and technetium alloys

    International Nuclear Information System (INIS)

    Ijdo, W.L.

    1993-10-01

    This report presents the results of a literature survey on technetium and technetium alloys. The literature has been searched through 1993. The survey was focused on technetium and (binary cubic) technetium alloys, but other important information on technetium has not been omitted from this survey. This report has been written with the aim to collect more information about phase systems which could be of importance in the transmutation process by neutrons of technetium. With the information presented in this report, it should be possible to select a suitable technetium alloy for further investigation regarding to the transmutation process. (orig.)

  8. Characterization of technetium(vII) reduction by cell suspensions of thermophilic bacteria and archaea.

    Science.gov (United States)

    Chernyh, Nikolay A; Gavrilov, Sergei N; Sorokin, Vladimir V; German, Konstantin E; Sergeant, Claire; Simonoff, Monique; Robb, Frank; Slobodkin, Alexander I

    2007-08-01

    Washed cell suspensions of the anaerobic hyperthermophilic archaea Thermococcus pacificus and Thermoproteus uzoniensis and the anaerobic thermophilic gram-positive bacteria Thermoterrabacterium ferrireducens and Tepidibacter thalassicus reduced technetium [(99)Tc(VII)], supplied as soluble pertechnetate with molecular hydrogen as an electron donor, forming highly insoluble Tc(IV)-containing grayish-black precipitate. Apart from molecular hydrogen, T. ferrireducens reduced Tc(VII) with lactate, glycerol, and yeast extract as electron donors, and T. thalassicus reduced it with peptone. Scanning electron microscopy and X-ray microanalysis of cell suspensions of T. ferrireducens showed the presence of Tc-containing particles attached to the surfaces of non-lysed cells. This is the first report on the reduction in Tc(VII) by thermophilic microorganisms of the domain Bacteria and by archaea of the phylum Euryarchaeota.

  9. Biogeochemical Processes Controlling Microbial Reductive Precipitation of Radionuclides

    International Nuclear Information System (INIS)

    Fredrickson, James K.; Brooks, Scott C.

    2004-01-01

    This project is focused on elucidating the principal biogeochemical reactions that govern the concentrations, chemical speciation, and distribution of the redox sensitive contaminants uranium (U) and technetium (Tc) between the aqueous and solid phases. The research is designed to provide new insights into the under-explored areas of competing geochemical and microbiological oxidation-reduction reactions that govern the fate and transport of redox sensitive contaminants and to generate fundamental scientific understanding of the identity and stoichiometry of competing microbial reduction and geochemical oxidation reactions. These goals and objectives are met through a series of hypothesis-driven tasks that focus on (1) the use of well-characterized microorganisms and synthetic and natural mineral oxidants, (2) advanced spectroscopic and microscopic techniques to monitor redox transformations of U and Tc, and (3) the use of flow-through experiments to more closely approximate groundwater environments. The results are providing an improved understanding and predictive capability of the mechanisms that govern the redox dynamics of radionuclides in subsurface environments. For purposes of this poster, the results are divided into three sections: (1) influence of Ca on U(VI) bioreduction; (2) localization of biogenic UO 2 and TcO 2 ; and (3) reactivity of Mn(III/IV) oxides.

  10. LABORATORY REPORT ON THE REDUCTION AND STABILIZATION (IMMOBILIZATION) OF PERTECHNETATE TO TECHNETIUM DIOXIDE USING TIN(II)APATITE

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; HAGERTY K; MOORE WP; RHODES RN; JOHNSON JM; MOORE RC

    2012-06-01

    technetium-loaded Sn(II)apatite was also subjected to water leach tests. The loaded sample (0.2 g of Sn(II)apatite was loaded with 0.342 mg of Tc-99) was placed in a 200-mL distilled water column and sparged with air. Samples were taken weekly over a 6-week period, and the dissolved oxygen ranged from 8.4 to 8.7 mg/L (average 8.5 mg/L); all samples recorded less than the detection limit of 0.01 mg/L Tc-99. The mechanism by which TcO{sub 2} is sequestered and hence protected from re-oxidation appears to be an exchange with phosphate in the apatite lattice, as the phosphorus that appeared in solution after reaction with technetium was essentially the same moles of technetium that were taken up by the Sn(II)apatite (Table 6). Overall, the reduction of the mobile pertechnetate (+7) to the less mobile technetium dioxide (+4) by Sn(II)apatite and subsequent sequestration of the technetium in the material indicates that Sn(II)apatite is an excellent candidate for long-term immobilization of technetium. The indications are that the Sn(II)apatite will lend itself to sequestering and inhibiting the reoxidation to the mobile pertechnetate species, thus keeping the radionuclide out of the environment.

  11. Reduction of date microbial load with ozone

    Science.gov (United States)

    Farajzadeh, Davood; Qorbanpoor, Ali; Rafati, Hasan; Isfeedvajani, Mohsen Saberi

    2013-01-01

    Background: Date is one of the foodstuffs that are produced in tropical areas and used worldwide. Conventionally, methyl bromide and phosphine are used for date disinfection. The toxic side effects of these usual disinfectants have led food scientists to consider safer agents such as ozone for disinfection, because food safety is a top priority. The present study was performed to investigate the possibility of replacing common conventional disinfectants with ozone for date disinfection and microbial load reduction. Materials and Methods: In this experimental study, date samples were ozonized for 3 and 5 hours with 5 and 10 g/h concentrations and packed. Ozonized samples were divided into two groups and kept in an incubator which was maintained at 25°C and 40°C for 9 months. During this period, every 3 month, microbial load (bacteria, mold, and yeast) were examined in ozonized and non-ozonized samples. Results: This study showed that ozonization with 5 g/h for 3 hours, 5 g/h for 5 hours, 10 g/h for 3 hours, and 10 g/h for 5 hours leads to about 25%, 25%, 53%, and 46% reduction in date mold and yeast load and about 6%, 9%, 76%, and 74.7% reduction in date bacterial load at baseline phase, respectively. Appropriate concentration and duration of ozonization for microbial load reduction were 10 g/h and 3 hours. Conclusion: Date ozonization is an appropriate method for microbial load reduction and leads to an increase in the shelf life of dates. PMID:24124432

  12. Preparation of low valent technetium metal-metal bonded species via solvothermal reduction of pertechnetate salts

    International Nuclear Information System (INIS)

    Kerlin, W.M.; Poineau, F.; Forster, P.M.; Czerwinski, K.R.; Sattelberger, A.P.

    2013-01-01

    A new one-step solvothermal synthesis route for reduction of pertechnetate salts to low valent technetium metal-metal bonded dimers will be presented. The reaction of potassium pertechnetate with glacial acetic acid plus either halo acids or halo salts under in-situ hydrogen production by sodium borohydride at various temperatures yields multiple products consisting of tetraacetate Tc-Tc (II,III) and Tc-Tc (III,III) paddle wheel dimers. Solid products isolated and analyzed via Single Crystal X-ray Diffraction (SC-XRD) in these reactions consist of polymeric chains Tc 2 +5 core: Tc 2 (μ-O 2 CCH 3 ) 4 (O 2 CCH 3 ), Tc 2 (μ-O 2 CCH 3 ) 4 Cl, Tc 2 (μ-O 2 CCH 3 ) 4 Br, Tc 2 (μ-O 2 CCH 3 ) 4 I, molecular Tc 2 +5 core: Tc 2 (μ-O 2 CCH 3 ) 3 Cl 2 (H 2 O) 2 ·H 2 O, K[Tc 2 (μ-O 2 CCH 3 ) 4 Br 2 ], and molecular Tc 2 +6 core: Tc 2 (μ-O 2 CCH 3 ) 4 Cl 2 , Tc 2 (μ-O 2 CCH 3 ) 4 Br 2 . Of the compounds listed, four are newly discovered using the one-step technique and two more additions to crystal database. Additional spectroscopic (X-ray Absorbance Fine Structure, UV-Vis, and FT-IR) characterization of the new compounds will be shown and used to propose a mechanism. Analysis of the mother liquor of each reaction by UV-Vis and formation of crystals over time due to oxidation of solutions affords a possible insight into mechanism of the Tc 2 +5 to Tc 2 +6 core formation. The oxidation states of Tc-Tc dimers formed is also dependent on temperature and pH of the starting solutions and will be explained in extensive detail. These one step reactions of reducing Tc(VII) to low valent technetium provides high yield intermediates for potential waste forms, use in nuclear fuel cycle separations, and radiopharmaceuticals. (author)

  13. Microbial reduction of uranium using cellulosic substrates

    International Nuclear Information System (INIS)

    Thombre, M.S.; Thomson, B.M.; Barton, L.L.

    1996-01-01

    Previous work at the University of New Mexico and elsewhere has shown that sulfate-reducing bacteria are capable of reducing uranium from the soluble +6 oxidation state to the insoluble +4 oxidation state. This chemistry forms the basis of a proposed ground water remediation strategy in which microbial reduction would be used to immobilize soluble uranium. One such system would consist of a subsurface permeable barrier which would stimulate microbial growth resulting in the reduction of sulfate and nitrate and immobilization of metals while permitting the unhindered flow of ground water through it. This research investigated some of the engineering considerations associated with a microbial reducing barrier such as identifying an appropriate biological substrate, estimating the rate of substrate utilization, and identifying the final fate of the contaminants concentrated in the barrier matrix. The performance of batch reactors and column systems that treated simulated plume water was evaluated using cellulose, wheat straw, alfalfa hay, sawdust, and soluble starch as substrates. The concentrations of sulfate, nitrate, and U(VI) were monitored over time. Precipitates from each system were collected, and the precipitated U(IV) was determined to be crystalline UO 2(s) by x-ray diffraction. The results of this study support the proposed use of cellulosic substrates as candidate barrier materials

  14. Microbial reduction of 99Tc (as TcO4-) in anaerobic alkaline conditions

    International Nuclear Information System (INIS)

    Khizhnyak, T.; Simonoff, M.; Sergeant, C.; Simonoff, G.; Medvedeva-Lyalikova, N.N.

    2003-01-01

    The ability of bacteria to reduce pertechnetate in alkaline conditions was investigated using halophilic bacteria isolated from soda-lakes environments. Anaerobic halophilic bacteria were able to reduce as much as 0.25 mM pertechnetate, whereas no reduction took place without bacteria or in the presence of heat-killed bacteria. The results obtained showed reduction of Tc(VII)O 4 - to the Tc(V) and Tc(IV) at pH 10 in the carbonate-bicarbonate medium. About 57% of the total technetium was determined to be Tc(IV), 1-3% as a Tc(V) and 17-20% as a Tc(VII) after 1-3 days of incubation with bacteria. The microbial reduction of Tc(VII) in alkaline conditions has been suggested as a potential mechanism for the removal of Tc from contaminated environments or waste streams. (author)

  15. Reduction And Sequestration Of Pertechnetate To Technetium Dioxide And Protection From Reoxidation

    International Nuclear Information System (INIS)

    Duncan, J. B.; Johnson, J. M.; Moore, R. C.; Hagerty, K.; Rhodes, R. N.; Huber, H. J.; Moore, W. P.

    2012-01-01

    This effort is part of the technetium management initiative and provides data for the handling and disposition of technetium. To that end, the objective of this effort was to challenge tin(lI)apatite (Sn(II)apatite) against double-shell tank 241-AN-105 simulant spiked with pertechnetate (TcO 4 ). The Sn(II)apatite used in this effort was synthesized on site using a recipe developed at and provided by Sandia National Laboratories; the synthesis provides a high quality product while requiring minimal laboratory effort. The Sn(ll)apatite reduces pertechnetate from the mobile +7 oxidation state to the non-mobile +4 oxidation state. It also sequesters the technetium and does not allow for re-oxidization to the mobile +7 state under acidic or oxygenated conditions within the tested period of time (6 weeks). Previous work indicated that the Sn(II) apatite can achieve an ANSI leachability index in Cast Stone of 12.8. The technetium distribution coefficient for Sn(lI)apatite exhibited a direct correlation with the pH of the technetium-spiked simulant media

  16. Influence of microbial activities on the mobility of technetium and selenium

    International Nuclear Information System (INIS)

    Merz, C.; Winkler, A.; Pekdeger, A.; Stroetmann, I.; Kaempfer, P.; Dott, W.

    1992-01-01

    Interactions between migration processes and microbiology have become known during the last few years, with an observed immobilization of radionuclides being attributed to the formation of microenvironments. In such microenvironments produced by bacterial accumulations at grain surfaces and in grain gores, changed redox conditions may lead to the precipitation of technetium and selenium. Such microenvironments, however, cannot be detected by measuring the physico-chemical parameters in the macroenvironment, and therefore they may cause misjudgement of the migration behaviour of radionuclides. To study the microbiological effects, batch and column tests were made with unsterile and sterile loose rock, and sterilization methods were tested with soil materials. In order to detect a possible attachment to microorganisms, the sorption behaviour in bacterial suspensions was studied in addition. (orig.) [de

  17. Technetium chemistry

    International Nuclear Information System (INIS)

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-01-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  18. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John F. Stolz

    2011-06-15

    A major challenge for the bioremediation of radionuclides (i.e., uranium, technetium) and metals (i.e., Cr(VI), Hg) is the co-occurrence of nitrate as it can inhibit metal transformation. Denitrification (nitrate reduction to dinitrogen gas) is considered the most important ecological process. For many metal and metalloid reducing bacteria, however, ammonia is the end product through respiratory nitrate reduction (RNRA). The focus of this work was to determine how RNRA impacts Cr(VI) transformation. The goal was to elucidate the specific mechanism(s) that limits Cr(VI) reduction in the presence of nitrate and to use this information to develop strategies that enhance Cr(VI) reduction (and thus detoxification). Our central hypothesis is that nitrate impacts the biotransformation of metals and metalloids in three ways 1) as a competitive alternative electron acceptor (inhibiting transformation), 2) as a co-metabolite (i.e., concomitant reduction, stimulating transformation), and 3) as an inducer of specific proteins and pathways involved in oxidation/reduction reactions (stimulating transformation). We have identified three model organisms, Geobacter metallireducens (mechanism 1), Sulfurospirillum barnesii, (mechasism 2), and Desulfovibrio desulfuricans (mechanisms 3). Our specific aims were to 1) investigate the role of Cr(VI) concentration on the kinetics of both growth and reduction of nitrate, nitrite, and Cr(VI) in these three organisms; 2) develop a profile of bacterial enzymes involved in nitrate transformation (e.g., oxidoreductases) using a proteomic approach; 3) investigate the function of periplasmic nitrite reductase (Nrf) as a chromate reductase; and 4) develop a strategy to maximize microbial chromium reduction in the presence of nitrate. We found that growth on nitrate by G. metallireducens was inhibited by Cr(VI). Over 240 proteins were identified by LC/MS-MS. Redox active proteins, outer membrane heavy metal efflux proteins, and chemotaxis sensory

  19. Microbial minimalism: genome reduction in bacterial pathogens.

    Science.gov (United States)

    Moran, Nancy A

    2002-03-08

    When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.

  20. Microbial (per)chlorate reduction in hot subsurface environments

    NARCIS (Netherlands)

    Liebensteiner, M.

    2014-01-01

    The microbial reduction of chlorate and perchlorate has been known for long as a respiratory process of mesophilic bacteria that thrive in diverse environments such as soils, marine and freshwater sediments. Chlorate and perchlorate are found in nature deriving from anthropogenic and natural

  1. Microbial selenium sulfide reduction for selenium recovery from wastewater

    NARCIS (Netherlands)

    Hageman, S.P.W.; Weijden, van der R.D.; Stams, A.J.M.; Cappellen, van P.; Buisman, C.J.N.

    2017-01-01

    Microbial reduction of selenium sulfide (SeS2) is a key step in a new treatment process to recover selenium from selenate and selenite streams. In this process, selenate is first reduced to selenite, and subsequently selenite is reduced by sulfide and precipitates from the solution as SeS2. The

  2. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    Science.gov (United States)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  3. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    Science.gov (United States)

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite

  4. Technetium recovery from high alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  5. Sorption of radionuclide technetium on minerals

    International Nuclear Information System (INIS)

    Li Min; Fan Xianhua; Wei Liansheng; Zhang Yingjie; Jiao Haiyang

    2004-01-01

    The study on adsorption behavior of technetium on antimonial minerals is performed in batch experiments and the influence of adsorption time, mineral granularity, solid-liquid ratio, initial concentration, pH value and reducing ion. On technetium adsorption are considered according to adsorption ratios of hepta valent and quadrivalent technetium on stibnite and antimony ocher, the results show that reduction of technetium from heptavelence to quadrivalence could improve adsorption ratios, which provide reference data for selecting buffer-backfill materials in high level rad waste deep geological diplosal. (author)

  6. Enhanced microbial reduction of vanadium (V) in groundwater with bioelectricity from microbial fuel cells

    Science.gov (United States)

    Hao, Liting; Zhang, Baogang; Tian, Caixing; Liu, Ye; Shi, Chunhong; Cheng, Ming; Feng, Chuanping

    2015-08-01

    Bioelectricity generated from the microbial fuel cell (MFC) is applied to the bioelectrical reactor (BER) directly to enhance microbial reduction of vanadium (V) (V(V)) in groundwater. With the maximum power density of 543.4 mW m-2 from the MFC, V(V) removal is accelerated with efficiency of 93.6% during 12 h operation. Higher applied voltage can facilitate this process. V(V) removals decrease with the increase of initial V(V) concentration, while extra addition of chemical oxygen demand (COD) has little effect on performance improvement. Microbial V(V) reduction is enhanced and then suppressed with the increase of conductivity. High-throughput 16S rRNA gene pyrosequencing analysis implies the accumulated Enterobacter and Lactococcus reduce V(V) with products from fermentative microorganisms such as Macellibacteroides. The presentation of electrochemically active bacteria as Enterobacter promotes electron transfers. This study indicates that application of bioelectricity from MFCs is a promising strategy to improve the efficiency of in-situ bioremediation of V(V) polluted groundwater.

  7. Biotechnological Applications of Microbial (Per)chlorate Reduction.

    Science.gov (United States)

    Wang, Ouwei; Coates, John D

    2017-11-24

    While the microbial degradation of a chloroxyanion-based herbicide was first observed nearly ninety years ago, only recently have researchers elucidated the underlying mechanisms of perchlorate and chlorate [collectively, (per)chlorate] respiration. Although the obvious application of these metabolisms lies in the bioremediation and attenuation of (per)chlorate in contaminated environments, a diversity of alternative and innovative biotechnological applications has been proposed based on the unique metabolic abilities of dissimilatory (per)chlorate-reducing bacteria (DPRB). This is fueled in part by the unique ability of these organisms to generate molecular oxygen as a transient intermediate of the central pathway of (per)chlorate respiration. This ability, along with other novel aspects of the metabolism, have resulted in a wide and disparate range of potential biotechnological applications being proposed, including enzymatic perchlorate detection; gas gangrene therapy; enhanced xenobiotic bioremediation; oil reservoir bio-souring control; chemostat hygiene control; aeration enhancement in industrial bioreactors; and, biogenic oxygen production for planetary exploration. While previous reviews focus on the fundamental science of microbial (per)chlorate reduction (for example see Youngblut et al., 2016), here, we provide an overview of the emerging biotechnological applications of (per)chlorate respiration and the underlying organisms and enzymes to environmental and biotechnological industries.

  8. Study of sorption of technetium on pyrrhotine

    International Nuclear Information System (INIS)

    Shen Dong; Fan Xianhua; Su Xiguang; Zeng Jishu

    2001-01-01

    The sorption behaviors of technetium on pyrrhotine are studied with batch experiment and dilute sulfuric acid is used to dissolve the technetium adsorbed on pyrrhotine. Sorption and desorption experiment are performed under aerobic and anaerobic conditions (inert gas box). The results show that a significant sorption of technetium on pyrrhotine is found under aerobic and anaerobic conditions, and the sorption on the mineral is supposed to be due to the reduction of TcO 4 - to insoluble TcO 2 ·nH 2 O. Desorption process of the sorbed technetium into dilute sulfuric acid is found to be different under aerobic and anaerobic conditions. On addition of H 2 O 2 to the leach solution a sudden increase of the technetium concentration is observed

  9. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.; Wang, Zheming

    2007-01-01

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH · 1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reduction of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity

  10. Technetium in environmental waters

    International Nuclear Information System (INIS)

    Malcolme-Lawes, D.J.; Robb, P.; Warwick, P.

    1983-01-01

    A method for the determination of technetium in a sample of environmental water is described. Technetium, in the TcO 4 - form, is extracted from the sample onto an anion-exchange resin from which it is removed subsequently by washing with 4 M sodium thiocyanate solution. The eluted technetium-thiocyanate complex is then subjected to solvent extraction, where the technetium is further concentrated into butan-2-one. The organic phase is evaporated onto a planchette and the β activity due to the technetium determined by an anticoincidence Geiger counter. Detection limits of 0.5 ng of technetium-99 have been obtained for the counter and sample volumes in excess of 500 cm 3 can be analysed readily. The sorption of several technetium compounds onto soil from a variety of water types has also been investigated. Preliminary results are presented and the importance of the chemical form of technetium used in such studies is discussed briefly. (author)

  11. Reductive dehalogenation in microbial and electrolytic model systems

    International Nuclear Information System (INIS)

    Criddle, C.S.

    1990-01-01

    This research addresses the principles or reductive dehalogenation, with a focus on microbial processes. Carbon tetrachloride (CT) was selected as a model compound for intensive investigation. Three different experimental systems were studied: pure cultures of Escherichia coli k-12, pure cultures of a denitrifying Pseudomonad isolated from aquifer solids (Pseudomonas sp. strain KC), and an electrolysis cell. The product distributions were consistent with the hypothesis that CT undergoes a rate-limiting reduction to radical species which rapidly react with constituents of the surrounding milieu. In cultures of E. coli k-12, use of oxygen and nitrate as terminal electron acceptors generally prevented CT transformation. At low oxygen levels (∼ 1%), however, transformation of 14 C-CT to 14 C-CO 2 and attachment to cell material did occur in accord with reports of CT fate in mammalian cell cultures. Under fumarate-respiring conditions, 14 C-CT was recovered as 14 C-C 2 , chloroform (CF), and in a non-volatile fraction. In contrast, fermenting conditions resulted in more CF, more cell-bound 14 C, and almost no 14 C-CO 2 . Rates were faster under fermenting conditions than under fumarate-respiring conditions. Rates also decreased over time suggesting the gradual exhaustion of transformation activity. This loss was modeled with a simple exponential decay term. Pseudomonas sp. strain KC converted 14 C-CT to 14 C-CO 2 under denitrifying conditions, without CF production. Strain KC was the only organism of several denitrifiers that transformed CT. Induction of CT transformation by strain KC depended upon the presence of trace metals. Addition of ferrous iron and cobalt inhibited CT transformation. For strain KC, CT transformation is apparently linked to its mechanism for trace metal acquisition

  12. Technetium compounds

    International Nuclear Information System (INIS)

    Murphy, C.A. de; Ferro F, G.

    2003-01-01

    The first radiopharmaceuticals of 99m Tc, also call of 'first generation' as colloids, aggregates and simple complexes were developed with relative easiness without it was necessary a wide understanding of its chemical structure. In the radiopharmaceuticals of 'second generation' were included those derived of the HIDA for hepatobiliary images, MAG3 and EC for images of tubular renal de purification, HMPAO and ECD for images of cerebral perfusion and MIBI and tetrofosmin for images of heart perfusion, that which implies a bigger demand in terms of the chemical knowledge. At the moment, we can affirm that the future of the radiopharmaceuticals of 99m Tc is based on the use of small and relevant biomolecules with high biological activity that allow the visualization in vivo of specific receiving sites and/or its expression in diverse pathologies. It is for it that with the 'third generation' is necessary a wide one knowledge of the chemistry of the technetium that allows the design and characterization of highly specific bio complexes. In this book, although focused mainly to the chemistry of the Tc, a brief revision is also presented on the main biologically active molecules that, coordinated the 99m Tc, present a high recognition In vivo for specific receivers. (Author)

  13. Nitrosyl complexes of technetium; Nitrosylkomplexe des Technetiums

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Janine

    2016-09-22

    The presented thesis describes syntheses and characterization of novel technetium nitrosyl compounds with various ligand systems. The main focus is the synthesis of low-valent technetium nitrosyl complexes with cyclopentadienyl ligands. [German] Gegenstand der vorliegenden Arbeit ist die Synthese und Charakterisierung neuer Technetiumnitrosylverbindungen mit unterschiedlichen Ligandensystemen. Hauptaugenmerk wurde dabei auf die Darstellung niedervalenter Tc(NO)-Verbindungen mit Cyclopentadienyl-Liganden gelegt.

  14. Microbial Reduction of Fe(III) and SO42- and Associated Microbial Communities in the Alluvial Aquifer Groundwater and Sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Lee, Bong-Joo

    2017-11-25

    Agricultural demands continuously increased use of groundwater, causing drawdown of water table and need of artificial recharge using adjacent stream waters. River water intrusion into groundwater can alter the geochemical and microbiological characteristics in the aquifer and subsurface. In an effort to investigate the subsurface biogeochemical activities before operation of artificial recharge at the test site, established at the bank of Nakdong River, Changwon, South Korea, organic carbon transported from river water to groundwater was mimicked and the effect on the indigenous microbial communities was investigated with the microcosm incubations of the groundwater and subsurface sediments. Laboratory incubations indicated microbial reduction of Fe(III) and sulfate. Next-generation Illumina MiSeq sequences of V4 region of 16S rRNA gene provided that the shifts of microbial taxa to Fe(III)-reducing and/or sulfate-reducing microorganisms such as Geobacter, Albidiferax, Desulfocapsa, Desulfuromonas, and Desulfovibrio were in good correlation with the sequential flourishment of microbial reduction of Fe(III) and sulfate as the incubations progressed. This suggests the potential role of dissolved organic carbons migrated with the river water into groundwater in the managed aquifer recharge system on the indigenous microbial community composition and following alterations of subsurface biogeochemistry and microbial metabolic activities.

  15. Title: Effect of abiotic stress on reduction of microbial contamination ...

    African Journals Online (AJOL)

    TERI

    2016-03-23

    Mar 23, 2016 ... to 36% reduced microbial contamination in aseptic culture establishment ... collected from farmer's field of Assam, India. .... Average weight loss (%) ± SE. 0 .... Asian J. Plant Sci. 6:496-501. Holdgate DP, Zandvoort EA (1997).

  16. Technetium removal from aqueous wastes

    International Nuclear Information System (INIS)

    Fletcher, P.A.; Jones, C.P.; Junkison, A.R.; Turner, A.D.; Kavanagh, P.R.

    1992-03-01

    The research discussed in this report has compared several ''state of the art'' techniques for the removal of traces of the radionuclide, technetium, from aqueous wastes. The techniques investigated were: electrochemical reduction to an insoluble oxide, electrochemical ion exchange, seeded ultrafiltration and chemical reduction followed by filtration. Each technique was examined using a simulant based upon the waste generated by the Enhanced Actinide Removal Plant (EARP) at Sellafield. The technique selected for further investigation was direct electrochemical reduction which offers an ideal route for the removal of technetium from the stream (DFs 10-100) and can be operated continuously with a low power consumption 25 kW for the waste generated by EARP. Cell designs for scale up have been suggested to treat the 1000m 3 of waste produced every day. Future work is proposed to investigate the simultaneous removal of other key radionuclides, such as ruthenium, plutonium and cobalt as well as scale up of the resulting process and to investigate the effect of these other radionuclides on the efficiency of the electrochemical reduction technique for the removal of technetium. Total development and full scale plant costs are estimated to be of the order of 5 pounds - 10M, with a time scale of 5 -8 years to realisation. (author)

  17. Sorption of radioactive technetium on pyrrhotine

    International Nuclear Information System (INIS)

    Shen, D.; Fan, X.H.; Su, X.G.; Zeng, J.S.; Dong, Y.

    2002-01-01

    The sorption behavior of technetium on pyrrhotine was studied with batch experiments and diluted sulfuric acid (less than 2.88 mol/l) was used to dissolve the technetium adsorbed on pyrrhotine. A significant sorption of technetium on pyrrhotine was observed under aerobic and anaerobic conditions, and the sorption on the mineral was supposed to be due to the reduction of TcO 4 - to insoluble TcO 2 x nH 2 O. Sorbed technetium on the mineral could be desorbed by diluted sulfuric acid. The maximum desorption ratio under aerobic conditions was much higher than that of under anaerobic conditions, meanwhile, the desorption rates under anaerobic conditions were higher than that of under aerobic conditions in the initial stage of the experiments. (author)

  18. Technetium behaviour under deep geological conditions

    International Nuclear Information System (INIS)

    Kumata, M.; Vandergraaf, T.T.

    1993-01-01

    The migration behaviour of technetium under deep geological conditions was investigated by performing column tests using groundwater and altered granitic rock sampled from a fracture zone in a granitic pluton at a depth of about 250 m. The experiment was performed under a pressure of about 0.7 MPa in a controlled atmosphere glove box at the 240 m level of the Underground Research Laboratory (URL) near Pinawa, Manitoba, Canada. The technetium was strongly sorbed on the dark mafic minerals in the column. With the exception of a very small unretarded fraction that was eluted with the tritiated water, no further breakthrough of technetium was observed. This strong sorption of technetium on the mineral surface was caused by reduction of Tc(VII), probably to Tc(IV) even though the groundwater was only mildly reducing. (author) 5 figs., 4 tabs., 15 refs

  19. Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite

    International Nuclear Information System (INIS)

    Jaisi, Deb P.; Dong, Hailiang; Plymale, Andrew E.; Fredrickson, Jim K.; Zachara, John M.; Heald, S.; Liu, Chongxuan

    2009-01-01

    99Tc is formed mostly during nuclear reactions and is released into the environment during weapons testing and inadvertent waste disposal. The long half-life, high environmental mobility (as Tc(VII)O4-) and its possible uptake into the food chain cause 99Tc to be a significant environmental contaminant. In this study, we evaluated the role of Fe(II) in biologically reduced clay mineral, nontronite (NAu-2), in reducing Tc(VII)O4- to poorly soluble Tc(IV) species as a function of pH and Fe(II) concentration. The rate of Tc(VII) reduction by Fe(II) in NAu-2 was higher at neutral pH (pH 7.0) than at acidic and basic pHs when Fe(II) concentration was low (< 1 mmol/g). The effect of pH, however, was insignificant at higher Fe(II) concentrations. The reduction of Tc(VII) by Fe(II) associated with NAu-2 was also studied in the presence of common subsurface oxidants including iron and manganese oxides, nitrate, and oxygen, to evaluate the effect of the oxidants on the enhancement and inhibition of Tc(VII) reduction, and reoxidation of Tc(IV). Addition of iron oxides (goethite and hematite) to the Tc(VII)-NAu-2 system, where Tc(VII) reduction was ongoing, enhanced reduction of Tc(VII), apparently as a result of re-distribution of reactive Fe(II) from NAu-2 to more reactive goethite/hematite surfaces. Addition of manganese oxides stopped further Tc(VII) reduction, and in case of K+-birnessite, it reoxidized previously reduced Tc(IV). Nitrate neither enhanced reduction of Tc(VII) nor promoted reoxidation of Tc(IV). Approximately 11% of Tc(IV) was oxidized by oxygen. The rate and extent of Tc(IV) reoxidation was found to strongly depend on the nature of the oxidants and concentration of Fe(II). When the same oxidants were added to aged Tc reduction products (mainly NAu-2 and TcO2nH2O), the extent of Tc(IV) reoxidation decreased significantly relative to fresh Tc(IV) products. Increasing NAu-2 concentration also resulted in the decreased extent of Tc(IV) reoxidation. The results

  20. Technetium migration in natural clays

    International Nuclear Information System (INIS)

    Luebke, Maria

    2015-01-01

    The present work was performed within the joint research project ''Retention of repository relevant radionuclides in argillaceous rocks and saline systems'' (contract no.: 02E10981), funded by the Federal Ministry for Economic Affairs and Energy (BMWi). The aim was to obtain first insights into the interaction of the long-lived fission product technetium and natural clay with regard to a repository for high-level nuclear waste. For this purpose Opalinus Clay from Mont Terri (northern Switzerland) was used as a reference material. The nuclide technetium-99 will contribute to the radiotoxicity of spent nuclear fuel for more than thousand years due to its long half-live. In case of a leakage of the storage vessels, the geochemistry of technetium is determined by its oxidation state, at which only the oxidation states +IV and +VII are relevant. Because of the high solubility and low affinity to sorption on surfaces of minerals, Tc(VII) is considered to be very mobile and thus the most hazardous species. The focuses of this study therefore are diffusion experiments with this mobile species and investigations of the effect of ferrous iron on the mobility and speciation of technetium.rnThe interaction of technetium and Opalinus Clay was studied in sorption and diffusion experiments varying several parameters (pH value, addition of reducing agents, effect of oxygen, diffusion pathways). In the course of this study spatially resolved investigations of the speciation have been performed on Opalinus Clay thin sections and bore cores for the first time. In addition to the speciation, further information regarding elemental distributions and crystalline phases near technetium enrichments were obtained. Supplementary investigations of powder samples allowed determining the molecular structure of technetium on the clay surface.rnBoth the combination of sorption experiments with spectroscopic investigations and the diffusion experiment exhibit a reduction of Tc

  1. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION.

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS, A.J.; DODGE, C.J.

    2006-11-16

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  2. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy’s (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (i) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (ii) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (iii) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  3. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  4. Final Technical Report. Factors Controlling In Situ Uranium and Technetium Bio-Reduction and Reoxidation at the NABIR Field Research Center

    International Nuclear Information System (INIS)

    Dr. Jonathan D. Istok , Oregon State University; Dr. Lee Krumholz, University of Oklahoma; Dr. James McKinley, Pacific Northwest National Laboratory; Dr. Baohua Gu, Oak Ridge National Laboratory

    2006-01-01

    The overall goal of this project was to better understand factors and processes controlling microbially-mediated reduction and reoxidation of U and Tc in the unconsolidated residuum overlying the Nolichucky shale at the Field Research Center (FRC) at Oak Ridge National Laboratory. Project activities were designed to test the following hypotheses: (1) The small rates of denitrification and U bio-reduction observed in laboratory incubations of sediments from FRC Area 1 at low pH (< 5) are due to the presence of high concentrations of toxic metals (especially Al and Ni). Rates of Tc reduction will also be small at low pH in the presence of high concentrations of toxic metals. (2) In situ rates of U and perhaps Tc bio-reduction can be increased by increasing system pH and thus precipitating toxic metals from solution. (3) In situ rates of U and Tc bio-reduction can be increased by the addition of humic substances, which complex toxic metals such as Al and Ni, buffer pH, and serve as electron shuttles to facilitate U and Tc reduction. (4) Microbially-reduced U and Tc are rapidly oxidized in the presence of high concentrations of NO3- and the denitrification intermediates NO2-, N2O, and NO. (5) An electron-donor-addition strategy (type and form of donor, with or without pH adjustment and with or without the co-addition of humic substances) can be devised to reduce U and Tc concentrations for an extended period of time in low pH groundwater in the presence of high concentrations of NO3-, Al, and Ni. This strategy operates by removing or complexing these components of FRC groundwater to allow the subsequent reduction of U(VI) and Tc(VII)

  5. Technetium Reduction and Permanent Sequestration by Abiotic and Biotic Formation of Low-Solubility Sulfide Mineral Phases

    Energy Technology Data Exchange (ETDEWEB)

    Tratnyek, Paul G. [Oregon Health & Science Univ., Beaverton, OR (United States); Tebo, Bradley M. [Oregon Health & Science Univ., Beaverton, OR (United States); Fan, Dimin [Oregon Health & Science Univ., Beaverton, OR (United States); Anitori, Roberto [Oregon Health & Science Univ., Beaverton, OR (United States); Szecsody, Jim [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jansik, Danielle [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-14

    One way to minimize the mobility of the TcVII oxyanion pertechnetate (TcO4-) is to effect reduction under sulfidogenic conditions (generated abiotically by Fe0 or biotically) to form TcSx, which is significantly slower to oxidize than TcIVO2. In sediment systems, TcSx and other precipitates may oxidize more slowly due to oxygen diffusion limitations to these low permeability precipitate zones. In addition, the TcO4- reduction rate may be more rapid in the presence of sediment because of additional reductive surface phases. This project aims to provide a fundamental understanding of the feasibility of immobilization of TcO4- as TcSx in the vadose zone or groundwater by application nano zero-valent iron (nZVI), and sulfide or sulfate. Biotic batch experiments have used the sulfate-reducing bacterium (SRB) Desulfotomaculum reducens. The iron sulfide mineral mackinawite was generated under these conditions, while vivianite was formed in nZVI only controls. The sulfide/bacteria-containing system consistently reduced aqueous pertechnetate rapidly (> 95% in the first hour), a rate similar to that for the sulfide-free, nZVI only system. Reduced Tc (aged for 3 months) generated in both SRB/nZVI systems was highly resistant to reoxidation. In reduced samples, Tc was found associated with solid phases containing Fe and S (D. reducens/nZVI) or Fe (nZVI only). Experiments using D. reducens without nZVI provided some additional insights. Firstly, stationary phase cultures were able to slowly reduce pertechnetate. Secondly, addition of pertechnetate at the beginning of cell growth (lag phase) resulted in a faster rate of Tc reduction, possibly indicating a direct (e.g. enzymatic) role for D. reducens in Tc reduction. Abiotic batch experiments were conducted with Na2S as the sulfide source. Pertechnetate reduction was

  6. Eutrophication, microbial-sulfate reduction and mass extinctions

    DEFF Research Database (Denmark)

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas

    2016-01-01

    to the Earth system, notably, the biogeochemical sulfur and carbon cycle. This climate warming feedback produces large-scale eutrophication on the continental shelf, which, in turn, expands oxygen minimum zones by increased respiration, which can turn to a sulfidic state by increased microbial-sulfate...

  7. Title: Effect of abiotic stress on reduction of microbial contamination ...

    African Journals Online (AJOL)

    TERI

    2016-03-30

    Mar 30, 2016 ... Full Length Research Paper. Effect of osmotic stress on in vitro propagation of. Musa sp. ... In vitro propagation of banana preferably use sword sucker as explant source where microbial contamination poses a great problem in ... micropropagation. Endo-bacterial contamination is one of the major problems ...

  8. Factors Controlling In Situ Uranium and Technetium Bio-Reduction and Reoxidation at the NABIR Field Research Center

    International Nuclear Information System (INIS)

    Istok, Jonathan; Krumholz, L; McKinley, J.; Gu, B.

    2004-01-01

    Summary of Recent Field Testing: Extensive in situ (in ground) field testing using the push-pull method has demonstrated that indigenous microorganisms in the shallow ( ∼ 20 mM. Field data and laboratory studies suggest that U(IV) is likely oxidized by Fe(III) minerals produced by enzymatic Fe(II) oxidation or by Fe(II) oxidation by nitrite. U(IV) reoxidation rates (10-3 to 10-2 uM/hr) were somewhat larger than U(VI) reduction rates indicating that sustained nitrate removal will be necessary to maintain the stability of U(IV) in this environment

  9. Humic substances-mediated microbial reductive dehalogenation of triclosan

    Science.gov (United States)

    Wang, L.; Xu, S.; Yang, Y.

    2015-12-01

    The role of natural organic matter in regulating the redox reactions as an electron shuttle has received lots of attention, because it can significantly affect the environmental degradation of contaminants and biogeochemical cycles of major elements. However, up to date, limited studies examined the role of natural organic matter in affecting the microbial dehalogenation of emergent organohalides, a critical detoxification process. In this study, we investigated the humic substance (HS)-mediated microbial dehalogenation of triclosan, a widely used antimicrobial agent. We found that the presence of HS stimulated the microbial degradation of triclosan by Shewanella putrefaciens CN-32. In the absence of HS, the triclosan was degraded gradually, achieving 8.6% residual at 8 days. With HS, the residual triclosan was below 2% after 4 days. Cl- was confirmed by ion chromatography analysis, but the dehalogenation processes and other byproducts warrant further investigations. The impact of HS on the degradation of triclosan was highly dependent on the concentration of HS. When the HS was below 15 mg/L, the degradation rate constant for triclosan increased with the organic carbon concentration. Beyond that point, the increased organic carbon concentration decreased the degradation of triclosan. Microbially pre-reduced HS abiotically reduced triclosan, testifying the electron shuttling processes. These results indicate that dissolved organic matter plays a dual role in regulating the degradation of triclosan: it mediates electron transport and inhibits the bioavailability through complexation. Such novel organic matter-mediated reactions for organohalides are important for evaluating the natural attenuation of emergent contaminants and designing cost-effective engineering treatment.

  10. Technetium and iodine aqueous species immobilization and transformations in the presence of strong reductants and calcite-forming solutions: Remedial action implications

    Energy Technology Data Exchange (ETDEWEB)

    Lawter, Amanda R.; Garcia, Whitney L.; Kukkadapu, Ravi K.; Qafoku, Odeta; Bowden, Mark E.; Saslow, Sarah A.; Qafoku, Nikolla

    2018-09-15

    At the Hanford Site in southeastern Washington State, radionuclide (Tc-99/I-129) laden liquid wastes have been discharged to ground, resulting in vadose zone contamination, which provides a continuous source of these contaminants to groundwater. The presence of multiple contaminants increases the complexity of finding viable remediation technologies to sequester vadose zone contaminants in situ and protect groundwater. Although previous studies have shown the efficiency of zero valent iron (ZVI) and sulfur modified iron (SMI) in reducing mobile Tc(VII) to immobile Tc(IV) and iodate incorporation into calcite, the coupled effects from simultaneously using these remedial technologies have not been previously studied. In this first-of-a-kind laboratory study, we used two efficient reductants (i.e., ZVI and SMI) and calcite-forming solutions to simultaneously remove aqueous Tc(VII) and iodate via reduction and incorporation, respectively. The results confirmed that Tc(VII) was rapidly removed from the aqueous phase via reduction to Tc(IV). ZVI removed Tc(VII) faster than SMI, although both had removed the same amount by the end of the experiments. Most of the aqueous iodate was rapidly transformed to iodide, and therefore was not incorporated into calcite, but instead remained in the aqueous phase. The iodate reduction to iodide was much faster than iodate incorporation into calcite, suggesting that this remedial pathway is not efficient in removing aqueous iodate when strong reductants are present. Other experiments suggested that iodate removal via calcite precipitation should occur first and then reductants should be added for Tc(VII) removal. Although ZVI can negatively impact microbial populations and thereby inhibit natural attenuation mechanisms, only changes in the makeup of the microbial community were observed. However, these changes in the microbial community may have an impact on remediation efforts in the long term that could not be seen in a short

  11. Limiting Factors for Microbial Fe(III)-Reduction In a Landfill Leachate Polluted Aquifer (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Heron, Gorm; Christensen, Thomas Højlund

    1995-01-01

    Aquifer sediment samples from two locations within the anaerobic leachate plume of a municipal landfill were compared with respect to microbiology (especially Fe(III)-reduction) and geochemistry. The samples close to the landfill were characterized by low contents of Fe(III), whereas samples from...... the more distant cluster were rich in Fe(III)-oxides. The active microbial population seemed to be less dense in samples more distant from the landfill (measured by ATP and phospholipid fatty acids (PLFA)), but the microbial communities were very similar in the two sample clusters according...... to the composition of PLFA. Very little, if any, Fe(III)-reduction was observed close to the landfill, but all the more distant samples showed evident microbially mediated Fe(III)-reduction. After amendment with both acetate and Fe(III), all the samples showed a potential for Fe(III)-reduction, and the in situ Fe...

  12. Radionuclide Basics: Technetium-99

    Science.gov (United States)

    Technetium-99 (chemical symbol Tc-99) is a silver-gray, radioactive metal. It occurs naturally in very small amounts in the earth's crust, but is primarily man-made. Technetium-99m is a short-lived form of Tc-99 that is used as a medical diagnostic tool.

  13. Microbial activity in aquatic environments measured by dimethyl sulfoxide reduction and intercomparison with commonly used methods.

    Science.gov (United States)

    Griebler, C; Slezak, D

    2001-01-01

    A new method to determine microbial (bacterial and fungal) activity in various freshwater habitats is described. Based on microbial reduction of dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS), our DMSO reduction method allows measurement of the respiratory activity in interstitial water, as well as in the water column. DMSO is added to water samples at a concentration (0.75% [vol/vol] or 106 mM) high enough to compete with other naturally occurring electron acceptors, as determined with oxygen and nitrate, without stimulating or inhibiting microbial activity. Addition of NaN(3), KCN, and formaldehyde, as well as autoclaving, inhibited the production of DMS, which proves that the reduction of DMSO is a biotic process. DMSO reduction is readily detectable via the formation of DMS even at low microbial activities. All water samples showed significant DMSO reduction over several hours. Microbially reduced DMSO is recovered in the form of DMS from water samples by a purge and trap system and is quantified by gas chromatography and detection with a flame photometric detector. The DMSO reduction method was compared with other methods commonly used for assessment of microbial activity. DMSO reduction activity correlated well with bacterial production in predator-free batch cultures. Cell-production-specific DMSO reduction rates did not differ significantly in batch cultures with different nutrient regimes but were different in different growth phases. Overall, a cell-production-specific DMSO reduction rate of 1.26 x 10(-17) +/- 0. 12 x 10(-17) mol of DMS per produced cell (mean +/- standard error; R(2) = 0.78) was calculated. We suggest that the relationship of DMSO reduction rates to thymidine and leucine incorporation is linear (the R(2) values ranged from 0.783 to 0.944), whereas there is an exponential relationship between DMSO reduction rates and glucose uptake, as well as incorporation (the R(2) values ranged from 0.821 to 0.931). Based on our results, we

  14. Technetium compounds and their field of application

    International Nuclear Information System (INIS)

    Zaitseva, L.L.; Velichko, A.V.; Vinogradov, I.V.

    1988-02-01

    This chapter reviews the different applications of technetium and technetium compounds in catalysis, corrosion inhibition, superconductivity of technetium alloys, diagnostic techniques, radioisotope generators and radiopharmaceuticals. 649 refs [fr

  15. Chemistry of Technetium

    International Nuclear Information System (INIS)

    Omori, Takashi

    2001-01-01

    Since the late 1970's the coordination chemistry of technetium has been developed remarkably. The background of the development is obviously related to the use of technetium radiopharmaceuticals for diagnosis in nuclear medicine. Much attention has also been denoted to the chemical behavior of environmental 99 Tc released from reprocessing plants. This review covers the several aspects of technetium chemistry, including production of radioisotopes, analytical chemistry and coordination chemistry. In the analytical chemistry, separation of technetium, emphasizing chromatography and solvent extraction, is described together with spectrophotometric determination of technetium. In the coordination chemistry of technetium, a characteristic feature of the chemistry of Tc(V) complexes is referred from the view point of the formation of a wide variety of highly stable complexes containing the Tc=O or Tc≡N bond. Kinetic studies of the preparation of Tc(III) complexes using hexakis (thiourea) technetium(III) ion as a starting material are summarized, together with the base hydrolysis reactions of Tc(III), Tc(IV) and Tc(V) complexes. (author)

  16. Final Report, Research Program to Investigate the Fundamental Chemistry of Technetium

    International Nuclear Information System (INIS)

    Lukens, Wayne W. Jr.; Fickes, Michael J.; Bucher, Jerome J.; Burns, Carol J.; Edelstein, Norman M.; Shuh, David K.

    2000-01-01

    The purpose is to increase the basic scientific understanding of technetium chemistry to better understand the behavior of technetium in chemical environments relevant to DOE. Two important areas in need of study are the behavior of technetium in highly alkaline solutions similar to high-level nuclear waste, and its behavior in different waste forms. This research program addressed these two needs. Two separate approaches were used in this program. The first focus was to understand the basic solution chemistry of technetium, which underlies its behavior in the highly alkaline environment of the nuclear waste tanks located at the Savannah River and Hanford Sites. The specific problems at these sites are related to the anomalous oxidation state of technetium (Schroeder 1995). Although, at high pH, technetium should exist in its highest oxidation state as TcO 4 - , soluble, lower-valent technetium species have been observed in certain wastes. The specific unknowns that this program sought to answer are the nature of lower valent technetium species that can be formed in highly alkaline solution and whether pertechnetate undergoes radiolytic reduction in highly alkaline solution when nitrate is present in excess. The second focus area is the behavior of technetium immobilized in various waste forms. The behavior of technetium in cement wastes was examined to gain information about its long-term stability. Specifically, this research examined the oxidation of reduced technetium species by components present in high-level waste that are incorporated into cement waste along with technetium

  17. Final Report, Research Program to Investigate the Fundamental Chemistry of Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Lukens Jr., Wayne W.; Fickes, Michael J.; Bucher, Jerome J.; Burns, Carol J.; Edelstein, Norman M.; Shuh, David K.

    2000-12-23

    The purpose is to increase the basic scientific understanding of technetium chemistry to better understand the behavior of technetium in chemical environments relevant to DOE. Two important areas in need of study are the behavior of technetium in highly alkaline solutions similar to high-level nuclear waste, and its behavior in different waste forms. This research program addressed these two needs. Two separate approaches were used in this program. The first focus was to understand the basic solution chemistry of technetium, which underlies its behavior in the highly alkaline environment of the nuclear waste tanks located at the Savannah River and Hanford Sites. The specific problems at these sites are related to the anomalous oxidation state of technetium (Schroeder 1995). Although, at high pH, technetium should exist in its highest oxidation state as TcO{sub 4}{sup {minus}}, soluble, lower-valent technetium species have been observed in certain wastes. The specific unknowns that this program sought to answer are the nature of lower valent technetium species that can be formed in highly alkaline solution and whether pertechnetate undergoes radiolytic reduction in highly alkaline solution when nitrate is present in excess. The second focus area is the behavior of technetium immobilized in various waste forms. The behavior of technetium in cement wastes was examined to gain information about its long-term stability. Specifically, this research examined the oxidation of reduced technetium species by components present in high-level waste that are incorporated into cement waste along with technetium.

  18. Novel Insights Into Microbial Uranium Reduction and Immobilization

    Science.gov (United States)

    Loeffler, F. E.; Fletcher, K.; Thomas, S.; Kemner, K. M.; Boyanov, M.; Sanford, R.

    2010-12-01

    Many ferric iron- and manganese oxide-reducing bacteria affect the oxidation state and complexation of toxic radionuclides in subsurface environments. Relevant to uranium (U) speciation are bacteria that reduce predominantly water-soluble and mobile U(VI) to U(IV), which has reduced solubility and typically forms the uraninite (UO2) mineral. Gram-negative model organisms including Shewanella spp., Geobacter spp., and more recently Anaeromyxobacter spp. use U(VI) as growth-supporting electron acceptor; however, the biomass yields are lower than predicted based on the theoretical free energy changes associated with U(VI)-to-U(IV) reduction. Recent findings demonstrated that U(VI) reduction is not limited to Gram-negative bacteria, and members of the genus Desulfitobacterium, which are commonly found in soil and subsurface environments, share the ability to reduce U(VI). Interestingly, extended X-ray absorption fine structure (EXAFS) analysis demonstrated that the U(IV) produced in cultures of five Desulfitobacterium spp. was not UO2 but rather a phase or mineral composed of mononuclear U(IV) atoms. Since the properties of the reduced product influence U(IV) fate, knowledge of the diversity of U reduction mechanisms and the stability of the end products is desirable for controlling and predicting U fate. For example, UO2 is susceptible to reoxidation by oxidants, and oxic/anoxic interface processes are controlling the stability of the precipitated material. In other words, metal reducers that thrive at the oxic/anoxic interface are likely key players affecting long-term U fate. Anaeromyxobacter spp. are facultative microaerophiles and grow with oxygen as electron acceptor at partial pressures equal to or below 0.18 atm. Thus, Anaeromyxobacter are uniquely adapted to life at the oxic-anoxic interface where they consume oxygen and take advantage of oxidized metal species including U(VI) as electron acceptors. The application of 16S rRNA gene-targeted qPCR approaches

  19. Relationship between microbial sulfate reduction rates and sulfur isotopic fractionation

    Science.gov (United States)

    Matsu'Ura, F.

    2009-12-01

    Sulfate reduction is one of the common processes to obtain energy for certain types of microorganisms.They use hydrogen gas or organic substrates as electron donor and sulfates as electron acceptor, and reduce sulfates to sulfides. Sulfate reducing microbes extend across domains Archea and Bacteria, and are believed to be one of the earliest forms of terrestrial life (Shen 2004). The origin of 34S-depleted (light) sulfide sulfur, especially δ34S vials, which contain 40ml of liquid culture media slightly modified from DSMZ #63 medium.Excess amount of Fe (II) is added to the DSMZ#63 medium to precipitate sulfide as iron sulfide. The vials were incubated at 25°C, 30°C, and 37°C, respectively. 21 vials were used for one temperature and sulfide and sulfate was collected from each three glass vials at every 12 hours from 72 hours to 144 hours after start of incubation. The sulfide was precipitated as iron sulfide and the sulfate was precipitated as barite. Sulfur isotope compositions of sulfate and sulfide were measured by standard method using Delta Plus mass-spectrometer. [Results and Discussion] The fractionation between sulfide and sulfate ranged from 2.7 to 11.0. The fractionation values varied among the different incubation temperature and growth phase of D. desulfuricans. The maximum fractionation values of three incubation temperatures were 9.9, 11.0, and 9.7, for 25 °C, 30°C, and 37°C, respectively. These results were different from standard model and Canfield et al. (2006). I could not find the clear correlation between ∂34S values and incubation temperatures in this experiment. The measured fractionation values during the incubation varied with incubation stage. The fractionation values clearly increased with incubation time at every temperature, and at 25°C ∂34S value was 3.6 at the 72h and it increased to 7.9 at 144 hours. This indicated the difference of sulfate reduction rate due to the growth phase of SRB. In the early logarithmic growth phase

  20. Thermal conductivity of technetium

    International Nuclear Information System (INIS)

    Minato, K.; Serizawa, H.; Fukuda, K.

    1998-01-01

    The thermal diffusivity of technetium was measured on a disk sample of 5 mm in diameter and 1 mm in thickness by the laser flash method from room temperature to 1173 K, and the thermal conductivity was determined by the measured thermal diffusivity and density, and the reported specific heat capacity. The thermal diffusivity of technetium decreases with increasing temperature though it is almost constant above 600 K. The thermal conductivity of technetium shows a minimum around 400 K, above which the thermal conductivity increases with temperature. The electronic and phonon components of the thermal conductivity were evaluated approximately. The increase in the thermal conductivity of technetium with temperature is due to the increase in the electronic component. (orig.)

  1. The molybdenum-technetium solar neutrino experiment

    International Nuclear Information System (INIS)

    Schroeder, N.C.; Wolfsberg, K.; Rokop, D.J.

    1991-01-01

    The authors are attempting to measure the time-averaged 8 B solar-neutrino flux over 10 Myr by measuring 98 Tc produced through the 98 Mo( nu ,e - ) reaction in a deeply buried molybdenum deposit. This will test the prediction of periodic mixing of the Sun's core over long time intervals. To separate technetium from 10,000-ton quantities of Henderson ore, the authors have taken advantage of the commercial processing of molybdenite. Technetium, volatilized during roasting of molybdenite to MoO 3 , was scrubbed from the gas stream and collected on anion exchange columns. After sample reduction and chemical separation and purification they measured technetium, as TcO 4 - , using negative thermal ionization mass spectrometry. Measurement of 99 Tc in spiked and 98 Tc in unspiked fractions from one sample gives an apparent solar neutrino production rate of 95.8 SNU. However, roaster memory probably invalidates this result

  2. Transfer of technetium from soil to paddy and upland rice

    International Nuclear Information System (INIS)

    Yanagisawa, Kei; Muramatsu, Yasuyuki

    1995-01-01

    Soil-plant transfer factors (concentration ratio between the plant and soil) of technetium in paddy and upland rice plants were obtained from laboratory experiments. The transfer factor is one of the most important parameters for environmental radiation dose assessment. Technetium tracer ( 95m TcO 4 - ) was added to the soil prior to rice cultivation. The transfer factor of technetium for the hulled grains (brown rice) of paddy rice (≤0.0002) was much lower than for that of upland rice (0.021). The transfer factors for both types of hulled grains were much lower than in the leaves. The technetium decontamination rate from hulled grains by polishing was 34%, the percentage of the weight decrease being 12%. The concentration of technetium in the soil solution collected from the paddy rice soil (flooded conditions) decreased rapidly with time due to its adsorption on the soil. In the upland rice soil (non-flooded) solution, the decrease in the technetium concentration was fairly slow. The low transfer factors for the paddy rice plants could be explained by the immobilization of technetium in the flooded soil. The oxidation-reduction potentials (Eh) in the flooded soil decreased rapidly with time. We conclude that technetium tracer added as TcO 4 - to flooded soil is readily transformed to an insoluble form (e.g.TcO 2 ) under the reducing conditions provided by flooding. (author)

  3. Electrochemistry of technetium

    International Nuclear Information System (INIS)

    Russell, C.D.; Alabama Univ., Birmingham

    1982-01-01

    Recent work on the electrochemistry of technetium is reviewed, covering the period 1973-1980. Topics include polarographic studies of aqueous pertechnetate, coulometric studies of aqueous pertechnetate at mercury cathodes, and electrochemistry of pertechnetate at solid electrodes. A review is also given of electrochemistry of other technetium compounds, non-aqueous systems, chemical redox reactions, and substitution reactions. Consideration is also given to studies of electrochemistry at tracer concentrations, electrolytic syntheses, standard electrode potentials, and electroanalytical methods. (author)

  4. Impact of natural organic matter coatings on the microbial reduction of iron oxides

    Science.gov (United States)

    Poggenburg, Christine; Mikutta, Robert; Schippers, Axel; Dohrmann, Reiner; Guggenberger, Georg

    2018-03-01

    Iron (Fe) oxyhydroxides are important constituents of the soil mineral phase known to stabilize organic matter (OM) under oxic conditions. In an anoxic milieu, however, these Fe-organic associations are exposed to microbial reduction, releasing OM into soil solution. At present, only few studies have addressed the influence of adsorbed natural OM (NOM) on the reductive dissolution of Fe oxyhydroxides. This study therefore examined the impact of both the composition and concentration of adsorbed NOM on microbial Fe reduction with regard to (i) electron shuttling, (ii) complexation of Fe(II,III), (iii) surface site coverage and/or pore blockage, and (iv) aggregation. Adsorption complexes with varying carbon loadings were synthesized using different Fe oxyhydroxides (ferrihydrite, lepidocrocite, goethite, hematite, magnetite) and NOM of different origin (extracellular polymeric substances from Bacillus subtilis, OM extracted from soil Oi and Oa horizons). The adsorption complexes were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, electrophoretic mobility and particle size measurements, and OM desorption. Incubation experiments under anaerobic conditions were conducted for 16 days comparing two different strains of dissimilatory Fe(III)-reducing bacteria (Shewanella putrefaciens, Geobacter metallireducens). Mineral transformation during reduction was assessed via XRD and FTIR. Microbial reduction of the pure Fe oxyhydroxides was controlled by the specific surface area (SSA) and solubility of the minerals. For Shewanella putrefaciens, the Fe reduction of adsorption complexes strongly correlated with the concentration of potentially usable electron-shuttling molecules for NOM concentrations <2 mg C L-1, whereas for Geobacter metallireducens, Fe reduction depended on the particle size and thus aggregation of the adsorption complexes. These diverging results suggest that

  5. Nitrogen fertilization decouples roots and microbes: Reductions in belowground carbon allocation limit microbial activity

    Science.gov (United States)

    Carrara, J.; Walter, C. A.; Govindarajulu, R.; Hawkins, J.; Brzostek, E. R.

    2017-12-01

    Nitrogen (N) deposition has enhanced the ability of trees to capture atmospheric carbon (C). The effect of elevated N on belowground C cycling, however, is variable and response mechanisms are largely unknown. Recent research has highlighted distinct differences between ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees in the strength of root-microbial interactions. In particular, ECM trees send more C to rhizosphere microbes to stimulate enzyme activity and nutrient mobilization than AM trees, which primarily rely on saprotrophic microbes to mobilize N. As such, we hypothesized that N fertilization would weaken root-microbial interactions and soil decomposition in ECM stands more than in AM stands. To test this hypothesis, we measured root-microbial interactions in ECM and AM plots in two long-term N fertilization studies, the Fernow Experimental Forest, WV and Bear Brook Watershed, ME. We found that N fertilization led to declines in plant C allocation belowground to fine root biomass, branching, and root exudation in ECM stands to a greater extent than in AM stands. As ECM roots are tightly coupled to the soil microbiome through energy and nutrient exchange, reductions in belowground C allocation were mirrored by shifts in microbial community composition and reductions in fungal gene expression. These shifts were accompanied by larger reductions in fungal-derived lignolytic and hydrolytic enzyme activity in ECM stands than in AM stands. In contrast, as the AM soil microbiome is less reliant on trees for C and are more adapted to high inorganic nutrient environments, the soil metagenome and transcriptome were more resilient to decreases in belowground C allocation. Collectively, our results indicate the N fertilization decoupled root-microbial interactions by reducing belowground carbon allocation in ECM stands. Thus, N fertilization may reduce soil turnover and increase soil C storage to a greater extent in forests dominated by ECM than AM trees.

  6. Final Report Technetium Monitor

    International Nuclear Information System (INIS)

    Spencer, W.A.

    2003-01-01

    The Hanford River Protection Project Waste Treatment Plant (WTP) is required by the current contract to remove radioactive technetium FR-om stored caustic nuclear waste solutions. The Savannah River Technology Center (SRTC) has worked with typical envelopes of these wastes to optimize the removal process. To support the studies, SRTC developed a rapid on-line remote analyzer to monitor technetium and rhenium levels in solutions as well as track other metals in the solutions through the process operations. Rhenium was used as a non-radioactive substitute for technetium in process development studies. The remote monitor was based on inductively coupled plasma emission spectroscopy (ICPES). Fiber optic cable and extended RF cabling removed the plasma source FR-om the spectrometer and instrument electronics

  7. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    Science.gov (United States)

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  8. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells

    International Nuclear Information System (INIS)

    Freguia, Stefano; Rabaey, Korneel; Yuan Zhiguo; Keller, Juerg

    2007-01-01

    Oxygen is the most sustainable electron acceptor currently available for microbial fuel cell (MFC) cathodes. However, its high overpotential for reduction to water limits the current that can be produced. Several materials and catalysts have previously been investigated in order to facilitate oxygen reduction at the cathode surface. This study shows that significant stable currents can be delivered by using a non-catalyzed cathode made of granular graphite. Power outputs up to 21 W m -3 (cathode total volume) or 50 W m -3 (cathode liquid volume) were attained in a continuous MFC fed with acetate. These values are higher than those obtained in several other studies using catalyzed graphite in various forms. The presence of nanoscale pores on granular graphite provides a high surface area for oxygen reduction. The current generated with this cathode can sustain an anodic volume specific COD removal rate of 1.46 kg COD m -3 d -1 , which is higher than that of a conventional aerobic process. This study demonstrates that microbial fuel cells can be operated efficiently using high surface graphite as cathode material. This implies that research on microbial fuel cell cathodes should not only focus on catalysts, but also on high surface area materials

  9. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Freguia, Stefano; Rabaey, Korneel; Yuan, Zhiguo; Keller, Juerg [The University of Queensland, St. Lucia, Qld (Australia). Advanced Wastewater Management Centre

    2007-12-01

    Oxygen is the most sustainable electron acceptor currently available for microbial fuel cell (MFC) cathodes. However, its high overpotential for reduction to water limits the current that can be produced. Several materials and catalysts have previously been investigated in order to facilitate oxygen reduction at the cathode surface. This study shows that significant stable currents can be delivered by using a non-catalyzed cathode made of granular graphite. Power outputs up to 21 W m{sup -3} (cathode total volume) or 50 W m{sup -3} (cathode liquid volume) were attained in a continuous MFC fed with acetate. These values are higher than those obtained in several other studies using catalyzed graphite in various forms. The presence of nanoscale pores on granular graphite provides a high surface area for oxygen reduction. The current generated with this cathode can sustain an anodic volume specific COD removal rate of 1.46 kg{sub COD} m{sup -3} d{sup -1}, which is higher than that of a conventional aerobic process. This study demonstrates that microbial fuel cells can be operated efficiently using high surface graphite as cathode material. This implies that research on microbial fuel cell cathodes should not only focus on catalysts, but also on high surface area materials. (author)

  10. Application of microwaves for microbial load reduction in black pepper (Piper nigrum L.).

    Science.gov (United States)

    Jeevitha, G Chengaiyan; Sowbhagya, H Bogegowda; Hebbar, H Umesh

    2016-09-01

    Black pepper (Piper nigrum L.) is exposed to microbial contamination which could potentially create public health risk and also rejection of consignments in the export market due to non-adherance to microbial safety standards. The present study investigates the use of microwave (MW) radiation for microbial load reduction in black pepper and analyses the effect on quality. Black pepper was exposed to MWs at two different power levels (663 and 800 W) at an intensity of 40 W g(-1) for different time intervals (1-15 min) and moisture content (110 and 260 g kg(-1) on a wet basis). The exposure of black pepper to MWs at 663 W for 12.5 min was found to be sufficient to reduce the microbial load to the permissible level suggested by the International Commission on Microbiological Specifications for Foods and the European Spice Association. The retention of volatile oil, piperine and resin was 91.3 ± 0.03, 87.6 ± 0.02 and 90.7 ± 0.05%, respectively, in MW-treated black pepper. The final moisture content after MW treatment was found to be 100 ± 1 g kg(-1) for black pepper containing initial moisture of 260 ± 3 g kg(-1) . These results suggest that MW heating can be effectively used for microbial load reduction of black pepper without a significant loss in product quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Electrochemical preparation of technetium hydroxyethylidene diphosphonate radiopharmaceuticals

    International Nuclear Information System (INIS)

    Scott, R.B.

    1984-01-01

    This work describes the liquid chromatographic and electrochemical analysis of electrogenerated technetium hydroxyethylidene diphosphonate (HEDP) complexes, and studies the effectiveness of the resulting bone imaging agents. Anion exchange High Performance Liquid Chromatography is used to separate components, and γ emission is used as the detection mode. The reaction mixtures were prepared at a series of reduction potentials and pH values, at both carrier added and no carrier added technetium levels. The results indicate that all three parameters affect the final complex composition to varying degrees. By optimizing the conditions, a preparation was made which results in a high percentage of a Tc-HEDP complex thought to be a very good home imager. This component was isolated chromatographically and injected into female Sprague-Dawley rats. Comparisons were run on the uptake for seven tissue types at two incubation times. Mercury and Reticulated Vitreous Carbon were used as the working electrode materials, and it is shown how reduced technetium will significantly alter the electrode characteristics, where a conditioned electrode will produce different complexes from those produced at fresh electrode material. By employing coulometric analysis as the preparation was reduced, an n value of 4 was calculated for a particular complex. This procedure involved tracking the radioactive technetium species carefully to account for all electrons used in the system. Finally, an electrochemical detection method for HEDP was explored, utilizing the property of mercury complexation. Anodic sweep Differential Pulse Polarography gives an analytical signal for HEDP at +0.250 V vs Ag/AgCl

  12. Biostimulation of Iron Reduction and Uranium Immobilization: Microbial and Mineralogical Controls

    International Nuclear Information System (INIS)

    Joel E. Kostka; Lainie Petrie; Nadia North; David L. Balkwill; Joseph W. Stucki; Lee Kerkhof

    2004-01-01

    The overall objective of our project is to understand the microbial and geochemical mechanisms controlling the reduction and immobilization of U(VI) during biostimulation in subsurface sediments of the Field Research Center (FRC) which are cocontaminated with uranium and nitrate. The focus will be on activity of microbial populations (metal- and nitrate-reducing bacteria) and iron minerals which are likely to make strong contributions to the fate of uranium during in situ bioremediation. The project will: (1) quantify the relationships between active members of the microbial communities, iron mineralogy, and nitrogen transformations in the field and in laboratory incubations under a variety of biostimulation conditions, (2) purify and physiologically characterize new model metal-reducing bacteria isolated from moderately acidophilic FRC subsurface sediments, and (3) elucidate the biotic and abiotic mechanisms by which FRC aluminosilicate clay minerals are reduced and dissolved under environmental conditions resembling those during biostimulation. Active microbial communities will be assessed using quantitative molecular techniques along with geochemical measurements to determine the different terminal-electron-accepting pathways. Iron minerals will be characterized using a suite of physical, spectroscopic, and wet chemical methods. Monitoring the activity and composition of the denitrifier community in parallel with denitrification intermediates during nitrate removal will provide a better understanding of the indirect effects of nitrate reduction on uranium speciation. Through quantification of the activity of specific microbial populations and an in-depth characterization of Fe minerals likely to catalyze U sorption/precipitation, we will provide important inputs for reaction-based biogeochemical models which will provide the basis for development of in situ U bioremediation strategies. In collaboration with Jack Istok and Lee Krumholz, we have begun to study the

  13. Technetium in chemistry and nuclear medicine

    International Nuclear Information System (INIS)

    Deutsch, E.; Nicolini, M.; Wagner, H.N.

    1983-01-01

    This volume explores the potential of technetium radiopharmaceuticals in clinical nuclear medicine. The authors examine the capabilities of synthetic inorganic chemists to synthesize technetium radiopharmaceuticals and the specific requirements of the nuclear medicine practitioner. Sections cover the chemistry of technetium, the production of radiopharmaceuticals labeled with technetium, and the use of technetium radiopharmaceuticals in nuclear medicine

  14. The regulation of technetium-99 discharges at Sellafield

    International Nuclear Information System (INIS)

    Mayall, A.

    2002-01-01

    The reprocessing of spent Magnox fuel at BNFL Sellafield produces a liquid waste concentrate containing technetium-99 and other, more radiotoxic, radionuclides such as plutonium and americium. The concentrate is known as medium active concentrate (MAC). Prior to 1981, MAC was discharged to sea untreated after several years' storage, during which short-lived radionuclides underwent radioactive decay. In the early 1980s, discharges of MAC were suspended and it was retained in storage tanks, pending the construction of a plant to remove the radionuclides of greatest radiological concern (these did not include technetium- 99). The Enhanced Actinide Removal Plant started operation in 1994 and began to clear the backlog of stored waste MAC, as well as current arisings from Magnox reprocessing. As a consequence technetium-99 was once more discharged to sea. Subsequently, concentrations of this radionuclide in the marine environment increased. In particular, there was a significant increase in the concentration of technetium-99 in lobster in the Irish Sea. An increase in technetium-99 has also been detected at locations far distant from Sellafield, e.g. in Scandinavian coastal waters, albeit at very low concentrations. This dispersal of technetium- 99 throughout the Irish Sea and further afield has therefore caused concern, although the radiological impact is low. This paper examines the nature and source of the technetium-99 in sea discharges at Sellafield and the levels of past and current discharges as well as their impact. It goes on to describe the Environment Agency's recent proposals on the future regulation of technetium-99 discharges and how these should lead to substantial reductions in not only technetium-99 discharges, but also of other radionuclides such as caesium-137 and strontium-90. (author)

  15. Final report - Microbial pathways for the reduction of mercury in saturated subsurface sediments

    Energy Technology Data Exchange (ETDEWEB)

    Tamar barkay; Lily Young; Gerben Zylstra

    2009-08-25

    Mercury is a component of mixed wastes that have contaminated vast areas of the deep subsurface as a result of nuclear weapon and energy production. While this mercury is mostly bound to soil constituents episodes of groundwater contamination are known in some cases resulting in potable water super saturated with Hg(0). Microbial processes that reduce Hg(II) to the elemental form Hg(0) in the saturated subsurface sediments may contribute to this problem. When we started the project, only one microbial pathway for the reduction of Hg(II), the one mediated by the mer operon in mercury resistant bacteria was known. As we had previously demonstrated that the mer mediated process occurred in highly contaminated environments (Schaefer et al., 2004), and mercury concentrations in the subsurface were reported to be low (Krabbenhoft and Babiarz, 1992), we hypothesized that other microbial processes might be active in reducing Hg(II) to Hg(0) in saturated subsurface environments. The specific goals of our projects were: (1) Investigating the potential for Hg(II) reduction under varying electron accepting conditions in subsurface sediments and relating these potential to mer gene distribution; and (2) Examining the physiological and biochemical characteristics of the interactions of anaerobic bacteria with mercury. The results are briefly summarized with references to published papers and manuscripts in preparation where details about our research can be found. Additional information may be found in copies of our published manuscripts and conference proceedings, and our yearly reports that were submitted through the RIMS system.

  16. MURMoT. Design and Application of Microbial Uranium Reduction Monitoring Tools

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Frank E. [Univ. of Tennessee, Knoxville, TN (United States)

    2014-12-31

    Uranium (U) contamination in the subsurface is a major remediation challenge at many DOE sites. Traditional site remedies present enormous costs to DOE; hence, enhanced bioremediation technologies (i.e., biostimulation and bioaugmentation) combined with monitoring efforts are being considered as cost-effective corrective actions to address subsurface contamination. This research effort improved understanding of the microbial U reduction process and developed new tools for monitoring microbial activities. Application of these tools will promote science-based site management decisions that achieve contaminant detoxification, plume control, and long-term stewardship in the most efficient manner. The overarching hypothesis was that the design, validation and application of a suite of new molecular and biogeochemical tools advance process understanding, and improve environmental monitoring regimes to assess and predict in situ U immobilization. Accomplishments: This project (i) advanced nucleic acid-based approaches to elucidate the presence, abundance, dynamics, spatial distribution, and activity of metal- and radionuclide-detoxifying bacteria; (ii) developed proteomics workflows for detection of metal reduction biomarker proteins in laboratory cultures and contaminated site groundwater; (iii) developed and demonstrated the utility of U isotopic fractionation using high precision mass spectrometry to quantify U(VI) reduction for a range of reduction mechanisms and environmental conditions; and (iv) validated the new tools using field samples from U-contaminated IFRC sites, and demonstrated their prognostic and diagnostic capabilities in guiding decision making for environmental remediation and long-term site stewardship.

  17. Effects of the photodynamic therapy on microbial reduction of diabetic ulcers in humans

    Science.gov (United States)

    Carrinho Aureliano, Patrícia Michelassi; Andreani, Dora Inés. Kozusny; Morete, Vislaine de Aguiar; Iseri Giraldeli, Shizumi; Baptista, Alessandra; Navarro, Ricardo Scarparo; Villaverde, Antonio Balbin

    2018-02-01

    Diabetes Mellitus is a chronic disease that can lead to lower-limb ulceration. The photodynamic therapy (PDT) is based on light interaction with a photosensitizer capable to promote bacterial death and tissue repair acceleration. This study analyzed the effects of PDT in the repair of human diabetic ulcers, by means of microbiological assessment. The clinical study was composed of 12 patients of both sexes with diabetic ulcers in lower limbs that were divided into two groups, control group (n=6) and PDT group (n=6). All patients were treated with collagenase/chloramphenicol during the experimental period, in which 6 of them have received PDT with methylene blue dye (0.01%) associated with laser therapy (660 nm), dose of 6 J/cm2¨ and 30 mW laser power. PDT group received ten treatment sessions. Wounds were evaluated for micro-organisms analysis. It was found a reduction in the occurrence of Staphylococcus aureus in both groups, being that reduction more pronounced in the PDT group. Microbial count was performed on PDT group, showing a statistical difference reduction (p<0.05) when compared before and after the treatment. It is concluded that PDT seems to be effective in microbial reduction of human diabetic wounds, promoting acceleration and improvement of tissue repair quality.ty.

  18. Influence of Bicarbonate, Sulfate, and Electron Donors on Biological reduction of Uranium and Microbial Community Composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wensui [ORNL; Zhou, Jizhong [ORNL; Wu, Weimin [ORNL; Yan, Tingfen [ORNL; Criddle, Craig [ORNL; Jardine, Philip M [ORNL; Gu, Baohua [ORNL

    2007-01-01

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 mM or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and geoundwater geochemistry alter microbial communities responsible for U(VI) reduction.

  19. Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition

    Energy Technology Data Exchange (ETDEWEB)

    Luo Wensui [Oak Ridge Inst. for Science and Education, TN (United States); Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Wu Wei-Min; Criddle, C.S. [Stanford Univ., CA (United States). Dept. of Civil and Environmental Engineering; Yan Tingfen [Oak Ridge Inst. for Science and Education, TN (United States); Jardine, P.M.; Gu Baohua [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Zhou Jizhong [Oklahoma Univ., Norman, OK (United States). Dept. of Botany and Microbiology

    2007-12-15

    A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low-bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high-bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and groundwater geochemistry alter microbial communities responsible for U(VI) reduction. (orig.)

  20. Microbial reduction of uranium(VI) in sediments of different lithologies collected from Sellafield

    International Nuclear Information System (INIS)

    Newsome, Laura; Morris, Katherine; Trivedi, Divyesh; Atherton, Nick; Lloyd, Jonathan R.

    2014-01-01

    Highlights: • U(VI) (aq) mobility can be controlled by stimulating biogeochemical interactions. • Indigenous microbes in varied sediments reduced U(VI) to insoluble U(IV). • Sediment cell numbers and amount of bioavailable Fe(III) could limit this process. - Abstract: The presence of uranium in groundwater at nuclear sites can be controlled by microbial processes. Here we describe the results from stimulating microbial reduction of U(VI) in sediment samples obtained from a nuclear-licensed site in the UK. A variety of different lithology sediments were selected to represent the heterogeneity of the subsurface at a site underlain by glacial outwash deposits and sandstone. The natural sediment microbial communities were stimulated via the addition of an acetate/lactate electron donor mix and were monitored for changes in geochemistry and molecular ecology. Most sediments facilitated the removal of 12 ppm U(VI) during the onset of Fe(III)-reducing conditions; this was reflected by an increase in the proportion of known Fe(III)- and U(VI)-reducing species. However U(VI) remained in solution in two sediments and Fe(III)-reducing conditions did not develop. Sequential extractions, addition of an Fe(III)-enrichment culture and most probable number enumerations revealed that a lack of bioavailable iron or low cell numbers of Fe(III)-reducing bacteria may be responsible. These results highlight the potential for stimulation of microbial U(VI)-reduction to be used as a bioremediation strategy at UK nuclear sites, and they emphasise the importance of both site-specific and borehole-specific investigations to be completed prior to implementation

  1. Technetium sorption by stibnite from natural water

    International Nuclear Information System (INIS)

    Peretroukhine, V.; Sergeant, C.; Deves, G.; Poulain, S.; Vesvres, M.H.; Thomas, B.; Simonoff, M.

    2006-01-01

    The sorption of technetium by powdered and polished mineral stibnite Sb 2 S 3 has been investigated in simulated and natural underground waters from the Meuse/Haute-Marne region (France). The sorption by powdered stibnite has been found to be complete under both aerobic and anaerobic conditions in batch experiments. The sorption rate is higher in the absence of oxygen than under aerobic condition. Increasing the temperature from 30 C to 60 C results in a rise of the sorption rate by 9.1 and 27 times under anaerobic and aerobic conditions, respectively. The observed differences in sorption kinetics in the presence and in absence of oxygen are explained by the interaction of oxygen with sulfide ion in aerobic conditions and by the reduction of technetium(VII) by iron(II) and by other impurities present in natural water and in the mineral, and by the subsequent sorption of Tc(IV) on stibnite under anaerobic conditions. The sorption on a polished mineral surface resulted in the formation of a technetium film, probably Tc 2 S 7 , with a thickness of 1-3 μg Tc/cm 2 pH 3-6 and 4-12 μg Tc/cm 2 at 9-12. The simultaneous formation of stibnite colloids with adsorbed technetium occurs at pH 9-12. The study of the technetium film on the mineral by proton induced X-ray emission analysis showed it to be at least one order of magnitude thinner on the SiO 2 impurities than on the main Sb 2 S 3 component and the iron impurities. (orig.)

  2. Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park

    Science.gov (United States)

    Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.

    2014-12-01

    Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a

  3. Active Microbial Sulfate Reduction in Serpentinization Fluids of the Semail Ophiolite in Oman

    Science.gov (United States)

    Glombitza, C.; Rempfert, K. R.; Templeton, A. S.; Hoehler, T. M.

    2017-12-01

    Dissimilatory sulfate reduction (SR) is among the oldest known microbial processes on Earth. It is the predominant anaerobic microbial process in sulfur-rich marine sediments but it also occurs in subsurface lithoautotrophic ecosystems, where it is driven by radiolytically produced H2 and sulfate [1]. Serpentinization is a process by which H2 is generated in a reaction of water with peridotite rock. This abiotic generation of H2 suggests its potential to power life in rocks as a stand-alone process, independent of the photosynthetic biosphere, because the generated H2 is a key energy source for microbial metabolism. This is of particular interest in understanding the role of water-rock reactions in generating habitable conditions on and beyond Earth. Sulfate is plausibly available in several of the water-bearing environments now known beyond Earth, making SR a potentially important metabolism in those systems. Sulfate minerals are abundant on the surface of Mars [2], suggesting that Martian groundwaters may be sulfate-rich. Sulfate is also postulated to be a component of the oceans of Europa and Enceladus [3, 4]. The inferred presence of both sulfate and peridotite rocks in these environments points toward a potential niche for sulfate reducers and highlights the need to understand how and where SR occurs in serpentinizing systems on Earth. We incubated formation fluids sampled from in the Semail Ophiolite in Oman with a 35-S labelled sulfate tracer and determined the rates of in-situ microbial sulfate reduction. The selected fluids represent different environmental conditions, in particular varying substrate concentrations (sulfate, H2 and CH4) and pH (pH 8.4 to pH 11.2). We found active microbial SR at very low rates in almost all fluids, ranging from 2 fmol mL-1 d-1 to 2 pmol mL-1 d-2. Lowest rates were associated with the hyperalkaline fluids (pH > 10), that had also the lowest sulfate concentration (50-90 µmol L-1). In line with previously determined species

  4. Fluorido complexes of technetium

    International Nuclear Information System (INIS)

    Mariappan Balasekaran, Samundeeswari

    2013-01-01

    Fluorine chemistry has received considerable interest during recent years due to its significant role in the life sciences, especially for drug development. Despite the great nuclear medicinal importance of the radioactive metal technetium in radiopharmaceuticals, its coordination chemistry with the fluorido ligand is by far less explored than that of other ligands. Up to now, only a few technetium fluorides are known. This thesis contains the synthesis, spectroscopic and structural characterization of novel technetium fluorides in the oxidation states ''+1'', ''+2'', ''+4'' and ''+6''. In the oxidation state ''+6'', the fluoridotechnetates were synthesized either from nitridotechnetic(VI) acid or from pertechnetate by using reducing agent and have been isolated as cesium or tetraethylammonium salts. The compounds were characterized spectroscopically and structurally. In the intermediate oxidation state ''+4'', hexafluoridotechnetate(IV) was known for long time and studied spectroscopically. This thesis reports novel and improved syntheses and solved the critical issues of early publications such as the color, some spectroscopic properties and the structure of this key compound. Single crystal analyses of alkali metal, ammonium and tetramethylammonium salts of hexafluoridotechnetate(IV) are presented. In aqueous alkaline solutions, the ammonium salt of hexafluoridotechnetate(IV) undergoes hydrolysis and forms an oxido-bridged dimeric complex. It is the first step hydrolysis product of hexafluoridotechnetate(IV) and was characterized by spectroscopic and crystallographic methods. Low-valent technetium fluorides with the metal in the oxidation states of ''+2'' or ''+1'' are almost unknown. A detailed description of the synthesis and characterization of pentafluoridonitrosyltechnetate(II) is presented. The complex was isolated as alkali metal salts, and spectroscopic as well as structural features of the complexes are presented. Different salts of the trans

  5. ASSESSMENT OF TECHNETIUM LEACHABILITY IN CEMENT-STABILIZED BASIN 43 GROUNDWATER BRINE

    International Nuclear Information System (INIS)

    Duncan, J.B.; Cooke, G.A.; Lockrem, L.L.

    2009-01-01

    This report documents the effort to sequester technetium by the use of getters, reductants (tin(II) apatite and ferrous sulfate), sorbents (A530E and A532E ion exchange resins), and cementitious waste form. The pertechnetate form of technetium is highly soluble and mobile in aerobic (oxidizing) environments.

  6. Competitive microbial reduction of perchlorate and nitrate with a cathode directly serving as the electron donor

    International Nuclear Information System (INIS)

    Xie, Daohai; Yu, Hui; Li, Chenchen; Ren, Yuan; Wei, Chaohai; Feng, Chunhua

    2014-01-01

    Microbial reduction of perchlorate with an electrode as the electron donor represents an emerging technology for remediation of perchlorate contamination; it is important to know how perchlorate reduction behaves when nitrate, a co-contaminant of perchlorate is present. We reported that electrons derived from the electrode can be directly transferred to the bacteria with perchlorate or nitrate as the sole electron acceptor. The presence of nitrate, even at the 0.07 mM level, can slow reduction of perchlorate (0.70 mM) as a poised potential of -0.50 V (vs. SCE) was applied to the inoculated cathode. Increasing the concentration of nitrate resulted in a noticeable inhibitory effect on perchlorate reduction. When the nitrate concentration was 2.10 mM, reduction of 0.70 mM perchlorate was totally inhibited. Bacterial community analyses based on 16S rDNA gene analysis with denaturing gradient gel electrophoresis (DGGE) revealed that most of the bacteria newly enriched on the nitrate and/or perchlorate biocathodes were the known electrochemically active denitrifiers, which possibly prefer to reduce nitrate over perchlorate. These results show that nitrate is a more favorable electron acceptor than perchlorate in the bioelectrochemical system where the cathode directly serves as the electron donor

  7. Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals

    Science.gov (United States)

    Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.

    2009-01-01

    Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.

  8. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    Science.gov (United States)

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  9. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    International Nuclear Information System (INIS)

    Phillips, E.J.P.; Landa, E.R.; Lovley, D.R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranium-contaminated soils. Bicarbonate (100 mM) extracted 20-94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism, Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils. (author)

  10. Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Se Chang; Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Kim, Byung J. [U.S. Army Engineer Research and Development Center, Champaign, IL 61826-9005 (United States); Oh, Seok-Young, E-mail: quartzoh@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2011-08-30

    Highlights: {yields} Ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. {yields} DNAN is identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. {yields} Iron treatment not only removes energetic compounds but also eliminates the toxic constituents that inhibit the subsequent microbial process. - Abstract: US Army and the Department of Defense (DoD) facilities generate perchlorate (ClO{sub 4}{sup -}) from munitions manufacturing and demilitarization processes. Ammonium perchlorate is one of the main constituents in Army's new main charge melt-pour energetic, PAX-21. In addition to ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. In order to evaluate microbial perchlorate reduction as a practical option for the treatment of perchlorate in PAX-21 wastewater, we conducted biodegradation experiments using glucose as the primary sources of electrons and carbon. Batch experiments showed that negligible perchlorate was removed in microbial reactors containing PAX-21 wastewater while control bottles containing seed bacteria and glucose rapidly and completely removed perchlorate. These results suggested that the constituents in PAX-21 wastewater may be toxic to perchlorate reducing bacteria. A series of batch toxicity test was conducted to identify the toxic constituents in PAX-21 and DNAN was identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. It was hypothesized that pretreatment of PAX-21 by zero-valent iron granules will transform toxic constituents in PAX-21 wastewater to non-toxic products. We observed complete reduction of DNAN to 2,4-diaminoanisole (DAAN) and RDX to formaldehyde in abiotic iron reduction study. After a 3-day acclimation period, perchlorate in iron-treated PAX-21

  11. Study of ammonia synthesis using technetium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mikhajlenko, I.E.; Pokrovskaya, O.V.

    1982-01-01

    A study was made on catalytic properties of technetium in ammonia synthesis reaction. The preparation of technetium catalysts on ν-Al 2 O 3 , BaTiO 3 , BaO-ν-Al 2 O 3 substrates is described. The investigation of catalytic activity of catalysts was carried out at a pressure of 1 atm. in vertical reactor with volume rate of 15000 h - 1 in the temperature range of 350-425 deg. The amount of catalyst was 0.5-1 g, the volume- 0.5 ml, the size of granules- 2-3 mm. Rate constants of ammonia synthesis reaction were calculated. Seeming activation energies of the process have meanings wihtin the limits of 40-50 kcal/mol. It was shown that with increase in concentration of Tc on BaTiO 3 the catalytic activity rises in comparison with pure Tc. The reduction of catalytic activity with increase of metal content on Al 2 O 3 begins in the limits of 3.5-6.7% Tc/ν-Al 2 O 3 . The catalyst of 5.3% Tc/4.1% Ba/ν -Al 2 O 3 compound has the maximum activity. Technetium catalysts possess the stable catalytic activity and don't requre its reduction during several months

  12. Research supporting potential modification of the NASA specification for dry heat microbial reduction of spacecraft hardware

    Science.gov (United States)

    Spry, James A.; Beaudet, Robert; Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary method currently used to reduce the microbial load of spacecraft and component parts to comply with planetary protection re-quirements. However, manufacturing processes often involve heating flight hardware to high temperatures for purposes other than planetary protection DHMR. At present, the specifica-tion in NASA document NPR8020.12, describing the process lethality on B. atrophaeus (ATCC 9372) bacterial spores, does not allow for additional planetary protection bioburden reduction credit for processing outside a narrow temperature, time and humidity window. Our results from a comprehensive multi-year laboratory research effort have generated en-hanced data sets on four aspects of the current specification: time and temperature effects in combination, the effect that humidity has on spore lethality, and the lethality for spores with exceptionally high thermal resistance (so called "hardies"). This paper describes potential modifications to the specification, based on the data set gener-ated in the referenced studies. The proposed modifications are intended to broaden the scope of the current specification while still maintaining confidence in a conservative interpretation of the lethality of the DHMR process on microorganisms.

  13. Evidence for the Occurrence of Microbial Iron Reduction in Bulk Aerobic Unsaturated Sediments

    Science.gov (United States)

    Cooper, D. C.; Kukkadapu, R. K.; Smith, W. A.; Fox, D. T.; Plummer, M. A.; Hull, L. C.

    2003-12-01

    Radionuclide transport experiments conducted in a large, meso-scale column reactor (MSCR, 10 ft high x 3 ft dia) operated under unsaturated flow conditions with simulated rainwater influent provide evidence that microbial iron reduction can occur in bulk-aerobic vadose zone systems with a low organic carbon content (~0.5 wt%). Soil gas analyses indicate that CO2 varied between ~0.1% of soil gas (top) and 12% to 18% of soil gas (bottom). O2 varied inversely with CO2, and the ratio of (CO2 produced) / (O2 consumed) was 0.8 +/- 0.1. NO3- was present at high concentrations, and originated from soluble NO3- salts present in the packing material. Ammonia was present at low levels, and limited NO2- production was observed. There was no increase in aqueous iron, and methane and sulfide were not produced. M\\H{o}ssbauer analyses of sediment iron mineralogy indicate that the sedimentary iron in the packing material is 63% illite Fe(III), 16% illite Fe(II), 13% hematite, and 8% poorly-crystalline/small-particulate (pc/sp) iron oxide. Sediments collected from the lower portion of the column (5.5 fbs, feet below surface) still contain illite and hematite, but have lost the pc/sp iron oxide component. The Fe(III)/Fe(II) ratio of the illite appears to be unchanged at this depth. Analyses of sediment extractable DNA and cell number indicate that bacterial abundances increase from the surface to 0.5 fbs, and then remain constant with depth. Initial results from DGGE and 16s rDNA clone libraries indicate that microbial community structure alters with increasing depth, decreasing O2 content, and loss of pc/sp iron oxides. These data indicate a predominance of Clostridium at the column top, with Bacillus, Desulfobacterium, and Pseudomonas also providing a significant contribution. At 0.5 fbs, Clostridium represents a larger fraction of the total community with Desulfobacterium present as the second most abundant component. By 5.5 fbs, Clostridium is a minor component and the community

  14. Reduction of the influence of the liver uptake to the myocardial uptake on technetium-99m myocardial SPECT. Usefulness and problems of a mask processing method

    Energy Technology Data Exchange (ETDEWEB)

    Takaki, Akihiro; Okada, Kazuhiro; Urata, Johji; Matsuda, Hirofumi; Takao, Yuji [Saiseikai Kumamoto Hospital (Japan)

    1999-07-01

    The aim of this study is to evaluate the usefulness of a mask processing method for obtaining the true myocardial tracer distribution by eliminating the influence of the liver uptake to the myocardial uptake on myocardial SPECT images by using technetium-99m ({sup 99m}Tc) blood flow agents. A SPECT imaging was performed with a two-head SPECT system (GCA-7200A/DI) in both phantom and clinical studies. The mask processing method was applied to the reconstructed and projection images. The phantom consisted of heart, lung, liver and spine. A defect was located in the inferior wall of the left ventricle and other parts of the heart and liver were filled with {sup 99m}Tc solution. For clinical study 10 patients with difficulty in the interpretation of the inferior wall were selected for the evaluation of usefulness of the mask method. In the phantom study, the mask processing method applied to the reconstructed images was able to remove the overlapped liver from the heart, but was not able to remove the influence of the liver uptake to the myocardial uptake. Nevertheless, the mask processing method applied to the projection images successfully eliminated not only the overlapped liver but also the influence of the liver uptake to the myocardial uptake. In the clinical study, the liver uptake could be removed from the uptake in the inferior wall in 8 of 10 patients with the mask processing methods. In 2 patients, the overlapped liver uptake could not be eliminated from the uptake in the inferior wall because the distance between the liver and heart was too short. The mask processing method applied to the projection images was thought to be superior to that applied to the reconstruction images in both phantom and clinical studies. The mask processing method, especially applied to the projection images, seems to be useful for the elimination of the liver uptake from the inferior wall of the myocardium on myocardial SPECT images using {sup 99m}Tc blood flow agents. (author)

  15. Reduction of the influence of the liver uptake to the myocardial uptake on technetium-99m myocardial SPECT. Usefulness and problems of a mask processing method

    International Nuclear Information System (INIS)

    Takaki, Akihiro; Okada, Kazuhiro; Urata, Johji; Matsuda, Hirofumi; Takao, Yuji

    1999-01-01

    The aim of this study is to evaluate the usefulness of a mask processing method for obtaining the true myocardial tracer distribution by eliminating the influence of the liver uptake to the myocardial uptake on myocardial SPECT images by using technetium-99m ( 99m Tc) blood flow agents. A SPECT imaging was performed with a two-head SPECT system (GCA-7200A/DI) in both phantom and clinical studies. The mask processing method was applied to the reconstructed and projection images. The phantom consisted of heart, lung, liver and spine. A defect was located in the inferior wall of the left ventricle and other parts of the heart and liver were filled with 99m Tc solution. For clinical study 10 patients with difficulty in the interpretation of the inferior wall were selected for the evaluation of usefulness of the mask method. In the phantom study, the mask processing method applied to the reconstructed images was able to remove the overlapped liver from the heart, but was not able to remove the influence of the liver uptake to the myocardial uptake. Nevertheless, the mask processing method applied to the projection images successfully eliminated not only the overlapped liver but also the influence of the liver uptake to the myocardial uptake. In the clinical study, the liver uptake could be removed from the uptake in the inferior wall in 8 of 10 patients with the mask processing methods. In 2 patients, the overlapped liver uptake could not be eliminated from the uptake in the inferior wall because the distance between the liver and heart was too short. The mask processing method applied to the projection images was thought to be superior to that applied to the reconstruction images in both phantom and clinical studies. The mask processing method, especially applied to the projection images, seems to be useful for the elimination of the liver uptake from the inferior wall of the myocardium on myocardial SPECT images using 99m Tc blood flow agents. (author)

  16. Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells.

    Science.gov (United States)

    Renslow, Ryan; Donovan, Conrad; Shim, Matthew; Babauta, Jerome; Nannapaneni, Srilekha; Schenk, James; Beyenal, Haluk

    2011-12-28

    Sediment microbial fuel cells (SMFCs) have been used as renewable power sources for sensors in fresh and ocean waters. Organic compounds at the anode drive anodic reactions, while oxygen drives cathodic reactions. An understanding of oxygen reduction kinetics and the factors that determine graphite cathode performance is needed to predict cathodic current and potential losses, and eventually to estimate the power production of SMFCs. Our goals were to (1) experimentally quantify the dependence of oxygen reduction kinetics on temperature, electrode potential, and dissolved oxygen concentration for the graphite cathodes of SMFCs and (2) develop a mechanistic model. To accomplish this, we monitored current on polarized cathodes in river and ocean SMFCs. We found that (1) after oxygen reduction is initiated, the current density is linearly dependent on polarization potential for both SMFC types; (2) current density magnitude increases linearly with temperature in river SMFCs but remains constant with temperature in ocean SMFCs; (3) the standard heterogeneous rate constant controls the current density temperature dependence; (4) river and ocean SMFC graphite cathodes have large potential losses, estimated by the model to be 470 mV and 614 mV, respectively; and (5) the electrochemical potential available at the cathode is the primary factor controlling reduction kinetic rates. The mechanistic model based on thermodynamic and electrochemical principles successfully fit and predicted the data. The data, experimental system, and model can be used in future studies to guide SMFC design and deployment, assess SMFC current production, test cathode material performance, and predict cathode contamination.

  17. In situ analysis of microbial reduction of a nitrate plume in Opalinus clay

    International Nuclear Information System (INIS)

    Bleyen, N.; Smets, S.; Valcke, E.; Albrecht, A.; De Canniere, P.; Schwyn, B.; Wittebroodt, C.

    2012-01-01

    nitrate and nitrite concentrations and pH, an on-line UV spectrophotometer and pH electrode are installed in the water circuit of one of the intervals. In a first series of tests, the biogeochemical evolution of the artificial Opalinus Clay pore water in the intervals was investigated after injection of low concentrations of nitrate or nitrate and acetate, simulating the BDP. The results of these tests indicate that microbial reduction of nitrate and nitrite can occur in the Opalinus Clay artificial water in the borehole, using acetate and/or clay components as electron donors. In these tests, nitrate was reduced to nitrite, ammonium and/or nitrogenous gases. Comparing the evolution in nitrate and nitrite concentrations in the absence or presence of acetate, clearly indicates faster reaction rates of microbial nitrate reduction when the system is fueled with acetate. When easily degradable organic compounds like acetate were added to the nitrate containing artificial pore water, these compounds were preferentially used as electron donors for nitrate reduction by heterotrophic microorganisms. Afterwards, alternative electron donors have been used originating either from the clay rock, e.g. pyrite, siderite, clay minerals, and/or dissolved natural organic matter, or from the stainless steel equipment, i.e. Fe 0 and/or Fe 2+ . Furthermore, high concentrations of nitrate reducing prokaryotes were detected after injection of the intervals with nitrate, indicating that the nitrate and nitrite reduction, observed during all tests, was microbially mediated. Based on the results of the microbiological analyses, these nitrate reducers have most likely been introduced during the first injection or installation of the downhole equipment. The nature of the nitrate reduction reaction prevailing in the system appears to be depending on the microbial populations active in the borehole and on the electron donors and carbon sources present in the interval. Furthermore, the history of the

  18. Anomalous properties of technetium clusters

    International Nuclear Information System (INIS)

    Kryuchkov, S.V.

    1985-01-01

    On the basis of critical evaluation of literature data in the field of chemistry of technetium cluster compounds with ligands of a weak field a conclusion is made on specific, ''anomalous'' properties of technetium cluster complexes which consist in an increased ability of the given element to the formation of a series of binuclear and multinuclear clusters, similar in composition and structure and easily transforming in each other. The majority of technetium clusters unlike similar compounds of other elements are paramagnetic with one unpaired electron on ''metallic'' MO of loosening type. All theoretical conceptions known today on the electronic structure of technetium clusters are considered. It is pointed out, that the best results in the explanation of ''anomalous'' properties of technetium clusters can be obtained in the framework of nonempirical methods of self-consistent field taking into account configuration interactions. It is also shown, that certain properties of technetium clusters can be explained on the basis of qualitative model of Coulomb repulsion of metal atoms in clusters. The conclusion is made, that technetium position in the Periodic table, as well as recently detected technetium property to the decrease of effective charge on its atoms during M-M bond formation promote a high ability of the element to cluster formation both with weak field ligands and with strong field one

  19. Technetium discharges into the environment

    International Nuclear Information System (INIS)

    Luykx, F.

    1986-01-01

    Technetium-99 is the most important technetium isotope released to the environment because of its long life and its relatively high fission yield. Its release to date, mainly as a result of nuclear fuel reprocessing, is estimated to be of the order of 1000 TBq. The quantity from nuclear weapons testing would only be some 10-15% of this value. (author)

  20. Microbial community variation and functions to excess sludge reduction in a novel gravel contact oxidation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin Shanshan; Jin, Y.; Fu, L. [School of Urban and Environmental Science, Northeast Normal University, Changchun (China); Quan, C. [Jilin University, College of medicine, Changchun (China); Yang, Y.S., E-mail: yangy6@cf.ac.uk [Cardiff University, School of Earth and Ocean Sciences, Cardiff CF10 3YE (United Kingdom)

    2009-06-15

    Excess biomass produced within the degradation processes of organic pollutants is creating environmental challenges. The gravel contact oxidation reactor (GCOR) filled with crushed stone globular aggregates as carriers, has been demonstrated capable of reducing the excess sludge effectively in some pilot and small-scale engineering studies. In order to evaluate the variation and structure of the microbial community and their functions to excess sludge reduction in GCOR, a conventional activated sludge reactor (ASR) was studied as a comparison. The 16S rDNA library of the universal bacteria was constructed, Shannon's diversity index (H) and Species evenness (E) were calculated with distance-based operational taxonomic unit and richness (DOTUR) for microbial diversity. Real-time quantity PCR and optical microscope were used for absolute bacterial DNA concentration and eukarya identification, respectively. Meanwhile, the suspended solid index in GCOR and ASR was detected for assessing the excess sludge production. The results indicated that the most abundant bacteria in GCOR were those related to the {beta}-Proteobacteria group, then {gamma}-Proteobacteria and to Cytophaga-Flexibacter-Bacteriode (CFB). In the ASR samples major bacteria were in the closest match with {gamma}-Proteobacteria, then {beta}-Proteobacteria and CFB. Shannon's index (H) was higher (3.41) for diversity of bacteria extracted from the carrier samples in GCOR than that (2.71) from the sludge sample in ASR. Species evenness (E) for the isolates from GCOR and ASR samples was 0.97 and 0.96, respectively. Comparison of the universal bacteria population in GCOR and ASR shows that the total bacterial DNA concentration on the GCOR carriers were 8.98 x 10{sup 5} {mu}g/{mu}l, twice that in ASR of 4.67 x 10{sup 5} {mu}g/{mu}l under normal operation of two reactors. But the MLSS in GCOR was only 4.5 mg/L, 25 times less than that in ASR of 115.4 mg/L. The most representative eukarya were protozoa

  1. Microbial community variation and functions to excess sludge reduction in a novel gravel contact oxidation reactor

    International Nuclear Information System (INIS)

    Lin Shanshan; Jin, Y.; Fu, L.; Quan, C.; Yang, Y.S.

    2009-01-01

    Excess biomass produced within the degradation processes of organic pollutants is creating environmental challenges. The gravel contact oxidation reactor (GCOR) filled with crushed stone globular aggregates as carriers, has been demonstrated capable of reducing the excess sludge effectively in some pilot and small-scale engineering studies. In order to evaluate the variation and structure of the microbial community and their functions to excess sludge reduction in GCOR, a conventional activated sludge reactor (ASR) was studied as a comparison. The 16S rDNA library of the universal bacteria was constructed, Shannon's diversity index (H) and Species evenness (E) were calculated with distance-based operational taxonomic unit and richness (DOTUR) for microbial diversity. Real-time quantity PCR and optical microscope were used for absolute bacterial DNA concentration and eukarya identification, respectively. Meanwhile, the suspended solid index in GCOR and ASR was detected for assessing the excess sludge production. The results indicated that the most abundant bacteria in GCOR were those related to the β-Proteobacteria group, then γ-Proteobacteria and to Cytophaga-Flexibacter-Bacteriode (CFB). In the ASR samples major bacteria were in the closest match with γ-Proteobacteria, then β-Proteobacteria and CFB. Shannon's index (H) was higher (3.41) for diversity of bacteria extracted from the carrier samples in GCOR than that (2.71) from the sludge sample in ASR. Species evenness (E) for the isolates from GCOR and ASR samples was 0.97 and 0.96, respectively. Comparison of the universal bacteria population in GCOR and ASR shows that the total bacterial DNA concentration on the GCOR carriers were 8.98 x 10 5 μg/μl, twice that in ASR of 4.67 x 10 5 μg/μl under normal operation of two reactors. But the MLSS in GCOR was only 4.5 mg/L, 25 times less than that in ASR of 115.4 mg/L. The most representative eukarya were protozoa both in GCOR (15 no. per 20 ml) and in ASR (15

  2. Hexavalent chromium reduction under fermentative conditions with lactate stimulated native microbial communities.

    Science.gov (United States)

    Somenahally, Anil C; Mosher, Jennifer J; Yuan, Tong; Podar, Mircea; Phelps, Tommy J; Brown, Steven D; Yang, Zamin K; Hazen, Terry C; Arkin, Adam P; Palumbo, Anthony V; Van Nostrand, Joy D; Zhou, Jizhong; Elias, Dwayne A

    2013-01-01

    Microbial reduction of toxic hexavalent chromium (Cr(VI)) in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher [Cr(VI)] may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI) concentrations on community structure and on the Cr(VI)-reduction potential of groundwater communities at Hanford, WA. Steady state continuous flow bioreactors were used to grow native communities enriched with lactate (30 mM) and continuously amended with Cr(VI) at 0.0 (No-Cr), 0.1 (Low-Cr) and 3.0 (High-Cr) mg/L. Microbial growth, metabolites, Cr(VI), 16S rRNA gene sequences and GeoChip based functional gene composition were monitored for 15 weeks. Temporal trends and differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) levels were below detection from week 1 until week 15. With lactate enrichment, native bacterial diversity substantially decreased as Pelosinus spp., and Sporotalea spp., became the dominant groups, but did not significantly differ between Cr concentrations. The Archaea diversity also substantially decreased after lactate enrichment from Methanosaeta (35%), Methanosarcina (17%) and others, to mostly Methanosarcina spp. (95%). Methane production was lower in High-Cr reactors suggesting some inhibition of methanogens. Several key functional genes were distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant microbes, Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result 3.0 mg/L Cr(VI) did not impact the overall bacterial community structure.

  3. Hexavalent chromium reduction under fermentative conditions with lactate stimulated native microbial communities.

    Directory of Open Access Journals (Sweden)

    Anil C Somenahally

    Full Text Available Microbial reduction of toxic hexavalent chromium (Cr(VI in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher [Cr(VI] may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI concentrations on community structure and on the Cr(VI-reduction potential of groundwater communities at Hanford, WA. Steady state continuous flow bioreactors were used to grow native communities enriched with lactate (30 mM and continuously amended with Cr(VI at 0.0 (No-Cr, 0.1 (Low-Cr and 3.0 (High-Cr mg/L. Microbial growth, metabolites, Cr(VI, 16S rRNA gene sequences and GeoChip based functional gene composition were monitored for 15 weeks. Temporal trends and differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI levels were below detection from week 1 until week 15. With lactate enrichment, native bacterial diversity substantially decreased as Pelosinus spp., and Sporotalea spp., became the dominant groups, but did not significantly differ between Cr concentrations. The Archaea diversity also substantially decreased after lactate enrichment from Methanosaeta (35%, Methanosarcina (17% and others, to mostly Methanosarcina spp. (95%. Methane production was lower in High-Cr reactors suggesting some inhibition of methanogens. Several key functional genes were distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant microbes, Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI reduction, and as a result 3.0 mg/L Cr(VI did not impact the overall bacterial community structure.

  4. Hexavalent Chromium Reduction under Fermentative Conditions with Lactate Stimulated Native Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Somenahally, Anil C [ORNL; Mosher, Jennifer J [ORNL; Yuan, Tong [University of Oklahoma; Phelps, Tommy Joe [ORNL; Brown, Steven D [ORNL; Yang, Zamin Koo [ORNL; Hazen, Terry C [ORNL; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Palumbo, Anthony Vito [ORNL; Van Nostrand, Dr. Joy D. [Oklahoma University; Zhou, Jizhong [University of Oklahoma; Elias, Dwayne A [ORNL

    2013-01-01

    Microbial reduction of toxic hexavalent chromium (Cr(VI)) in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher [Cr(VI)] may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI) concentrations on community structure and on the Cr(VI)-reduction potential of groundwater communities at Hanford, WA. Steady state continuous flow bioreactors were used to grow native communities enriched with lactate (30 mM) and continuously amended with Cr(VI) at 0.0 (No-Cr), 0.1 (Low-Cr) and 3.0 (High-Cr) mg/L. Microbial growth, metabolites, Cr(VI), 16S rRNA gene sequences and GeoChip based functional gene composition were monitored for 15 weeks. Temporal trends and differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) levels were below detection from week 1 until week 15. With lactate enrichment, native bacterial diversity substantially decreased as Pelosinus spp., and Sporotalea spp., became the dominant groups, but did not significantly differ between Cr concentrations. The Archaea diversity also substantially decreased after lactate enrichment from Methanosaeta (35%), Methanosarcina (17%) and others, to mostly Methanosarcina spp. (95%). Methane production was lower in High-Cr reactors suggesting some inhibition of methanogens. Several key functional genes were distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant microbes, Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result 3.0 mg/L Cr(VI) did not impact the overall bacterial community structure.

  5. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    Science.gov (United States)

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for

  6. Biostimulation of Iron Reduction and Uranium Immobilization: Microbial and Mineralogical Controls

    International Nuclear Information System (INIS)

    Joel E. Kostka

    2008-01-01

    This project represented a joint effort between Florida State University (FSU), Rutgers University (RU), and the University of Illinois (U of I). FSU served as the lead institution and Dr. J.E. Kostka was responsible for project coordination, integration, and deliverables. This project was designed to elucidate the microbial ecology and geochemistry of metal reduction in subsurface environments at the U.S. DOE-NABIR Field Research Center at Oak Ridge, Tennessee (ORFRC). Our objectives were to: (1) characterize the dominant iron minerals and related geochemical parameters likely to limit U(VI) speciation, (2) directly quantify reaction rates and pathways of microbial respiration (terminal-electron-accepting) processes which control subsurface sediment chemistry, and (3) identify and enumerate the organisms mediating U(VI) transformation. A total of 31 publications and 47 seminars or meeting presentations were completed under this project. One M.S. thesis (by Nadia North) and a Ph.D. dissertation (by Lainie Petrie-Edwards) were completed at FSU during fall of 2003 and spring of 2005, respectively. Ph.D. students, Denise Akob and Thomas Gihring have continued the student involvement in this research since fall of 2004. All of the above FSU graduate students were heavily involved in the research, as evidenced by their regular attendance at PI meetings and ORFRC workshops

  7. Fluorido complexes of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Mariappan Balasekaran, Samundeeswari

    2013-07-04

    Fluorine chemistry has received considerable interest during recent years due to its significant role in the life sciences, especially for drug development. Despite the great nuclear medicinal importance of the radioactive metal technetium in radiopharmaceuticals, its coordination chemistry with the fluorido ligand is by far less explored than that of other ligands. Up to now, only a few technetium fluorides are known. This thesis contains the synthesis, spectroscopic and structural characterization of novel technetium fluorides in the oxidation states ''+1'', ''+2'', ''+4'' and ''+6''. In the oxidation state ''+6'', the fluoridotechnetates were synthesized either from nitridotechnetic(VI) acid or from pertechnetate by using reducing agent and have been isolated as cesium or tetraethylammonium salts. The compounds were characterized spectroscopically and structurally. In the intermediate oxidation state ''+4'', hexafluoridotechnetate(IV) was known for long time and studied spectroscopically. This thesis reports novel and improved syntheses and solved the critical issues of early publications such as the color, some spectroscopic properties and the structure of this key compound. Single crystal analyses of alkali metal, ammonium and tetramethylammonium salts of hexafluoridotechnetate(IV) are presented. In aqueous alkaline solutions, the ammonium salt of hexafluoridotechnetate(IV) undergoes hydrolysis and forms an oxido-bridged dimeric complex. It is the first step hydrolysis product of hexafluoridotechnetate(IV) and was characterized by spectroscopic and crystallographic methods. Low-valent technetium fluorides with the metal in the oxidation states of ''+2'' or ''+1'' are almost unknown. A detailed description of the synthesis and characterization of pentafluoridonitrosyltechnetate(II) is presented. The

  8. Microbial reductive transformation of phyllosilicate Fe(III) and U(VI) in fluvial subsurface sediments.

    Science.gov (United States)

    Lee, Ji-Hoon; Fredrickson, James K; Kukkadapu, Ravi K; Boyanov, Maxim I; Kemner, Kenneth M; Lin, Xueju; Kennedy, David W; Bjornstad, Bruce N; Konopka, Allan E; Moore, Dean A; Resch, Charles T; Phillips, Jerry L

    2012-04-03

    The microbial reduction of Fe(III) and U(VI) was investigated in shallow aquifer sediments collected from subsurface flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and (57)Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in subsurface sediments incubated in sulfate-containing synthetic groundwater with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without, and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction of phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

  9. Microbial Community Changes in Response to Ethanol or Methanol Amendments for U(VI) Reduction

    International Nuclear Information System (INIS)

    Vishnivetskaya, Tatiana A.; Brandt, Craig C.; Madden, Andrew; Drake, Meghan M.; Kostka, Joel; Akob, Denise M.; Kusel, Kirsten; Palumbo, Anthony Vito

    2010-01-01

    Microbial community responses to ethanol, methanol and methanol + humics amendments in relationship to uranium bioremediation were studied in laboratory microcosm experiments using sediments and ground water from a uranium-contaminated site in Oak Ridge, Tennessee. Ethanol addition always resulted in uranium reduction at rate of 0.8-1.0 mol l -1 d -1 while methanol addition did so occasionally at rate 0.95 mol l -1 d -1 . The type of carbon source added, the duration of incubation, and the sampling site influenced the bacterial community structure upon incubation. Analysis of 16S rRNA gene clone libraries indicated (1) bacterial communities found in ethanol- and methanol-amended samples with U(VI) reduction were similar due to presence of -Proteobacteria, and -Proteobacteria (members of the families Burkholderiaceae, Comamonadaceae, Oxalobacteraceae, and Rhodocyclaceae); (2) methanol-amended samples without U(VI) reduction exhibited the lowest diversity and the bacterial community contained 69.2-92.8% of the family Methylophilaceae; and (3) the addition of humics resulted in an increase of phylogenetic diversity of -Proteobacteria (Rodoferax, Polaromonas, Janthinobacterium, Methylophilales, unclassified) and Firmicutes (Desulfosporosinus, Clostridium).

  10. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    Science.gov (United States)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major

  11. Technetium migration in natural clays; Migration von Technetium in natuerlichem Tongestein

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, Maria

    2015-10-01

    The present work was performed within the joint research project ''Retention of repository relevant radionuclides in argillaceous rocks and saline systems'' (contract no.: 02E10981), funded by the Federal Ministry for Economic Affairs and Energy (BMWi). The aim was to obtain first insights into the interaction of the long-lived fission product technetium and natural clay with regard to a repository for high-level nuclear waste. For this purpose Opalinus Clay from Mont Terri (northern Switzerland) was used as a reference material. The nuclide technetium-99 will contribute to the radiotoxicity of spent nuclear fuel for more than thousand years due to its long half-live. In case of a leakage of the storage vessels, the geochemistry of technetium is determined by its oxidation state, at which only the oxidation states +IV and +VII are relevant. Because of the high solubility and low affinity to sorption on surfaces of minerals, Tc(VII) is considered to be very mobile and thus the most hazardous species. The focuses of this study therefore are diffusion experiments with this mobile species and investigations of the effect of ferrous iron on the mobility and speciation of technetium.rnThe interaction of technetium and Opalinus Clay was studied in sorption and diffusion experiments varying several parameters (pH value, addition of reducing agents, effect of oxygen, diffusion pathways). In the course of this study spatially resolved investigations of the speciation have been performed on Opalinus Clay thin sections and bore cores for the first time. In addition to the speciation, further information regarding elemental distributions and crystalline phases near technetium enrichments were obtained. Supplementary investigations of powder samples allowed determining the molecular structure of technetium on the clay surface.rnBoth the combination of sorption experiments with spectroscopic investigations and the diffusion experiment exhibit a reduction of Tc

  12. Selenite reduction by anaerobic microbial aggregates: Microbial community structure, and proteins associated to the produced selenium spheres.

    Directory of Open Access Journals (Sweden)

    Graciela eGonzalez-Gil

    2016-04-01

    Full Text Available Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0, insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20 % and Pseudomonadaceae (c.a.10 % were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (~200 m of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed.

  13. Selenite Reduction by Anaerobic Microbial Aggregates: Microbial Community Structure, and Proteins Associated to the Produced Selenium Spheres

    KAUST Repository

    Gonzalez-Gil, Graciela

    2016-04-26

    Certain types of anaerobic granular sludge, which consists of microbial aggregates, can reduce selenium oxyanions. To envisage strategies for removing those oxyanions from wastewater and recovering the produced elemental selenium (Se0), insights into the microbial community structure and synthesis of Se0 within these microbial aggregates are required. High-throughput sequencing showed that Veillonellaceae (c.a. 20%) and Pseudomonadaceae (c.a.10%) were the most abundant microbial phylotypes in selenite reducing microbial aggregates. The majority of the Pseudomonadaceae sequences were affiliated to the genus Pseudomonas. A distinct outer layer (∼200 μm) of selenium deposits indicated that bioreduction occurred in the outer zone of the microbial aggregates. In that outer layer, SEM analysis showed abundant intracellular and extracellular Se0 (nano)spheres, with some cells having high numbers of intracellular Se0 spheres. Electron tomography showed that microbial cells can harbor a single large intracellular sphere that stretches the cell body. The Se0 spheres produced by the microorganisms were capped with organic material. X-ray photoelectron spectroscopy (XPS) analysis of extracted Se0 spheres, combined with a mathematical approach to analyzing XPS spectra from biological origin, indicated that proteins and lipids were components of the capping material associated to the Se0 spheres. The most abundant proteins associated to the spheres were identified by proteomic analysis. Most of the proteins or peptide sequences capping the Se0 spheres were identified as periplasmic outer membrane porins and as the cytoplasmic elongation factor Tu protein, suggesting an intracellular formation of the Se0 spheres. In view of these and previous findings, a schematic model for the synthesis of Se0 spheres by the microorganisms inhabiting the granular sludge is proposed.

  14. The role of microbial iron reduction in the formation of Proterozoic molar tooth structures

    Science.gov (United States)

    Hodgskiss, Malcolm S. W.; Kunzmann, Marcus; Poirier, André; Halverson, Galen P.

    2018-01-01

    Molar tooth structures are poorly understood early diagenetic, microspar-filled voids in clay-rich carbonate sediments. They are a common structure in sedimentary successions dating from 2600-720 Ma, but do not occur in rocks older or younger, with the exception of two isolated Ediacaran occurrences. Despite being locally volumetrically significant in carbonate rocks of this age, their formation and disappearance in the geological record remain enigmatic. Here we present iron isotope data, supported by carbon and oxygen isotopes, major and minor element concentrations, and total organic carbon and sulphur contents for 87 samples from units in ten different basins spanning ca. 1900-635 Ma. The iron isotope composition of molar tooth structures is almost always lighter (modal depletion of 2‰) than the carbonate or residue components in the host sediment. We interpret the isotopically light iron in molar tooth structures to have been produced by dissimilatory iron reduction utilising Fe-rich smectites and Fe-oxyhydroxides in the upper sediment column. The microbial conversion of smectite to illite results in a volume reduction of clay minerals (∼30%) while simultaneously increasing pore water alkalinity. When coupled with wave loading, this biogeochemical process is a viable mechanism to produce voids and subsequently precipitate carbonate minerals. The disappearance of molar tooth structures in the mid-Neoproterozoic is likely linked to a combination of a decrease in smectite abundance, a decline in the marine DIC reservoir, and an increase in the concentration of O2 in shallow seawater.

  15. Microbial Sulfate Reduction in Deep-Sea Sediments at the Guaymas Basin - Hydrothermal Vent Area - Influence of Temperature and Substrates

    DEFF Research Database (Denmark)

    ELSGAARD, L.; ISAKSEN, MF; JØRGENSEN, BB

    1994-01-01

    Microbial sulfate reduction was studied by a S-35 tracer technique in sediments from the hydrothermal vent site in Guaymas Basin, Gulf of California, Mexico. In situ temperatures ranged from 2.7-degrees-C in the overlying seawater to > 120-degrees-C at 30 cm depth in the hydrothermal sediment...

  16. Technetium behavior and recovery in soil

    International Nuclear Information System (INIS)

    Meinken, G.E.

    1995-12-01

    Technetium-99 in soils is of great concern because of its long half-life and because it can not be detected readily. This work reviews the behavior of technetium in various types of soils. A method for extracting technetium from soil was developed with the use of technetium-95m and 99m to determine recoveries at each step. Technetium chemistry is very complicated and problem areas in the behavior and recovery have been highlighted. Technetium is widely used in nuclear medicine and a review of its chemistry pertaining to radiopharmaceuticals is relevant and helpful in environmental studies. The technetium behavior in the patented citric acid method for the removal of toxic metals in contaminated soils was studied. An innovative method using solid phase extraction media for the concentration of technetium extracted from soils, with water and hydrogen peroxide, was developed. This technique may have a useful environmental application for this type of remediation of technetium from contaminated

  17. Technetium Behavior and Recovery in Soil

    Energy Technology Data Exchange (ETDEWEB)

    Meinken,G.E.

    1995-12-01

    Technetium-99 in soils is of great concern because of its long half-life and because it can not be detected readily. This work reviews the behavior of technetium in various types of soils. A method for extracting technetium from soil was developed with the use of technetium-95m and 99m to determine recoveries at each step. Technetium chemistry is very complicated and problem areas in the behavior and recovery have been highlighted. Technetium is widely used in nuclear medicine and a review of its chemistry pertaining to radiopharmaceuticals is relevant and helpful in environmental studies. The technetium behavior in the patented citric acid method for the removal of toxic metals in contaminated soils was studied. An innovative method using solid phase extraction media for the concentration of technetium extracted from soils, with water and hydrogen peroxide, was developed. This technique may have a useful environmental application for this type of remediation of technetium from contaminated soils.

  18. Ferrihydrite-associated organic matter (OM stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia

    Directory of Open Access Journals (Sweden)

    R. E. Cooper

    2017-11-01

    Full Text Available The formation of Fe(III oxides in natural environments occurs in the presence of natural organic matter (OM, resulting in the formation of OM–mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III reduction in natural environments most often occurs in the presence of OM–mineral complexes rather than pure Fe(III minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III reduction by Shewanella oneidensis MR-1, a model Fe(III-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite–OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose mimics S. oneidensis under the same experimental Fe(III-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM–ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria during pure ferrihydrite incubations which are known to use Fe(III as an electron sink. Instead, OM–mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and

  19. Ferrihydrite-associated organic matter (OM) stimulates reduction by Shewanella oneidensis MR-1 and a complex microbial consortia

    Science.gov (United States)

    Cooper, Rebecca Elizabeth; Eusterhues, Karin; Wegner, Carl-Eric; Totsche, Kai Uwe; Küsel, Kirsten

    2017-11-01

    The formation of Fe(III) oxides in natural environments occurs in the presence of natural organic matter (OM), resulting in the formation of OM-mineral complexes that form through adsorption or coprecipitation processes. Thus, microbial Fe(III) reduction in natural environments most often occurs in the presence of OM-mineral complexes rather than pure Fe(III) minerals. This study investigated to what extent does the content of adsorbed or coprecipitated OM on ferrihydrite influence the rate of Fe(III) reduction by Shewanella oneidensis MR-1, a model Fe(III)-reducing microorganism, in comparison to a microbial consortium extracted from the acidic, Fe-rich Schlöppnerbrunnen fen. We found that increased OM content led to increased rates of microbial Fe(III) reduction by S. oneidensis MR-1 in contrast to earlier findings with the model organism Geobacter bremensis. Ferrihydrite-OM coprecipitates were reduced slightly faster than ferrihydrites with adsorbed OM. Surprisingly, the complex microbial consortia stimulated by a mixture of electrons donors (lactate, acetate, and glucose) mimics S. oneidensis under the same experimental Fe(III)-reducing conditions suggesting similar mechanisms of electron transfer whether or not the OM is adsorbed or coprecipitated to the mineral surfaces. We also followed potential shifts of the microbial community during the incubation via 16S rRNA gene sequence analyses to determine variations due to the presence of adsorbed or coprecipitated OM-ferrihydrite complexes in contrast to pure ferrihydrite. Community profile analyses showed no enrichment of typical model Fe(III)-reducing bacteria, such as Shewanella or Geobacter sp., but an enrichment of fermenters (e.g., Enterobacteria) during pure ferrihydrite incubations which are known to use Fe(III) as an electron sink. Instead, OM-mineral complexes favored the enrichment of microbes including Desulfobacteria and Pelosinus sp., both of which can utilize lactate and acetate as an electron

  20. Substitution reactions of technetium complexes

    International Nuclear Information System (INIS)

    Omori, T.

    1997-01-01

    Substitution reactions of a series of technetium complexes are considered in comparison with corresponding reactions of rhenium. Rhenium and technetium complexes are rather inert in substitution reactions, the latter are characterized by greater rate constants when they proceed according to dissociative mechanism. In rare cases when k Tc /k Re id little it is assumed that the reaction proceeds according to the associative mechanism. (author)

  1. An investigation of the effect of the quantity of stannous ion on the quality of technetium-99m labelled albumin

    International Nuclear Information System (INIS)

    Billinghurst, M.W.; Rempel, S.; Westendorf, B.A.

    1981-01-01

    The importance of maintaining a low ratio of stannous ion to albumin molecules in order to obtain a high quality technetium-99m labelled albumin is demonstrated. It is further shown that the direct preparation of technetium-99m albumin by reduction of the technetium-99m pertechnetate with stannous ion inevitably leads to the contamination of the product with a certain amount of tin colloid which is also labelled with technetium-99m. It is demonstrated that this can be avoided by utilizing labelling techniques involving the initial formation of other technetium chelates which are less stable than the albumin complex under certain conditions, adding the albumin to that preparation, adjusting the conditions and thus allowing the albumin to become labelled with technetium-99m via an exchange with the original chelating agent. (author)

  2. Humin as an electron donor for enhancement of multiple microbial reduction reactions with different redox potentials in a consortium.

    Science.gov (United States)

    Zhang, Dongdong; Zhang, Chunfang; Xiao, Zhixing; Suzuki, Daisuke; Katayama, Arata

    2015-02-01

    A solid-phase humin, acting as an electron donor, was able to enhance multiple reductive biotransformations, including dechlorination of pentachlorophenol (PCP), dissimilatory reduction of amorphous Fe (III) oxide (FeOOH), and reduction of nitrate, in a consortium. Humin that was chemically reduced by NaBH4 served as an electron donor for these microbial reducing reactions, with electron donating capacities of 0.013 mmol e(-)/g for PCP dechlorination, 0.15 mmol e(-)/g for iron reduction, and 0.30 mmol e(-)/g for nitrate reduction. Two pairs of oxidation and reduction peaks within the humin were detected by cyclic voltammetry analysis. 16S rRNA gene sequencing-based microbial community analysis of the consortium incubated with different terminal electron acceptors, suggested that Dehalobacter sp., Bacteroides sp., and Sulfurospirillum sp. were involved in the PCP dechlorination, dissimilatory iron reduction, and nitrate reduction, respectively. These findings suggested that humin functioned as a versatile redox mediator, donating electrons for multiple respiration reactions with different redox potentials. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Fate of Cd during microbial Fe(III) mineral reduction by a novel and Cd-tolerant Geobacter species.

    Science.gov (United States)

    Muehe, E Marie; Obst, Martin; Hitchcock, Adam; Tyliszczak, Tolek; Behrens, Sebastian; Schröder, Christian; Byrne, James M; Michel, F Marc; Krämer, Ute; Kappler, Andreas

    2013-12-17

    Fe(III) (oxyhydr)oxides affect the mobility of contaminants in the environment by providing reactive surfaces for sorption. This includes the toxic metal cadmium (Cd), which prevails in agricultural soils and is taken up by crops. Fe(III)-reducing bacteria can mobilize such contaminants by Fe(III) mineral dissolution or immobilize them by sorption to or coprecipitation with secondary Fe minerals. To date, not much is known about the fate of Fe(III) mineral-associated Cd during microbial Fe(III) reduction. Here, we describe the isolation of a new Geobacter sp. strain Cd1 from a Cd-contaminated field site, where the strain accounts for 10(4) cells g(-1) dry soil. Strain Cd1 reduces the poorly crystalline Fe(III) oxyhydroxide ferrihydrite in the presence of at least up to 112 mg Cd L(-1). During initial microbial reduction of Cd-loaded ferrihydrite, sorbed Cd was mobilized. However, during continuous microbial Fe(III) reduction, Cd was immobilized by sorption to and/or coprecipitation within newly formed secondary minerals that contained Ca, Fe, and carbonate, implying the formation of an otavite-siderite-calcite (CdCO3-FeCO3-CaCO3) mixed mineral phase. Our data shows that microbially mediated turnover of Fe minerals affects the mobility of Cd in soils, potentially altering the dynamics of Cd uptake into food or phyto-remediating plants.

  4. Flow-through Column Experiments and Modeling of Microbially Mediated Cr(VI) Reduction at Hanford 100H

    Science.gov (United States)

    Yang, L.; Molins, S.; Beller, H. R.; Brodie, E. L.; Steefel, C.; Nico, P. S.; Han, R.

    2010-12-01

    Microbially mediated Cr(VI) reduction at the Hanford 100H area was investigated by flow-through column experiments. Three separate experiments were conducted to promote microbial activities associated with denitrification, iron and sulfate reduction, respectively. Replicate columns packed with natural sediments from the site under anaerobic environment were injected with 5mM Lactate as the electron donor and 5 μM Cr(VI) in all experiments. Sulfate and nitrate solutions were added to act as the main electron acceptors in the respective experiments, while iron columns relied on the indigenous sediment iron (and manganese) oxides as electron acceptors. Column effluent solutions were analyzed by IC and ICP-MS to monitor the microbial consumption/conversion of lactate and the associated Cr(VI) reduction. Biogeochemical reactive transport modeling was performed to gain further insights into the reaction mechanisms and Cr(VI) bioreduction rates. All experimental columns showed a reduction of the injected Cr(VI). Columns under denitrifying conditions showed the least Cr(VI) reduction at early stages (simulations indicated that biomass growth completely depleted influent ammonium, and called for an additional source of N to account for the measured reduction rates. Iron columns were the least active with undetectable consumption of the injected lactate, slowest cell growth, and the smallest change in Cr(VI) concentrations during the course of the experiment. In contrast, columns under sulfate-reducing/fermentative conditions exhibited the greatest Cr(VI) reduction capacity. Two sulfate columns evolved to complete lactate fermentation with acetate and propionate produced in the column effluent after 40 days of experiments. These fermenting columns showed a complete removal of injected Cr(VI), visible precipitation of sulfide minerals, and a significant increase in effluent Fe and Mn concentrations. Reactive transport simulations suggested that direct reduction of Cr(VI) by

  5. Microbial reduction of Fe(III) and turnover of acetate in Hawaiian soils.

    Science.gov (United States)

    Küsel, Kirsten; Wagner, Christine; Trinkwalter, Tanja; Gössner, Anita S; Bäumler, Rupert; Drake, Harold L

    2002-04-01

    Soils contain anoxic microzones, and acetate is an intermediate during the turnover of soil organic carbon. Due to negligible methanogenic activities in well-drained soils, acetate accumulates under experimentally imposed short-term anoxic conditions. In contrast to forest, agricultural, and prairie soils, grassland soils from Hawaii rapidly consumed rather than formed acetate when incubated under anoxic conditions. Thus, alternative electron acceptors that might be linked to the anaerobic oxidation of soil organic carbon in Hawaiian soils were assessed. Under anoxic conditions, high amounts of Fe(II) were formed by Hawaiian soils as soon as soils were depleted of nitrate. Rates of Fe(II) formation for different soils ranged from 0.01 to 0.31 micromol (g dry weight soil)(-1) h(-1), but were not positively correlated to increasing amounts of poorly crystallized iron oxides. In general, sulfate-reducing and methanogenic activities were negligible. Supplemental acetate was rapidly oxidized to CO2 via the sequential reduction of nitrate and Fe(III) in grassland soil (obtained near Kaena State Park). Supplemental H2 stimulated the formation of Fe(II), but H2-utilizing acetogens appeared to also be involved in the consumption of H2. Approximately 270 micromol Fe(III) (g dry weight soil)(-1) was available for Fe(III)-reducing bacteria, and acetate became a stable end product when Fe(III) was depleted in long-term incubations. Most-probable-number estimates of H2- and acetate-utilizing Fe(III) reducers and of H2-utilizing acetogens were similar. These results indicate that (i) the microbial reduction of Fe(III) is an important electron-accepting process for the anaerobic oxidation of organic matter in Fe(III)-rich Hawaiian soils of volcanic origin, and (ii) acetate, formed by the combined activity of fermentative and acetogenic bacteria, is an important trophic link in anoxic microsites of these soils.

  6. Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction

    Science.gov (United States)

    Alt, J.C.; Shanks, Wayne C.

    1998-01-01

    The mineralogy, contents, and isotopic compositions of sulfur in oceanic serpentinites reflect variations in temperatures and fluid fluxes. Serpentinization of serpentinization of Iberian Margin peridotites occurred at low temperatures (???20??-200??C) and high water/rock ratios. Complete serpentinization and consumption of ferrous iron allowed evolution to higher fO2. Microbial reduction of seawater sulfate resulted in addition of low-??34S sulfide (-15 to -43???) and formation of higher-sulfur assemblages that include valleriite and pyrite. The high SO4/total S ratio of Hess Deep serpentinites (0.89) results in an increase of total sulfur and high ??34S of total sulfur (mean ??? 8???). In contrast, Iberian Margin serpentinites gained large amounts of 34S-poor sulfide (mean total S = 3800 ppm), and the high sulfide/total S ratio (0.61) results in a net decrease in ??34S of total sulfur (mean ??? -5???). Thus serpentinization is a net sink for seawater sulfur, but the amount fixed and its isotopic composition vary significantly. Serpentinization may result in uptake of 0.4-14 ?? 1012 g S yr-1 from the oceans, comparable to isotopic exchange in mafic rocks of seafloor hydrothermal systems and approaching global fluxes of riverine sulfate input and sedimentary sulfide output.

  7. Microbial metal reduction by members of the genus Shewanella: novel strategies for anaerobic respiration

    International Nuclear Information System (INIS)

    Dichristina, Thomas; Bates, David J.; Burns, Justin L.; Dale, Jason R.; Payne, Amanda N.

    2006-01-01

    Metal-reducing members of the genus Shewanella are important components of the microbial community residing in redox-stratified freshwater and marine environments. Metal-reducing gram-negative bacteria such as Shewanella, however, are presented with a unique physiological challenge: they are required to respire anaerobically on terminal electron acceptors which are either highly insoluble (Fe(III)- and Mn(IV)-oxides) and reduced to soluble end-products or highly soluble (U(VI) and Tc(VII)) and reduced to insoluble end-products. To overcome physiological problems associated with metal solubility, metal-respiring Shewanella are postulated to employ a variety of novel respiratory strategies not found in other gram-negative bacteria which respire on soluble electron acceptors such as O2, NO3 and SO4. The following chapter highlights the latest findings on the molecular mechanism of Fe(III), U(VI) and Tc(VII) reduction by Shewanella, with particular emphasis on electron transport chain physiology.

  8. PTFE effect on the electrocatalysis of the oxygen reduction reaction in membraneless microbial fuel cells.

    Science.gov (United States)

    Guerrini, Edoardo; Grattieri, Matteo; Faggianelli, Alessio; Cristiani, Pierangela; Trasatti, Stefano

    2015-12-01

    Influence of PTFE in the external Gas Diffusion Layer (GDL) of open-air cathodes applied to membraneless microbial fuel cells (MFCs) is investigated in this work. Electrochemical measurements on cathodes with different PTFE contents (200%, 100%, 80% and 60%) were carried out to characterize cathodic oxygen reduction reaction, to study the reaction kinetics. It is demonstrated that ORR is not under diffusion-limiting conditions in the tested systems. Based on cyclic voltammetry, an increase of the cathodic electrochemical active area took place with the decrease of PTFE content. This was not directly related to MFC productivity, but to the cathode wettability and the biocathode development. Low electrodic interface resistances (from 1 to 1.5 Ω at the start, to near 0.1 Ω at day 61) indicated a negligible ohmic drop. A decrease of the Tafel slopes from 120 to 80 mV during productive periods of MFCs followed the biological activity in the whole MFC system. A high PTFE content in the cathode showed a detrimental effect on the MFC productivity, acting as an inhibitor of ORR electrocatalysis in the triple contact zone.

  9. Chemistry and structure of technetium complexes

    International Nuclear Information System (INIS)

    Baldas, J.; Boas, J.F.; Bonnyman, J.; Williams, G.A.

    1983-01-01

    The structures of tris(2-aminobenzenethiolato) technetium(VI) and dichlorobis(diethyldithiocarbamato) thionitrosyltechnetium(V) have been determined by single crystal x-ray diffraction analysis. The preparation and chemistry of thiocyanato complexes of technetium have been investigated

  10. The Validation of Vapor Phase Hydrogen Peroxide Microbial Reduction for Planetary Protection and a Proposed Vacuum Process Specification

    Science.gov (United States)

    Chung, Shirley; Barengoltz, Jack; Kern, Roger; Koukol, Robert; Cash, Howard

    2006-01-01

    The Jet Propulsion Laboratory, in conjunction with the NASA Planetary Protection Officer, has selected the vapor phase hydrogen peroxide sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal is to include this technique, with an appropriate specification, in NPR 8020.12C as a low temperature complementary technique to the dry heat sterilization process.To meet microbial reduction requirements for all Mars in-situ life detection and sample return missions, various planetary spacecraft subsystems will have to be exposed to a qualified sterilization process. This process could be the elevated temperature dry heat sterilization process (115 C for 40 hours) which was used to sterilize the Viking lander spacecraft. However, with utilization of such elements as highly sophisticated electronics and sensors in modern spacecraft, this process presents significant materials challenges and is thus an undesirable bioburden reduction method to design engineers. The objective of this work is to introduce vapor hydrogen peroxide (VHP) as an alternative to dry heat microbial reduction to meet planetary protection requirements.The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material properties. Our goal for this study was to determine the minimum VHP process conditions to achieve microbial reduction levels acceptable for planetary protection.

  11. Stable Fe isotope fractionation during anaerobic microbial dissimilatory iron reduction at low pH

    Science.gov (United States)

    Chanda, P.; Amenabar, M. J.; Boyd, E. S.; Beard, B. L.; Johnson, C.

    2017-12-01

    In low-temperature anaerobic environments microbial dissimilatory iron reduction (DIR) plays an important role in Fe cycling. At neutral pH, sorption of aqueous Fe(II) (Fe(II)aq, produced by DIR) catalyzes isotopic exchange between Fe(II) and solid Fe(III), producing 56Fe/54Fe fractionations on the order of 3‰ during DIR[1,2,3]. At low pH, however, the absence of sorbed Fe(II) produces only limited abiologic isotopic exchange[4]. Here we investigated the scope of isotopic exchange between Fe(II)aq and ferric (hydr)oxides (ferrihydrite and goethite) and the associated stable Fe isotope fractionation during DIR by Acidianus strain DS80 at pH 3.0 and 80°C[5]. Over 19 days, 13% reduction of both minerals via microbial DIR was observed. The δ56Fe values of the fluid varied from -2.31 to -1.63‰ (ferrihydrite) and -0.45 to 0.02‰ (goethite). Partial leaching of bulk solid from each reactor with dilute HCl showed no sorption of Fe(II), and the surface layers of the solids were composed of Fe(III) with high δ56Fe values (ferrihydrite: 0.20 to 0.48‰ and goethite: 1.20 to 1.30‰). These results contrast with the lack of Fe isotope exchange in abiologic low-pH systems and indicate a key role for biology in catalyzing Fe isotope exchange between Fe(II)aq and Fe(III) solids, despite the absence of sorbed Fe(II). The estimated fractionation factor (ΔFeFe(III) -Fe(II)aq 2.6‰) from leaching of ferrihydrite is similar to the abiologic equilibrium fractionation factor ( 3.0‰)[3]. The fractionation factor (ΔFeFe(III) -Fe(II)aq 2.0‰) for goethite is higher than the abiologic fractionation factor ( 1.05‰)[2], but is consistent with the previously proposed "distorted surface layer" of goethite produced during the exchange with Fe(II)aq at neutral pH[1]. This study indicates that significant variations in Fe isotope compositions may be produced in low-pH environments where biological cycling of Fe occurs, in contrast to the expected lack of isotopic fractionation in

  12. Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture.

    Science.gov (United States)

    Zhao, Siyan; Rogers, Matthew J; He, Jianzhong

    2017-07-01

    Trihalomethanes such as chloroform and bromoform, although well-known as a prominent class of disinfection by-products, are ubiquitously distributed in the environment due to widespread industrial usage in the past decades. Chloroform and bromoform are particularly concerning, of high concentrations detected and with long half-lives up to several hundred days in soils and groundwater. In this study, we report a Dehalobacter- and Desulfovibrio-containing co-culture that exhibits dehalogenation of chloroform (~0.61 mM) to dichloromethane and bromoform (~0.67 mM) to dibromomethane within 10-15 days. This co-culture was further found to dechlorinate 1,1,1-trichloroethane (1,1,1-TCA) (~0.65 mM) to 1,1-dichloroethane within 12 days. The Dehalobacter species present in this co-culture, designated Dehalobacter sp. THM1, was found to couple growth with dehalogenation of chloroform, bromoform, and 1,1,1-TCA. Strain THM1 harbors a newly identified reductive dehalogenase (RDase), ThmA, which catalyzes chloroform, bromoform, and 1,1,1-TCA dehalogenation. Additionally, based on the sequences of thmA and other identified chloroform RDase genes, ctrA, cfrA, and tmrA, a pair of chloroform RDase gene-specific primers were designed and successfully applied to investigate the chloroform dechlorinating potential of microbial communities. The comparative analysis of chloroform RDases with tetrachloroethene RDases suggests a possible approach in predicting the substrate specificity of uncharacterized RDases in the future.

  13. Technetium-aspirin molecule complexes

    International Nuclear Information System (INIS)

    El-Shahawy, A.S.; Mahfouz, R.M.; Aly, A.A.M.; El-Zohry, M.

    1993-01-01

    Technetium-aspirin and technetium-aspirin-like molecule complexes were prepared. The structure of N-acetylanthranilic acid (NAA) has been decided through CNDO calculations. The ionization potential and electron affinity of the NAA molecule as well as the charge densities were calculated. The electronic absorption spectra of Tc(V)-Asp and Tc(V)-ATS complexes have two characteristic absorption bands at 450 and 600 nm, but the Tc(V)-NAA spectrum has one characteristic band at 450 nm. As a comparative study, Mo-ATS complex was prepared and its electronic absorption spectrum is comparable with the Tc-ATS complex spectrum. (author)

  14. Synthesis and characterization of technetium(III) complexes with nitrogen heterocycles by O atom transfer from oxotechnetium(V) cores. Crystal structures of mer-[Cl3(pic)3Tc] and mer-[Cl3(pic)(PMe2Ph)2Tc] (pic = 4-picoline). Electrochemical parameters fore the reduction of TcII, TcIII, and TcIV

    International Nuclear Information System (INIS)

    Lu, Jun; Yamano, Akahito; Clarke, M.J.

    1990-01-01

    The combination of pyridine ligands, (OCl 4 Tc) - , and O atom acceptors of different cone angles, such as PMe 2 Ph or PPh 3 , results in Tc III complexes that vary in the coordination of the phosphine ligand. The compounds mer[Cl 3 (4-picoline) 3 Tc] and mer-(Cl 3 (4-picoline)(PMe 2 Ph) 2 Tc) have been obtained in good yield and have been characterized spectroscopically and by single-crystal x-ray diffraction. The crystal structure data are reported. Linear correlations of technetium reduction potentials in DMF with electrochemical ligand additivity parameters (E L 's) have been obtained for the Tc II,I , Tc III,II , and Tc IV,III couples. The slope and intercept (S M , I M ) pairs for each technetium oxidation-reduction couple, respectively, are (1.39, -2.07), (1.29, -0.91), and (1.00, 0.65). 32 refs., 3 figs., 6 tabs

  15. Extracellular Saccharide-Mediated Reduction of Au3+ to Gold Nanoparticles: New Insights for Heavy Metals Biomineralization on Microbial Surfaces.

    Science.gov (United States)

    Kang, Fuxing; Qu, Xiaolei; Alvarez, Pedro J J; Zhu, Dongqiang

    2017-03-07

    Biomineralization is a critical process controlling the biogeochemical cycling, fate, and potential environmental impacts of heavy metals. Despite the indispensability of extracellular polymeric substances (EPS) to microbial life and their ubiquity in soil and aquatic environments, the role played by EPS in the transformation and biomineralization of heavy metals is not well understood. Here, we used gold ion (Au 3+ ) as a model heavy metal ion to quantitatively assess the role of EPS in biomineralization and discern the responsible functional groups. Integrated spectroscopic analyses showed that Au 3+ was readily reduced to zerovalent gold nanoparticles (AuNPs, 2-15 nm in size) in aqueous suspension of Escherichia coli or dissolved EPS extracted from microbes. The majority of AuNPs (95.2%) was formed outside Escherichia coli cells, and the removal of EPS attached to cells pronouncedly suppressed Au 3+ reduction, reflecting the predominance of the extracellular matrix in Au 3+ reduction. XPS, UV-vis, and FTIR analyses corroborated that Au 3+ reduction was mediated by the hemiacetal groups (aldehyde equivalents) of reducing saccharides of EPS. Consistently, the kinetics of AuNP formation obeyed pseudo-second-order reaction kinetics with respect to the concentrations of Au 3+ and the hemiacetal groups in EPS, with minimal dependency on the source of microbial EPS. Our findings indicate a previously overlooked, universally significant contribution of EPS to the reduction, mineralization, and potential detoxification of metal species with high oxidation state.

  16. Environmental behavior of technetium-99

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1982-12-01

    This report presents a review of the literature on technetium-99. The chemical and physical properties of some technetium compounds are considered, and a discussion of possible source terms is included. Literature on the environmental behavior of technetium is presented, including its behavior in the bodies of animals and humans. The primary sources of Tc-99 in the environment are fallout from atomic detonations and releases from nuclear fuel reprocessing plants. The environmental behavior of technetium-99 has been studied predominantly with respect to movement in soil and accumulation in plants. There is a surprising scarcity of data on behavior of Tc-99 in the atmosphere and in aquatic systems. Additional work needs to be conducted in these two areas to determine behavior and to acquire baseline concentration data. Much of the soil work has produced contradictory results. In-depth studies of holdup mechanisms for Tc-99 in both geological repositories and soil need to be conducted. Since plants represent a potential bioaccumulation of Tc-99, plant uptake studies of Tc-99 under field conditions also need to be done

  17. Oscillator strengths for neutral technetium

    International Nuclear Information System (INIS)

    Garstang, R.H.

    1981-01-01

    Oscillator strengths have been calculated for most of the spectral lines of TcI which are of interest in the study of stars of spectral type S. Oscillator strengths have been computed for the corresponding transitions in MnI as a partial check of the technetium calculations

  18. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tian-shun [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 (China); College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816 (China); Jiangsu Branch of China Academy of Science & Technology Development, Nanjing (China); Jin, Yuejuan; Bao, Jingjing [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 (China); College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816 (China); Kang, Dongzhou, E-mail: kangdz@ybu.edu.cn [College of Pharmacy, Yanbian University, Yanji 133002 (China); Xie, Jingjing, E-mail: xiej@njtech.edu.cn [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 (China); College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816 (China); Jiangsu Branch of China Academy of Science & Technology Development, Nanjing (China); College of Pharmacy, Yanbian University, Yanji 133002 (China); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 211816 (China)

    2016-11-05

    Highlights: • Graphene/biofilm was microbially fabricated to cathode of a Cr(VI)-reducing MFC. • High Cr(VI) reduction rate was generated by self-assembled graphene biocathode MFC. • Graphene biocathode improves the electricity production of Cr(VI)-reducing MFC. • High surface area of the graphene provides more adsorption sites for Cr(VI). • Graphene biocathode improves the electron transfer rate in the MFC. - Abstract: In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48 h, at 40 mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions.

  19. Technetium accumulation, fate, and behavior in plants

    International Nuclear Information System (INIS)

    Cataldo, D.A.; Wildung, R.E.; Garland, T.R.

    1978-01-01

    Technetium, a product of the nuclear fuel cycle, is highly soluble in water and mobile in soils as the pertechnetate ion (TcO - 4 ). Soluble ions in soil have the potential for competing with nutrient ions for membrane carrier sites involved in ion uptake by plants. A study was, therefore, undertaken to determine the availability, toxicity, and mechanism of pertechnetate uptake by soybean (Glycine max cv. Williams). Technetium was effectively accumulated by plants at soil concentrations of 0.01 to 0.1 μg/g and in nutrient culture at levels as low as 0.02 pg/ml. Plants grown on soils containing technetium at levels below 0.1 μg/g effectively removed up to 90% of the technetium from soil. Minimal mobilization of technetium from vegetative tissues to the seed occurred during senescence. Chemical analyses indicated that the xylem-mobile form of technetium was TcO 4 - . The uptake rate of technetium by intact plants was multiphasic over the concentration range of 0.01 to 10μM; this suggests active uptake and a specificity for technetium in the root absorption process. Because of the efficiency of technetium accumulation and the probability of its chemical toxicity, competition kinetic studies were undertaken to identify possible nutrient analogs. Nutrients effective in reducing technetium uptake included the Mn 2+ , SO 4 2- , H 2 PO 4 - , and MoO 4 2- ions

  20. Biogeochemical Controls on Technetium Mobility in Biogeochemical Controls on Technetium Mobility in FRC Sediments

    International Nuclear Information System (INIS)

    Lloyd, J.R.; McBeth, J.M.; Livens, F.R.; Bryan, N.D.; Ellis, B.; Sharma, H.; Burke, I.T.; Morris, K.

    2004-01-01

    Technetium-99 is a priority pollutant at numerous DOE sites, due to its long half-life (2.1 x 10 5 years), high mobility as Tc(VII) in oxic waters, and bioavailability as a sulfate analog. 99 Tc is far less mobile under anaerobic conditions, forming insoluble Tc(IV) precipitates. As anaerobic microorganisms can reduce soluble Tc(VII) to insoluble Tc(IV), microbial metabolism may have the potential to treat sediments and waters contaminated with Tc. Baseline studies of fundamental mechanisms of Tc(VII) bioreduction and precipitation (reviewed by Lloyd et al, 2002) have generally used pure cultures of metal-reducing bacteria, in order to develop conceptual models for the biogeochemical cycling of Tc. There is, however, comparatively little known about interactions of metal-reducing bacteria with environmentally relevant trace concentrations of Tc, against a more complex biogeochemical background provided by mixed microbial communities in the subsurface. The objective of this new NABIR project is to probe the site specific biogeochemical conditions that control the mobility of Tc at the FRC (Oak Ridge, TN). This information is required for the rational design of in situ bioremediation strategies for technetium-contaminated subsurface environments. We will use a combination of geochemical, mineralogical, microbiological and spectroscopic techniques to determine the solubility and phase associations of Tc in FRC sediments, and characterize the underpinning biogeochemical controls. A key strength of this project is that many of the techniques we are using have already been optimized by our research team, who are also studying the biogeochemical controls on Tc mobility in marine and freshwater sediments in the UK in a NERC funded companion study.

  1. Reduction of microbial counts during kitchen scale washing and sanitization of salad vegetables

    NARCIS (Netherlands)

    Ssemanda, James Noah; Joosten, Han; Bagabe, Mark Cyubahiro; Zwietering, Marcel H.; Reij, Martine W.

    2018-01-01

    Washing with or without sanitizers is one of the important steps designated to reduce or eliminate microbial hazards in fresh vegetables but the settings, conditions and effectiveness of this step remain contentious. In this study, we investigated kitchen scale salad preparation practices in a field

  2. Sample preparation and characterization of technetium metal

    International Nuclear Information System (INIS)

    Minato, Kazuo; Serizawa, Hiroyuki; Fukuda, Kousaku; Itoh, Mitsuo

    1997-10-01

    Technetium-99 is a long-lived fission product with a half-life of about 2.1 x 10 5 years, which decays by β-emission. For the transmutation of 99 Tc, research on solid technetium was started. Technetium metal powder purchased was analyzed by X-ray diffraction, γ-ray spectrometry, and inductively coupled plasma-atomic emission spectrometry and -mass spectrometry. The lattice parameters obtained were agreed with the reported values. The metallic impurity was about 15 ppm, where aluminum and iron contributed mainly. No impurity nuclide with γ-emission was found. Using the technetium metal powder, button-, rod-, and disk-shaped samples of technetium metal were prepared by arc-melting technique. Thermal diffusivity of technetium metal was measured on a disk sample from room temperature to 1173 K by laser flash method. The thermal diffusivity decreased with increasing temperature though it was almost constant above 600 K. (author)

  3. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Van Baelen, J.; Hurtger, C.; Cogneau, M.; Van der Ben, D.; Verthe, C.; Bouquegneau, J.M.

    1985-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95m-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography

  4. Behaviour of technetium in marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Kirchmann, R.; Baelen, J. van; Hurtgen, C.; Cogneau, M.; Ben, D. van der; Verthe, C.; Bouquegneau, J.M.

    1986-01-01

    Uptake and distribution of technetium were studied in several green (Acetabularia acetabulum, Boergesenia forbesii, Ulva lactuca) and brown (Ascophyllum nodosum, Fucus serratus, Fucus spiralis and Fucus vesiculosus) marine algae. Technetium was supplied to the algae as Tc-95-pertechnetate. Under laboratory conditions, the algae were capable of accumulating technetium, with the exception, however, of Boergesenia, which showed concentration factors (C.F.) comprised between 0.28 and 0.71. The concentration of technetium-99 in Fucus spiralis, collected along the Belgian coast, was measured by a radiochemical procedure. The intracellular distribution of technetium was studied by differential centrifugation in Acetabularia and by the puncturing technique in Boergesenia. The chemical forms of technetium penetrated into the cells were investigated by selective chemical extractions, molecular sieving and thin layer chromatography. (author)

  5. Method of producing radioactive technetium-99M

    International Nuclear Information System (INIS)

    Karageozian, H.L.

    1979-01-01

    A chromatographic process of producing high purity and high yield radioactive Technetium-99m. A solution containing Molybdenum-99m and Technetium-99m is placed on a chromatographic column and eluted with a neutral solvent system comprising an organic solvent and from about 0.1 to less than about 10% of water or from about 1 to less than about 70% of a solvent selected from the group consisting of aliphatic alcohols having 1 to 6 carbon atoms. The eluted solvent system containing the Technetium-99m is then removed leaving the Technetium-99m as a dry, particulate residue

  6. Technetium complexation by macrocyclic compounds

    International Nuclear Information System (INIS)

    Li Fan Yu.

    1983-01-01

    Research in nuclear medicine are directed towards the labelling of biological molecules, however, sup(99m)Tc does not show sufficient affinity for these molecules. The aim of this study was to evaluate the ability of macrocyclic compounds to bind strongly technetium in order to be used as complexation intermediate. The reducing agents used were a stannous complex and sodium dithionite. Cryptates and polyesters are not good complexing agents. They form two complexes: a 2:1 sandwich complex or 3:2 and a 1:1 complex. Cyclams are good complexing agents for technetium their complexations strength was determined by competition with pyrophosphate, gluconate and DTPA. Using the method of ligand exchange, the oxidation state of technetium in the Tc-cyclam complex was IV or V. They are 1:1 cationic complexes, the complex charge is +1. The biodistribution in rats of labelling solutions containing (cyclam 14 ane N 4 ) C 12 H 25 shows a good urinary excretion without intoxication risks [fr

  7. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  8. Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis

    Science.gov (United States)

    Chen, Mingjie; Abriola, Linda M.; Amos, Benjamin K.; Suchomel, Eric J.; Pennell, Kurt D.; Löffler, Frank E.; Christ, John A.

    2013-08-01

    Reductive dechlorination catalyzed by organohalide-respiring bacteria is often considered for remediation of non-aqueous phase liquid (NAPL) source zones due to cost savings, ease of implementation, regulatory acceptance, and sustainability. Despite knowledge of the key dechlorinators, an understanding of the processes and factors that control NAPL dissolution rates and detoxification (i.e., ethene formation) is lacking. A recent column study demonstrated a 5-fold cumulative enhancement in tetrachloroethene (PCE) dissolution and ethene formation (Amos et al., 2009). Spatial and temporal monitoring of key geochemical and microbial (i.e., Geobacter lovleyi and Dehalococcoides mccartyi strains) parameters in the column generated a data set used herein as the basis for refinement and testing of a multiphase, compositional transport model. The refined model is capable of simulating the reactive transport of multiple chemical constituents produced and consumed by organohalide-respiring bacteria and accounts for substrate limitations and competitive inhibition. Parameter estimation techniques were used to optimize the values of sensitive microbial kinetic parameters, including maximum utilization rates, biomass yield coefficients, and endogenous decay rates. Comparison and calibration of model simulations with the experimental data demonstrate that the model is able to accurately reproduce measured effluent concentrations, while delineating trends in dechlorinator growth and reductive dechlorination kinetics along the column. Sensitivity analyses performed on the optimized model parameters indicate that the rates of PCE and cis-1,2-dichloroethene (cis-DCE) transformation and Dehalococcoides growth govern bioenhanced dissolution, as long as electron donor (i.e., hydrogen flux) is not limiting. Dissolution enhancements were shown to be independent of cis-DCE accumulation; however, accumulation of cis-DCE, as well as column length and flow rate (i.e., column residence time

  9. The role microbial sulfate reduction in the direct mediation of sedimentary authigenic carbonate precipitation

    Science.gov (United States)

    Turchyn, A. V.; Walker, K.; Sun, X.

    2016-12-01

    The majority of modern deep marine sediments are bathed in water that is undersaturated with respect to calcium carbonate. However, within marine sediments changing chemical conditions, driven largely by the microbial oxidation of organic carbon in the absence of oxygen, lead to supersaturated conditions and drive calcium carbonate precipitation. This sedimentary calcium carbonate is often called `authigenic carbonate', and is found in the form of cements and disseminated crystals within the marine sedimentary pile. As this precipitation of this calcium carbonate is microbially mediated, identifying authigenic carbonate within the geological record and understanding what information its geochemical and/or isotopic signature may hold is key for understanding its importance and what information it may contain past life. However, the modern controls on authigenic carbonate precipitation remain enigmatic because the myriad of microbially mediated reactions occurring within sediments both directly and indirectly impact the proton balance. In this submission we present data from 25 ocean sediment cores spanning the globe where we explore the deviation from the stoichiometrically predicted relationships among alkalinity, calcium and sulfate concentrations. In theory for every mol of organic carbon reduced by sulfate, two mol of alkalinity is produced, and to precipitate subsurface calcium carbonate one mol of calcium is used to consume two mol of alkalinity. We use this data with a model to explore changes in carbonate saturation state with depth below the seafloor. Alkalinity changes in the subsurface are poorly correlated with changes in calcium concentrations, however calcium concentrations are directly and tightly coupled to changes in sulfate concentrations in all studied sites. This suggests a direct role for sulfate reducing bacteria in the precipitation of subsurface carbonate cements.

  10. The chemical, microbial, sensory and technological effects of intermediate salt levels as a sodium reduction strategy in fresh pork sausages.

    Science.gov (United States)

    Cluff, MacDonald; Steyn, Hannes; Charimba, George; Bothma, Carina; Hugo, Celia J; Hugo, Arno

    2016-09-01

    The reduction of sodium in processed meat products is synonymous with the use of salt replacers. Rarely has there been an assessment of the use of intermediate salt levels as a sodium reduction strategy in itself. In this study, 1 and 1.5% salt levels were compared with 0 and 2% controls in fresh pork sausages for effects on chemical, microbial, sensory and technological stability. Although significant (P sausages stored at 4 °C on days 6 and 9 and stored at -18 °C on days 90 and 180; taste, texture and overall liking during sensory evaluation; and % cooking loss, % total loss and % refrigeration loss. Consumers were able to differentiate between the 2 and 1% added NaCl treatments in terms of saltiness. This study indicated that salt reduction to intermediate levels can be considered a sodium reduction strategy in itself but that further research with regards to product safety is needed. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  11. Recovery of technetium from nuclear fuel wastes

    International Nuclear Information System (INIS)

    Carlin, W.W.

    1975-01-01

    Technetium is removed from aqueous, acidic waste solutions. The acidic waste solution is mixed with a flocculant, e.g., an alkaline earth metal hydroxide or oxide, to precipitate certain fission products. Technetium remains in solution and in the resulting supernatant alkaline aqueous phase. The supernatant alkaline aqueous phase is made acidic and electrolyzed in an electrolytic cell under controlled cathodic potential conditions to deposit technetium on the cathode. Elemental technetium is removed from the cathode. Technetium is separated from other plated fission product metals by extraction from an alkaline solution with an organic extractant, such as pyridine, having affinity for technetium. Technetium is separated from the organic extractant by steam distillation and the resulting aqueous phase treated with ammoniacal reagent to precipitate technetium as ammonium pertechnetate. The precipitate may be acidified to form an aqueous acidic solution of fission product metal values and the solution electrolyzed in an electrolytic cell under controlled cathodic potential conditions and at a potential sufficiently negative to plate out from the solution those fission product metals desired. The metal deposit is stripped from the cathode and stored until its radioactivity has diminished. (U.S.)

  12. Process for producing radioactive technetium 99 m

    International Nuclear Information System (INIS)

    Karageozian, H.L.

    1979-01-01

    Active aluminium oxide containing Molybdenum 99 and technetium 99 m is treated with a neutral solvent consisting of water, methylethylketone and ethanol. Technetium 99 m remains on the chromatographic material after drying, in the form of a dry powder. Other aliphatic alcohols can also be utilised. (DG) [de

  13. Chemistry of technetium in the environment

    International Nuclear Information System (INIS)

    McFadden, K.M.

    1980-08-01

    Technetium release to the environment may occur during separation and recovery of spent nuclear fuels, or in disposal of aqueous waste from nuclear facilities, hospitals, or other users. The chemistry and sources of technetium are reviewed as a basis for prediction of its behavior in the environment

  14. Initial Reductive Reactions in Aerobic Microbial Metabolism of 2,4,6-Trinitrotoluene

    National Research Council Canada - National Science Library

    Vorbeck, Claudia

    1998-01-01

    .... Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction...

  15. Microbial iron reduction related to metal speciation in mine waste at the former uranium mine in Ranstad

    International Nuclear Information System (INIS)

    Nejad, F.T.

    1998-02-01

    Mining activities in Ranstad uranium mine started in 1965 and ended in 1969. In 1988 the final restoration was discussed, and it was proposed to water-fill the open pit and cover the waste disposal area using the 'dry method'. Today the open pit has become a lake. Also some alum shale was placed on the land surface where it has been weathered by oxygen and water during 30 years. In 1994 it was observed that the color of the lake turned over to brown-red. Further studies showed increasing iron concentration in the lake and around the tailings area. For estimation of microbial iron reduction in the lake, three iron reducing bacteria were isolated from the water-filled open pit. For the enrichment process, water samples were inoculated in an anoxic enrichment medium. The isolates were able to reduce Fe(III) oxyhydroxide by oxidation of lactate as energy source. Growth of these strains was determined by production of a black precipitation of iron sulfide and was confirmed by estimation of total number of cells. Fe(III) reduction was monitored by measuring the accumulation of Fe(II) over time. Comparison of the 16S rRNA gene sequences of strains Tran-l, Tran-2, and Tran-3 with the EMBL data base showed 98.6% identity with Shewanella putrefaciens, 98.7% identity with Shewanella alga and 98.2% identity with Aeromonas salmonicida, respectively. S. putrefaciens strains have been isolated from many different environments, many of which are suboxic or anoxic. In addition to growing aerobically, S. putrefaciens can use Fe(III) as terminal electron acceptor under anaerobic conditions. To distinguish if the Fe(III) and/or organic compounds presence in weathered alum shale can be utilized by iron reducing bacteria isolated from the lake, reduction of Fe(III) coupled to the oxidation of organic compounds in sterile and non-sterile weathered alum shale was studied. The reduction of Fe(III) coupled to growth of bacteria on sterile and non-sterile shale was observed. Furthermore

  16. Microbial iron reduction related to metal speciation in mine waste at the former uranium mine in Ranstad

    Energy Technology Data Exchange (ETDEWEB)

    Nejad, F.T. [Goeteborg Univ. (Sweden). Dept. of General and Marine Microbiology

    1998-02-01

    Mining activities in Ranstad uranium mine started in 1965 and ended in 1969. In 1988 the final restoration was discussed, and it was proposed to water-fill the open pit and cover the waste disposal area using the `dry method`. Today the open pit has become a lake. Also some alum shale was placed on the land surface where it has been weathered by oxygen and water during 30 years. In 1994 it was observed that the color of the lake turned over to brown-red. Further studies showed increasing iron concentration in the lake and around the tailings area. For estimation of microbial iron reduction in the lake, three iron reducing bacteria were isolated from the water-filled open pit. For the enrichment process, water samples were inoculated in an anoxic enrichment medium. The isolates were able to reduce Fe(III) oxyhydroxide by oxidation of lactate as energy source. Growth of these strains was determined by production of a black precipitation of iron sulfide and was confirmed by estimation of total number of cells. Fe(III) reduction was monitored by measuring the accumulation of Fe(II) over time. Comparison of the 16S rRNA gene sequences of strains Tran-l, Tran-2, and Tran-3 with the EMBL data base showed 98.6% identity with Shewanella putrefaciens, 98.7% identity with Shewanella alga and 98.2% identity with Aeromonas salmonicida, respectively. S. putrefaciens strains have been isolated from many different environments, many of which are suboxic or anoxic. In addition to growing aerobically, S. putrefaciens can use Fe(III) as terminal electron acceptor under anaerobic conditions. To distinguish if the Fe(III) and/or organic compounds presence in weathered alum shale can be utilized by iron reducing bacteria isolated from the lake, reduction of Fe(III) coupled to the oxidation of organic compounds in sterile and non-sterile weathered alum shale was studied. The reduction of Fe(III) coupled to growth of bacteria on sterile and non-sterile shale was observed. Furthermore

  17. Metagenome reveals potential microbial degradation of hydrocarbon coupled with sulfate reduction in an oil-immersed chimney from Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Ying eHe

    2013-06-01

    Full Text Available Deep-sea hydrothermal vent chimneys contain a high diversity of microorganisms, yet the metabolic activity and the ecological functions of the microbial communities remain largely unexplored. In this study, a metagenomic approach was applied to characterize the metabolic potential in a Guaymas hydrothermal vent chimney and to conduct comparative genomic analysis among a variety of environments with sequenced metagenomes. Complete clustering of functional gene categories with a comparative metagenomic approach showed that this Guaymas chimney metagenome was clustered most closely with a chimney metagenome from Juan de Fuca. All chimney samples were enriched with genes involved in recombination and repair, chemotaxis and flagellar assembly, highlighting their roles in coping with the fluctuating extreme deep-sea environments. A high proportion of transposases was observed in all the metagenomes from deep-sea chimneys, supporting the previous hypothesis that horizontal gene transfer may be common in the deep-sea vent chimney biosphere. In the Guaymas chimney metagenome, thermophilic sulfate reducing microorganisms including bacteria and archaea were found predominant, and genes coding for the degradation of refractory organic compounds such as cellulose, lipid, pullullan, as well as a few hydrocarbons including toluene, ethylbenzene and o-xylene were identified. Therefore, this oil-immersed chimney supported a thermophilic microbial community capable of oxidizing a range of hydrocarbons that served as electron donors for sulphate reduction under anaerobic conditions.

  18. Study of microbial perchlorate reduction: Considering of multiple pH, electron acceptors and donors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xing [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Gao, Baoyu, E-mail: bygao@sdu.edu.cn [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Jin, Bo [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia); Zhen, Hu [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Xiaoyi [CSIRO Land and Water, Gate 5, Waite Road, Urrbrae, SA 5064 (Australia); Dai, Ming [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia)

    2015-03-21

    Graphical abstract: Schemes of perchlorate reduction in ClO{sub 4}{sup −}/ClO{sub 3}{sup −}–NO{sub 3}{sup −} e{sup −}acceptor systems. - Highlights: • We created a multiple electron acceptor/donor system for ClO{sub 4}{sup −} reduction. • Nitrate reduction was inhibited when using perchlorate-grown Azospira sp. KJ. • Reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}and NO{sub 3}{sup −}. • Oxidation of acetate was inhibited by succinate in acetate–succinate series. - Abstract: Bioremediation of perchlorate-cotaminated water by a heterotrophic perchlorate reducing bacterium creates a multiple electron acceptor-donor system. We experimentally determined the perchlorate reduction by Azospira sp. KJ at multiple pH, electron acceptors and donors systems; this was the aim of this study. Perchlorate reduction was drastically inhibited at the pH 6.0, and the maximum reduction of perchlorate by Azospira sp. KJ was observed at pH value of 8.0. Perchlorate reduction was retarded in ClO{sub 4}{sup −}–ClO{sub 3}{sup −}, ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −},and ClO{sub 4}{sup −}–NO{sub 3}{sup −} acceptor systems, while being completely inhibited by the additional O{sub 2} in the ClO{sub 4}{sup −}–O{sub 2} acceptor system. The reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}, and NO{sub 3}{sup −} in the ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −} system. K{sub S,}v{sub max}, and q{sub max} obtained at different e{sup −} acceptor and donor conditions are calculated as 140.5–190.6 mg/L, 8.7–13.2 mg-perchlorate/L-h, and 0.094–0.16 mg-perchlorate/mg-DW-h, respectively.

  19. Enhanced phosphorus reduction in simulated eutrophic water: a comparative study of submerged macrophytes, sediment microbial fuel cells, and their combination.

    Science.gov (United States)

    Xu, Peng; Xiao, Enrong; Xu, Dan; Li, Juan; Zhang, Yi; Dai, Zhigang; Zhou, Qiaohong; Wu, Zhenbin

    2018-05-01

    The phosphorus reduction in water column was attempted by integrating sediment microbial fuel cells (SMFCs) with the submerged macrophyte Vallisneria spiralis. A comparative study was conducted to treat simulated water rich in phosphate with a control and three treatments: SMFC alone (SMFC), submerged macrophytes alone (macophyte), and combined macrophytes and fuel cells (M-SMFC). All treatments promoted phosphorus flux from the water column to sediments. Maximum phosphorus reduction was obtained in proportion to the highest stable phosphorus level in sediments in M-SMFC. For the initial phosphate concentrations of 0.2, 1, 2, and 4 mg/L, average phosphate values in the overlying water during four phases decreased by 33.3% (25.0%, 8.3%), 30.8% (5.1%, 17.9%), 36.5% (27.8%, 15.7%), and 36.2% (0.7%, 22.1%) for M-SMFC (macrophyte, SMFC), compared with the control. With macrophyte treatment, the obvious phosphorus release from sediments was observed during the declining period. However, such phenomenon was significantly inhibited with M-SMFC. The electrogenesis bacteria achieved stronger phosphorus adsorption and assimilation was significantly enriched on the closed-circuit anodes. The higher abundance of Geobacter and Pseudomonas in M-SMFC might in part explain the highest phosphorus reduction in the water column. M-SMFC treatment could be promising to control the phosphorus in eutrophic water bodies.

  20. Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance

    KAUST Repository

    Watson, Valerie J.

    2013-06-03

    Commercially available activated carbon (AC) powders made from different precursor materials (coal, peat, coconut shell, hardwood, and phenolic resin) were electrochemically evaluated as oxygen reduction catalysts and tested as cathode catalysts in microbial fuel cells (MFCs). AC powders were characterized in terms of surface chemistry and porosity, and their kinetic activities were compared to carbon black and platinum catalysts in rotating disk electrode (RDE) tests. Cathodes using the coal-derived AC had the highest power densities in MFCs (1620 ± 10 mW m-2). Peat-based AC performed similarly in MFC tests (1610 ± 100 mW m-2) and had the best catalyst performance, with an onset potential of Eonset = 0.17 V, and n = 3.6 electrons used for oxygen reduction. Hardwood based AC had the highest number of acidic surface functional groups and the poorest performance in MFC and catalysis tests (630 ± 10 mW m-2, Eonset = -0.01 V, n = 2.1). There was an inverse relationship between onset potential and quantity of strong acid (pKa < 8) functional groups, and a larger fraction of microporosity was negatively correlated with power production in MFCs. Surface area alone was a poor predictor of catalyst performance, and a high quantity of acidic surface functional groups was determined to be detrimental to oxygen reduction and cathode performance. © 2013 American Chemical Society.

  1. EPR investigations on technetium compounds

    International Nuclear Information System (INIS)

    Abram, U.; Munze, R.; Kirmse, R.; Stach, J.

    1986-01-01

    Stimulated by the widespread use of the isotope /sup 99m/Tc in the field of nuclear medicine, there has been a substantial growth of interest in the chemistry of this man-made element. A particular need emerges for analytical methods allowing solution investigations of coordination compounds of technetium with low substance use. Considering these facts, Electron Paramagnetic Resonance Spectroscopy (EPR) appears to be a very suitable method because only very small amounts of the compounds are needed (lower than 1 mg). The resulting spectra give information regarding the valence state, symmetry and bonding properties of the compounds under study

  2. Technetium removal: preliminary flowsheet options

    International Nuclear Information System (INIS)

    Eager, K.M.

    1995-01-01

    This document presents the results of a preliminary investigation into options for preliminary flowsheets for 99Tc removal from Hanford Site tank waste. A model is created to show the path of 99Tc through pretreatment to disposal. The Tank Waste Remediation (TWRS) flowsheet (Orme 1995) is used as a baseline. Ranges of important inputs to the model are developed, such as 99Tc inventory in the tanks and important splits through the TWRS flowsheet. Several technetium removal options are discussed along with sensitivities of the removal schemes to important model parameters

  3. Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol

    NARCIS (Netherlands)

    Atashgahi, Siavash; Lu, Yue; Zheng, Ying; Saccenti, Edoardo; Suarez-Diez, Maria; Ramiro-Garcia, Javier; Eisenmann, Heinrich; Elsner, Martin; J.M. Stams, Alfons; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke

    2017-01-01

    Biostimulation is widely used to enhance reductive dechlorination of chlorinated ethenes in contaminated aquifers. However, the knowledge on corresponding biogeochemical responses is limited. In this study, glycerol was injected in an aquifer contaminated with cis-dichloroethene (cDCE), and

  4. Evidence for Microbial Iron Reduction in a Landfill Leachate-Polluted Aquifer (Vejen, Denmark)

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Christensen, Thomas Højlund

    1994-01-01

    Aquifer sediment samples obtained from the anaerobic part of a landfill leachate plume in Vejen, Denmark, were suspended in groundwater or in an artificial medium and incubated. The strictly anaerobic suspensions were tested for reduction of ferric iron (Fe(III)) oxides, which was measured...

  5. Final Report: Stability of U (VII) and Tc (VII) Reducing Microbial Communities To Environmental Perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Istok, Jonathan D

    2008-07-07

    'Bioimmobilization' of redox-sensitive metals and radionuclides is being investigated as a way to remediate contaminated groundwater and sediments. In this approach, growth-limiting substrates are added to stimulate the activity of targeted groups of indigenous microorganisms and create conditions favorable for the microbially-mediated precipitation ('bioimmobilization') of targeted contaminants. This project investigated a fundamentally new approach for modeling this process that couples thermodynamic descriptions for microbial growth with associated geochemical reactions. In this approach, a synthetic microbial community is defined as a collection of defined microbial groups; each with a growth equation derived from bioenergetic principles. The growth equations and standard-state free energy yields are appended to a thermodynamic database for geochemical reactions and the combined equations are solved simultaneously to predict the effect of added substrates on microbial biomass, community composition, and system geochemistry. This approach, with a single set of thermodynamic parameters (one for each growth equation), was used to predict the results of laboratory and field bioimmobilization experiments at two geochemically diverse research sites. Predicted effects of ethanol or acetate addition on uranium and technetium solubility, major ion geochemistry, mineralogy, microbial biomass and community composition were in general agreement with experimental observations although the available experimental data precluded rigorous model testing. Model simulations provide insight into the long-standing difficulty in transferring experimental results from the laboratory to the field and from one field site to the next, especially if the form, concentration, or delivery of growth substrate is varied from one experiment to the next. Although originally developed for use in better understanding bioimmobilization of uranium and technetium via reductive

  6. Variations in the microbial log reduction curves of irradiated cod fillets, shrimp, and their respective homogenates

    International Nuclear Information System (INIS)

    Green, J.H.; Kaylor, J.D.

    1977-01-01

    When cod (Gadus morhua morhua) and headless white shrimp (Penaeus setiferus) were gamma irradiated with a series of low-ionizing radiation doses, a ''shoulder(s)'' was observed in the graph (log microbial counts versus dose) in the approximate range of 25 to 75 krads. When the microbiological survivors were differentiated into total counts, proteolytic and pseudomonad-type bacteria, it was observed that the pseudomonad-type bacteria were rapidly destroyed by 25 krads and that proteolytic bacteria were destroyed at a faster rate than the rest of the microorganisms. When cod fillets and shrimp were compared with their respective homogenates and irradiated at doses of 0, 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, and 300 krads, the homogenates did not exhibt the characteristic shoulders. A further experiment was designed to test surface versus uniform dispersion of microorganisms on/in gelatin disks subject to low doses of irradiation. Differences were found that may explain the observed differences between solid food materials such as fish fillets and shrimp and their homogenates

  7. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.

    Science.gov (United States)

    Lovley, D R; Phillips, E J

    1988-06-01

    A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe(3)O(4)). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35 degrees C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO(2) was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO(3)). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.

  8. Microbial Fe (III) reduction and hydrogen production by a transposon-mutagenized strain of Pantoea agglomerans BH18

    International Nuclear Information System (INIS)

    Liu, Hongyan; Wang, Guangce

    2015-01-01

    Based on the transposon-mutagenized library of Pantoea agglomerans BH18, mutant screens were conducted to obtain the strain with the highest Fe (III) reduction and hydrogen production. Of these transposon-mutagenized mutants, the mutant strain TB230 was screened for high Fe (III)-reducing efficiency and hydrogen production. The PCR amplification and kanamycin resistance selection results indicated that the transposon insertion of the mutant strain TB230 was stable. Hydrogen production of the mutant strain TB230 was (2.21 ± 0.34) mol H 2 /mol glucose, which increased hydrogen production by over 40% compared with that of the wild type strain. The accumulation concentration of Fe (II) in the medium of the mutant strain TB230 with Fe (OH) 3 as the sole electron acceptor was (7.39 ± 0.49) mmol/l, which was approximately 3-fold greater than that of the wild type strain. The mutant strain TB230 showed high Fe (III)-reducing activity and hydrogen production by adopting glucose and pyruvate as the carbon source. In addition, the mutant strain TB230 was capable of Fe (III) reduction and hydrogen production under fresh or marine conditions. This result indicates that the mutant strain with high microbial Fe (III) reduction and hydrogen production is beneficial for the improvement of anaerobic performance. - Highlights: • The mutant strain TB230 was a transposon-mutagenized strain of Pantoea agglomerans BH18. • Strain TB230 was screened for high Fe (III)-reducing efficiency and hydrogen production. • H 2 yield and Fe (III)-reducing activity were 2.21 ± 0.34 and 7.39 ± 0.49 in marine condition. • Strain TB230 was capable of Fe (III) reduction and hydrogen production in fresh or marine condition

  9. Microbial dissimilatory iron(III) reduction: Studies on the mechanism and on processes of environmental relevance

    OpenAIRE

    Jahn, Michael

    2005-01-01

    Many microbes are able to respire aerobically oxygen or anaerobically other electron acceptors for example sulphate, nitrate, manganese(IV) or Fe(III). As iron minerals are widespread in nature, dissimilatory iron(III) reduction by different microorganisms is a very important process of anaerobic respiration. The general goal of this work was to improve the knowledge of processes, in which iron-reducing microbes are said to play an important role. For this purpose, in one part the focus wa...

  10. Microbial reduction of graphene oxide by Escherichia coli: a green chemistry approach.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Eppakayala, Vasuki; Kim, Jin-Hoi

    2013-02-01

    Graphene and graphene related materials are an important area of research in recent years due to their unique properties. The extensive industrial application of graphene and related compounds has led researchers to devise novel and simple methods for the synthesis of high quality graphene. In this paper, we developed an environment friendly, cost effective, simple method and green approaches for the reduction of graphene oxide (GO) using Escherichia coli biomass. In biological method, we can avoid use of toxic and environmentally harmful reducing agents commonly used in the chemical reduction of GO to obtain graphene. The biomass of E. coli reduces exfoliated GO to graphene at 37°C in an aqueous medium. The E. coli reduced graphene oxide (ERGO) was characterized with UV-visible absorption spectroscopy, particle analyzer, high resolution X-ray diffractometer, scanning electron microscopy and Raman spectroscopy. Besides the reduction potential, the biomass could also play an important role as stabilizing agent, in which synthesized graphene exhibited good stability in water. This method can open up the new avenue for preparing graphene in cost effective and large scale production. Our findings suggest that GO can be reduced by simple eco-friendly method by using E. coli biomass to produce water dispersible graphene. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    International Nuclear Information System (INIS)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R.

    2016-01-01

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  12. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Pragya; Ahammad, S.Z.; Sreekrishnan, T.R., E-mail: sree@iitd.ac.in

    2016-09-05

    Highlights: • Anaerobic batch study of 110 days. • Acclimatization for cyanide biodegradation. • Understanding inhibitory effects of cyanide on methane generation and VFA production. • Identification of microorganisms tolerant to cyanide. • Community analysis using DGGE and qPCR analyses. - Abstract: Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.

  13. Novel RuCoSe as non-platinum catalysts for oxygen reduction reaction in microbial fuel cells

    Science.gov (United States)

    Rozenfeld, Shmuel; Schechter, Michal; Teller, Hanan; Cahan, Rivka; Schechter, Alex

    2017-09-01

    Microbial electrochemical cells (MECs) are explored for the conversion of acetate directly to electrical energy. This device utilizes a Geobacter sulfurreducens anode and a novel RuCoSe air cathode. RuCoSe synthesized in selected compositions by a borohydride reduction method produces amorphous structures of powdered agglomerates. Oxygen reduction reaction (ORR) was measured in a phosphate buffer solution pH 7 using a rotating disc electrode (RDE), from which the kinetic current (ik) was measured as a function of potential and composition. The results show that ik of RuxCoySe catalysts increases in the range of XRu = 0.25 > x > 0.7 and y < 0.15 for all tested potentials. A poisoning study of RuCoSe and Pt catalysts in a high concentration acetate solution shows improved tolerance of RuCoSe to this fuel at acetate concentration ≥500 mM. MEC discharge plots under physiological conditions show that ∼ RuCo2Se (sample S3) has a peak power density of 750 mW cm-2 which is comparable with Pt 900 mW cm-2.

  14. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Jong, T.; Parry, D.L. [Charles Darwin University, Darwin, NT (Australia). Faculty for Educational Health & Science

    2006-07-15

    The aim of this study was to operate an upflow anaerobic packed bed reactor (UAPB) containing sulfate reducing bacteria (SRB) under acidic conditions similar to those found in acid mine drainage (AMD). The UAPB was filled with sand and operated under continuous flow at progressively lower pH and was shown to be capable of supporting sulfate reduction at pH values of 6.0, 5.0, 4.5, 4.0 and 3.5 in a synthetic medium containing 53.5 mmol l{sup -1} lactate. Sulfate reduction rates of 553-1052 mmol m{sup -3} d{sup -1} were obtained when the influent solution pH was progressively lowered from pH 6.0 to 4.0, under an optimal flow rate of 2.61 ml min{sup -1}. When the influent pH was further lowered to pH 3.5, sulfate reduction was substantially reduced with only about 1% sulfate removed at a rate of 3.35 mmol m{sup -3} d{sup -1} after 20 days of operation. However, viable SRB were recovered from the column, indicating that the SRB population was capable of surviving and metabolizing at low levels even at pH 3.5 conditions for at least 20 days. The changes in conductivity in the SRB column did not always occur with changes in pH and redox potential, suggesting that conductivity measurements may be more sensitive to SRB activity and could be used as an additional tool for monitoring SRB activity. The bioreactor containing SRB was able to reduce sulfate and generate alkalinity even when challenged with influent as low as pH 3.5, indicating that such treatment systems have potential for bioremediating highly acidic, sulfate contaminated waste waters.

  15. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Directory of Open Access Journals (Sweden)

    Alpers Charles N

    2007-10-01

    Full Text Available Abstract Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5. The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1 preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2 stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3 reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA and denaturing gradient gel electrophoresis (DGGE analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures.

  16. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Science.gov (United States)

    Church, C.D.; Wilkin, R.T.; Alpers, Charles N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  17. Effect of Set Potential on Hexavalent Chromium Reduction and Electricity Generation from Biocathode Microbial Fuel Cells

    KAUST Repository

    Huang, Liping

    2011-06-01

    Setting a biocathode potential at ?300 mV improved the subsequent performance of an MFC for Cr(VI) reduction compared to a control (no set potential). With this set potential, the startup time was reduced to 19 days, the reduction of Cr(VI) was improved to 19.7 mg/L d, and the maximum power density was increased to 6.4 W/m3 compared to the control (26 days, 14.0 mg/L d and 4.1 W/m3). Set potentials of ?150 mV and ?300 mV also improved system performance and led to similarly higher utilization of metabolic energy gained (PMEG) than set potentials of +200 mV and ?450 mV. We observed putative pili at ?150 and ?300 mV potentials, and aggregated precipitates on bacterial surfaces in both poised and nonpoised controls. These tests show that there are optimal potentials that can be set for developing a Cr(VI) biocathode. © 2011 American Chemical Society.

  18. Effect of Set Potential on Hexavalent Chromium Reduction and Electricity Generation from Biocathode Microbial Fuel Cells

    KAUST Repository

    Huang, Liping; Chai, Xiaolei; Chen, Guohua; Logan, Bruce E

    2011-01-01

    Setting a biocathode potential at ?300 mV improved the subsequent performance of an MFC for Cr(VI) reduction compared to a control (no set potential). With this set potential, the startup time was reduced to 19 days, the reduction of Cr(VI) was improved to 19.7 mg/L d, and the maximum power density was increased to 6.4 W/m3 compared to the control (26 days, 14.0 mg/L d and 4.1 W/m3). Set potentials of ?150 mV and ?300 mV also improved system performance and led to similarly higher utilization of metabolic energy gained (PMEG) than set potentials of +200 mV and ?450 mV. We observed putative pili at ?150 and ?300 mV potentials, and aggregated precipitates on bacterial surfaces in both poised and nonpoised controls. These tests show that there are optimal potentials that can be set for developing a Cr(VI) biocathode. © 2011 American Chemical Society.

  19. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    Science.gov (United States)

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined uranium increased in carbon-amended treatments, reaching metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  20. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Kashif; Mahmoud, Khaled A. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO BOX 5825, Doha (Qatar); Lee, Dae Sung, E-mail: daesung@knu.ac.kr [Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2015-12-15

    Highlights: • Textile wastewater treatment performance was investigated with different co-substrates. • Dye biodegradation and biotransformation enhanced with lactate as co-substrate. • Sulfate removal significantly decreased under limited co-substrate concentration. • Changes in microbial community structure were studied using bar-coded pyrosequencing. • Lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria. - Abstract: This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB.

  1. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process

    International Nuclear Information System (INIS)

    Rasool, Kashif; Mahmoud, Khaled A.; Lee, Dae Sung

    2015-01-01

    Highlights: • Textile wastewater treatment performance was investigated with different co-substrates. • Dye biodegradation and biotransformation enhanced with lactate as co-substrate. • Sulfate removal significantly decreased under limited co-substrate concentration. • Changes in microbial community structure were studied using bar-coded pyrosequencing. • Lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria. - Abstract: This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB.

  2. Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells

    Science.gov (United States)

    Ma, Ming; You, Shijie; Gong, Xiaobo; Dai, Ying; Zou, Jinlong; Fu, Honggang

    2015-06-01

    Biofilms from anode heterotrophic bacteria are inevitably formed over cathodic catalytic sites, limiting the performances of single-chamber microbial fuel cells (MFCs). Graphitic carbon (GC) - based nano silver/iron oxide (AgNPs/Fe3O4/GC) composites are prepared from waste pomelo skin and used as antibacterial oxygen reduction catalysts for MFCs. AgNPs and Fe3O4 are introduced in situ into the composites by one-step carbothermal reduction, enhancing their conductivity and catalytic activity. To investigate the effects of Fe species on the antibacterial and catalytic properties, AgNPs/Fe3O4/GC is washed with sulfuric acid (1 mol L-1) for 0.5 h, 1 h, and 5 h and marked as AgNPs/Fe3O4/GC-x (x = 0.5 h, 1 h and 5 h, respectively). A maximum power density of 1712 ± 35 mW m-2 is obtained by AgNPs/Fe3O4/GC-1 h, which declines by 4.12% after 17 cycles. Under catalysis of all AgNP-containing catalysts, oxygen reduction reaction (ORR) proceeds via the 4e- pathway, and no toxic effects to anode microorganisms result from inhibiting the cathodic biofilm overgrowth. With the exception of AgNPs/Fe3O4/GC-5 h, the AgNPs-containing composites exhibit remarkable power output and coulombic efficiency through lowering proton transfer resistance and air-cathode biofouling. This study provides a perspective for the practical application of MFCs using these efficient antibacterial ORR catalysts.

  3. Microbial reduction of uranium(VI) by anaerobic microorganisms isolated from a former uranium mine

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Ulrike; Krawczyk-Baersch, Evelyn [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry; Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures

    2017-06-01

    The former uranium mine Koenigstein (Germany) is currently in the process of controlled flooding by reason of remediation purposes. However, the flooding water still contains high concentrations of uranium and other heavy metals. For that reason the water has to be cleaned up by a conventional waste water treatment plant. The aim of this study was to investigate the interactions between anaerobic microorganisms and uranium for possible bioremediation approaches, which could be an great alternative for the intensive and expensive waste water treatment. EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure) measurements were performed and revealed a complete reduction of U(VI) to U(IV) only by adding 10 mM glycerol.

  4. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil

    DEFF Research Database (Denmark)

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils...... from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42– radiotracer method, was restricted to reduced soil horizons with rates of 142 ± 20 nmol cm–3 day–1. Concentrations...... of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone...

  5. Microbial reduction of uranium(VI) by anaerobic microorganisms isolated from a former uranium mine

    International Nuclear Information System (INIS)

    Gerber, Ulrike; Krawczyk-Baersch, Evelyn; Arnold, Thuro; Scheinost, Andreas C.

    2017-01-01

    The former uranium mine Koenigstein (Germany) is currently in the process of controlled flooding by reason of remediation purposes. However, the flooding water still contains high concentrations of uranium and other heavy metals. For that reason the water has to be cleaned up by a conventional waste water treatment plant. The aim of this study was to investigate the interactions between anaerobic microorganisms and uranium for possible bioremediation approaches, which could be an great alternative for the intensive and expensive waste water treatment. EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure) measurements were performed and revealed a complete reduction of U(VI) to U(IV) only by adding 10 mM glycerol.

  6. Microbial Oxidation of Pyrite Coupled to Nitrate Reduction in Anoxic Groundwater Sediment

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Elberling, Bo; Jacobsen, Ole Stig

    2009-01-01

    denitrification process with pyrite as the primary electron donor. The process demonstrates a temperature dependency (Q10) of 1.8 and could be completely inhibited by addition of a bactericide (NaN3). Experimentally determined denitrification rates show that more than 50% of the observed nitrate reduction can...... be ascribed to pyrite oxidation. The apparent zero-order denitrification rate in anoxic pyrite containing sediment at groundwater temperature has been determined to be 2-3 µmol NO3- kg-1 day-1. The in situ groundwater chemistry at the boundary between the redoxcline and the anoxic zone reveals that between 65......-anoxic boundary in sandy aquifers thus determining the position and downward progression of the redox boundary between nitrate-containing and nitrate-free groundwater....

  7. Performance testing of blast furnace slag for immobilization of technetium in grout

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Spence, R.D.; Evans-Brown, B.S.; Morgan, I.L.; Shoemaker, J.L.; Bostick, W.D.

    1988-01-01

    This paper presents preliminary results of a grout development effort to identify grout formulas that can satisfactorily sequester 99 Tc contained in an existing Portsmouth Gaseous Diffusion Plant waste. Technetium is of particular concern to the US Nuclear Regulatory Commission (NRC) because of its mobility and biological activity. The mobility of technetium results in large part from the movement of the pertechnate anion [prevalent in low-level radioactive waste (LLW)] through soil and geologic strata with little or no interaction with the surrounding matrix. Ground blast furnace slag has been shown to improve the leach resistance of cement-based waste forms, particularly in regard to technetium. This improved performance has been attributed to fewer and smaller pores in the solidified slags (versus a neat cement paste) and to the reduction of the pertechnate ion to a less soluble form. 9 refs., 2 tabs

  8. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens

    Directory of Open Access Journals (Sweden)

    Thompson Vicki S

    2006-01-01

    Full Text Available Abstract Background Chromium is a transition metal most commonly found in the environment in its trivalent [Cr(III] and hexavalent [Cr(VI] forms. The EPA maximum total chromium contaminant level for drinking water is 0.1 mg/l (0.1 ppm. Many water sources, especially underground sources, are at low temperatures (less than or equal to 15 Centigrade year round. It is important to evaluate the possibility of microbial remediation of Cr(VI contamination using microorganisms adapted to these low temperatures (psychrophiles. Results Core samples obtained from a Cr(VI contaminated aquifer at the Hanford facility in Washington were enriched in Vogel Bonner medium at 10 Centigrade with 0, 25, 50, 100, 200, 400 and 1000 mg/l Cr(VI. The extent of Cr(VI reduction was evaluated using the diphenyl carbazide assay. Resistance to Cr(VI up to and including 1000 mg/l Cr(VI was observed in the consortium experiments. Reduction was slow or not observed at and above 100 mg/l Cr(VI using the enrichment consortium. Average time to complete reduction of Cr(VI in the 30 and 60 mg/l Cr(VI cultures of the consortium was 8 and 17 days, respectively at 10 Centigrade. Lyophilized consortium cells did not demonstrate adsorption of Cr(VI over a 24 hour period. Successful isolation of a Cr(VI reducing organism (designated P4 from the consortium was confirmed by 16S rDNA amplification and sequencing. Average time to complete reduction of Cr(VI at 10 Centigrade in the 25 and 50 mg/l Cr(VI cultures of the isolate P4 was 3 and 5 days, respectively. The 16S rDNA sequence from isolate P4 identified this organism as a strain of Arthrobacter aurescens, a species that has not previously been shown to be capable of low temperature Cr(VI reduction. Conclusion A. aurescens, indigenous to the subsurface, has the potential to be a predominant metal reducer in enhanced, in situ subsurface bioremediation efforts involving Cr(VI and possibly other heavy metals and radionuclides.

  9. Radiation decomposition of technetium-99m radiopharmaceuticals

    International Nuclear Information System (INIS)

    Billinghurst, M.W.; Rempel, S.; Westendorf, B.A.

    1979-01-01

    Technetium-99m radiopharmaceuticals are shown to be subject to autoradiation-induced decomposition, which results in increasing abundance of pertechnetate in the preparation. This autodecomposition is catalyzed by the presence of oxygen, although the removal of oxygen does not prevent its occurrence. The initial appearance of pertechnetate in the radiopharmaceutical is shown to be a function of the amount of radioactivity, the quantity of stannous ion used, and the ratio of /sup 99m/Tc to total technetium in the preparation

  10. Microbial reduction of 99Tc in organic matter-rich soils

    International Nuclear Information System (INIS)

    Abdelouas, A.; Grambow, B.; Fattahi, M.; Andres, Y.; Leclerc-Cessac, E.

    2005-01-01

    For safety assessment purposes, it is necessary to study the mobility of long-lived radionuclides in the geosphere and the biosphere. Within this framework, we studied the behaviour of 99 Tc in biologically active organic matter-rich soils. To simulate the redox conditions in soils, we stimulated the growth of aerobic and facultative denitrifying and anaerobic sulphate-reducing bacteria (SRB). In the presence of either a pure culture of denitrifiers (Pseudomonas aeruginosa) or a consortium of soil denitrifiers, the solubility of TcO 4 - was not affected. The nonsorption of TcO 4 - onto bacteria was confirmed in biosorption experiments with washed cells of P. aeruginosa regardless of the pH. At the end of denitrification with indigenous denitrifiers in soil/water batch experiments, the redox potential (E H ) dropped and this was accompanied by an increase of Fe concentration in solution as a result of reduction of less soluble Fe(III) to Fe(II) from the soil particles. It is suggested that this is due to the growth of a consortium of anaerobic bacteria (e.g., Fe-reducing bacteria). The drop in E H was accompanied by a strong decrease in Tc concentration as a result of Tc(VII) reduction to Tc(IV). Thermodynamic calculations suggested the precipitation of TcO 2 . The stimulation of the growth of indigenous sulphate-reducing bacteria in soil/water systems led to even lower E H with final Tc concentration of 10 -8 M. Experiments with glass columns filled with soil reproduced the results obtained with batch cultures. Sequential chemical extraction of precipitated Tc in soils showed that this radionuclide is strongly immobilised within soil particles under anaerobic conditions. More than 90% of Tc is released together with organic matter (60-66%) and Fe-oxyhydroxides (23-31%). The present work shows that ubiquitous indigenous anaerobic bacteria in soils play a major role in Tc immobilisation. In addition, organic matter plays a key role in the stability of the reduced Tc

  11. Acid Rock Drainage or Not—Oxidative vs. Reductive Biofilms—A Microbial Question

    Directory of Open Access Journals (Sweden)

    Margarete Kalin

    2018-05-01

    Full Text Available Measures to counteract Acid Rock Drainage (ARD generation need to start at the mineral surface, inhibiting mineral-oxidizing, acidophilic microbes. Laboratory and long-term field tests with pyrite-containing mining wastes—where carbonaceous phosphate mining waste (CPMW was added—resulted in low acidity and near neutral drainage. The effect was reproducible and confirmed by several independent research groups. The improved drainage was shown to involve an organic coating, likely a biofilm. The biofilm formation was confirmed when CPMW was added to lignite coal waste with an initial pH of 1. Forty-five days after the addition, the coal waste was dominated by heterotrophic microorganisms in biofilms. Reviewing the scientific literature provides ample support that CPMW has physical and chemical characteristics which can induce a strong inhibitory effect on sulphide oxidation by triggering the formation of an organic coating, a biofilm, over the mineral surface. CPMW characteristics provide the cornerstone of a new technology which might lead to reduction of sulphide oxidation in mine wastes. A hypothesis for testing this technology is presented. The use of such a technology could result in an economical and sustainable approach to mine waste and water management.

  12. Advanced Experimental Analysis of Controls on Microbial Fe(III) Oxide Reduction - Final Report - 09/16/1996 - 03/16/2001; FINAL

    International Nuclear Information System (INIS)

    Roden, Eric E.

    2001-01-01

    Considering the broad influence that microbial Fe(III) oxide reduction can have on subsurface metal/organic contaminant biogeochemistry, understanding the mechanisms that control this process is critical for predicting the behavior and fate of these contaminants in anaerobic subsurface environments. Knowledge of the factors that influence the rates of growth and activity of Fe(III) oxide-reducing bacteria is critical for predicting (i.e., modeling) the long-term influence of these organisms on the fate of contaminants in the subsurface, and for effectively utilizing Fe(III) oxide reduction and associated geochemical affects for the purpose of subsurface metal/organic contamination bioremediation. This research project will refine existing models for microbiological and geochemical controls on Fe(III) oxide reduction, using laboratory reactor systems that mimic, to varying degrees, the physical and chemical conditions of the subsurface. Novel experimental methods for studying the kinetics of microbial Fe(III) oxide reduction and measuring growth rates of Fe(III) oxide-reducing bacteria will be developed. These new methodologies will be directly applicable to studies on subsurface contaminant transformations directly coupled to or influenced by microbial Fe(III) oxide reduction

  13. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Fe into the structure of magnetite (Fe{sub 3}O{sub 4}) has been shown to greatly enhance the magnetic properties of the particles, tailoring them to different commercial uses. However, synthesis of magnetic nanoparticles is often carried out at high temperatures with toxic solvents resulting in high environmental and energy costs. Additionally, these ferrite nanoparticles are not intrinsically biocompatible, and to make them suitable for insertion into the human body is a rather intricate task. A relatively unexplored resource for magnetic nanomaterial production is subsurface Fe(III)-reducing bacteria, as these microorganisms are capable of producing large quantities of nanoscale magnetite (Fe{sub 3}O{sub 4}) at ambient temperatures. Metal-reducing bacteria live in environments deficient in oxygen and conserve energy for growth through the oxidation of hydrogen or organic electron donors, coupled to the reduction of oxidized metals such as Fe(III)-bearing minerals. This can result in the formation of magnetite via the extracellular reduction of amorphous Fe(III)-oxyhydroxides causing the release of soluble Fe(II) and resulting in complete recrystallization of the amorphous mineral into a new phase. Some previous studies have reported altering the composition of biogenic magnetite produced by Fe(III)-reducing bacteria for industrial and environmental applications. However, research into the commercial exploitation of bacteria to form magnetic minerals has focused primarily on magnetotactic bacteria which form magnetosomal magnetite internally using very different pathways to those bacteria forming magnetite outside the cell. Magnetotactic bacteria live at the sediment-water interface and use internal nanomagnets to guide them to their preferred environmental niche using the Earth's magnetic field. Since magnetotactic bacteria generally grow optimally under carefully controlled microaerobic conditions, the culturing processes for these organisms are challenging

  14. Harnessing microbial subsurface metal reduction activities to synthesize nanoscale cobalt ferrite with enhanced magnetic properties

    International Nuclear Information System (INIS)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-01-01

    of magnetite (Fe 3 O 4 ) has been shown to greatly enhance the magnetic properties of the particles, tailoring them to different commercial uses. However, synthesis of magnetic nanoparticles is often carried out at high temperatures with toxic solvents resulting in high environmental and energy costs. Additionally, these ferrite nanoparticles are not intrinsically biocompatible, and to make them suitable for insertion into the human body is a rather intricate task. A relatively unexplored resource for magnetic nanomaterial production is subsurface Fe(III)-reducing bacteria, as these microorganisms are capable of producing large quantities of nanoscale magnetite (Fe 3 O 4 ) at ambient temperatures. Metal-reducing bacteria live in environments deficient in oxygen and conserve energy for growth through the oxidation of hydrogen or organic electron donors, coupled to the reduction of oxidized metals such as Fe(III)-bearing minerals. This can result in the formation of magnetite via the extracellular reduction of amorphous Fe(III)-oxyhydroxides causing the release of soluble Fe(II) and resulting in complete recrystallization of the amorphous mineral into a new phase. Some previous studies have reported altering the composition of biogenic magnetite produced by Fe(III)-reducing bacteria for industrial and environmental applications. However, research into the commercial exploitation of bacteria to form magnetic minerals has focused primarily on magnetotactic bacteria which form magnetosomal magnetite internally using very different pathways to those bacteria forming magnetite outside the cell. Magnetotactic bacteria live at the sediment-water interface and use internal nanomagnets to guide them to their preferred environmental niche using the Earth's magnetic field. Since magnetotactic bacteria generally grow optimally under carefully controlled microaerobic conditions, the culturing processes for these organisms are challenging and result in low yields of nanomagnetite

  15. An experimental study on the inhibitory effect of high concentration bicarbonate on the reduction of U(VI) in groundwater by functionalized indigenous microbial communities

    International Nuclear Information System (INIS)

    Dianxin Li; Nan Hu; Dexin Ding; Shimi Li; Guangyue Li; Yongdong Wang

    2016-01-01

    The anaerobic microcosms amended with 30 mM bicarbonate and without bicarbonate were established, respectively, and the reduction of U(VI) in the microcosms by functionalized indigenous microbial communities was investigated. Results of the chemical extraction and XANES analysis showed that the proportions of U(IV) in the microcosms amended with bicarbonate were 10 % lower than without bicarbonate at day 46. The amount of Cellulomonadaceae, Desulfovibrionaceae, Peptococcaceae and Veillonellaceae amended with bicarbonate was lower than without bicarbonate, so the reduction of U(VI) was less. The experimental results show that the high concentration bicarbonate has a significantly inhibitory effect on the reduction of U(VI). (author)

  16. Microbial Mn(IV) and Fe(III) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition

    DEFF Research Database (Denmark)

    Nickel, Maren; Vandieken, Verona; Brüchert, Volker

    2008-01-01

    station, with seasonally extended ice cover, low organic carbon content and sedimentation rate combined with relatively high concentrations of Mn and Fe(III) oxides favored dissimilatory Fe and Mn reduction (98% of anaerobic carbon oxidation) over sulfate reduction in the top 12 cm of the sediment....... In contrast, in a sediment that had not been ice covered for at least 12 months and with more organic carbon and a higher sedimentation rate, sulfate reduction was the most important anaerobic electron-accepting process (>80% of anaerobic carbon oxidation). In the upper 3 cm, microbial Fe and sulfate...

  17. Determination of technetium-99 in environmental and radioactive waste samples

    International Nuclear Information System (INIS)

    Ferencova, M.; Peter Tkac, P.

    2007-01-01

    Technetium is known for its high mobility in a soil-water system in non-reducing aerobic condition and also high bio-availability for plants, because the most stable form of technetium in natural surface environment is pertechnetate which is highly soluble. The chemical form of technetium changes with environmental conditions. Concentration of technetium in the environment is very low, therefore many separation steps are needed for technetium determination. It has been developed a method for the routine determination of technetium-99 from environmental matrices and radioactive wastes using technetium-99m as an internal yield monitor. Technetium-99 is extracted from the soil samples with nitric acid. Many contaminants are co-precipitated with ferric hydroxide and technetium in the supernatant is pre-concentrated and further purified using anion exchange chromatography. Final separation of technetium was achieved by extraction with tetraphenylarsonium chloride in chloroform from sulphuric acid or pure water. The chemical yield is determined through the measurement of technetium-99m by scintillation counting system and the technetium-99 activity is measured using proportional counter after decay of the technetium-99m activity. Typical recoveries for this method are in the order 50-60 % (authors)

  18. Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations.

    Directory of Open Access Journals (Sweden)

    Lorena V Escudero

    Full Text Available The presence of the arsenic oxidation, reduction, and extrusion genes arsC, arrA, aioA, and acr3 was explored in a range of natural environments in northern Chile, with arsenic concentrations spanning six orders of magnitude. A combination of primers from the literature and newly designed primers were used to explore the presence of the arsC gene, coding for the reduction of As (V to As (III in one of the most common detoxification mechanisms. Enterobacterial related arsC genes appeared only in the environments with the lowest As concentration, while Firmicutes-like genes were present throughout the range of As concentrations. The arrA gene, involved in anaerobic respiration using As (V as electron acceptor, was found in all the systems studied. The As (III oxidation gene aioA and the As (III transport gene acr3 were tracked with two primer sets each and they were also found to be spread through the As concentration gradient. Sediment samples had a higher number of arsenic related genes than water samples. Considering the results of the bacterial community composition available for these samples, the higher microbial phylogenetic diversity of microbes inhabiting the sediments may explain the increased number of genetic resources found to cope with arsenic. Overall, the environmental distribution of arsenic related genes suggests that the occurrence of different ArsC families provides different degrees of protection against arsenic as previously described in laboratory strains, and that the glutaredoxin (Grx-linked arsenate reductases related to Enterobacteria do not confer enough arsenic resistance to live above certain levels of As concentrations.

  19. Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air

    International Nuclear Information System (INIS)

    Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, KyoungHui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken

    2007-01-01

    A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H + (H 2 O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m 3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed

  20. Technetium-99m labeled radiodiagnostic agents and method of preparation

    International Nuclear Information System (INIS)

    Molinski, V.J.; Wilczewski, J.A.

    1977-01-01

    A method of preparing improved technetium-99m labeled radiodiagnostic agents by reducing technetium-99m with stannous tartrate is described. Such radiodiagnostic agents are useful in scintigraphic examinations of the bone and lung

  1. Separation, Concentration, and Immobilization of Technetium and Iodine from Alkaline Supernate Waste

    Energy Technology Data Exchange (ETDEWEB)

    James Harvey; Michael Gula

    1998-12-07

    Development of remediation technologies for the characterization, retrieval, treatment, concentration, and final disposal of radioactive and chemical tank waste stored within the Department of Energy (DOE) complex represents an enormous scientific and technological challenge. A combined total of over 90 million gallons of high-level waste (HLW) and low-level waste (LLW) are stored in 335 underground storage tanks at four different DOE sites. Roughly 98% of this waste is highly alkaline in nature and contains high concentrations of nitrate and nitrite salts along with lesser concentrations of other salts. The primary waste forms are sludge, saltcake, and liquid supernatant with the bulk of the radioactivity contained in the sludge, making it the largest source of HLW. The saltcake (liquid waste with most of the water removed) and liquid supernatant consist mainly of sodium nitrate and sodium hydroxide salts. The main radioactive constituent in the alkaline supernatant is cesium-137, but strontium-90, technetium-99, and transuranic nuclides are also present in varying concentrations. Reduction of the radioactivity below Nuclear Regulatory Commission (NRC) limits would allow the bulk of the waste to be disposed of as LLW. Because of the long half-life of technetium-99 (2.1 x 10 5 y) and the mobility of the pertechnetate ion (TcO 4 - ) in the environment, it is expected that technetium will have to be removed from the Hanford wastes prior to disposal as LLW. Also, for some of the wastes, some level of technetium removal will be required to meet LLW criteria for radioactive content. Therefore, DOE has identified a need to develop technologies for the separation and concentration of technetium-99 from LLW streams. Eichrom has responded to this DOE-identified need by demonstrating a complete flowsheet for the separation, concentration, and immobilization of technetium (and iodine) from alkaline supernatant waste.

  2. Technical problems associated with the production of technetium Tc 99m tin(II) pyrophosphate kits

    International Nuclear Information System (INIS)

    Kowalsky, R.J.; Dalton, D.R.

    1981-01-01

    The amount of tin(II) required for adequate reduction, complexation, and stability of technetium Tc 99m pertechnetate in radiopharmaceutical kits, and methods of preventing the loss of tin(II) during formulation of these lyophilized kits are investigated. Tin(II) loss from stannous chloride solutions was studied under several conditions, including room air versus nitrogen atmospheres, during vial filling in a laminar-flow hood with samples frozen on dry ice versus samples at room temperature, during lyophilization, and during storage under refrigerated, ambient, and elevated temperatures. Various amounts of stannous chloride, ranging from 5 to 1000 microgram/ml, were used in formulating sodium pertechnetate Tc 99m kits containing 100 mCi technetium Tc 99m and 0.4 microgram total technetium. Samples were removed at various times; hydrolyzed technetium, pertechnetate, and technetium Tc 99m pyrophosphate were isolated on instant thin-layer chromatography-silica gel and quantified with a scintillation counter. The time necessary to deoxygenate distilled water by nitrogen purging was measured. Several sources of stannous chloride were assayed for tin(II) content. Tin(II) loss occurs rapidly in solution (15% in one hour) unless continuously protected with nitrogen, and during vial filling in a laminar-flow hood unless frozen with dry ice. No substantial loss of tin(II) was detected during lyophilization or during storage of lyophilized product at any of the three temperatures. A minimum of 400 microgram tin(II) was required to provide 90% technetium Tc 99m pyrophosphate at six hours after preparation. Adequate deoxygenation of small quantities (450 ml) of water was accomplished in less than one hour. Some stannous chloride salts were highly oxidized in the dry state, and only high-purity elemental tin wire gave acceptable yields of tin

  3. Linkable thiocarbamoylbenzamidines as ligands for bioconjugation of Rhenium and Technetium; Kopplungsfaehige Thiocarbamoylbenzamidine als Liganden zur Biokonjugation von Rhenium und Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Gomez, Juan Daniel

    2015-04-27

    Bioconjugation reactions with Rhenium and Technetium are of high importance for the development of novel radiopharmaceuticals for nuclear medicine. In this thesis the possibilities for bioconjugation using linkable Thiocarmbamoylbenzamidines as ligands for the complexation of Rhenium and Technetium were examined.

  4. Technetium in the geologic environment - a literature survey

    International Nuclear Information System (INIS)

    Torstenfelt, B.; Allard, B.; Andersson, K.; Olofsson, U.

    1981-07-01

    The authors present a literature survey of technetium, discussing, in particular, the oxidation states, the chemistry of technetium in connection with spent nuclear fuel storage, the sorption of technetium in rock, clay, soil and sea bottom sediments. (G.T.H.)

  5. Technetium and neptunium reactions in basalt/groundwater systems

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Kelmers, A.D.; Kessler, J.H.; Clark, R.J.; Johnson, J.S. Jr.; Young, G.C.; Case, F.I.; Westmoreland, C.G.

    1985-01-01

    Sorption isotherms and apparent concentration limits for Tc(VII) and Np(V) for a variety of groundwater/basalt systems were determined using Grande Ronde basalt samples representative of the Hanford Site candidate high-level waste repository. Under oxic redox conditions (air present), little or no sorption of technetium was observed; neptunium exhibited low to moderate sorption ratios. Under anoxic redox conditions (oxygen-free), low to moderate sorption of technetium was often observed, but the extent of sorption was highly dependent upon the groundwater composition and the method of pretreatment (if any) of the basalt. Sorption isotherms for technetium under reducing redox conditions (hydrazine added) indicate an apparent concentration limit of approximately 10 -6 mol/l Tc. No apparent concentration limit was found for neptunium for concentrations in groundwater up to 10 -6 mol/l and 8 x 10 -7 mol/l under oxic and reducing (hydrazine added) redox conditions, respectively. Valence control and valence analysis experiments suggest that the sorption or precipitation of Tc and Np from groundwater in the presence of basalt may result from a heterogeneous reaction occurring on the surface of the basalt. One of the critical factors of this reduction reaction appears to be the accessibility of the reactive ferrous iron component of the basalt. The laboratory simulation of groundwater redox conditions representative of the repository environment through the use of solution phase redox reagents is of questionable validity, and information obtained by such experimental methods may not be defensible for site performance assessment calculations. Anoxic experiments conducted in an argon-filled glove box appear better suited for the laboratory simulation of in situ redox conditions. 15 references, 6 figures

  6. Technetium and neptunium reactions in basalt/groundwater systems

    International Nuclear Information System (INIS)

    Meyer, R.E.; Arnold, W.D.; Kelmers, A.D.; Kessler, J.H.; Clark, R.J.; Johnson, J.S. Jr.; Young, G.C.; Case, F.I.; Westmoreland, C.G.; Florida State Univ., Tallahassee)

    1984-01-01

    Sorption isotherms and apparent concentration limits for Tc(VII) and Np(V) for a variety of groundwater/basalt systems were determined using Grande Ronde basalt samples representative of the Hanford Site candidate high-level waste repository. Under oxic redox conditions (air present), little or no sorption of technetium was observed; neptunium exhibited low to moderate sorption ratios. Under anoxic redox conditions (oxygen-free), low to moderate sorption of technetium was often observed, but the extent of sorption was highly dependent upon the groundwater composition and the method of pretreatment (if any) of the basalt. Sorption isotherms for technetium under reducing redox conditions (hydrazine added) indicate an apparent concentration limit of approximately 10 -6 mol/L Tc. No apparent concentration limit was found for neptunium for concentrations in groundwater up to approx. 10 -6 mol/L and 8 x 10 -7 mol/L under oxic and reducing (hydrazine added) redox conditions, respectively. Valence control and valence analysis experiments suggest that the sorption or precipitation of Tc and Np from groundwater in the presence of basalt may result from a heterogeneous reaction occurring on the surface of the basalt. One of the critical factors of this reduction reaction appears to be the accessibility of the reactive ferrous iron component of the basalt. The laboratory simulation of groundwater redox conditions representative of the repository environment through the use of solution phase redox reagents is of questionable validity, and information obtained by such experimental methods may not be defensible for site performance assessment calculations. Anoxic experiments conducted in an argon-filled glove box appear better suited for the laboratory simulation of in situ redox conditions. 15 refs., 6 tabs

  7. Technetium compounds; Compuestos de tecnecio

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.A. de [Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Vasco de Quiroga 15, 14000 Tlalpan D.F. (Mexico); Ferro F, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The first radiopharmaceuticals of {sup 99m} Tc, also call of 'first generation' as colloids, aggregates and simple complexes were developed with relative easiness without it was necessary a wide understanding of its chemical structure. In the radiopharmaceuticals of 'second generation' were included those derived of the HIDA for hepatobiliary images, MAG3 and EC for images of tubular renal de purification, HMPAO and ECD for images of cerebral perfusion and MIBI and tetrofosmin for images of heart perfusion, that which implies a bigger demand in terms of the chemical knowledge. At the moment, we can affirm that the future of the radiopharmaceuticals of {sup 99m} Tc is based on the use of small and relevant biomolecules with high biological activity that allow the visualization in vivo of specific receiving sites and/or its expression in diverse pathologies. It is for it that with the 'third generation' is necessary a wide one knowledge of the chemistry of the technetium that allows the design and characterization of highly specific bio complexes. In this book, although focused mainly to the chemistry of the Tc, a brief revision is also presented on the main biologically active molecules that, coordinated the {sup 99m} Tc, present a high recognition In vivo for specific receivers. (Author)

  8. Technetium Immobilization Forms Literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Westsik, Joseph H.; Cantrell, Kirk J.; Serne, R. Jeffrey; Qafoku, Nikolla

    2014-05-01

    Of the many radionuclides and contaminants in the tank wastes stored at the Hanford site, technetium-99 (99Tc) is one of the most challenging to effectively immobilize in a waste form for ultimate disposal. Within the Hanford Tank Waste Treatment and Immobilization Plant (WTP), the Tc will partition between both the high-level waste (HLW) and low-activity waste (LAW) fractions of the tank waste. The HLW fraction will be converted to a glass waste form in the HLW vitrification facility and the LAW fraction will be converted to another glass waste form in the LAW vitrification facility. In both vitrification facilities, the Tc is incorporated into the glass waste form but a significant fraction of the Tc volatilizes at the high glass-melting temperatures and is captured in the off-gas treatment systems at both facilities. The aqueous off-gas condensate solution containing the volatilized Tc is recycled and is added to the LAW glass melter feed. This recycle process is effective in increasing the loading of Tc in the LAW glass but it also disproportionally increases the sulfur and halides in the LAW melter feed which increases both the amount of LAW glass and either the duration of the LAW vitrification mission or the required supplemental LAW treatment capacity.

  9. Ligand-free, protein-bound technetium-99m iron-dextran enhancement of technetium pyrophosphate uptake in tumours

    International Nuclear Information System (INIS)

    Pojer, P.M.; Jakovljevic, A.C.; Wise, K.N.

    1985-01-01

    The biodistribution of technetium-99m was studied in T-cell lymphoma and selected organs of iron-dextran treated and control mice given technetium-99m pyrophosphate. The results showed that high serum iron levels increased tumour uptake of technetium pyrophosphate. This supports the hypothesis that technetium, in common with other metal-based tumour seeking radiopharmaceuticals, is transported to tumours as a ligand-free protein-bound cation. (U.K.)

  10. Dissimilatory Arsenate Reduction and In Situ Microbial Activities and Diversity in Arsenic-rich Groundwater of Chianan Plain, Southwestern Taiwan.

    Science.gov (United States)

    Das, Suvendu; Liu, Chia-Chuan; Jean, Jiin-Shuh; Liu, Tsunglin

    2016-02-01

    Although dissimilatory arsenic reduction (DAsR) has been recognized as an important process for groundwater arsenic (As) enrichment, its characterization and association with in situ microbial activities and diversity in As-rich groundwater is barely studied. In this work, we collected As-rich groundwater at depths of 23, 300, and 313 m, respectively, from Yenshui-3, Budai-Shinwen, and Budai-4 of Chianan plain, southwestern Taiwan, and conducted incubation experiments using different electron donors, acceptors, and sulfate-reducing bacterial inhibitor (tungstate) to characterize DAsR. Moreover, bacterial diversity was evaluated using 454-pyrosequencing targeting bacterial 16S rRNAs. MPN technique was used to enumerate microorganisms with different in situ metabolic functions. The results revealed that DAsR in groundwater of Chianan plain was a biotic phenomenon (as DAsR was totally inhibited by filter sterilization), enhanced by the type of electron donor (in this case, lactate enhanced DAsR but acetate and succinate did not), and limited by the availability of arsenate. In addition to oxidative recycling of As(III), dissolution of As(V)-saturated manganese and iron minerals by indigenous dissimilatory Mn(IV)- and Fe(III)-reducing bacteria, and abiotic oxidation of As(III) with Mn(IV) regenerated As(V) in the groundwater. Sulfate-respiring bacteria contributed 7.4 and 28.2 % to the observed DAsR in groundwater of Yinshui-3 and Budai-Shinwen, respectively, whereas their contribution was negligible in groundwater of Budai-4. A noticeable variation in dominant genera Acinetobacter and Bacillus was observed within the groundwater. Firmicutes dominated in highly As-rich groundwater of Yenshui-3, whereas Proteobacteria dominated in comparatively less As-rich groundwater of Budai-Shinwen and Budai 4.

  11. Microbial Reduction of Fe(III) in Acidic Sediments: Isolation of Acidiphilium cryptum JF-5 Capable of Coupling the Reduction of Fe(III) to the Oxidation of Glucose

    OpenAIRE

    Küsel, Kirsten; Dorsch, Tanja; Acker, Georg; Stackebrandt, Erko

    1999-01-01

    To evaluate the microbial populations involved in the reduction of Fe(III) in an acidic, iron-rich sediment, the anaerobic flow of supplemental carbon and reductant was evaluated in sediment microcosms at the in situ temperature of 12°C. Supplemental glucose and cellobiose stimulated the formation of Fe(II); 42 and 21% of the reducing equivalents that were theoretically obtained from glucose and cellobiose, respectively, were recovered in Fe(II). Likewise, supplemental H2 was consumed by acid...

  12. Effect of applied potential on electrochemically reduced technetium diphosphonate radiopharmaceuticals

    International Nuclear Information System (INIS)

    Martin, J.L. Jr.; Heineman, W.R.; Deutsch, E.

    1987-01-01

    Technetium diphosphonate radiopharmaceuticals continue to play a major role in diagnostic nuclear medicine. Their ability to provide both structural and functional information provides a unique advantage which even the more recent imaging techniques cannot provide. The Tc-99m isotope possesses nuclear decay characteristics which allow maximum organ imaging following intravenous injection while delivering a minimal radiation burden to the patient. Due to the diphosphonate ligands' strong affinity for bone, Tc-99m diphosphonate complexes are routinely used for the determination of bone abnormalities such as cancerous tumors. Electrochemical reduction provides the additional parameter needed to increase the yield of a single component. This work presents the effect of varying the applied potential of the mercury pool electrode at selected pH values. The result of this variation in applied potential is tracked by anion exchange chromatographic separation based on the negatively charged Tc-diphosphonate complexes. These chromatograms are compared to those obtained by standard chemical reduction

  13. Highvalent and organometallic technetium and rhenium compounds

    International Nuclear Information System (INIS)

    Oehlke, Elisabeth

    2010-01-01

    Diagnostic methods in nuclear medicine allow a detailed description of morphological organ structures and their function. The beta emitting isotope Tc-99 has optimal physical properties (140 keV gamma rays, half-life 6 h) and is therefore used for radiopharmaceuticals. The thesis is concerned with the search for new technetium complexes and their reproducible production. The (TcO3) core is of main interest. The second part of the thesis deals with organometallic technetium and rhenium complexes with carbonyl ligands and N-heterocyclic carbenes that show stability in aerobic aqueous solutions.

  14. Determination of technetium-99 from complex matrix

    International Nuclear Information System (INIS)

    Lixiong Wang; Lei Tang; Tongzai Yang; Yanqiu Yang; Liang Yang

    2013-01-01

    This paper reports an approach that can be used for efficient separation and determination of 99 Tc (as pertechnetate) after contamination of the environment by nuclear materials. The samples were decomposed by fusion in a mixture of potassium hydroxide and potassium nitrate. After fusion, technetium remains as the pertechnetate anion (TcO 4 - ). The technetium was isolated from the sample by technique combining solvent extraction, anion exchange, then, again, solvent extraction. After separation, 99 Tc was measured by isotope-dilution mass spectrometry with 97 Tc as spike. This method yielded nanogram detection limits for 99 Tc. (author)

  15. Preparation of L-asparagine complex with technetium

    International Nuclear Information System (INIS)

    Persano, S.C.M.

    1981-01-01

    The preparation of technetium chelated to L-asparagine is aimed at for obtention of potentially useful radiopharmaceutical in nuclear medicine. The reduction of pertechnetate anion ( 99 TcO - 4 and sup(99m) TcO - 4 ) using hydrazine as a reducing agent is studied with use of polarographic spectrophotometric and chromatographic methods. Spectrophotometric determination shows that the aqueous solution of amonium sup(-99m) Tc pertechnetate absorbs at 244, 248 and 290 nm. After reduction the species absorbs at 330 and near 495-530 nm. Polarographic measurements with 0,1 N NaOH electrolyte show a half-wave potential E sub(1/2 = -0,82 V for technetium +VII. After the addition of increasing amounts of hydrazine into a solution containing Tc+VII, the half wave potential shifts to more positives values, indicating the reduction of Tc+VII. Chromatographic determinations are in good agreement with polarographic analysis, emphatizing reduction of Tc+IV by hydrazine. The reduced 99 Tc shows ability of being incorporated into L-asparagine forming a cristalline compound with melting point 118.6 0 C. Infrared absorption spectrometry shows that amino and carboxyl groups are bound to the metal in this complex. The yield of sup(99m) Tc incorporation into L-asparagine at 60 0 C in 30 minutes is up to 95%. The labeled complex can be presented as a radiopharmaceutical product. Tissue distribution performed in groups of normal and bearing lymphoma Walker 256 Wistar rats (50-60) shows that the radiopharmaceutical concentrates seletively in the tumor and is fastly excreted by the kidney and it doesn't have significant affinity for any organ, being so adequate for the formation of tumoral images. (Authors) [pt

  16. Stability of U(VI) and Tc(VII) Reducing Microbial Communities to EnvironmentalPerturbation: Development and Testing of a Thermodynamic Network Model. Technical Report

    International Nuclear Information System (INIS)

    Jonathan D. Istok

    2008-01-01

    'Bioimmobilization' of redox-sensitive metals and radionuclides is being investigated as a way to remediate contaminated groundwater and sediments. In this approach, growth-limiting substrates are added to stimulate the activity of targeted groups of indigenous microorganisms and create conditions favorable for the microbially-mediated precipitation ('bioimmobilization') of targeted contaminants. This project investigated a fundamentally new approach for modeling this process that couples thermodynamic descriptions for microbial growth with associated geochemical reactions. In this approach, a synthetic microbial community is defined as a collection of defined microbial groups; each with a growth equation derived from bioenergetic principles. The growth equations and standard-state free energy yields are appended to a thermodynamic database for geochemical reactions and the combined equations are solved simultaneously to predict the effect of added substrates on microbial biomass, community composition, and system geochemistry. This approach, with a single set of thermodynamic parameters (one for each growth equation), was used to predict the results of laboratory and field bioimmobilization experiments at two geochemically diverse research sites. Predicted effects of ethanol or acetate addition on uranium and technetium solubility, major ion geochemistry, mineralogy, microbial biomass and community composition were in general agreement with experimental observations although the available experimental data precluded rigorous model testing. Model simulations provide insight into the long-standing difficulty in transferring experimental results from the laboratory to the field and from one field site to the next, especially if the form, concentration, or delivery of growth substrate is varied from one experiment to the next. Although originally developed for use in better understanding bioimmobilization of uranium and technetium via reductive precipitation, the

  17. Contributions to the coordination chemistry of technetium

    International Nuclear Information System (INIS)

    Lorenz, B.

    1989-08-01

    New types of technetium complexes were synthesized and analyzed by IR-, 1 H- and 99 Tc nmr as well as EPR spectra. They were tested for their potential catalytic activity in special organic reactions and their relevance to catalytic reactions, for example as intermediate compounds, is discussed in depth. 317 refs., 20 figs. (BBR) [de

  18. Synthesis and characterization of volatile technetium compound

    International Nuclear Information System (INIS)

    Childs, Bradley C.; Poineau, Frederic; Czerwinski, Ken R.

    2013-01-01

    Technetium-99 is an important fission (T 1/2 = 2.13.105 y) product of the nuclear industry. Technetium in its highest oxidation state (VII) is highly mobile and can represent a threat to the environment. There are over 55 million gallons of high level mixed waste located at the Hanford site. Waste tanks at the Hanford site contain Tc that could potentially leak, and in the context of management of technetium, a glass waste form was proposed to counteract the issue. In the process of synthesizing melt glass between the temperatures of 600°C and 1100°C, volatile technetium compounds were observed in the reaction tube. These compounds displayed characteristic colors based upon the reaction environments of either breathing air or nitrogen gas. A breathing air atmosphere produces a red compound that adheres to the walls of the reaction tube. An atmosphere of nitrogen gas produces a white compound that was observed on the walls of the reaction tube. (author)

  19. An introduction to technetium-99m generators

    International Nuclear Information System (INIS)

    Abrashkin, S.

    1984-02-01

    The role played by technetium-99m generators in diagnostic medicine, their physical and chemical fundamentals and their main technical characteristics are discussed. This report is intended as a general introduction to a group of reports which summarize the work done on the development and production of the generators, and research on the chemical and physical aspects of the generator systems

  20. Concentration of technetium by marine organisms

    International Nuclear Information System (INIS)

    Koyanagi, T.; Suzuki, Y.; Nakamura, R.; Nakahara, M.

    1990-01-01

    Accumulation and excretion of technetium by marine organisms were observed in radioisotope tracer experiments to determine concentration factors for estimating radiation dose to humans from radioactive pollution of marine environments. Marine fish, crustaceans, mollusks, echinoderms, and seaweeds were reared in sea water labeled with 95m Tc to observe uptake from sea water. The organisms were then transferred into unlabeled sea water for depuration experiments. Concentration factors were calculated from uptake and excretion rates. Also considered was the contribution of food-chain transfer of technetium, observed by administering labeled seaweeds to mollusks or echinoderms. Low accumulations were shown by fish, crustaceans, pelecypods and cephalopods, whereas high concentration factors were observed in gastropods and seaweeds. Species specificity or specific accumulation in special organs or tissues was not evident except in seaweed, where the difference was clearly species-associated. Relatively high rates of technetium retention were observed in the organisms administered labeled seaweed. The higher concentrations observed in gastropods, compared to those in pelecypods, were thought to result from different feed habits. The adaptability of some species as indicator organisms for monitoring 99 Tc in sea water was recognized, but the contribution of technetium to radiation dose was considered insignificant

  1. The origins of Technetium in the environment

    International Nuclear Information System (INIS)

    Scoppa, P.

    1986-01-01

    The origins of Technetium in the environment are briefly illustrated, taking into account its main sources represented by same plants of nuclear fuel cycle and by fallout fallowing nuclear explosion in atmosphere. An evaluation is also made of the TC-99 quantitees deriving from the production of nuclear power present in radioactive wastes before their final disposal

  2. The fate of technetium in reduced estuarine sediments: Combining direct and indirect analyses

    International Nuclear Information System (INIS)

    Burke, Ian T.; Livens, Francis R.; Lloyd, Jonathan R.; Brown, Andrew P.; Law, Gareth T.W.; McBeth, Joyce M.; Ellis, Beverley L.; Lawson, Richard S.; Morris, Katherine

    2010-01-01

    Technetium-99 is an important fission product in radioactive wastes. As Tc(VII)O 4 - , Tc is highly mobile in oxic environments but, under reducing conditions, Tc becomes strongly associated with sediments as hydrous Tc(IV)O 2 like phases. In order to further examine the behaviour of Tc over a range of concentrations in estuarine sediments, anoxic incubation experiments were combined with a range of direct (transmission electron microscopy and gamma camera imaging) and indirect (incubation experiments and chemical extractions) experimental techniques. When TcO 4 - was incubated in sediment microcosms at micro-molar (10 -6 mol L -1 ) concentrations, >99% TcO 4 - was removed from solution over the course of 36 days in systems undergoing active microbial Fe(III)-reduction. By contrast, when spiked into pre-reduced estuarine sediments that were predominantly Fe(III)-reducing (incubated for 60 days) or SO 4 2- reducing (incubated for 270 days), >99% TcO 4 - was removed from solution in under 10 min in both microbially active and heat sterilised systems. Chemical extraction techniques showed that 70 ± 3% of Tc bound to sediments was remobilised when sediments were exposed to the first strong oxidant (H 2 O 2 ) in the extraction scheme. At higher Tc concentrations (∼0.05 mol kg -1 of sediment) scanning transmission electron microscopy, combined with energy dispersive X-ray mapping, was used to examine the associations of Tc in sediments. At these concentrations, Tc was localised and co-associated with nanometre size Fe(II)-rich particles, consistent with the hypothesis that removal of Tc may be controlled by reduction of Tc(VII) to Tc(IV) by biogenic Fe(II) in sediments. In addition, gamma camera imaging with the γ-emitting 99m TcO 4 - (half-life 6 h) at pico-molar (10 -12 mol L -1 ) concentrations, was used to visualise the interaction of Tc in sediments at very low concentrations. Here, over the course of 24 h the scavenging of Tc to SO 4 2- reducing sediments was

  3. Peculiarities of the introduction of technetium isotopes into protein molecules - of human serum albumin as an example

    International Nuclear Information System (INIS)

    Stanko, V.I.; Ovsyannikov, N.N.; Zuykova, N.P.; Gouskov, A.F.; Kovalchouk, N.D.

    1978-07-01

    Pecularities of the introduction of the radioisotope technetium 99m into the molecules of human serum albumin have been investigated. Tin not only participates in the Tc(V11) reduction process, but is incorporated into the originating Tc albumin complex. It is shown that no more than four technetium atoms enter into bond with an albumin molecule. The authors express their opinion that in order to produce high-quality protein preparations, the albumin has to be modified through a polyfunctional complexing agent which forms an entirely saturated coordination complex with Tc(IV)

  4. Pecularities of the introduction of technetium isotopes into protein molecules using human serum albumin as an example

    International Nuclear Information System (INIS)

    Stanko, V.I.; Ovsyannikov, N.N.; Sujkova, N.P.; Gus'kov, A.F.; Koval'chuk, N.D.

    1978-01-01

    Pecularities of the introduction of the radioisotope technetium 99m into the molecules of human serum albumin have been investigated. Tin not only participates in the Tc(VII) reduction process, but is incorporated into the originating Tc albumin complex. It is shown that no more than four technetium atoms enter into bond with an albumin molecule. The authors express their opinion that in order to produce high-quality protein preparations, the albumin has to be modified through a polyfunctional complexing agent which forms an entirely saturated coordination complex with Tc(IV). (author)

  5. Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction

    Science.gov (United States)

    Zhang, G.; Dong, H.; Kim, J.; Eberl, D.D.

    2007-01-01

    The illitization process of Fe-rich smectite (nontronite NAu-2) promoted by microbial reduction of structural Fe3+ was investigated by using a thermophilic metal-reducing bacterium, Thermoanaerobacter ethanolicus, isolated from the deep subsurface. T. ethanolicus was incubated with lactate as the sole electron donor and structural Fe3+ in nontronite as the sole electron acceptor, and anthraquinone-2, 6-disulfonate (AQDS) as an electron shuttle in a growth medium (pH 6.2 and 9.2, 65 ??C) with or without an external supply of Al and K sources. With an external supply of Al and K, the extent of reduction of Fe3+ in NAu-2 was 43.7 and 40.4% at pH 6.2 and 9.2, respectively. X-ray diffraction and scanning and transmission electron microscopy revealed formation of discrete illite at pH 9.2 with external Al and K sources, while mixed layers of illite/smectite or highly charged smectite were detected under other conditions. The morphology of biogenic illite evolved from lath and flake to pseudo-hexagonal shape. An external supply of Al and K under alkaline conditions enhances the smectite-illite reaction during microbial Fe3+ reduction of smectite. Biogenic SiO2 was observed as a result of bioreduction under all conditions. The microbially promoted smectite-illite reaction proceeds via dissolution of smectite and precipitation of illite. Thermophilic iron reducing bacteria have a significant role in promoting the smectite to illite reaction under conditions common in sedimentary basins.

  6. Impact of the electron donor on in situ microbial nitrate reduction in Opalinus Clay: results from the Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Bleyen, N.; Smets, S. [Belgian Nuclear Research Centre SCK-CEN, Mol (Belgium); Small, J. [National Nuclear Laboratory NLL, Warrington (United Kingdom); and others

    2017-04-15

    At the Mont Terri rock laboratory (Switzerland), an in situ experiment is being carried out to examine the fate of nitrate leaching from nitrate-containing bituminized radioactive waste, in a clay host rock for geological disposal. Such a release of nitrate may cause a geochemical perturbation of the clay, possibly affecting some of the favorable characteristics of the host rock. In this in situ experiment, combined transport and reactivity of nitrate is studied inside anoxic and water-saturated chambers in a borehole in the Opalinus Clay. Continuous circulation of the solution from the borehole to the surface equipment allows a regular sampling and online monitoring of its chemical composition. In this paper, in situ microbial nitrate reduction in the Opalinus Clay is discussed, in the presence or absence of additional electron donors relevant for the disposal concept and likely to be released from nitrate-containing bituminized radioactive waste: acetate (simulating bitumen degradation products) and H{sub 2} (originating from radiolysis and corrosion in the repository). The results of these tests indicate that - in case microorganisms would be active in the repository or the surrounding clay - microbial nitrate reduction can occur using electron donors naturally present in the clay (e.g. pyrite, dissolved organic matter). Nevertheless, non-reactive transport of nitrate in the clay is expected to be the main process. In contrast, when easily oxidizable electron donors would be available (e.g. acetate and H{sub 2}), the microbial activity will be strongly stimulated. Both in the presence of H{sub 2} and acetate, nitrite and nitrogenous gases are predominantly produced, although some ammonium can also be formed when H{sub 2} is present. The reduction of nitrate in the clay could have an impact on the redox conditions in the pore-water and might also lead to a gas-related perturbation of the host rock, depending on the electron donor used during denitrification

  7. An Alternative Approach to Non-Log-Linear Thermal Microbial Inactivation: Modelling the Number of Log Cycles Reduction with Respect to Temperature

    Directory of Open Access Journals (Sweden)

    Vasilis Panagiotis Valdramidis

    2005-01-01

    Full Text Available A mathematical approach incorporating the shoulder effect during the quantification of microbial heat inactivation is being developed based on »the number of log cycles of reduction « concept. Hereto, the heat resistance of Escherichia coli K12 in BHI broth has been quantitatively determined in a generic and accurate way by defining the time t for x log reductions in the microbial population, i.e. txD, as a function of the treatment temperature T. Survival data of the examined microorganism are collected in a range of temperatures between 52–60.6 °C. Shoulder length Sl and specific inactivation rate kmax are derived from a mathematical expression that describes a non-log-linear behaviour. The temperature dependencies of Sl and kmax are used for structuring the txD(T function. Estimation of the txD(T parameters through a global identification procedure permits reliable predictions of the time to achieve a pre-decided microbial reduction. One of the parameters of the txD(T function is proposed as »the reference minimum temperature for inactivation«. For the case study considered, a value of 51.80 °C (with a standard error, SE, of 3.47 was identified. Finally, the time to achieve commercial sterilization and pasteurization for the product at hand, i.e. BHI broth, was found to be 11.70 s (SE=5.22, and 5.10 min (SE=1.22, respectively. Accounting for the uncertainty (based on the 90 % confidence intervals, CI a fail-safe treatment of these two processes takes 20.36 s and 7.12 min, respectively.

  8. Catalytic and inhibitory effects of thechnetium on reduction processes

    International Nuclear Information System (INIS)

    Grases, F.; Genestar, C.; March, J.G.; March, P.

    1986-01-01

    Interactions between technetium and some anthraquinones and tartrazin in the presence of tin(II) are described. It was found that whereas the reductive process between Sn(II) and 1-amino-4-hydroxyanthraquinone is catalyzed by technetium, the reduction of tartrazin is inhibited by this element. Study of such process seems to indicate that the catalytic effect of technetium on the reduction processes is due to Tc(V) action whereas the inhibitory effect is due to the Tc(IV) species. (author)

  9. Research program to investigate the fundamental chemistry of technetium

    Energy Technology Data Exchange (ETDEWEB)

    Shuh, David K.; Lukens, Wayne W.; Burns, Carol J.

    2003-12-19

    The objective of this research is to increase the knowledge of the fundamental technetium chemistry that is necessary to address challenges to the safe, long-term remediation of high-level waste posed by this element. These challenges may be divided into two categories: unexpected behavior of technetium in high-level waste tanks at the Hanford and Savannah River Sites and the behavior of technetium in waste forms.

  10. Research program to investigate the fundamental chemistry of technetium

    International Nuclear Information System (INIS)

    Shuh, David K.; Lukens, Wayne W.; Burns, Carol J.

    2003-01-01

    The objective of this research is to increase the knowledge of the fundamental technetium chemistry that is necessary to address challenges to the safe, long-term remediation of high-level waste posed by this element. These challenges may be divided into two categories: unexpected behavior of technetium in high-level waste tanks at the Hanford and Savannah River Sites and the behavior of technetium in waste forms

  11. X-ray electron investigation of technetium compounds

    International Nuclear Information System (INIS)

    Gerasimov, V.N.; Kryuchkov, S.V.; Kuzina, A.F.; Kulakov, V.M.; Pirozhkov, S.V.; Spitsyn, V.I.; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii)

    1982-01-01

    Investigation results of a number of technetium compounds using the method of X-ray electron spectroscopy have been presented for the first time. Calculation of effective charge for compounds without Tc-Tc bond and cluster complexes with strong Tc-Tc bond is made. Strong interdependence of effective charge and properties of technetium clusters is shown. Binding energies for certain cluster complexes of technetium with halides are given

  12. Supplemental Report: Application of Emission Spectroscopy to Monitoring Technetium

    International Nuclear Information System (INIS)

    Spencer, W.A.

    2000-01-01

    This report provides supplemental information to an earlier report BNF-98-003-0199, ''Evaluation of Emission Spectroscopy for the On-Line Analysis of Technetium''. In this report data is included from real Hanford samples as well as for solutions spiked with technetium. This supplemental work confirms the ability of ICP-ES to monitor technetium as it breaks through an ion exchange process

  13. Some aspects of the assay of technetium in environmental waters

    International Nuclear Information System (INIS)

    Robb, P.

    1983-09-01

    Technetium, as 99 Tc, was rapidly concentrated from large sample volumes (> 500 cm 3 ) by use of an anion exchange column after removal of ruthenium isotopes by precipitation. The bulk of the technetium can be removed from the resin by elution with sodium thiocyanate followed by further concentration by extraction with butan-2-one. Evaporation of solvent onto a planchette followed by measurement of emitted beta radiation can determine technetium levels. Method is capable of removing between 10 -15 and 10 -6 g of technetium from 500 cm 3 of water. (author)

  14. Sources and behavior of technetium in the environment

    International Nuclear Information System (INIS)

    Schulte, E.H.; Scoppa, P.

    1987-01-01

    Technetium is a man-made element produced in increasing amounts during the last decades. The chemical and physical properties of some technetium compounds are considered, and a discussion of possible source terms is included. Literature on the environmental behavior of technetium is reviewed to evaluate its transfer and equilibrium distribution in aquatic and terrestrial ecosystems. Considerable effort has been expended in the last years in order to understand the biogeochemical processes responsible for the long-term behavior of technetium in the environment and its transfer through food chains as well as to identify critical pathways of the long-lived radioisotope Tc-99 from the environment to man. (Auth.)

  15. Sorption behaviour of radioactive technetium in soils

    International Nuclear Information System (INIS)

    Xia Deying

    1996-01-01

    The sorption behaviour of technetium in different soils has been studied by batch experiments under aerobic conditions. The soil samples have been taken to study the characteristics and to derive the pH-Eh values. In addition, the activated carbon and reduced iron powder have been selected as additives to the JAERI sand according to the former research work, so that the technetium sorption behaviour in the artificial soils can be studied under similar conditions. The experimental results show that all these soil samples except for the gluey soil have a very small distribution coefficient for Tc, while the artificial soils have a very large distribution coefficient for Tc. Besides, for artificial soils, the distribution coefficient (R d ) values will become larger and larger when more additive is added and more contact time is allowed. The physico-chemical fixation processes and possible sorption modes have been discussed as well

  16. Geochemistry of natural technetium and plutonium

    International Nuclear Information System (INIS)

    Curtis, D.B.; Cappis, J.H.; Perrin, R.E.; Rokop, D.J.

    1987-01-01

    Technetium and plutonium in unprocessed nuclear reactor wastes are major concerns with regard to their containment in the geologic environment. Both nuclides have long half-lives; therefore, they will exist long after engineered barriers can be considered reliable. Consequently, strategies for the containment of these two elements depend on their retention in the geologic barrier until they have decayed to innocuous levels. Because these are the rarest elements in nature, there have been few direct observations of their geochemical behavior; predictions concerning their fate in the repository are based on properties that can be observed in the laboratory. The authors are attempting to complement the laboratory work by studying the geochemistry of natural plutonium and technetium. Ratios of anthropogenic to naturally occurring isotopes are discussed

  17. Technetium-99 m generator safety simulation

    International Nuclear Information System (INIS)

    Kang, Sang Koo; Kim, Chong Yeal

    2008-01-01

    Technetium ( 99m Tc) is one of the most widely used radioactive isotopes for diagnosis in the world. In general, 99m Tc is produced inside the so called technetium generator where 99Mo decays to 99m Tc. And the generator is usually made out of lead to shield relatively high energy radiation from 99m Tc and 99 Mo. In this paper, a GEANT4 simulation is carried out to test the safety of the 99m Tc generators, taking domestic and Japanese products with radioactivity of 18.50 GBq (500 mCi) for example. According to the domestic regulation on radiation safety, the dose at 10 cm and 100 cm away from the surface of radiation shielder should not exceed 2 mSv∙h -1 and 0.02 mSv∙h -1 , respectively. The simulated dose turned out about only 10% of the limit, satisfying the domestic regulation

  18. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Huang, Liping, E-mail: lipinghuang@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Pan, Yuzhen [College of Chemistry, Dalian University of Technology, Dalian 116024 (China); Quan, Xie [Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024 (China); Li Puma, Gianluca, E-mail: g.lipuma@lboro.ac.uk [Environmental Nanocatalysis & Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2017-01-05

    Highlights: • Fe(III) shuttles electrons for enhanced reduction of Cr(VI) in MFCs. • The coulombic efficiency increases by 1.6 fold in the presence of Fe(III). • The reduction of Cr(VI) occurs via an indirect Fe(III) mediation mechanism. • Fe(III) decreases the diffusional resistances and the cathode overpotentials. - Abstract: The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO{sub 4}{sup −}) and dichromate (Cr{sub 2}O{sub 7}{sup 2−}) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy.

  19. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials

    International Nuclear Information System (INIS)

    Wang, Qiang; Huang, Liping; Pan, Yuzhen; Quan, Xie; Li Puma, Gianluca

    2017-01-01

    Highlights: • Fe(III) shuttles electrons for enhanced reduction of Cr(VI) in MFCs. • The coulombic efficiency increases by 1.6 fold in the presence of Fe(III). • The reduction of Cr(VI) occurs via an indirect Fe(III) mediation mechanism. • Fe(III) decreases the diffusional resistances and the cathode overpotentials. - Abstract: The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO_4"−) and dichromate (Cr_2O_7"2"−) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy.

  20. The potential impact of microbial Fe(III) reduction on subsurface U(VI) mobility at a low level radioactive waste storage site

    International Nuclear Information System (INIS)

    Wilkins, M.J.; Livens, F.R.; Vaughan, D.J.; Lloyd, J.R.; Beadle, I.; Small, J.S.

    2005-01-01

    Full text of publication follows: Fe(III) oxy-hydroxides have the potential to be utilised as terminal electron acceptors by indigenous microbial communities in the British Nuclear Fuels (BNFL) low level radioactive waste storage site at Drigg (Cumbria, UK) and these organisms may have a critical control on the biogeochemical cycling of several environmentally important radionuclides. In terms of radiological impact at Drigg, uranium is the most significant contributor to radiological impact and it is strongly influenced by biogeochemical processes. In terms of mass (moles) it is also the most abundant radionuclide in the Drigg inventory. Thus, the potential biotic and abiotic effects of Fe(III) reduction on U(VI) mobility in the Drigg subsurface are of interest. Culture-dependent and molecular techniques showed that the sediments in and around the Drigg site contained a diversity of Fe(III)-reducing bacteria. A series of microcosm experiments were utilised to create environmentally relevant experimental conditions. Microcosms set up using Drigg sediment and synthetic ground water were spiked with 100 μM U(VI) and acetate as an electron donor. U(VI) concentrations in groundwater were measured using a chemical assay while total U levels were determined using ICP-MS. Fe(II) levels were determined using the ferrozine method. Sediment surface areas were measured using BET analysis. The low surface area of the sediments resulted in only a small proportion of the 100 μM U(VI) spike sorbing onto mineral surfaces. The addition of ferri-hydrite to some microcosms resulted in an immediate lowering of soluble U(VI) concentrations, suggesting that the formation of soluble U(VI) complexes were not responsible for the minimal adsorption. The presence of biogenic Fe(II) in the microcosms did not affect the soluble U(VI) concentration. Similarly, soluble U(VI) levels remained unchanged when sediments were spiked with U(VI) post-microbial Fe(III) reduction. However, a lowering in

  1. Reduction of microbial contamination and improvement of germination of sweet basil (Ocimum basilicum L.) seeds via surface dielectric barrier discharge

    Science.gov (United States)

    Ambrico, Paolo F.; Šimek, Milan; Morano, Massimo; De Miccolis Angelini, Rita M.; Minafra, Angelantonio; Trotti, Pasquale; Ambrico, Marianna; Prukner, Václav; Faretra, Francesco

    2017-08-01

    Naturally contaminated basil seeds were treated by a surface dielectric barrier discharge driven in the humid air by an amplitude modulated AC high voltage to avoid heat shock. In order to avoid direct contact of seeds with microdischarge filaments, the seeds to be treated were placed at sufficient distance from the surface discharge. After treatment, the seeds were analyzed in comparison with control samples for their microbial contamination as well as for the capability of germination and seedling growth. Moreover, chemical modification of seed surface was observed through the elemental energy dispersive x-ray analysis and wettability tests. We found that treatment applied at 20% duty cycle (effective discharge duration up to 20 s) significantly decreases microbial load without reducing the viability of the seeds. On the other side, seedling growth was considerably accelerated after the treatment, and biometric growth parameters of seedlings (total length, weight, leaf extension) considerably increased compared to the controls. Interestingly, scanning electron microscopy images taken for the different duration of treatment revealed that seed radicle micropylar regions underwent significant morphological changes while the coat was substantially undamaged. Inside the seed, the embryo seemed to be well preserved while the endosperm body was detached from the epithelial tegument. A total of 9 different genera of fungi were recovered from the analyzed seeds. Scanning electron microscopy images revealed that conidia were localized especially in the micropylar region, and after plasma treatment, most of them showed substantial damages. Therefore, the overall effect of the treatment of naturally contaminated seeds by reactive oxygen and nitrogen species produced by plasma and the consequent changes in surface chemistry and microbial load can significantly improve seed vigor.

  2. Reduction of microbial contamination and improvement of germination of sweet basil ( Ocimum basilicum L.) seeds via surface dielectric barrier discharge

    International Nuclear Information System (INIS)

    Ambrico, Paolo F; Ambrico, Marianna; Šimek, Milan; Prukner, Václav; Morano, Massimo; De Miccolis Angelini, Rita M; Trotti, Pasquale; Faretra, Francesco; Minafra, Angelantonio

    2017-01-01

    Naturally contaminated basil seeds were treated by a surface dielectric barrier discharge driven in the humid air by an amplitude modulated AC high voltage to avoid heat shock. In order to avoid direct contact of seeds with microdischarge filaments, the seeds to be treated were placed at sufficient distance from the surface discharge. After treatment, the seeds were analyzed in comparison with control samples for their microbial contamination as well as for the capability of germination and seedling growth. Moreover, chemical modification of seed surface was observed through the elemental energy dispersive x-ray analysis and wettability tests. We found that treatment applied at 20% duty cycle (effective discharge duration up to 20 s) significantly decreases microbial load without reducing the viability of the seeds. On the other side, seedling growth was considerably accelerated after the treatment, and biometric growth parameters of seedlings (total length, weight, leaf extension) considerably increased compared to the controls. Interestingly, scanning electron microscopy images taken for the different duration of treatment revealed that seed radicle micropylar regions underwent significant morphological changes while the coat was substantially undamaged. Inside the seed, the embryo seemed to be well preserved while the endosperm body was detached from the epithelial tegument. A total of 9 different genera of fungi were recovered from the analyzed seeds. Scanning electron microscopy images revealed that conidia were localized especially in the micropylar region, and after plasma treatment, most of them showed substantial damages. Therefore, the overall effect of the treatment of naturally contaminated seeds by reactive oxygen and nitrogen species produced by plasma and the consequent changes in surface chemistry and microbial load can significantly improve seed vigor. (paper)

  3. Investigation of Technetium Redox Cycling in FRC Background Sediments using EXAFS and Gamma Camera Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, J.R.; McBeth, J.M.; Lear, G.; Morris, K.; Burke, I.T.; Livens, F.R.; Ellis, B.; Lawson, R.

    2006-04-05

    Technetium-99 is a priority pollutant at numerous DOE sites, due to its long half-life (2.1 x 105 years), high mobility as Tc(VII) in oxic waters, and bioavailability as a sulfate analogue. {sup 99}Tc is far less mobile under anaerobic conditions, forming insoluble Tc(IV) precipitates. As anaerobic microorganisms can reduce soluble Tc(VII) to insoluble Tc(IV), microbial metabolism may have the potential to treat sediments and waters contaminated with Tc. Baseline studies of fundamental mechanisms of Tc(VII) bioreduction and precipitation (reviewed by Lloyd et al., 2005, in press) have generally used pure cultures of metal-reducing bacteria, in order to develop conceptual models for the biogeochemical cycling of {sup 99}Tc. There is, however, comparatively little known about interactions of metal-reducing bacteria with environmentally relevant trace concentrations of {sup 99}Tc, against a more complex biogeochemical background provided by mixed microbial communities in aquifer sediments. The objective of this project is to probe the site specific biogeochemical conditions that control the mobility of {sup 99}Tc at the US DOE Field Research Center Site (FRC; Oak Ridge, Tennessee). This information is required for the rational design of in situ bioremediation strategies for technetium-contaminated subsurface environments. We are using a combination of geochemical, mineralogical, microbiological and spectroscopic techniques to determine the solubility and phase associations of {sup 99}Tc in FRC sediments, and characterize the underpinning biogeochemical controls.

  4. Anaerobic transformation of DDT related to iron(III) reduction and microbial community structure in paddy soils.

    Science.gov (United States)

    Chen, Manjia; Cao, Fang; Li, Fangbai; Liu, Chengshuai; Tong, Hui; Wu, Weijian; Hu, Min

    2013-03-06

    We studied the mechanisms of microbial transformation in functional bacteria on 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in two different field soils, Haiyan (HY) and Chenghai (CH). The results showed that microbial activities had a steady dechlorination effect on DDT and its metabolites (DDx). Adding lactate or glucose as carbon sources increased the amount of Desulfuromonas, Sedimentibacter, and Clostridium bacteria, which led to an increase in adsorbed Fe(II) and resulted in increased DDT transformation rates. The electron shuttle of anthraquinone-2,6-disulfonic disodium salt resulted in an increase in the negative potential of soil by mediating the electron transfer from the bacteria to the DDT. Moreover, the DDT-degrading bacteria in the CH soil were more abundant than those in the HY soil, which led to higher DDT transformation rates in the CH soil. The most stable compound of DDx was 1,1-dichloro-2,2-bis(p-chloro-phenyl)ethane, which also was the major dechlorination metabolite of DDT, and 1-chloro-2,2-bis-(p-chlorophenyl)ethane and 4,4'-dichlorobenzo-phenone were found to be the terminal metabolites in the anaerobic soils.

  5. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, P.J.; Wu, L.; Van Nostrand, J.D.; Schadt, C.W.; Watson, D.B.; Jardine, P.M.; Palumbo, A.V.; Hazen, T.C.; Zhou, J.

    2009-06-15

    To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.

  6. Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance

    KAUST Repository

    Watson, Valerie J.; Nieto Delgado, Cesar; Logan, Bruce E.

    2013-01-01

    Commercially available activated carbon (AC) powders made from different precursor materials (coal, peat, coconut shell, hardwood, and phenolic resin) were electrochemically evaluated as oxygen reduction catalysts and tested as cathode catalysts

  7. Measurement and behaviour of technetium in fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Ferguson, C.; Kyffin, T.W.

    1986-02-01

    A method is described for the spectrophotometric measurement of technetium in plant solutions from the reprocessing of fast reactor fuel. The technetium is selectively extracted using tri-iso-octylamine. After back extraction, thiocyanate is added, in the presence of tetrabutyl-ammonium hydroxide, to form the red hexa-thiocyanato anionic complex in a chloroform medium. The concentration of the technetium is then calculated from the spectrophotometric measurement of this complex. This method was applied to bulk samples, collected during a PFR fuel reprocessing campaign, to identify the main routes followed by technetium through the reprocessing plant. In order to understand the probable behaviour of technetium in the process plant streams, an investigation into the influence of plutonium IV nitrate on the extraction of Tc (VII) into 20%v/v tributyl phosphate/odourless kerosene solution from nitric acid solutions, was initiated. The results of this investigation, along with the known distribution coefficient for the extraction of the uranyl/technetium complex U0 2 (N0 3 )(Tc0 4 ).2TBP and the redox chemistry of technetium, are used to predict the probable behaviour of technetium in the process plant streams. This predicted behaviour is compared with the experimental results and reasonable agreement is obtained between experiment and theory, considering the history of the samples analysed. (author)

  8. Accelerators for forming cationic technetium complexes useful as radiodiagnostic images

    International Nuclear Information System (INIS)

    Tweedle, M.F.

    1985-01-01

    This invention relates to compositions for making cationic radiodiagnostic agents and, in particular, to accelerator compounds for labelling such cationic radiodiagnostic agents, kits for preparing such 99m Tc-labelled cationic radiodiagnostic agents with technetium, and methods for labelling such cationic radiodiagnostic agents with technetium

  9. Search for technetium in natural tin metallurgical residues

    Energy Technology Data Exchange (ETDEWEB)

    Parker, C.W.

    1996-07-01

    Possible instability of baryons inside the nuclei might result in accumulation of rare isotopes in natural ores. In this respect, isotopes of technetium have certain advantages that can be useful in the search for technetium in nonradioactive ores by chemical methods. In this paper, we review the history of technetium research and discuss a new approach to the search for natural technetium associated with tin ores which appears to offer a rare possibility of discovering a smelting operation by-product such as flue dust, in which the volatile technetium heptoxide (Tc{sub 2}O{sub 7}), like rhenium heptoxide (Re{sub 2}O{sub 7}), would be expected to concentrate. Our concept of a search for technetium in these materials would be based on the assumption that traces of rhenium could occur in the ore and could be traced most easily by neutron activation of small samples. Such a procedure would confirm that an enrichment from the ore to the flue dust actually occurs with the rhenium and therefore should occur with technetium. Furthermore, this occurrence should identify the best location to search for technetium.

  10. A method for the determination of technetium in environmental waters

    International Nuclear Information System (INIS)

    Robb, P.; Warwick, P.; Malcolme-Lawes, D.J.

    1985-01-01

    A method is described which can be used to determine technetium-99 levels in a range of water types. Ruthenium isotopes which may interfere in the analysis are removed from the sample by precipitation before concentration of pertechnetate onto an ion-exchange column. Other nuclides can be removed from the column using NaOH before elution of the technetium using NaSCN. The technetium in the NaSNC eluent can then be extracted into butan-2-one which can be evaporated onto a planchette. Technetium-99m is used as a yield tracer and after this has decayed away to negligible levels. The amount of technetium on the planchette can be determined by measuring the rate of beta radiation emission from the final concentrate. (author)

  11. Corrosion and antifouling characteristics of technetium 99 in seawater

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Strekalov, P.V.; Balakhovskij, O.A.; Mikhajlovskij, Yu.N.

    1982-01-01

    The results are presented of studying the corrosive and antifouling properties of metallic technetium-99 in the Barents Sea and the Sea of Japan. Foil of 99 Tc glued on acrylic plastic served as a sample. High corrosion resistance and antifouling properties exhibited by 99 Tc in seawater point to favorable prospects of further studies aimed at development of new methods for protection against corrosion and fouling of metallic structures and parts with the use of technetium. The antifouling properties of technetium would evidently be used most efficiently when coating materials of high corrosion resistance to seawater (titanium, stainless steels, special alloys, etc.) with layers of technetium. The use of technetium for coating low-alloyed or carbon steels employed in seawater is yet problematic

  12. Effects of graphene oxide on the performance, microbial community dynamics and antibiotic resistance genes reduction during anaerobic digestion of swine manure.

    Science.gov (United States)

    Zhang, Junya; Wang, Ziyue; Wang, Yawei; Zhong, Hui; Sui, Qianwen; Zhang, Changping; Wei, Yuansong

    2017-12-01

    The role of graphene oxide (GO) on anaerobic digestion (AD) of swine manure concerning the performance, microbial community and antibiotic resistance genes (ARGs) reduction was investigated. Results showed that methane production was reduced by 13.1%, 10.6%, 2.7% and 17.1% at GO concentration of 5mg/L, 50mg/L, 100mg/L and 500mg/L, respectively, but propionate degradation was enhanced along with GO addition. Both bacterial and archaeal community changed little after GO addition. AD could well reduce ARGs abundance, but it was deteriorated at the GO concentration of 50mg/L and 100mg/L and enhanced at 500mg/L, while no obvious changes at 5mg/L. Network and SEM analysis indicated that changes of each ARG was closely associated with variation of microbial community composition, environmental variables contributed most to the dynamics of ARGs indirectly, GO influenced the ARGs dynamics negatively and (heavy metal resistance genes (MRGs)) influenced the most directly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cyclotron Production of Technetium-99m

    Science.gov (United States)

    Gagnon, Katherine M.

    Technetium-99m (99mTc) has emerged as the most widely used radionuclide in medicine and is currently obtained from a 99Mo/ 99mTc generator system. At present, there are only a handful of ageing reactors worldwide capable of producing large quantities of the parent isotope, 99Mo, and owing to the ever growing shutdown periods for maintenance and repair of these ageing reactors, the reliable supply 99mTc has been compromised in recent years. With an interest in alternative strategies for producing this key medical isotope, this thesis focuses on several technical challenges related to the direct cyclotron production of 99mTc via the 100Mo(p,2n)99mTc reaction. In addition to evaluating the 100Mo(p,2n)99mTc and 100Mo(p,x)99Mo reactions, this work presented the first experimental evaluation of the 100Mo(p,2n) 99gTc excitation function in the range of 8-18 MeV. Thick target calculations suggested that large quantities of cyclotron-produced 99mTc may be possible. For example, a 6 hr irradiation at 500 μA with an energy window of 18→10 MeV is expected to yield 1.15 TBq of 99mTc. The level of coproduced 99gTc contaminant was found to be on par with the current 99Mo/99mTc generator standard eluted with a 24 hr frequency. Highly enriched 100Mo was required as the target material for 99mTc production and a process for recycling of this expensive material is presented. An 87% recovery yield is reported, including metallic target preparation, irradiation, 99mTc extraction, molybdate isolation, and finally hydrogen reduction to the metal. Further improvements are expected with additional optimization experiments. A method for forming structurally stable metallic molybdenum targets has also been developed. These targets are capable of withstanding more than a kilowatt of beam power and the reliable production and extraction of Curie quantities of 99mTc has been demonstrated. With the end-goal of using the cyclotron-produced 99mTc clinically, the quality of the cyclotron

  14. Effects of various organic carbon sources on simultaneous V(V) reduction and bioelectricity generation in single chamber microbial fuel cells.

    Science.gov (United States)

    Hao, Liting; Zhang, Baogang; Cheng, Ming; Feng, Chuanping

    2016-02-01

    Four ordinary carbon sources affecting V(V) reduction and bioelectricity generation in single chamber microbial fuel cells (MFCs) were investigated. Acetate supported highest maximum power density of 589.1mW/m(2), with highest V(V) removal efficiency of 77.6% during 12h operation, compared with glucose, citrate and soluble starch. Exorbitant initial V(V) concentration led to lower V(V) removal efficiencies and power outputs. Extra addition of organics had little effect on the improvement of MFCs performance. V(V) reduction and bioelectricity generation were enhanced and then suppressed by the increase of conductivity. The larger the external resistance, the higher the V(V) removal efficiencies and voltage outputs. High-throughput 16S rRNA gene pyrosequencing analysis implied the accumulation of Enterobacter which had the capabilities of V(V) reduction, electrochemical activity and fermentation, accompanied with other functional species as Pseudomonas, Spirochaeta, Sedimentibacter and Dysgonomonas. This study steps forward to remediate V(V) contaminated environment based on MFC technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.

    2013-11-01

    Commercially available activated carbon (AC) powders from different precursor materials (peat, coconut shell, coal, and hardwood) were treated with ammonia gas at 700 C to improve their performance as oxygen reduction catalysts in neutral pH solutions used in microbial fuel cells (MFCs). The ammonia treated ACs exhibited better catalytic performance in rotating ring-disk electrode tests than their untreated precursors, with the bituminous based AC most improved, with an onset potential of Eonset = 0.12 V (untreated, Eonset = 0.08 V) and n = 3.9 electrons transferred in oxygen reduction (untreated, n = 3.6), and the hardwood based AC (treated, E onset = 0.03 V, n = 3.3; untreated, Eonset = -0.04 V, n = 3.0). Ammonia treatment decreased oxygen content by 29-58%, increased nitrogen content to 1.8 atomic %, and increased the basicity of the bituminous, peat, and hardwood ACs. The treated coal based AC cathodes had higher maximum power densities in MFCs (2450 ± 40 mW m-2) than the other AC cathodes or a Pt/C cathode (2100 ± 1 mW m-2). These results show that reduced oxygen abundance and increased nitrogen functionalities on the AC surface can increase catalytic performance for oxygen reduction in neutral media. © 2013 Elsevier B.V. All rights reserved.

  16. Technetium reduction and removal in a stratified fjord

    International Nuclear Information System (INIS)

    Keith-Roach, M.; Roos, P.

    2002-01-01

    The distribution of Tc in the water columns of a stratified fjord has been measured to investigate the behaviour and fate of Tc on reaching reducing waters. Slow mixing in the water column of the fjord results in vertical transport of the dissolved Tc to the oxic/anoxic interface. Tc is reduced just below the interface and at 21 m 60% is sorbed to particulate and colloidal material. Tc is carried to the sediments sorbed to the particulate material, where there is a current inventory of approximately 3 Bq m -2 . (LN)

  17. Technetium reduction and removal in a stratified fjord

    Energy Technology Data Exchange (ETDEWEB)

    Keith-Roach, M.; Roos, P. [Risoe National Lab., Roskilde (Denmark)

    2002-04-01

    The distribution of Tc in the water columns of a stratified fjord has been measured to investigate the behaviour and fate of Tc on reaching reducing waters. Slow mixing in the water column of the fjord results in vertical transport of the dissolved Tc to the oxic/anoxic interface. Tc is reduced just below the interface and at 21 m 60% is sorbed to particulate and colloidal material. Tc is carried to the sediments sorbed to the particulate material, where there is a current inventory of approximately 3 Bq m{sup -2}. (LN)

  18. Experimental studies on the uptake of technetium-99 to terrestrial crops

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Joanne; Ewers, Leon [Centre for Radiation, Chemical and Environmental Hazards, Public Health England (United Kingdom)

    2014-07-01

    Technetium-99 has been dispersed in the environment from many sources such as nuclear weapons testing, releases from medical or industrial processes, nuclear power plants and nuclear fuel processing facilities. The pertechnetate ion, {sup 99}TcO{sub 4}{sup -} is the form produced during the nuclear fuel cycle and the most likely to be released into the environment. A recent review published by Public Health England (formerly the Health Protection Agency) found that the availability for the root uptake of technetium into crops depends on whether the technetium is in a chemically non-reduced more plant available form, such as TcO{sub 4}{sup -} or a chemically reduced less plant available form, such as TcO{sub 2}. Based on the review, generic soil to crop transfer factor (TF) values for use in non-site specific UK based radiological assessments were proposed, with the TF value for the reduced form of technetium in crops around a factor of 10 lower than that for the non-reduced form. The implications of the use of different TF values on the activity concentrations in crops and animal products predicted by PHE's food chain model, FARMLAND, for both routine and accidental release situations were explored. Recommendations on the best choice of TF values for use in the model have been given for a range of contamination scenarios. A small scale experimental study has been carried out to provide further evidence that the generic assumption made on the difference between soil-crop TF values for non-reduced and reduced forms of technetium is valid. The study was also designed to establish likely time periods over which the chemical reduction of technetium takes place and to provide additional soil-crop TF values for use in UK based radiological assessments. Soil to crop TFs for crops harvested from loam and peat soils up to 4 months after contamination are about a factor of 10 higher than those seen in soil contaminated more than a year previously, indicating that the

  19. Measurement of microbial activity in soil by colorimetric observation of in situ dye reduction: an approach to detection of extraterrestrial life

    Directory of Open Access Journals (Sweden)

    Barnes Bruce

    2002-07-01

    Full Text Available Abstract Background Detecting microbial life in extraterrestrial locations is a goal of space exploration because of ecological and health concerns about possible contamination of other planets with earthly organisms, and vice versa. Previously we suggested a method for life detection based on the fact that living entities require a continual input of energy accessed through coupled oxidations and reductions (an electron transport chain. We demonstrated using earthly soils that the identification of extracted components of electron transport chains is useful for remote detection of a chemical signature of life. The instrument package developed used supercritical carbon dioxide for soil extraction, followed by chromatography or electrophoresis to separate extracted compounds, with final detection by voltammetry and tandem mass-spectrometry. Results Here we used Earth-derived soils to develop a related life detection system based on direct observation of a biological redox signature. We measured the ability of soil microbial communities to reduce artificial electron acceptors. Living organisms in pure culture and those naturally found in soil were shown to reduce 2,3-dichlorophenol indophenol (DCIP and the tetrazolium dye 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide inner salt (XTT. Uninoculated or sterilized controls did not reduce the dyes. A soil from Antarctica that was determined by chemical signature and DNA analysis to be sterile also did not reduce the dyes. Conclusion Observation of dye reduction, supplemented with extraction and identification of only a few specific signature redox-active biochemicals such as porphyrins or quinones, provides a simplified means to detect a signature of life in the soils of other planets or their moons.

  20. Removal of technetium, carbon tetrachloride, and metals from DOE properties. 1998 annual progress report

    International Nuclear Information System (INIS)

    Darab, J.G.; Mallouk, T.E.; Ponder, S.M.

    1998-01-01

    'The objective of the project is to develop and characterize supported reducing agents, and solid waste forms derived from them, which will be effective in the removal of transition metal ions, chlorinated organic molecules, and technetium from aqueous mixed wastes. This work follows the discovery that a nanoscale form of zero-valent iron, dispersed on high surface area supports, reduces metal ions (chromium, mercury, and lead) and rhenium (as a surrogate for technetium) to insoluble forms much faster than does unsupported iron. The scientific goals of the project are to better understand the mechanism of the reduction process, to develop supports that are compatible with a variety of mixed waste compositions, and to develop surface modifiers for the supported iron aggregates that will optimize their selectivity for the contaminants of interest. The support composition is of particular interest in the case of technetium (Tc) separation and stabilization in the Hanford tank wastes. While it is expected that pertechnetate will be reduced insoluble TcO 2 , the support material must be compatible with the vitrification process used in the final waste disposition. The surface modifications are also a focal point for Hanford applications because of the complex and variable makeup of the tank wastes. This report summarizes progress in the first 8 months of a 3-year collaborative project involving Penn State and Pacific Northwest National Laboratory (PNNL).'

  1. Removal of Technetium, Carbon Tetrachloride, and Metals from DOE Properties - Final Report

    International Nuclear Information System (INIS)

    Mallouk, Thomas E.; Ponder, S.M.

    2000-01-01

    This research is a three year project involving close collaboration between chemists at Pennsylvania State University and materials scientists at Pacific Northwest National Laboratory (PNNL). The goal of the project is the development and characterization of supported reducing agents, and solid waste forms derived from them, which will be effective in remediation of aqueous wastes. The work follows the recent discovery that zero-valent metals, such as iron, are effective decontaminants for waste streams containing chlorinated hydrocarbons. Preliminary data, obtained at Penn State and elsewhere, have shown that the same strategy will be effective in reducing soluble compounds containing toxic metals (technetium, lead, mercury, and chromium) to insoluble forms. The Penn State group has prepared a new class of powerful reducing agents, called Ferragels, which consist of finely divided zero-valent metals on high surface area supports. Because the rate of the surface oxidation-reduction reaction depends on available surface area, Ferragels are more effective in every case tested to date than unsupported metals. The project will further develop and investigate the application of these composite materials to problems relevant to the DOE-EM mission, namely the detoxification of waste streams containing technetium, carbon tetrachloride, and toxic metal ions. The Penn State group will work closely with the PNNL group to prepare materials that are compatible with the highly corrosive liquid fraction of Hanford site tank waste, to conduct tests with waste simulants containing technetium, and to formulate and characterize vitrified waste forms derived from these materials

  2. Evolution of technetium speciation in reducing grout

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, Wayne W.; Bucher, Jerome J.; Shuh, David K.; Edelstein,Norman M.

    2003-11-24

    Cementitious waste forms (CWFs) are an important component of the strategy to immobilize high-level nuclear waste resulting from plutonium production by the U.S. Department of Energy (DOE). Technetium (99Tc) is an abundant fission product of particular concern in CWFs due to the high solubility and mobility of pertechnetate, TcO4-, the stable form of technetium in aerobic environments. CWFs can more effectively immobilize 99Tc if they contain additives that reduce mobile TcO4- to immobile Tc(IV) species. Leaching of 99Tc from reducing CWFs that contain Tc(IV) is much slower than for CWFs containing TcO4-. Previous X-ray absorption fine structure (XAFS) studies showed that the Tc(IV) species were oxidized to TcO4- in reducing grout samples prepared on a laboratory scale. Whether the oxidizer was atmospheric O2 or NO3- in the waste simulant was not determined. In actual CWFs, rapid oxidation of Tc(IV) by NO3- would be a concern, whereas oxidation by atmospheric O2 would be of less concern due to the slow diffusion and reaction of O2 with the reducing CWF. To address this uncertainty, two series of reducing grouts were prepared using TcO4- containing waste simulants with and without NO3-. In the first series of samples, the TcO4- was completely reduced using Na2S, and the samples were placed in containers that permitted O2 diffusion. In these samples, all of the technetium was initially present as aTc(IV) sulfide compound, TcSx, which was characterized using extended X-ray absorption fine structure (EXAFS) spectroscopy, and is likely Tc2S7. The TcSx initially present in the grout samples was steadily oxidized over 4 years. In the second series of samples, all of the TcO4- was not initially reduced, and the grout samples were placed in airtight containers. In these samples, the remaining TcO4- continued to be reduced as the samples aged, presumably due to the presence of reducing blast furnace slag. When samples in the second series were exposed to atmosphere, the

  3. Behavior of technetium in paddy soils

    International Nuclear Information System (INIS)

    Yanagisawa, K.; Muramatsu, Y.; Ban-Nai, T.

    1997-01-01

    In order to understand the chemical form of soluble technetium in paddy soil and its availability to a rice plant, soil incubation and uptake experiments have been carried out using 95m Tc as a tracer. The chemical form of the soluble Tc was observed by gel chromatography and found not to be pertechnetate, but rather to be associated with soluble organic matter. An uptake experiment with rice seedlings using nutrient solution showed that this Tc-organic matter complex was less available than pertechnetate. (author)

  4. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; JØRGENSEN, BB

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO4(2-) reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100-mu-m) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured...

  5. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium.

    Science.gov (United States)

    Liu, D; Dong, H; Bishop, M E; Zhang, J; Wang, H; Xie, S; Wang, S; Huang, L; Eberl, D D

    2012-03-01

    Clay minerals are ubiquitous in soils, sediments, and sedimentary rocks and could coexist with sulfate-reducing bacteria (SRB) in anoxic environments, however, the interactions of clay minerals and SRB are not well understood. The objective of this study was to understand the reduction rate and capacity of structural Fe(III) in dioctahedral clay minerals by a mesophilic SRB, Desulfovibrio vulgaris and the potential role in catalyzing smectite illitization. Bioreduction experiments were performed in batch systems, where four different clay minerals (nontronite NAu-2, mixed-layer illite-smectite RAr-1 and ISCz-1, and illite IMt-1) were exposed to D. vulgaris in a non-growth medium with and without anthraquinone-2,6-disulfonate (AQDS) and sulfate. Our results demonstrated that D. vulgaris was able to reduce structural Fe(III) in these clay minerals, and AQDS enhanced the reduction rate and extent. In the presence of AQDS, sulfate had little effect on Fe(III) bioreduction. In the absence of AQDS, sulfate increased the reduction rate and capacity, suggesting that sulfide produced during sulfate reduction reacted with the phyllosilicate Fe(III). The extent of bioreduction of structural Fe(III) in the clay minerals was positively correlated with the percentage of smectite and mineral surface area of these minerals. X-ray diffraction, and scanning and transmission electron microscopy results confirmed formation of illite after bioreduction. These data collectively showed that D. vulgaris could promote smectite illitization through reduction of structural Fe(III) in clay minerals. © 2011 Blackwell Publishing Ltd.

  6. Technetium-99m DTPA renal flow studies in Goldblatt hypertension

    International Nuclear Information System (INIS)

    Nally, J.V.; Clarke, H.S.; Windham, J.P.; Grecos, G.P.; Gross, M.L.; Potvin, W.J.

    1985-01-01

    Computer-assisted dynamic renal studies were performed on a group of 14 mongrel dogs before and after the induction of unilateral renal artery stenosis. Ninety-second technetium-99m diethylenetriaminepentaacetic acid ([/sup 99m/Tc]DTPA), 15-min [/sup 99m/Tc]DTPA, and 30-min iodine-131 orthoiodohippurate ([ 131 I]hippuran) time-activity curves were analyzed and correlated with reduction of renal blood flow as measured by electromagnetic flow probe and PAH clearance techniques. For blood flow reductions greater than 33%, the [/sup 99m/Tc]DTPA studies were judged diagnostic of unilateral renal artery stenosis in all cases, whereas the [ 131 I]hippuran time-activity curves were indicative of stenosis in only six of ten studies. Thus, in this model we find the computer-assisted 90-sec [/sup 99m/Tc]DTPA renal flow study to be superior to conventional [ 131 I]hippuran renography in the diagnosis of moderate-to-serve unilateral renal artery stenosis

  7. Nitrous oxide reduction genetic potential from the microbial community of an intermittently aerated partial nitritation SBR treating mature landfill leachate.

    Science.gov (United States)

    Gabarró, J; Hernández-Del Amo, E; Gich, F; Ruscalleda, M; Balaguer, M D; Colprim, J

    2013-12-01

    This study investigates the microbial community dynamics in an intermittently aerated partial nitritation (PN) SBR treating landfill leachate, with emphasis to the nosZ encoding gene. PN was successfully achieved and high effluent stability and suitability for a later anammox reactor was ensured. Anoxic feedings allowed denitrifying activity in the reactor. The influent composition influenced the mixed liquor suspended solids concentration leading to variations of specific operational rates. The bacterial community was low diverse due to the stringent conditions in the reactor, and was mostly enriched by members of Betaproteobacteria and Bacteroidetes as determined by 16S rRNA sequencing from excised DGGE melting types. The qPCR analysis for nitrogen cycle-related enzymes (amoA, nirS, nirK and nosZ) demonstrated high amoA enrichment but being nirS the most relatively abundant gene. nosZ was also enriched from the seed sludge. Linear correlation was found mostly between nirS and the organic specific rates. Finally, Bacteroidetes sequenced in this study by 16S rRNA DGGE were not sequenced for nosZ DGGE, indicating that not all denitrifiers deal with complete denitrification. However, nosZ encoding gene bacteria was found during the whole experiment indicating the genetic potential to reduce N2O. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Influence of Micropore and Mesoporous in Activated Carbon Air-cathode Catalysts on Oxygen Reduction Reaction in Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Liu, Yi; Li, Kexun; Ge, Baochao; Pu, Liangtao; Liu, Ziqi

    2016-01-01

    In this study, carbon samples with different micropore and mesoporous structures are prepared as air-cathode catalyst layer to explore the role of pore structure on oxygen reduction reaction. The results of linear sweep voltammetry and power density show that the commercially-produced activated carbon (CAC) has the best electrochemical performance, and carbon samples with only micropore or mesoporous show lower performance than CAC. Nitrogen adsorption-desorption isotherms analysis confirm that CAC has highest surface area (1616 m 2 g −1 ) and a certain amount of micropore and mesoporous. According to Tafel plot and rotating disk electrode, CAC behaves the highest kinetic activity and electron transfer number, leading to the improvement of oxygen reduction reaction. The air permeability test proves that mesoporous structure enhance oxygen permeation. Carbon materials are also analyzed by In situ Fourier Transform Infrared Spectroscopy and H 2 temperature programmed reduction, which indicate that micropore provide active sites for catalysis. In a word, micropore and mesoporous together would improve the electrochemical performance of carbon materials.

  9. Microbial reduction of [Co(III)-EDTA]⁻ by Bacillus licheniformis SPB-2 strain isolated from a solar salt pan.

    Science.gov (United States)

    Paraneeiswaran, Arunachalam; Shukla, Sudhir K; Prashanth, K; Rao, T Subba

    2015-01-01

    Naturally stressed habitats are known to be repositories for novel microorganisms with potential bioremediation applications. In this study, we isolated a [Co(III)-EDTA](-) reducing bacterium Bacillus licheniformis SPB-2 from a solar salt pan that is exposed to constant cycles of hydration and desiccation in nature. [Co(III)-EDTA](-) generated during nuclear waste management process is difficult to remove from the waste due to its high stability and solubility. It is reduced form i.e. [Co(II)-EDTA](2-) is less stable though it is toxic. This study showed that B. licheniformis SPB-2 reduced 1mM [Co(III)-EDTA](-) in 14 days when grown in a batch mode. However, subsequent cycles showed an increase in the reduction activity, which was observed up to four cycles. Interestingly, the present study also showed that [Co(III)-EDTA](-) acted as an inducer for B. licheniformis SPB-2 spore germination. Vegetative cells germinated from the spores were found to be involved in [Co(III)-EDTA](-) reduction. More detailed investigations showed that after [Co(III)-EDTA](-) reduction, i.e. [Co(II)-EDTA](2-) complex was removed by B. licheniformis SPB-2 from the bulk liquid by adsorption phenomenon. The bacterium showed a D10 value (radiation dose required to kill 90% cells) of ∼250 Gray (Gy), which signifies the potential use of B. licheniformis SPB-2 for bioremediation of moderately active nuclear waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Cr(Vi) reduction capacity of activated sludge as affected by nitrogen and carbon sources, microbial acclimation and cell multiplication

    International Nuclear Information System (INIS)

    Ferro Orozco, A.M.; Contreras, E.M.; Zaritzky, N.E.

    2010-01-01

    The objectives of the present work were: (i) to analyze the capacity of activated sludge to reduce hexavalent chromium using different carbon sources as electron donors in batch reactors, (ii) to determine the relationship between biomass growth and the amount of Cr(VI) reduced considering the effect of the nitrogen to carbon source ratio, and (iii) to determine the effect of the Cr(VI) acclimation stage on the performance of the biological chromium reduction assessing the stability of the Cr(VI) reduction capacity of the activated sludge. The highest specific Cr(VI) removal rate (q Cr ) was attained with cheese whey or lactose as electron donors decreasing in the following order: cheese whey ∼ lactose > glucose > citrate > acetate. Batch assays with different nitrogen to carbon source ratio demonstrated that biological Cr(VI) reduction is associated to the cell multiplication phase; as a result, maximum Cr(VI) removal rates occur when there is no substrate limitation. The biomass can be acclimated to the presence of Cr(VI) and generate new cells that maintain the ability to reduce chromate. Therefore, the activated sludge process could be applied to a continuous Cr(VI) removal process.

  11. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction

    International Nuclear Information System (INIS)

    Ben Dhia Thabet, Olfa; Bouallagui, Hassib; Cayol, Jean-luc; Ollivier, Bernard; Fardeau, Marie-Laure; Hamdi, Moktar

    2009-01-01

    This study evaluated the anaerobic degradation of landfill leachate and sulfate reduction as a function of COD/(SO 4 2- ) ratio in an upflow anaerobic fixed-bed reactor. The reactor, which was inoculated with a mixed consortium, was operated under a constant hydraulic retention time (HRT) of 5 days. We investigated the effect of COD/(SO 4 2- ) ratio variation on the sulfate reduction efficiency, hydrogen sulfide production, chemical oxygen demand (COD) removal, conductivity, and pH variation. The best reactor performance, with significant sulfate reduction efficiency and COD removal efficiency of 91% and 87%, respectively, was reached under a COD/(SO 4 2- ) ratio of 1.17. Under these conditions, microscopic analysis showed the abundance of vibrios and rod-shaped bacterial cells. Two anaerobic bacteria were isolated from the reactor sludge. Phylogenetic studies performed on these strains identified strain A1 as affiliated to Clostridium genus and strain H1 as a new species of sulfate-reducing bacteria affiliated to the Desulfovibrio genus. The closest phylogenetic relative of strain H1 was Desulfovibrio desulfuricans, at 96% similarity for partial 16S RNA gene sequence data. Physiological and metabolic characterization was performed for this strain.

  12. Control of technetium at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Saraceno, A.J.

    1981-01-01

    Technetium-99 entered the gaseous diffusion complex as a volatile impurity in recycled uranium that was fed to the Paducah Gaseous Diffusion Plant. Subsequently, it entered the Oak Ridge and Portsmouth cascades as an impurity in Paducah product feed. Most of the technetium was adsorbed on cascade equipment in increasingly high concentrations as it moved up the cascade. Since the low energy beta radiation produced by technetium cannot penetrate cascade equipment, it presents no significant hazard to workers as long as it remains inside of equipment. However, when equipment that contains high concentrations of technetium is opened for maintenance or change-out, precautions are taken to ensure worker safety. Traps containing activated alumina are used at the plant vent streams to limit radioactive emissions as far as possible. Annual vent stream emissions have been well below DOE limits. To allow continued compliance, other potential trapping agents have been tested. Several that limit emissions more effectively than activated alumina have been found. Other traps containing magnesium fluoride are used in the upper cascade to reduce the technetium concentration. Waste solutions from decontamination can also contain technetium. These solutions must either be stored for controlled discharge or treated to remove the technetium. To allow the latter, an ion exchange facility is being installed for operation by the end of FY-1982. Liquid discharges at Portsmouth have usually been less than 5% of the DOE imposed limits

  13. Research program to investigate the fundamental chemistry of technetium

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, David A.; Buechele, Andrew C.; Lukens, Wayne W.; Muller, Isabelle S.; Shuh, David K.; Pegg, Ian L.

    2007-10-12

    The objective of this research is to increase the knowledge of the fundamental technetium chemistry necessary to address challenges to the safe, long-term disposal of high-level nuclear waste posed by this element. The primary issues examined during the course of this project were the behavior of technetium and its surrogate rhenium during waste vitrification and glass corrosion. Since the redox behavior of technetium can play a large role in determining its volatility, one goal of this research was to better understand the behavior of technetium in glass as a function of the redox potential of the glass melt. In addition, the behavior of rhenium was examined, since rhenium is commonly used as a surrogate for technetium in waste vitrification studies. A number of glasses similar to Hanford Low Activity Waste (LAW) glasses were prepared under controlled atmospheres. The redox state of the glass was determined from the Fe(II)/Fe(III) ratio in the cooled glass, and the speciation of technetium and rhenium was determined by x-ray absorption fine structure (XAFS) spectroscopy. The behavior of rhenium and technetium during glass alteration was also examined using the vapor hydration test (VHT).

  14. Technetium-99 in the Irish marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.; Fegan, M.; Pollard, D.; Long, S.; Hayden, E.; Ryan, T.P

    2001-07-01

    Technetium-99 activity concentrations in seawater and biota from Irish coastal waters are presented. Time series measurements of {sup 99}Tc in seawater and Fucus vesiculosus from the western Irish Sea show that activity concentrations have increased in line with the increase in discharges of {sup 99}Tc from Sellafield. The peak in activity concentrations in both seawater and Fucus vesiculosus occurred in 1997 approximately two years after the peak in {sup 99}Tc discharges. The highest activity concentration recorded in Fucus vesiculosus showed a 29-fold increase over the mean concentration for the period 1988-1993. Technetium-99 activity concentrations were measured in fish, lobsters, prawns, mussels and oysters landed at major fishing ports on the east and northeast coasts of Ireland between 1996 and 1998. Concentration factors for {sup 99}Tc in the brown seaweed Fucus vesiculosus and certain species of fish, crustaceans and molluscs from the Irish Sea were estimated. In general, these concentration factors were higher than those in the literature which were derived from laboratory studies, but agreed well with values which were based on field studies. The mean committed effective doses to Irish typical and heavy seafood consumers due to {sup 99}Tc in the period 1996-1998 were 0.061 and 0.24 {mu}Sv, respectively.

  15. Speciation of technetium in acidic media: effect of α radiations

    International Nuclear Information System (INIS)

    Denden, Ibtihel

    2013-01-01

    This project is part of the fundamental study of technetium speciation in highly acidic medium. The behaviour of technetium in HTFMS was carried out in the absence then in the presence of a irradiation. Given these two different conditions, spectrophotometric results of Tc(VII) reduction are similar. XAS analysis indicates the formation of a cyclic dimer of Tc(IV) complexed to triflate ligands and formulated asTc 2 O 2 (CF 3 SO 3 ) 4 (H 2 O)4. This compound is linearized to Tc(IV)-O-Tc(IV) with the increase of HTFMS concentration. At high concentration of HTFMS +98% (11.15 M), the protonated species TcO 3 (OH)(H 2 O) 2 which is formed in the absence of external ionizing radiations, is reduced to the V oxidation state under a irradiation. Structural characterization by EXAFS spectroscopy and DFT calculations suggests the formation of monomer species of Tc(V)-triflate complexes where [OTc(F 3 CSO 3 ) 2 (H 2 O)2] + and [OTc(F 3 CSO 3 ) 2 (OH) 2 ] - compounds were proposed. In concentrated H 2 SO 4 (CH 2 SO 4 ≥ 12 M), a-radiolysis experiments of Tc(VII) were performed in order to compare the radiolytic behaviour of Tc(VII) in both comparable media HTFMS and H 2 SO 4 . XANES studies show that radiolytic reduction of Tc(VII) leads to the formation of Tc(V)-Tc(VII) mixture in H 2 SO 4 13 M and just Tc(V) in 18 M of H 2 SO 4 . The analysis of EXAFS spectra is consistent with the formation of [TcO(HSO 4 ) 3 (H 2 O) 2 ] and [TcO(HSO 4 )3(H 2 O)(OH)] - monomer complexes in H 2 SO 4 13 M and [Tc(HSO 4 ) 3 (SO 4 )(H 2 O)] and [Tc(HSO 4 ) 3 (SO 4 )(OH)] - species at 18 M of H 2 SO 4 . (author)

  16. Research Program to Investigate the Fundamental Chemistry of Technetium

    International Nuclear Information System (INIS)

    Edelstein, Norman M.; Burns, Carol J.; Shuh, David D.; Lukens, Wayne

    2000-01-01

    Technetium (99Tc, half-life = 2.13x105 years, b-emitter) is one of the radionuclides of major concern for nuclear waste disposal. This concern is due to the long half-life of 99Tc, the ease with which pertechnetate, TcO4 -, migrates in the geosphere, and the corresponding regulatory considerations. The problem of mobility of pertechnetate in the environment is compounded by the fact that pertechnetate is the thermodynamically stable form of technetium in aerobic environments. These two factors present challenges for the safe, long term immobilization of technetium in waste forms. Because of the stability of pertechnetate, technetium has been assumed to exist as pertechnetate in the aqueous phase of nuclear waste tanks. However, recent studies indicate that a significant fraction of the technetium is in a different chemical form. This program addresses the fundamental solution chemistry of technetium in the waste tank environment, and in a second part, the stability of technetium in various waste forms. The chemistry of this element will be studied in aqueous solutions at high pH, with various added salts such as nitrate, nitrite, and organic complexants, and as a function of radiation dose, to determine whether radiolysis effects can reduce TcO4 -. A separate facet of this research is the search for chemical forms of technetium that may be thermodynamically and/or kinetically stable and may be incorporated in various waste forms for long term storage. This phase of the program will address the problem of the possible oxidation of lower valent technetium species in various waste form matrices and the subsequent leaching of the highly soluble TcO4 -

  17. Reduction in infection risk through treatment of microbially contaminated surfaces with a novel, portable, saturated steam vapor disinfection system.

    Science.gov (United States)

    Tanner, Benjamin D

    2009-02-01

    Surface-mediated infectious disease transmission is a major concern in various settings, including schools, hospitals, and food-processing facilities. Chemical disinfectants are frequently used to reduce contamination, but many pose significant risks to humans, surfaces, and the environment, and all must be properly applied in strict accordance with label instructions to be effective. This study set out to determine the capability of a novel chemical-free, saturated steam vapor disinfection system to kill microorganisms, reduce surface-mediated infection risks, and serve as an alternative to chemical disinfectants. High concentrations of Escherichia coli, Shigella flexneri, vancomycin-resistant Enterococcus faecalis (VRE), methicillin-resistant Staphylococcus aureus (MRSA), Salmonella enterica, methicillin-sensitive Staphylococcus aureus, MS2 coliphage (used as a surrogate for nonenveloped viruses including norovirus), Candida albicans, Aspergillus niger, and the endospores of Clostridium difficile were dried individually onto porous clay test surfaces. Surfaces were treated with the saturated steam vapor disinfection system for brief periods and then numbers of surviving microorganisms were determined. Infection risks were calculated from the kill-time data using microbial dose-response relationships published in the scientific literature, accounting for surface-to-hand and hand-to-mouth transfer efficiencies. A diverse assortment of pathogenic microorganisms was rapidly killed by the steam disinfection system; all of the pathogens tested were completely inactivated within 5 seconds. Risks of infection from the contaminated surfaces decreased rapidly with increasing periods of treatment by the saturated steam vapor disinfection system. The saturated steam vapor disinfection system tested for this study is chemical-free, broadly active, rapidly efficacious, and therefore represents a novel alternative to liquid chemical disinfectants.

  18. Distinction of Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts with a selection medium.

    Science.gov (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Higuchi, Tomoko; Shiga, Masanobu; Noguchi, Katsuya; Matsumoto, Kiyoshi

    2011-01-01

    Bacteria are fundamentally divided into two groups: Gram-positive and Gram-negative. Although the Gram stain and other techniques can be used to differentiate these groups, some issues exist with traditional approaches. In this study, we developed a method for differentiating Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt} (WST-8) via 2-methyl-1,4-napthoquinone with a selection medium. We optimized the composition of the selection medium to allow the growth of Gram-negative bacteria while inhibiting the growth of Gram-positive bacteria. When the colorimetric viability assay was carried out in a selection medium containing 0.5µg/ml crystal violet, 5.0 µg/ml daptomycin, and 5.0µg/ml vancomycin, the reduction in WST-8 by Gram-positive bacteria was inhibited. On the other hand, Gram-negative bacteria produced WST-8-formazan in the selection medium. The proposed method was also applied to determine the Gram staining characteristics of bacteria isolated from various foodstuffs. There was good agreement between the results obtained using the present method and those obtained using a conventional staining method. These results suggest that the WST-8 colorimetric assay with selection medium is a useful technique for accurately differentiating Gram-positive and -negative bacteria.

  19. Method of stably radiolabeling antibodies with technetium and rhenium

    International Nuclear Information System (INIS)

    Paik, C.H.; Reba, R.C.; Eckelman, W.C.

    1987-01-01

    A method is described for labeling antibodies or antibody fragments with radionuclides of technetium or rhenium to obtain stable labeling, comprising: reacting a reduced radioisotope of technetium or rhenium with an antibody or antibody fragment, or a diethylenetriaminepentaacetic acid conjugated antibody or antibody fragment, in the presence of free or carrier-bound diethylenetriaminepentaacetic acid (DTPA). The amount of DTPA is sufficient to substantially completely inhibit binding of the reduced technetium or rhenium to nonstable binding sites of the antibody or antibody fragment, or the DTPA-conjugated antibody or antibody fragment. The resultant stably labeled antibody or antibody fragment, or DTPA[conjugated antibody or antibody fragment is recovered

  20. The radiopharmaceuticals labelled with technetium-99m and the radiopharmacy

    International Nuclear Information System (INIS)

    Bodenant, V.

    1998-01-01

    In less than fifty years, the place of nuclear medicine is become primordial. Among all the radiopharmaceuticals used in nuclear medicine, the technetium-99m is the most used because of its physico-chemical properties and its great availability with the molybdenum-99m - technetium-99m generator. Since 1992, the radiopharmaceuticals, the packages, the generators are included in the pharmaceutic monopole. They are now under the reliability of the radio-pharmacist. This thesis has for object to introduce these different radiopharmaceuticals labelled with technetium-99m and to show the primordial place of the radio-pharmacist in a service of nuclear medicine. (N.C.)

  1. Ion exchange removal of technetium from salt solutions

    International Nuclear Information System (INIS)

    Walker, D.D.

    1983-01-01

    Ion exchange methods for removing technetium from waste salt solutions have been investigated by the Savannah River Laboratory (SRL). These experiments have shown: Commercially available anion exchange resins show high selectivity and capacity for technetium. In column runs, 150 column volumes of salt solution were passed through an ion exchange column before 50% 99 Tc breakthrough was reached. The technetium can be eluted from the resin with nitric acid. Reducing resins (containing borohydride) work well in simple hydroxide solutions, but not in simulated salt solutions. A mercarbide resin showed a very high selectivity for Tc, but did not work well in column operation

  2. Microbial reduction of SO[sub 2] and NO[sub x] as a means of by- product recovery/disposal from regenerable processes for the desulfurization of flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-01-01

    A review of the author's work on microbial reduction of flue gases is provided. The work begins with a discussion of efforts preceding the current project, then reviews the progress made in earlier periods of the project and concludes with a report of progress made in the current reporting period, September 11, 1991 to December 11, 1992.

  3. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by- product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1991--December 11, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-12-31

    A review of the author`s work on microbial reduction of flue gases is provided. The work begins with a discussion of efforts preceding the current project, then reviews the progress made in earlier periods of the project and concludes with a report of progress made in the current reporting period, September 11, 1991 to December 11, 1992.

  4. Investigations in the microbial degradation of polychlorinated dibenzo-p-dioxins and means of reductive dechlorination and aerobic mineralization

    International Nuclear Information System (INIS)

    Rosenbrock, P.

    1997-12-01

    The work had the objective to develop a biological method for cleaning up PCDD/PCDF contaminated upper soil layers (PCDDs/PCDFs: polychlorinated dibenzo-p-dioxins and dibenzofurans). Since highly chlorinated aromatic compounds persist in soil under aerobic conditions, reductive dechlorination of the compounds under anaerobic conditions was aimed at in a first phase of the project. A second, topped phase was destined for aerobic mineralization of the dechlorinated matrices. The tests were carried out on three farmland soils following long-term contamination with PCDDs/PCDFs. (orig./MG)

  5. Microbial Reduction of Fe(III) in Acidic Sediments: Isolation of Acidiphilium cryptum JF-5 Capable of Coupling the Reduction of Fe(III) to the Oxidation of Glucose

    Science.gov (United States)

    Küsel, Kirsten; Dorsch, Tanja; Acker, Georg; Stackebrandt, Erko

    1999-01-01

    To evaluate the microbial populations involved in the reduction of Fe(III) in an acidic, iron-rich sediment, the anaerobic flow of supplemental carbon and reductant was evaluated in sediment microcosms at the in situ temperature of 12°C. Supplemental glucose and cellobiose stimulated the formation of Fe(II); 42 and 21% of the reducing equivalents that were theoretically obtained from glucose and cellobiose, respectively, were recovered in Fe(II). Likewise, supplemental H2 was consumed by acidic sediments and yielded additional amounts of Fe(II) in a ratio of approximately 1:2. In contrast, supplemental lactate did not stimulate the formation of Fe(II). Supplemental acetate was not consumed and inhibited the formation of Fe(II). Most-probable-number estimates demonstrated that glucose-utilizing acidophilic Fe(III)-reducing bacteria approximated to 1% of the total direct counts of 4′,6-diamidino-2-phenylindole-stained bacteria. From the highest growth-positive dilution of the most-probable-number series at pH 2.3 supplemented with glucose, an isolate, JF-5, that could dissimilate Fe(III) was obtained. JF-5 was an acidophilic, gram-negative, facultative anaerobe that completely oxidized the following substrates via the dissimilation of Fe(III): glucose, fructose, xylose, ethanol, glycerol, malate, glutamate, fumarate, citrate, succinate, and H2. Growth and the reduction of Fe(III) did not occur in the presence of acetate. Cells of JF-5 grown under Fe(III)-reducing conditions formed blebs, i.e., protrusions that were still in contact with the cytoplasmic membrane. Analysis of the 16S rRNA gene sequence of JF-5 demonstrated that it was closely related to an Australian isolate of Acidiphilium cryptum (99.6% sequence similarity), an organism not previously shown to couple the complete oxidation of sugars to the reduction of Fe(III). These collective results indicate that the in situ reduction of Fe(III) in acidic sediments can be mediated by heterotrophic Acidiphilium

  6. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose.

    Science.gov (United States)

    Küsel, K; Dorsch, T; Acker, G; Stackebrandt, E

    1999-08-01

    To evaluate the microbial populations involved in the reduction of Fe(III) in an acidic, iron-rich sediment, the anaerobic flow of supplemental carbon and reductant was evaluated in sediment microcosms at the in situ temperature of 12 degrees C. Supplemental glucose and cellobiose stimulated the formation of Fe(II); 42 and 21% of the reducing equivalents that were theoretically obtained from glucose and cellobiose, respectively, were recovered in Fe(II). Likewise, supplemental H(2) was consumed by acidic sediments and yielded additional amounts of Fe(II) in a ratio of approximately 1:2. In contrast, supplemental lactate did not stimulate the formation of Fe(II). Supplemental acetate was not consumed and inhibited the formation of Fe(II). Most-probable-number estimates demonstrated that glucose-utilizing acidophilic Fe(III)-reducing bacteria approximated to 1% of the total direct counts of 4', 6-diamidino-2-phenylindole-stained bacteria. From the highest growth-positive dilution of the most-probable-number series at pH 2. 3 supplemented with glucose, an isolate, JF-5, that could dissimilate Fe(III) was obtained. JF-5 was an acidophilic, gram-negative, facultative anaerobe that completely oxidized the following substrates via the dissimilation of Fe(III): glucose, fructose, xylose, ethanol, glycerol, malate, glutamate, fumarate, citrate, succinate, and H(2). Growth and the reduction of Fe(III) did not occur in the presence of acetate. Cells of JF-5 grown under Fe(III)-reducing conditions formed blebs, i.e., protrusions that were still in contact with the cytoplasmic membrane. Analysis of the 16S rRNA gene sequence of JF-5 demonstrated that it was closely related to an Australian isolate of Acidiphilium cryptum (99.6% sequence similarity), an organism not previously shown to couple the complete oxidation of sugars to the reduction of Fe(III). These collective results indicate that the in situ reduction of Fe(III) in acidic sediments can be mediated by heterotrophic

  7. Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kusel, K.; Roth, U.; Drake, H.L. [University of Bayreuth, Bayreuth (Germany)

    2002-07-01

    In acidic, coal mining lake sediments, facultatively anaerobic Acidiphilium species are probably involved in the reduction of Fe(III). Previous results indicate that these bacteria can co-respire O{sub 2} and Fe(III). In this study, we investigated the capacity of the sediment microbiota to reduce Fe(III) in the presence of O{sub 2} at pH 3. In sediment microcosms with 4% O{sub 2} in the headspace, the concentration of Fe(II) increased at a rate of 1.03 {mu}mol (g wet sediment){sup -1} day{sup -1} within the first 7 days of incubation which was similar to the rate obtained with controls incubated under anoxic conditions. However, in microcosms incubated under air, Fe(II) was consumed after a lag phase of 8 h with a rate of 2.66 {mu}mol (g wet sediment){sup -1} day{sup -1}. Acidiphilium cryptum JF-5, isolated from this sediment, reduced soluble Fe(III) with either 4 or 21% O{sub 2} in the headspace, and concomitantly consumed O{sub 2}. However, the rate of Fe(II) formation normalized for cell density decreased under oxic conditions. Schwertmannite, the predominant Fe(III)-mineral of this sediment, was also reduced by A. cryptum JF-5 under oxic conditions. The rate of Fe(II) formation by A. cryptum JF-5 decreased after transfer from preincubation under air in medium lacking Fe(III). Acidiphilium cryptum JF-5 did not form Fe(II) when preincubated under air and transferred to anoxic medium containing Fe(III) and chloramphenicol, an inhibitor of protein synthesis. These results indicate that: (i) the reduction of Fe(III) can occur at low O{sub 2} concentrations in acidic sediments; (ii) Fe(II) can be oxidized at O{sub 2} concentrations near saturation; and (iii) the enzyme(s) responsible for the reduction of Fe(III) in A. cryptum JF-5 are not constitutive.

  8. The radiopharmaceuticals labelled with technetium-99m and the radiopharmacy; Les radiopharmaceutiques marques au technetium-99m et la radiopharmacie

    Energy Technology Data Exchange (ETDEWEB)

    Bodenant, V

    1998-10-01

    In less than fifty years, the place of nuclear medicine is become primordial. Among all the radiopharmaceuticals used in nuclear medicine, the technetium-99m is the most used because of its physico-chemical properties and its great availability with the molybdenum-99m - technetium-99m generator. Since 1992, the radiopharmaceuticals, the packages, the generators are included in the pharmaceutic monopole. They are now under the reliability of the radio-pharmacist. This thesis has for object to introduce these different radiopharmaceuticals labelled with technetium-99m and to show the primordial place of the radio-pharmacist in a service of nuclear medicine. (N.C.)

  9. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction

    DEFF Research Database (Denmark)

    Arnosti, C.; Jørgensen, BB; Sagemann, J.

    1998-01-01

    The temperature dependence of representative initial and terminal steps of organic carbon remineralization was measured at 2 temperate sites with annual temperature ranges of 0 to 30 degrees C and 4 to 15 degrees C and 2 Arctic sites with temperatures of 2.6 and -1.7 degrees C. Slurried sediments...... were incubated in a temperature gradient block spanning a temperature range of ca 45 degrees C. The initial step of organic carbon remineralization, macromolecule hydrolysis, was measured via the enzymatic hydrolysis of fluorescently labeled polysaccharides. The terminal steps of organic carbon...... remineralization were monitored through consumption of oxygen and reduction of (SO42-)-S-35. At each of the 4 sites, the temperature response of the initial step of organic carbon remineralization was similar to that of the terminal steps. Although optimum temperatures were always well above ambient environmental...

  10. Competitive, microbially-mediated reduction of nitrate with sulfide and aromatic oil components in a low-temperature, western Canadian oil reservoir.

    Science.gov (United States)

    Lambo, Adewale J; Noke, Kim; Larter, Steve R; Voordouw, Gerrit

    2008-12-01

    Fields from which oil is produced by injection of sulfate-bearing water often exhibit an increase in sulfide concentration with time (souring). Nitrate added to the injection water lowers the sulfide concentration by the action of sulfide-oxidizing, nitrate-reducing bacteria (SO-NRB). However, the injected nitrate can also be reduced with oil organics by heterotrophic NRB (hNRB). Aqueous volatile fatty acids (VFAs; a mixture of acetate, propionate, and butyrate) are considered important electron donors in this regard. Injection and produced waters from a western Canadian oil field with a low in situ reservoir temperature (30 degrees C) had only 0.1-0.2 mM VFAs. Amendment of these waters with nitrate gave therefore only partial reduction. More nitrate was reduced when 2% (v/v) oil was added, with light oil giving more reduction than heavy oil. GC-MS analysis of in vitro degraded oils and electron balance considerations indicated that toluene served as the primary electron donor for nitrate reduction. The differences in the extent of nitrate reduction were thus related to the toluene content of the light and heavy oil (30 and 5 mM, respectively). Reduction of nitrate with sulfide by SO-NRB always preceded that with oil organics by hNRB, even though microbially catalyzed kinetics with either electron donor were similar. Inhibition of hNRB by sulfide is responsible for this phenomenon. Injected nitrate will thus initially be reduced with sulfide through the action of SO-NRB. However, once sulfide has been eliminated from the near-injection wellbore region, oil organics will be targeted by the action of hNRB. Hence, despite the kinetic advantage of SO-NRB, the nitrate dose required to eliminate sulfide from a reservoir depends on the concentration of hNRB-degradable oil organics, with toluene being the most important in the field under study. Because the toluene concentration is lower in heavy oilthan in light oil, nitrate injection into a heavy-oil-producing field of

  11. Comparative synergistic (technetium-actinide) extraction chemistry by tributylphosphate and some amide extractants

    International Nuclear Information System (INIS)

    Condamines, N.; Musikas, C.

    1993-01-01

    In nuclear fuel reprocessing, technetium (TcO 4 - ) leads to bad interferences in the extractions, being synergistically co-extracted with different actinide cations as Uranium (VI), Plutonium (IV) and Zirconium (IV). It destroys the hydrazine in the reductive partition of U and Pu, it decreases the decontamination of U and Pu from fission products. Thus, its extraction behaviour with new extractants as N,N-diakylamides is useful to be known. TcO 4 - extraction in nitric acid media is compared for TBP and different amides. The influence of nitric acidity is related to the amides formula

  12. Review of technetium behavior in relation to nuclear waste disposal

    International Nuclear Information System (INIS)

    Paquette, J.; Reid, J.A.K.; Rosinger, E.L.J.

    1992-05-01

    This report contains available information which determine possible methods of the transfer of technetium element from waste disposal facilities to the biosphere. It also includes possible effects upon human beings and environment. 65 refs., 4 tabs., 3 figs

  13. Preparation and quality control of technetium-99m radiopharmaceuticals

    International Nuclear Information System (INIS)

    Samuels, D.L.

    1978-11-01

    Appropriate procedures for the production and quality control of technetium-99m based radiopharmaceuticals in hospital radiopharmacy consistent with the recently published Australian Code of Good Manufacturing Practice are discussed

  14. Physical chemical quality control of the molybdenum technetium generator

    International Nuclear Information System (INIS)

    Olive, E.; Cruz, J.; Isaac, M.; Gamboa, R.; D'Alessandro, K.; Desdin, L.F.

    1995-01-01

    Comparative operational procedure imported molybdenum technetium generators have been made. Procedures for determination of chemical, radiochemical and radionuclidic purities that may be applied in Hospital's laboratories and in the quality control of generators production are developed

  15. Recycled Archean sulfur in the mantle wedge of the Mariana Forearc and microbial sulfate reduction within an extremely alkaline serpentine seamount

    Science.gov (United States)

    Aoyama, Shinnosuke; Nishizawa, Manabu; Miyazaki, Junichi; Shibuya, Takazo; Ueno, Yuichiro; Takai, Ken

    2018-06-01

    The identification of microbial activity under extreme conditions is important to define potential boundaries of the habitable and uninhabitable zones of terrestrial and extraterrestrial living forms. The subseafloor regimes of serpentinite seamounts in the Mariana Forearc are among the most extreme environments for life on earth owing to the widespread presence of highly alkaline fluids with pH values greater than 12. The potential activity of sulfate-reducing microorganisms has been suggested within the South Chamorro serpentinite seamounts on the basis of depletion of sulfate and enrichment of dissolved sulfide in pore water. However, the vertical distribution of sulfate-reducing microorganisms and the origin of sulfate are still uncertain. To address these issues, we analyzed quadruple sulfur isotopes of sulfide minerals and pore water sulfate in the upper 56 m of sedimentary sequences at the summit of the S. Chamorro Seamount and those of dissolved sulfate in upwelling fluids collected as deep as 202 mbsf (meters below the seafloor) in a cased hole near the summit of the same seamount. The depth profiles of the concentrations and the δ34S and Δ33S‧ values of sulfide minerals and pore water sulfate indicate microbial sulfate reduction as deep as 30 mbsf. Further, apparent isotopic fractionations (34ε) and exponents of mass dependent relationships (33λ) during sulfate reduction are estimated to be 62 ± 14‰ and 0.512 ± 0.002, respectively. The upwelling fluids show both the chlorine depletion relative to seawater and the negative δ15N values of ammonia (-4‰). Although these signatures point to dehydration of the subducting oceanic plate, the negative Δ33S‧ values of sulfate (-0.16‰ to -0.26‰ with analytical errors of ±0.01‰) are unlikely to originate from surrounding modern crusts. Instead, sulfate in the upwelling fluid likely possess non-mass-dependent (NMD) sulfur. Because NMD sulfur was produced primarily in the Archean atmosphere, our

  16. Development of a remote spectroelectrochemical sensor for technetium as pertechnetate

    Science.gov (United States)

    Monk, David James

    Subsurface contamination by technetium (Tc) is of particular concern in the monitoring, characterization, and remediation of underground nuclear waste storage tanks, processing areas, and associated surroundings at the Hanford Site and other U.S. DOE sites nationwide. The concern over this radioactive element arises for two reasons. First, its most common isotope, 99Tc, has an extremely long lifetime of 2.15 x 105 years. Second, it's most common chemical form in environmental conditions, pertechnetate (TcO4-), exhibits very fast migration through soils and readily presents itself to any nearby aquifer. Standard procedures of sampling and analysis in a laboratory prove to be slow and costly in the case of subsurface contamination by radioactive materials. It is highly desirable to develop sensors for these materials that possess the capability of either in-situ or on-site placement for continuous monitoring or immediate analysis of collected samples. These sensors need to possess adequate detection limit and selectivity, rapid response, reversibility (many measurements with one sensor), the ability to perform remotely, and ruggedness. This dissertation describes several areas of the continued work toward a sensor for 99Tc as TcO4-. Research initially focused on developing spectroelectrochemical instrumentation and a disposable sensing element, engineered to address the need to perform remote measurements. The instrument was then tested using samples containing 99Tc, resulting in the development of ancillary equipment and techniques to address concerns associated with performing experiments on radioactive materials. In these tests, the electrochemistry of TcO4 - was demonstrated to be irreversible. Electrochemical reduction of TcO4- on a bare or polymer modified electrode resulted in the continuous build up of technetium oxide (TcO2) on the electrode surface. This TcO2 formed in visual quantities in these films during electrochemistry, and proved to be non-ideal for

  17. Condensation mechanisms of tetravalent technetium in chloride media

    International Nuclear Information System (INIS)

    Poineau, F.

    2004-10-01

    In deep storage technetium can exist in degree IV or III. Recent studies on Tc(IV) have shown that Tc n O y (4n-2y)+ , Tc IV (μ-O) 2 Tc IV structure, is a precursor for precipitation of TcO 2 . Few data are available on Tc n O y (4n-2y)+ Subject of this thesis is the mechanism of condensation of Tc(IV) leading to this form. Kinetic studies have shown that the condensation of Tc IV Cl 5 (H 2 O) - in chloride media leads to a dimer. XAS studies resulted in a linear structure Tc IV -O-Tc IV . This compound, formulated as Tc 2 OCl 10 4- , is stable at pH = 0.3, it undergoes cyclization to Tc n O y (4n-2y)+ at pH =1.5 and is oxidized to TcO 4 - under α radiation. In 3 M chloride media, TcO 2 lead to formation Tc 2 OCl 10 4- at pH = 0.3 and to Tc n O y (4n-2y)+ at pH = 1.5. An electrochemical cell permitting 'in situ' XAS measurement was developed. XANES studies have shown that the reduction of Tc(VII) lead to a Tc(IV)/Tc(III) mixture. (author)

  18. Technetium behavior in sulfide and ferrous iron solutions

    International Nuclear Information System (INIS)

    Lee, S.Y.; Bondietti, E.A.

    1982-01-01

    Pertechnetate oxyanion ( 99 TcO 4- ), a potentially mobile species in leachate from a breached radioactive waste repository, was removed from a brine solution by precipitation with sulfide, iron, and ferrous sulfide at environmental pH's. Maghemite (ν-Fe 2 O 3 ) and geothite (α-FeOOH) were the dominant minerals in the precipitate obtained from the TcO 4- -ferrous iron reaction. The observation of small particle size and poor crystallinity of the minerals formed in the presence of Tc suggested that the Tc was incorporated into the mineral structure after reduction to a lower valence state. Amorphous ferrous sulfide, an initial phase precipitating in the TcO 4- -ferrous iron-sulfide reaction, was transformed to goethite and hematite (α-Fe 2 O 3 ) on aging. The black precipitate obtained from the TcO 4- -sulfide reaction was poorly crystallized technetium sulfide (Tc 2 S 7 ) which was insoluble in both acid and alkaline solution in the absence of strong oxidents. The results suggested that ferrous- and/or sulfide-bearing groundwaters and minerals in host rocks or backfill barriers could reduce the mobility of Tc through the formation of less-soluble Tc-bearing iron and/or sulfide minerals

  19. Characterization of electrochemically and chemically generated technetium diphosphonate radiopharmaceuticals

    International Nuclear Information System (INIS)

    Martin, J.L. Jr.

    1987-01-01

    Tc-Methylene diphosphonate, (MDP), the skeletal imaging ligand is most use in radiopharmacies, is the first metal-ligand complex prepared electrochemically in this work. A similar systematic evaluation of electrochemically reduced Tc-dimethylaminomethylene diphosphonate (DMAD) is presented. DMAD as well as MDP have been characterized by anion exchange HPLC following NaBH4 reduction. The goal is twofold. First, the effect of varying the applied potential on the resultant chromatographic distribution of complexes is investigated. Secondly, the combination(s) of applied potential and preparation pH which preferentially directs the formation of technetium diphosphonate complexes previously shown to be superior skeletal imaging agents is determined. EXAFS, extended x-ray absorption fine structure spectroscopy, is applied to the analysis of dilute solutions (10mM) of electrochemically and chemically reduced Tc-MDP complexes. Further characterizations of electrochemically and chemically generated complexes are performed using in-vitro and in-vivo physiological techniques of biodistribution and blood clearance studies on Sprague Dawley rats and beagle dogs respectively. Finally, in-vitro and in-vivo dilution studies were performed using water, human and dog urine, to determine the influence of the physiological environment on clinically prepared and injected radiopharmaceuticals

  20. Microbial impact on the behavior of radionuclides in the environment. 1. Adsorption behavior of Pu(4) and Np(5) by bentonite under the influence of microbial reduction and siderophore

    International Nuclear Information System (INIS)

    Nagaoka, Toru; Watanabe, Yoshitomo; Kudo, Akira

    2002-01-01

    It is essential to understand the behavior of actinide in the environment to determine if the repositories can safely contain high-level radioactive waste. In the meantime, microbes contribute to the number of geochemical reactions in the subsurface environment, and some microorganisms can interact with actinides directly and/or indirectly (e.g., biotransformation, biosorption, bioaccumulation). From this point of view, we first investigated experimentally the microbial influence on the adsorption behavior of neptunium, which element is highly mobile in the environment because of the chemical form, NpO 2 + . With the cells (Desulfovibrio desulfaricans), Np in suspension was decreased to 5 % or less for 10 min, whereas the reductive adsorption by reducing agent Na 2 S, i.e., without cells, was much slower. This may show the microorganism reduce mobile Np(5) enzymatically to immobile Np(4). Secondly, we studied the effect of metal-chelator (Hydroxamate siderophore, Desferrioxamate B(DFOB)) on plutonium adsorption behavior. The Pu(4) adsorption decreased with increasing concentration of DFOB and reduced to almost 0 % at DFOB concentrations of 100 mM. However, at the low concentrations of DFOB and Pu (less than 1 x 10 -6 mol/l and 3.7 x 10 -11 mol/l respectively), there was little effect of DFOB on the adsorption of Pu. This result shows the DFOB effect on adsorption of Pu depends on the concentration of DFOB. At the low DFOB concentration, Pu would not chelate with DFOB because DFOB in the solution is not enough to form the complexes. DFOB actually dissolved impurities associated with bentonite, and the concentration of dissolved metal, e.g., Fe 3+ , was increasing with an increase of DFOB concentration in the suspension. These metal ions would compete with actinides, and the metal exchange may occur in a system with actinide-DFOB complexes. These results show that microorganisms can influence the behavior of actinides in the environment. Therefore, it is getting more

  1. The fate of technetium in reduced estuarine sediments: Combining direct and indirect analyses

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Ian T. [Earth Surface Science Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Livens, Francis R. [Centre for Radiochemistry Research, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL (United Kingdom); Lloyd, Jonathan R. [Williamson Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL (United Kingdom); Brown, Andrew P. [School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Law, Gareth T.W. [Earth Surface Science Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); McBeth, Joyce M. [Williamson Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL (United Kingdom); Ellis, Beverley L.; Lawson, Richard S. [Department of Nuclear Medicine, Manchester Royal Infirmary, Manchester M13 9WL (United Kingdom); Morris, Katherine, E-mail: k.morris@see.leeds.ac.uk [Earth Surface Science Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom)] [Williamson Centre for Molecular Environmental Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester M13 9PL (United Kingdom)

    2010-02-15

    Technetium-99 is an important fission product in radioactive wastes. As Tc(VII)O{sub 4}{sup -}, Tc is highly mobile in oxic environments but, under reducing conditions, Tc becomes strongly associated with sediments as hydrous Tc(IV)O{sub 2} like phases. In order to further examine the behaviour of Tc over a range of concentrations in estuarine sediments, anoxic incubation experiments were combined with a range of direct (transmission electron microscopy and gamma camera imaging) and indirect (incubation experiments and chemical extractions) experimental techniques. When TcO{sub 4}{sup -} was incubated in sediment microcosms at micro-molar (10{sup -6} mol L{sup -1}) concentrations, >99% TcO{sub 4}{sup -} was removed from solution over the course of 36 days in systems undergoing active microbial Fe(III)-reduction. By contrast, when spiked into pre-reduced estuarine sediments that were predominantly Fe(III)-reducing (incubated for 60 days) or SO{sub 4}{sup 2-}reducing (incubated for 270 days), >99% TcO{sub 4}{sup -} was removed from solution in under 10 min in both microbially active and heat sterilised systems. Chemical extraction techniques showed that 70 {+-} 3% of Tc bound to sediments was remobilised when sediments were exposed to the first strong oxidant (H{sub 2}O{sub 2}) in the extraction scheme. At higher Tc concentrations ({approx}0.05 mol kg{sup -1} of sediment) scanning transmission electron microscopy, combined with energy dispersive X-ray mapping, was used to examine the associations of Tc in sediments. At these concentrations, Tc was localised and co-associated with nanometre size Fe(II)-rich particles, consistent with the hypothesis that removal of Tc may be controlled by reduction of Tc(VII) to Tc(IV) by biogenic Fe(II) in sediments. In addition, gamma camera imaging with the {gamma}-emitting {sup 99m}TcO{sub 4}{sup -} (half-life 6 h) at pico-molar (10{sup -12} mol L{sup -1}) concentrations, was used to visualise the interaction of Tc in sediments at

  2. Under used technetium-99m generators

    International Nuclear Information System (INIS)

    Mushtaq, A.

    2001-01-01

    Health care reform truly has become a global issue and it will undoubtedly have a dramatic impact on the future of nuclear medicine business in particular. A bigger concern within the nuclear medicine community is its competitiveness with other modalities and cost effectiveness.Technetium-99m and its generators are playing key role for the majority of diagnostic scans performed in the world today. Availability of ''9''9''mTc can be increased if it is separated from ''9''9Mo after much shorter growth times. After proper planning with the extra ''9''9''mTc, a significant number of scans can be performed or we would be able to order approximately 30% low activity ''9''9Tc generators to fulfill our requirements

  3. Technetium-99m-human fibrinogen

    International Nuclear Information System (INIS)

    Wong, D.W.; Mishkin, F.S.

    1975-01-01

    Exogenous fibrinogen has been successfully labeled with /sup 99m/Tc using a modified electrolytic method. The exact labeling mechanism has not been determined. Experimental data suggest that the labeling process of /99m/Tc-fibrinogen is quite similar to that of /sup 99m/Tc-human serum albumin as reported earlier by Benjamin. Technetium-99m-fibrinogen is stable in human plasma or in 1 percent buffered human serum albumin. A binding efficiency of 76 percent has been achieved with approximately 25 percent clottable protein. The entire labeling procedure requires less than 1 hr of preparation time. This short labeling time in a closed system may allow development of a practical method for labeling autologous fibrinogen, thus eliminating the risk of hepatitis transmission. (U.S.)

  4. Labeling of creatinine with technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Yurt Lambrecht, F. [Ege Univ., Bornova, Izmir (Turkey). Dept. of Nuclear Applications, Inst. of Nuclear Sciences; Durkan, K. [Dokuz Eylul Univ., Buca, Izmir (Turkey). Chemistry Technicianship Program, Izmir Vocational School; Soylu, A. [Dokuz Eylul Univ., Narlidere, Izmir (Turkey). Dept. of Pediatrics, Medical Faculty

    2004-07-01

    Creatinine is a clinically important index of renal glomerular filtration rate. Urine creatinine levels can be used as a screening test to evaluate kidney function or can be part of the creatinine clearance test. In case of kidney dysfunction or muscle disorders the creatinine concentration in serum/plasma may rise to a higher value than in healthy body. Technetium- 99m has been used in nuclear medicine and in biomedical research to label molecular and cellular structures employed as radiotracers. {sup 99m}Tc is utilized to label molecules and cells, used as radiopharmaceuticals, and also to label biological species. It presents many desirable characteristics. SnCl{sub 2} method is frequently used as a reducing agent in the {sup 99m}Tc- labeling process. Creatinine metabolism might be investigated by using labeled {sup 99m}Tc- creatinine in healthy or uremic rats. (orig.)

  5. Anionic sorbents for arsenic and technetium species

    International Nuclear Information System (INIS)

    Lucero, Daniel A.; Moore, Robert Charles; Bontchev, Ranko Panayotov; Hasan, Ahmed Ali Mohamed; Zhao, Hongting; Salas, Fred Manuel; Holt, Kathleen Caroline

    2003-01-01

    Two sorbents, zirconium coated zeolite and magnesium hydroxide, were tested for their effectiveness in removing arsenic from Albuquerque municipal water. Results for the zirconium coated zeolite indicate that phosphate present in the water interfered with the sorption of arsenic. Additionally, there was a large quantity of iron and copper present in the water, corrosion products from the piping system, which may have interfered with the uptake of arsenic by the sorbent. Magnesium hydroxide has also been proven to be a strong sorbent for arsenic as well as other metals. Carbonate, present in water, has been shown to interfere with the sorption of arsenic by reacting with the magnesium hydroxide to form magnesium carbonate. The reaction mechanism was investigated by FT-IR and shows that hydrogen bonding between an oxygen on the arsenic species and a hydrogen on the Mg(OH)2 is most likely the mechanism of sorption. This was also confirmed by RAMAN spectroscopy and XRD. Technetium exists in multiple oxidation states (IV and VII) and is easily oxidized from the relatively insoluble Tc(IV) form to the highly water soluble and mobile Tc(VII) form. The two oxidation states exhibit different sorption characteristics. Tc(VII) does not sorb to most materials whereas Tc(IV) will strongly sorb to many materials. Therefore, it was determined that it is necessary to first reduce the Tc (using SnCl2) before sorption to stabilize Tc in the environment. Additionally, the effect of carbonate and phosphate on the sorption of technetium by hydroxyapatite was studied and indicated that both have a significant effect on reducing Tc sorption

  6. The performance of gel technetium-99m generator

    International Nuclear Information System (INIS)

    Liu Yishu

    2004-01-01

    Technetium-99m, as one of the important radionuclides in nuclear medical science, has been widely used for diseases diagnosis in both developed and developing countries for many years. Technetium-99m can be obtained from both fission-type and gel-type Tc-99m generator. Fission-type generator was prepared by Molybdenum-99 separated from fission products of uranium-235 and gel-type was prepared by irradiating nature MoO 3 in reactor, and a series of chemical and physical processes. This paper briefly describes the manufacturing technical process of gel-type Technetium-99 generator, including the preparation of target containing nature MoO 3 , the target irradiation in reactor, gel preparation, gel filtration and drying, dried gel cracking, generator loading and activity calibration of generator. The performances of gel-type Technetium-99m generator, such as elution efficiency, elution profile, the pH, Mo breakthrough, Zirconium content, radiochemical purity, radionuclidic purity, sterility and pyrogencity of eluate, are also expatiated in detail. Comparing with fission-type Technetium-99m generator, the defects of gel-type Technetium-99m generator are enumerated and their overcoming solutions are recommended in this paper. (author)

  7. Study of the synthesis of ammonia over technetium catalysts

    International Nuclear Information System (INIS)

    Spetsyn, V.I.; Mikhailenko, I.E.; Pokrovskaya, O.V.

    1982-01-01

    The catalytic properties of technetium in the synthesis of ammonia have been studied in the present work. Technetium catalysts according to specific yield surpass all know catalysts for the synthesis of ammonia. The enhanced catalytic activity of technetium compared to manganese and rhenium is apparently explained by the presence of the radioactivity of 99 Tc. The processes of adsorption, orientation of the adsorbed molecules, and their binding energies can differ during radiation action. Irradiation of the carrier, occurring through #betta#-emission of 99 Tc, with doses of 4-8 x 10 3 rad/day, increased the number of defects in the crystal structure where stabilization of technetium atoms was possible. The existence of charged centers can cause an increase in the dissociative chemisorption of nitrogen, which is the limiting stage of the process. Technetium catalysts possess a stable catalytic activity and do not require its restoration for several months. Results suggest that the use of technetium as a catalyst for the synthesis of ammonia has real advantages and potential possibilities

  8. Microbial xanthophylls.

    Science.gov (United States)

    Bhosale, Prakash; Bernstein, Paul S

    2005-09-01

    Xanthophylls are oxygenated carotenoids abundant in the human food supply. Lutein, zeaxanthin, and cryptoxanthin are major xanthophyll carotenoids in human plasma. The consumption of these xanthophylls is directly associated with reduction in the risk of cancers, cardiovascular disease, age-related macular degeneration, and cataract formation. Canthaxanthin and astaxanthin also have considerable importance in aquaculture for salmonid and crustacean pigmentation, and are of commercial interest for the pharmaceutical and food industries. Chemical synthesis is a major source for the heavy demand of xanthophylls in the consumer market; however, microbial producers also have potential as commercial sources. In this review, we discuss the biosynthesis, commercial utility, and major microbial sources of xanthophylls. We also present a critical review of current research and technologies involved in promoting microbes as potential commercial sources for mass production.

  9. Microwave-Assisted Synthesis of Reduced Graphene Oxide/SnO2 Nanocomposite for Oxygen Reduction Reaction in Microbial Fuel Cells.

    Science.gov (United States)

    Garino, Nadia; Sacco, Adriano; Castellino, Micaela; Muñoz-Tabares, José Alejandro; Chiodoni, Angelica; Agostino, Valeria; Margaria, Valentina; Gerosa, Matteo; Massaglia, Giulia; Quaglio, Marzia

    2016-02-01

    We report on an easy, fast, eco-friendly, and reliable method for the synthesis of reduced graphene oxide/SnO2 nanocomposite as cathode material for application in microbial fuel cells (MFCs). The material was prepared starting from graphene oxide that has been reduced to graphene during the hydrothermal synthesis of the nanocomposite, carried out in a microwave system. Structural and morphological characterizations evidenced the formation of nanocomposite sheets, with SnO2 crystals of few nanometers integrated in the graphene matrix. Physico-chemical analysis revealed the formation of SnO2 nanoparticles, as well as the functionalization of the graphene by the presence of nitrogen atoms. Electrochemical characterizations put in evidence the ability of such composite to exploit a cocatalysis mechanism for the oxygen reduction reaction, provided by the presence of both SnO2 and nitrogen. In addition, the novel composite catalyst was successfully employed as cathode in seawater-based MFCs, giving electrical performances comparable to those of reference devices employing Pt as catalyst.

  10. Optimization of strawberry disinfection by fogging of a mixture of peracetic acid and hydrogen peroxide based on microbial reduction, color and phytochemicals retention.

    Science.gov (United States)

    Van de Velde, Franco; Vaccari, María Celia; Piagentini, Andrea Marcela; Pirovani, María Élida

    2016-09-01

    The fogging of strawberries using a environmentally friendly sanitizer mixture of peracetic acid (5%) and hydrogen peroxide (20%) was performed in a model chamber and modeled as a function of the concentration (3.4, 20.0, 60.0, 100.0 and 116.6 µL sanitizer L(-) (1) air chamber) and the treatment time (5.7, 15.0, 37.5, 60.0 and 69.3 min). The sanitizer fogging was adequate for reducing total mesophilic microbial and yeasts and moulds counts of fruits until seven days of storage at 2℃. However, sanitizer oxidant properties adversely affected the content of total anthocyanins, total phenolics, vitamin C, and antioxidant capacity to various degrees, with some deleterious changes in the fruits color, depending on the fogging conditions. A multiple numeric response optimization was developed based on 2.0 log microbiological reduction, maximum phytochemicals and antioxidant capacity retentions, with no changes in the fruits color, being the optimal fogging conditions achieved: 10.1 µL sanitizer L(-1) air chamber and 29.6 min. The fogging of strawberries at these conditions may represent a promising postharvest treatment option for extending their shelf-life without affecting their sensory quality and bioactive properties. © The Author(s) 2016.

  11. Determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts.

    Science.gov (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi

    2011-07-15

    A method for the determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8)} via 2-methyl-1,4-napthoquinone (NQ) was developed. Measurement conditions were optimized for the microbiological determination of water-soluble vitamins, such as vitamin B(6), biotin, folic acid, niacin, and pantothenic acid, using microorganisms that have a water-soluble vitamin requirement. A linear relationship between absorbance and water-soluble vitamin concentration was obtained. The proposed method was applied to determine the concentration of vitamin B(6) in various foodstuffs. There was good agreement between vitamin B(6) concentrations determined after 24h using the WST-8 colorimetric method and those obtained after 48h using a conventional method. The results suggest that the WST-8 colorimetric assay is a useful method for the rapid determination of water-soluble vitamins in a 96-well microtiter plate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Microbial desalination cell with sulfonated sodium poly(ether ether ketone) as cation exchange membranes for enhancing power generation and salt reduction.

    Science.gov (United States)

    Moruno, Francisco Lopez; Rubio, Juan E; Atanassov, Plamen; Cerrato, José M; Arges, Christopher G; Santoro, Carlo

    2018-06-01

    Microbial desalination cell (MDC) is a bioelectrochemical system capable of oxidizing organics, generating electricity, while reducing the salinity content of brine streams. As it is designed, anion and cation exchange membranes play an important role on the selective removal of ions from the desalination chamber. In this work, sulfonated sodium (Na + ) poly(ether ether ketone) (SPEEK) cation exchange membranes (CEM) were tested in combination with quaternary ammonium chloride poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membrane (AEM). Non-patterned and patterned (varying topographical features) CEMs were investigated and assessed in this work. The results were contrasted against a commercially available CEM. This work used real seawater from the Pacific Ocean in the desalination chamber. The results displayed a high desalination rate and power generation for all the membranes, with a maximum of 78.6±2.0% in salinity reduction and 235±7mWm -2 in power generation for the MDCs with the SPEEK CEM. Desalination rate and power generation achieved are higher with synthesized SPEEK membranes when compared with an available commercial CEM. An optimized combination of these types of membranes substantially improves the performances of MDC, making the system more suitable for real applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Technetium 99-m labeled radio-diagnostic agents employing stannous tartrate and method of preparation

    International Nuclear Information System (INIS)

    Molinski, V.J.; Wilczewski, J.A.

    1976-01-01

    A method of preparing improved technetium-99m labeled radiodiagnostic agents by reducing technetium-99m with stannous tartrate. Such radiodiagnostic agents are useful in scintigraphic examinations of the bone and lung. 31 claims, no drawings

  14. Assessment of Technetium in the Savannah River Site Environment

    International Nuclear Information System (INIS)

    Carlton, W.H.; Denham, M.; Evans, A.G.

    1993-07-01

    Assessment of Technetium in the Savannah River Site Environment is the last in a series of eight documents on individual radioisotopes released to the environment as a result of SRS operations. The earlier documents describe the environmental consequences of tritium cesium, iodine, uranium plutonium, strontium, and carbon. Technetium transport and metabolism have been studied by the nuclear industry because it is a fission product of uranium, and by the medical community because 99m Tc commonly is used as a diagnostic imaging agent in nuclear medicine. Technetium has been produced at SRS during the operation of five production reactors. The only isotope with environmental significance is 99 Tc. Because of the small activities of 99 Tc relative to other fission products, such as 90 Sr and 137 Cs, no measurements were made of releases to either the atmosphere or surface waters. Dose calculations were made in this document using conservative estimates of atmospheric releases and from a few measurements of 99 Tc concentrations in the Savannah River. Technetium in groundwater has been found principally in the vicinity of the separation areas seepage basins. Technetium is soluble in water and follows groundwater flow with little retardation. While most groundwater samples are negative or show little technetium a few samples have levels slightly above the limits set by the EPA for drinking water. The overall radiological impact of SRS 99 Tc releases on the offsite maximally exposed individual during 38 years of operations can be characterized by maximum individual doses of 0.1 mrem (atmospheric) and 0.8 mrem (liquid), compared with a dose of 13,680 mrem from non-SRS sources during the same time period. Technetium releases have resulted in a negligible risk to the environment and the population it supports

  15. Preparation and crystal structure of carbonyltris (diethyldithiocarbamato) technetium (III): an unexpected source of co-ordinated carbon monoxide

    International Nuclear Information System (INIS)

    Baldas, J.; Bonnyman, J.; Pojer, P.M.; Williams, G.A.

    1981-10-01

    Tc(S 2 CNEt 2 ) 3 CO has been prepared by the reduction of NH 4 TcO 4 with formamidinesulphinic acid in the presence of NaS 2 CNEt 2 . It is suggested that the co-ordinated carbon monoxide is formed after co-ordination of formamidinesulphinic acid, or some decomposition product, with technetium. The crystal structure of Tc(S 2 CNEt 2 ) 3 CO has been determined by single-crystal X-ray diffraction methods at 17 deg. C. Diffractometry has provided significant Bragg intensities for 2045 independent reflections and the structure has been refined by full-matrix least-squares methods to R 0.049. The compound is isostructural with the rhenium analogue and consists of discrete Tc(S 2 CNEt 2 ) 3 CO molecules, each containing a terminal linear CO group. The technetium atom has a seven co-ordinate environment which is best described as a distorted pentagonal bipyramid

  16. Technetium-99m Sestamibi in Multiple Myeloma

    International Nuclear Information System (INIS)

    Saber, R.A.

    2002-01-01

    Technetium-99m 2-methoxy - isobutyl - isonitrile (99mTc-MIBI) has been reported to be useful in evaluating patients with multiple myeloma. The aim of this study is to evaluate the role of technetium-99m sestamibi (99mTc-MIBI) scintigraphy in the diagnosis. staging and follow-up of patients with multiple myeloma. Methods and Materials: twenty-five consecutive patients with multiple myeloma were studied using 99mTc- MIBI. Of the 25 patients included in this study, 6 were in stage I, II in stage II and 8 in stage III. Anterior and posterior whole-body imaging were obtained 20 min after I.V. injection of 740 MBq of 99mTc-MIBI. Four different MIBI patterns could be described in our patients: physiological (P), diffuse (D), focal (F) and combined diffuse and focal (D+F). All patients in stages II and III as well as 3 patients in stage I were treated with chemotherapy (cyclophosphamide and prednisone) then 99mTc-MlBI scans were repeated after 6 courses. Results: in comparison to conventional X-ray skeletal survey, 99mTc-MIBI scans showed a higher number of myeloma bone disease at diagnosis. All patients with stage II and III multiple myeloma were positive with 99mTc-MlBl scans at diagnosis. The pattern of positive MIBI accumulation was diffuse in 13 (52%) patients, focal in 4 (16%) and combined focal and diffuse in 6 (24%) patients. The intensity of 99mTc-MIBI correlated with disease activity as determined by lactate dehydrogenase (LDH), number of plasma cells in bone marrow and serum electrophoresis. There was a direct correlation between 99mTc-MIBI scan result and clinical outcome of patients following 6 courses of chemotherapy. Sensitivity and specificity of 99mTc-MIBI scintigraphy in detecting myeloma bone lesions were 92% and 90% respectively. Conclusion: 99mTc-MIBI scintigraphy is a reliable method to evaluate bone marrow activity in patients with multiple myeloma and follow-up of myeloma bone lesions

  17. Study of the electrochemical behaviour of technetium on mercury in an acetic buffer medium; Etude du comportement electrochimique du technetium sur mercure en milieu acetique tamponne

    Energy Technology Data Exchange (ETDEWEB)

    Courson, Olivier [Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1997-11-07

    Technetium 99, produced with a high yield as fission product of {sup 235}U in nuclear reactors constitutes an important issue in the nuclear waste management. The rich and complex solution chemistry leads up to now to an insufficient knowledge of its behaviour in PUREX process and in environment. In order to understand the reduction mechanism of pertechnetate on mercury electrode, we have developed electrochemical techniques which use an additional time parameter to classical techniques used on mercury electrode. On micro-electrode, we have observed, for long time measurements (3D polarography), a split of the first polarographic wave into two waves, which characterizes the reduction of Tc(VII) in Tc(III) as well as a modification of the catalytic peak associated with technetium metal formation. moreover, differential capacitance determination of electrode/solution interface brings to the fore the existence of species (Tc(IV), T(0)) on mercury in the reduction zone corresponding to the following reductions: Tc(VII) -> T(III) and T(III) -> Tc(0). Moreover the Tc(III)/Tc(0) reduction brings the intermediary Tc(I) and Tc(II) which are present only for rates faster than the scan. Results obtained on microelectrodes have been confirmed on macro-electrode; the insoluble species Tc(IV) and Tc are formed during the reduction of Tc(VII) on metal. Thus, in acetate buffer media (pH=4.6), the pertechnetate reduction is characterized by the presence of absorbable species (Tc O{sub 2} hydrated,Tc). Moreover, the different electrochemical responses obtained with our techniques like 3D-polarography (waves and catalytic peaks) can be attributed to the following steps: Tc(VII)->Tc(V), Tc(IV) -> Tc(III), Tc(III) -> Tc(I) and Tc(I) -> Tc(0). The Tc(V) formation is followed by the rapid disproportionation of Tc(V) and Tc(VI) and Tc(I) reduction is associated with the proton reduction. (author) 124 refs., 68 figs., 19 tabs.

  18. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, March 11, 1993--June 11, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1993-11-01

    There are two basic approaches to addressing the problem of SO{sub 2} and NO{sub x} emissions: (1) desulfurize (and denitrogenate) the feedstock prior to or during combustion; or (2) scrub the resultant SO{sub 2} and oxides of nitrogen from the boiler flue gases. The flue gas processing alternative has been addressed in this project via microbial reduction of SO{sub 2} and NO{sub x} by sulfate-reducing bacteria

  19. TESTING GUIDELINES FOR TECHNETIUM-99 ADSORPTION ON ACTIVATED CARBON

    International Nuclear Information System (INIS)

    Byrnes, M.E.

    2010-01-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will

  20. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs

  1. The quality control of technetium-99m radiopharmaceuticals produced at the AAEC Research Establishment

    International Nuclear Information System (INIS)

    Farrington, K.J.

    1983-08-01

    The methods of quality control used for technetium-99m radiopharmaceuticals produced at the AAEC Research Establishment are described for both non-fission and fission derived sources of sodium pertechnetate, technetium-99m labelled radipopharmaceuticals, and reagent kits produced for technetium-99m labelling

  2. Experimental measurements of the solubility of technetium under near-field conditions

    International Nuclear Information System (INIS)

    Pilkington, N.J.; Wilkins, J.D.

    1988-05-01

    The solubility of technetium in contact with hydrated technetium dioxide under near-field conditions has been measured experimentally. The values obtained were changed little by a change in pH or in the filtration method used. The presence of organic degradation products increased slightly the solution concentration of technetium. (author)

  3. Sea-to-land transfer of technetium-99 through the use of contaminated seaweed as an agricultural soil conditioner

    International Nuclear Information System (INIS)

    Webster, Shona; Salt, Carol A.; Howard, Brenda J.

    2003-01-01

    The use of seaweed as an agricultural soil conditioner gives rise to a potential pathway for the transfer of Technetium-99 ( 99 Tc) from marine to terrestrial ecosystems and thence to man. However, to date there is little information on the extent of the release of 99 Tc from seaweed into soil and the mechanisms involved. This pot experiment has shown that 99 Tc is released fairly rapidly from Fucus vesiculosus into a sandy coastal soil. Despite low temperature conditions, 60% of the 99 Tc added with the seaweed had accumulated in the soil 15 weeks after addition. Concurrent CO 2 monitoring (used as a measure of microbial decomposition or catabolism) suggested that the initial 99 Tc release (up to 40% in the first 8 weeks) was due to leaching from the seaweed and that microbial decomposition was responsible for the release of the remaining 99 Tc in the latter phase (12-15 weeks)

  4. Sorption characteristics of technetium on crosslinked chitosan from aqueous solution

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Galambos, M.; Rajec, P.

    2014-01-01

    Sorption of technetium on crosslinked chitosan was studied using batch techniques in static arrangement of experiment under aerobic conditions at laboratory temperature. The adsorption of technetium was rapid and the percentage of the technetium sorption was > 98 %. In the pH range of 3-11 adsorption of technetium on crosslinked chitosan was > 98 %. The competition effect of Fe 3+ towards TcO 4 - sorption on crosslinked chitosan was stronger than the competition effect of other observed cations. The selectivity of crosslinked chitosan for these cations in solution with the concentration above 1·10 -3 mol·dm -3 was in the order Fe 3+ > Ca 2+ > Na + > Fe 2+ . The competition effect of (ClO 4 ) - towards TcO 4 - sorption was stronger than the competition effect of (SO 4 ) 2 - ions. From these results it can be expected that crosslinked chitosan could be a suitable sorbent for the immobilization of technetium in the liquid radioactive waste. (authors)

  5. Uptake and distribution of technetium in several marine algae

    International Nuclear Information System (INIS)

    Bonotto, S.; Gerber, G.B.; Garten, C.T. Jr.; Vandecasteele, C.M.; Myttenaere, C.; Van Baelen, J.; Cogneau, M.; van der Ben, D.

    1983-01-01

    The uptake or chemical form of technetium in different marine algae (Acetabularia, Cystoseira, Fucus) has been examined and a simple model to explain the uptake of technetium in the unicellular alga, Acetabularia, has been conceptualized. At low concentrations in the external medium, Acetabularia can rapidly concentrate technetium. Concentration factors in excess of 400 can be attained after a time of about 3 weeks. At higher mass concentrations in the medium, uptake of technetium by Acetabularia becomes saturated resulting in a decreased concentration factor (approximately 10 after 4 weeks). Approximately 69% of the total radioactivity present in /sup 95m/Tc labelled Acetabularia is found in the cell cytosol. In Fucus vesiculosus, labelled with /sup 95m/Tc, a high percentage of technetium is present in soluble ionic forms while approximately 40% is bound, in this brown alga, in proteins and polysaccharides associated with cell walls. In the algal cytosol of Fucus vesiculosus, about 45% of the /sup 95m/Tc appears to be present as anionic TcO - 4 and the remainder is bound to small molecules. 8 references, 5 figures, 1 table

  6. Complexes of technetium with polyhydric ligands

    International Nuclear Information System (INIS)

    Hwang, L.L.Y.; Ronca, N.; Solomon, N.A.; Steigman, J.

    1985-01-01

    Polyhydric complexes of Tc(V) show absorption bands near 500 nm, with molar absorptivity coefficients of about 100. The shorter-chain compounds like ethylene glycol produce complexes which quickly disproportionate to Tc(IV) (as TcO 2 ) and Tc(VII) (as TcO 4 - ) on acidification. The longer-chain ligands like mannitol and gluconate do not. However, while the mannitol complex shows no change in spectrum from pH 12 to pH 3, the gluconate and glucoheptonate compounds show a definite spectral change on acidification, starting at pH 5. Electrophoresis similarity showed a change in mobility with pH for Tc-glucoheptonate, but none for Tc-mannitol. It was concluded that the carboxylic acid group of glucoheptonate was not binding the technetium. In 25 molal choline chloride the glucoheptonate-Tc mole ratio was 1:1 or less. A similar result emerged from a similar experiment in methylcellosolve as solvent. (author)

  7. Improved Understanding of Microbial Iron and Sulfate Reduction Through a Combination of Bottom-up and Top-down Functional Proteomics Assays

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Ruth [Cornell Univ., Ithaca, NY (United States)

    2016-02-28

    Our overall goal was to improve the understanding of microbial iron and sulfate reduction by evaluating a diverse iron and sulfate reducing organisms utilizing a multi-omics approach combining “top-down” and “bottom-up” omics methodologies. We initiated one of the first combined comparative genomics, shotgun proteomics, RTqPCR, and heterologous expression studies in pursuit of our project objectives. Within the first year of this project, we created a new bioinformatics tool for ortholog identification (“SPOCS”). SPOCS is described in our publication, Curtis et al., 2013. Using this tool we were able to identify conserved orthologous groups across diverse iron and sulfate reducing microorganisms from Firmicutes, gamma-proteobacteria and delta-proteobacteria. For six iron and sulfate reducers we also performed shotgun proteomics (“bottom-up” proteomics including accurate mass and time (AMT) tag and iTRAQ approaches). Cultures include Gram (-) and Gram (+) microbes. Gram (-) were: Geobacter sulfureducens (grown on iron citrate and fumarate), Geobacter bemidjiensis (grown on iron citrate and fumarate), Shewanella oneidiensis (grown on iron citrate and fumarate) and Anaeromyxobacter dehalogenans (grown on iron citrate and fumarate). Although all cultures grew on insoluble iron, the iron precipitates interfered with protein extraction and analysis; which remains a major challenge for researchers in disparate study systems. Among the Gram (-) organisms studied, Anaeromyxobacter dehalogenans remains the most poorly characterized. Yet, it is arguably the most versatile organisms we studied. In this work we have used comparative proteomics to hypothesize which two of the dozens of predicted c-type cytochromes within Anaeromyxobacter dehalogenans may be directly involved in soluble iron reduction. Unfortunately, heterologous expression of these Anaeromyxobacter dehalogenans ctype cytochromes led to poor protein production and/or formation of inclusion bodies

  8. Technetium cyanide chemistry: synthesis and characterization of technetium(III) and -(V) cyanide complexes

    International Nuclear Information System (INIS)

    Trop, H.S.; Jones, A.G.; Davison, A.

    1980-01-01

    Several new technetium cyanide complexes have been prepared and characterized. The reaction of ammonium hexaiodotechnetate(IV) with potassium cyanide in refluxing aqueous methanol under nitrogen yields potassium heptacyanotechnetate(III) dihydrate, K 4 Tc(CN) 7 .2H 2 O (1). Infrared and Raman measurements indicate that 1 has a pentagonal bipyramidal structure (D/sub 5h/) in both solid and solution. Aqueous solutions of 1 are air sensitive, decomposing to potassium oxopentacyanotechnetate(V) tetrahydrate, K 2 TcO(CN) 5 .4H 2 O (2). This species can also be prepared from the reaction of TcO 2 .xH 2 O with hot aqueous potassium cyanide solutions. Hydrolysis of 2 in water yields potassium trans-dioxo-tetracyanotechnetate(V), K 3 TcO 2 (CN) 4 (3). Preparation of 3 can also be achieved from the treatment of [TcO 2 (Py) 4 ]ClO 4 .2H 2 O with aqueous potassium cyanide. Infrared and Raman measurements on 3 are consistent with the proposed trans-dioxo (D/sub 4h/) structure. Reaction of the oxotetrachlorotechnetate(V) anion, TcOCl 4 , with potassium cyanide in methanol produces trans-oxomethoxytetracyanotechnetate(V). [TcO(OMe)(CN) 4 ] (4). The full details of the synthesis and characterization of these interesting technetium(III) and -(V) complexes, as well as observations on the infrared and Raman spectra of trans-dioxo metal complexes and the hydrolysis of species 2, are presented

  9. Adsorption of technetium-99m tetrofosmin and technetium-99m furifosmin on plastic syringes

    International Nuclear Information System (INIS)

    Bartosch, R.; Granegger, S.; Sinzinger, H.

    1998-01-01

    Some groups have reported that adsorption of radiopharmaceuticals on disposable plastic syringes can reach levels of almost 50%. This high loss of radioactivity stimulated us to carry out similar studies. Our measurements were done in combination with patient studies. Therefore, we used 2-ml syringes, all of the same brand. The radioactivity in the syringe was measured immediately before and after injection. a total of 500-600 MBq technetium-99m labelled tetrofosmin or technetium-99m furifosmin was administered to 48 patients using four different injection techniques (n = 6 for each technique with each tracer): with needles, 1 min blood incubation at 22 C, 10 or 30 min after preparation of the tracer; with butterflies, 1 min blood incubation at 22 C, 10 or 30 min after preparation of the tracer. Neither in syringes nor in needles or butterflies did more than 7% of the initial radioactivity remain. The entire residual activity in syringe plus needle or syringe plus butterfly together never exceeded the 9% limit. Furthermore, in a pilot study we measured the remaining radioactivity in the vial; here, too, we found no more than 14% of total radioactivity. These findings indicate that total retention of radioactivity during elution and application of 99m Tc-tetrofosmin and 99m Tc-furifosmin with material used in our setting does not approach relevant amounts. (orig.)

  10. Adsorption of technetium-99m tetrofosmin and technetium-99m furifosmin on plastic syringes

    Energy Technology Data Exchange (ETDEWEB)

    Bartosch, R.; Granegger, S.; Sinzinger, H. [Department of Nuclear Medicine, University of Vienna (Austria)

    1998-09-01

    Some groups have reported that adsorption of radiopharmaceuticals on disposable plastic syringes can reach levels of almost 50%. This high loss of radioactivity stimulated us to carry out similar studies. Our measurements were done in combination with patient studies. Therefore, we used 2-ml syringes, all of the same brand. The radioactivity in the syringe was measured immediately before and after injection. a total of 500-600 MBq technetium-99m labelled tetrofosmin or technetium-99m furifosmin was administered to 48 patients using four different injection techniques (n = 6 for each technique with each tracer): with needles, 1 min blood incubation at 22 C, 10 or 30 min after preparation of the tracer; with butterflies, 1 min blood incubation at 22 C, 10 or 30 min after preparation of the tracer. Neither in syringes nor in needles or butterflies did more than 7% of the initial radioactivity remain. The entire residual activity in syringe plus needle or syringe plus butterfly together never exceeded the 9% limit. Furthermore, in a pilot study we measured the remaining radioactivity in the vial; here, too, we found no more than 14% of total radioactivity. These findings indicate that total retention of radioactivity during elution and application of {sup 99m}Tc-tetrofosmin and {sup 99m}Tc-furifosmin with material used in our setting does not approach relevant amounts. (orig.) With 4 figs., 1 tab., 7 refs.

  11. Technetium behaviour in Boom Clay - a laboratory and field study

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Ilett, D.J.; Cowper, M.M.; Pilkington, N.J.; Tweed, C.J.; Williams, S.J. [AEA Technology plc, Harwell, Didcot, Oxfordshire (United Kingdom); Canniere, P.R. de; Wang, L. [SCK.CEN, Waste and Disposal Project, Boeretang, Mol (Belgium)

    2002-07-01

    This paper describes a study of technetium solubility and migration under chemical conditions representative of those prevailing in a Boom Clay environment. Laboratory and in situ measurements yielded similar aqueous concentrations of technetium, of about 1 x 10{sup -8} mol dm{sup -3}, close to the concentrations measured for hydrated technetium(IV) oxide TcO{sub 2}.1.6H{sub 2}O in the solubility studies. From fitting the curves of the Tc concentrations as function of time, distribution coefficient (K{sub d}) values were estimated to lie between 0.8 cm{sup 3} g{sup -1} and 1.8 cm{sup 3} g{sup -1}. Exposure of the system at 80 C and to {gamma}-radiation dose rates of several hundred Gy h{sup -1} resulted in only minor differences in behaviour. (orig.)

  12. Technetium behaviour in Boom Clay - a laboratory and field study

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Ilett, D.J.; Cowper, M.M.; Pilkington, N.J.; Tweed, C.J.; Williams, S.J.; Canniere, P.R. de; Wang, L.

    2002-01-01

    This paper describes a study of technetium solubility and migration under chemical conditions representative of those prevailing in a Boom Clay environment. Laboratory and in situ measurements yielded similar aqueous concentrations of technetium, of about 1 x 10 -8 mol dm -3 , close to the concentrations measured for hydrated technetium(IV) oxide TcO 2 .1.6H 2 O in the solubility studies. From fitting the curves of the Tc concentrations as function of time, distribution coefficient (K d ) values were estimated to lie between 0.8 cm 3 g -1 and 1.8 cm 3 g -1 . Exposure of the system at 80 C and to γ-radiation dose rates of several hundred Gy h -1 resulted in only minor differences in behaviour. (orig.)

  13. Technetium SPECT agents for imaging heart and brain

    International Nuclear Information System (INIS)

    Linder, K.E.

    1990-01-01

    One major goal of radiopharmaceutical research has been the development of technetium-based perfusion tracers for SPECT imaging of the heart and brain. The recent clinical introduction of the technetium complexes HM-PAO, ECD and DMG-2MP for brain imaging, and of CDO-MEB and MIBI for heart imaging promises to revolutionize the field of nuclear medicine. All of these agents appear to localize in the target tissue in proportion to blood flow, but their mechanisms of localization and/or retention may differ quite widely. In this talk, a survey of the new technetium SPECT agents will be presented. The inorganic and biological chemistry of these complexes, mechanisms of uptake and retention, QSAR studies, and potential clinical applications are discussed

  14. Insolubilization of technetium by microorganisms in waterlogged soils

    International Nuclear Information System (INIS)

    Ishii, Nobuyoshi; Tagami, Keiko

    2003-01-01

    In order to clarify the technetium behavior in paddy field ecosystem, insolubilization of technetium in the water covering waterlogged soils was studied. Fourteen soils collected from paddy fields (9 samples) and upland fields (5 samples) were waterlogged for 7 days. After the collection of water covering the waterlogged soils, a radio tracer 95m TcO 4 - was added to the water. After 4 days incubation of the water, the tracer was separated into four fractions: insoluble, pertechnetate, cationic, and other forms of technetium. On an average, 13% of the 95m TcO 4 - changed to insoluble forms and the maximum ratio of the insolubilization was 76%. This result shows that insolubilization of technetium can occur in the water covering the waterlogged soils. Subsequently, mechanisms of Tc insolubilization were studied using the sample that showed the maximum insolubilization of Tc among the soil samples. When microorganisms were removed from the water by filtration, insoluble forms of Tc decreased to 3.6%. In contrast, the insolubilization ratio increased to 86% by the addition of organic substrates. The insolubilization, therefore, was caused by microorganisms. Furthermore, the addition of antibiotics on bacteria resulted in 23% of the insolubilization, while the antibiotic on fungi did not affect on the insolubilization. If the insolubilization were caused by biosorption, the insolubilization ratio would not decrease for the sample added antibiotics on bacteria. Therefore, these results suggest that the insolubilization of technetium is caused by bioaccumulation of living bacteria. Because the cultures with 95m TcO 4 - were incubated under aerobic conditions, technetium-insolubilizing microorganisms would presumably be aerobic bacteria. (author)

  15. Absorption of technetium by plants in relation to soil type contamination level and time

    Energy Technology Data Exchange (ETDEWEB)

    Mousny, J.M.; Myttenaere, C. (Louvain Univ. (Belgium). Lab. de Physiologie Vegetale)

    1981-01-01

    Plants of Pisum sativum (var. Merveille de Kelvedon) were grown on seven typical european soils contaminated with different levels of /sup 99/Tc(0.17; 1.7 and 17 ..mu..Ci/kg). Added initially as pertechnetate, the technetium absorption has been studied for three successive cultures. The translocation of technetium from soil to plant leaves is high, but its transfer is reduced in soils rich in organic matter (Fen) or poorly drained (Braunerde). Aging reduces the technetium transfer and modify its relative distribution in plant (relatively more technetium is found in fruits); these results let suppose some modification of the technetium chemical form in soils with time.

  16. Technetium-99m HM-PAO-SPECT study of regional cerebral perfusion in early Alzheimer's disease

    International Nuclear Information System (INIS)

    Perani, D.; Di Piero, V.; Vallar, G.

    1988-01-01

    Regional cerebral perfusion was evaluated by single photon emission computed tomography (SPECT) using technetium-99m hexamethylpropyleneamine oxime ([/sup 99m/Tc]HM-PAO) in sixteen patients with Alzheimer's disease (AD) in early clinical phase and in 16 healthy elderly controls. In all patients transmission computed tomography (TCT) and/or magnetic resonance imaging (MRI) did not show focal brain abnormalities. Relative to normal subjects, AD patients showed significant reductions in cortical/cerebellar activity ratio: cortical perfusion was globally depressed with the largest reductions in frontal and posterior temporo-parietal cortices. Asymmetries of relative perfusion between cerebral hemispheres were also demonstrated when language was affected or visuospatial functions were unevenly impaired. In patients with early AD, SPECT provides functional information to be compared with clinical and psychometric data

  17. Study on interference of technetium in spectrophotometric estimation of uranium

    International Nuclear Information System (INIS)

    Revathi, P.; Saipriya, K.; Madhavan Kutty, V.K.; Srinivasa Rao, G.; Vijayakumar, N.; Kumar, T.

    2015-01-01

    Estimation of uranium is essential for process control purposes as well as to arrive optimum parameters for further waste management in reprocessing industry. Uranium estimation is done by spectrophotometry using ammonium thiocyanate, DBM, PAR and Br-PADAP as chromogenic reagents for colour development. Extractive spectrophotometry can also be used to eliminate some of the interfering ions. During inter method comparison, technetium was found to be interfering in the thiocyanate spectrophotometry. This study is an effort to find out the extent of technetium interference in the estimation of uranium by spectrophotometry using the above said chromogenic reagents. (author)

  18. Determination of technetium by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kaye, J.H.; Ballou, N.E.

    1978-01-01

    A detection limit of 6 x 10 -11 g has been achieved for measurement of technetium by graphite furnace atomic absorption spectrometry. A commercially available, demountable, hollow cathode lamp was used and both argon and neon were used as fill gases for the lamp. The range of applicability of the method, when the unresolved 2614.23 to 2615.87 A doublet is used for analysis, is from 60 pg to at least 3 ng of technetium per aliquot analyzed. 3 figures, 1 table

  19. Selective sorption of technetium from groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.M. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    Groundwater used for processing uranium or plutonium at DOE sites is frequently contaminated with the radionuclide {sup 99}Tc. DOE`s Paducah and Portsmouth sites are typical of the contamination problem. Solutions contaminated with radionuclides were poured into lagoons and burial pits, which created a plume that has seeped into the sandy aquifers below the vadose zone. Technetium is the principal radioactive metal-ion contaminant in Paducah site ground-water, and it is present at a concentration of about 25 ng/L. At Portsmouth, Tc is present in the groundwater at a concentration that varies greatly with distance from the source, and concentrations of >400 ng/L have been reported. Commercially available anion-exchange resins can remove the TcO{sub 4}{sup {minus}} ion in the presence of typical anions found in groundwater, but improving the selectivity will result in substantial cost savings in terms of the quantity of resin needed and the scale of the equipment required to treat huge flows rates. The pertechnetate anion is strongly sorbed on commercially-available strong-base anion-exchange resins, but in view of the low (typically nanomolar) concentrations of Tc involved, enhanced selectivity for the pertechnetate anion over other anions commonly found in groundwater such as chloride, sulfate, and nitrite will be needed. The authors have prepared and evaluated new anion-exchange resins that were designed to be highly selective for pertechnetate. The technology involves building those features that are known to enhance the selectivity of pertechnetate over other anions into the exchange sites of the resin (hydrophobicity), while at the same time maintaining favorable exchange kinetics.

  20. Behavior of technetium in freshwater environments

    Energy Technology Data Exchange (ETDEWEB)

    Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; DeAngelis, D.L.

    1984-01-01

    In a previous study, /sup 95m/Tc, as a pertechnetate, was released to a small, experimental, freshwater pond, and the concentrations were determined in biotic and abiotic components of the pond ecosystem. A simple mathematical model was developed to predict the concentration of /sup 95m/Tc in fish and snails. Results from this study indicated that uptake through the food chain was an important source of technetium to the higher trophic levels (i.e., fish). In the current study, an experimental pond was spiked with /sup 95m/Tc in the pertechnetate form, and the concentrations of /sup 95m/Tc were measured in the lower trophic levels. Emphasis was placed on measuring the concentration of /sup 95m/Tc in zooplankton, benthic invertebrates, and the aquatic macrophyte Elodea canadensis. Fish were excluded from the pond to allow the development of a large zooplankton population. The concentration of /sup 95m/Tc in water decreased from 0.75 Bq/mL 1 h after the pond was spiked, to 0.21 Bq/mL at 20 d. Throughout the experiment, at least 98% of the /sup 95m/Tc in the water was in the dissolved fraction (0.4 ..mu..m). Zooplankton accumulated /sup 95m/Tc rapidly, having concentration factors (Bq/g sample wet wt. divided by Bq/g water) ranging from 3 at 4 h to 36 at 20 d. Concentration factors ranged from 3 to 8 for benthic insects and from 1 to 62 for the aquatic macrophyte.

  1. Distribution of technetium-99 in surface soils

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2000-01-01

    Technetium-99 ( 99 Tc) is an important fission product which has been widely distributed in the environment as a result of fallout from nuclear weapons testing. In order to improve our understanding of the behavior of 99 Tc in the environment, it is essential that we obtain more reliable information on the levels, distribution and fate of 99 Tc in the environment. In this study, the concentration of global fallout 99 Tc, in several surface soil samples (0 - 20 cm) collected in Japan, were determined by ICP-MS (inductively coupled plasma mass spectroscopy). The range of 99 Tc in rice paddy field, upland field and other soils determined in this study were 0.006 - 0.11, 0.004 - 0.008 and 0.007 - 0.02 Bq kg -1 dry, respectively. 137 Cs was used as a comparative indicator for the source of 99 Tc, because the fission yields from 235 U and 239 Pu were about the same (ca. 6%) for the two isotopes, and the behavior and distribution of 137 Cs in the environment is reasonably well understood. The 137 Cs contents in rice paddy field, upland field and other soils range between 1.7 - 28, 1.4 - 9.2 and -1 dry, respectively. The activity ratios of 99 Tc/ 137 Cs in all soil samples were (0.6 - 5.9) x 10 -3 . Most of the measured ratios were one order of magnitude higher than the theoretical one obtained from fission. However, this ratio in soil, presumably depends on not only both the characteristic of radionuclides and the soil, but also on their contents after deposition to the earth's surface. (author)

  2. Configuration Entropy Calculations for Complex Compounds Technetium

    International Nuclear Information System (INIS)

    Muhayatun; Susanto Imam Rahayu; Surdia, N.M.; Abdul Mutalib

    2002-01-01

    Recently, the study of technetium complexes is rapidly increasing, due to the benefit of 99m Tc complexes (one of Tc nuclear isomers), which are widely used for diagnostics. Study of the structure-stability relationship of Tc complexes based on solid angle has been done by Kung using a Solid Angle Factor Sum (SAS). The SAS is hypothesized to be related to stability. SAS has been used by several researchers either for synthesis or designing the reaction route of the Tc complex formation and predicting the geometry of complex structures. Although the advantages of the SAS were very gratifying, but the model does not have the theoretical basis which is able to explain the correlation of steric parameters to physicochemical properties of complexes especially to those connected to a complex's stability. To improve the SAS model, in this research the model was modified by providing a theoretical basis for SAS. The results obtained from the correlation of the SAS value to the thermodynamic stability parameters of simple complexes show the values to have a similar trend as the standard entropy (S 0 ). The entropy approximation model was created by involving some factors which are not used in Kung's model. Entropy optimization to the bond length (ML) has also been done to several complexes. The calculations of SAS value using the calculated R for more than 100 Tc complexes provide a normalized mean value of 0.8545 ± 0.0851 and have similar curve profiles as those of Kung's model. The entropy value can be obtained by multiplying the natural logarithm of the a priori degeneracy of a certain distribution (Ω) and the Boltzmann constant. The results of Ω and In Ω of the Tc complexes have a narrow range. The results of this research are able to provide a basic concept for the SAS to explain the structure-stability relationship and to improve Kung's model. (author)

  3. Behavior of technetium in freshwater environments

    International Nuclear Information System (INIS)

    Blaylock, B.G.; Frank, M.L.; Hoffman, F.O.; DeAngelis, D.L.

    1984-01-01

    In a previous study, /sup 95m/Tc, as a pertechnetate, was released to a small, experimental, freshwater pond, and the concentrations were determined in biotic and abiotic components of the pond ecosystem. A simple mathematical model was developed to predict the concentration of /sup 95m/Tc in fish and snails. Results from this study indicated that uptake through the food chain was an important source of technetium to the higher trophic levels (i.e., fish). In the current study, an experimental pond was spiked with /sup 95m/Tc in the pertechnetate form, and the concentrations of /sup 95m/Tc were measured in the lower trophic levels. Emphasis was placed on measuring the concentration of /sup 95m/Tc in zooplankton, benthic invertebrates, and the aquatic macrophyte Elodea canadensis. Fish were excluded from the pond to allow the development of a large zooplankton population. The concentration of /sup 95m/Tc in water decreased from 0.75 Bq/mL 1 h after the pond was spiked, to 0.21 Bq/mL at 20 d. Throughout the experiment, at least 98% of the /sup 95m/Tc in the water was in the dissolved fraction (0.4 μm). Zooplankton accumulated /sup 95m/Tc rapidly, having concentration factors (Bq/g sample wet wt. divided by Bq/g water) ranging from 3 at 4 h to 36 at 20 d. Concentration factors ranged from 3 to 8 for benthic insects and from 1 to 62 for the aquatic macrophyte

  4. Stripping voltammetry of technetium using a TOA modified carbon paste electrode

    International Nuclear Information System (INIS)

    Ruf, H.; Schorb, K.

    1989-10-01

    Low concentrations of technetium have been measured DP-stripping-voltammetrically using a carbon paste electrode modified with tri-n-octylamine (TOA-CPE). Preconcentration of the metal ion on the electrode surface accomplished by dipping of the latter in the sample solution which is 2M in HCl, relies on the chemical reaction with the amine acting as a liquid anion exchanger. Both, Tc-IV occurring as the TcCl 6 2- ion in chloride solutions as well as Tc-VII hereby are deposited. Measurements following deposition yield voltammograms of essentially different shapes for the two Tc species. With Tc-IV a characteristic curve with a prominent current signal at -280 mV (vs. Ag/AgCl) is obtained which can be evaluated for Tc quantitation. However, starting from Tc-VII, complex voltammograms are registered not allowing direct technetium assays. Nevertheless, after reduction to Tc-IV, e.g. by means of ascorbic acid, also Tc-VII can be quantified reliably by the method described, the lower detection limit for both oxidation states being about 4x10 -8 M. (orig.) [de

  5. Study of the chemical behaviour of technetium during irradiated fuels reprocessing

    International Nuclear Information System (INIS)

    Zelverte, A.

    1988-04-01

    This paper deals with the preparation of the lower oxidation states +III +IV and +V of technetium in nitric acid and its behaviour during the reprocessing of nuclear fuels (PUREX process). The first part of this work is a bibliographical study of this element in solution without any strong ligand. By chemical and electrochemical technics, pentavalent, tetravalent and trivalent technetium species, were prepared in nitric acid. The following chemical reactions are studied: - trivalent and tetravalent technetium oxidation by nitrate ion. - hydrazine and tetravalent uranium oxidation catalysed by technetium: in those reactions, we point out unequivocally the prominent part of trivalent and tetravalent technetium, - technetium behaviour towards hydroxylamine. Technetium should not cause any disturbance in the steps where hydroxylamine is employed to destroy nitrous acid and hydrazine replacement by hydroxylamine in uranium-plutonium partition could contribute to a best reprocessing of nuclear fuels [fr

  6. The chemical speciation of technetium in the environment: a literature survey

    International Nuclear Information System (INIS)

    Sparkes, S.T.; Long, S.E.

    1987-07-01

    This report reviews the current understanding of the chemical forms and behaviour of technetium in the environment. Technetium (VII) is the dominant species in most systems, however when reducing conditions arise technetium (IV) species predominate. Pertechnetate is a highly mobile ion in aqueous media and can exhibit significant environmental transfer. Technetium (IV) is readily sorbed by sediments and is able to complex with various ligands which subsequently determine its fate. Complexation with high molecular weight organic moieties reduces the availability of technetium although this is not necessarily the case with smaller molecules. In plants, technetium is absorbed as TcO 4 - and can become incorporated into organic molecules. The technetium present in such forms is generally considered less available for uptake by the ingesting animal than aqueous TcO 4 - , although significant transfer of this element has been reported from food into eggs. Areas of potential future interest are suggested. (author)

  7. Volatility literature of chlorine, iodine, cesium, strontium, technetium, and rhenium; technetium and rhenium volatility testing

    International Nuclear Information System (INIS)

    Langowski, M.H.; Darab, J.G.; Smith, P.A.

    1996-03-01

    A literature review pertaining to the volatilization of Sr, Cs, Tc (and its surrogate Re), Cl, I and other related species during the vitrification of Hanford Low Level Waste (LLW) streams has been performed and the relevant information summarized. For many of these species, the chemistry which occurs in solution prior to the waste stream entering the melter is important in dictating their loss at higher temperatures. In addition, the interactive effects between the species being lost was found to be important. A review of the chemistries of Tc and Re was also performed. It was suggested that Re would indeed act as an excellent surrogate for Tc in non-radioactive materials testing. Experimental results on Tc and Re loss from sodium aluminoborosilicate melts of temperatures ranging from 900--1350 degrees C performed at PNL are reported and confirm that Re behaves in a nearly identical manner to that of technetium

  8. Behavior of technetium in alkaline solution: Identification of non-pertechnetate species in high-level nuclear waste tanks at the Hanford reservation

    International Nuclear Information System (INIS)

    Lukens, Wayne W. Jr.; Shuh, David K.; Schroeder, Norman C.; Ashley, Kenneth R.

    2003-01-01

    Technetium is a long-lived (99Tc: 213,000 year half-life) fission product found in nuclear waste and is one of the important isotopes of environmental concern. The known chemistry of technetium suggests that it should be found as pertechnetate, TcO4-, in the extremely basic environment of the nuclear waste tanks at the Hanford site. However, other chemical forms of technetium are present in significant amounts in certain tanks, and these non-pertechnetate species complicate the treatment of the waste. The only spectroscopic characterization of these non-pertechnetate species is a series of X-ray absorption near edge structure (XANES) spectra of actual tank waste. To better understand the behavior of technetium under these conditions, we have investigated the reduction of pertechnetate in highly alkaline solution in the presence of compounds found in high-level waste. These results and the X-ray absorption fine structure (XAFS) spectra of these species are compared to the chemical behavior and XANES spectra of the actual non-pertechnetate species. The identity of the nonpertechnetate species is surprising

  9. Fluoridonitrosyl complexes of technetium(I) and technetium(II). Synthesis, characterization, reactions, and DFT calculations.

    Science.gov (United States)

    Balasekaran, Samundeeswari Mariappan; Spandl, Johann; Hagenbach, Adelheid; Köhler, Klaus; Drees, Markus; Abram, Ulrich

    2014-05-19

    A mixture of [Tc(NO)F5](2-) and [Tc(NO)(NH3)4F](+) is formed during the reaction of pertechnetate with acetohydroxamic acid (Haha) in aqueous HF. The blue pentafluoridonitrosyltechnetate(II) has been isolated in crystalline form as potassium and rubidium salts, while the orange-red ammine complex crystallizes as bifluoride or PF6(-) salts. Reactions of [Tc(NO)F5](2-) salts with HCl give the corresponding [Tc(NO)Cl4/5](-/2-) complexes, while reflux in neat pyridine (py) results in the formation of the technetium(I) cation [Tc(NO)(py)4F](+), which can be crystallized as hexafluoridophosphate. The same compound can be synthesized directly from pertechnetate, Haha, HF, and py or by a ligand-exchange procedure starting from [Tc(NO)(NH3)4F](HF2). The technetium(I) cation [Tc(NO)(NH3)4F](+) can be oxidized electrochemically or by the reaction with Ce(SO4)2 to give the corresponding Tc(II) compound [Tc(NO)(NH3)4F](2+). The fluorido ligand in [Tc(NO)(NH3)4F](+) can be replaced by CF3COO(-), leaving the "[Tc(NO)(NH3)4](2+) core" untouched. The experimental results are confirmed by density functional theory calculations on [Tc(NO)F5](2-), [Tc(NO)(py)4F](+), [Tc(NO)(NH3)4F](+), and [Tc(NO)(NH3)4F](2+).

  10. Options for the Separation and Immobilization of Technetium

    International Nuclear Information System (INIS)

    Serne, R Jeffrey; Crum, Jarrod V.; Riley, Brian J.; Levitskaia, Tatiana G.

    2016-01-01

    Among radioactive constituents present in the Hanford tank waste, technetium-99 (Tc) presents a unique challenge in that it is significantly radiotoxic, exists predominantly in the liquid low-activity waste (LAW), and has proven difficult to effectively stabilize in a waste form for ultimate disposal. Within the Hanford Tank Waste Treatment and Immobilization Plant, the LAW fraction will be converted to a glass waste form in the LAW vitrification facility, but a significant fraction of Tc volatilizes at the high glass-melting temperatures and is captured in the off-gas treatment system. This necessitates recycle of the off-gas condensate solution to the LAW glass melter feed. The recycle process is effective in increasing the loading of Tc in the immobilized LAW (ILAW), but it also disproportionately increases the sulfur and halides in the LAW melter feed, which have limited solubility in the LAW glass and thus significantly reduce the amount of LAW (glass waste loading) that can be vitrified and still maintain good waste form properties. This increases both the amount of LAW glass and either the duration of the LAW vitrification mission or requires the need for supplemental LAW treatment capacity. Several options are being considered to address this issue. Two approaches attempt to minimize the off-gas recycle by removing Tc at one of several possible points within the tank waste processing flowsheet. The separated Tc from these two approaches must then be dispositioned in a manner such that the Tc can be safely disposed. Alternative waste forms that do not have the Tc volatility issues associated with the vitrification process are being sought for immobilization of Tc for subsequent storage and disposal. The first objective of this report is to provide insights into the compositions and volumes of the Tc-bearing waste streams including the ion exchange eluate from processing LAW and the off-gas condensate from the melter. The first step to be assessed will be the

  11. Options for the Separation and Immobilization of Technetium

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crum, Jarrod V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-30

    Among radioactive constituents present in the Hanford tank waste, technetium-99 (Tc) presents a unique challenge in that it is significantly radiotoxic, exists predominantly in the liquid low-activity waste (LAW), and has proven difficult to effectively stabilize in a waste form for ultimate disposal. Within the Hanford Tank Waste Treatment and Immobilization Plant, the LAW fraction will be converted to a glass waste form in the LAW vitrification facility, but a significant fraction of Tc volatilizes at the high glass-melting temperatures and is captured in the off-gas treatment system. This necessitates recycle of the off-gas condensate solution to the LAW glass melter feed. The recycle process is effective in increasing the loading of Tc in the immobilized LAW (ILAW), but it also disproportionately increases the sulfur and halides in the LAW melter feed, which have limited solubility in the LAW glass and thus significantly reduce the amount of LAW (glass waste loading) that can be vitrified and still maintain good waste form properties. This increases both the amount of LAW glass and either the duration of the LAW vitrification mission or requires the need for supplemental LAW treatment capacity. Several options are being considered to address this issue. Two approaches attempt to minimize the off-gas recycle by removing Tc at one of several possible points within the tank waste processing flowsheet. The separated Tc from these two approaches must then be dispositioned in a manner such that the Tc can be safely disposed. Alternative waste forms that do not have the Tc volatility issues associated with the vitrification process are being sought for immobilization of Tc for subsequent storage and disposal. The first objective of this report is to provide insights into the compositions and volumes of the Tc-bearing waste streams including the ion exchange eluate from processing LAW and the off-gas condensate from the melter. The first step to be assessed will be the

  12. Effects of gamma ray and electron beam irradiation on reduction of microbial load and antioxidant properties of Chum-Hed-Thet (Cassia alata (L.) Roxb.)

    Science.gov (United States)

    Prakhongsil, P.; Pewlong, W.; Sajjabut, S.; Chookaew, S.

    2017-06-01

    Considering the growing demands of herbal medicines, Cassia alata (L.) Roxb. has been reported to have various phytochemical activities. It has also been called in Thai as Chum-Hed-Thet. In this study, C. alata (L.) Roxb. powder were exposed to gamma and electron beam irradiation at doses of 0, 5, 10, 15 and 20 kGy. At the dose of 10 kGy, both of gamma and electron beam irradiation were sufficient in reducing microbial load of irradiated samples as specified in Thai pharmacopoeia (2005). These include the total aerobic microbial count of bacteria of 0.05). Therefore, both of radiation by gamma ray or electron beam at 10 kGy was sufficient in elimination of microbial flora and did not significantly affected the total phenolic content and antioxidant activities of C. alata (L.) Roxb.

  13. Detection of pulmonary hemorrhage with technetium-labeled red cells

    International Nuclear Information System (INIS)

    Winzelberg, G.G.; Laman, D.; Sachs, M.; Miller, W.H.

    1981-01-01

    Noninvasive techniques to aid in the diagnosis of massive pulmonary hemoptysis would be helpful in guiding more-invasive procedures such as bronchial artery angiography, which carries a risk of transverse myelitis. A patient was studied with technetium-labeled red cells and successfully detected a site of intermittent hemorrhage from the lung

  14. Coordination chemistry of technetium as related to nuclear medicine

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Richards, P.

    1982-01-01

    Significant advances have been made in the area of technetium coordination chemistry during the last five years. The main driving force behind this recent surge of interest in the field has been due to the practical application of technetium-99m in the rapidly growing speciality of nuclear medicine. Technetium-99 is one of the products of nuclear fission reactions, but it was the development of the molybdenum-99-technetium-99m generator about two decades ago that provided the basis for the development of radiopharmaceuticals routinely used in modern diagnostic applications. The chemistry of this element has proven to be quite rich owing to its multiple oxidation states and variable geometry. This can be attributed to its position in the middle of the periodic table. Diagnostic radiopharmaceuticals comprise predominantly III, IV and V oxidation states of Tc and involve a variety of coordination complexes. Even though the chemistry of Tc has been slow to evolve, recent synthetic advances have provided a more scientific basis for the study of a number of compounds with diverse coordination geometries and structures. Ligands with oxygen, nitrogen and sulfur donor atoms have been utilized to elucidate various aspects of the coordination chemistry of Tc. Single crystal X-ray structural analysis has been extensively used to characterize Tc complexes and thus construct a firm foundation for the study of synthetic and mechanistic aspects of the chemistry of this element. (author)

  15. Evaluation of reflux oesophagitis with technetium-99m-labelled ...

    African Journals Online (AJOL)

    Sucralfate binds with denuded protein to form a stable complex to protect the damaged mucosa. By utilising this property, technetium-99m-labelled sucraJfate can be used to demonstrate ulceration in the upper gastro-intestinal tract. Aim: The aim of this study was to evaluate 99mTc-labelled sucralfate in the diagnosis of ...

  16. Investigation on chemistry of model compounds of technetium radiopharmaceuticals

    International Nuclear Information System (INIS)

    Muenze, R.; Hartmann, E.

    1983-01-01

    The report summarized experimental and theoretical results concerning the chemical structures and the biodistribution of hydrophilic technetium chelates with hydroxycarboxylic and aminopolycarboxylic acids, thiol compounds and aliphatic and aromatic nitrogen compounds as ligands. Methods which are suitable for synthesizing and characterizing defined chelates of Tc(V), Tc(IV) and Tc(III) have been developed for crystlline substances and species in solution, respectively. For certain types of technetium chelates three dimensional structure models were calculated from atomic parameters. The electron energies and electron distribution of Tc(V) thiol compounds were calculated by quantum chemical methods in order to interprete physical properties of these substances. Biodistribution studies revealed relationships between the osteotropic behaviour and the structure of phosphorous and non-phosphorous technetium chelates and between the kidney uptake and ligand exchange ability of Tc(V) hydroxycarboxylates. Important parameters for the production of technetium-99m kits have been elaborated and used for the optimization of radiopharmaceuticals (bone-, kidney and hepatobiliaer agents). (author)

  17. Technetium and diazotrophic organisms: toxicity, localization, transfer factors

    International Nuclear Information System (INIS)

    Vandecasteele, C.M.; Delmotte, A.; Roucoux, P.; Hove, C. van

    1982-01-01

    Three diazotrophic organisms, together with one leguminous organism in symbiosis with one of them, were cultivated in the presence of various quantities of technetium, of which the localization, transfer factors and toxicity were studied in relation to the age of the organisms and their type of metabolism. The paper discusses the biochemical aspects of the results. (author)

  18. Membrane-based separation technologies for cesium, strontium, and technetium

    International Nuclear Information System (INIS)

    Kafka, T.

    1996-01-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with 3M, St. Paul, Minnesota, working in cooperation with IBC Advanced Technologies, American Fork, Utah

  19. Technetium-99m labeled radiodiagnostic agents and method of preparation

    International Nuclear Information System (INIS)

    1976-01-01

    A method of preparing improved technetium-99m labelled radiodiagnostic agents by reducing sup(99m)Tc-pertechnetate with stannous tartrate is given. Human serum albumine (HSA) and 1-hydroxyethylidene-1,1-disodiumphosphonate (HEDSPA), which are useful in scintigraphic examinations of the lung and bone, were labelled in this way

  20. Technetium: The First Radioelement on the Periodic Table

    Science.gov (United States)

    Johnstone, Erik V.; Yates, Mary Anne; Poineau, Frederic; Sattelberger, Alfred P.; Czerwinski, Kenneth R.

    2017-01-01

    The radioactive nature of technetium is discussed using a combination of introductory nuclear physics concepts and empirical trends observed in the chart of the nuclides and the periodic table of the elements. Trends such as the enhanced stability of nucleon pairs, magic numbers, and Mattauch's rule are described. The concepts of nuclear binding…

  1. Immobilization of technetium and nitrate in cement-based materials

    International Nuclear Information System (INIS)

    Tallent, O.K.; McDaniel, E.W.; Del Cul, G.D.; Dodson, K.E.; Trotter, D.R.

    1987-01-01

    The leachabilities of technetium and nitrate wastes immobilized in cement-based grouts have been investigated. Factors found to affect the leachabilities include grout mix ratio, grout fluid density, dry solid blend composition, and waste concentration. 10 refs., 7 figs., 3 tabs

  2. Study of the electrochemical behaviour of technetium on mercury in an acetic buffer medium

    International Nuclear Information System (INIS)

    Courson, Olivier

    1997-01-01

    Technetium 99, produced with a high yield as fission product of 235 U in nuclear reactors constitutes an important issue in the nuclear waste management. The rich and complex solution chemistry leads up to now to an insufficient knowledge of its behaviour in PUREX process and in environment. In order to understand the reduction mechanism of pertechnetate on mercury electrode, we have developed electrochemical techniques which use an additional time parameter to classical techniques used on mercury electrode. On micro-electrode, we have observed, for long time measurements (3D polarography), a split of the first polarographic wave into two waves, which characterizes the reduction of Tc(VII) in Tc(III) as well as a modification of the catalytic peak associated with technetium metal formation. moreover, differential capacitance determination of electrode/solution interface brings to the fore the existence of species (Tc(IV), T(0)) on mercury in the reduction zone corresponding to the following reductions: Tc(VII) -> T(III) and T(III) -> Tc(0). Moreover the Tc(III)/Tc(0) reduction brings the intermediary Tc(I) and Tc(II) which are present only for rates faster than the scan. Results obtained on microelectrodes have been confirmed on macro-electrode; the insoluble species Tc(IV) and Tc are formed during the reduction of Tc(VII) on metal. Thus, in acetate buffer media (pH=4.6), the pertechnetate reduction is characterized by the presence of absorbable species (Tc O 2 hydrated,Tc). Moreover, the different electrochemical responses obtained with our techniques like 3D-polarography (waves and catalytic peaks) can be attributed to the following steps: Tc(VII)->Tc(V), Tc(IV) -> Tc(III), Tc(III) -> Tc(I) and Tc(I) -> Tc(0). The Tc(V) formation is followed by the rapid disproportionation of Tc(V) and Tc(VI) and Tc(I) reduction is associated with the proton reduction. (author)

  3. Technetium-99m ceftizoxime kit preparation

    International Nuclear Information System (INIS)

    Diniz, Simone Odilia Fernandes; Siqueira, Cristiano Ferrari; Nelson, David Lee; Cardoso, Valbert Nascimento

    2005-01-01

    The aim of this work was to prepare a kit of 99 m Tc-ceftizoxime ( 99m Tc-CFT), with stability and biological activity preserved, able to identify a septic focus (E. coli) in the experimental infection model in rats. The preparation of the CFT kit involved the use of lyophilized solutions containing the antibiotic ceftizoxime and the sodium dithionite reducing agent (6.0 mg/m L). After lyophilization, the kit was reconstituted with 1.0 mL of sodium 99m Tc pertechnetate solution (Na 99m Tc O 4- ) with an activity of 370 MBq. The solution was boiled for 10 min and filtered through a cellulose ester filter. The labeling efficiency was on the order of 92%, remaining stable for six hours and the kit remained stable for two months. The biological activity of the 99m Tc-CFT was evaluated by diffusion in agar impregnated with E.coli and S. aureus. Seven Wistar rats, weighing from 200 to 250 g, were used for the development of the septic focus. After 24 hours from the induction of the infectious site (E.coli), the animals were anesthetized and 0.1 mL of 99m Tc-CFT (37 MBq) was injected into the tail veins of the animals. The images were obtained with a gamma camera one, two and six hours after injection and the regions of interest (ROIs) were calculated. The diameters of the inhibition halos for 99 m Tc-CFT were 27.16 ± 0.23 and 27.17 ± 0.20 for S.aureus and E.coli, respectively, while those for the unlabeled CFT were 30.4 ± 0.33 and 29.43 ± 0.26, respectively. The results for the biodistribution of 99m Tc-CFT in infected animals furnished a ratio of 1.97 ± 0.31, 2.10 ± 0.42 and 2.01 ± 0.42 for cpm-target/cpm-no target for the one, two and six-hour periods, respectively. The images showed a clear uptake of labeled antibiotic ( 99m Tc-CFT) by the infectious site during the experiment. The results attest to the viability of producing a kit with 99m technetium-labeled ceftizoxime for the investigation of infectious processes. (author)

  4. Technetium-99m ceftizoxime kit preparation

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Simone Odilia Fernandes; Siqueira, Cristiano Ferrari; Nelson, David Lee; Cardoso, Valbert Nascimento [Minas Gerais Univ. Federal, Belo Horizonte, MG (Brazil). Faculdade de Farmacia]. E-mail: simone@farmacia.ufmg.br; Martin-Comin, Josep [Bellvitge Univ., Barcelona (Spain)

    2005-10-15

    The aim of this work was to prepare a kit of {sup 99}m Tc-ceftizoxime ({sup 99m} Tc-CFT), with stability and biological activity preserved, able to identify a septic focus (E. coli) in the experimental infection model in rats. The preparation of the CFT kit involved the use of lyophilized solutions containing the antibiotic ceftizoxime and the sodium dithionite reducing agent (6.0 mg/m L). After lyophilization, the kit was reconstituted with 1.0 mL of sodium {sup 99m} Tc pertechnetate solution (Na {sup 99m} Tc O{sub 4-}) with an activity of 370 MBq. The solution was boiled for 10 min and filtered through a cellulose ester filter. The labeling efficiency was on the order of 92%, remaining stable for six hours and the kit remained stable for two months. The biological activity of the {sup 99m} Tc-CFT was evaluated by diffusion in agar impregnated with E.coli and S. aureus. Seven Wistar rats, weighing from 200 to 250 g, were used for the development of the septic focus. After 24 hours from the induction of the infectious site (E.coli), the animals were anesthetized and 0.1 mL of {sup 99m} Tc-CFT (37 MBq) was injected into the tail veins of the animals. The images were obtained with a gamma camera one, two and six hours after injection and the regions of interest (ROIs) were calculated. The diameters of the inhibition halos for {sup 99}m Tc-CFT were 27.16 {+-} 0.23 and 27.17 {+-} 0.20 for S.aureus and E.coli, respectively, while those for the unlabeled CFT were 30.4 {+-} 0.33 and 29.43 {+-} 0.26, respectively. The results for the biodistribution of {sup 99m} Tc-CFT in infected animals furnished a ratio of 1.97 {+-} 0.31, 2.10 {+-} 0.42 and 2.01 {+-} 0.42 for cpm-target/cpm-no target for the one, two and six-hour periods, respectively. The images showed a clear uptake of labeled antibiotic ({sup 99m} Tc-CFT) by the infectious site during the experiment. The results attest to the viability of producing a kit with {sup 99m} technetium-labeled ceftizoxime for the

  5. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-12-31

    With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

  6. Uptake and localization of sup(99m)technetium-methylene-diphosphonate in bone

    International Nuclear Information System (INIS)

    Savelkoul, T.J.F.

    1984-01-01

    The author investigated the uptake and localization of 99m-technetium-methylene-diphosphonate (99m-Tc-MDP) in bone, to develop a sensitive mean for the detection of early osseous disease. In an electrolysis procedure without the presence of contaminating reductants a 99m-Tc-MDP complex is formed with clear bone-seeking properties. The scans performed in experimental animals are comparable in quality with 99m-Tc(Sn)-MDP scans. The uptake of 99m-Tc-MDP is faster and higher than the uptake of reduced hydrolyzed 99m-Tc. Uptake of 99m-Tc(Sn)-MDP in bone can only take place after decomposition of the complex. As 99m-Tc-MDP is taken up as a unit, this may be a better agent to evaluate the osteoblastic activity in the skeleton. (Auth./R.B.)

  7. Technetium-99m pertechnetate - a tracer for radiolabelling antibody for inflammation detection

    International Nuclear Information System (INIS)

    Shaharuddin Mohd; Wan Hamirul Bahrin Wan Kamal; Shahrin A Hamid; Ang Woan Tze; Rosnani Hashim

    1999-01-01

    The polyclonal antibody, Human Immunoglobulin G (HlgG) was reduced by using 2-mercaptoethanol with molar ratio of 1000:1 (i.e. mercaptoethanol:antibody). The reduction of the antibody, was carried out for 30 minutes at room temperature. The reduced antibody was purified by using Sephadex G-25 fine column. The antibody kit for the detection of inflammation was prepared aseptically in Class 1 Laminar Flow cabinet. The kit passed the sterility test. Upon reconstitution of the antibody kit with sodium pertechnetate-99m ( 99m Tc) solution, the labelling efficiency obtained was more than 95%. This preparation was stable up to 24-hour stored at room temperature. Gamma camera scans showed the accumulation of technetium-99m labelled antibody ( 99m Tc-HIgG) at the turpentine-induced inflammation of female Sprague-Dawley rats. This indicated the possibility of using 99m Tc-HIgG for inflammation detection. (author)

  8. Blood clearance rates of technetium-99m albumin preparations: concise communication

    International Nuclear Information System (INIS)

    Nusynowitz, M.L.; Straw, J.D.; Benedetto, A.R.; Dixon, R.S.

    1978-01-01

    Technetium-labeled human serum albumin (HSA) is extensively used as a cardiac imaging agent. An evaluation of the blood-clearance rates of electrolytically reduced HSA (EHSA) and four stannous-reduced HSA (SnHSA) preparations was conducted in dogs, and was compared with that of radioiodinated HSA (IHSA). The EHSA was found to have a clearance rate only about 1.5 times that of IHSA, whereas the SnHSA agents were cleared at two to five times the rate of IHSA. Thus, EHSA has definite advantages over SnHSA preparations for the purposes of blood-volume determinations required in quantitative cardiac studies and for the reduction of extravascular background in the accurate delineation of cardiac boundaries

  9. Electrochemistry of oxo-technetium(V) complexes containing Schiff base and 8-quinolinol ligands

    International Nuclear Information System (INIS)

    Refosco, F.; Mazzi, U.; Deutsch, E.; Kirchhoff, J.R.; Heineman, W.R.; Seeber, R.

    1988-01-01

    The electrochemistry of six-coordinate, monooxo technetium(V) complexes containing Schiff base ligands has been studied in acetonitrile and N,N'-dimethylformamide solutions. The complexes have the general formula TcOCl(L B ) 2 or TcO(L T )(L B ), where L B represents a bidentate-N,O Schiff base ligand or a bidentate-N,O 8-quinolinol ligand and L T represents a tridentate-O,N,O Schiff base ligand. Cyclic voltammetry at a platinum-disk electrode, controlled-potential coulometry, and thin-layer spectroelectrochemistry were used to probe both the oxidation and the reduction of these complexes. The results of these studies, and previously reported results on the analogous Re(V) complexes, can be understood within a single general reaction scheme. The salient features of this scheme are (i) one-electron reduction of Tc(V) to Tc(IV), (ii) subsequent loss of a ligand situated cis to the Tc≡O linkage, and (iii) subsequent isomerization of this unstable Tc(IV) product to more stable complex in which the site trans to the Tc≡O linkage is vacant. The Tc(IV) complexes can also be reduced to analogous Tc(III) species, which appear to undergo the same ligand loss and isomerization reactions. The technetium complexes are 400-500 mV easier to reduce than are their rhenium analogues. The 8-quinolinol ligands, and especially the 5-nitro derivative, both thermodynamically and kinetically stabilize the Tc(IV) and Tc(III) oxidation states. These electrogenerated species are unusual in that they constitute the bulk of the known examples of monomeric Tc(IV) and Tc(III) complexes containing only N- and O-donating ligands. 34 refs., 9 figs., 1 tab

  10. Seasonal microbial and nutrient responses during a 5-year reduction in the daily temperature range of soil in a Chihuahuan Desert ecosystem.

    Science.gov (United States)

    van Gestel, Natasja C; Dhungana, Nirmala; Tissue, David T; Zak, John C

    2016-01-01

    High daily temperature range of soil (DTRsoil) negatively affects soil microbial biomass and activity, but its interaction with seasonal soil moisture in regulating ecosystem function remains unclear. For our 5-year field study in the Chihuahuan Desert, we suspended shade cloth 15 cm above the soil surface to reduce daytime temperature and increase nighttime soil temperature compared to unshaded plots, thereby reducing DTRsoil (by 5 ºC at 0.2 cm depth) without altering mean temperatures. Microbial biomass production was primarily regulated by seasonal precipitation with the magnitude of the response dependent on DTRsoil. Reduced DTRsoil more consistently increased microbial biomass nitrogen (MBN; +38%) than microbial biomass carbon (MBC) with treatment responses being similar in spring and summer. Soil respiration depended primarily on soil moisture with responses to reduced DTRsoil evident only in wetter summer soils (+53%) and not in dry spring soils. Reduced DTRsoil had no effect on concentrations of dissolved organic C, soil organic matter (SOM), nor soil inorganic N (extractable NO3 (-)-N + NH4 (+)-N). Higher MBN without changes in soil inorganic N suggests faster N cycling rates or alternate sources of N. If N cycling rates increased without a change to external N inputs (atmospheric N deposition or N fixation), then productivity in this desert system, which is N-poor and low in SOM, could be negatively impacted with continued decreases in daily temperature range. Thus, the future N balance in arid ecosystems, under conditions of lower DTR, seems linked to future precipitation regimes through N deposition and regulation of soil heat load dynamics.

  11. Method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions

    Science.gov (United States)

    Horwitz, E. Philip; Delphin, Walter H.

    1979-07-24

    A method for recovering palladium and technetium values from nuclear fuel reprocessing waste solutions containing these and other values by contacting the waste solution with an extractant of tricaprylmethylammonium nitrate in an inert hydrocarbon diluent which extracts the palladium and technetium values from the waste solution. The palladium and technetium values are recovered from the extractant and from any other coextracted values with a strong nitric acid strip solution.

  12. Bronchoalveolar lavage and technetium-99m glucoheptonate imaging in chronic eosinophilic pneumonia

    International Nuclear Information System (INIS)

    Lieske, T.R.; Sunderrajan, E.V.; Passamonte, P.M.

    1984-01-01

    A patient with chronic eosinophilic pneumonia was evaluated using bronchoalveolar lavage, technetium-99m glucoheptonate, and transbronchial lung biopsy. Bronchoalveolar lavage revealed 43 percent eosinophils and correlated well with results of transbronchial lung biopsy. Technetium-99m glucoheptonate lung imaging demonstrated intense parenchymal uptake. After eight weeks of corticosteroid therapy, the bronchoalveolar lavage eosinophil population and the technetium-99m glucoheptonate uptake had returned to normal. We suggest that bronchoalveolar lavage, with transbronchial lung biopsy, is a less invasive way than open lung biopsy to diagnose chronic eosinophilic pneumonia. The mechanism of uptake of technetium-99m glucoheptonate in this disorder remains to be defined

  13. Method for radiolabeling proteins with technetium-99m

    International Nuclear Information System (INIS)

    Crockford, D.R.; Rhodes, B.A.

    1984-01-01

    In accordance with this invention, a substrate to be radiolabeled with technetium-99m is admixed with a buffered stannous chloride composition having a pH between about 4.5 and about 8.5 wherein the stannous chloride is produced from a non-oxidized tin source, the buffered stannous chloride is purged of oxygen and the buffer comprises a mixture of alkali metal biphthalate and an alkali metal tartrate. Alternatively, the buffer may include alkali metal borate or gentisate. The stannous chloride solution is admixed with the buffer and the resultant mixture is neutralized with sodium hydroxide. The neutralized solution then is admixed with the substrate eventually to be radiolabeled with technetium-99m. This solution is allowed to incubate for several hours (usually over 15 hours) in the absence of oxygen and at room temperature

  14. Determination of technetium-99 in environmental samples: A review

    DEFF Research Database (Denmark)

    Shi, Keliang; Hou, Xiaolin; Roos, Per

    2012-01-01

    Due to the lack of a stable technetium isotope, and the high mobility and long half-life, 99Tc is considered to be one of the most important radionuclides in safety assessment of environmental radioactivity as well as nuclear waste management. 99Tc is also an important tracer for oceanographic...... research due to the high technetium solubility in seawater as TcO4−. A number of analytical methods, using chemical separation combined with radiometric and mass spectrometric measurement techniques, have been developed over the past decades for determination of 99Tc in different environmental samples....... This article summarizes and compares recently reported chemical separation procedures and measurement methods for determination of 99Tc. Due to the extremely low concentration of 99Tc in environmental samples, the sample preparation, pre-concentration, chemical separation and purification for removal...

  15. Preparation of a generator of technetium-99m

    International Nuclear Information System (INIS)

    Jimeno de Osso, F.

    1981-01-01

    Practical description is given of equipment and operations necessary in the preparation of an isotopic generator of technetium-99m. The preparation and application of the active solution and throughly washed of the chromatographic column have been studied in order to allow molibdenum-99 to be adsorbed on a small band, and the solution of tectium-99m to be eluted with high efficiency and purity. The equipment and accesories used are easy and safety to manage, simplifying operations to be carried out with the active product, eliminating the sterile environment in the shielded cell, and facilitating the preparation of the solution of technetium-99m in sterile and pyrogen-free conditions.(author) [es

  16. Behavior of technetium in nuclear waste vitrification processes.

    Science.gov (United States)

    Pegg, Ian L

    Nearly 100 tests were performed with prototypical melters and off-gas system components to investigate the extents to which technetium is incorporated into the glass melt, partitioned to the off-gas stream, and captured by the off-gas treatment system components during waste vitrification. The tests employed several simulants, spiked with 99m Tc and Re (a potential surrogate), of the low activity waste separated from nuclear wastes in storage in the Hanford tanks, which is planned for immobilization in borosilicate glass. Single-pass technetium retention averaged about 35 % and increased significantly with recycle of the off-gas treatment fluids. The fraction escaping the recycle loop was very small.

  17. Physics of the missing atoms: technetium and promethium

    International Nuclear Information System (INIS)

    Aspden, H.

    1987-01-01

    Technetium (Z = 43) and promethium (Z = 61) are by far the least abundant of all atoms below the radioactive elements (Z = 84 onwards). Their scarcity confirms theoretical predictions emerging from a theory of the photon derived from synchronous lattice electrodynamics. This theory has given precise theoretical values for the fine-structure constant and the constant of gravitation G and is now shown in this paper to indicate resonant interactions between the vacuum lattice oscillations and technetium and promethium. In the case of promethium there is strong reason for believing that this atom can assume supergravitational or antigravitational properties, accounting for its scarcity. This paper not only adds support to the earlier theoretical work on the photon and gravitation, but suggests a research route that might lead to new technology based on controlled interactions with gravity fields

  18. Contaminant immobilization via microbial activity

    International Nuclear Information System (INIS)

    1991-11-01

    The aim of this study was to search the literature to identify biological techniques that could be applied to the restoration of contaminated groundwaters near uranium milling sites. Through bioremediation it was hypothesized that the hazardous heavy metals could be immobilized in a stable, low-solubility form, thereby halting their progress in the migrating groundwater. Three basic mechanisms were examined: reduction of heavy metals by microbially produced hydrogen sulfide; direct microbial mediated reduction; and biosorption

  19. Technetium labelled plasminogen activator - a potential reagent for thrombus detection

    Energy Technology Data Exchange (ETDEWEB)

    Paulsma-De Waal, J.H.; Boer, A.C. de; Cox, P.H.; Pillay, M.; Stassen, J.H.; Collen, D.

    1987-12-01

    The preparation of a technetium labelled plasminogen activator complex using a solid phase labelling technique is described. The labelled complex showed no significant loss of fibrinolytic activity in vitro and showed in vivo a rapid uptake in thrombi in an animal model and in human volunteer patients with known thrombi when injected into a vein draining to the thrombotic region. Systemic injection showed no uptake in the thrombi probably due to rapid sequestration of the complex by the liver.

  20. Overview of nuclear medicine and the role of technetium

    International Nuclear Information System (INIS)

    Eckelman, W.C.

    1987-01-01

    One of the driving forces for the elucidation of the chemistry of 99 Tc was the discovery of the Molybdenum Technetium generator. Since this generator system produces no-carrier-added 99 Tc, these studies at the nanomolar level mostly involve chromatography, and that analytical tool is then used to link the no-carrier added and carrier chemistry. These well-defined 99 Tc compounds are used in vivo to measure perfusion, but biochemical probes offer an exciting target for further exploration

  1. Extraosseous uptake of 99sup(m)technetium methylene diphosphonate

    International Nuclear Information System (INIS)

    Sty, J.R.; Kun, L.; Casper, J.; Babbitt, D.P.

    1980-01-01

    A child with a ganglioneuroblastoma and tumor uptake of 99 sup(m)technetium methylene diphosphate ( 99 sup(m)Tc-MDP) is presented. After surgical removal of an encapsulated tumor and radiation therapy, an interval bone scan demonstrated the same presurgical abnormality. Awareness of abnormal uptake of 99 sup(m)Tc-MDP in irradiated renal tissue prevents interpreting radiation nephritis as recurrent tumor. (orig.) [de

  2. Effect of humic acid on sorption of technetium by alumina

    International Nuclear Information System (INIS)

    Kumar, S.; Rawat, N.; Kar, A.S.; Tomar, B.S.; Manchanda, V.K.

    2011-01-01

    Highlights: → Tc sorption on alumina has been studied under aerobic as well anaerobic condition over pH 3-10. → Effect of humic acid on sorption of Tc by alumina has been investigated. → Linear additive modeling and surface complexation modeling were carried out to delineate the role of humic acid in Tc(IV) sorption in ternary system of Tc(IV)-humic acid-alumina. → Sorption of humic acid onto alumina and strong complexation of Tc(IV) with humic acid were found to govern the sorption of Tc(IV) in the ternary system. - Abstract: Sorption of technetium by alumina has been studied in absence as well as in presence of humic acid using 95 Tc m as a tracer. Measurements were carried out at fixed ionic strength (0.1 M NaClO 4 ) under varying pH (3-10) as well as redox (aerobic and reducing anaerobic) conditions. Under aerobic conditions, negligible sorption of technetium was observed onto alumina both in absence and in presence of humic acid. However, under reducing conditions (simulated with [Sn(II)] = 10 -6 M), presence of humic acid enhanced the sorption of technetium in the low pH region significantly and decreased at higher pH with respect to that in absence of humic acid. Linear additive as well as surface complexation modeling of Tc(IV) sorption in presence of humic acid indicated the predominant role of sorbed humic acid in deciding technetium sorption onto alumina.

  3. Multi-organ technetium complexes production and use thereof

    International Nuclear Information System (INIS)

    Koehler, G.A.; Pestel, G.M.

    1976-01-01

    Chemical complexes, useful as radiopharmaceuticals, are formed by reacting technetium-99m with substituted or unsubstituted alkyl monophosphonic acids and certain ester derivatives thereof. The complexes are formed by reducing pertechnetate ion chemically or electrolytically in the presence of the phosphonic acid. By chemical modification of the phosphonic acid complexing agent, it is possible to ''tailor'' complexes for kidney, liver or bone imaging. The complexes are normally used in a physiologically acceptable aqueous medium. 20 Claims, No Drawings

  4. Molecular Engineering of Technetium and Rhenium Based Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zubieta, J.

    2003-01-01

    The research was based on the observation that despite the extraordinarily rich coordination chemistry of technetium and rhenium and several notable successes in reagent design, the extensive investigations by numerous research groups on a variety of N 2 S 2 and N 3 S donor type ligands and on HYNIC have revealed that the chemistries of these ligands with Tc and Re are rather complex, giving rise to considerable difficulties in the development of reliable procedures for the development of radiopharmaceutical reagents

  5. Mew organometallic complexes of technetium in different oxidation states

    International Nuclear Information System (INIS)

    Joachim, J.E.

    1993-09-01

    New organometallic compounds of Tc(I), Tc(III) and Tc(VII) were synthesized and their properties examined. These compounds were correlated with their homologous compounds of manganese and rhenium, which were also synthesized by the same route. The molecular and crystal structures of most technetium complexes and of the homologous complexes of manganese and rhenium were determined by single crystal X-ray diffraction. (orig.) [de

  6. Evaluation of Technetium Getters to Improve the Performance of Cast Stone

    International Nuclear Information System (INIS)

    Neeway, James J.; Qafoku, Nikolla P.; Serne, R. Jeffrey; Lawter, Amanda R.; Stephenson, John R.; Lukens, Wayne W.; Westsik, Joseph H.

    2015-01-01

    Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. One of the major radionuclides that Cast Stone has the potential to immobilize is technetium (Tc). The mechanism for immobilization is through the reduction of the highly mobile Tc(VII) species to the less mobile Tc(IV) species by the blast furnace slag (BFS) used in the Cast Stone formulation. Technetium immobilization through this method would be beneficial because Tc is one of the most difficult contaminants to address at the U.S. Department of Energy (DOE) Hanford Site due to its complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes (vitrification, steam reformation, etc.), and high mobility in subsurface environments. In fact, the Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC&WM EIS) identifies technetium-99 ( 99 Tc) as one of the radioactive tank waste components contributing the most to the environmental impact associated with the cleanup of the Hanford Site. The TC&WM EIS, along with an earlier supplemental waste-form risk assessment, used a diffusion-limited release model to estimate the release of different contaminants from the WTP process waste forms. In both of these predictive modeling exercises, where effective diffusivities based on grout performance data available at the time, groundwater at the 100-m down-gradient well exceeded the allowable maximum permissible concentrations for 99 Tc. (900 pCi/L). Recent relatively short-term (63 day

  7. Evaluation of Technetium Getters to Improve the Performance of Cast Stone

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephenson, John R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lukens, Wayne W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-01

    Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. One of the major radionuclides that Cast Stone has the potential to immobilize is technetium (Tc). The mechanism for immobilization is through the reduction of the highly mobile Tc(VII) species to the less mobile Tc(IV) species by the blast furnace slag (BFS) used in the Cast Stone formulation. Technetium immobilization through this method would be beneficial because Tc is one of the most difficult contaminants to address at the U.S. Department of Energy (DOE) Hanford Site due to its complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes (vitrification, steam reformation, etc.), and high mobility in subsurface environments. In fact, the Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC&WM EIS) identifies technetium-99 (99Tc) as one of the radioactive tank waste components contributing the most to the environmental impact associated with the cleanup of the Hanford Site. The TC&WM EIS, along with an earlier supplemental waste-form risk assessment, used a diffusion-limited release model to estimate the release of different contaminants from the WTP process waste forms. In both of these predictive modeling exercises, where effective diffusivities based on grout performance data available at the time, groundwater at the 100-m down-gradient well exceeded the allowable maximum permissible concentrations for 99Tc. (900 pCi/L). Recent relatively

  8. Thermal neutron cross section measurements for technetium-99

    International Nuclear Information System (INIS)

    Yates, M.A.; Schroeder, N.C.; Fowler, M.M.

    1993-01-01

    Technetium, because of its long half-like (213,000 years) and ability to migrate in the environment, is a primary contributor to the long-term radioactivity related risk associated with geologic nuclear waste disposal. One proposal for converting technetium to an environmentally benign element investigating transmutation with an accelerator-based system, (i.e., Accelerator Transmutation of Waste, ATW). Planning for efficient processing of technetium through the transmuter will require knowledge of the thermal neutron cross section for the 99 Tc (n,γ) 100 Tc reaction. The authors have recently remeasured this cross section. Weighed aliquots (19-205 μg) of a NIST traceable 99 Tc standard were irradiated for 30-150 sec using the pneumatic open-quotes rabbitclose quotes system of LANL's Omega West Reactor. The two gamma rays from the 15.7-sec half-life product were measured immediately after irradiation on a high-resolution Ge detector. Thermal fluxes were measured using gold foils and Cd wrapped gold foils. The observation cross section is 19 ± 1 b. This agrees well with the 1977 value but has half the uncertainty

  9. Non-Pertechnetate Technetium Sensor Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Samuel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crawford, Amanda D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heineman, William R. [Univ. of Cincinnati, OH (United States); Rapko, Brian M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Branch, Shirmir D. [Univ. of Cincinnati, OH (United States)

    2014-09-01

    There remain several significant uncertainties in the understanding and modeling of the fate and speciation of 99Tc in Hanford waste tanks, glass, and low-temperature waste forms. A significant (2% to 25%) fraction of the 99Tc in the water-soluble portion of the tank waste may be present as a non-pertechnetate species that has not been identified and, based on experimentation to date, cannot be effectively separated from the wastes. This task will provide a sensor specifically tuned to detect the Tc(I)-carbonyl species believed to constitute the main fraction of the non-pertechnetate form of technetium. By direct measurement of the non-pertechnetate species, such a sensor will help reduce the uncertainties in the modeling of the fate and speciation of 99Tc in Hanford tanks and waste forms. This report summarizes work done in FY 2014 exploring the chemistry of a low-valence technetium species, [Tc(CO)3(H2O)3]+, a compound of interest due to its implication in the speciation of alkaline-soluble technetium in several Hanford tank waste supernatants. Progress made in FY 2014 was sponsored by the Department of Energy’s Office of Environmental Management and is summarized in this report.

  10. Technetium-99m ceftizoxime kit preparation

    Directory of Open Access Journals (Sweden)

    Simone Odília Fernandes Diniz

    2005-10-01

    Full Text Available The aim of this work was to prepare a kit of 99mTc-ceftizoxime (99mTc-CFT, with stability and biological activity preserved, able to identify a septic focus (E. coli in the experimental infection model in rats. The preparation of the CFT kit involved the use of lyophilized solutions containing the antibiotic ceftizoxime and the sodium dithionite reducing agent (6.0 mg/mL. After lyophilization, the kit was reconstituted with 1.0 mL of sodium 99mTc-pertechnetate solution (Na99mTcO4- with an activity of 370 MBq. The solution was boiled for 10 min and filtered through a cellulose ester filter. The labeling efficiency was on the order of 92%, remaining stable for six hours and the kit remained stable for two months. The biological activity of the 99mTc-CFT was evaluated by diffusion in agar impregnated with E.coli and S. aureus. Seven Wistar rats, weighing from 200 to 250 g, were used for the development of the septic focus. After 24 hours from the induction of the infectious site (E.coli, the animals were anesthetized and 0.1 mL of 99mTc-CFT (37 MBq was injected into the tail veins of the animals. The images were obtained with a gamma camera one, two and six hours after injection and the regions of interest (ROIs were calculated. The diameters of the inhibition halos for 99mTc-CFT were 27.16 ± 0.23 and 27.17 ± 0.20 for S.aureus and E.coli, respectively, while those for the unlabeled CFT were 30.4 ± 0.33 and 29.43 ± 0.26, respectively. The results for the biodistribution of 99mTc-CFT in infected animals furnished a ratio of 1.97 ± 0.31, 2.10 ± 0.42 and 2.01 ± 0.42 for cpm-target/cpm-no target for the one, two and six-hour periods, respectively. The images showed a clear uptake of labeled antibiotic (99mTc-CFT by the infectious site during the experiment. The results attest to the viability of producing a kit with 99m technetium-labeled ceftizoxime for the investigation of infectious processes.O objetivo deste trabalho foi preparar um kit de Tc

  11. Method of preparation of technetium-99m labelled radio-diagnostic agents and a stable non radio-active carrier

    International Nuclear Information System (INIS)

    1975-01-01

    A method of preparing improved technetium-99m labeled radiodiagnostic agents is described by reducing technetium-99m with stannous tartrate. Such radiodiagnostic agents are useful in scintigraphic examinations of the bone and lung

  12. High pressure liquid chromatographic assay of technetium in solutions of sodium pertechnetate produced at the AAEC Research Establishment

    International Nuclear Information System (INIS)

    Farrington, K.J.

    1985-12-01

    High pressure liquid chromatography (HPLC) is used for the assay of nanogram quantities of technetium and to determine technetium in decayed pharmaceutical products, derived from three methods of manufacture. These methods of manufacture give comparably low levels of technetium-99, at the time of collection of the solution. However, when the solutions are used to produce ready-to-inject technetium-99m, high levels of technetium-99 are present at the time of calibration, which is the day after the collection date. Where sensitive reagent kits are to be labelled, freshly collected solutions of technetium-99m should be used. The HPLC assay is a valuable technique for the quality control of technetium-based radiopharmaceuticals, and for investigation of methods of manufacture of technetium-99m. Experimental studies confirmed the findings of previous workers

  13. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by- product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, June 11, 1992--September 11, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-12-31

    Based on the work described simultaneous SO{sub 2}/No{sub x} removal from flue gas based on direct contact of the gas with SRB and T. denitrificans co-cultures or cultures-in-series has been eliminated as a viable process concept at this time. The technical reasons are as follows: (1) NO inhibition of SO{sub 2} reduction by D. desulfuricans - Although the NO concentrations used in the experiments described above are somewhat higher than that found in a typical flue gas, it is quite possible that at lower NO concentrations (or partial pressures) the inhibiting effects will simply take longer to become apparent. (2) Nitrate suppression of NO removal - As noted previously, the cultivation of T. denitrificans in a microbial flue gas treatment system (either one or two stages) would require sulfide-limiting conditions. Therefore, the electron acceptor must be in excess, requiring nitrate in the T. denitrificans process culture. As shown in experiments described above, nitrate significantly suppresses the removal of NO from a feed gas making simultaneous SO{sub 2}/NO{sub x} removal impractical by microbial means. (3) O{sub 2} inhibition of SO{sub 2} and NO reduction - It has been demonstrated that D. desulfuricans working cultures are tolerant of up to 1.7% O{sub 2} in the feed gas. However, further increases in the O{sub 2} partial pressure in the feed gas resulted in O{sub 2} inhibition of SO{sub 2} reduction. These inhibiting levels of O{sub 2} are comparable to those concentrations found in flue gases (3). Therefore, in any process in which raw flue gas contacts a D. desulfuricans culture marginal stability at best can be expected.

  14. Microbial reduction of SO[sub 2] and NO[sub x] as a means of by- product recovery/disposal from regenerable processes for the desulfurization of flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1992-01-01

    Based on the work described simultaneous SO[sub 2]/No[sub x] removal from flue gas based on direct contact of the gas with SRB and T. denitrificans co-cultures or cultures-in-series has been eliminated as a viable process concept at this time. The technical reasons are as follows: (1) NO inhibition of SO[sub 2] reduction by D. desulfuricans - Although the NO concentrations used in the experiments described above are somewhat higher than that found in a typical flue gas, it is quite possible that at lower NO concentrations (or partial pressures) the inhibiting effects will simply take longer to become apparent. (2) Nitrate suppression of NO removal - As noted previously, the cultivation of T. denitrificans in a microbial flue gas treatment system (either one or two stages) would require sulfide-limiting conditions. Therefore, the electron acceptor must be in excess, requiring nitrate in the T. denitrificans process culture. As shown in experiments described above, nitrate significantly suppresses the removal of NO from a feed gas making simultaneous SO[sub 2]/NO[sub x] removal impractical by microbial means. (3) O[sub 2] inhibition of SO[sub 2] and NO reduction - It has been demonstrated that D. desulfuricans working cultures are tolerant of up to 1.7% O[sub 2] in the feed gas. However, further increases in the O[sub 2] partial pressure in the feed gas resulted in O[sub 2] inhibition of SO[sub 2] reduction. These inhibiting levels of O[sub 2] are comparable to those concentrations found in flue gases (3). Therefore, in any process in which raw flue gas contacts a D. desulfuricans culture marginal stability at best can be expected.

  15. Myocardial perfusion scintigraphy with technetium 99m-MIBI in the diagnosis of coronary artery disease in women

    International Nuclear Information System (INIS)

    Peix, C. Amalia; Chacon, Deylis; Llerena, Lorenzo; Torres, Maritza; Garcia, Ernesto Javier; Cabrera, Lazaro Omar

    2006-01-01

    The results of technetium 99 m - methoxy-isobutyl-isonitrile scintigraphy in a one-day protocol: rest - physical or combined stress bicycle plus endovenoous dipyridamole were compared with those of coronary angiography in 20 women referred for the evaluation of pre cordial pain and of the usefulness of myocardial perfusion scintigraphy. The uptake of the radio drug under stress and at rest varied from 93 + - 9 to 94 + - 7 % in the 204 segments with normal uptake under stress, from 67 He articulates it analyzes the reasons or utility of the employment of the radioactive iodine in the diagnosis and treatment of the thyroid affections + - 9 to 75 + - 17 % in the 89 with moderate reduction, and from 33 + - 9 to 64 + - 28 % in the 27 with severe reduction. The qualitative and quantitative uptake analyses coincided in 18 patients. The perfusion scintigraphy and the angiography agreed in 70 % of the patients. It was concluded that the myocardial perfusion scintigraphy with technetium 99 -MIBI contributes to the diagnosis of the coronary artery disease in women

  16. Behavior of technetium-99 in soils and plants. Progress report, April 1, 1974--March 31, 1977

    International Nuclear Information System (INIS)

    Gast, R.G.; Landa, E.R.; Thorvig, L.J.

    1976-12-01

    Studies described in this report were aimed at establishing the magnitude and mechanisms of 99 Tc sorption by soils and uptake by plants. Results show that 99 Tc was sorbed from solution over a period of two to five weeks by 8 of 11 soils studied. The slow rate of sorption, the lack of sorption by low organic matter soils, the elimination of sorption following sterilization and increased sorption following addition of dextrose all point to a microbial role in the sorption process. However, it has not been established whether this is a direct or indirect role nor is it possible to clearly predict the conditions under which sorption will occur. Results of plant uptake studies show that 99 Tc can be taken up and translocated into the photosynthetic tissue of higher plants with concentrations in seeds being much less than in vegetative tissue. Technetium-99 was also shown to be toxic to plants at low concentrations and evidence suggests that this is a chemically rather than a radiologically induced toxicity. However, this remains to be completely resolved, as well as whether there is a threshold level of 99 Tc required before toxicity occurs

  17. COMPARISON OF TRICHLOROETHYLENE REDUCTIVE DEHALOGENATION BY MICROBIAL COMMUNITIES STIMULATED ON SILICON-BASED ORGANIC COMPOUNDS AS SLOW-RELEASE ANAEROBIC SUBSTRATES. (R828772C001)

    Science.gov (United States)

    Microcosm studies were conducted to demonstrate the effectiveness of tetrabutoxysilane (TBOS) as a slow-release anaerobic substrate to promote reductive dehalogenation of trichloroethylene (TCE). The abiotic hydrolysis of TBOS and tetrakis(2-ethylbutoxy)silane (TKEBS), and the...

  18. Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells

    KAUST Repository

    Watson, Valerie J.; Nieto Delgado, Cesar; Logan, Bruce E.

    2013-01-01

    Commercially available activated carbon (AC) powders from different precursor materials (peat, coconut shell, coal, and hardwood) were treated with ammonia gas at 700 C to improve their performance as oxygen reduction catalysts in neutral p

  19. Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1997 mid-year progress report

    International Nuclear Information System (INIS)

    Buelow, S.

    1997-01-01

    'Treatment of High Level Waste (HLW) is the second most costly problem identified by OEM. In order to minimize costs of disposal, the volume of HLW requiring vitrification and long term storage must be reduced. Methods for efficient separation of chromium from waste sludges, such as the Hanford Tank Wastes (HTW), are key to achieving this goal since the allowed level of chromium in high level glass controls waste loading. At concentrations above 0.5 to 1.0 wt.% chromium prevents proper vitrification of the waste. Chromium in sludges most likely exists as extremely insoluble oxides and minerals, with chromium in the plus III oxidation state [1]. In order to solubilize and separate it from other sludge components, Cr(III) must be oxidized to the more soluble Cr(VI) state. Efficient separation of chromium from HLW could produce an estimated savings of $3.4B[2]. Additionally, the efficient separation of technetium [3], TRU, and other metals may require the reformulation of solids to free trapped species as well as the destruction of organic complexants. New chemical processes are needed to separate chromium and other metals from tank wastes. Ideally they should not utilize additional reagents which would increase waste volume or require subsequent removal. The goal of this project is to apply hydrothermal processing for enhanced chromium separation from HLW sludges. Initially, the authors seek to develop a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions. The authors also wish to evaluate the potential of hydrothermal processing for enhanced separations of technetium and TRU by examining technetium and TRU speciation at hydrothermal conditions optimal for chromium dissolution.'

  20. Determination of Technetium-99 in Environmental Samples by Solvent Extraction at Controlled Valence

    DEFF Research Database (Denmark)

    Chen, Q.J.; Aarkrog, A.; Dahlgaard, H.

    1989-01-01

    Distribution coefficients of technetium and ruthenium are determined under different conditions with CCl4, cyclohexanone, and 5% tri-isooctylamine (TIOA)/xylene. A method for analyzing 99Tc in environmental samples has been developed by solvent extraction in which the valences of technetium...

  1. Technetium-99m labeled radiodiagnostic agents for liver and bone marrow scanning and method of preparation

    International Nuclear Information System (INIS)

    Molinski, V.J.; Peacock, F.R.

    1977-01-01

    An improved technetium-99m labeled colloid and method of preparation comprising reducing technetium-99m with stannous oxalate and stabilizing with sodium phytate are described. This radiodiagnostic agent is useful in the scintigraphic examination of the reticuloendothelial system, particularly the liver. In addition, by autoclaving this product with saline, it becomes a superior bone marrow scanning agent

  2. Ligand-free, protein-bound technetium-99m. Evidence for tumour localisation

    International Nuclear Information System (INIS)

    Jakovljevic, A.C.; Pojer, P.M.

    1984-11-01

    An hypothesis that cations accumulate in tumours independent of ligand is tested. A preparation of technetium-99m known to be ligand-free (that is, the technetium is protein bound and no other ligand is injected) has been shown to accumulate in a T-cell lymphoma

  3. High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms

    DEFF Research Database (Denmark)

    Dillon, Jesse G; Fishbain, Susan; Miller, Scott R

    2007-01-01

    The importance of sulfate respiration in the microbial mat found in the low-sulfate thermal outflow of Mushroom Spring in Yellowstone National Park was evaluated using a combination of molecular, microelectrode, and radiotracer studies. Despite very low sulfate concentrations, this mat community...... was shown to sustain a highly active sulfur cycle. The highest rates of sulfate respiration were measured close to the surface of the mat late in the day when photosynthetic oxygen production ceased and were associated with a Thermodesulfovibrio-like population. Reduced activity at greater depths...... was correlated with novel populations of sulfate-reducing microorganisms, unrelated to characterized species, and most likely due to both sulfate and carbon limitation....

  4. The Evaluation of Novel Tin Materials for the Removal of Technetium from Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Kent E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wellman, Dawn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-30

    Technetium-99 (99Tc) is present at several U.S. Department of Energy (DOE) facilities, including the Hanford, Oak Ridge, Paducah, Portsmouth, and Savannah River sites. Due to its mobility, persistence, and toxicity in the environment, developing means to immobilize and/or remove technetium from the environment is currently a top priority for DOE. However, there are currently very few approaches that effectively manage the risks of technetium to human health and the environment. The objective of this study is to evaluate novel synthetic materials that could enable direct removal of technetium from groundwater. The following report •assesses the viability of existing methodologies for synthesis of tin (II) apatite for in situ formation and remediation of 99Tc within the subsurface environment •discusses the development of alternative methodologies for production of tin (II) apatite •evaluates nanoporous tin phosphate materials for removal of technetium from groundwater.

  5. Arsenic(V) reduction in relation to Iron(III) transformation and molecular characterization of the structural and functional microbial community in sediments of a basin-fill aquifer in Northern Utah.

    Science.gov (United States)

    Mirza, Babur S; Muruganandam, Subathra; Meng, Xianyu; Sorensen, Darwin L; Dupont, R Ryan; McLean, Joan E

    2014-05-01

    Basin-fill aquifers of the Southwestern United States are associated with elevated concentrations of arsenic (As) in groundwater. Many private domestic wells in the Cache Valley Basin, UT, have As concentrations in excess of the U.S. EPA drinking water limit. Thirteen sediment cores were collected from the center of the valley at the depth of the shallow groundwater and were sectioned into layers based on redoxmorphic features. Three of the layers, two from redox transition zones and one from a depletion zone, were used to establish microcosms. Microcosms were treated with groundwater (GW) or groundwater plus glucose (GW+G) to investigate the extent of As reduction in relation to iron (Fe) transformation and characterize the microbial community structure and function by sequencing 16S rRNA and arsenate dissimilatory reductase (arrA) genes. Under the carbon-limited conditions of the GW treatment, As reduction was independent of Fe reduction, despite the abundance of sequences related to Geobacter and Shewanella, genera that include a variety of dissimilatory iron-reducing bacteria. The addition of glucose, an electron donor and carbon source, caused substantial shifts toward domination of the bacterial community by Clostridium-related organisms, and As reduction was correlated with Fe reduction for the sediments from the redox transition zone. The arrA gene sequencing from microcosms at day 54 of incubation showed the presence of 14 unique phylotypes, none of which were related to any previously described arrA gene sequence, suggesting a unique community of dissimilatory arsenate-respiring bacteria in the Cache Valley Basin.

  6. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1994-03-01

    The main objective of this research was to investigate microorganisms capable of fossil fuel flue gas desulfurization and denitrification. The study used municipal sewage sludge as a carbon and energy source for SO{sub 2}-reducing cultures. The individual tasks developed a consortium of sulfate-reducing bacteria, investigated the design parameters for a continuous process, preformed a cost analysis, and screened sulfate-reducing bacteria. In the investigation of microbial reduction of NO{sub x} to nitrogen, tasks included screening denitrifying bacteria for NO and NO{sub 2} activity, developing optimum NO-reducing cultures, and investigating design parameters for a continuous system. This final report reviews the work previous to the current project, describes project objectives and the specific work plan, and reports results from the work completed during the previous reporting periods.

  7. Rates and cycles of microbial sulfate reduction in the hyper-saline Dead Sea over the last 200 kyrs from sedimentary d34S and d18O(SO4)

    Science.gov (United States)

    Torfstein, Adi; Turchyn, Alexandra V.

    2017-08-01

    We report the d34S and d18O(SO4) values measured in gypsum, pyrite, and elemental sulfur through a 456-m thick sediment core from the center of the Dead Sea, representing the last 200 kyrs, as well as from the exposed glacial outcrops of the Masada M1 section located on the margins of the modern Dead Sea. The results are used to explore and quantify the evolution of sulfur microbial metabolism in the Dead Sea and to reconstruct the lake’s water column configuration during the late Quaternary. Layers and laminae of primary gypsum, the main sulfur-bearing mineral in the sedimentary column, display the highest d34S and d18O(SO4) in the range of 13-28‰ and 13-30‰, respectively. Within this group, gypsum layers deposited during interglacials have lower d34S and d18O(SO4) relative to those associated with glacial or deglacial stages. The reduced sulfur phases, including chromium reducible sulfur, and secondary gypsum crystals are characterized by extremely low d34S in the range of -27 to +7‰. The d18O(SO4) of the secondary gypsum in the M1 outcrop ranges from 8 to 14‰. The relationship between d34S and d18O(SO4) of primary gypsum suggests that the rate of microbial sulfate reduction was lower during glacial relative to interglacial times. This suggests that the freshening of the lake during glacial wet intervals, and the subsequent rise in sulfate concentrations, slowed the rate of microbial metabolism. Alternatively, this could imply that sulfate-driven anaerobic methane oxidation, the dominant sulfur microbial metabolism today, is a feature of the hypersalinity in the modern Dead Sea. Sedimentary sulfides are quantitatively oxidized during epigenetic exposure, retaining the lower d34S signature; the d18O(SO4) of this secondary gypsum is controlled by oxygen atoms derived equally from atmospheric oxygen and from water, which is likely a unique feature in this hyperarid environment.

  8. Reductive immobilization of U(VI) in Fe(III) oxide-reducing subsurface sediments: Analysis of coupled microbial-geochemical processes in experimental reactive transport systems. Final Scientific/Technical Report-EMSP 73914

    International Nuclear Information System (INIS)

    Eric E. Roden Matilde M. Urrutia Mark O. Barnett Clifford R. Lange

    2005-01-01

    The purpose of this research was to provide information to DOE on microbiological and geochemical processes underlying the potential use of dissimilatory metal-reducing bacteria (DMRB) to create subsurface redox barriers for immobilization of uranium and other redox-sensitive metal/radionuclide contaminants that were released to the environment in large quantities during Cold War nuclear weapons manufacturing operations. Several fundamental scientific questions were addressed in order to understand and predict how such treatment procedures would function under in situ conditions in the subsurface. These questions revolved the coupled microbial-geochemical phenomena which are likely to occur within a redox barrier treatment zone, and on the dynamic interactions between hydrologic flux and biogeochemical process rates. First, we assembled a robust conceptual understanding and numerical framework for modeling the kinetics of microbial Fe(III) oxide reduction and associated DMRB growth in sediments. Development of this framework is a critical prerequisite for predicting the potential effectiveness of DMRB-promoted subsurface bioremediation, since Fe(III) oxides are expected to be the primary source of electron-accepting capacity for growth and maintenance of DMRB in subsurface environments. We also defined in detail the kinetics of microbial (enzymatic) versus abiotic, ferrous iron-promoted reduction of U(VI) in the presence and absence of synthetic and natural Fe(III) oxide materials. The results of these studies suggest that (i) the efficiency of dissolved U(VI) scavenging may be influenced by the kinetics of enzymatic U(VI) reduction in systems with relative short fluid residence times; (2) association of U(VI) with diverse surface sites in natural soils and sediments has the potential to limit the rate and extent of microbial U(VI) reduction, and in turn modulate the effectiveness of in situ U(VI) bioremediation; and (3) abiotic, ferrous iron (Fe(II)) drive n U

  9. Determination of technetium-99 in environmental samples: A review

    International Nuclear Information System (INIS)

    Shi Keliang; Hou Xiaolin; Roos, Per; Wu Wangsuo

    2012-01-01

    Highlights: ► The source term, physicochemical properties, environmental distribution and behaviour of 99 Tc are presented. ► Various sample pre-treatment and pre-concentration techniques of technetium are discussed. ► Chemical separation and purification techniques for 99 Tc in environmental samples are reviewed. ► Measurement techniques for 99 Tc in environmental level and automated analytical methods are reviewed. ► The reported analytical methods of 99 Tc are critically compared to provide overall information. - Abstract: Due to the lack of a stable technetium isotope, and the high mobility and long half-life, 99 Tc is considered to be one of the most important radionuclides in safety assessment of environmental radioactivity as well as nuclear waste management. 99 Tc is also an important tracer for oceanographic research due to the high technetium solubility in seawater as TcO 4 − . A number of analytical methods, using chemical separation combined with radiometric and mass spectrometric measurement techniques, have been developed over the past decades for determination of 99 Tc in different environmental samples. This article summarizes and compares recently reported chemical separation procedures and measurement methods for determination of 99 Tc. Due to the extremely low concentration of 99 Tc in environmental samples, the sample preparation, pre-concentration, chemical separation and purification for removal of the interferences for detection of 99 Tc are the most important issues governing the accurate determination of 99 Tc. These aspects are discussed in detail in this article. Meanwhile, the different measurement techniques for 99 Tc are also compared with respect to advantages and drawbacks. Novel automated analytical methods for rapid determination of 99 Tc using solid extraction or ion exchange chromatography for separation of 99 Tc, employing flow injection or sequential injection approaches are also discussed.

  10. Non-pertechnetate Technetium Sensor Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Samuel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rapko, Brian M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Branch, Shirmir D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Univ. of Cincinnati, OH (United States); Lines, Amanda M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heineman, William R. [Univ. of Cincinnati, OH (United States); Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-24

    Several significant uncertainties remain regarding the understanding and modeling of the fate and speciation of technicium-99 (99Tc) in Hanford waste tanks, glass, and low-temperature waste forms. A significant (2% to 25%) fraction of the 99Tc in the water-soluble portion of the tank waste may be present as one or more non pertechnetate species that have not been identified and to date, cannot be effectively separated from the wastes. This task will provide a sensor specifically tuned to detect the Tc(I)-carbonyl species believed to constitute the main fraction of the non-pertechnetate form of technetium. By direct measurement of the non-pertechnetate species, such a sensor will help reduce the uncertainties in the modeling of the fate and speciation of 99Tc in Hanford tanks and waste forms. This report summarizes work performed in FY2016 that was sponsored by the Department of Energy’s Office of Environmental Management and demonstrates the protocol for using fluorescent Tc(I)-tricarbonyl complex as a means to detect the non-pertechnetate species within tank waste solutions. The protocol was optimized with respect to ligand concentration, solvent choice, reaction temperature and time. This work culminated in the quantitation of Tc(I)-tricarbonyl within a waste simulant, using a standard addition method for measurement. This report also summarizes the synthesis and high-yield preparation of the low-valence technetium species, [Tc(CO)3(H2O)3]+, which will be used as the technetium standard material for the demonstration of the non-pertechnetate species in actual wastes.

  11. Influence of some drugs, used in coronary artery disease on in vitro labelling red blood cells with technetium 99mTc

    International Nuclear Information System (INIS)

    Poniatowicz-Frasunek, E.

    1997-01-01

    In some patients investigated by radionuclide ventriculography poor labeling efficiency of red blood cells with technetium 99m Tc is observed. Among possible mechanisms responsible for this phenomenon, the pharmacological treatment applied to the patients should be taken into consideration. The aim of the study was to define the effect of selected drugs used in CAD on technetium binding efficiency by erythrocytes in vitro. Blood samples were obtained from 40 normal individuals receiving no medication. The effect of the following drugs were examined: Aerosonit, Isoptin, Bemecor, Dopegyt, Enarenal, Binazin, Furosemid, Aspirin, Vitamin E and Propranolol. Only Enarenal and Vitamin E proved to have no effect on technetium binding efficiency. The most expressed reduction was observed in experiments with Aerosonit, Furosemid and Propranolol and the smallest changes were found in blood samples with Bemecor, Binazin and Aspirin. The results of the study suggest that pharmacological treatment may influence the quality of scintigraphic images obtained with radioisotope ventriculography. For that reason the medicines applied to the patients should be as much as possible reduced or withdrawn for at least several days before examination. (author)

  12. Can aquatic macrophytes mobilize technetium by oxidizing their rhizosphere?

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Evenden, W.G.

    1991-01-01

    Technetium (Tc) is very mobile in aerated surface environments, but is essentially immobile and biologically unavailable in anaerobic sediments. Aquatic macrophyte roots penetrate anaerobic sediments, carrying O 2 downward and frequently creating oxidizing conditions in their rhizosphere. The authors hypothesized that this process could mobilize otherwise unavailable Tc, possibly leading to incorporation of Tc into human or animal foods. Through experiments with rice (Oryza sativa L.), and with a novel artificial macrophyte root, they concluded that this pathway is unlikely to be important for annual plants, especially in soils with a high biological oxygen demand. The relatively slow oxidation of Tc limited its mobilization by short-lived root systems

  13. Technetium scanning in Kaposi's sarcoma and its simulators

    International Nuclear Information System (INIS)

    Gunnoe, R.; Kalivas, J.

    1982-01-01

    The clinical picture of ulcerated purple plaques on the legs often suggests several diagnoses: Kaposi's sarcoma, stasis dermatitis, atrophie blanche (livedoid vasculitis), and a poorly understood condition called acroangiodermatitis of Favre-Chaix (pseudo-Kaposi's sarcoma). Even the skin biopsy may not always be conclusive. We describe our experience with three patients with pseudo-Kaposi's sarcoma, one with true Kaposi's sarcoma and two with atrophie blanche. Clinical and histopathologic similarities among these three conditions pointed up the need for additional confirmatory studies, i.e., isotope scanning. The technetium scan was positive in both Kaposi's sarcoma and pseudo-Kaposi's sarcoma but negative in atrophie blanche

  14. Experimental study and quality control of a technetium-99 generator

    International Nuclear Information System (INIS)

    Jimeno de Osso, F.

    1981-01-01

    The performarce of a generator of technetium-99m to be used in nuclear medicine is studied. The most interesting characteristic of this generator is the use of a U-shaped chromatographuc column so as to improve its efficiency and design without increasing the weight of its shield. With the aim of improving certain aspects of the generator, molibdenum-99 was applied to adecuate pH, pirogens were removed from the column set up before application, application was effected on a dry column, the smallest alumina particles were separated on the column, etc. The most important parameters of an isotopic generator are studied, and the corresponding quality controls performed. (author)

  15. Environmental behavior of technetium-99 and iodine-129

    International Nuclear Information System (INIS)

    Garland, T.R.; Schreckhise, R.G.

    1982-01-01

    The environmental behavior of technetium-99 and iodine-129 was once thought to be similar, particularly with respect to their soil solubility and biological interactions. Over the past several years, the comparative behavior of these two anions has been studied with respect to their fate in natural environments (both aquatic and terrestrial). The mechanisms studied include physical, chemical and biological parameters that account for differences in soil behavior, cycling between soil and/or air to vegetation, adsorption and metabolism in plants, and their availability and fate following ingestion by animals

  16. Mass spectral analysis of cationic and neutral technetium complexes

    International Nuclear Information System (INIS)

    Unger, S.E.; McCormick, T.J.; Nunn, A.N.; Treher, E.N.

    1986-01-01

    Cationic and neutral technetium compounds have been characterized by mass spectrometry using a variety of ionization methods. These compounds include octahedral cationic complexes containing phosphorous and arsenic ligands such as DIPHOS and DIARS and neutral complexes containing PnAO and dimethylglyoxime, DMG, or cyclohexanedione dioxime, CDO, ligands. Boronate esters incorporating methyl and butyl derivatives of the DMG and CDO dioximes represent a new class of seven-coordinate Tc radiopharmaceuticals whose characterization by mass spectrometry has not previously been described. These complexes show promise as myocardial imaging agents. (author)

  17. Reduction in the microbial load on high-touch surfaces in hospital rooms by treatment with a portable saturated steam vapor disinfection system.

    Science.gov (United States)

    Sexton, Jonathan D; Tanner, Benjamin D; Maxwell, Sheri L; Gerba, Charles P

    2011-10-01

    Recent scientific literature suggests that portable steam vapor systems are capable of rapid, chemical-free surface disinfection in controlled laboratory studies. This study evaluated the efficacy of a portable steam vapor system in a hospital setting. The study was carried out in 8 occupied rooms of a long-term care wing of a hospital. Six surfaces per room were swabbed before and after steam treatment and analyzed for heterotrophic plate count (HPC), total coliforms, methicillin-intermediate and -resistant Staphylococcus aureus (MISA and MRSA), and Clostridium difficile. The steam vapor device consistently reduced total microbial and pathogen loads on hospital surfaces, to below detection in most instances. Treatment reduced the presence of total coliforms on surfaces from 83% (40/48) to 13% (6/48). Treatment reduced presumptive MISA (12/48) and MRSA (3/48) to below detection after cleaning, except for 1 posttreatment isolation of MISA (1/48). A single C difficile colony was isolated from a door push panel before treatment, but no C difficile was detected after treatment. The steam vapor system reduced bacterial levels by >90% and reduced pathogen levels on most surfaces to below the detection limit. The steam vapor system provides a means to reduce levels of microorganisms on hospital surfaces without the drawbacks associated with chemicals, and may decrease the risk of cross-contamination. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  18. Microbial reduction of [Co(III)–EDTA]− by Bacillus licheniformis SPB-2 strain isolated from a solar salt pan

    International Nuclear Information System (INIS)

    Paraneeiswaran, Arunachalam; Shukla, Sudhir K.; Prashanth, K.; Rao, T. Subba

    2015-01-01

    Graphical abstract: - Highlights: • Bacillus licheniformis SPB-2 was used in the bioremediation of [Co(III)–EDTA] − . • The bacterial biomass adsorbed the Co–EDTA complex after its reduction. • [Co(III)–EDTA] − complex showed Bacillus spore inducing property. • B. licheniformis SPB-2 showed significantly radio-tolerance (D 10 = 250 Gy). - Abstract: Naturally stressed habitats are known to be repositories for novel microorganisms with potential bioremediation applications. In this study, we isolated a [Co(III)–EDTA] − reducing bacterium Bacillus licheniformis SPB-2 from a solar salt pan that is exposed to constant cycles of hydration and desiccation in nature. [Co(III)–EDTA] − generated during nuclear waste management process is difficult to remove from the waste due to its high stability and solubility. It is reduced form i.e. [Co(II)–EDTA] 2− is less stable though it is toxic. This study showed that B. licheniformis SPB-2 reduced 1 mM [Co(III)–EDTA] − in 14 days when grown in a batch mode. However, subsequent cycles showed an increase in the reduction activity, which was observed up to four cycles. Interestingly, the present study also showed that [Co(III)–EDTA] − acted as an inducer for B. licheniformis SPB-2 spore germination. Vegetative cells germinated from the spores were found to be involved in [Co(III)–EDTA] − reduction. More detailed investigations showed that after [Co(III)–EDTA] − reduction, i.e. [Co(II)–EDTA] 2− complex was removed by B. licheniformis SPB-2 from the bulk liquid by adsorption phenomenon. The bacterium showed a D 10 value (radiation dose required to kill 90% cells) of ∼250 Gray (Gy), which signifies the potential use of B. licheniformis SPB-2 for bioremediation of moderately active nuclear waste

  19. Microbial reduction of [Co(III)–EDTA]{sup −} by Bacillus licheniformis SPB-2 strain isolated from a solar salt pan

    Energy Technology Data Exchange (ETDEWEB)

    Paraneeiswaran, Arunachalam [Departartment of Biotechnology, Pondicherry University, Puducherry (India); Shukla, Sudhir K. [Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam 603102 (India); Homi Bhabha National Institute, Mumbai 400094 (India); Prashanth, K. [Departartment of Biotechnology, Pondicherry University, Puducherry (India); Rao, T. Subba, E-mail: subbarao@igcar.gov.in [Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, BARC Facilities, Kalpakkam 603102 (India); Homi Bhabha National Institute, Mumbai 400094 (India)

    2015-02-11

    Graphical abstract: - Highlights: • Bacillus licheniformis SPB-2 was used in the bioremediation of [Co(III)–EDTA]{sup −}. • The bacterial biomass adsorbed the Co–EDTA complex after its reduction. • [Co(III)–EDTA]{sup −} complex showed Bacillus spore inducing property. • B. licheniformis SPB-2 showed significantly radio-tolerance (D{sub 10} = 250 Gy). - Abstract: Naturally stressed habitats are known to be repositories for novel microorganisms with potential bioremediation applications. In this study, we isolated a [Co(III)–EDTA]{sup −} reducing bacterium Bacillus licheniformis SPB-2 from a solar salt pan that is exposed to constant cycles of hydration and desiccation in nature. [Co(III)–EDTA]{sup −} generated during nuclear waste management process is difficult to remove from the waste due to its high stability and solubility. It is reduced form i.e. [Co(II)–EDTA]{sup 2−} is less stable though it is toxic. This study showed that B. licheniformis SPB-2 reduced 1 mM [Co(III)–EDTA]{sup −} in 14 days when grown in a batch mode. However, subsequent cycles showed an increase in the reduction activity, which was observed up to four cycles. Interestingly, the present study also showed that [Co(III)–EDTA]{sup −} acted as an inducer for B. licheniformis SPB-2 spore germination. Vegetative cells germinated from the spores were found to be involved in [Co(III)–EDTA]{sup −} reduction. More detailed investigations showed that after [Co(III)–EDTA]{sup −} reduction, i.e. [Co(II)–EDTA]{sup 2−} complex was removed by B. licheniformis SPB-2 from the bulk liquid by adsorption phenomenon. The bacterium showed a D{sub 10} value (radiation dose required to kill 90% cells) of ∼250 Gray (Gy), which signifies the potential use of B. licheniformis SPB-2 for bioremediation of moderately active nuclear waste.

  20. Technetium electrodeposition from aqueous formate solutions at graphite electrode: electrochemical study

    International Nuclear Information System (INIS)

    Maslennikov, A.; Peretroukhine, V.; Masson, M.; Lecomte, M.

    1999-01-01

    Recovery of technetium from aqueous formate buffer solutions of ionic strength μ = 1.0 was studied in the pH interval from 1.6 to 7.5 at graphite cathode in an electrolytic cell with separated compartments was studied, using cyclic voltammetry (CV) and inverse stripping voltammetry (ISV) techniques. It has been shown that Tc electrodeposition process becomes possible at the potentials of graphite cathode E cath. 1/2 = -0.72±0.02 V/SCE and was pH independent in the interval pH = 3.46-7.32. Mechanism of electrodeposition, including Tc(VII)/Tc(IV) reduction in the solution followed by Tc(IV) hydrolysis at the electrode surface with formation of hydrated Tc oxide cathodic deposit has been proposed. The further precision of the Tc(VII) electrochemical reduction mechanism in formate buffer media and optimization of the electrodeposition process seems to be possible using additional analytical facilities except electrochemical methods. (orig.)

  1. Enrichment and stripping voltametric behavior of technetium traces at a carbon paste electrode modified with TTA

    International Nuclear Information System (INIS)

    Dick, R.; Ruf, H.; Ache, H.J.

    1988-06-01

    The possibility of enrichment as well as the stripping voltammetric behavior of technetium traces at a carbon paste electrode modified with thenoyltrifluoroacetone (TTA) was studied. Accumulation of Tc(IV) on the electrode surface occurs without application of a deposition voltage due to complex formation with TTA, probably resulting Tc(TTA) 4 . During the following cathodic potential scan made with the differential pulse mode a characteristic current peak is obtained at -40 mV (vs. Ag/AgCl) which increases with Tc concentration and deposition time. However, Tc(IV) gives much more sensitive stripping current signals if a reductive deposition potential of -0.4 V is applied, presumably on account of the formation of Tc(TTA) 3 . In this case an anodic voltammetric scan was applied resulting a stripping peak at about +30 mV, the height of which is related to the concentration of Tc in solution as well as to the time of deposition. Calibration graphs revealed good reproducibility for analytical application. The lower detection limit for Tc(IV) achieved for 1 M sodium chloride solutions 4.6 x 10 -9 M. Tc(VII) is not enriched in the absence of reduction which takes place only from about -0.6 V on with the pH optimally set at 3.5. Therefore it is basically possible to discriminate Tc(IV) from Tc(VII). (orig.) [de

  2. Determination of technetium by total reflection x-ray fluorescence

    International Nuclear Information System (INIS)

    Bermudez, J.I.; Greaves, E.D.; Nemeth, P.

    2000-01-01

    We describe a technique using total reflection x-ray fluorescence (TXRF) for determination of Technetium produced by elution of chromatography generators with physiological saline solutions. The analysis with the 18.41 keV K α line of Technetium was accomplished with monochromatized K α radiation from a silver anode x-ray tube operated at 45 keV and 20 mA. This radiation at 22.104 keV is efficiently coupled to the 21.054 keV absorption edge of Tc. It is also of advantage in the direct analysis of organic and saline properties of the Tc-bearing samples. Quantification was accomplished by internal standard addition of Ga and using an interpolated value of the sensitivity for Tc between Molybdenum and Rhenium. Data processing was carried out with the QXAS-AXIL software package. System sensitivity was found adequate for direct Tc determination of eluted saline solutions. The interest and advantages of the use of the technique as an auxiliary in the synthesis and characterization of Tc-labeled radiopharmaceuticals used for diagnosis in nuclear medicine are discussed. Detection limits in the matrices analyzed are reported. (author)

  3. 99m Technetium pyrophosphate myocardium scintigraphy. First results

    International Nuclear Information System (INIS)

    Toussaint, Paul.

    1976-01-01

    99m technetium pyrophosphate myocardium scintigraphy is a very recent examination technique. This work gives the results obtained on 61 patients. As a vector of the isotope, pyrophosphate has the advantage over polyphosphate of a fast bone uptake there it should be stressed that a 90 minute pause is necessary between the intraveinous injection of the isotope and the photographic recording so that the reading is not troubled by the labelled intracardiac blood pool image, an image quality criterion being the estimation of a good costal fixation which in fact appears sooner or later according to the subject. The role of pyrophosphate, chelator of calcium in fixation of the isotope on the myocardium, could be explained by the fast appearance of 'dense bodies', made up of calcium hydroxyapathice crystals, in the mitochondria of myocardium cells having undergone an irreversible necrotic process. The choice of 99 m technetium is based on its ease of use: 6 hour half-life, high-energy pure gamma emission at 140 keV. The fixed image studied under two incidences, front and left anterior oblique, is obtained from mobile images given by the scintillation camera used in connection with a data processing system. Several facts are underlined, explaining the disadvantages, advantages and indications of the method [fr

  4. The aqueous corrosion behavior of technetium - Alloy and composite materials

    International Nuclear Information System (INIS)

    Jarvinen, G.; Kolman, D.; Taylor, C.; Goff, G.; Cisneros, M.; Mausolf, E.; Poineau, F.; Koury, D.; Czerwinski, K.

    2013-01-01

    Metal waste forms are under study as possible disposal forms for technetium and other fission products. The alloying of Tc is desirable to reduce the melting point of the Tc-containing metal waste form and potentially improve its corrosion resistance. Technetium-nickel composites were made by mixing the two metal powders and pressing the mixture to make a pellet. The as-pressed composite materials were compared to sintered composites and alloys of identical composition in electrochemical corrosion tests. As-pressed samples were not robust enough for fine polishing and only a limited number of corrosion tests were performed. Alloys and composites with 10 wt% Tc appear to be more corrosion resistant at open circuit than the individual components based on linear polarization resistance and polarization data. The addition of 10 wt% Tc to Ni appears beneficial at open circuit, but detrimental upon anodic polarization. Qualitatively, the polarizations of 10 wt% Tc alloys and composites appear like crude addition of Tc plus Ni. The 1 wt% Tc alloys behave like pure Ni, but some effect of Tc is seen upon polarization. Cathodic polarization of Tc by Ni appears feasible based on open circuit potential measurements, however, zero resistance ammetry and solution measurements are necessary to confirm cathodic protection

  5. Analysis of americium, plutonium and technetium solubility in groundwater

    International Nuclear Information System (INIS)

    Takeda, Seiji

    1999-08-01

    Safety assessments for geologic disposal of radioactive waste generally use solubilities of radioactive elements as the parameter restricting the dissolution of the elements from a waste matrix. This study evaluated americium, plutonium and technetium solubilities under a variety of geochemical conditions using the geochemical model EQ3/6. Thermodynamic data of elements used in the analysis were provided in the JAERI-data base. Chemical properties of both natural groundwater and interstitial water in buffer materials (bentonite and concrete) were investigated to determine the variations in Eh, pH and ligand concentrations (CO 3 2- , F - , PO 4 3- , SO 4 2- , NO 3 - and NH 4 + ). These properties can play an important role in the complexation of radioactive elements. Effect of the groundwater chemical properties on the solubility and formation of chemical species for americium, plutonium and technetium was predicted based on the solubility analyses under a variety of geochemical conditions. The solubility and speciation of the radioactive elements were estimated, taking into account the possible range of chemical compositions determined from the groundwater investigation. (author)

  6. The retention mechanism of technetium-99m-HM-PAO

    DEFF Research Database (Denmark)

    Neirinckx, R D; Burke, J F; Harrison, R C

    1988-01-01

    Preparations of d,l- and meso-hexamethylpropyleneamine oxime (HM-PAO) labeled with technetium-99m were added to rat brain homogenates diluted with phosphate buffer (1:10). The conversion of d,l-HM-PAO to hydrophilic forms took place with an initial rate constant of 0.12 min-1. Incubation of the b......Preparations of d,l- and meso-hexamethylpropyleneamine oxime (HM-PAO) labeled with technetium-99m were added to rat brain homogenates diluted with phosphate buffer (1:10). The conversion of d,l-HM-PAO to hydrophilic forms took place with an initial rate constant of 0.12 min-1. Incubation....... This correspondence of values supports the notion that GSH may be important for the in vivo conversion of 99mTc-labeled HM-PAO to hydrophilic forms and may be the mechanism of trapping in brain and other cells. A kinetic model for the trapping of d,l- and meso-HM-PAO in tissue is developed that is based on data...

  7. Labelling of metaiodobenzylguanidine (MIBG) with Technetium-99m radionuclide

    International Nuclear Information System (INIS)

    Maula Eka Sriyani; Dini Natanegara; Aang Hanafiah Ws

    2015-01-01

    Various neuroendocrine tumors and their metastases are able to localized and staged by Metaiodobenzylguanidine (MIBG). MIBG is a molecule that has a chemical structure similarities with noradrenaline in the adrenal. The research on 131 I-MIBG has been successfully conducted in the tumor imaging. This research of preparing 99m Tc-MIBG that will be used as a diagnostic agent for adrenal tumors was carried out. MIBG labeling activities with technetium-99m radionuclide were carried out through labeling of MIBG with technetium-99m and radiochemical purity analysis. The labeling of MIBG was carried out using both direct and indirect methods with diethylene triamine pentaacetic acid (DTPA) as a co-ligand. Determination of 99m Tc-MIBG labeling efficiency was performed using paper chromatography with Whatman 3MM/dried acetone and Whatman 31ET/acetonitrile 50%. The results of labeling efficiency using the indirect method with DTPA as a co-ligand was obtained 93.44 ± 1.93%, which the concentration of MIBG was 2 mg/0.5 mL H 2 O, concentration of co-ligand was 37,5 μg of SnCl 2 .2H 2 O and DTPA of 1,125 mg at pH 6.5 for 15 minutes incubation in the room temperature ( 25 °C). (author)

  8. Monoclonal anti-elastin antibody labelled with technetium-99m

    International Nuclear Information System (INIS)

    Oliveira, Marcia B.N. de; Silva, Claudia R. da; Araujo, Adriano C. de; Bernardo Filho, Mario; Porto, Luis Cristovao M.S.; Gutfilen, Bianca; Souza, J.E.Q.; Frier, Malcolm

    1999-01-01

    Technetium-99m ( 99m Tc) is widely employed in nuclear medicine due to its desirable physical, chemical and biological properties. Moreover, it is easily available and normally is inexpensive. A reducing agent is necessary to label cells and molecules with 99m Tc and stannous chloride (Sn C L 2 ) is usually employed. Elastin is the functional protein component of the elastic fiber and it is related with some diseases such as arteriosclerosis, pulmonary emphysema and others. The present study refers to the preparation of the 99m Tc labeled monoclonal anti-elastin antibody. The monoclonal antibody was incubated with an excess of 2-iminothiolane. The free thiol groups created, were capable of binding with the reduced technetium. Labeling was an exchange reaction with 99m Tc-glucoheptonate. The labeled preparation was left at 4 deg C for one hour. Then, it was passed through a Sephadex G50 column. Various fractions were collected and counted. A peak corresponding to the radiolabeled antibody was obtained. Stability studies of the labelled anti-elastin were performed at 0,3 6, 24 hours, at both 4 deg C or room temperature. The biodistribution pattern of the 99m Tc-anti-elastin was studied in healthy male Swiss mice. The immunoreactivity was also determined. An useful labeled-anti-elastin was obtained to future immunoscintigraphic investigations. (author)

  9. Biomedical tracers: technetium-99 m complexing sulfur polydentate ligands

    International Nuclear Information System (INIS)

    Bendennoune, A.

    1994-01-01

    Cyclic and acyclic tetra sulfur ligands have been synthesized and some of them have been labelled with technetium-99m. These works have two different aims: 1- Development of methods permitting to obtain easily potential technetium complexing sulfur polydentate chelates. 2- Research of positive and neutral complexes of this metal likely to replace thalium-201 in the coronary flow estimation and [TcO-HMPAO] sup 0 complex in the cerebral scintigraphy, respectively. In this work, first, different ways for obtaining dithioetherdithiols and cyclic tetrathioethers containing functional groups have been carried out, then complexation of the core of nitrutechnetium (TcN) sup 2+ at tracers scale, by dithioetherdithiols, using exchange reaction with [sup 9 sup 9 sup m TcNCl sub 4 ] sup - ion complex or sup 99 sup m TcN Cl sub 2 [P(CH sub 2 CH sub 2 CN) sub 3 ] sub 2 has been studied. Finally, biological distribution in swiss mouse of these technetiated complexes has been studied. 135 refs., 30 figs., 13 tabs. (F.M.)

  10. Stripping voltammetric behavior of technetium at various chemically modified electrodes

    International Nuclear Information System (INIS)

    Dick, R.

    1990-09-01

    In monitoring of nuclear processing plants and storage facilities the necessity arises of assaying traces of the artificial radioactive element technetium. The oxidation states IV and VII are of particular interest. Stripping voltammetry is among the methods of assay which are suited for this purpose. It allows an enhanced selectivity to be achieved by preconcentration of the analyte and of an oxidation state of the analyte, respectively, at the electrode used. This specific enrichment is successful after appropriate chemical modification of the electrode through immobilization of a Tc-specific reagent. When various approaches of chemical modification of a glassy carbon electrode were examined, the tetraphenylarsonium chloride extractant, which is highly selective with respect to technetium, proved to be the best suited reagent, capable of fixation both by ionic and by covalent bonding on an electrodeposited polymer film. For ionic immobilization the reagent was reacted to m-sulfophenyltriphenyl arsonium and then bound to a copolymer of vinylferrocene and vinylpyridine, which had been provided with cations. It was possible to enrich Tc(VII) at such an electrode and to determine it by stripping voltammetry down to a concentration of 1x10 -8 M after 5 minutes enrichment time. (orig./EF) [de

  11. Nature`s uncommon elements: Plutonium and technetium

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, D.; Fabryka-Martin, J.; Dixon, P. [Los Alamos National Lab., NM (United States). Chemical Science and Technology Div.; Cramer, J. [Atomic Energy of Canada Ltd., Pinawa, Manitoba (Canada). Whiteshell Lab.

    1998-01-06

    The authors have taken advantage of the extremely sensitive method of thermal ionization mass spectrometry to measure technetium and plutonium concentrations in sample masses that are smaller by as much as three orders of magnitude than those used in the early research efforts. The work reported in this paper extends the understanding of the geochemistry of plutonium and technetium by developing detailed descriptions of their associations in well characterized geologic samples, and by using modern neutron-transport modeling tools to better interpret the meaning of the results. Analyses were conducted on samples from three uranium ore deposits selected for their contrasting geochemical environments. The Cigar Lake deposit is an unweathered, unaltered primary ore in a reducing environment which is expected to closely approximate a system that is closed with respect to uranium and its products. The Koongarra deposit is a shallow system, both altered and weathered, subject to active ground water flow. Finally, a sample from the Beaverlodge deposit is included because it is a commercially-available uranium ore standard that allows demonstration of the precision of the analytical results.

  12. The aqueous corrosion behavior of technetium - Alloy and composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.; Kolman, D.; Taylor, C.; Goff, G.; Cisneros, M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mausolf, E.; Poineau, F.; Koury, D.; Czerwinski, K. [Department of Chemistry, University of Nevada, Las Vegas, Las Vegas, NV 89154 (United States)

    2013-07-01

    Metal waste forms are under study as possible disposal forms for technetium and other fission products. The alloying of Tc is desirable to reduce the melting point of the Tc-containing metal waste form and potentially improve its corrosion resistance. Technetium-nickel composites were made by mixing the two metal powders and pressing the mixture to make a pellet. The as-pressed composite materials were compared to sintered composites and alloys of identical composition in electrochemical corrosion tests. As-pressed samples were not robust enough for fine polishing and only a limited number of corrosion tests were performed. Alloys and composites with 10 wt% Tc appear to be more corrosion resistant at open circuit than the individual components based on linear polarization resistance and polarization data. The addition of 10 wt% Tc to Ni appears beneficial at open circuit, but detrimental upon anodic polarization. Qualitatively, the polarizations of 10 wt% Tc alloys and composites appear like crude addition of Tc plus Ni. The 1 wt% Tc alloys behave like pure Ni, but some effect of Tc is seen upon polarization. Cathodic polarization of Tc by Ni appears feasible based on open circuit potential measurements, however, zero resistance ammetry and solution measurements are necessary to confirm cathodic protection.

  13. Determination of degradation conditions of exchange resins containing technetium

    International Nuclear Information System (INIS)

    Rivera S, A.; Monroy G, F.; Quintero P, E.

    2014-10-01

    The quantification of Tc-99 in spent exchange resins, coming from nuclear power plants, is indispensable to define their administration. The Tc-99 is a pure beta emitter of 210000 years of half-life, volatile and of a high mobility in water and soil. For this reason, the objective of this work is to establish a digestion method of ionic exchange resins containing technetium that retains more than 95% of this radioisotope. Mineralization tests were carried out of a resin Amberlite IRN-150 by means of an oxidation heat, in acid medium, varying the resin mass, the medium volume, the media type, the temperature and the digestion time. The digested samples were analyzed by gas chromatography to estimate the grade of their degradation. The 99m Tc was used as tracer to determine the technetium percentage recovered after mineralizing the resin. The digestion process depends on the temperature and the resin mass. At higher temperature better mineralization of samples and to greater resin mass to a constant temperature, less degradation of the resin. The spectra beta of the 99m Tc and 99 Tc are presented. (Author)

  14. Labelling of biological structures with technetium 99 m

    International Nuclear Information System (INIS)

    Bernardo Filho, M.

    1988-01-01

    The labelling of red blood cells (RBC) with technetium 99m ( 99m Tc) depends on several factors, as the stannous ion (Sn ++ ) concentration, the time and temperature of incubation, the anticoagulant utilized, the presence of plasma proteins (PP) and others. Although the blinding of 99m Tc with hemoglobin and PP are similar, they appear to have specific characteristics as demonstrated by precipitation with alcohol, acetone, trichloroacetic acid, hydrochloric acid and mercury chloride. The bacterial cultures labeled with Technetium- 99m , at optimal Sn ++ ion concentration, presents a large stability and their viability is not altered by this treatment. The electrophoretic mobility, the hydrophobicity, the cationized ferritin distribution and the adherence to human buccal epithelial cells are not modified either. The possibility of labelling with 99m Tc of planaria and cercariae of Schistossoma mansoni evaluative cycle increases the utilization of this radionuclide to an experimental level. The results described with the labelling of these biological structures with 99m Tc demonstrated that stable labeled and viable operations are obtained. (author)

  15. Contribution to the study of the behavior of tetravalent technetium at tracer amounts in aqueous media

    International Nuclear Information System (INIS)

    Guennec, J.Y.

    The behavior of /sup 99m/Tc was studied first in perchloric media. Reduction of TcO 4 - by BH 4 - at pH 7 in perchloric medium leads to Tc(IV) as a radiocolloid (20 percent) and soluble TcO 2 (50 percent). Acidification of the medium oxidizes the soluble Tc(IV) fraction. Acid solutions containing only the IV species and free of radiocolloids can be studied using back extraction. Tc(IV) is extracted by the organic phases, containing or not containing TTA or HDEHP from solutions of Tc(VII) reduced by BH 4 - at pH 7. These organic phases are then contacted with aqueous phases 5 x 10 -2 to 3 M HClO 4 , and the variation of the distribution coefficient was studied as a function of the chelating agent content and of the pH. In the absence of a chelating agent, the extracted species is TcO 2 . In the presence of chelating agents, the cation TcO(OH) + is extracted in the forms TcO(OH)A and TcO(OH)A 2 H respectively with TTA and HDEHP. Hydrolysis of this cation leads to TcO 2 . Study of the reduction of Tc(VII) in hydrochloric medium is complicated by the oxychlorinated forms of Tc(IV). The hexachlorotechnetate ion, TcCl 6 , exists in HCl 12 M down to 1 M and is very inert. Addition of chloride ions to solutions containing only TcO 2 and TcO(OH) + , when [Cl - ] is less than 1 M, leads to a neutral extractable species, which could be TcOCl 2 . When the Cl - concentration is greater than 1 M, there is formation of a species with one more chlorine atoms; this could be TcOCl 3 . The behavior of technetium during the formation of the complex ''Tc-Iron-Ascorbic Acid'' used in medical scintigraphy was also studied. Ascorbic acid alone or divalent iron alone slightly reduce the pertechnetate. Addition of Fe 2+ (or BH 4 - ) to Tc(VII) and ascorbic acid produces a high percentage of Tc(IV). So it is the ascorbate of iron which reduces the Tc(VII) and the excess ascorbic acid maintains the technetium in its reduced state by formation of a weak complex

  16. Microbial reduction of ferric iron oxyhydroxides as a way for remediation of grey forest soils heavily polluted with toxic metals by infiltration of acid mine drainage

    Science.gov (United States)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2015-04-01

    The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.

  17. Technetium-99 in lobsters from the western Irish sea

    International Nuclear Information System (INIS)

    Fegan, Mary

    1999-05-01

    Technetium-99, the most important radionuclide of technetium release to the environment, is a pure beta emitter with a half-life of 2.13 x 10(5) years. It behaves conservatively in seawater and is likely to remain available to biota for a long time. The dominant and most stable form of technetium in oxygenated seawater is the pertechnetate ion, Tco4. The principle source of radionuclide contamination of the Irish Sea has been the liquid waste discharges of low level radionuclide effluent from the spent nuclear fuel reprocessing plant at Sellafield on the Cumbria Coast. In 1994 the annual discharge authorization limit for 99Tc was increased from 10 TBq to 200 TBq. Lobster concentrates 99Tc to a high degree with concentration factors of 1x 10(3) reported in the literature. The mean 99Tc activity concentrations in lobsters caught close to Sellafield were reported to have risen by a factor of 20 in 2 years from 390 Bq/kg (wet weight) in 1993 to 8300 Bq/kg (wet weight) in 1995. This study was undertaken to determine the 99Tc activity concentration in lobsters from the western Irish Sea. Lobsters were collected from the east and north east coasts of Ireland over the period June 1997 to July 1998 and analysed using a radioanalytical method which was based on the anion-exchange seperation of technetium as pertechnetate. A gas-flow proportional counter was used to measure to 99Tc activity concentration in each sample. Technetium-99 activity concentrations were measured in the muscle from the tail, the right and the left claws and also in the green gland, the hepatopancreas and the cardiac fore-gut. The results of the measurements showed, as expected, that the 99Tc activity concentrations were not as high as those in the samples from the Cumbrian coast. The mean 99Tc activity concentrations, over the sampling period, in the tail, right and left claw muscles were 214, 124 and 136 BQ/kg (wet weight) respectively. The mean 99Tc activity concentrations in the green gland

  18. Microbial biosensors

    International Nuclear Information System (INIS)

    Le Yu; Chen, Wilfred; Mulchandani, Ashok

    2006-01-01

    A microbial biosensor is an analytical device that couples microorganisms with a transducer to enable rapid, accurate and sensitive detection of target analytes in fields as diverse as medicine, environmental monitoring, defense, food processing and safety. The earlier microbial biosensors used the respiratory and metabolic functions of the microorganisms to detect a substance that is either a substrate or an inhibitor of these processes. Recently, genetically engineered microorganisms based on fusing of the lux, gfp or lacZ gene reporters to an inducible gene promoter have been widely applied to assay toxicity and bioavailability. This paper reviews the recent trends in the development and application of microbial biosensors. Current advances and prospective future direction in developing microbial biosensor have also been discussed

  19. The radiochemical purity of technetium-99m-tin-diethylene-triamino-pentaacetic acid (DTPA) complex

    International Nuclear Information System (INIS)

    Besnard, M.; Costerousse, O.; Merlin, L.; Coehn, Y.

    1975-01-01

    The effect on radiochemical purity was studied as a function of the storage period of tin-DTPA solution and of the technetium-complex solution. The quantity of the pertechnetate ions present in the solution is determined by ascending paper chromatography, and an attempt was made to clarify the bond type of technetium by a spectrophotometric method. The tin-DTPA solutions for complexing of the reduced technetium are stable over a period of 8 weeks. The yield of the radiopharmaceutical product is better than 95%. (G.Gy.)

  20. Investigation of the interaction of hydroxyapatite with technetium in association with stannous pyrophosphate

    International Nuclear Information System (INIS)

    Billinghurst, M.W.; Jette, D.; Somers, E.

    1981-01-01

    The individual components of technetium-99m stannous pyrophosphate were studied with respect to their interaction with hydroxyapatite. It is demonstrated that the role of the pyrophosphate molecule is one of a solubilizing and transporting molecule to carry the technetium atom to the site of the hydroxyapatite where the chelate disassociates and both the pyrophosphate and the technetium individually bind to the hydroxyapatite. The stannous ion is shown to associate with the hydroxyapatite also and although also solubilized by the pyrophosphate appears to be less strongly associated with the pyrophosphate. (author)

  1. Measurement of glomerular filtration rate in children using technetium-99m diethylenetriamine penta-acetic acid

    International Nuclear Information System (INIS)

    Aaronson, I.A.; Mann, M.D.

    1985-01-01

    During the past 5 years, we have measured the glomerular filtration rate (GFR) by the slope-clearance method using technetium-99m diethylenetriamine penta-acetic acid technetium-99m-DTPA in 130 infants and children. The results in 22 children have been compared with inulin clearance, and a very good correlation between the two methods of measurement of GFR was demonstrated (r = 0,9616; P less than 0,0001). This study provides further evidence that technetium-99m-DTPA is a satisfactory agent for the clinical measurement of GFR in children

  2. Dietary protein reduction on microbial protein, amino acid digestibility, and body retention in beef cattle: 2. Amino acid intestinal absorption and their efficiency for whole-body deposition.

    Science.gov (United States)

    Mariz, L D S; Amaral, P M; Valadares Filho, S C; Santos, S A; Detmann, E; Marcondes, M I; Pereira, J M V; Silva Júnior, J M; Prados, L F; Faciola, A P

    2018-03-06

    intestinal digestibility of total microbial AA was 80%. The efficiency of utilization of total AA for whole-body protein deposition was 40%. The efficiency of utilization of lysine and methionine was 37% and 58%, respectively. It was concluded that the AA flow to the omasum increases in response to dietary CP content. In addition, there are differences among AA in the efficiency that they are used by beef cattle.

  3. Studies in technetium chemistry, Project 1: Evaluation of technetium acetylacetonates as potential cerebral blood flow agents, Project 2

    International Nuclear Information System (INIS)

    Jones, A.G.; Packard, A.B.; Treves, S.; Davison, A.

    1990-01-01

    Although the emphasis in our original submission was on N 2 S 2 and N 3 S coordinating ligands in technetium(V), we have now broadened the chemistry studies into areas that encompass new systems that allow the generation of neutral complexes. This change was based upon developments that have taken place in our basic chemistry studies that could bear on one of the original aims of this work, i.e., the design of complexes designed to penetrate cellular membranes and to remain trapped in target tissues. Among these topics are oxotechnetium(V) complexes containing amine and alcoholate ligands, coordination compounds containing the alternative technetium(V) nitrido core and the synthesis at macroscopic levels of a tetradentate ''umbrella'' ligand that successfully binds the metal. Basic studies with the original bisamide-bisthiol ligand system have continued with the identification of the products formed when aqueous solutions of the complex [TcO(ema)] - are acidified. This material is isolatable as yellow/brown crystals when HCl is added to the tetraphenylarsonium salt of the complex synthesized according to published procedures. Elemental analysis, FAB(+) mass spectrometry and 1 H NMR results were consistent with the formulation TcO(ema)H. Infrared spectra showed a dramatic shift in the Tc = O stretch to 966 cm -1 , as distinct from 945 cm -1 in the original complex

  4. Novel imaging techniques, integrated with mineralogical, geochemical and microbiological characterizations to determine the biogeochemical controls on technetium mobility in FRC sediments. Final report

    International Nuclear Information System (INIS)

    Lloyd, Jonathan R.

    2009-01-01

    The objective of this research program was to take a highly multidisciplinary approach to define the biogeochemical factors that control technetium (Tc) mobility in FRC sediments. The aim was to use batch and column studies to probe the biogeochemical conditions that control the mobility of Tc at the FRC. Background sediment samples from Area 2 (pH 6.5, low nitrate, low 99 Tc) and Area 3 (pH 3.5, high nitrate, relatively high 99 Tc) of the FRC were selected (http://www.esd.ornl.gov/nabirfrc). For the batch experiments, sediments were mixed with simulated groundwater, modeled on chemical constituents of FRC waters and supplemented with 99 Tc(VII), both with and without added electron donor (acetate). The solubility of the Tc was monitored, alongside other biogeochemical markers (nitrate, nitrite, Fe(II), sulfate, acetate, pH, Eh) as the 'microcosms' aged. At key points, the microbial communities were also profiled using both cultivation-dependent and molecular techniques, and results correlated with the geochemical conditions in the sediments. The mineral phases present in the sediments were also characterized, and the solid phase associations of the Tc determined using sequential extraction and synchrotron techniques. In addition to the batch sediment experiments, where discrete microbial communities with the potential to reduce and precipitate 99 Tc will be separated in time, we also developed column experiments where biogeochemical processes were spatially separated. Experiments were conducted both with and without amendments proposed to stimulate radionuclide immobilization (e.g. the addition of acetate as an electron donor for metal reduction), and were also planned with and without competing anions at high concentration (e.g. nitrate, with columns containing Area 3 sediments). When the columns had stabilized, as determined by chemical analysis of the effluents, we used a spike of the short-lived gamma emitter 99m Tc (50-200 MBq; half life 6 hours) and its

  5. Novel imaging techniques, integrated with mineralogical, geochemical and microbiological characterizations to determine the biogeochemical controls on technetium mobility in FRC sediments

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan R. Lloyd

    2009-02-03

    The objective of this research program was to take a highly multidisciplinary approach to define the biogeochemical factors that control technetium (Tc) mobility in FRC sediments. The aim was to use batch and column studies to probe the biogeochemical conditions that control the mobility of Tc at the FRC. Background sediment samples from Area 2 (pH 6.5, low nitrate, low {sup 99}Tc) and Area 3 (pH 3.5, high nitrate, relatively high {sup 99}Tc) of the FRC were selected (http://www.esd.ornl.gov/nabirfrc). For the batch experiments, sediments were mixed with simulated groundwater, modeled on chemical constituents of FRC waters and supplemented with {sup 99}Tc(VII), both with and without added electron donor (acetate). The solubility of the Tc was monitored, alongside other biogeochemical markers (nitrate, nitrite, Fe(II), sulfate, acetate, pH, Eh) as the 'microcosms' aged. At key points, the microbial communities were also profiled using both cultivation-dependent and molecular techniques, and results correlated with the geochemical conditions in the sediments. The mineral phases present in the sediments were also characterized, and the solid phase associations of the Tc determined using sequential extraction and synchrotron techniques. In addition to the batch sediment experiments, where discrete microbial communities with the potential to reduce and precipitate {sup 99}Tc will be separated in time, we also developed column experiments where biogeochemical processes were spatially separated. Experiments were conducted both with and without amendments proposed to stimulate radionuclide immobilization (e.g. the addition of acetate as an electron donor for metal reduction), and were also planned with and without competing anions at high concentration (e.g. nitrate, with columns containing Area 3 sediments). When the columns had stabilized, as determined by chemical analysis of the effluents, we used a spike of the short-lived gamma emitter {sup 99m}Tc (50

  6. Behavior of technetium-99 in soils and plants. Final report, April 1, 1974--December 31, 1978

    International Nuclear Information System (INIS)

    Gast, R.G.; Landa, E.R.; Thorvig, L.J.; Grigal, D.F.; Balogh, J.C.

    1979-01-01

    Studies described in this report were aimed at establishing the magnitude and mechanisms of 99 Tc sorption by soils and uptake by plants. Results show that 99 Tc was sorbed from solution over a period to two to five weeks by 8 of 11 soils studies. The slow rate of sorption, the lack of sorption by low organic matter soils, the elimination of sorption following sterilization and increased sorption following addition of dextrose all point to a microbial role in the sorption process. However, it has not been established whether this is a direct or indirect role nor is it possible to clearly predict the conditions under which sorption will occur. Results of plant uptake studies show that 99 Tc can be taken up and translocated into the photosynthetic tissue of higher plants with concentrations in seeds being much less than in vegetative tissue. Technetium-99 was also shown to be toxic to plants at low concentrations and evidence suggests that this is a chemically rather than radiologically induced toxicity. However, this remains to be completely resolved as well as whether there is a threshold level of 99 Tc required before toxicity occurs. Studies of short-term, dynamic, aerobic systems indicated that 99 Tc moves through the soil as a relatively large anion exhibiting characteristic miscible displacement with some asymmetric tailing. 99 Tc exhibits greater retention that C1 - , which may be attributed statistically to weak complexion by organic matter. It is unlikely that this retention phenomenon is related to the static sorption activity reported in the first part of this study

  7. Behavior of technetium-99 in soils and plants. Final report, April 1, 1974--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Gast, R.G.; Landa, E.R.; Thorvig, L.J.; Grigal, D.F.; Balogh, J.C.

    1979-01-01

    Studies described in this report were aimed at establishing the magnitude and mechanisms of /sup 99/Tc sorption by soils and uptake by plants. Results show that /sup 99/Tc was sorbed from solution over a period to two to five weeks by 8 of 11 soils studies. The slow rate of sorption, the lack of sorption by low organic matter soils, the elimination of sorption following sterilization and increased sorption following addition of dextrose all point to a microbial role in the sorption process. However, it has not been established whether this is a direct or indirect role nor is it possible to clearly predict the conditions under which sorption will occur. Results of plant uptake studies show that /sup 99/Tc can be taken up and translocated into the photosynthetic tissue of higher plants with concentrations in seeds being much less than in vegetative tissue. Technetium-99 was also shown to be toxic to plants at low concentrations and evidence suggests that this is a chemically rather than radiologically induced toxicity. However, this remains to be completely resolved as well as whether there is a threshold level of /sup 99/Tc required before toxicity occurs. Studies of short-term, dynamic, aerobic systems indicated that /sup 99/Tc moves through the soil as a relatively large anion exhibiting characteristic miscible displacement with some asymmetric tailing. /sup 99/Tc exhibits greater retention that C1/sup -/, which may be attributed statistically to weak complexion by organic matter. It is unlikely that this retention phenomenon is related to the static sorption activity reported in the first part of this study.

  8. Technetium(V)-nitrido complexes of dithiocarbazic acid derivatives. Reactivity of [Tc≡N]2+ core towards Schiff bases derived from S-methyl dithiocarbazate. Crystal structures of [S-methyl 3-(2-hydroxyphenyl-methylene) dithiocarbazato]intrido(triphenylphosphine)technetium(V) and bis(S-methyl 3-isopropylidenedithiocarbazato)nitridotechnetium(V)

    International Nuclear Information System (INIS)

    Marchi, A.; Duatti, A.; Rossi, R.; Magon, L.; Bertolasi, V.; Ferretti, V.; Gilli, G.; Pasqualini, R.

    1988-01-01

    As a potential alternative approach to lipophilic square-pyramidal technetium complexes, we investigate here the synthesis of new Tcsup(V) complexes, containing the [Tc''ident to''N] 2+ core, with bi- and tri-dentate Schiff bases derived from S-methyl dithiocarbazate, NH 2 NHC(=S)SCH 3 . Square-pyramidal complexes having an apical Tcsup(V) ≡ N group, with bis(quinoline-8-thiolato), [TcN(C 9 H 6 NS) 2 ], and bis(diethyldithiocarbamate), [TcN(S 2 CNEt 2 ) 2 ], have been reported. In this paper, we report the synthesis and characterization of a series of technetium(V)-nitrido complexes with the ligands illustrated, obtained by reduction of the technetium(VI) complex [TcNCl 4 ] - or by ligand substitution of the Tcsup(V) complex [TcNCl 2 (PPh 3 ) 2 ]. We discuss also the crystal structures of the complexes [TcNL 1 (PPh 3 )] [H 2 L 1 = S-methyl 3-(2-hydroxy-phenylmethylene)dithiocarbazate] and [TcN(L 12 ) 2 ] (HL 12 S-methyl 3-isopropylidenedithiocarbazate. (author)

  9. Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems.

    Science.gov (United States)

    Ziganshin, Ayrat M; Schmidt, Thomas; Lv, Zuopeng; Liebetrau, Jan; Richnow, Hans Hermann; Kleinsteuber, Sabine; Nikolausz, Marcell

    2016-10-01

    The effects of hydraulic retention time (HRT) reduction at constant high organic loading rate on the activity of hydrogen-producing bacteria and methanogens were investigated in reactors digesting thin stillage. Stable isotope fingerprinting was additionally applied to assess methanogenic pathways. Based on hydA gene transcripts, Clostridiales was the most active hydrogen-producing order in continuous stirred tank reactor (CSTR), fixed-bed reactor (FBR) and anaerobic sequencing batch reactor (ASBR), but shorter HRT stimulated the activity of Spirochaetales. Further decreasing HRT diminished Spirochaetales activity in systems with biomass retention. Based on mcrA gene transcripts, Methanoculleus and Methanosarcina were the predominantly active in CSTR and ASBR, whereas Methanosaeta and Methanospirillum activity was more significant in stably performing FBR. Isotope values indicated the predominance of aceticlastic pathway in FBR. Interestingly, an increased activity of Methanosaeta was observed during shortening HRT in CSTR and ASBR despite high organic acids concentrations, what was supported by stable isotope data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Biogenic Hydrogen Conversion of De-Oiled Jatropha Waste via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights, and CO2 Reduction Efficiency

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Kumar

    2014-01-01

    Full Text Available We report the semicontinuous, direct (anaerobic sequencing batch reactor operation hydrogen fermentation of de-oiled jatropha waste (DJW. The effect of hydraulic retention time (HRT was studied and results show that the stable and peak hydrogen production rate of 1.48 L/L*d and hydrogen yield of 8.7 mL H2/g volatile solid added were attained when the reactor was operated at HRT 2 days (d with a DJW concentration of 200 g/L, temperature 55°C, and pH 6.5. Reduced HRT enhanced the production performance until 1.75 d. Further reduction has lowered the process efficiency in terms of biogas production and hydrogen gas content. The effluent from hydrogen fermentor was utilized for methane fermentation in batch reactors using pig slurry and cow dung as seed sources. The results revealed that pig slurry was a feasible seed source for methane generation. Peak methane production rate of 0.43 L CH4/L*d and methane yield of 20.5 mL CH4/g COD were observed at substrate concentration of 10 g COD/L, temperature 30°C, and pH 7.0. PCR-DGGE analysis revealed that combination of celluloytic and fermentative bacteria were present in the hydrogen producing ASBR.

  11. Immobilization and Limited Reoxidation of Technetium-99 by Fe(II)-Goethite

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Chang, Hyun-shik; Icenhower, Jonathan P.; Qafoku, Nikolla; Smith, Steven C.; Serne, R. Jeffrey; Buck, Edgar C.; Kukkadapu, Ravi K.; Bowden, Mark E.; Westsik, Joseph H.; Lukens, Wayne W.

    2010-09-30

    This report summarizes the methodology used to test the sequestration of technetium-99 present in both deionized water and simulated Hanford Tank Waste Treatment and Immobilization Plant waste solutions.

  12. Analysis of one thousand liver scans carried out using technetium phytate

    Energy Technology Data Exchange (ETDEWEB)

    Pasquier, J; de Laforte, C; Roux, F; Bisset, J P; Paulin, R [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France)

    1977-10-01

    One thousand liver scans were carried out using technetium phytate. This soluble compound is transformed in the circulating blood into a colloid by chelation of serum calcium, thereby forming a macromolecular phytate of calcium and technetium. The presenting symptoms are compared with the isotopic findings. This microcolloid has the advantages common to all technetium tracers and, in addition, is easy to prepare and has the advantage of a distribution between the liver, spleen, and bone of the same type as that seen with colloidal gold 198 without the dosimetric problems associated with the latter. Although it has a level of hepatic fixation which is less than that of certain sulphide complexes of technetium it appears to provide a better reflection of the colloidopexic function of the liver.

  13. Analysis of one thousand liver scans carried out using technetium phytate

    International Nuclear Information System (INIS)

    Pasquier, J.; Laforte, C. de; Roux, F.; Bisset, J.P.; Paulin, R.

    1977-01-01

    One thousand liver scans were carried out using technetium phytate. This soluble compound is transformed in the circulating blood into a colloid by chelation of serum calcium, thereby forming a macromolecular phytate of calcium and technetium. The presenting symptoms are compared with the isotopic findings. This microcolloid has the advantages common to all technetium tracers and, in addition, is easy to prepare and has the advantage of a distribution between the liver, spleen and bone of the same type as that seen with colloidal gold 198 without the dosimetric problems associated with the latter. Although it has a level of hepatic fixation which is less than that of certain sulphide complexes of technetium it appears to provide a better reflection of the colloidopexic function of the liver [fr

  14. In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer

    International Nuclear Information System (INIS)

    IstokD, Jonathan; Senko, J.M.; Krumholz, Lee R.; Watson, David B.; Bogle, Mary Anna; Peacock, Aaron D.; Change, Y.J.; White, David C.

    2004-01-01

    The potential to stimulate an indigenous microbial community to reduce a mixture of U(VI) and Tc(VII) in the presence of high (120 mM) initial NO 3 - co-contamination was evaluated in a shallow unconfined aquifer using a series of single-well, push-pull tests. In the absence of added electron donor, NO 3 - , Tc(VII), and U(VI) reduction was not detectable. However, in the presence of added ethanol, glucose, or acetate to serve as electron donor, rapid NO 3 - utilization was observed. The accumulation of NO 2 - , the absence of detectable NH 4 + accumulation, and the production of N 2 O during in situ acetylene-block experiments suggest that NO 3 - was being consumed via denitrification. Tc(VII) reduction occurred concurrently with NO 3 - reduction, but U(VI) reduction was not observed until two or more donor additions resulted in iron-reducing conditions, as detected by the production of Fe(II). Reoxidation/remobilization of U(IV) was also observed in tests conducted with high (120 mM) but not low (1 mM) initial NO 3 - concentrations and not during acetylene-block experiments conducted with high initial NO 3 - . These results suggest that NO 3 - -dependent microbial U(IV) oxidation may inhibit or reverse U(VI) reduction and decrease the stability of U(IV) in this environment. Changes in viable biomass, community composition, metabolic status, and respiratory state of organisms harvested from down-well microbial samplers deployed during these tests were consistent with the conclusions that electron donor additions resulted in microbial growth, the creation of anaerobic conditions, and an increase in activity of metal-reducing organisms (e.g., Geobacter). The results demonstrate that it is possible to stimulate the simultaneous bioreduction of U(VI) and Tc(VII) mixtures commonly found with NO 3 - co-contamination at radioactive waste sites.

  15. A comparison of dose savings of lead and lightweight aprons for shielding of 99m-Technetium radiation

    International Nuclear Information System (INIS)

    Warren-Forward, H.; Cardew, P.; Smith, B.; Clack, L.; McWhirter, K.; Johnson, S.; Wessel, K.

    2007-01-01

    Nuclear medicine technologists (NMTs) have the highest effective doses of radiation among medical workers. With increase in the use of lightweight materials in diagnostic radiography, the aim was to compare the effectiveness of lead and lightweight aprons in shielding from 99m-Technetium ( 99m Tc) gamma rays. The doses received from a scattering phantom to the entrance, 9 cm depth and exit of a phantom were measured with LiF:Mg, Cu, P thermoluminescent dosemeters (TLDs). Doses and spectra were assessed without no shielding, with 0.5-mm lead and lightweight aprons. The lead and lightweight aprons decreased entrance surface doses by 76 and 59%, respectively. The spectral analysis showed that the lightweight apron provided better dose reduction at energies 99m Tc labelled radiopharmaceutical. (authors)

  16. Immobilization of 99-Technetium (VII) by Fe(II)-Goethite and Limited Reoxidation

    Energy Technology Data Exchange (ETDEWEB)

    W Um; H Chang; J Icenhower; W Lukens; R Serne; N Qafoku; J Westsik Jr.; E Buck; S Smith

    2011-12-31

    During the nuclear waste vitrification process volatilized {sup 99}Tc will be trapped by melter off-gas scrubbers and then washed out into caustic solutions, and plans are currently being contemplated for the disposal of such secondary waste. Solutions containing pertechnetate [{sup 99}Tc(VII)O{sub 4}{sup -}] were mixed with precipitating goethite and dissolved Fe(II) to determine if an iron (oxy)hydroxide-based waste form can reduce Tc(VII) and isolate Tc(IV) from oxygen. The results of these experiments demonstrate that Fe(II) with goethite efficiently catalyzes the reduction of technetium in deionized water and complex solutions that mimic the chemical composition of caustic waste scrubber media. Identification of the phases, goethite + magnetite, was performed using XRD, SEM and TEM methods. Analyses of the Tc-bearing solid products by XAFS indicate that all of the Tc(VII) was reduced to Tc(IV) and that the latter is incorporated into goethite or magnetite as octahedral Tc(IV). Batch dissolution experiments, conducted under ambient oxidizing conditions for more than 180 days, demonstrated a very limited release of Tc to solution (2-7 {micro}g Tc/g solid). Incorporation of Tc(IV) into the goethite lattice thus provides significant advantages for limiting reoxidation and curtailing release of Tc disposed in nuclear waste repositories.

  17. The oxidation of hydroxylamine by nitric and nitrous acids in the presence of technetium (VII)

    International Nuclear Information System (INIS)

    Koltunov, V.S.; Gomonova, T.V.; Savilova, O.A.; Zhuravleva, G.I.

    2000-01-01

    The oxidation of hydroxylamine by nitric acid in the presence of technetium ions at temperatures above ∝60 C is an autocatalytic process comprising an induction period and then a catalysed reaction involving HNO 2 , which has accumulated in the solution. Tc ions have no appreciable effect on the reaction rate, which is governed only by the nitric and nitrous acid oxidation reactions of hydroxylamine, but the presence of Tc ions does extend the initial induction period. The rate of hydroxylamine oxidation by HNO 3 in the presence of HNO 2 , that is, after the induction period, was found to be: -d[NH 3 OH + ]/dt = k[NH 3 OH + ][HNO 2 ][HNO 3 ] 3.5 where k = 120 ± 10 l 4.5 mol -4.5 min -1 at T = 80 C, μ = 2 and [H + ] ≤ 2 M. Under these conditions, the reaction apparently has a high activation energy of 160-180 kJ mol -1 . At low temperatures (20-40 C) hydroxylamine is effectively stable in solutions of HNO 3 up to concentrations of ∝2 M, whether or not Tc(VII) ions are present. Tc(V) was also observed to form at least one complex on reduction with excess hydroxylamine with an absorption maximum between 467 and 480 nm dependent on the solution acidity. (orig.)

  18. Tumor scintigraphy by the method for subtracting the initial image with technetium-99m labeled antibody

    International Nuclear Information System (INIS)

    Karube, Yoshiharu; Katsuno, Kentaro; Ito, Sanae; Matsunaga, Kazuhisa; Takata, Jiro; Kuroki, Masahide; Murakami, Masaaki; Matsuoka, Yuji

    1999-01-01

    The method for subtracting the initial image from the localization image was evaluated for radioimmunoscintigraphy of tumors with technetium-99m (Tc-99m) labeled antibodies. Monoclonal antibodies were parental mouse and mouse-human chimeric antibodies to carcinoembryonic antigen (CEA), designated F11-39 and ChF11-39, respectively, both of which have been found to discriminate CEA in tumor tissues from the CEA-related antigens. After reduction of the intrinsic disulfide bonds, these antibodies were labeled with Tc-99m. In vivo studies were performed on athymic nude mice bearing the human CEA-producing gastric carcinoma xenografts. Though biodistribution results showed selective and progressive accumulation of Tc-99m labeled antibodies at the tumor site, high radioactivity in blood was inappropriate for scintigraphic visualization of the tumors within a few hours. We examined the subtraction of the initial Tc-99m image from the Tc-99m localization image after a few hours. Subtracted images of the same count reflected the in vivo behavior of the Tc-99m radioactivity. The subtracted scintigrams revealed excellent tumor images with no significant extrarenal background. Visualization of the tumor site was dependent on antigen-specific binding and nonspecific exudation. These results demonstrate that a method of subtraction of the initial image may serve as a potentially useful diagnostic method for an abnormal site for agents with a low pharmacokinetic value. (author)

  19. Neutral, seven-coordinate dioxime complexes of technetium(III): Synthesis and characterization

    International Nuclear Information System (INIS)

    Linder, K.E.; Malley, M.F.; Gougoutas, J.Z.; Unger, S.E.; Nunn, A.D.

    1990-01-01

    The tin-capped complexes 99 Tc(oxime) 3 (μ-OH)SnCl 3 [oxime = dimethylglyoxime (DMG) or cyclohexanedione dioxime (CDO)] can be prepared by the reduction of NH 4 TcO 4 with 2 equiv of SnCl 2 in the presence of dioxime and HCl. These tin-capped complexes can be readily converted into a new class of uncapped Tc-dioxime compounds, TcCl(oxime) 3 , by treatment with HCl. This reaction is reversible. Both the tin-capped and uncapped tris(dioxime) complexes can be converted to the previously reported boron-capped Tc-dioxime complexes TcCl(oxime) 3 BR (R = alkyl, OH) by reaction with boronic acids or with boric acid at low pH. All of these complexes [Tc(oxime) 3 (μ-OH)SnCl 3 , TcCl(oxime) 3 , and TcCl(oxime) 3 BR] appear to be neutral, seven-coordinate compounds of technetium(III). They have been characterized by elemental analysis, 1 H NMR and UV/visible spectroscopy, conductivity, and fast atom bombardment mass spectrometry. The synthesis, characterization, and reactivity of these compounds is discussed. The x-ray crystal structure analysis of TcCl(DMG) 3 and an abbreviated structure report on TcCl(DMG) 3 MeB are described. Crystal data for TcCl(DMG) 3 are reported. 23 refs., 6 figs., 5 tabs

  20. Chemistry of rhenium and technetium. II. Schiff base complexes with polyfunctional amino acids

    International Nuclear Information System (INIS)

    Du Preez, J.G.H.; Gerber, T.I.A.; Fourie, P.J.; Van Wyk, A.J.

    1984-01-01

    Amino acid Schiff base technetium(V) complexes of salicylaldehyde with l-cysteine, l-serine, l-histodine, l-threonine, l-glutamic acid and l-tryptophan have been preapred by direct reaction and by constituent combination. The amino acid part of the ligands coordinates to the technetium through the carboxylate group, while the other available functional group of the amino acids plays a more minor role as blocking group or in intramolecular bonding. 3 tables

  1. A method for the preparation of lipophilic macrocyclic technetium-99m complexes

    International Nuclear Information System (INIS)

    Troutner, D.E.; Volkert, W.A.

    1991-01-01

    A procedure for the preparation of technetium complexes applicable as diagnostic radiopharmaceuticals is suggested and documented with 27 examples. Technetium-99m is reacted with a suitable complexant selected from the class of alkylenamine oximes containing 2 or 3 carbon atoms in the alkylene group. The lipophilic macrocyclic complexes possess an amine, amide, carboxy, carboxy ester, hydroxy or alkoxy group or a suitable electron acceptor group. (M.D.). 7 tabs

  2. Obtention of scintillography images by low density lipoproteins labelled with technetium 99

    International Nuclear Information System (INIS)

    Silva, S.; Coelho, I.; Zanardo, E.; Pileggi, F.; Meneguethi, C.; Maranhao, R.C.

    1992-01-01

    The low density lipoproteins carry the most part of the cholesterol in the blood plasma. These lipoproteins are labelled with technetium-99-m and have been used for obtaining images in nuclear medicine. The introduction of this technique is presented, aiming futures clinical uses. Scintillographic images are obtained 25 minutes and 24 hours after the injection of 3 m Ci of low density lipoproteins - technetium-99 m in rabbits. (C.G.C.)

  3. Positive thyroid cancer scintigraphy using technetium-99m methoxyisobutylisonitrile

    International Nuclear Information System (INIS)

    Nemec, J.; Nyvltova, O.; Blazek, T.; Vlcek, P.; Racek, P.; Novak, Z.; Preiningerova, M.; Hubackova, M.; Krizova, M.; Zimak, J.; Bilek, R.

    1996-01-01

    The aim of the study was to evaluate the possibility of detecting thyroid cancer recurrences without the need for withdrawal of thyroid suppressive treatment. Upper-body or whole-body scintigraphy was performed in a group of 200 patients evaluated for differentiated thyroid cancers in 1993 and 1994 using technetium-99m sestamibi. Scans were performed 20-30 min following i.v. administration of 500 MBq of 99m Tc-methoxyisobutylisonitrile (MIBI). Bone and lung metastases were detected with very high sensitivity and specificity, with a very high predictive value of negative results and a somewhat lower predictive value of positive results. The sensitivity and specificity of findings in the neck were lower but the predictive value of negative results was high. Whole-body scans with 99m Tc-MIBI are a useful tool in the follow-up of patients with differentiated thyroid cancer, for the detection of distant metastatic lesions. (orig.)

  4. Solidification/stabilization of technetium in cement-based grouts

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Bostick, W.D.; Spence, R.D.; Shoemaker, J.L.

    1990-01-01

    Mixed low-level radioactive and chemically hazardous process treatment wastes from the Portsmouth Gaseous Diffusion Plant are stabilized by solidification in cement-based grouts. Conventional portland cement and fly ash grouts have been shown to be effective for retention of hydrolyzable metals (e.g., lead, cadmium, uranium and nickel) but are marginally acceptable for retention of radioactive Tc-99, which is present in the waste as the highly mobile pertechnate anion. Addition of ground blast furnace slag to the grout is shown to reduce the leachability of technetium by several orders of magnitude. The selective effect of slag is believed to be due to its ability to reduce Tc(VII) to the less soluble Tc(IV) species. 12 refs., 4 tabs

  5. Mechanisms of sorption of neptunium and technetium on argillaceous materials

    International Nuclear Information System (INIS)

    Hooker, P.J.; West, J.M.; Noy, D.J.

    1986-01-01

    It is of pressing concern to understand the behaviour of radionuclides in the environment and in particular long-lived ones (e.g. Np-237 and Te-99) in argillaceous rocks. Clay formations have been chosen as likely candidates for holding low level radioactive waste repositories and in the event of leakage of radionuclides into the geosphere some knowledge of their fate is required in a far-field safety assessment study. The objectives of this present work were to examine the properties of neptunium and technetium in ground-waters associated with clay-rich materials and to ascertain the variations in sorption of these radionuclides under different environmental conditions and to use the information in a forecast of transport through a clay layer

  6. The determination of technetium-99 in environmental materials

    International Nuclear Information System (INIS)

    Harvey, B.R.; Ibbett, R.D.; Williams, K.J.; Lovett, M.B.

    1991-01-01

    The Aquatic Environment Protection Division of the Directorate of Fisheries Research (DFR), Lowestoft carries out analyses, on a routine basis, for a considerable range of radionuclides in a wide variety of environmental materials. Technetium-99 is included in the list of radionuclides for which analysis is regularly carried out as part of the DFR monitoring programme. Its determination is inevitably somewhat labour-intensive and over the years the procedures used have changed to accommodate increasing demands for information on the environmental behaviour of the nuclide. Reliable analytical procedures for the radiochemical separation and assaying of 99 Tc are thus important. Radiometric and gravimetric analyses described in this publication have been developed over a substantial period of time and have given excellent results in international intercomparison exercises. (author)

  7. Detection of esophageal ulcerations with technetium-99m albumin sucralfate

    International Nuclear Information System (INIS)

    Goff, J.S.; Adcock, K.A.; Schmelter, R.

    1986-01-01

    Technetium-99m albumin-sucralfate ([/sup 99m/Tc]Su) can be used to demonstrate peptic ulcer disease in man and animals. We evaluated the usefulness of [/sup 99m/Tc]Su for detecting various grades of esophagitis. [/sup 99m/Tc]Su adhered to the distal esophagus for up to 3 hr in five of six patients with esophageal ulcers but adhered to only two of nine with lesser degrees of esophagitis. No adherence was seen in five patients without esophagitis. Thus, [/sup 99m/Tc]Su may not be useful for detecting any but the most severe grade of esophagitis. Based on these results, we speculate that the previously documented beneficial effects of sucralfate on mild to moderate esophagitis may be due to other mechanisms besides adherence to the ulcerated mucosa

  8. Technetium 99m methylene diphosphonate bone scanning in osteoarthritic hands

    International Nuclear Information System (INIS)

    Buckland-Wright, J.C.; Lynch, J.A.; Macfarlane, D.G.; Homoeopathic Hospital, Tunbridge; Fogelman, I.; Emery, P.

    1991-01-01

    In this prospective study, the radiological features characteristic of osteoarthritis of the hand were compared with the radionuclide bone scan images. A total of 32 patients was assessed at 6-monthly intervals for 18 months. Microfocal radiographs were taken at each visit. The high magnification and resolution of this technique permitted direct measurement of joint space width, subchondral sclerosis, osteophyte number and area and juxta-articular radiolucency area for each joint in the hand. Four-hour technetium 99m methylene diphosphonate bone scans were taken at 0 and 12 months and the activity of tracer uptake at each joint scored. The latter was compared with each X-radiographic feature at every visit and the changes between visits analysed. The scan scores did not correlate with any of the X-radiographic features other than osteophyte size. During the study the size of growing and remodelling osteophytes increased significantly at joints with raised or increased isotope uptake. (orig.)

  9. Technetium 99m methylene diphosphonate bone scanning in osteoarthritic hands

    Energy Technology Data Exchange (ETDEWEB)

    Buckland-Wright, J.C.; Lynch, J.A. (United Medical and Dental Schools of Guy' s and Saint Thomas' , London (UK). Dept. of Anatomy); Macfarlane, D.G. (United Medical and Dental Schools of Guy' s and Saint Thomas' , London (UK). Dept. of Anatomy Homoeopathic Hospital, Tunbridge (UK). Dept. of Rheumatology); Fogelman, I. (United Medical and Dental Schools of Guy' s and Saint Thomas' , London (UK). Dept. of Nuclear Medicine); Emery, P. (United Medical and Dental Schools of Guy' s and Saint Thomas' , London (UK). Dept. of Rheumatology)

    1991-01-01

    In this prospective study, the radiological features characteristic of osteoarthritis of the hand were compared with the radionuclide bone scan images. A total of 32 patients was assessed at 6-monthly intervals for 18 months. Microfocal radiographs were taken at each visit. The high magnification and resolution of this technique permitted direct measurement of joint space width, subchondral sclerosis, osteophyte number and area and juxta-articular radiolucency area for each joint in the hand. Four-hour technetium 99m methylene diphosphonate bone scans were taken at 0 and 12 months and the activity of tracer uptake at each joint scored. The latter was compared with each X-radiographic feature at every visit and the changes between visits analysed. The scan scores did not correlate with any of the X-radiographic features other than osteophyte size. During the study the size of growing and remodelling osteophytes increased significantly at joints with raised or increased isotope uptake. (orig.).

  10. Detection of esophageal ulcerations with technetium-99m albumin sucralfate

    Energy Technology Data Exchange (ETDEWEB)

    Goff, J.S.; Adcock, K.A.; Schmelter, R.

    1986-07-01

    Technetium-99m albumin-sucralfate ((/sup 99m/Tc)Su) can be used to demonstrate peptic ulcer disease in man and animals. We evaluated the usefulness of (/sup 99m/Tc)Su for detecting various grades of esophagitis. (/sup 99m/Tc)Su adhered to the distal esophagus for up to 3 hr in five of six patients with esophageal ulcers but adhered to only two of nine with lesser degrees of esophagitis. No adherence was seen in five patients without esophagitis. Thus, (/sup 99m/Tc)Su may not be useful for detecting any but the most severe grade of esophagitis. Based on these results, we speculate that the previously documented beneficial effects of sucralfate on mild to moderate esophagitis may be due to other mechanisms besides adherence to the ulcerated mucosa.

  11. Extraction of technetium from simulated Hanford tank wastes

    International Nuclear Information System (INIS)

    Chaiko, D.J.; Vojta, Y.; Takeuchi, M.

    1993-01-01

    Aqueous biphasic separation systems are being developed for the treatment of liquid radioactive wastes. These extraction systems are based on the use of polyethylene glycols (PEGs) for the selective extraction and recovery of long-lived radionuclides, such as 129 I, 75 Se, and 99 Tc, from caustic solutions containing high concentrations of nitrate, nitrite, and carbonate. Because of the high ionic strengths of supernatant liquids in Hanford underground storage tanks, aqueous biphasic systems can be generated by simply adding aqueous PEG solutions directly to the waste solution. In the process, anionic species like I - and TcO 4 - are selectively transferred to the less dense PEG phase. The partition coefficient for a wide range of inorganic cations and anions, such as sodium, potassium, aluminum, nitrate, nitrate, and carbonate, are all less than one. The authors present experimental data on extraction of technetium from several simulated Hanford tank wastes at 25 degree and 50 degree C

  12. Technetium-99m HMPAO labeled leukocytes in inflammation imaging

    International Nuclear Information System (INIS)

    Uno, Kimiichi; Yoshikawa, Kyousan; Imazeki, Keiko; Minoshima, Satoshi; Arimizu, Noboru

    1991-01-01

    Technetium-99m-HMPAO (Tc-99m-HMPAO) labeled leukocyte imaging was carried out in 19 patients at 3-5 hr after reinjection. There were no side effects noted. Tc-99m leukocyte images showed gall bladder, colon, kidney, and urinary bladder activity in normal distribution as a result of excretion of the eluted Tc-99m complex. They yielded a sensitivity of 93%, a specificity of 100% and an accuracy of 95%. They were correctly positive in 14 out of 19 cases. But one false negative case was seen in a patient with pyonephrosis showing a lack of renal function with decreased renal blood flow. It was concluded that they have some advantages over In-111 leukocyte images, but we have to consider the fact that the ureteral obstruction or the lack of renal function with decreased renal blood flow may result in a false positive or a false negative case. (author)

  13. The abdominal technetium scan (a decade of experience)

    International Nuclear Information System (INIS)

    Cooney, D.R.; Duszynski, D.O.; Camboa, E.; Karp, M.P.; Jewett, T.C. Jr.

    1982-01-01

    Out of 270 children with gastrointestinal symptoms, the indications for technetium scanning were: gastrointestinal tract bleeding (165 patients), abdominal pain (99 patients) and a history of intussusception (6 patients). Thirty children had abnormal findings, while the remaining 240 patients had normal scans. Four of the 30 children with positive scans were not explored, while the others underwent laparotomy. Of the 26 operated patients, 12 (46%) had a Meckel's diverticulum. Nine patients (34%) had other pathologic lesions that were detected by the scan. Five had true false positives as no pathologic lesions were found. Of the 240 children with negative scans, 19 were eventually explored because of persistent symptoms or clinical findings. Two of these had a Meckel's diverticulum. Eleven had a negative exploration while six had other surgical lesions. Technitium scan should reliably detect around 80%-90% of Meckel's diverticula. It will also accurately exclude the diagnosis of Meckel's diverticulum in over 90% of patients

  14. Technetium-99m DMSA preparation: Trivial issues causing severe problems

    International Nuclear Information System (INIS)

    Kumar, V.

    1997-01-01

    Urinary tract infection (UTI) in children involving renal parenchyma, upper collecting system or bladder is one of the major causes for consideration in the diagnosis and management of paediatric nuclear medicine. Acute pyelonephritis is one of the prime causes of morbidity associated with urinary tract infection in children which can lead to progressive renal damage. Technetium-99m dimercaptosuccinic acid (DMSA) is used extensively for the assessment of UTI in paediatrics. The radiopharmaceutical preparation could be influenced by several factors, most of them are trivial, but invariably have severe impact on the quality of the scintiphotographs. This communication is mainly to highlight some of the issues related to 99 mTc-DMSA preparation and the possible precautionary measures that need to be taken to obviate unwarranted problems. (author)

  15. Technetium in late-type stars. I. Observations

    International Nuclear Information System (INIS)

    Little-Marenin, I.R.; Little, S.J.

    1979-01-01

    An analysis of about 90 spectra (11 or 13A/mm) of nonvariable and variable (mostly Mira variables) M, MS, S, CS, and C stars for the presence of the radioactive element technetium (T/sub 1/2/approx. =2 x 10 5 y) suggests that Tc is most often present at certain variability periods. Stars with no Tc I lines in their spectra can be found at most periods (P-bar=234/sup d/), whereas stars with Tc I lines have periods in most cases in excess of 300 days (P-bar=330/sup d/ +- 83/sup d/). Interpreting our data in terms of kinematic studies by Feast (1963) suggests that the stars with Tc are Pop I and that variables without Tc are largely Pop II type stars

  16. Sup(99m) Technetium - labeled red blood cells 'in vitro'

    International Nuclear Information System (INIS)

    Bernardo Filho, M.; Souza Moura, I.N. de; Boasquevisque, E.M.

    1983-01-01

    A simple technique for the preparation of sup(99m) Tc labeled red blood cells using a comercial kit is described. To each 3ml of plain blood with anti-coagulant was added 1ml of solution of commercial kit with 6.8 μg of stannous chloride. This mixture was incubated in water bath, at 37 0 C, for 60 minutes. Then technetium-99m was added and the mixture was left for another ten minutes, in water bath, at 37 0 C. Under these conditions there was the best labeling of the red blood cells. Similar results were obtained with a solution of stannous chloride prepared freshly. The labeling is strong for 6.8 μg stannous chloride because the labeling was not removed by the several washes of the red blood cells or by the left in water bath. (Author) [pt

  17. Study of the catalytic activity of supported technetium catalysts

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mikhailenko, I.E.; Pokorovskaya, O.V.

    1985-01-01

    The radioactive d metal 43 Tc 99 has catalytic properties in the synthesis of ammonia. For the purpose of reducing the quantity of the radioactive metal and of increasing the specific surface, the active component was applied to BaTiO 3 and gamma-Al 2 O 3 supports. This paper uses charcoal as a support and a table presents the catalytic activity of the samples during the synthesis of ammonia. X-ray diffractometric investigation of the catalysts was carried out with the use of Cu K /SUB alpha/ radiation. It is shown that the catalysts. The values of the specific rate constants of technetium in the catalysts. The values of the specific rate constants remain practically constant for all the catalyst samples studied, attesting to the absence of a specific metal-support interaction during the synthesis of ammonia

  18. Uptake of technetium from seawater by red abalone Haliotis rufescens

    International Nuclear Information System (INIS)

    Spies, R.B.

    1975-01-01

    Technetium accumulation from seawater by the abalone Haliotis rufescens was studied with 95 Tc. Concentration factors, uptake rates, steady state concentrations, and biological half-lives were determined experimentally for whole-body uptake. Whole-body concentration factors ranged from 135 to 205; biological half-life was 60 days. Changes in concentration factors were determined for six tissues during the uptake period. The highest activities were in the order of: digestive gland>gill>kidneys>heart>gonad>columnar muscle. Dead shells accumulated little activity compared to shells of living abalone. Gills and digestive system appear to be the routes of entry. Autoradiography shows that of the muscular tissues the outer edge of the foot and epipodium are the most active and the edible columnar muscle the least active. (author)

  19. Thallium-technetium-subtraction scintigraphy in secondary hyperparathyroidism

    International Nuclear Information System (INIS)

    Adalet, I.; Hawkins, T.; Clark, F.; Wilkinson, R.

    1994-01-01

    Between 1983 and 1992 thallium-technetium subtraction scintigraphy (TTS) was performed on 74 patients with clinical and biochemical evidence of hyperparathyroidism. Twenty-five of the 53 investigations since 1988 were conducted on patients with renal failure with a suspicion of secondary hyperparathyroidism. In a retrospective study we have evaluated radioisotope scintigraphy for patients with adenoma and for renal failure patients with possible parathyroid hyperplasia. Thirty of 74 patients underwent neck exploration. Scintigraphy detected 17 of 24 parathyroid adenomas (sensitivity 71%). In contrast, in six renal patients who came to operation, scintigraphy localised only 5 of 20 hyperplastic parathyroid glands (sensitivity 25%) and in one renal patient we localised a parathyroid adenoma. A review of the literature shows low detection rates for hyperplasia by TTS to be a common observation. Based on these findings a rational approach is offered for parathyroid localisation in renal patients prior to neck exploration. (orig.)

  20. Synthesis of new Technetium 99 agents from aryl piperozine derivatives

    International Nuclear Information System (INIS)

    Zenati, Kaouther

    2012-01-01

    This work arises in the context of developing specific radiopharmaceuticals for serotoninergic 5-HT 1A receptors, for scintigraphic imaging by SPECT. these being involved in several neuropathology. Starting from new derivative of Technetium cytectrene bearing the methoxyphenyl piperazine moiety that have revealed an impressive brain uptake (2.47 pour cent ID/G), we thought to obtain an other radiocomplexe characterized by a more stable brain retention. To do this we added a spacer amino propyl to the first ligand 1-((2methoxyphenyl) piperazine carboxamide ferrocene, thus obtaining 1(3-aminopropyl) 4 (2-methoxyphenyl piperazine) ferrocene carboxamide. We report here the synthesis of the tricarbonyl 99mT c radioligand, its characterization and its biological study. The biodistribution is characterized by a very large uptake in the lungs and relatively slow depuration.Brain absorption is reduced compared to the analogue of origin with equivalent cerebral retention time.

  1. Studies of technetium chemistry. Pt.8. The regularities of the bond length and configuration of rhenium and technetium complexes in crystals

    International Nuclear Information System (INIS)

    Liu Guozheng; Liu Boli

    1995-01-01

    Some bond length regularities in MO 6 , MO-4, MX 5 α and MX 4 αβ moieties of technetium and rhenium compounds are summarized and rationalized by cavity model. The chemical properties of technetium and rhenium are so similar that their corresponding complexes have almost the same configuration and M-X bond lengths when they are in cavity-controlled state. Technetium and Rhenium combine preferably with N, O, F, S, Cl and Br when they are in higher oxidation states (>3), but preferably with P, Se etc. when they are in lower oxidation states ( 4 αβ is approximately constant; (2) the average M-X bond length of MX 6 varies moderately with the oxidation state of M; (3) the bond length of M-X trans to M-α in MX 5 α has a linear relationship with the angle

  2. Sorption of iodine, chlorine, technetium and cesium in soil

    International Nuclear Information System (INIS)

    Soederlund, M.; Lusa, M.; Lehto, J.; Hakanen, M.; Vaaramaa, K.

    2011-01-01

    The safety assessment of final disposal of spent nuclear fuel will include an estimate for the behavior of waste nuclides in the biosphere. As a part of this estimate also the sorption of radioactive iodine, chlorine, technetium and cesium in soil is to be considered. The chemistry and the sorption of these radionuclides in soils are described in this literature survey. Behavior of I-129, Cl-36 and Tc-99 in the environment is of great interest because of their long half-lives and relatively high mobilities. The importance of Cs-135 arises from its high content in spent nuclear fuel and long physical half-life, even though it is considered relatively immobile in soil. Factors affecting the migration and sorption of radionuclides in soils can be divided into elemental and soil specific parameters. The most important elemental factor is the speciation of the element, which is influenced by the soil redox potential, pH and complex forming ligands. Soil micro-organisms can either serve as sorbents for radionuclides or affect their speciation by altering the prevailing soil redox conditions. Soil organic matter content and mineral properties have a marked influence on the retention of radionuclides. The sorption of anionic radionuclides such as I-, Cl- and TcO 4 - is pronounced in the presence of organic matter. Clay minerals are known to bound cesium effectively. The effect of speciation of radioactive iodine, chlorine, technetium and cesium in soil is considered in this study, as well as the effect of soil micro-organisms, organic matter and mineral properties. (orig.)

  3. Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses

    Science.gov (United States)

    Peter, A.; Steinbach, A.; Liedl, R.; Ptak, T.; Michaelis, W.; Teutsch, G.

    2004-07-01

    In recent years, natural attenuation (NA) has evolved into a possible remediation alternative, especially in the case of BTEX spills. In order to be approved by the regulators, biodegradation needs to be demonstrated which requires efficient site investigation and monitoring tools. Three methods—the Integral Groundwater Investigation method, the compound-specific isotope analysis (CSIA) and a newly developed combination of both—were used in this work to quantify at field scale the biodegradation of o-xylene at a former gasworks site which is heavily contaminated with BTEX and PAHs. First, the Integral Groundwater Investigation method [Schwarz, R., Ptak, T., Holder, T., Teutsch, G., 1998. Groundwater risk assessment at contaminated sites: a new investigation approach. In: Herbert, M. and Kovar, K. (Editors), GQ'98 Groundwater Quality: Remediation and Protection. IAHS Publication 250, pp. 68-71; COH 4 (2000) 170] was applied, which allows the determination of mass flow rates of o-xylene by integral pumping tests. Concentration time series obtained during pumping at two wells were used to calculate inversely contaminant mass flow rates at the two control planes that are defined by the diameter of the maximum isochrone. A reactive transport model was used within a Monte Carlo approach to identify biodegradation as the dominant process for reduction in the contaminant mass flow rate between the two consecutive control planes. Secondly, compound-specific carbon isotope analyses of o-xylene were performed on the basis of point-scale samples from the same two wells. The Rayleigh equation was used to quantify the degree of biodegradation that occurred between the wells. Thirdly, a combination of the Integral Groundwater Investigation method and the compound-specific isotope analysis was developed and applied. It comprises isotope measurements during the integral pumping tests and the evaluation of δ13C time series by an inversion algorithm to obtain spatially

  4. Nitrido-technetium(V) complexes with amino acids: Preparation and X-ray crystal structure of the L-cysteinate ethyl ester technetium(V) complex

    International Nuclear Information System (INIS)

    Marchi, A.; Rossi, R.; Marvelli, L.; Bertolasi, V.

    1993-01-01

    Technetium-99m is the radionuclide of choice in diagnostic nuclear medicine due to its ideal photon energy of 140 keV and half-life of 6 h. Neutral, stable, and lipophilic technetium complexes with diamino dithiol ligands (DADT) have been widely studied as potential brain perfusion agents and a 99m Tc complex of N,N'-1,2-ethylenediylbis(L-cysteine diethyl ester) (L,L-ECD) has been proposed as a marker of regional cerebral blood flow. It crosses the blood brain barrier (BBB) and is retained in the brain owing to enzymatic hydrolysis of one ester group yielding to a more polar species. More recently, 99m Tc-cysteine complex has been evaluated in animal distribution studies for tumor diagnosis, but its chemical structure has not been determined. A large number of transition metal complexes with amino acids and peptides have been synthesized and structurally characterized to understand their interactions with proteins and antibodies, as well as biocatalytic processes, but only a limited number of rhenium and technetium compounds have been reported. Up to now, the only technetium complex to be characterized by X-ray analysis that contains amino acids as ligand is [TcO(L,L-ECD)]. The author's interest in the nitrido-technetium chemistry is due to the discovery of a new method for preparing radiopharmaceuticals containing the [ 99m Tc triple-bond N] 2+ core. In this communication the authors report the synthesis and characterization of nitrido-technetium complexes with L-cysteine ethyl ester (CYS-OEt), L-cysteine (CYS) and cysteamine (CSA) and the first X-ray crystal structure of a [TcN] 2+ -amino acid complex

  5. Analysis of Technetium Species and Fractions in Natural Seaweed Using Biochemical Separation and ICP-MS Measurement

    DEFF Research Database (Denmark)

    Shi, Keliang; Hou, Xiaolin; Qiao, Jixin

    2016-01-01

    An extremely high accumulation and retention of technetium in marine plants, especially brown seaweed, makes it a unique bioindicator of technetium. In the present work, a novel approach was developed for the speciation analysis of technetium in seaweed, wherein a series of biochemical separations....... Besides the inorganic species of TcO4-, most of technetium (>75%) combined with organic components of seaweed such as algin, cellulose, and pigment. This investigation could provide important fundamental knowledge for studying the processes and mechanisms of 99Tc accumulation in the natural seaweed....

  6. Microbial glycoproteomics

    DEFF Research Database (Denmark)

    Halim, Adnan; Anonsen, Jan Haug

    2017-01-01

    Mass spectrometry-based "-omics" technologies are important tools for global and detailed mapping of post-translational modifications. Protein glycosylation is an abundant and important post translational modification widespread throughout all domains of life. Characterization of glycoproteins...... and research in this area is rapidly accelerating. Here, we review recent developments in glycoproteomic technologies with a special focus on microbial protein glycosylation....

  7. Efetividade da higienização de brinquedos infantis na redução microbiana: revisão sistemática da literatura Effectiveness of infant toys sanitation on microbial reduction: systematic literature review

    Directory of Open Access Journals (Sweden)

    Débora Guedelha Blasi

    2016-08-01

    Full Text Available Objetivo: Avaliar a efetividade de estratégias de higienização de brinquedos infantis, quando comparadas a nenhuma intervenção na redução da carga microbiana dos brinquedos, em diferentes ambientes onde há o cuidado de crianças. Método: Revisão sistemática da literatura de 2003 a 2013, realizada nas bases de dados SciELO, Lilacs, IBECS, MEDLINE, Embase, Scopus, PubMed e bancos de dissertações e teses das bibliotecas digitais da USP, Unesp e Unicamp. Os dados foram tabulados e submetidos a análise de subgrupos de forma descritiva. Resultados: Foram levantados 7762 trabalhos, que após avaliação dos revisores, resultaram em 12 pesquisas relevantes ao tema. Predominantemente estudos comparativos de cargas microbianas, com grande variabilidade metodológica, trazendo propostas de higienização diversas. Conclusão: Várias estratégias de higienização foram consideradas eficazes, porém a heterogeneidade de métodos não possibilitou a identificação da melhor evidência, mostrando a necessidade de maior investigação do tema para a elaboração de estratégias de higienização de brinquedos infantis. ======================================================= Objective: To assess the effectiveness of infant toys sanitation, when compared to no intervention, on the reduction of toys microbial load, in different environments where the care of children exists. Method: Systematic literature review from 2003 to 2013, using databases SciELO, Lilacs, IBECS, MEDLINE, Embase, Scopus, PubMed, and USP, Unesp and Unicamp master and doctoral thesis digital libraries. Obtained data were tabulated and submitted to a descriptive analysis of subgroups. Results: In total, 7762 researches were retrieved. After reviewers’ assessment, 12 studies were identified as relevant. These were predominantly comparative studies, assessing the microbial loads before and after toys sanitation using several methods of sanitation. Conclusion: Several sanitation

  8. Microbial transformation of xenobiotics for environmental ...

    African Journals Online (AJOL)

    Microbial transformation of xenobiotics for environmental bioremediation. ... anaerobic and reductive biotransformation by co-metabolic processes and an overview of ... of xenobiotic compounds in context to the modern day biotechnology.

  9. Sorption of technetium and its analogue rhenium on bentonite material under aerobic conditions

    International Nuclear Information System (INIS)

    Vinsova, H.; Koudelkova, M.; Konirova, R.; Vecernik, P.; Jedinakova-Krizova, V.

    2003-01-01

    The uptake of technetium on bentonite materials has been studied from the point of view of characterization of long-term radioactive elements behavior in nuclear waste repository. Bentonite R (locality Rokle, Czech Republic) and two types of model groundwater (granitic and bentonite) were selected for the sorption experiments. It is generally known that bentonite materials show an excellent cation-exchange capacity and, on the other hand, a poor uptake of anions. Technetium occurs under aerobic conditions in its most stable oxidation state (+VII) as pertechnetate, which makes a question of its sorption on bentonite more complex when compared with e.g. Cs + or Sr 2+ . To increase the K d values for technetium sorption on bentonite, it is necessary to carry out the experiments under anaerobic conditions in the presence of reducing agent, which is capable to lower the oxidation state of technetium which enables its successful immobilization. The aim of our research has been to find out the conditions suitable for the technetium sorption on selected bentonite under oxidizing conditions. The sorption experiments with Tc-99 on bentonite have been carried out by batch method. The influence of the addition of different materials (e.g. activated carbon, graphite, Fe 2+ , Fe) with bentonite, the effect of solid:aqueous phase ratio and a pH value on the percentage of technetium uptake and on the K d values were tested. Perrhenate was selected as an analogue of pertechnetate in non-active experiments of capillary electrophoresis (CE) and isotachophoresis (ITP). The percentage of rhenium sorbed on bentonite material was determined from the decrease of perrhenate peak area (CE) and from the shortening of the ITP zone corresponding to perrhenate. Both electromigration methods provided comparable results. The results obtained in this study with non-active material were compared to those of technetium acquired by radiometry and polarography. (authors)

  10. Radiação gama na redução da carga microbiana de filés de frango Gamma radiation on reduction of the microbial contamination of chicken steaks

    Directory of Open Access Journals (Sweden)

    Marta Helena Filet SPOTO

    1999-12-01

    Full Text Available Neste trabalho estudou-se o efeito da radiação gama na destruição dos microrganismos presentes em filés de frango armazenados sob refrigeração. Um dos possíveis fatores de deterioração da carne de frango é a atividade microbiana. A irradiação é um processo de conservação de alimentos através da eliminação de microrganismos. O delineamento experimental foi em blocos casualizados com 5 fatores (períodos de armazenamento e 5 níveis (doses de radiação, com 3 repetições por tratamento. As amostras de filé de frango foram irradiadas com doses de 0,0; 2,0; 4,0; 6,0 e 8,0kGy e em seguida armazenadas sob refrigeração (± 5ºC por 1, 7, 14, 21 e 28 dias. A contagem total dos microrganismos foi realizada por plaqueamento em profundidade em meio de cultivo PCA. As amostras não irradiadas permitiram um acréscimo de dois ciclos logarítmicos na contagem microbiana ao longo dos vinte e oito dias de armazenamento (de 10(5 para 10(7UFC/g. As amostras irradiadas com dose de 2,0kGy permitiram acréscimo de um ciclo logarítmico durante os vinte e oito dias de armazenamento (de 10³ para 10(4UFC/g. As doses de radiação de 4,0; 6,0 e 8,0kGy reduziram a população microbiana a níveis de 10²UFC/g no vigésimo primeiro dia e 10¹UFC/g no vigésimo oitavo dia de armazenamento. A irradiação pode ser um processo eficiente para a redução da carga microbiana de filés de frango porque a dose de radiação de 4,0kGy foi suficiente para manter os filés de frango refrigerados com uma população microbiana de 10¹UFC/g até vinte e oito dias de armazenamento.This work evaluate the effect of gamma radiation on reduction of the microbial contamination in chicken steaks stored under refrigeration. Microbial activity causes deterioration in poultry. Irradiation is a process of food preservation by reduction of the number of the microorganisms. The experimental design was in random blocks with 5 factors (storage periods and 5 levels

  11. Studies on the reduction of technetate(VII) by 1,2 bis(diphenylphosphino)ethane

    International Nuclear Information System (INIS)

    Muenze, R.; Seifert, S.; Kloetzer, D.; Maeding, P.; Goerner, W.

    1984-01-01

    The reduction of technetate(VII) by using 1,2 bis(diphenylphosphino)ethane (DPPE) has been investigated as a model for the preparation of new myotropic technetium compounds. Phosphino complexes were isolated and characterized which contain technetium in the oxidation state V([TcO 2 DPPE 2 ][TcO 4 ]), IV([TcCl 2 DPPE 2 ][TcCl 6 ]), III ([TcCl 3 DPPE 2 ] 0 ), ([TcCl 2 DPPE 2 ]Cl, and II ([TcCl 2 DPPE 2 ] 0 ) dependent on the reaction conditions, in particular Tc/DPPE and Tc/HCl ratios. (author)

  12. Synthesis and Properties of Metallic Technetium and Technetium-Zirconium Alloys as Transmutation Target and Radioactive waste storage form in the UREX+1 Process

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Thomas [Idaho State University/Idaho National Laboratory, 1776 Science Center Drive, Idaho Falls, ID 83402 (United States)]|[Harry Reid Center, University Nevada - Las Vegas, 4505 Maryland Parkway, Las Vegas, NV (United States); Poineau, Frederic; Czerwinski, Kenneth R. [Harry Reid Center, University Nevada - Las Vegas, 4505 Maryland Parkway, Las Vegas, NV (United States)

    2008-07-01

    In the application of UREX+1 process, technetium will be separated together with uranium and iodine within the first process step. After the separation of uranium, technetium and iodine must be immobilized by their incorporation in a suitable waste storage-form. Based on recent activities within the AFCI community, a potential candidate as waste storage form to immobilize technetium is to alloy the metal with excess zirconium. Alloys in the binary Tc-Zr system may act as potential transmutation targets in order to transmute Tc-99 into Ru-100. We are presenting first results in the synthesis of metallic technetium, and the synthesis of equilibrium phases in the binary Tc-Zr system at 1400 deg. C after arc-melting and isothermal annealing under inert conditions. Samples were analyzed using X-ray powder diffraction, Rietveld analysis, scanning electron microscopy, and electron probe micro-analysis, which allows us to construct the binary Tc-Zr phase diagram for the isothermal section at 1400 deg. C. (authors)

  13. Ion Exchange Column Tests Supporting Technetium Removal Resin Maturation

    Energy Technology Data Exchange (ETDEWEB)

    Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hamm, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Morse, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-12-20

    The primary treatment of the tank waste at the DOE Hanford site will be done in the Waste Treatment and Immobilization Plant, currently under construction. The baseline plan for this facility is to treat the waste, splitting it into High Level Waste (HLW) and Low Activity Waste (LAW). Both waste streams are then separately vitrified as glass and sealed in canisters. The LAW glass will be disposed on site. There are currently no plans to treat the waste to remove technetium, so its disposition path is the LAW glass. Due to the soluble properties of pertechnetate and long half-life of 99Tc, effective management of 99Tc is important. Options are being explored to immobilize the supplemental LAW portion of the tank waste, as well as to examine the volatility of 99Tc during the vitrification process. Removal of 99Tc, followed by off-site disposal has potential to reduce treatment and disposal costs. A conceptual flow sheets for supplemental LAW treatment and disposal that could benefit from technetium removal will specifically examine removing 99Tc from the LAW feed stream to supplemental immobilization. SuperLig® 639 is an elutable ion exchange resin. In the tank waste, 99Tc is predominantly found in the tank supernate as pertechnetate (TcO4-). Perrhenate (ReO4-) has been shown to be a good non-radioactive surrogate for pertechnetate in laboratory testing for this ion exchange resin. This report contains results of experimental ion exchange distribution coefficient and column resin maturation kinetics testing using the resin SuperLig® 639a to selectively remove perrhenate from simulated LAW. This revision includes results from testing to determine effective resin operating temperature range. Loading tests were performed at 45°C, and the computer modeling was updated to include the temperature effects. Equilibrium contact testing indicated that this batch of